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A B S T R A C T

All ecosystems and in particular ecosystems in Mediterranean climates are affected by fires. Knowledge of the
drivers that most influence burn severity patterns as well an accurate map of post-fire effects are key tools for
forest managers in order to plan an adequate post-fire response. Remote sensing data are becoming an indispens-
able instrument to reach both objectives. This work explores the relative influence of pre-fire vegetation structure
and topography on burn severity compared to the impact of post-fire damage level, and evaluates the utility of
the Maximum Entropy (MaxEnt) classifier trained with post-fire EO-1 Hyperion data and pre-fire LiDAR to model
three levels of burn severity at high accuracy. We analyzed a large fire in central-eastern Spain, which occurred
on 16–19 June 2016 in a maquis shrubland and Pinus halepensis forested area. Post-fire hyperspectral Hyper-
ion data were unmixed using Multiple Endmember Spectral Mixture Analysis (MESMA) and five fraction images
were generated: char, green vegetation (GV), non-photosynthetic vegetation, soil (NPVS) and shade. Metrics as-
sociated with vegetation structure were calculated from pre-fire LiDAR. Post-fire MESMA char fraction image,
pre-fire structural metrics and topographic variables acted as inputs to MaxEnt, which built a model and gener-
ated as output a suitability surface for each burn severity level. The percentage of contribution of the different
biophysical variables to the MaxEnt model depended on the burn severity level (LiDAR-derived metrics had a
greater contribution at the low burn severity level), but MaxEnt identified the char fraction image as the highest
contributor to the model for all three burn severity levels. The present study demonstrates the validity of MaxEnt
as one-class classifier to model burn severity accurately in Mediterranean countries, when trained with post-fire
hyperspectral Hyperion data and pre-fire LiDAR.

1. Introduction

Fires burn forests, agricultural land and natural areas each year in
almost all terrestrial ecosystems, with important ecological and biophys-
ical repercussions (Bowman et al., 2009; Scott et al., 2013). Ac-
cording to the Joint Research Centre (JRC) of the European Commis-
sion more than 700,000ha burned in the European Union in 2017 and
many human lives were lost (San-Miguel-Ayanz et al., 2016). More-
over, due to climate change, extreme weather conditions (heat waves,
drought, strong winds) may have an impact on many of Europe’s forests
with more frequency and higher severity, easing the ignition, propa-
gation and intensity of fires (San-Miguel-Ayanz et al., 2016). An
appropriate natural resource management is crucial to reduce forest

fire risk and severity (Frolking et al., 2009). Furthermore, a post-fire
management approach that preserves post-fire vegetation and soils can
only be based on accurate monitoring of fire effects (Brewer, 2016;
Lentile et al., 2006). Burned area and burn severity are the two most
commonly used metrics for evaluating fire effects (Meng and Zhao,
2017). The distinction between the terms burn severity and fire sever-
ity has been discussed previously (Keeley, 2009). According to Jain
et al. (2004), burn severity includes short and long-term effects of
fire, referring to what is left after fire. Field-based monitoring of both
burned area and burn severity, although essential, is costly in time
and resources. For that reason, remote sensing-based assessment is now
widely used. Examples include the Monitoring Trends in Burn Sever-
ity (MTBS, https://www.mtbs.gov) Project in the USA, or the European
Forest Fire Information System (EFFIS, http://effis.jrc.ec.europa.eu)
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and many research studies (Chen et al., 2015b; Fernández-García
et al., 2018; Huang et al., 2013; Pleniou et al., 2013; Quintano
et al., 2018; among others). A substantial number of these studies are
based on spectral indices that condense the spectral changes caused by
burning into a single response variable (e.g. Fernández-Manso et al.,
2016a; Lu et al., 2015; Stroppiana et al., 2012). The Normalized
Burn Ratio (NBR, Key and Benson, 2006), in particular, its differ-
enced version (dNBR, Key and Benson, 2006) or relativized versions
(RdNBR, Miller and Thode, 2007), have become a standard means to
assess burn severity from satellite data (see Fernández-García et al.,
2018; Lhermitte et al., 2011; McCarley et al., 2017, among oth-
ers).

Usually, the short-term post-fire scene is a combination of vegeta-
tion, soil and ash. For this reason, studying fire effects may basically
be regarded as a sub-pixel question (Quintano et al., 2013). Con-
sequently, spectral mixture analysis (SMA, Shimabukuro and Smith,
1991), one the most widely used sub-pixel techniques, has been suc-
cessfully employed for post-fire assessment by many researchers (e.g.
Fernández-Manso et al., 2009, 2016b; Lentile et al., 2009; Ve-
raverbeke et al., 2014). SMA, however, only allows one spectrum
for endmember class, therefore the variability in the scene (different
spectral responses could correspond to a same material) can not be in-
corporated in the model. Multiple Endmember SMA (MESMA, Roberts
et al., 1998) overcomes this limitation by enabling multiple spectra
for each endmember class, thus accounting for within class spectral
variability. MESMA has demonstrated its effectiveness for a wide vari-
ety of remote sensing applications: mapping coal mining affected areas
(Fernández-Manso et al., 2012), plant species (Lippitt et al., 2017;
Hamada et al., 2011), invasive species (Amaral et al., 2015), urban
materials (Wetherley et al., 2017), wetland vegetation (Michishita
et al., 2012), or biomass (Swatantran et al., 2011) as some exam-
ples. MESMA has also been successfully employed for post-fire monitor-
ing, mainly through the char fraction image (Dennison et al., 2006;
Fernández-Manso et al., 2016b; Quintano et al., 2013, 2017; Ve-
raverbeke et al., 2012, 2014). Moreover, recent studies (Tane et al.,
2018; Veraverbeke and Hook, 2013; Veraverbeke et al., 2014)
have verified the high correlation between field measured burn severity
(usually using CBI) and MESMA fraction images.

Although both SMA and MESMA can unmix broadband multispec-
tral remotely sensed data like Landsat, a higher sensitivity may be ob-
tained when using narrowband hyperspectral data, as shown by Ver-
averbeke et al. (2014) and Tane et al. (2018) using data from the
Airborne Visible/Infrared Imaging Spectrometer (AVIRIS: Green et al.,
1998). Airborne imagery, mainly from AVIRIS, have been employed
in many hyperspectral fire studies (Tane et al. 2018; van Wagten-
donk et al., 2004; Veraverbeke et al., 2014). Hyperion (Pearl-
man et al., 2003) onboard of the Earth-Observing One (EO-1) plat-
form is the only spaceborne hyperspectral sensor to date that recorded
data from approximately 0.4 to 2.5μm, wavelengths that has proven its
usefulness in monitoring fire effects. Our burn severity study is based
on MESMA fraction images from Hyperion data, in particular, on the
char fraction image that has shown a strong relationship to burn severity
(Fernández-Manso et al., 2009; Sunderman and Weisberg, 2011;
Tane et al., 2018; Veraverbeke and Hook, 2013). Spectral indices
are based exclusively on the spectral information contained in two or
three spectral bands. They do not fully profit from the whole spectral in-
formation available in hyperspectral data (Veraverbeke et al., 2018).
In addition, MESMA fraction images have a physical meaning; they rep-
resent the quantitative abundance of the ground cover classes (Quin-
tano et al., 2012) and do not need to be calibrated with field data as
spectral indices do (Somers et al., 2010).

Pre-fire forest structure is an important factor in fire severity (Agee,
1997; Agee and Skinner, 2005). Several studies have related vegeta

tion structural parameters measured from ground plots, such as plant
canopy cover, tree density and size and fine fuel accumulations, to burn
severity (Kuenzi et al., 2008; Lentile et al., 2006). However, passive
satellite sensors have limitations in detecting fuel spatial complexity due
to their incapacity to penetrate the forest canopy (Keane et al., 2001).
Fine resolution LiDAR data are commonly used to estimate forest struc-
ture and terrain elevation (Cao et al., 2019; Liu et al., 2018). They
are composed of point clouds that register the spatial location where a
pulse of laser light meets an object. When different layers of vegetation
are present, a pulse can result in different points of the cloud (Wulder et
al., 2012). Vegetation can be characterized vertically and horizontally
by LIDAR data enabling the determination of the shapes of individual
trees and shrubs (Price and Gordon, 2016). Thus, LiDAR data allow
for characterizing stand structure and mapping fuel loads or biomass
(Chen et al., 2017; Kramer et al., 2014; Liu et al., 2018; Price and
Gordon, 2016; Stavros et al., 2018, Tsui et al., 2012). García-Lla-
mas et al. (2019) in their study about environmental drivers of burn
severity related a structural parameter from LiDAR (i.e., the CV of veg-
etation heights) to burn severity in fire-prone pine ecosystems. Their
results indicated the applicability of using pre-fire vegetation structure
measurements from LiDAR data for predicting burn severity, as a valid
complement to spectral satellite measurements. Based on this study, our
hypothesis is that characterizing pre-fire forest structure from fine spa-
tial resolution LiDAR data could potentially complement the informa-
tion of the MESMA Hyperion post-fire char fraction image about burn
severity. Some studies have already combined multispectral/hyperspec-
tral data and LiDAR data to map fuel types (Erdody and Moskal,
2010; Marino et al., 2016; Mutlu et al., 2008a; Sánchez-Sánchez
et al., 2018); to classify tree species (Naidoo et al., 2012); to pre-
dict forest height (Ahmed et al., 2015; Gu et al., 2018); or to relate
canopy structure to burn severity patterns (Kane et al., 2014b, 2015;
Mutlu et al., 2008b; García-Llamas et al., 2019). Some studies have
used post-fire LiDAR data alone or as a complement to multispectral/hy-
perspectral imagery (Bolton et al., 2015; Kane et al., 2014b; Mon-
tealegre et al., 2014), and a few of them have employed a multitem-
poral LiDAR to map burn severity (McCarley et al., 2017; Wang and
Glenn, 2009; White and Dietterick, 2012; Wulder et al., 2009;
Stavros et al., 2016) but none of them have employed pre-fire LiDAR
data to complement the information from multispectral/hyperspectral
imagery in order to quantify burn severity, to our knowledge.

The maximum entropy approach (MaxEnt) (Jaynes, 1957, Phillips
et al., 2004, 2006) is the algorithm we chose to implement in our
study among the different automatic classifiers. It is widely used for
species distribution modeling (e.g. Elith and Graham, 2009; Gill
et al., 2017; Giovannini et al., 2014; Monterroso et al., 2009;
Rodríguez-Veiga et al., 2016; Tittensor et al., 2009; Warren and
Seifert, 2011), and it is increasingly being used in remote sensing ap-
plications: land cover change analysis (Amici et al., 2017), landslide
susceptibility mapping (Felicísimo et al., 2012; Park, 2015), ground-
water potential mapping (Rahmati et al., 2016); forest pest spatial
distribution (Jones at al., 2015), tree species distribution (Saatchi
et al., 2008) among others. There are as well many examples of us-
ing MaxEnt to model fire occurrence (Arnold et al, 2014; Chen et
al., 2015a; de Angelis et al., 2015; Fonseca et al., 2016, 2017;
O’Connor et al., 2017; Parisien and Moritz, 2009; Parisien et
al., 2012; Peters et al., 2013; Renard et al., 2012; Tracy et
al., 2018; Vilar et al., 2016). Although we did not find any burn
severity studies based on MaxEnt, its characteristics encouraged us to
use it in our study. This one-class classification algorithm only requires
presence-only samples of a target class to be trained, thus, it consti-
tutes an interesting alternative to other machine learning based classi-
fiers (Li and Guo, 2010; Lin et al., 2014). In addition, it is a non-
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parametric model (the input variables interrelations are not determined
a priori) (Hastie et al., 2009). Furthermore, it’s probabilistic output is
easy to interpret and has physical meaning (Arnold et al., 2014). Max-
Ent combine the presence–only samples of the target class with different
variables (covariates) to calculate an estimate of probability of presence
of the target class (Philips, 2017). In this way, burn severity model-
ing can be comparable to species distribution modeling in that multiple
variables can be included in the modeling procedure (locally, topogra-
phy and forest structure, regionally, climate-related factors), and known
instances of each burn severity level are used to model the target distri-
bution.

Accordingly, our study used a MaxEnt-based burn severity analy-
sis using as input variables post-fire MESMA char fraction image from
hyperspectal Hyperion data and vegetation structural variables from
pre-fire LiDAR data. MaxEnt ranks the contribution of each covariate
used as input and identifies the probability distribution of each burn
severity level, giving the relative probability of observing the burn
severity level in each pixel. Our two initial hypothesis were: 1) post-fire
Hyperion data offer spectral information to characterize post-fire dam-
age level, and 2) pre-fire LiDAR data provide spatial and structural in-
formation about pre-fire vegetation that will contribute to model and
characterize each burn severity level. Thus, the principal goal of this re-
search work is to test the effectiveness of the proposed methodology for
burn severity modeling and to know the relative influence of pre-fire
vegetation structure and topography on burn severity compared to the
impact of post-fire damage level. Specifically, our research questions
were: 1) can burn severity levels be modeled using the MaxEnt one-class
classifier trained using MESMA char fraction image derived from Hy-
perion, and LiDAR-derived variables (canopy height, vertical vegetation
distribution, terrain variables)?, 2) If yes, what are the relative contri-
butions of the MESMA char fraction image compared to LiDAR-derived
variables? Or how much compared to post-fire damage level pre-fire
vegetation structure affects burn severity? 3) What are the differences in
modeling each burn severity level? The approach was assessed using a
large fire in central-eastern Spain.

2. MaxEnt background

A summary of MaxEnt is provided for a better understanding of the
following sections. As proposed by Elith et al. (2011) we adopted a
statistical point of view. More detailed information about MaxEnt can be
found in Phillips et al. (2004, 2006, 2008, 2017) and Dudík and
Phillips (2009). Following these authors we refer as “covariates” the
independent, explanatory, or input variables; and the term “features”
designates the transformations of the covariates. The software MaxEnt
includes six kind of features: linear, product, quadratic, hinge, threshold
and categorical. In our landscape of interest L, we assume: 1) we have
presence-only data, with y=1 indicating presence, and y=0, absence;
2) z denotes a vector of biophysical or environmental covariates; 3) f(z)
represents the probability density of covariates across L, specifically we
use f1(z) if the target class is present and f0(z) if the target class is ab-
sent; and 4) h(z) is the vector of features.

In this context, we want to estimate the probability of presence of the
target class, constrained by the environment, Pr(y=1|z), with (Bayes’
rule, Eq. (1)):

(1)

where Pr(y=1), is the rate of occurrence of the target class in L. Max-
Ent software determines the ratio f1(z)/f(z) (“raw” output), by estimat-
ing f1(z) in a way that it is consistent with f(z), i.e. minimizing the
distance from f(z). Estimation of raw output is the base of MaxEnt, al-
lowing us to know which features can be considered fundamental and
which pixels are more appropriate to be included in the target class.

MaxEnt defines the distance as the relative entropy of f1(z) with respect
to f(z). Thus, minimizing the distance (Gibbs distribution), is similar to
maximizing the entropy of the raw distribution (della Pietra et al.,
1997, Eq. (2)).

(2)

where and α ensures that f1(z) integrates to 1, and β, a vector
of coefficients.

From Eq. (2) we can see that the MaxEnt goal is to find η(z), and
more precisely to find the coefficients β that satisfy the constraints with-
out overfitting the model. To do that, MaxEnt calculates an error bound
for each feature (λj in Eq. (3)) that includes the variation in sample val-
ues for that feature, calibrated by a tuning parameter (Eq. (3)).

(3)

where λj is the regularization parameter for feature hj, s2[hj] the fea-
ture’s variance over the m presence locations, and λ a tuning parameter.
These error bounds allow L1-regularization that provides sparse solu-
tions (Tibshirani, 1996). Regularization is a usual procedure to model
selection, not being specific to MaxEnt.

In addition to raw output, the MaxEnt software (from version 3.4.0)
provides by default a complementary log-log (clog-log) output, which is
easier to conceptualize than raw output as it ranges between 0 and 1 and
can be regarded as an estimate of probability of presence of the target
class (Philips, 2017).

3. Materials

3.1. Study area

A large fire (the second largest fire in Spain in 2016,
San-Miguel-Ayanz et al., 2016) burned 2291ha in ‘Carcaixent’ (Va-
lencia, central-eastern Spain) between 16 and 19 June 2016 (see Fig. 1).
Nearly the entire surface had already been burned previously by large
forest fires in 1981 and 1991. Thus, 78% of the surface had been burned
twice before the current fire, and 10% three times or more since 1980.
Only 130ha of the 2016 fire had not been affected by previous fires
(less than 5% of the total area). One of the reasons for this fire recur-
rence is the orientation of the Carcaixent Mountains, which trend from
north-west to south-east, aligned with west winds, one of the more im-
portant factors governing the spread of fire.

The burned surface was mostly forest, mainly of Aleppo pine (Pinus
halepensis L.), and obligate sprouting shrubs, such as kermes oak (Quer-
cus Coccifera L.), chamaerops (Chamaerops humilis L.), lentisk (Pistacia
lentiscus L.), heather (Erica spp.), strawberry tree (Arbutus Unedo L.),
germinator rosemary (Rosmarinus officinalis L.), gorse (Ulex parviflorus
L.), cade juniper (Juniperus oxycedrus L.) and rockrose (Cistus spp.).
Some orange orchards can also be found in the study area (Valde-
cantos et al., 2016). Following the Scott and Burgan (2005) fuel
models the predominant model is fuel model SH5, corresponding to
stands of mature shrub lower than 2m in height, with approximately
80% of the total area affected by the fire; followed by fuel model
TU5 (understory scrub <2m within pine overstory), with approxi-
mately 15% of the total area, and fuel model GR4 (fine herbaceous
fuel <0.5m, grasslands), with 5% of the total area. The study area is
slightly mountainous. Most of the terrain is between 200 and 300m
(43.7%). The burned area affected a relatively flat calcareous-dolomitic
massif in the upper part (high plateau) with deep ravines that open
onto an agricultural plain. Slopes between 15 and 45% are dominant.
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Fig. 1. Study area with photographic samples of three burn severity levels: a: low, b: moderate, c: high. EO-1 Hyperion color composition RGB: 1295:835:2075 (nm).

The annual average precipitation of the area is above 650mm per year
and average temperatures are around 17 °C (AEMET-IM, 2011). In the
year previous to the fire (from 06/24/2015 to 06/24/2016), the aver-
age recorded rainfall was 364mm, almost 50% lower than the long term
average.

Burn severity is greatly influenced by fire spread. The Carcaixent
Fire of 2016 started with a high intensity due to the presence of three
important favorable conditions: orientation, slope and wind. This fire
had a full alignment (3/3), according to the Campbell prediction sys-
tem analysis criteria (Campbell, 2016). The fire began on a west fac-
ing sunken slope, with temperatures higher than 30 °C, west winds with
speeds between 15 and 20km/h and slopes between 30 and 50%. These
favorable conditions caused a high severity fire. Thus the whole cen-
tral strip of the burned area, corresponding to the head of the fire, was
burned with high severity. Field work confirmed that the central and
southern sectors of the burned area displayed a high burn severity tak-
ing into account the size of terminal branches of burned shrubs and the
distribution of white ash. The burned areas with moderate burn sever-
ity corresponded mainly to the tail and/or flanks of the fire where there
were losses of alignment generally with wind, slope, or both (half align-
ment, 2/3). Areas of moderate severity were observed in canyons at
both ends of the fire perimeter. In these canyons fire had a lower in-
tensity, probably due to the higher presence of pine and lower pres-
ence of fuel species such as strawberry tree, and better accessibility for
firefighting equipment. These moderate burn severity areas were also
located on the south-east part of burned area affected by the Rafel-
guaraf Fire in 2010, where the fire spread slower at a diminished inten-
sity. Low severity burned areas were rare, corresponding to areas where
only one of the three favorable factors of the Campbell prediction sys

tem analysis criteria were met (null alignment, 1/3). In addition to
Campbell criteria, another factor must be considered when evaluating
fire consequences: vegetation stress. In the Carcaixent Fire, shrub fuel
moisture was low (mainly lentisk, germinator rosemary, gorse, and cade
juniper enhanced propagation).

3.2. Hyperspectral data

Burn severity analysis was based on a post-fire EO-1 Hyperion scene
acquired on 21st July 2016 at 8:30 UTC (sun azimuth: 95.5593 degrees,
solar elevation: 40.0 degrees).

The look angle (angle from the satellite between the nadir of the
satellite and the center of the targeted image) was −8.5 degrees and
cloud cover between 10 and 19%. Hyperion acquires a total of 242
unique spectral channels from 357 to 2576nm. (visible through short-
wave wave infrared-SWIR-), with a spatial resolution of 30m at nadir,
though only 198 bands are calibrated in the Level 1 radiometric product.
Moreover, because of an overlap between the visible and near infrared
(VNIR) and SWIR focal planes, only 196 unique channels are finally pre-
sent. Specifically, 8–57 for the VNIR, and 77–224 for the SWIR (EO-1
User guide, 2003). RGB: 1295:835:2075 (nm) color composition is dis-
played in Fig. 1.

3.3. LiDAR data

Spanish National Plan for Aerial Orthophotography (PNOA) sup-
plied pre-fire LiDAR data. Specifically, the data were obtained in 2009
using a RIEGL sensor LMS-Q680, operating at 1064nm with a maxi-
mum of four returns per pulse Scanner frequency and pulse repetition
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were 46Hz and 70 KHz, respectively, maximum scanning angle was
30° and mean flight height 1300m above the level of GRS80 ellipsoid.
The descriptive statistics of the total density of returns per square me-
ter were: mean=1.19, maximum=1.62, minimum=0.66, and stan-
dard deviation=0.29. The total used points were 94·106. PNOA supplies
data classified, with orthometric heights and colored with the orthopho-
tographs captured by the PNOA.

Our study, like many others (Kane et al., 2013, 2014a; Vierling
et al., 2014), does not have concurrent LiDAR and hyperspectral/mul-
tispectral data. We have a 7year time lag between LiDAR acquisition
and fire occurrence that could affect the final accuracy. The validity of
LIDAR data from 2009 to represent the pre-fire vegetation in 2017 was
checked by two means: 1) the official forest fire information was revised
and we verified that there were no fires in this area during this period
of time; and 2) we photointerpretated PNOA 2008, 2010 and 2015 or-
thophotographs to check whether fuel models and their spatial distribu-
tion were essentially the same. It was observed that SH5 (shrub<2m)
was predominant in the three orthophotographs (more than 80% of the
area). Thus we can confirm that 2009 LiDAR data are adequate for rep-
resenting pre-fire vegetation.

3.4. Additional data

The official burn severity map produced by the regional government
(FFPS, 2016) was used to define the presence-only samples for train-
ing the MaxEnt classifier to model each burn severity level. Addition-
ally, it was also used to digitize polygons over the orthophotograph
from which candidate char endmember spectra were obtained. This offi-
cial map was calculated from Sentinel-2 MultiSpectral Instrument (MSI)
data, and employed three burn severity levels: low, moderate and high.
Specifically, 10/06/2016 and 20/06/2016 images were used as pre-
and post-fire data to calculate the Relative delta Normalized Burn Ratio
(RdNBR, Miller and Thode, 2007). RdNBR was classified by using the
methodology proposed by Botella-Martínez and Fernández-Manso
(2017) what allowed to obtain a burn severity map. This method uses
as field reference the aerial photographs of the Security and Emergency
Response Agency of the Autonomous Government of Valencia that were
taken from helicopters during and after the large fire. From the aer-
ial photographs sample plots of approximately 30x30m are defined and
their burn severity level is visually identified by adapting the proce-
dure proposed by Parsons et al., (2010). Classification accuracy was
assessed by field measurements and was higher than 80% (see FFPS,
2016 for more details).

Additionally, the Spanish National Center of Geographic Information
(CNIG) through the PNOA agency supplied a 0.25m-pixel digital or-
thophotograph recorded in 2015 that helped to determine the candidate
endmember spectra for the MESMA procedure.

A 5m Digital Elevation Model (DEM) supplied also by the Spanish
PNOA was employed to derive the topographic variables (aspect and
slope) used as covariates in MaxEnt.

Finally, a pre-fire Landsat 8 Operational Land Imager (OLI) scene
recorded on 9 June 2016 (ten days before the fire) enabled us to
characterize pre-fire vegetation greenness and compare its influence on
burn severity to the influence of pre-fire vegetation structure (based on
pre-fire LiDAR data).

4. Methods

4.1. Processing of hyperspectral EO-1 Hyperion data

The EO-1 Hyperion image was supplied at a processing level 1T
(L1T), that includes VNIR-SWIR alignment, radiometric and systematic
geometric corrections based on a 90m DEM and ground control points,
and georeferencing to the coordinate system UTM-WGS84-30N. All of

the bands were individually displayed and those bands that showed
bad lines, striping or very high noise were discarded (George et al.,
2014). We finally kept 106 bands from 426 to 2395nm. Subsequently,
we co-registered the Hyperion data to the orthophoto provided by the
PNOA agency using a first order polynomial and nearest neighbor re-
sampling. The maximum mis-registration error was 0.25 of a pixel. We
then corrected the data atmospherically and transformed them to sur-
face reflectance using the FLAASH algorithm in ENVI that incorporates
the MODTRAN radiation transfer code (Berk et al., 1989; Mathew
et al., 2000). In our study, the main input parameters of the FLAASH
model for the Hyperion image were: atmospheric model: mid-latitude
summer (water vapor: 3636 std atm-cm, surface air temperature: 21 °C,
and water vapor: 2.92g/cm2); aerosol model: rural; and water retrieval:
Hyperion bands covering the 1135-nm water vapor band were used. Fi-
nally, Visualization and Image processing for Environmental Research
(VIPER) tools software (Roberts et al., 2007) was used to unmix the
surface reflectance. This software operates as an add-on for the ENVI
software package and was generated at the Department of Geography at
University of California Santa Barbara.

The MESMA procedure consisted of three stages: 1) defining candi-
date endmembers to create a spectral library; 2) selecting the more ade-
quate endmembers to build the definitive spectral library; and 3) unmix-
ing each pixel to calculate the fraction images. A spectral library that
incorporates endmember spectra representing the different land cover
or material types present in a scene is the base of MESMA procedure
(Roberts et al., 1998). Thus, this algorithm enables that a different set
of endmember spectra (model) unmixes each pixel. The model that min-
imizes the RMSE and fulfills all constraints is finally chosen to unmix the
pixel (Roberts et al., 1998). Selection of the appropriate endmembers
is an indispensable factor for a successful unmixing approach (Tomp-
kins et al., 1997). VIPER tools 1.5 includes three options to help in the
choice of the most adequate endmembers to build the definitive spec-
tral library: 1) Countbased Endmember Selection (CoB, (Roberts et al.,
2003); 2) Endmember Average RMSE (EAR, Dennison and Roberts,
2003); and 3) Minimum Average Spectral Angle (MASA, Dennison et
al., 2004).

As previous works did (see Dudley et al., 2015; Roberts et al.,
2015) selection of candidate endmembers was based on high spatial res-
olution ortophotographs where we defined georeferenced uniform poly-
gons comprising only one class. Next, to build the definitive spectral li-
brary, CoB, EAR and MASA were employed. CoB allowed us to select the
endmembers that model the maximum quantity of endmembers within
their class; EAR, the endmembers that produced the minimum RMSE
within a class; and MASA, the endmembers that showed the minimum
average spectral angle. As suggested by Roberts et al. (2007), we also
considered our knowledge of the study area and the typical shape of the
spectra in the endmember selection process.

Once a definitive spectral library was built, in accordance with
Quintano et al. (2017), we arranged the endmembers forming three
spectral libraries: non-photosynthetic vegetation and soil (NPVS), green
vegetation (GV), and char. We used similar constraints for maximum/
minimum admissible fraction values (0.10/−0.10), maximum value of
shade fraction (0.85), maximum acceptable RMSE (0.025), and mini-
mum number of classified pixels (90% of the image) as previous MESMA
research works (Dudley et al., 2015; Quintano et al., 2013, 2017).
If the number of classified pixels requirement was not satisfied, the type
and/or number of spectra included in the definitive spectral libraries
were modified and the hyperspectral image was unmixed again. Once
the definitive MESMA fraction images were obtained they were shade
normalized. Shade normalization implies removing the shade endmem-
ber, and thus incorporating novel information about the relative abun-
dance of nonshade endmembers.
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4.2. Processsing of LiDAR data

Discrete return LiDAR data from PNOA was already coregistered to
the PNOA orthophotographs, so we did not need to perform this pre-
processing. The rest of LiDAR processing operations were carried out us-
ing FUSION software package (http://forsys.cfr.washington.edu/fusion/
fusionlatest.html; McGaughey, 2018) from US Forest Service. First,
laser pulses were grouped into vegetation points and ground pulses, and
a 10m DEM was calculated from the ground pulses (García-Llamas et
al., 2019). Next, height of pre-fire vegetation was computed by sub-
tracting the DEM from the z-values of laser pulse returns. We did not
take into consideration height values lower than 0.5m to avoid multi-
ple backscattering returns and small local depressions. This decision was
based on previous studies that recommended discarding this kind of po-
tentially erroneous laser returns (e.g. Erdody and Moskal, 2010; Es-
tornell et al., 2011; Marino et al., 2016;). Height values higher than
20m were also discarded to avoid undesired returns from power lines,
assuming that 20m is the maximum height of vegetation.

We determined a 30×30 m grid to match the resolution of Hyper-
ion. Vertical structure of pre-fire vegetation was defined by classifying
the vegetation height profile into percentiles based on their height dis-
tribution within the 30×30 grid. Moreover, means, maximums, and co-
efficients of variation of vegetation return heights within the grid were
also taken into account. Regarding the horizontal structure (canopy clo-
sure), three parameters were taken into consideration to be included
as input to the MaxEnt one-class classifier: canopy cover (CC), canopy
relief ratio (CRR) and canopy ratio (CR). CC was calculated as the ra-
tio between the number of all returns above 0.5m and the total num-
ber of first returns. CRR (Pike and Wilson, 1971; Parker and Russ,
2004) measures the relative shape of the canopy from mean, minimum,
and maximum canopy heights. Finally, CR (Smith, 1986), related to
tree vigor, is the ratio of canopy height depth (20th percentile height of
vegetation points) to total tree height (90th percentile height of vege-
tation points). All the calculated LiDAR-derived metrics were identified
in previous studies as highly correlated with vegetation structure and/or
fuel load (Cao et al. 2019; Erdody and Moskal, 2010; Kane et al.,
2015; Naidoo et al., 2012; Marino et al., 2016, 2018).

4.3. Processing of Landsat 8 OLI data

The USGS Landsat 8 surface reflectance product acquired on 6 June
2016 was downloaded to compute two spectral indices related to
pre-fire vegetation greenness: Normalized Difference Vegetation Index
(NDVI) and Normalized Difference Water Index (NDWI). NDVI is sen-
sitive to vegetation chlorophyll content and has been widely used to
quantify the net primary production of vegetation (e.g. Ricotta et al.,
1999). NDWI is related to vegetation water content (Gao, 1996) and
vegetation architectural parameters (Anderson et al., 2010). Both of
them have proven to show a strong relationship to live fuel moisture
(Dennison et al., 2005). They were included as covariates for MaxEnt
procedure instead of LiDAR-derived variables (see Table 1) to compare
the influence of pre-fire vegetation greenness on burn severity to the in-
fluence of pre-fire vegetation structure (based on pre-fire LiDAR data).

4.4. MaxEnt classification

Our study was based on the MaxEnt software (version 3.4.1) de-
veloped by Phillips et al. (2004, 2006), and updated by Phillips
et al. (2017). MaxEnt needs two types of input data exclusively:
presence-only training samples and some predictive-continuous vari-
ables or co

Table 1
Summary of the covariates used by MaxEnt.

Post-fire vegetation damage (EO-1 Hyperion-derived metrics)
Description Acronym
MESMA char fraction image shade normalized Char_sn
Vertical structure of pre-fire vegetation (LiDAR-derived metrics)
Description Acronym
Maximum height of the vegetation points (m) EM
Mean height of all vegetation points (m) Em
Coefficient of variation of the vegetation points (m) ECV
10th percentile height of the vegetation points (m) EP10
20th percentile height of the vegetation points (m) EP20
50th percentile height of the vegetation points (m) EP50
90th percentile height of the vegetation points (m) EP90
Horizontal structure of pre-fire vegetation (LiDAR-derived metrics)
Description Acronym
Canopy Cover (%) CC
Canopy relief ratio CRR
Canopy ratio (%) CR
Topographic variables (DEM-derived metrics)
Description Acronym
Slope (degrees) SL
Aspect (degrees) AS
Elevation (m) DEM
Greenness of pre-fire vegetation (Landsat 8 OLI derived variables)
Description Acronym
Normalized Difference Vegetation Index NDVI
Normalized Difference Water Index NDWI

variates of the complete study area. The presence-only data were ob-
tained by randomly sampling each target class or burn severity level
from the official burn severity map used as ground reference. From
these presence-only inputs the MaxEnt software knows the burn sever-
ity level and the coordinates of each input sample that will be related
to the different covariates. In our study, we compared the impact of
two pre-fire vegetation characteristics on burn severity: pre-fire vege-
tation structure and pre-fire vegetation greenness. LiDAR-derived vari-
ables provided both vertical and horizontal structural information about
pre-fire vegetation. Vegetation greenness was represented by NDVI and
NDWI computed from pre-fire Landsat 8 OLI image. Post-fire MESMA
char_sn give information about post-fire vegetation damage to the mod-
eling algorithm. As topographic variables, we included slope and aspect
obtained from the 5m PNOA DEM after aggregating it to a 30m grid.
Table 1 shows the employed covariates in both cases that MaxEnt pro-
cedure was employed (LiDAR- and DEM derived covariates in the first
case, and Landsat- and DEM-derived covariates in the second case).

We allowed MaxEnt to automatically establish the optimal complex-
ity level from the sample size of presence-only data (default option) as
previous studies did (e.g. Li and Guo, 2010; Radosavljevic and An-
derson, 2014). In our study, we trained MaxEnt with 140 of low burn
severity, 126 of moderate burn severity and 137 samples of high burn
severity. As we used a relatively high number of presence-only samples,
the program was not limited to employing simple features and could
perform modeling with all the complexity required.

The random test percentage was set to 25% as in previous studies
(Chen et al., 2015a; Arpaci et al., 2014; Vilar et al., 2016) so
75% of the samples were employed for MaxEnt training. We used the
default values for the rest of user-specified parameters accordingly to
different works that stated they performed well (Dudík et al., 2004;
Phillips and Dudík, 2008): number of background samples=10000,
regularization multiplier=1, maximum iterations=500, and conver-
gence threshold=10−5. MaxEnt allows for replication, which generates
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more reliable results. We used 10 replicates with repeated subsampling
scheme.

MaxEnt includes receiver operating characteristic (ROC) analysis
for model assessment. In a ROC analysis, area under the curve (AUC)
(Bradley, 1997) represents the model’s capacity to predict correctly
presence (sensitivity) and absence (specificity). It is currently considered
an established procedure to evaluate the accuracy of predictive distribu-
tions (Fawcett, 2006). AUC values range between 0 and 1 as it can be
regarded as a part of area of the unit square. Moreover, an AUC value
equal to 0.5 represents a random prediction of presence and absence (di-
agonal line). AUC values ranging from 0.5 to 0.7 indicate poor model
performance, from 0.7 to 0.9 indicate a moderately good performance,
and from 0.9 to 1 indicate excellent model performance (Swets, 1988).

5. Results

Table 2 summarizes the endmember selection process, displaying
the endmember categories included in each definitive spectral library.
The GV spectral library was defined from endmember spectra grouped
into three categories: forest, maquis shrubland and grassland. The CHAR
spectral library was built from endmembers located inside the fire
perimeter. NPV and soil formed one spectral library, NPVS, as in a pre-
vious related study (Quintano et al., 2017). The NPVS spectral library
included NPV, roads and urban areas (Impervious surfaces) and lime-
stone (pervious surface). Once the definitive spectral libraries were de-
fined (based on CoB, MASA and EAR, the spectral shape of the spec-
tra and our knowledge of the study area), unmixing of Hyperion data

Table 2
MESMA definitive spectral libraries with their endmember spectra, and summary of un-
mixing results.

Level 1 Level 2 Level 3
Spectral
library

Green vegetation Forest Alleppo
pine

Green
vegetation
(GV)

Orange
trees

Maquis
shrubland

Kermes
oak
Lentisk

Grassland Golf
courses

Char High
burn
severity

CHAR

Moderate
burn
severity

Soil Pervious Limestone Non-
photosynthetic
vegetation
and soil
(NPVS)

Impervious Roads
Urban
areas

No photosynthetic vegetation Non
irrigated
lands

Unmixing results # Endmembers in NPVS 4
# Endmembers in GV 7
# Endmembers in CHAR 8
# Models used in
unmixing

224

Image unclassified inside
fire perimeter (%)

0.09

was performed until the number of classified pixels was acceptable by
varying the type and/or number of spectra contained in each spectral
library. We unmixed the hyperspectral image by using 4 endmember
models although it was also possible to use 2 or 3 endmember models.
Fig. 2 (right) shows examples of the selected endmember spectra from
each spectral library. In our study, the percentage of unclassified pixel
inside the fire perimeter was finally 0.09%, and 224 models were em-
ployed (see Table 2).

We shade normalized the definitive MESMA fraction images. Fig.
2 (left) shows the visual discrimination between unburned and burned
areas in both shade normalized char fraction (char_sn) and shade-nor-
malized GV fraction (GV_sn). We distinguish level differences in the
burned area that we assume can be associated with burn severity. In the
shade-normalized NPVS fraction (NPVS_sn) some agricultural patterns
and roads are evident in the left-lower corner but the interpretation of
NPVS_sn fraction in the burned area is more complicated. Thus, the vi-
sual analysis indicates that there is relation between burn severity and
char_sn and GV_sn MESMA fraction images.

Once the set of covariates from Hyperion, LiDAR, Landsat and the
DEM were ready (see Table 1), MaxEnt modeled each of the three burn
severity levels twice. The first time Hyperion-, LiDAR- and DEM-derived
covariates were used; the second time we used as covariates Hyperion-,
Landsat and DEM-derived metrics. A summary of the main MaxEnt para-
meters in both cases is displayed in Table 3. To assist us in the selection
of the best model among the 10 replicates, we used the maximum test
AUC value as recommended by Warren and Seifert (2011), who af-
firmed that this measure is not affected by overfitting as overfitting the
model does not necessarily increase the match to independent test data.
The average model represents the model obtained by averaging the pa-
rameters achieved in each of the 10 replicates.

MaxEnt defines gain as the average log probability of the presence
samples, minus a constant to force the uniform distribution to have zero
gain (Philips, 2017). This gain shows how closely the model is con-
centrated around the presence samples. Thus, a gain of 1.1493 (first
case, high burn severity, best model) indicates that the average likeli-
hood of the presence samples is exp(1.1493) ≈ 3.2 times higher than
that of a random background pixel. Table 3 shows both regularized
and unregularized gains. We noticed that for high and moderate burn
severity levels, the values are quite similar but low burn severity level
displays lower gain values in both cases. Regarding the AUC test, we
observed approximately similar AUC test values for high and moder-
ate burn severity (always higher than 0.8) and slightly lower ones for
low burn severity. Indeed, AUC test values are slightly higher when Li-
DAR derived variables were used. Specifically, when considering the
best models AUC test values were 0.85 for high burn severity level,
0.88 for moderate and 0.81 for low, indicating a good performance of
the model, especially for the moderate level, which can be considered
as having excellent performance (Swets, 1988). The training AUC val-
ues showed the same trend, although they were higher than the AUC
test values (always>0.85, and higher than 0.88 for high and moder-
ate burn severity levels in the first case). An increasing tendency for the
AUC standard deviation in the first case was observed from high to low
burn severity levels, showing again that the model for high and mod-
erate levels performed better. In the second case, we have higher val-
ues than in the first one, suggesting a poorer performance of the sec-
ond MaxEnt process (using Landsat-derived spectral indices). Knowing
how each covariate contributes to the final model is important (Bald-
win, 2009). MaxEnt provides the gain of the model with each fea-
ture included during the training process, transformed to percentages,
which provides a convenient method for comparison. Thus, Table 3
also shows the percentage of contribution of the different types of co-
variates used in each case. In both cases the contribution of post-fire
vegetation damage (via char_sn image from hyperspectral data) was the
most relevant, and the other covariates complemented its information.

7



UN
CO

RR
EC

TE
D

PR
OO

F

A. Fernandez-Manso et al. ISPRS Journal of Photogrammetry and Remote Sensing xxx (xxxx) xxx-xxx

Fig. 2. Left: Shade normalized EO-1 Hyperion MESMA fraction images. a) shade normalized char fraction (char_sn); b) shade normalized green vegetation fraction (GV_sn); c) shade
normalized non-photosynthetic vegetation and soil fraction (NPVS_sn); Right: Example spectra. a) char spectral library; b) green vegetation (GV) spectral library; c) non-photosynthetic
vegetation and soil (NPVS) spectral library.

This fact was particularly true for the MaxEnt process that used Landsat
data where the percentage of contribution of char_sn was higher than
88% for all three burn severity levels (considering both the best and the

average model). The total contribution of both Landsat-based spectral
indices was relatively low and similar to the total contribution of Li-
DAR-derived metrics related to pre-fire structure (approximately 8%).
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Table 3
Summary of parameters of MaxEnt modeling processes.

1.-Covariates: Hyperion-, LiDAR- and DEM-derived metrics

High burn severity
Moderate burn
severity Low burn severity

Best
model

Average
model

Best
model

Average
model

Best
model

Average
model

Regularized
training gain

0.9862 1.0107 0.9536 1.0179 0.6882 0.7174

Unregularized
training gain

1.1493 1.1656 1.1573 1.2062 0.902 0.9332

Training AUC 0.8830 0.8826 0.8872 0.8918 0.8527 0.8532
Test gain 0.9484 0.8143 1.0700 0.8060 0.6590 0.5130
Test AUC 0.8481 0.8327 0.8761 0.8392 0.8145 0.7856
AUC Standard
Deviation

0.0146 0.0171 0.0157 0.0214 0.0272 0.0304

#Training
samples

137 137 126 126 140 140

#Test samples 45 45 42 42 46 46
PC post-fire
char_sn

73.86 74.95 70.42 72.73 54.45 54.27

PC pre-fire
veg. structure

7.44 9.40 11.65 9.40 24.82 28.52

2.-Covariates: Hyperion-, Landsat- and DEM-derived metrics
High burn
severity

Moderate burn
severity

Low burn
severity

Best
model

Average
model

Best
model

Average
model

Best
model

Average
model

Regularized
training gain

0.9732 1.0237 0.9418 1.0154 0.8134 0.8334

Unregularized
training gain

1.1723 1.2023 1.1773 1.2205 0.9123 0.9451

Training AUC 0.8827 0.8733 0.8723 0.8603 0.8613 0.8514
Test gain 0.9373 0.8444 1.0834 0.9035 0.8733 0.7924
Test AUC 0.8473 0.8227 0.8631 0.8245 0.8233 0.7843
AUC Standard
Deviation

0.0157 0.1832 0.0167 0.2481 0.0283 0.0321

#Training
samples

137 137 126 126 140 140

#Test samples 45 45 42 42 46 46
PC post-fire
char_sn

87.12 88.21 88.13 90.62 87.14 88.53

PC pre-fire
veg. greenness

8.40 8.12 5.31 4.82 4.71 4.14

Note: Best model: model with the maximum test AUC; Average model: average model of
the 10 replicates, average values are provided by MaxEnt, PC: percentage of contribution;
veg.: vegetation.

Regarding the moderate burn severity level, the total contribution of
pre-fire vegetation structure increased till 10–11%. Conversely the to-
tal contribution of pre-fire vegetation greenness decreased to approxi-
mately 5%. This trend was observed as well for the low severity level,
in which the total contribution of pre-fire vegetation structure was ap-
proximately 25%, whereas the total contribution of pre-fire vegetation
greenness added approximately 5%. Considering the low percentage of
contribution of pre-fire vegetation greenness, particularly when it was
compared to the percentage of contribution of pre-fire vegetation struc-
ture we chose the MaxEnt process that includes LiDAR-derived metrics
as covariates to obtain the suability surface of each burn severity level.

Fig. 3 displays the ROC curves of the MaxEnt process using Li-
DAR-derived covariates (best model and averaged over the 10 repli-
cate runs). The curves corroborate the above statements. Finally, from
Table 3 and Fig. 3 we can answer our first research question, and
confirm that burn severity may be modeled using the MaxEnt one-class
classifier trained using MESMA fraction images derived from Hyperion

data, LiDAR-derived variables (canopy height, vertical vegetation dis-
tribution, terrain variables) and topographic variables derived from a
DEM.

Table 4 shows the percentage of contribution of each covariate to
the final model. From it several facts can be highlighted. First, covari-
ates from the Hyperion data displayed the most important contribution
to the final model; although their contribution decreased from the high
to low burn severity level. Regarding the set of LiDAR-derived metrics
ECV followed by EP10 had the highest contribution to the high burn
severity model, EP10 folowed by Em and EP90 to the moderate burn
severity and EP10 followed by ECV, EP90 and EM, to the low burn
severity level. Summarizing, we can confirm that EP10, ECV and EP90
were the most relevant structural metrics in the three levels. The global
contribution of this group of variables is similar for high and moderate
burn severity (approximately 5%) although the contribution to the low
burn severity level is more important (16.27%−19.95%). With respect
to the group of LiDAR-derived metrics related to the horizontal struc-
ture of pre-fire vegetation, they increased their total contribution from
high to low burn severity (1.90%−3.93% in high vs 8.58.55%−8.57%
in low burn severity). In general terms, CC was the metric with high-
est contribution and CRR the metric with the lowest one. Thus, the fi-
nal contribution of all LiDAR-derived metrics (representing both verti-
cal and horizontal structure of pre-fire vegetation) shows an increasing
trend from high to low burn severity level (7.44%−9.36% for high and
24.83%−28.52% for low). Finally, concerning the topographic variables,
AS and DEM showed the highest contribution (DEM to the high burn
severity level, and AS to the moderate and low). The percentage of con-
tribution to the final model of all DEM-derived covariates is approxi-
mately similar for the three burn severity levels (approximately 20% for
the best model and slight lower for the average model).

From the Jackknife diagrams for the regularized training gain and
test gain (Fig. 4), we can also observe which covariates are most impor-
tant in the model. Concerning the low burn severity level (greenish lines
on Fig. 4) the contribution of all covariates is quite similar regarding the
training and test gain. No important differences are observed between
both Jackknife diagrams. The char fraction image showed the highest
contribution in both of them, indicating that it helped MaxEnt to fit the
model to the training data and also to make the model transferable. AS
was the second covariate in importance to the test gain both when it was
excluded (‘without’ on Fig. 4) and when it was considered in isolation
(‘with’ on Fig. 4), and the second as well to the training gain (option
‘without’). Following AS, we could mention CC, EP50 and EP90.

With regards the moderate burn severity level (bluish lines on Fig.
4) again no substantial differences were observed between the training
and test gain Jackknife diagrams. The char fraction showed the highest
contribution in all cases, followed by AS (option ‘without”) and CC for
the test gain. Basically the same covariates contributed to low and mod-
erate burn severity levels. The char fraction again was the covariate that
most contributed to the high burn severity level, followed, in this case,
by DEM both in train and test gain (‘without’ and ‘with’ options). The
jackknife diagrams were performed for the 10 replicates and showed
similar patterns with slight variability in gain values. Information from
Fig. 4 basically agrees with the information shown in Table 4: Hyper-
ion char fraction had the highest contribution in all burn severity levels;
DEM was the second contributor to the high burn severity class, and AS
to moderate and low burn severity levels; CC and EP10 were the third
and fourth contributors, in particular, to moderate and low burn sever-
ity levels.

Table 4 and Fig. 4 allow us to answer the last two initial research
questions. Hyperspectral data (MESMA fraction image) have an impor-
tant contribution to the final model of burn severity ranging from more
than 50% for low burn severity level to approximately 75% for high
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Fig. 3. ROC curves. Left: best model, right: averaged over the 10 replicate runs; higher: high burn severity level, middle: moderate burn severity level; lower: low burn severity level.

burn severity level. The contribution of the LiDAR data though lower
was also important; it reached approximately 25% for low burn severity
level. Its contribution was lower for the high burn severity level, around
8%. It can be observed that each burn severity level displays a different
pattern.

Finally, Fig. 5 shows the estimate of the probability of presence of
a specific burn severity level for the best model (maximum test AUC)
that can be seen as the suitability surface for each burn severity, par-
ticularly, Fig. 5a) for low burn severity level, Fig. 5b), for moderate,
and Fig. 5c) for high). Fig. 5d) displays a color composition of the suit-
ability surfaces of the three burn severity levels (shown in Fig. 5a) 5b)
and 5c). The most suitable surface for high burn severity corresponds
to the whole study area excluding borders, and some interior valleys,
which agrees with observed severities. Moderate and low burn severity
levels were confined to the borders of the fire and to some valleys which
agrees with the suitability surface displayed respectively in Fig. 5b) and
5c).

6. Discussion

The high number of pixels classified by the MESMA procedure (con-
strained to the error limits reflected on the Methods section) suggests
that a satisfactory endmember selection process was carried out. Though
we employed four categories for describing the variability of the Hyper-
ion data: green vegetation, non-photosynthetic vegetation, soil and char,
they were combined into three spectral libraries: GV, NPVS and char. As
Quintano et al. (2017) suggested including NPV and soil in a unique
spectral library provides accurate results when the class of interest is
burned area. Moreover, the present work, corroborates the suitability
of CoB (Roberts et al., 2003), EAR (Dennison and Roberts, 2003),
and MASA (Dennison et al., 2004) to guide a successful selection of
the definitive endmember spectra from the candidate spectral library as
many previous works did (Fernández-Manso et al. 2012; Franke et
al., 2009; Lippitt et al., 2017; Quintano et al., 2013; Roberts et al.,
2012; Youngentob et al., 2011).

In our study, MESMA shade normalized char fraction image showed
the most important contribution to the final model of burn severity (see
Table 4). The relationship between char fraction and burn severity has

10
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Table 4
Percentage of contribution of each covariate.

Pot-fire vegetation damage (EO-1 Hyperion-derived metrics)

Covariates Best model Average model

High Mod. Low High Mod. Low

Char_sn 73.86 70.42 54.45 74.95 72.73 54.27
Vertical structure of pre-fire vegetation (LiDAR-derived metrics)
Covariates Best model Average model

High Mod. Low High Mod. Low
EM 0.27 0.00 2.65 0.06 0.06 4.48
Em 0.05 1.62 0.02 0.01 0.69 1.85
ECV 3.31 0.16 2.81 3.29 0.61 2.96
EP10 1.45 2.57 5.52 0.97 1.86 5.85
EP20 0.39 0.01 2.04 0.52 0.16 0.21
EP50 0.00 0.06 0.55 0.20 0.35 0.51
EP90 0.06 0.76 2.69 0.41 0.69 4.10
Total 5.53 5.18 16.27 5.47 4.42 19.95
Horizontal structure of pre-fire vegetation (LiDAR-derived metrics)
Covariates Best model Average model

High Mod. Low High Mod. Low
CC 0.84 4.70 4.55 2.83 3,26 4.00
CRR 0.40 0.80 1.61 0.45 0.66 1.68
CR 0.66 0.96 2.39 0.65 1.05 2.89
Total 1.91 6.47 8.55 3.93 4.98 8.57
Topographic variables (DEM-derived metrics)
Covariates Best model Average model

High Mod. Low High Mod. Low
SL 1.36 2.33 1.04 1.63 4,56 2.24
AS 6.19 13.02 12.81 3.86 11.25 12.52
DEM 11.15 2.59 6.84 10.17 2,05 2.45
Total 18.70 17.94 20.68 15.66 17,86 17.21

already been pointed out by previous studies. Fernández-Manso et al.
(2009), Hudak et al. (2007), Lentile et al. (2009), and Sunderman
and Weisberg (2011) confirmed it with a char fraction obtained by us-
ing SMA; whereas that Quintano et al. (2017), Tane et al. (2018),
Veraverbeke and Hook (2013), and Veraverbeke et al. (2014) em-
ployed MESMA to calculate the char fraction. Most of previous studies
used multispectral Landsat data, however, Tane et al. (2018) and Ve-
raverbeke et al. (2014) unmixed hyperspectal AVIRIS data.

Although the MaxEnt model relied mostly on the MESMA fraction
images for modeling of the suitable surface of the different burn sever-
ity levels, LiDAR-derived metrics had an important contribution (ap-
proximately 25% for the low burn severity level). LiDAR data has been
shown also to be a lesser contributor to species discrimination (Alonzo
et al., 2013, 2014), although Kane et al. (2015) and Wulder et
al. (2009) did not find LiDAR-derived forest structure as a key driver
of burn severity. In our study, among the variables that define vertical
structure of pre-fire vegetation, EP10 had a relatively important con-
tribution in the three burn severity levels and CC displayed the max-
imum contribution among the LiDAR-derived metrics related to hori-
zontal structure. The relationship between LiDAR derived variables and
burn severity has already been shown by previous research works. Mon-
tealegre et al. (2014) observed that LiDAR-derived height variables
showed the strongest correlation with burn severity, followed by vari-
ables related to percentage of returns above a height threshold (as CC
in our study). García-Llamas et al. (2019) applied random forest to
assess the effect of several environmental factors on burn severity and
identified ECV as a LiDAR-derived metric present in the final model.
The study area of both of these studies was a tree-forested area, where

vertical structure was a determining factor. Our study area, however, is
dominated by shrubs (with a uniform and relatively low vertical struc-
ture). Thus, horizontal structure parameters had more importance than
vertical ones to characterize the pre-fire vegetation. Hopefully, as sum-
marized by Vogeler et al. (2016) the availability (temporal and spa-
tial) of LiDAR data will increase in the future. Thus, we could combine
them with multi/hyperspectral imagery to improve burn severity map-
ping, among other applications.

Our results show that the influence of pre-fire vegetation structure
on the low burn severity class was higher than the high severity level,
contrary to what might appear at first sight. We suggest two possible
explanations. First, the information supplied by the char fraction im-
age modeled the high burn severity level with such high performance
that there was no room for any contribution from other covariates. Con-
versely, char fraction image was not as a good a predictor of moder-
ate and particularly low burn severity level allowing other covariates to
contribute to improved models of burn severity. Previous burn severity
studies based on char fraction image have also modeled the high burn
severity level with higher accuracy or have identified some confusion
between moderate and low classes (Quintano et al., 2013; 2017).
Second, our results only pointed out the influence of pre-fire vegetation
structure on burn severity but they did not give any information about
whether their relationship is positive or negative. Thus, they do not dis-
agree with previous studies showing that higher complexity of vegeta-
tion structure produces high burn severity (Baker, 2014; García-Lla-
mas et al., 2019). Simply, in our study the pre-fire vegetation struc-
tural information provided by LiDAR-derived metrics helped to model
the moderate and low burn severity levels in a greater extend than the
high severity level.

With regard to the contribution of Landsat-derived covariates, we
observed a lower contribution of the Landsat-derived spectral indexes
representing pre-fire vegetation greenness than the LiDAR-derived met-
rics representing pre-fire vegetation structure. Our results suggest that
pre-fire vegetation structure had a higher influence on burn severity
than pre-fire vegetation greenness in this large fire. Conversely, in a
mega-fire in a forest of transition between Mediterranean and Atlantic
climate García-Llamas et al. (2019) found that fuel load had a higher
impact on burn severity than vegetation structure. Both studies, how-
ever, suggest that burn severity does not depend only on the existence
of dense live biomass accumulations, but also on the vertical structural
arrangement of those fuels. Although the availability of dense biomass
may define fire sustainment, vertical structural complexity determines
the vertical fire propagation (Agee and Skinner, 2005). Pine forests
are frequently affected by high severity crown fires due to the stratified
pattern of pine crowns and to the fuel vertical structure that intensi-
fies vertical fire spread (Broncano and Retana, 2004; Fernandes and
Rigolot, 2007). In our study area, vertical structure depends on: 1) a
relative tall (up to 2m) understory including different shrubs as kermes
oak, lentisk or strawberry tree, and 2) a stock of ladder fuels (especially
low branches of the trees).

Finally, regarding the DEM-derived variables, their total contribution
to the final model was approximately the same for the three burn sever-
ity levels (around 20%). Assuming fire hierarchy (Heyerdahl et al.,
2001), fire is affected by the so-called top-down and bottom-up con-
trols. As Kane et al. (2015) summarized top-down controls (mainly
variations in precipitation and temperature) determine fire uniformity
over large areas, whereas bottom-up controls (mainly topography) re-
sult in microclimate and local vegetation structure that have impact on
fuel loading, moisture, and fire behavior. Hoden et al. (2009) corrob-
orated that the important relation between burn severity and topogra-
phy indicates the importance of bottom up vegetation and topographic
controls to burn severity. Many other studies have also pointed out
this relationship. Tracy et al. (2018) highlighted the contribution of
slope for the three burn severity levels. In their study, where 90 vari
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Fig. 4. Jackknife diagrams of the best model of the 10 replicates (maximum test AUC) for regularizaed training gain and test gain. MaxEnt software provides these parameters excluding
the covariate of interest (‘without’ on Figure); only with the variable of interest (‘with’ on Figure) and “with all variables”.

ables were tested in relation to their influence on wildfire activity, slope
appeared among the top ten ranked variables. Analyzing the Rim Fire
(2013, Yosemite National Park, USA), Harris and Taylor (2015) and
Lydersen et al. (2014) concluded that elevation was a strong predic-
tor of burn severity. Similarly Estes et al. (2017) found that slope po-
sition and aspect were the topographic variables that most influenced
burn severity in Klamath Mountains fires (California, USA) of 2006.
As they summarized, elevation is related to the changes in tempera-
ture following the adiabatic lapse rate; aspect determines the solar ra-
diation and moisture availability, and slope has a strong influence on
fire intensity. Our study corroborated these conclusions: areas showing

a high burn severity level were located in a relatively flat high plateau,
so elevation was the topographic covariate that most contributed to
model high burn severity. However, moderate and low burn severities
were mainly found in canyons with north-east and south-east aspects,
thus AS was the relevant topographic covariate in these burn severity
levels.

We did not use weather-related variables in our study, however dif-
ferent studies have shown the impact of weather conditions on burn
severity (e.g. Estes et al., 2017; Kane et al., 2015). Particularly
Bessie and Johnson (1995) and Estes et al. (2017), indicated that
environmental factors (e.g., weather conditions and topography) have
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Fig. 5. a) Suitability surface of high burn severity level; b) Suitability surface of moderate severity level; c) Suitability surface of low burn severity level, d) False color composition RGB:
high:moderate:low.

more importance on fire severity than fuels. Conversely Lentile et al.
(2006) and Lydersen et al. (2017) showed a clear relationship be-
tween burn severity and fuels. The inclusion of weather conditions as
potential drivers of burn severity will be examined in a future work.

In our study, Maxent built three probability images (low, moderate
and high burn severity) from which it is possible to produce different
specific maps depending the specific goals and needs. From them it was
shown that the central and southern part of burned area corresponded
mainly with high burn severity, moderate burn severity areas were lo-
cated mostly in canyons near of fire perimeter, and there were very few
areas classified as low burn severity level, which agrees with the burn
severity pattern of Carcaixent Fire in 2016. The most useful information
for forest managers might be the continuous suitability surfaces (proba-
bility of occurrence maps) because they enable us to adjust the thresh-
old to the project priorities (Vogeler et al., 2016). Thus, the fact of
having available probability of occurrence maps represents one advan-
tage of MaxEnt vs. conventional hard classifiers. Moreover, as fraction
images have a physical meaning (the abundance of each endmember
within the pixel) the interpretation of their contribution in the Max-
Ent final model is not complicated. Morgan et al. (2014) and Ver-
averbeke and Hook (2013) among others have already highlighted
the benefit of this relationship between fraction images and field pro-
portions. In fact, the combination of MESMA fraction images, LiDAR-de-
rived metrics and MaxEnt provided a physical meaning to the complete
model process, easing its use and comprehension.

Summarizing, the different features of our proposed method to
model burn severity is based on the following facts: 1) fraction im-
ages were chosen to represent the post-fire vegetation damage instead
of spectral indices. The reason of this decision was twofold: a) we kept
all reflectance band information (as contrasted with spectral indices that
only use information from two/three spectral bands) and thus burned

vegetation may be more accurately characterized and b) we could re-
duce the influence of background soil; 2) MESMA, which has been found
to be superior to simple SMA, was selected to perform unmixing and
obtain the fraction images; 3) our study was based on hyperspectral
data instead of multispectral imagery. Some studies (Veraverbeke et
al., 2014, 2018) pointed out the advantages of hyperspectral vs. mul-
tispectral data to assess fire severity: mainly its higher data dimension-
ality and also their narrowbands; 4) It is a quasi-multitemporal method
where the pre-fire data were not hyper-/multi-spectral imagery but Li-
DAR data. Thus, it could avoid the selection and correction of pre-fire
image without losing the pre-fire vegetation information; 5) MaxEnt is
a powerful one-class classifier that provides continuous probability of
occurrence maps instead of just a discrete quantification of post-fire
damage of vegetation; and 6) the described burn severity modeling
method may be appropriated for different ecosystems (Mediterranean
and non-Mediterranean). MESMA produces accurate fraction images in
every ecosystem if candidate endmembers are selected adequately and
careful from the image. Finally, MaxEnt is a one-class classifier that no
needs any ecosystem specific parameter to work properly. Our work rep-
resents a novel approach whose conclusions should be tested in more
fire events, with different characteristics (fire regime, weather, topog-
raphy, …). However, we believe that it may be a reference to be com-
pared with the results of new studies. Although we used only a fire,
it was relatively large. It was the second largest fire in Spain in 2016
(San-Miguel-Ayanz et al., 2016).

7. Conclusion

We verified a quasi-multitemporal method based on post-fire hyper-
spectral data and complemented by pre-fire LiDAR that modeled accu-
rately three levels of burn severity. In addition the use of a one-class
classifier, MaxEnt, allowed us to analyze the contribution of each taken
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into account covariate in each of the three burn severity levels. Infor-
mation from EO-1 Hyperion data was extracted by using MESMA, be-
ing the char fraction image who most contributed to the final model of
every burn severity level. A careful and structured spectral library build-
ing (char, GV, NPVS) including all land covers under study was an in-
dispensable requirement to obtain the needed accurate fraction images.
Pre-fire LiDAR-derived metrics were classified into two groups: 1) para-
meters that define the vertical structure of vegetation. Their global con-
tribution was similar for high and moderate burn severity but their con-
tribution increased in the low burn severity level reaching 16.28%, and
2) parameters that define the horizontal structure whose influence was
relatively low on the high burn severity level and relatively high on the
low burn severity level (8.55%). Topographic DEM-derived parameters
were also taken into account in the final model. Their percentage of con-
tribution to the final model was similar for the three burn severity levels
(approximately 20%). Our results proved that burn severity levels can
be modeled from MaxEnt trained using post-fire MESMA Hyperion frac-
tion images, and pre-fire LiDAR-derived variables (research question 1)
with MESMA char fraction contributing between 54.45% for low burn
severity level and 73.86% for high burn severity one, and LiDAR-derived
metrics between 24.83% for low and 7.43% for high burn severity level
(research question 2). We corroborated the potential of LiDAR data to
describe vegetation structure and fuel loads, as they provided structural
information about pre-fire vegetation in our final MaxEnt model in ad-
verse conditions from a technical point of view: low density LiDAR data
and predominance of low and dense vegetation (bushes). Though shar-
ing a trend pattern, each burn severity level had its own modeling struc-
ture. For low burn severity level the contribution of LiDAR data was
a relatively high, whereas the contribution of char fraction decreased,
whereas for high burn severity level the contribution of LiDAR–derived
metrics was relatively low while char fraction gained in importance (re-
search question 3).

The proposed method may contribute to improve the analysis of burn
severity patterns and take adequate post-fire management decisions.
This methodology might be easily extrapolated to different ecosystems
(Mediterranean and non-Mediterranean), in spite that our study area
is situated in a Mediterranean region. Thus, our study presents a new
methodology which takes advantage of a new generation of spaceborne
hyperspectral missions (like the Hyperspectral Infrared Imager, HyspIRI,
the Environmental Mapping And Analysis Program, EnMAP, and the
Precursore Iperspettrale Della Missione Applicativa, PRISMA), and im-
proved availability of LiDAR data (in particular, the Global Ecosystem
Dynamics Investigation –GEDI- full-waveform LiDAR recently deployed
on the International Space Station (ISS) in 2018 for a two-year mission)
to evaluate post-fire effects on vegetation using the powerful one-class
classifier MaxEnt.
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