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Defective nuclear translocation of nuclear
factor of activated T cells and extracellular
signal-regulated kinase underlies deficient IL-2
gene expression in Wiskott-Aldrich syndrome

Antonella Cianferoni, MD, PhD,a,c,d Michel Massaad, PhD,a,c,d Stefan Feske, MD,b,c
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Background: Proliferation and IL-2 production in response to

T-cell receptor ligation are impaired in patients with Wiskott-

Aldrich syndrome (WAS). The transcription factors nuclear

factor-kB (NF-kB), nuclear factor of activated T cells (NF-AT),

and activating protein-1 (AP-1) play a critical role in IL-2 gene

expression.

Objective: To investigate the mechanisms of impaired IL-2

production after T-cell receptor ligation in T cells deficient in

WAS protein (WASP).

Methods: T cells from WASP2/2 mice were stimulated with

anti-CD3 and anti-CD28. Nuclear NF-kB, NF-AT, and AP-1

DNA-binding activity was examined by electroshift mobility

assay. NF-ATp dephosphorylation and nuclear localization

were examined by Western blot and indirect immunoflu-

orescence. Phosphorylation of the mitogen-activated protein

kinases Erk and Jnk, and of their nuclear substrates Elk-1 and

c-Jun, was examined by Western blot. Expression of mRNA for

IL-2 and the NF-kB–dependent gene A20 and of the AP-1

components c-fos and c-Jun was examined by quantitative

RT-PCR.

Results: Nuclear translocation and activity of NF-kB were

normal in T cells from WASP2/2 mice. In contrast, NF-ATp

dephosphorylation and nuclear localization, nuclear AP-1

binding activity, and expression of c-fos, but not c-Jun, were all

impaired. Phosphorylation of Jnk, c-Jun, and Erk were normal.

However, nuclear translocation of phosphorylated

Erk and phosphorylation of its nuclear substrate Elk1,

which activates the c-fos promoter, were impaired.

Conclusion: These results suggest that WASP is essential for

NF-ATp activation, and for nuclear translocation of p-Erk,

Elk1 phosphorylation, and c-fos gene expression in T cells.

These defects underlie defective IL-2 expression and T-cell

proliferation in WAS. (J Allergy Clin Immunol 2005;116:

1364-71.)
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Wiskott-Aldrich syndrome protein (WASP) is the
502-amino acid product of the gene mutated in Wiskott-
Aldrich syndrome (WAS), anX-linked immunodeficiency
characterized by thrombocytopenia, moderate to severe
bleeding disorder, eczema, and increased susceptibility to
infections.1-3 WASP is expressed only in hematopoietic
cells and is the first identified member of an expanding
family of proteins that includes N-WASP and Scar/
WAVE (WASP-family verprolin homologous protein).4

WASP is a multidomain protein that interacts with the
WASP-interacting protein (WIP) via its N-terminal, with
cell division cycle 42-guanine triphosphate (Cdc42-GTP)
via its GTPase binding domain, with multiple src-homol-
ogy domain 3 (SH3) domain–containing proteins via its
proline-rich region, and with actin and the Arp2/3 com-
plex via its verprolin homology/cofilin homology/acidic
(VCA) domain. WASP exists in cells in a closed inactive
conformation. Binding of Cdc42-GTP or of SH3 domain
of proteins such as Nck, Grb2, and cortactin causes a
conformational change in WASP, which allows the VCA
domain to interact with and activate the Arp2/3 complex
to regulate actin polymerization. In contrast,WIP prevents
WASP activation.5,6

WASP plays a critical role in T-cell activation. T cells
from patients withWiskott-Aldrich syndrome andWASP-
deficient mice fail to proliferate, secrete IL-2, and increase
their F-actin content after ligation of the T-cell receptor
(TCR).2,7,8 The minimal IL-2 promoter region sufficient
for IL-2 induction on TCR ligation is a stretch of DNA
extending 300 bp upstream of the transcription start site.
This region contains binding sites for nuclear factor-kB
(NF-kB), nuclear factor of activated T cells (NF-AT),
and activating protein-1 (AP-1) transcription factors. Loss
of even 1 of these sites results in a dramatic decrease in
overall promoter activity. Three of the 5 NF-AT elements
in the IL-2 promoter are composite NF-AT/AP-1 binding
sites. Cooperation between the 2 different transcription
factors is essential for the stability and activity of the
DNA binding complex.9

Of the 5 knownNF-AT genes,NF-ATp (also designated
asNF-AT1orNF-ATc2) andNF-ATc (NF-AT2orNF-ATc1)
appear to play a particularly important role in IL-2 gene
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Abbreviations used
AP-1: Activating protein-1

ATF: Activating transcription factor

DAPI: 4#-6-Diamidino-2-phenylindole, dihydrochloride

EMSA: Electrophoretic mobility shift assay

ERK: Extracellular signal-regulated kinase

GOI: Gene of interest

HK: House keeping

NF-AT: Nuclear factor of activated T cells

NF-kB: Nuclear factor-kB

NK: Natural killer

P/I: Phorbol 12 myristate 13-acetate and ionomycin

TCR: T-cell receptor

WASP: Wiskott-Aldrich syndrome protein

WT: Wild-type

induction during T-cell activation.10 In resting cells, all
NF-AT family members reside in the cytoplasm in their
phosphorylated inactive form. On TCR ligation, there is
a rise in intracellular free Ca11with subsequent activation
of the phosphatase calcineurin, which dephosphorylates
NF-AT and causes its translocation to the nucleus.11 IL-2
expression is strongly inhibited by calcineurin inhibi-
tors.12 Furthermore, T cells lacking calcineurin or both
NF-AT1 and NF-AT2 do not produce IL-2 in response
to TCR stimulation.13,14 The AP-1 family of transcrip-
tion factors consists of homodimers and heterodimers
of Jun (c-Jun, JunB and JunD), fos (c-fos, FosB,
Fra1 and Fra2), or activating transcription factor (ATF2,
ATF3/liver regenerating factor [LRF1], B-ATF).
c-fos and c-Jun are important for IL-2 expression.15

Mitogen-activated protein kinases such as extracellular
signal-regulated kinase (Erk), Jnk, and p38 regulate
AP-1 activation after TCR ligation.16 TCR engagement
also results in activation of the I-kB kinase complex, re-
sulting in the phosphorylation of I-kB and its degradation.
This releases NF-kB and allows it to translocate to the
nucleus.17 All 5 members of the NF-kB family—NF-kB1
(p50/p150), NF-kB2 (p52/p100), RelA (p65), c-Rel, and
RelB—have been shown to play an important role in
IL-2 gene activation.17

Little is known about the mechanisms that underlie the
failure of WASP-deficient T cells to produce IL-2 after
TCR ligation. We demonstrate that WASP is essential for
NF-ATp dephosphorylation and nuclear localization, as
well as for nuclear translocation of phosphorylated Erk
and subsequent phosphorylation of its nuclear substrate
Elk1, which upregulates expression of c-fos, an essential
component of AP-1.

METHODS

Mice

The generation ofWASP2/2mice has been described previously.8

WASP2/2 mice were backcrossed onto the 129Sv background

for 5 generations. Mice were housed under pathogen-free conditions

according to institutional regulations, and studies were performed in

accordance with Children’s Hospital policies and procedures.
Antibodies

Phospho-Erk antibody is from Cell Signaling Technology

(Beverly, Mass). Erk, phospho-Elk1, and lamin mAbs are

from Santa Cruz Biotechnology (Santa Cruz, Calif). Elk1 antibody

is from Abcam (Cambridge, Mass). Actin mAb is from Chemicon

International (Temecula, Calif). The NF-ATp specific antibody T2B1

(raised against the C-terminal domain of NF-ATp) was donated by

Dr A. Rao.18 Phospho-Jnk antibody is from Biosource International

(Camarillo, Calif). Jnk, phospho-c-Jun, and c-Jun antibodies are

from Cell Signaling Technology.

Cell preparation and stimulation

Splenocytes were suspended in RPMI-1640 medium supple-

mented with L-glutamine, penicillin/streptomycin, and 10% FBS.

T cells were purified from spleens by using mouse T-cell enrichment

columns (R&D Systems Inc, Minneapolis, Minn) and consisted of

90% to 95%CD31 cells. Cells were cultured at 2 to 53 106 cells/mL

and stimulated with plate-bound anti-CD3 mAb (145-2C11; BD Bio-

science, Pharmingen, San Jose, Calif) and anti-CD28 mAb (37.51;

BD Bioscience, Pharmingen) at 5 mg/mL each. Alternatively, T cells

were incubated in suspension with 5 mg/mL rat antimouse CD3 mAb

(clone KT3; Serotec, Raleigh, NC) for 20 minutes on ice, followed by

stimulation with 20 mg/mL goat antirat F(ab#)2 fragments (Jackson

Immunoresearch, West Grove, Pa) for the indicated times. As con-

trols, T cells were stimulated with 20 ng/mL phorbol 12 myristate

13-acetate (Sigma Aldrich, St Louis, Mo) and 0.5 mmol/L ionomycin

(Sigma Aldrich).

RT-PCR analysis of IL-2, A20, c-fos,
and c-Jun gene expression

RNA was extracted from resting and stimulated T cells by

using TRIzol (Invitrogen, Carlsbad, Calif). Total cDNA was

prepared by using Superscript II RNA reverse transcriptase kit

(Invitrogen), and IL-2, A20, c-fos, and c-Jun gene expression was

analyzed by real-time PCR. Specific Taqman primers with 6-

carboxyfluorescein (FAM)-labeled probes and 2x Taqman univer-

sal PCR master mix (Applied Biosystems, Foster City, Calif) were

used as directed.19 The relative expression ratio of the gene of

interest (GOI) to the house keeping (HK) gene b2-microglobulin

was calculated as previously described.20 Fold induction was

expressed as the GOI:HK ratio in stimulated cells divided by

the GOI:HK ratio in unstimulated cells.

Western blotting

One million cells were suspended in 30 mL cell lysis buffer that

consisted of 50 mmol/L Tris pH 7.6, 150 mmol/L NaCl, 1% Nonidet

P-40 (NP-40), 50 mmol/L sodium fluoride, 1 mmol/L sodium

orthovanadate, 5 mmol/L sodium pyrophosphate, 1 mmol/L phenyl-

methylsulfonyl fluoride (PMSF), 1 mmol/L phenylarsine oxide, and

protease inhibitor cocktail (P 8340; Sigma Aldrich) for 10 minutes

on ice. The cells were then frozen in dry ice for 1 minute, vortexed

at full speed for 10 seconds, then centrifuged 10 minutes at 14,000g

and 4�C. Proteins were separated by SDS-PAGE and transferred

onto nitrocellulosemembranes. The indicated antibodies were diluted

in TBS (10 mmol/L Tris-HCl pH 8.0, 150 mmol/L NaCl) plus 5%

milk and were used to probe the membranes. The blots were probed

with antirabbit or antimouse antibodies linked to horseradish peroxi-

dase (Bio-Rad, Hercules, Calif) and developed by using chemilumi-

nescence (Amersham, Piscataway, NJ). To ensure equal loading,

blots were stripped and then reprobedwith the appropriate antibodies.

Electrophoretic mobility shift assay

Cells were collected and nuclear extracts were prepared for

electrophoretic mobility shift assay (EMSA) by using a Nuclear
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FIG 1. IL-2 mRNA expression, NF-kB translocation to the nucleus, and A20 mRNA expression after T-cell

stimulation with anti-CD3/CD28 antibodies. A, IL-2 mRNA levels analyzed by real-time PCR in T cells stimu-

lated for 6 hours. Results represent mean 6 SD fold increase of mRNA; n 5 4; *P 5 .03. B, EMSA analysis

of NF-kB nuclear translocation in T cells stimulated 30 minutes as indicated. C, Quantitative analysis of

EMSA results from 7 experiments. D, A20 mRNA levels analyzed by real-time PCR in T cells stimulated for

30 minutes. Results represent mean 6 SD fold increase; n 5 4. Unst., Unstimulated.
Extract Kit from Active Motif (Carlsbad, Calif). The protein

concentration was estimated by the bicinchoninic acid protein assay

kit (Pierce, Rockford, Ill). Single-stranded oligonucleotides were 5#
end-labeled with [32P]-ATP by using T4-polynucleotide kinase,

annealed, and purified on 12% PAGE in 1xTris borate EDTA buffer.

For each reaction, 13 103 cpm (0.1 ng) radiolabeled oligonucleotide

probe was incubated with 5 mg nuclear extracts in 20 mL binding

buffer (10 mmol/L Tris-HCl pH 7.5, 50 mmol/L NaCl, 5% glycerol,

50 ng/mL poly(dI-dC), 1 mmol/L EDTA, 0.1% NP-40, 1 mmol/L

dithiothreitol, and the protease inhibitor mixture) for 30 minutes on

ice or at room temperature. Samples were then run on 5% poly-

acrylamide gel in 1xTBE. The sequences of the oligonucleotides

used were the following: NF-kB site of murine IL-2 promoter,

GAGGGATTTCACCTAAAT; consensus murine AP-1 DNA bind-

ing site, CGCTTGATGAGTCAGCCG; and murine IL-4 P1 NF-AT

site sequence, AATAAAATTTTCCAATGT. Radiographic signals

were quantified by densitometry using NIH Image 1.62 (National

Institute of Mental Health, Bethesda, Md). The signal found after

stimulation was normalized to the unstimulated state.

Immunofluorescence

T cells were spun onto poly-L-lysine–coated coverslips and fixed

immediately in 3% paraformaldehyde. Cells were washed 3 times in

wash buffer (13 PBS, 0.5% NP-40, and 0.01% NaN3) and preincu-

bated with wash buffer containing 10% FCS for 30 minutes. Cells

were then incubated with rabbit anti–NF-ATp antibody for 45

minutes at room temperature followed by Cy3-conjugated sheep anti-

rabbit IgG (Sigma Aldrich). The nuclei were stained with 1 mg/mL

4#-6-diamidino-2-phenylindole, dihydrochloride (DAPI; Molecular

Probes, Eugene, Ore). Cells were visualized with an Axiovert S200

epifluorescence microscope (Zeiss, Thornwood, NY) by using

Openlab digital imaging software (Improvision, Lexington, Mass).

Localization of NF-ATp was compared with that of DAPI nuclear

staining in 150 to 300 cells for each sample.

Statistical analysis

Statistical analysis was performed by using PRISM (GraphPad

Software, San Diego, Calif) software. Wilcoxon test was used to

compare the differences between groups. A P value less than .05 was

considered statistically significant.
RESULTS

IL-2 mRNA expression after TCR ligation is
severely diminished in WASP2/2 T cells

To determine whether the defect in IL-2 synthesis was a
result of impaired IL-2 gene transcription, T cells from
WASP2/2 mice were stimulated with anti-CD3/CD28
mAbs for 6 hours, and IL-2 mRNA levels were measured
by real-time PCR. IL-2 mRNA levels were significantly
lower in T cells from WASP2/2 mice compared with
wild-type (WT) controls (Fig 1, A). This suggests that
WASP is essential for IL-2 gene expression after TCR
ligation.

NF-kB translocation and activation are
normal in T cells from WASP2/2 mice

Electrophoretic mobility shift assay was used to exam-
ine the presence of NF-kB in nuclear extracts from
WASP2/2 and WT T cells stimulated for 2 hours with
anti-CD3/CD28 antibodies, or with phorbol 12 myristate
13-acetate and ionomycin (P/I). There was no significant
difference in NF-kB nuclear binding activity between
T cells from WASP2/2 mice and WT controls (Fig 1,
B). No difference was observed with shorter stimulations
of 15 and 30 minutes (data not shown). Retarded bands
were quantified by densitometry, and results were ex-
pressed as fold induction compared with unstimulated
cells (Fig 1, C). Supershift assays revealed that the
retarded bands in nuclear extracts of both WT and
WASP2/2 T cells contained the p50 and p65 subunits of
NF-kB (data not shown).

T-cell receptor ligation induces NF-kB–dependent
expression of the antiapoptotic gene A20.21 There was
no significant difference in the expression of A20 mRNA
levels between T cells from WASP2/2 mice and WT
controls stimulated 30 minutes with anti-CD3/CD28
antibodies, as assessed by real-time PCR (Fig 1, D).
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Taken together, these results suggest that TCR ligation
induces normal NF-kB nuclear translocation and activa-
tion in WASP2/2 T cells.

Impaired NF-AT activation in WASP2/2 T cells

The DNA binding activity of NF-AT, assessed by
EMSA on nuclear extracts of anti-CD3/CD28–stimulated
T cells, was found to be significantly impaired in T cells
fromWASP2/2mice compared withWT controls (Fig 2).
Supershift assays revealed that the retarded bands in
nuclear extracts of WT T cells contained NF-ATp and
NF-ATc (data not shown). Nuclear NF-AT binding activ-
ity was intact in WASP2/2 T cells stimulated with P/I,
agents that bypass TCR signaling (Fig 2).

Dephosphorylation of the constitutively expressed NF-
ATp after TCR ligation was examined by Western blot
analysis of T cell lysates. Fig 3, A, reveals the appearance
of a lower molecular weight band in WT T cells after
stimulation with anti-CD3/CD28 mAbs, but not in
WASP2/2 T cells. NF-ATp was normally dephosphory-
lated in WASP2/2 T cells after ionomycin stimulation.
We also examined the dephosphorylation-dependent nu-
clear localization of NF-ATp by immunofluorescence.
Fig 3, B and C, shows that NF-ATp is located in the nu-
cleus of WT cells 30 minutes and 2 hours after stimulation
with anti-CD3/CD28 mAbs (nuclear NF-ATp in 73% and
85% of the cells, respectively). In contrast, nuclear trans-
location of NF-ATp was impaired in WASP2/2 T cells 30
minutes as well as 2 hours after stimulation with anti-CD3/
CD28 mAbs (nuclear NF-ATp in 14% and 34% of the
cells, respectively). However, nuclear translocation of
NF-ATp was intact in WASP2/2 T cells stimulated with
ionomycin. These results show that WASP is essential
for TCR-mediated induction of NF-ATp dephosphoryla-
tion and nuclear translocation.

Impaired AP-1 DNA binding activity in
WASP2/2 T cells

Expression and activation of c-fos and c-Jun, 2 impor-
tant components of the AP-1 complex,22 are induced after
TCR ligation.23 The DNA binding activity of AP-1,
assessed by EMSA on nuclear extracts of anti-CD3/
CD28–stimulated T cells, was found to be significantly
impaired in T cells from WASP2/2 mice compared with
WT controls (Fig 4). Supershift assays revealed that the
retarded bands in nuclear extracts of WT T cells contained
c-fos and c-Jun (data not shown). Nuclear AP-1 binding
activity was intact in WASP2/2 T cells stimulated with
P/I. These results suggest that WASP is essential for
TCR induction of AP-1 binding activity.

Phosphorylation of Jnk and c-Jun, and
c-Jun mRNA induction are not affected
in WASP2/2 T cells

T-cell receptor ligation causes phosphorylation and
activation of Jnk, resulting in phosphorylation and acti-
vation of its nuclear substrate c-Jun.23 Western blot anal-
ysis shows that TCR induction of Jnk phosphorylation is
normal in WASP2/2 T cells (Fig 5, A), as previously
reported.7 More importantly, phosphorylation of c-Jun,
and upregulation of c-Jun mRNA expression after TCR
ligation, were also normal in WASP2/2 T cells (Fig 5, B
and C). These results suggest that WASP is not impor-
tant for Jnk phosphorylation and phosphorylation of its
nuclear target c-Jun.

Nuclear translocation of p-Erk,
phosphorylation of Elk1, and induction
of c-fos are defective in WASP2/2 T cells

T-cell receptor ligation causes phosphorylation and
activation of Erk and its translocation to the nucleus,
where it phosphorylates and activates its nuclear substrate
Elk1.24 Activated Elk1 regulates the transcription of
c-fos.16 Western blot analysis showed that Erk1 and Erk2
phosphorylation was comparable in WT and WASP2/2

T cells after TCR ligation, as previously described.7 In
contrast, Elk1 phosphorylation was diminished in
WASP2/2 T cells compared with WT controls (Fig 6,
A). To investigate whether reduced Elk1 phosphorylation
was a result of a defect in nuclear translocation of Erk,
nuclear extracts were analyzed by Western blot using
p-Erk specific antibodies. TCR stimulation resulted in
the translocation of p-Erk1 and p-Erk2 into the nucleus
of WT cells, but not of WASP2/2 T cells (Fig 6, B). In
addition, real-time PCR showed a significant decrease in
c-fos mRNA induction in stimulated WASP2/2 T cells

FIG 2. Impaired NF-AT DNA binding activity in WASP2/2 T cells.

A, Representative EMSA analysis of NF-AT DNA binding activity.

T cells were stimulated 30 minutes as indicated. B, Quantitative

analysis of EMSA. Results represent mean 6 SD from 7 experi-

ments. *P 5 .03. Unst., Unstimulated.
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FIG 3. Defective NF-ATp dephosphorylation and translocation to the nucleus of WASP2/2 T cells. A, T cells

from WT and WASP2/2 mice were stimulated and NF-ATp dephosphorylation determined by Western blot.

Similar results were obtained in 3 experiments. B, T cells from WT and WASP2/2 mice were stimulated,

and NF-ATp was detected as described in Methods (red). Nuclei of the same cells were counterstained with

DAPI (blue). Left panels show NF-ATp staining alone; right panels show merged images (NF-ATp and DAPI)

for the same cells. Pie charts show percent of cells with cytoplasmic (yellow) and nuclear (red) NF-ATp stain-

ing. C, Pooled results of NF-ATp nuclear translocation from 3 experiments. Columns and bars represent

means 6 SDs. *P 5 .03. Unst., Unstimulated; P, phosphorylated; Dep, dephosphorylated.
compared with stimulatedWT T cells (Fig 6,C). These re-
sults show thatWASP is essential for nuclear translocation
of p-Erk, and consequently, for Elk1 phosphorylation
and induction of c-fos expression.

FIG 4. Impaired AP-1 DNA binding activity in WASP2/2 T cells.

A, Nuclear extracts from unstimulated WT and WASP2/2 T cells,

or cells stimulated 30 minutes, as indicated, were used in EMSA.

B, Quantitative analysis of EMSA. Results represent means 6 SDs

from 7 independent experiments. *P 5 .03. Unst., Unstimulated.
DISCUSSION

The results of the current study show that WASP is
essential for the proper activation of NF-AT andAP-1.We
found that WASP is important for the dephosphorylation
and nuclear translocation of NF-ATp, p-Erk nuclear
translocation, Elk1 phosphorylation, and c-fos expression
after TCR engagement. These abnormalities are likely to
underlie the defective IL-2 gene expression in WASP-
deficient T cells after TCR ligation.

In agreement with a recent report,25 we demonstrate
that IL-2 mRNA expression is virtually absent in T cells
from WASP2/2 mice (Fig 1, A). Translocation of NF-
kB to the nucleus is normal in stimulated WASP2/2 T
cells (Fig 1, B and C). Furthermore, transcription of the
NF-kB–dependent gene A20, which requires p50, p65,
and c-Rel,21 was normal in WASP2/2 T cells (Fig 1, D),
suggesting that the activities of all 3 NF-kB subunits are
normal and do not depend on WASP for activation. Rel-
A, another member of the NF-kB complex, was recently
found to translocate to the nucleus of stimulated
WASP2/2 natural killer (NK) cells,26 suggesting that the
independence of NF-kB nuclear translocation from
WASP is not restricted to a single cell type.

DNA binding activity of NF-AT was severely impaired
inWASP2/2T cells (Fig 2). Immunofluorescence analysis
showed that NF-ATp nuclear localization is defective in
stimulated WASP2/2 T cells (Fig 3). A defect in the
nuclear translocation of NF-ATc, which is induced by ac-
tivated NF-ATp, has been recently described inWASP2/2

T cells.27 However, the mechanism of this defective
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translocation has not been elucidated. Our results clearly
demonstrate that dephosphorylation of NF-ATp, which
is essential for its nuclear translocation,11 is defective in
WASP2/2 T cells (Fig 3). The partial defect in calcium
mobilization observed in WASP2/2 T cells early (as
long as 15 minutes) after TCR ligation7 very likely results
in reduced calcineurin activation andNF-ATp dephospho-
rylation. Defective nuclear localization of NF-ATpmay be
a result of defective nuclear entry or increased rate of exit
from the nucleus. It is unlikely that enhanced exit from the
nucleus would account for this defect, because 93% of
WASP2/2 T cells treated with ionomycin show nuclear
localization of NF-ATp after 30-minute stimulation.
WASP2/2NKcells show transient delay inNF-ATc trans-
location to the nucleus,26 whereas the delay in the nuclear
translocation of NF-ATp inWASP2/2 T cells persisted as
long as 2 hours. This difference may be explained by dif-
ferences in the cell types and stimuli used (cellular targets
for NK cells and anti-CD3/anti-CD28 in T cells).

Binding activity of AP-1 after CD3/CD28 ligation was
severely impaired in WASP2/2 T cells (Fig 4). After TCR
ligation, phosphorylation of Jnk and of its nuclear target,
c-Jun, as well as c-Jun mRNA upregulation, were all

FIG 5. Jnk and c-Jun phosphorylation and c-Jun mRNA induction

are normal in WASP2/2 T cells. A and B, Cell extracts from CD3-

stimulated T cells were probed for p-Jnk and Jnk (A) as well as

p-c-Jun and c-Jun (B). The results shown are representative of 3

different experiments. The p-c-Jun antibody detected 2 discrete

bands, which may represent differentially phosphorylated forms

of c-Jun. The upper band in the c-Jun blot (lower panel) that ap-

pears 5 minutes after stimulation, then fades at 30 minutes, is the

phosphorylated c-Jun, and it corresponds to the upper band in

the p-c-Jun blot (upper panel). The star ( ) indicates a nonspecific

band. Results are representative of 2 experiments. C, c-Jun

mRNA levels analyzed by real-time PCR in T cells stimulated with

anti-CD3/CD28 mAbs for 30 minutes. n 5 4. *P 5 .03. Unst.,

Unstimulated.
normal in WASP2/2 T cells (Fig 5). The normal upregu-
lation of c-Jun mRNA expression in WASP2/2 T cells
(Fig 5, C), in spite of defective c-fos expression (Fig 6,
C), may be explained by the fact that c-Jun homodimers
and c-Jun/ATF2 heterodimers can activate the c-Jun
promoter independently of c-fos.22,28

c-Fos is the limiting component of AP-1 in the induc-
tion of IL-2 gene expression and is poorly expressed in
resting T cells. Transcription of c-fos depends on the for-
mation of a complex that contains serum response factor
and a member of the Ets transcription factor family that
includes Elk-1. This complex binds to the serum response
element present in the c-fos promoter and activates tran-
scription.16,28 c-Fos expression after TCR ligation
depends on the phosphorylation of Elk1 by the mitogen-
activated protein kinase Erk, which translocates to the

FIG 6. Impaired nuclear translocation of p-Erk, phosphorylation

of Elk1, and induction of c-fos gene expression in WASP2/2

T cells. A, Lysates of T cells were probed with p-Erk, Erk,

p-Elk1, and Elk1 antibodies. Results are representative of 2 exper-

iments. B, p-Erk in the nuclear fraction of T cells. The blots were

stripped and reprobed for ZAP-70 and lamin as markers for cyto-

plasmic and nuclear fractions. Results are representative of

2 experiments. C, Analysis of c-fos mRNA levels by real-time

PCR in T cells stimulated with anti-CD3/CD28 mAbs for 30 min-

utes. n 5 4. *P 5 .03. Unst., Unstimulated; ZAP-70, zeta chain

(TCR) associated protein kinase 70.
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nucleus after it phosphorylation,29 We found that Erk was
phosphorylated normally in WASP2/2 T cells, but its nu-
clear translocation was defective. Furthermore, Elk1 phos-
phorylation and upregulation of c-fos mRNA expression
were defective in WASP2/2 T cells (Fig 6). These results
suggest that WASP is important for nuclear translocation
of activated p-Erk after TCR ligation. We cannot, how-
ever, rule out the possibility that the rate of exit of p-Erk
from the nucleus is increased in WASP2/2 T cells. T cells
frommice with disrupted Erk-1 gene exhibit poor prolifer-
ation to TCR ligation.30 Defective nuclear translocation of
p-Erk is likely to underlie the defects in Elk1 phosphoryl-
ation, c-fos upregulation, and AP-1 activation observed in
WASP2/2 T cells.

Although ionomycin activates NF-ATp normally in
WASP2/2 T cells, we found that addition of ionomycin to
anti-CD3–stimulated T cells over a wide dose range (10-
500 nmol/L) failed to reverse the defect in proliferation
and IL-2 secretion of WASP2/2 T cells (unpublished
data, July 2005). This suggests that the NF-AT defect
does not account by itself for the defective response of
WASP2/2 T cells to TCR ligation, and that the failure
of p-Erk to translocate to the nucleus of WASP2/2 T cells
is likely to play an important role. This is supported by the
observation that NF-AT binds to the IL-2 promoter weakly
and needs AP-1 for high-affinity binding and efficient
transcriptional activation.9,31 There is a similar depen-
dence on both NF-AT and AP-1 for TNF-a production
in mast cells after FceRI ligation.32-34 However, in addi-
tion to NF-AT and AP-1, TNF-a production by mast cells
also requires a NF-kB–like nuclear binding complex.35

Disruption of actin polymerization with cytochalasin D
does not affect NF-kB or NF-AT translocation to the
nucleus.36,37 In contrast, nuclear translocation of p-Erk is
thought to require intact actin cytoskeleton because treat-
ment with cytochalasin-D inhibits anchorage-dependent
nuclear translocation of p-Erk and phosphorylation of its
nuclear target Elk1 in serum-stimulated fibroblasts.38

There are conflicting data about whether the actin poly-
merization activity of WASP is important for the NF-AT/
AP-1–mediated IL-2 gene transcription.27,39 However,
even if actin polymerization is not involved in NF-AT/
AP-1 activation, an intact cytoskeleton may be essential.40

It is possible that disruption of the actin dynamics caused
by the absence of WASP may contribute to the defect in
the nuclear translocation of p-Erk, leading to defective
activation of AP-1.

It has been shown that N-WASP possesses nuclear
localization and export signals and that it functions in
the nucleus by modulating the expression of heat shock
protein 90.41 Because of the sequence similarity between
N-WASP and WASP, this raises the question whether
WASP translocates in and out of the nucleus and whether
it acts as a chaperone for factors such as NF-AT and p-Erk.

The authors thank Dr Anjana Rao for the NF-ATp antibody,

Dr Lalit Kumar for technical help, and Tatyana Sannikova for help

with the mice.
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