PIC Microcontrollers
Programming in C

FIE micmcomlrolbers

Author: Milan Verle

Compilation with 5 1] b
Meisam Fanoody e = Q)
Rtmmz3319@yahoo.com -

Program
Memory

-2 Microcontroller

0 - 20MHz

Internal
Oscillator
Program

|| C P U Memory 8K

’ A/D (35 instructions)
B Converter |
EEPROM (256) |

Vref
| e CCP/PWM
modules

RESET

| -

ANSEL ANSELH = 0; I/O pins are configured as digital
; PORTB pins are cl eared
PORTB.1 are

PORTB = 0;
TRISB = 0b00000010; // Al PORTB pins except

configured as outputs
/1 Pull-up resistors are enabl ed
[l Pull-up resistor is connected to the

/1 The PORTB.1 pin may cause an interrupt

change
/1 Interrupt is enabled

Meisam Fanoody
rtmmz3319@yahoo.com

mailto:Rtmmz3319@yahoo.com

Table of Contents

Chapter 1: World of Microcontrollers

(0]
0
(0]
(0]

1.1 Introduction

1.2 NUMBERS, NUMBERS, NUMBERS...
1.3 MUST KNOW DETAILS

1.4 PIC MICROCONTROLLERS

Chapter 2:_Programming Microcontrollers

(0]
(0]
(0]

2.1 PROGRAMMING LANGUAGES
2.2 THE BASICS OF C PROGRAMMING LANGUAGE
2.3 COMPILER MIKROC PRO FOR PIC

Chapter 3:_PIC16F887 Microcontroller

O O O O O o o o o o o o

3.1 THE PIC16F887 BASIC FEATURES

3.2 CORE SFRS

3.3 INPUT/OUTPUT PORTS

34 TIMER TMRO

35TIMER TMR1

3.6 TIMER TMR2

3.7 CCPMODULES

3.8 SERIAL COMMUNICATION MODULES
3.9 ANALOG MODULES

3.10 CLOCK OSCILLATOR

3.11 EEPROM MEMORY

3.12 RESET! BLACK-OUT, BROWN-OUT OR NOISES?

Chapter 4. Examples

O O O o o o o

Meisam Fanoody
rtmmz3319@yahoo.com

4.1 BASIC CONNECTING

4.2 ADDITIONAL COMPONENTS

4.3 EXAMPLE 1 - Writing header, configuring 1/0 pins,
using delay function and switch operator

4.4 EXAMPLE 2 - Using assembly instructions and internal

oscillator LFINTOSC...

4.5 EXAMPLE 3 - TMRO as a counter, declaring new
variables, enumerated constants, using relay ...

4.6 EXAMPLE 4 - Using timers TMRO, TMR1 and TMR2.
Using interrupts, declaring new function...

4.7 EXAMPLE 5 - Using watch-dog timer

4.8 EXAMPLE 6 - Module CCP1 as PWM signa generator
4.9 EXAMPLE 7 - Using A/D converter

4.10 EXAMPLE 8 - Using EEPROM Memory

4.11 EXAMPLE 9 - Two-digit LED counter, multiplexing
4.12 EXAMPLE 10 - Using LCD display

413 EXAMPLE 11 - RS232 serial communication

o 4.14 EXAMPLE 12 - Temperature measurement using
DS1820 sensor. Use of 1-wire protocol...
o 4.15 EXAMPLE 13 - Sound generation, sound library...

o 4.16 EXAMPLE 14 - Using graphic LCD display
o 4.17 EXAMPLE 15 - Using touch pand!...

Meisam Fanoody 3
rtmmz3319@yahoo.com

Chapter 1. World of Microcontrollers

The situation we find ourselves today in the field of microcontrollers has its
beginnings in the development of technology of integrated circuits. It enabled us to
store hundreds of thousands of transistors into one chip, which was a precondition for
the manufacture of microprocessors. The first computers were made by adding
external peripherals, such as memory, input/output lines, timers and other circuits, to
it. Further increasing of package density resulted in designing an integrated circuit
which contained both processor and peripherals. Thisis how the first chip containing
a microcomputer later known as the microcontroller was devel oped.

1.1 Introduction

1.2 NUMBERS, NUMBERS, NUMBERS...
1.3 MUST KNOW DETAILS

1.4 PIC MICROCONTROLLERS

1.1 INTRODUCTION

Novices in electronics usualy think that the microcontroller is the same as the
microprocessor. That’s not true. They differ from each other in many ways. The first
and most important difference in favour of the microcontroller is its functionality. In
order that the microprocessor may be used, other components, memory comes first,
must be added to it. Even though it is considered a powerful computing machine, it is
not adjusted to communicating to peripheral environment. In order to enable the
microprocessor to communicate with peripheral environment, special circuits must be
used. Thisis how it was in the beginning and remains the same today.

Meisam Fanoody 4
rtmmz3319@yahoo.com

Cc

Microprocessor

Oscillator

0 - 40MHz

ey

Tirnars

' Ports

On the other hand, the microcontroller is designed to be all of that in one. No other
specialized external components are needed for its application because al necessary
circuits which otherwise belong to peripherals are already built init. It saves time and
space needed to design a device.

ALL THE MICROCONTROLLER CAN DO

In order to make it easier for you to understand the reasons for such a great success of
microcontrollers, we will call your attention for a few minutes to the following
example.

About ten years ago, designing of an electronic device controlling the elevator in a
multistory building was enormously difficult, even for a team of experts. Have you
ever thought about what requirements an ordinary elevator must meet? How to deal
with the situation when two or more people call the elevator at the same time? Which
cal has priority? How to handle security question? Loss of electricity? Failure?
Misuse?...What comes after solving these basic questions is a painstaking process of

Meisam Fanoody 5
rtmmz3319@yahoo.com

Microcontroller

designing appropriate electronics using a large number of specialized chips.
Depending on device complexity, this process can take weeks or months. When
finished, its time to design a printed circuit board and assemble device. A huge
device! It isanother long-lasting and trying work. Finally, when everything is finished
and tested for many times, the crucial moment comes when you concentrate, take a
deep breath and switch the power supply on.

This is usually the point at which the party turns into a real work since electronic
devices almost never starts to operate immediately. Get ready for many sleepless
nights, corrections, improvements... and don’t forget, we are still talking about
running an ordinary elevator.

When your device finally starts to operate perfectly and everybody is satisfied and
you finally get paid for the work you have done, many constructing companies will
become interested in your work. Of course, if you are lucky, another day will bring
you a locking offer from a new investor. However, a new building has four stories
more. Y ou know what it is about? Y ou think you can control destiny? Y ou are going
to make a universal device which can be used in buildings of 4 to 40 stories, a
masterpiece of electronics? All right, even if you manage to make such an electronic
jewel, your investor will wait in front of your door asking for a camerain elevator. Or
for relaxing music in the event of the failure of elevator. Or for two-door elevator.
Anyway, Murphy’s law is inexorable and you will certainly not be able to make an
advantage of all the effort you have made. Unfortunately, everything that has been
said now is true. This is what ‘handling electronics’ really means. No, wait, let us
correct ourself, that is how it was until the first microcontrollers were designed -
small, powerful and cheap microcontrollers. Since the moment their programming
stopped being a science, everything took another direction...

Electronics capable of controlling a small submarine, a crane or the above mentioned
elevator is now built in one single chip. Microcontrollers offer a wide range of
applications and only some of them are normally used. It’s up to you to decide what
you want the microcontroller to do and dump a program containing appropriate
instructions into it. Prior to turning on the device, its operation should be tested by a
simulator. If everything works fine, build the microcontroller into your device. If you
ever need to change, improve or upgrade the program, just do it. Until when? Until
you feel satisfied. That’s all.

Meisam Fanoody 6
rtmmz3319@yahoo.com

Say hello to your family
and relatives for a couple
of days...

...Provide your pet with
food and make enough
sandwiches for you.

st Study device to be run
] by the microcontroller.

Check for available
microcontroller’s
features (number of

- Inputs/outputs, timers, A/D
X converters ete).

Choose those that can fulfill the
requirements of the target device.

Program and 1f possible

build a hardware controlled by
the microcontroller and used
for connecting it to peripheral devices.

Use PC and some of the
high-level programming
languages to write a program
for running the
microcontroller. While
working use the program

for real-environment
simulation. A great thing!

By clicking appropriate push button
convert the complete program into machine
code understandable for the microcontroller. %
Use a simple programmer to write this code
into the microcontroller memory.

It’s time for the microcontroller to start living on its own.
Remove the programmed chip from the programmer and
place it on the target device (built in the meantime),

take a deep breath and turn the power on.

That’s 1t! Enjoy the success and start
thinking of new projects...

Meisam Fanoody
rtmmz3319@yahoo.com

Do you know that all people can be classified into one out of 10 groups- those who
are familiar with binary number system and those who are not familiar with it. You
don’t understand? It means that you still belong to the latter group. If you want to
change your status read the following text describing briefly some of the basic
concepts used further in this book (just to be sure we are on the same page).

1.2 NUMBERS, NUMBERS, NUMBERS...

Mathematics is such a good science! Everything is so logical... The whole universe
can be described with ten digits only. But, does it really have to be like that? Do we
need exactly ten digits? Of course not, it is only a matter of habit. Remember the
lessons from the school. For example, what does the number 764 mean: four units, six
tens and seven hundreds. It’s as simple as that! Could it be described in a more
complicated way? Of course it could: 4 + 60 + 700. Even more complicated? Yes:
4*1 + 6*10 + 7*100. Could this number look more scientific? The answer is yes
again: 4100 + 6*101 + 7*102. What does it actually mean? Why do we use exactly
these numbers: 100, 101 and 102 ? Why is it always about the number 10?7 Because
we use ten different digits (O, 1, 2, ... 8, 9). In other words, we use base-10 number
system, i.e. decimal number system.

Hundreds (the second position in the number)
Tens (the first position in the number)
i Units (the zero position in the number)

[764 =4 + 60 + 700

1 =10"
‘ 10 =10

— 100= 1(¢

764 =41 +6-10+ 7-100

The number 764 represented in three

different ways

| 764=4-10"+6-10" + 7-1(¢

A7

|Ba|3t:- 10 number system |

BINARY NUMBER SYSTEM

What would happen if only two digits are used- 0 and 1? Or if we don’t not know how
to determine whether something is 3 or 5 times greater than something else? Or if we
are restricted when comparing two sizes, i.e. if we can only state that something exists
(1) or does not exist (0)? The answer is ‘nothing special’, we would keep on using
numbers in the same way as we do now, but they would look a bit different. For

Meisam Fanoody 8
rtmmz3319@yahoo.com

example: 11011010. How many pages of a book does the number 11011010 include?
In order to learn that, you just have to follow the same logic as in the previous
example, but in reverse order. Bear in mind that all this is about mathematics with
only two digits- 0 and 1, i.e. base-2 number system (binary number system).

The seventh position in the number

The zero position in the number

Bau;r::-?" number system

11011010= 12"+ 1-2°+ 0-2°+ 1-2° + 1-2° + 0-2* + + 102 7’“

NN

11011010=128 +64 + 0 +16 + 8 + 0 + 2 + 0 = 218

A

[The number in binary system | IThe same number in decimal system

It is obviously the same number represented in two different number systems. The
only difference between these two representations is the number of digits necessary
for writing a number. One digit (2) is used to write the number 2 in decimal system,
whereas two digits (1 and 0) are used to write it in binary system. Do you now agree
that there are 10 groups of people? Welcome to the world of binary arithmetic! Do
you have any ideawhereit is used?

Except for strictly controlled laboratory conditions, the most complicated electronic
circuits cannot accurately determine the difference between two sizes (two voltage
values, for example) if they are too small (lower than severa volts). The reasons are
electrical noises and something called the ‘real working environment’ (unpredictable
changes of power supply voltage, temperature changes, tolerance to values of built-in
components etc.). Imagine a computer which operates upon decimal numbers by
treating them in the following way: 0=0V, 1=5V, 2=10V, 3=15V, 4=20V...9=45V.

Did anybody say batteries?

A far simpler solution is abinary logic where O indicates that there is no voltage and 1
indicates that there is a voltage. It is easier to write O or 1 instead of full sentences
‘there is no voltage’ or ‘there is voltage’, respectively. It is about logic zero (0) and
logic one (1) which electronics perfectly cope with and easily performs all those
endlessly complex mathematical operations. Obvioudly, the electronics we are talking
about applies mathematics in which all the numbers are represented by two digits only
and where it is only important to know whether there is a voltage or not. Of course,
we are talking about digital electronics.

HEXADECIMAL NUMBER SYSTEM

Meisam Fanoody 9
rtmmz3319@yahoo.com

At the very beginning of computer development it was realized that people had many
difficulties in handling binary numbers. For this reason, a new number system, using
16 different symbols was established. It is called hexadecima number system and
consists of the ten digits we are used to (0, 1, 2, 3,... 9) and six letters of alphabet A,
B, C, D, E and F. You probably wonder about the purpose of this seemingly bizarre
combination? Just look how perfectly it fits the story about binary numbers and you

will understand.
<_A |E) -€— The same number in hexadecimal system

8-digit binary number —> 1010 1111

The largest number that can be represented by 4 binary digits is the number 1111. It
corresponds to the number 15 in decimal system, whereas in hexadecimal systemiit is
represented by only one digit F. It is the largest 1-digit number in hexadecimal
system. Do you see how skillfully it is used? The largest number written with eight
binary digits is at the same time the largest 2-digit hexadecimal number. Don’t forget
that computers use 8-digit binary numbers. By chance?

BCD CODE

BCD code is a binary code for decimal numbers only (Binary-Coded Decimal). It is
used to enable electronic circuits to communicate either with peripherals using
decimal number system or within ‘their own world’ using binary system. It consists of
4-digit binary numbers which represent the first ten digits (O, 1, 2, 3 ... 8, 9). Even
though four digits can give in total of 16 possible combinations, the BCD code
normally uses only the first ten.

NUMBER SYSTEM CONVERSION

Binary number system is most commonly used, decima system is most
understandable, while hexadecimal system is somewhere between them. Therefore, it
IS very important to learn how to convert numbers from one number system to
another, i.e. how to turn a sequence of zeros and ones into understandable values.

BINARY TO DECIMAL NUMBER CONVERSION

Digits in a binary number have different values depending on the position they have
in that number. Additionally, each position can contain either 1 or O and its value may
be easily determined by counting its position from the right. To make the conversion
of a binary number to decimal it is necessary to multiply values with the
corresponding digits (0 orl) and add all the results. The magic of binary to decimal
number conversion works...Y ou doubt? Look at the example below:

Meisam Fanoody 10
rtmmz3319@yahoo.com

Binary number | |The same number in decimal system

110=1-22+1-2'+0-2°=6

It should be noted that in order to represent decimal numbers from O to 3, you need to
use only two binary digits. For larger numbers, extra binary digits must be used. Thus,
in order to represent decimal numbers from O to 7 you need three binary digits, for the
numbers from 0 to 15 you need four digits etc. Simply put, the largest binary number
consisting of n digits is obtained when the base 2 israised by n. The result should then
be subtracted by 1. For example, if n=4:

2*-1=16-1=15

Accordingly, by using 4 binary digitsit is possible to represent decimal numbers from
0 to 15, which amountsto 16 different valuesin total.

HEXADECIMAL TO DECIMAL NUMBER CONVERSION

In order to make the conversion of a hexadecimal number to decimal, each
hexadecimal digit should be multiplied with the number 16 raised by its position
value. For example:

A37E (hexadecimal number)

\—14'16“=14'1 = 14
7-16'=7-16 = 112
3-16°=3-256 = 768
10-16° = 10-4096 = 40960
41854 (the same number in decimal system)

HEXADECIMAL TO BINARY NUMBER CONVERSION

It is not necessary to perform any calculations in order to convert hexadecimal
numbers to binary. Hexadecimal digits are simply replaced by appropriate binary
digits. Since the maximum hexadecimal digit is equivalent to the decimal number 15,
we need to use four binary digits to represent one hexadecimal digit. For example:

E4 = 11100100
1T T

E 4

Meisam Fanoody 11
rtmmz3319@yahoo.com

A comparative table below contains the values of numbers 0-255 in three different
number systems. This is probably the easiest way to understand the common logic
applied to all the systems.

DEC. BINARY HEX.
0O 0Oj0Oj0O/O/O|/O(D|O| O
1 00/0/0/0/0jD[1 1
2 0/0/0/0/0/0O(1|0| 2
3 00 0/0/0Oj0O|1]|1] 3
4 0/0o/0j0f0/1|/0|0| 4
5 0/0/0/0/0/1]|0|1]| 5
6 0/0/0|0|0(1(1|0| &
T ojojojOojO(1 (11| T
8 0/0/0|/0|1/0/0|0| B
g o/j0o/j0j0(1|/OjD|1| 9

10 | 0|/0|0/0 /1 /0|10 A
11/0/0[0jO0[1(0[1[1] B
12 0 0/0/0(1|1/0|0| C
13/0(0(0(0[1(1]|0(1] D
14|/ 0/0[(0(0[1(1[1]|0] E
15 0 0/0/0j1 |1 /1|1 F
16 |0 /001|000 /0O| 10
i7/0/0|0|1 /0|00 |1] 11
253 111|111 /0|1| FD
254 (1 (1(1(1[1(1[1/0| FE

255 111|111 |1|1| FF

MARKING NUMBERS

Hexadecimal number system is along with binary and decimal systems considered to
be the most important number system for us. It is easy to make conversion of any
hexadecimal number to binary and it is also easy to remember it. However, these
conversions may cause confusion. For example, what does the sentence ‘It is
necessary to count up 110 products on the assembly line” actually mean? Depending
on whether it is about binary, decimal or hexadecimal system, the result could be 6,
110 or 272 products, respectively! Accordingly, in order to avoid misunderstanding,
different prefixes and suffixes are directly added to the numbers. The prefix $ or Ox as
well as the suffix h marks the numbers in hexadecimal system. For example, the
hexadecimal number 10AF may look as $10AF, Ox10AF or 10AFh. Similarly, binary
numbers usually get the prefix % or Ob. If a number has neither suffix nor prefix it is
considered decimal. Unfortunately, this way of marking numbers is not standardized,
thus depends on concrete application.

BIT

Theory says a bit is the basic unit of information...Let’s forget this for a moment and
take a look at what it is in practice. The answer is- nothing specia- a bit is just a
binary digit. Similar to decimal number system in which digits of a number do not
have the same value (for example digits in the decimal number 444 are the same, but

Meisam Fanoody 12
rtmmz3319@yahoo.com

have different values), the ‘significance’ of bit depends on its position in the binary
number. Since there is no point talking about units, tens etc. in binary numbers, their
digits are referred to as the zero bit (rightmost bit), first bit (second from the right) etc.
In addition, since the binary system uses two digits only (0 and 1), the value of one bit
can be either O or 1.

Don’t be confused if you come across a bit having value 4, 16 or 64. It just means that
its value is represented in decima system. Simply put, we have got so much
accustomed to the usage of decimal numbers that such expressions became common.
It would be correct to say for example, ‘the value of the sixth bit of any binary
number is equivalent to the decimal number 64°. But we are human and old habits die
hard...Besides, how would it sound ‘number one-one-zeroone- zero...”?

BYTE

A byte consists of eight bits grouped together. If abit isadigit, it islogica that bytes
represent numbers. All mathematical operations can be performed upon them, like
upon common decimal numbers. Similar to digits of any number, byte digits do not
have the same significance either. The greatest value has the leftmost bit called the
most significant bit (MSB). The rightmost bit has the least value and is therefore
called the least significant bit (LSB). Since eight zeros and ones of one byte can be
combined in 256 different ways, the largest decimal number which can be represented
by one byte is 255 (one combination represents a zero).

A nibble is referred to as half a byte. Depending on which half of the register we are
talking about (Ieft or right), there are *high’ and ‘low’ nibbles, respectively.

“High nibble” “Low nibble”

e -
L LT A

Byte|Bit 7| Bit 6| Bit 5| Bit 4| Bit 3| Bit 2| Bit 1| Bit 0|

Ti

MSE = Most Significant Bit

LSE = Least Significant Bit

Have you ever wondered what electronics within digital integrated circuits,
microcontrollers or processors look like? What do circuits performing complicated
mathematical operations and making decisions look like? Do you know that their
seemingly complicated schematic comprise only a few different elements called logic
circuits or logic gates?

1.3MUST KNOW DETAILS

The operation of these elements is based on principles established by a British
mathematician George Boole in the middle of the 19th century- even before the first
bulb was invented. Originaly, the main idea was to express logical forms through
algebraic functions. Such thinking was soon transformed into a practical product

Meisam Fanoody 13
rtmmz3319@yahoo.com

which far later evaluated in what today is known as AND, OR and NOT logic circuits.
The principle of their operation is known as Boolean algebra.

LOGIC CIRCUITS

Some of the program instructions give the same results as logic gates. The principle of
their operation will be discussed in the text below.

AND Gate
A
] Output 010 0
B 01 0
1 110 0
111 1

The logic gate ‘AND’ has two or more inputs and one output. Let us presume that the
gate used in this example has only two inputs. A logic one (1) will appear on its
output only if both inputs (A AND B) are driven high (1). Table on the right shows
mutual dependence between inputs and the output.

A [1/1/0/0/1|0/0[1

¥

B |0/1/1]o[1/o/o]o

;CE 30 (1/0/0/1(0/0j0

When used in a program, a logic AND operation is performed by the program
instruction, which will be discussed later. For the time being, it is enough to
remember that logic AND in a program refers to the corresponding bits of two
registers.

OR GATE
A A B Output
Input 0 0 0
01 1
B 110 1
111 1
Meisam Fanoody 14

rtmmz3319@yahoo.com

Similarly, OR gates also have two or more inputs and one output. If the gate has only
two inputs the following applies. Alogic one (1) will appear on its output if either
input (A OR B) is driven high (1). If the OR gate has more than two inputs then the
following applies. Alogic one (1) appears on its output if at least one input is driven
high (2). If al inputs are at logic zero (0), the output will be at logic zero (0) as well.

0/0(1/0/0|1
4
B 0/1/1/0/1/o/o/o

resut [IACIOAOAM

In the program, logic OR operation is performed in the same manner as logic AND
operation.

A 1)1

NOT GATE

The logic gate NOT has only one input and only one output. It operates in an
extremely ssimple way. When logic zero (0) appears on its input, a logic one (1)
appears on its output and vice versa. It means that this gate inverts the signal and is
often called inverter, therefore.

A Output
A OUTPUT
o 0 1

1 0

1/1/0/0/1/0/0|1]

A0 01/1/0/1/1/0

In the program, logic NOT operation is performed upon one byte. The result is a byte
with inverted bits. If byte bits are considered to be a number, the inverted value is
actually a complement thereof. The complement of a number is a value which added
to the number makes it reach the largest 8-digit binary number. In other words, the
sum of an 8-digit number and its complement is aways 255.

EXCLUSIVE OR GATE

Meisam Fanoody 15
rtmmz3319@yahoo.com

Qutput

The EXCLUSIVE OR (XOR) gate is a bit complicated comparing to other gates. It
represents a combination of all of them. A logic one (1) appears on its output only
when its inputs have different logic states.

A 1|1/0/0(1|0/0|1|

A 4

B 01101000

CCETI1 0100001

In the program, this operation is commonly used to compare two bytes. Subtraction
may be used for the same purpose (if the result is O, bytes are equal). Unlike
subtraction, the advantage of this logic operation is that it is not possible to obtain
negative results.

REGISTER

In short, a register or a memory cell is an electronic circuit which can memorize the
state of one byte.

SFR REGISTERS

Meisam Fanoody 16
rtmmz3319@yahoo.com

In addition to registers which do not have any special and predetermined function,
every microcontroller has a number of registers (SFR) whose function is
predetermined by the manufacturer. Their bits are connected (literally) to internal
circuits of the microcontroller such as timers, A/D converter, oscillators and others,
which means that they are directly in command of the operation of these circuits, i.e.
the microcontroller. Imagine eight switches which control the operation of a small
circuit within the microcontroller- Special Function Registers do exactly that.

In other words, the state of register bits is changed from within the program, registers
run small circuits within the microcontroller, these circuits are via microcontroller
pins connected to peripheral electronics which isused for... Well, it’s up to you.

INPUT / OUTPUT PORTS

In order to make the microcontroller useful, it has to be connected to additional
electronics, i.e. peripherals. Each microcontroller has one or more registers (called
ports) connected to the microcontroller pins. Why input/output? Because you can
change a pin function as you wish. For example, suppose you want your device to
turn on/off three signal LEDs and simultaneously monitor the logic state of five
sensors or push buttons. Some of the ports need to be configured so that there are
three outputs (connected to LEDSs) and five inputs (connected to sensors). It is simply
performed by software, which means that a pin function can be changed during
operation.

Meisam Fanoody 17
rtmmz3319@yahoo.com

Micmcontroller

Pins PORT

One of important specifications of input/output (1/0) pins is the maximum current
they can handle. For most microcontrollers, current obtained from one pin is sufficient
to activate an LED or some other low-current device (10-20 mA). The more 1/O pins,
the lower maximum current of one pin. In other words, the maximum current stated in
the data specifications sheet for the microprocessor is shared across all 1/0 ports.

Another important pin function is that it can have pull-up resistors. These resistors
connect pins to the positive power supply voltage and come into effect when the pinis
configured as an input connected to a mechanical switch or a push button. Newer
versions of microcontrollers have pull-up resistors configurable by software.

Each 1/0 port is usually under control of the specialized SFR, which means that each
bit of that register determines the state of the corresponding microcontroller pin. For
example, by writing logic one (1) to a bit of the control register (SFR), the appropriate
port pin is automatically configured as an input and voltage brought to it can be read
as logic 0 or 1. Otherwise, by writing zero to the SFR, the appropriate port pin is
configured as an output. Its voltage (OV or 5V) corresponds to the state of appropriate
port register bit.

MEMORY UNIT

Memory is part of the microcontroller used for data storage. The easiest way to
explain it is to compare it with a filing cabinet with many drawers. Suppose, the
drawers are clearly marked so that their contents can be easily found out by reading
the label on the front of the drawer.

Meisam Fanoody 18
rtmmz3319@yahoo.com

Write/Read

Similarly, each memory address corresponds to one memory location. The contents of
any location can be accessed and read by its addressing. Memory can either be written
to or read from. There are several types of memory within the microcontroller:

READ ONLY MEMORY (ROM)

Read Only Memory (ROM) is used to permanently save the program being executed.
The size of program that can be written depends on the size of this memory. Today’s
microcontrollers commonly use 16-bit addressing, which means that they are able to
address up to 64 Kb of memory, i.e. 65535 locations. As a novice, your program will
rarely exceed the limit of several hundred instructions. There are several types of
ROM.

Masked ROM (MROM)

Masked ROM is a kind of ROM the content of which is programmed by the
manufacturer. The term ‘masked” comes from the manufacturing process, where
regions of the chip are masked off before the process of photolithography. In case of a
large-scale production, the price is very low. Forget it...

OneTime Programmable ROM (OTP ROM)

One time programmable ROM enables you to download a program into it, but, as its
name states, one time only. If an error is detected after downloading, the only thing

you can do is to download the correct program to another chip.

UV Erasable Programmable ROM (UV EPROM)

Meisam Fanoody 19
rtmmz3319@yahoo.com

Both the manufacturing process and characteristics of this memory are completely
identical to OTP ROM. However, the package of the microcontroller with this
memory has a recognizable ‘window’ on its top side. It enables data to be erased
under strong ultraviolet light. After a few minutes it is possible to download a new
program into it.

Installation of this window is complicated, which normally affects the price. From our
point of view, unfortunately-negative...

Flash Memory

This type of memory was invented in the 80s in the laboratories of INTEL and was
represented as the successor to the UV EPROM. Since the content of this memory can
be written and cleared practically an unlimited number of times, microcontrollers with
Flash ROM are ideal for learning, experimentation and small-scale production.
Because of its great popularity, most microcontrollers are manufactured in flash
technology today. So, if you are going to buy a microcontroller, the type to look for is
definitely Flash!

RANDOM ACCESSMEMORY (RAM)

Once the power supply is off the contents of RAM is cleared. It is used for temporary
storing data and intermediate results created and used during the operation of the
microcontroller. For example, if the program performs an addition (of whatever), it is
necessary to have aregister representing what in everyday lifeis called the ‘sum’. For
this reason, one of the registers of RAM is called the ‘sum’ and used for storing
results of addition.

ELECTRICALLY ERASABLE PROGRAMMABLE ROM (EEPROM)

The contents of EEPROM may be changed during operation (similar to RAM), but
remains permanently saved even after the loss of power (similar to ROM).
Accordingly, EEPROM is often used to store values, created during operation, which
must be permanently saved. For example, if you design an electronic lock or an alarm,
it would be great to enable the user to create and enter the password, but it’s useless if
lost every time the power supply goes off. The ideal solution is a microcontroller with
an embedded EEPROM.

INTERRUPT

Meisam Fanoody 20
rtmmz3319@yahoo.com

Most programs use interrupts in their regular execution. The purpose of the
microcontroller is mainly to respond to changes in its surrounding. In other words,
when an event takes place, the microcontroller does something... For example, when
you push a button on a remote controller, the microcontroller will register it and
respond by changing a channel, turn the volume up or down etc. If the microcontroller
spent most of its time endlessly checking afew buttons for hours or days, it would not
be practical at all.

This is why the microcontroller has learnt a trick during its evolution. Instead of
checking each pin or bit constantly, the microcontroller delegates the ‘wait issue’ to a
‘specialist’ which will respond only when something attention worthy happens.

The signal which informs the central processor unit about such an event is called an
INTERRUPT.

CENTRAL PROCESSOR UNIT (CPU)

As its name suggests, this is a unit which monitors and controls all processes within
the microcontroller. It consists of several subunits, of which the most important are:

Instruction Decoder is a part of electronics which decodes program
instructions and runs other circuits on the basis of that. The ‘instruction set’
which is different for each microcontroller family expresses the abilities of
this circuit;

Arithmetical Logical Unit (ALU) performs all mathematical and logical
operations upon data; and

Accumulator is an SFR closely related to the operation of the ALU. It is a
kind of working desk used for storing all data upon which some operation
should be performed (addition, shift/move etc.). It also stores results ready for
use in further processing. One of the SFRs, called a Satus Register (PSW), is
closely related to the accumulator. It shows at any given time the ‘status’ of a
number stored in the accumulator (number is larger or less than zero etc.).
Accumulator is also called working register and is marked as W register or
just W, therefore.

PSW register
Instruction

BUS

Meisam Fanoody 21
rtmmz3319@yahoo.com

A bus consists of 8, 16 or more wires. There are two types of buses: the address bus
and the data bus. The address bus consists of as many lines as necessary for memory
addressing. It is used to transmit address from the CPU to the memory. The data bus
isaswide as the data, in our caseit is 8 bits or wireswide. It is used to connect all the
circuits within the microcontroller.

SERIAL COMMUNICATION

Parallel connection between the microcontroller and peripherals via input/output ports
isthe ideal solution on shorter distances up to several meters. However, in other cases
when it is necessary to establish communication between two devices on longer
distances it is not possible to use parallel connection. Instead, serial communication is
used.

Today, most microcontrollers have built in several different systems for serial
communication as a standard equipment. Which of these systems will be used
depends on many factors of which the most important are:

How many devices the microcontroller has to exchange data with?
How fast the data exchange has to be?

What is the distance between devices?

Isit necessary to send and receive data simultaneously?

One of the most important things concerning serial communication is the Protocol
which should be strictly observed. It is a set of rules which must be applied in order
that devices can correctly interpret data they mutually exchange. Fortunately, the

Meisam Fanoody 22
rtmmz3319@yahoo.com

microcontroller automatically takes care of this, so that the work of the
programmer/user is reduced to simple write (data to be sent) and read (received data).

BAUD RATE

The term baud rate is used to denote the number of bits transferred per second [bps].
Note that it refers to bits, not bytes. It is usually required by the protocol that each
byte is transferred along with several control bits. It means that one byte in serial data
stream may consist of 11 bits. For example, if the baud rate is 300 bps then maximum
37 and minimum 27 bytes may be transferred per second.

The most commonly used serial communication systems are:
I°C (INTER INTEGRATED CIRCUIT)

Inter-integrated circuit is a system for seriadl data exchange between the
microcontrollers and specialized integrated circuits of a new generation. It is used
when the distance between them is short (receiver and transmitter are usually on the
same printed board). Connection is established via two conductors. One is used for
data transfer, the other is used for synchronization (clock signal). As seen in figure
below, one device is always a master. It performs addressing of one slave chip before
communication starts. In this way one microcontroller can communicate with 112
different devices. Baud rate is usually 100 Kb/sec (standard mode) or 10 Kb/sec (slow
baud rate mode). Systems with the baud rate of 3.4 Mb/sec have recently appeared.
The distance between devices which communicate over an 12C bus is limited to
severa meters.

SPI (SERIAL PERIPHERAL INTERFACE BUS)

A seria periphera interface (SPI) bus is a system for serial communication which
uses up to four conductors, commonly three. One conductor is used for data receiving,
one for data sending, one for synchronization and one alternatively for selecting a
device to communicate with. It is a full duplex connection, which means that data is
sent and received simultaneously.

The maximum baud rate is higher than that in the |2C communication system.

Meisam Fanoody 23
rtmmz3319@yahoo.com

UART (UNIVERSAL ASYNCHRONOUS RECEIVER/TRANSMITTER)

This sort of communication is asynchronous, which means that a special line for
transferring clock signal is not used. In some applications, such as radio connection or
infrared waves remote control, this feature is crucial. Since only one communication
line is used, both receiver and transmitter operate at the same predefined rate in order
to maintain necessary synchronization. Thisis a very simple way of transferring data
since it basically represents the conversion of 8-bit data from parallel to serial format.
Baud rate is not high, up to 1 Mbit/sec.

OSCILLATOR

Even pulses generated by the oscillator enable harmonic and synchronous operation
of al circuits within the microcontroller. The oscillator is usually configured so as to
use quartz crystal or ceramic resonator for frequency stability, but it can also operate
as a stand-alone circuit (like RC oscillator). It isimportant to say that instructions are
not executed at the rate imposed by the oscillator itself, but several times slower. It
happens because each instruction is executed in several steps. In some
microcontrollers, the same number of cycles is needed to execute all instructions,
while in others, the number of cycles is different for different instructions.
Accordingly, if the system uses quartz crystal with a frequency of 20 Mhz, the

Meisam Fanoody 24
rtmmz3319@yahoo.com

execution time of an instruction is not 50nS, but 200, 400 or 800 nS, depending on the
type of MCU!

POWER SUPPLY CIRCUIT

There are two things worth attention concerning the microcontroller power supply
circuit:

Brown out is a potentially dangerous condition which occurs at the moment
the microcontroller is being turned off or when the power supply voltage drops
to a minimum due to electric noise. As the microcontroller consists of several
circuits with different operating voltage levels, this state can cause its out-of-
control performance. In order to prevent it, the microcontroller usually has a
built-in circuit for brown out reset which resets the whole electronics as soon
as the microcontroller incurs a state of emergency.

Reset pin is usualy marked as MCLR (Master Clear Reset). It is used for
external reset of the microcontroller by applying alogic zero (0) or one (1) to
it, which depends on the type of the microcontroller. In case the brown out
circuit is not built in, a simple external circuit for brown out reset can be
connected to the MCLR pin.

TIMERS/COUNTERS

The microcontroller oscillator uses quartz crystal for its operation. Even though it is
not the simplest solution, there are many reasons to use it. The frequency of such
oscillator is precisely defined and very stable, so that pulses it generates are always of
the same width, which makes them ideal for time measurement. Such oscillators are
also used in quartz watches. If it is necessary to measure time between two events, it
is sufficient to count up pulses generated by this oscillator. This is exactly what the
timer does.

Meisam Fanoody 25
rtmmz3319@yahoo.com

——»100%

_ |||||||||||—\
' ———Illlllll—@———'

0 -255

aE

Most programs use these miniature electronic ‘stopwatches’. These are commonly 8-
or 16-bit SFRs the contents of which is automatically incremented by each coming
pulse. Once aregister is completely loaded, an interrupt may be generated!

If the timer uses an internal quartz oscillator for its operation then it can be used to
measure time between two events (if the register value is T1 at the moment
measurement starts, and T2 at the moment it terminates, then the elapsed time is equal
to the result of subtraction T2-T1). If registers use pulses coming from external source
then such atimer is turned into a counter.

This is only a simple explanation of the operation itself. It is however more
complicated in practice.

HOW DOESTHE TIMER OPERATE?

In practice, pulses generated by the quartz oscillator are once per each machine cycle,
directly or via a prescaler, brought to the circuit which increments the number stored
in the timer register. If one instruction (one machine cycle) lasts for four quartz
oscillator periods then this number will be incremented a million times per second
(each microsecond) by embedding quartz with the frequency of 4AMHz.

Meisam Fanoody 26
rtmmz3319@yahoo.com

Timer register

4MHz ~ 1MHz - Start /ﬁ Egﬁ:& %Stop

™ —

It is easy to measure short time intervals, up to 256 microseconds, in the way
described above because it is the largest number that one register can store. This
restriction may be easily overcome in several ways such as by using a slower
oscillator, registers with more bits, prescaler or interrupts. The first two solutions have
some weaknesses so it is more recommended to use prescalers or interrupts.

USING A PRESCALER IN TIMER OPERATION

A prescaler is an electronic device used to reduce frequency by a predetermined
factor. In order to generate one pulse on its output, it is necessary to bring 1, 2 , 4 or
more pulses on its input. Most microcontrollers have one or more prescalers built in
and their division rate may be changed from within the program. The prescaler is used
when it is necessary to measure longer periods of time. If one prescaler is shared by
timer and watchdog timer, it cannot be used by both of them simultaneously.

Timer register

AMHz 1MHz 1N Start & @ 24 Stop
0SC.H % t— Prescaler— IIRITN -------vveevveeoe 1g Number B |

Womm L

lapsed time = N x (B-A) [uS]

USING INTERRUPT IN TIMER OPERATION

If the timer register consists of 8 bits, the largest number it can store is 255. Asfor 16-
bit registers it is the number 65.535. If this number is exceeded, the timer will be
automatically reset and counting will start at zero again. This condition is called an

Meisam Fanoody 27
rtmmz3319@yahoo.com

overflow. If enabled from within the program, the overflow can cause an interrupt,
which gives completely new possibilities. For example, the state of registers used for
counting seconds, minutes or days can be changed in an interrupt routine. The whole
process (except for interrupt routine) is automatically performed behind the scenes,
which enables the main circuits of the microcontroller to operate normally.

Timer register

4MHz 1MHz 1IN Start & @& Stop Ve

0SC.H " — Prescaler —» II0IZ200 ---:-1‘-*-1":1"'""{‘!’} V
0-2

HI]}J - Interrupt

Additional register

@& Stop)
| [Number C| e e Lo

W L

lapsed time = N x (256C+B-A) [uS]

This figure illustrates the use of an interrupt in timer operation. Delays of arbitrary
duration, having almost no influence on the main program execution, can be easily
obtained by assigning the prescaler to the timer.

COUNTERS

If the timer receives pulses frm the microcontroller input pin, then it turns into a
counter. Obvioudly, it is the same electronic circuit able to operate in two different
modes. The only difference is that in this case pulses to be counted come over the
microcontroller input pin and their duration (width) is mostly undefined. This is why
they cannot be used for time measurement, but for other purposes such as counting
products on an assembly line, number of axis rotation, passengers etc. (depending on
Sensor in use).

WATCHDOG TIMER

A watchdog timer is atimer connected to a completely separate RC oscillator within
the microcontroller.

If the watchdog timer is enabled, every time it counts up to the maximum value, the
microcontroller reset occurs and the program execution starts from the first
instruction. The point isto prevent this from happening by using a specific command.

Anyway, the whole idea is based on the fact that every program is executed in several
longer or shorter loops. If instructions which reset the watchdog timer are set at the
appropriate program locations, besides commands being regularly executed, then the

Meisam Fanoody 28
rtmmz3319@yahoo.com

operation of the watchdog timer will not affect the program execution. If for any
reason, usually electrical noise in industry, the program counter ‘gets stuck’ at some
memory location from which there is no return, the watchdog timer will not be
cleared, so the register’s value being constantly incremented will reach the maximum
et voila! Reset occurs!

Program

Instruction 1
Instruction 2

100% —] Instruction CLRWDT
lllllll—

ﬂfuﬂ—u

¥ RST o

Instruction CLRWDT

A/D CONVERTER

UM
5
Vraf+ = BV
4 Vref- = OV
3
2
1
0 ' ' ' oxaFF [Mumerical Value]
Meisam Fanoody 29

rtmmz3319@yahoo.com

External signals are usually fundamentally different from those the microcontroller
understands (ones and zeros) and have to be converted therefore into values
understandable for the microcontroller. An analogue to digital converter is an
electronic circuit which converts continuous signals to discrete digital numbers. In
other words, this circuit converts an analogue value into a binary number and passes it
to the CPU for further processing. This module is therefore used for input pin voltage
measurement (analogue value).

The result of measurement is a number (digital value) used and processed later in the
program.

LL L
| ERERE

INTERNAL ARCHITECTURE

All upgraded microcontrollers use one of two basic design models called Harvard and
von-Neumann architecture.

They represent two different ways of exchanging data between CPU and memory.

VON-NEUMANN ARCHITECTURE

Meisam Fanoody 30
rtmmz3319@yahoo.com

Microcontrollers using von-Neumann architecture have only one memory block and
one 8-bit data bus. As al data are exchanged through these 8 lines, the bus is
overloaded and communication is very slow and inefficient. The CPU can either read
an instruction or read/write data from/to the memory. Both cannot occur at the same
time since instructions and data use the same bus. For example, if a program line
reads that RAM memory register called ‘SUM’ should be incremented by one
(instruction: incf SUM), the microcontroller will do the following:

1. Read the part of the program instruction specifying WHAT should be done (in
this case it isthe ‘incf’ instruction for increment).

2. Read the other part of the same instruction specifying upon WHICH data it
should be performed (in this case it isthe ‘SUM’ register).

3. After being incremented, the contents of this register should be written to the
register from which it wasread (‘SUM’ register address).

The same data busis used for all these intermediate operations.

HARVARD ARCHITECTURE
x8 x12 (14, 16)

Microcontrollers using Harvard architecture have two different data buses. One is 8
bits wide and connects CPU to RAM. The other consists of 12, 14 or 16 lines and
connects CPU to ROM. Accordingly, the CPU can read an instruction and access data
memory at the same time. Since all RAM memory registers are 8 bits wide, al data

Meisam Fanoody 31
rtmmz3319@yahoo.com

being exchanged are of the same width. During the process of writin a program, only
8-bit data are considered. In other words, al you can change from within the program
and al you can influence is 8 bits wide. All the programs written for these
microcontrollers will be stored in the microcontroller internal ROM after being
compiled into machine code. However, ROM memory locations do not have 8, but
12, 14 or 16 bits. The rest of bits 4, 6 or 8 represents instruction specifying for the
CPU what to do with the 8-bit data.

The advantages of such design are the following:

All data in the program is one byte (8 bits) wide. As the data bus used for
program reading has 12, 14 or 16 lines, both instruction and data can be read
simultaneously using these spare bits. For this reason, al instructions are
single-cycle instructions, except for the jump instruction which is two-cycle
instruction.

Owing to the fact that the program (ROM) and temporary data (RAM) are
separate, the CPU can execute two instructions at a time. Simply put, while
RAM read or write is in progress (the end of one instruction), the next
program instruction is read through the other bus.

When using microcontrollers with von-Neumann architecture, one never
knows how much memory is to be occupied by the program. Basically, most
program instructions occupy two memory locations (one contains information
on WHAT should be done, whereas the other contains information upon
WHICH datait should be done). However, it is not a hard and fast rule, but the
most common case. In microcontrollers with Harvard architecture, the
program word bus is wider than one byte, which allows each program word to
consist of instruction and data, i.e. one memory location - one program
instruction.

INSTRUCTION SET

movliw 0x3F
movwf TEMP1
btfzc MAX3,7
goto check
btfsc MAX3,6
goto opening
btfzc MRX3,5
goto closure

All instructions understandable to the microcontroller are called together the
Instruction Set. When you write a program in assembly language, you actually specify
instructions in such an order they should be executed. The main restriction here is a
number of available instructions. The manufacturers usually adopt either approach
described below:

Meisam Fanoody 32
rtmmz3319@yahoo.com

RISC (REDUCED INSTRUCTION SET COMPUTER)

In this case, the microcontroller recognizes and executes only basic operations
(addition, subtraction, copying etc.). Other, more complicated operations are
performed by combining them. For example, multiplication is performed by
performing successive addition. It’s the same as if you try to explain to someone,
using only afew different words, how to reach the airport in a new city. However, it’s
not as black as it’s painted. First of all, this language is easy to learn. The
microcontroller is very fast so that it is not possible to see all the arithmetic
‘acrobatics’ it performs. The user can only see the final results. At last, it is not so
difficult to explain where the airport is if you use the right words such as left, right,
kilometers etc.

CISC (COMPLEX INSTRUCTION SET COMPUTER)

CISC is the opposite to RISC! Microcontrollers designed to recognize more than 200
different instructions can do a lot of things at high speed. However, one needs to
understand how to take all that such arich language offers, whichisnot at all easy...

HOW TO MAKE THE RIGHT CHOICE?

Ok, you are the beginner and you have made a decision to go on an adventure of
working with the microcontrollers. Congratulations on your choice! However, it is not
as easy to choose the right microcontroller as it may seem. The problem is not a
limited range of devices, but the opposite!

Before you start to design a device based on the microcontroller, think of the
following: how many input/output lines will |1 need for operation? Should it perform
some other operations than to simply turn relays on/off? Does it need some
specialized module such as serial communication, A/D converter etc.? When you
create a clear picture of what you need, the selection range is considerably reduced
and it’s time to think of price. Are you planning to have several same devices?
Several hundred? A million? Anyway, you get the point.

If you think of all these things for the very first time then everything seems a bit
confusing. For thisreason, go step by step. First of al, select the manufacturer, i.e. the
microcontroller family you can easily get. Study one particular model. Learn as much
as you need, don’t go into details. Solve a specific problem and something incredible
will happen- you will be able to handle any model belonging to that microcontroller
family.

Remember learning to ride a bicycle. After several bruises at the beginning, you were

able to keep balance, then to easily ride any other bicycle. And of course, you will
never forget programming just as you will never forget riding bicycles!

1.4 PIC MICROCONTROLLERS

PIC microcontrollers designed by Microchip Technology are likely the best choice for
beginners. Hereiswhy...

Meisam Fanoody 33
rtmmz3319@yahoo.com

The original name of this microcontroller is PICmicro (Peripheral Interface
Controller), but it is better known as PIC. Its ancestor, called the PIC1650, was
designed in 1975 by General Instruments. It was meant for totally different purposes.
Around ten years later, this circuit was transformed into areal PIC microcontroller by
adding EEPROM memory. Today, Microchip Technology announces the manufacture
of the 5 billionth sample.

If you are interested in learning more about it, just keep on reading.

The main idea with this book is to provide the user with necessary information so that
he is able to use microcontrollers in practice after reading it. In order to avoid
tedious explanations and endless story about the useful features of different
microcontrollers, this book describes the operation of one particular model belonging
to the ‘high middle class’. It is the PIC16F887- powerful enough to be worth attention
and simple enough to be easily presented to everybody. So, the following chapters
describe this microcontroller in detail, but refer to the whole PIC family as well.

cles Resolu S
ROM A . £ A/D tion of Comp 8/16. Aol
. M Pi Fre — bit | M Other
Family [Kbyt Inp A/D ar- :
[byt ns q. Tim Com Outp s
es| uts Conver ators
es] [M es m. uts
ter
HZz]

Base-Line 8 - bit ar chitecture, 12-bit Instruction Word Length
PIC10FXX |0.375 16 -6

X 075 24 8 4-80-28 0-1 1x8 - - -
PIC12FXX 0.75 - 25 - EEPR
X 15 |38 8 4-80-38 0-1 1x8 - - OM
PIC16FXX 0.75 - 25 - 14 EEPR
X 3 134 20 0-38 0-2 1x8 - - OM
44
PICI6HVX 18 vdd =
XX 15 25 - 20 - - - 1x8 - - 15V
20
Mid-Range 8 - bit architecture, 14-bit Instruction World Length
1-2
PIC12FXX (1.75 - 64 - EEPR
X 35 128 8 20 0-410 1 Xx81 - 0-1 OM
X 16
PIC12HV X 1-2
175 64 8 20 0-410 1 Xx81 - 0-1 |-
XX
X 16
USA
14 1-2
PIC16FXX 1.75 - 64 - 0 - RT
X 14 368 | 20 13 8orl1l0 0-2 X81|2C 0-3 -
64 X 16
SPI
PIC16HVX 1.75 - 64 - 14 20 0 - 10 5 2x 8 USA i
XX 35 128 - 12 1 xRT
Meisam Fanoody 34

rtmmz3319@yahoo.com

20 16 12C

P
High-End 8 - bit architecture, 16-bit Instruction Word Length
USB
20
0- 2/CAN
PicisFxx 4 -2° i 4 10 o x8220 .
X 128 |0 5o 48 16 12 -3 x USA
16 RT
12C
P
USB
20
28 0- 2 USA
PCIsFxx 8 -19%* a0 10 - x82RT .
XX 128 |3,.10 48 |16 3 x Ether
0 16 net
12C
P
USA
PIC18FXX 768 |28 10 - 1x8 et
e 8-64- - 64 1010 2 3 x3o 2
3036|44 16 o

All PIC microcontrollers use Harvard architecture, which means that their program
memory is connected to the CPU over more than 8 lines. Depending on the bus width,
there are 12-, 14- and 16-bit microcontrollers. Table above shows the main features of
these three categories.

As seen in the table on the previous page, excepting 16-bit monsters’- PIC 24FXXX
and PIC 24HXXX- al PIC microcontrollers have 8-bit Harvard architecture and
belong to one out of three large groups. Thus, depending on the size of the program
word there are first, second and third microcontroller category, i.e. 12-, 14- or 16-hit
microcontrollers. Having similar 8-bit core, al of them use the same instruction set
and the basic hardware ‘skeleton’ connected to more or less peripheral units.

INSTRUCTION SET

The instruction set for the 16F8XX includes 35 instructions in total. The reason for
such a small number of instructions lies in the RISC architecture. It means that
instructions are well optimized from the aspects of operating speed, simplicity in
architecture and code compactness. The bad thing about RISC architecture is that the
programmer is expected to cope with these instructions. Of course, this is relevant
only if you use assembly language for programming. This book refers to
programming in the higher programming language C, which means that most work
has been done by somebody else. You just have to use relatively ssmple instructions.

INSTRUCTION EXECUTION TIME

Meisam Fanoody 35
rtmmz3319@yahoo.com

All instructions are single-cycle instructions. The only exception may be conditional
branch instructions (if condition is met) or instructions performed upon the program
counter. In both cases, two cycles are required for instruction execution, while the
second cycle is executed as an NOP (No Operation). Single-cycle instructions consist
of four clock cycles. If 4MHz oscillator is used, the nominal time for instruction
execution is 1uS. Asfor jJump instructions, the instruction execution timeis 2uS.

Instruction set of 14-bit PIC microcontrollers:

Instruction Description Operation Flag CLK *
Data Transfer Instructions
MOVLW k MoveconstanttoW k->w 1
MOVWEF f Move W to f W ->f 1
MOVFf,d Movef tod f->d Z 1 1,2
CLRW Clear W 0->W Z 1
CLRFf Clear f 0->f Z 1 2
. . f(7:4),(3:0) ->
SWAPF f,d Swap nibblesin f 1(3:0) (7:4) 1 1,2
Arithmetic-logic I nstructions
C,
ADDLW k Add W and constant W+k ->W DC, 1
Z
C,
ADDWEFf,d Add W and f W+ ->d DC 1 1,2
Z
Subtract W from <,
SUBLW k k-W ->W DC, 1
constant z
C,
SUBWFf,d Subtract W from f f-W->d DC, 1 1,2
Z
ANDLW k Logicd ANDWIth Wi\ anpk->w z 1
with constant
ANDWF f,d Logical ANDWIthWi\y aNpf->d 1z 1 1,2
with f
ANDWF f,d Logical ANDWIthWi\y aNDf->d 1z 1 1,2
with f
|ORLW k Logicdl OR with Wiy op i > w z 1
with constant
|ORWF f d Logicdl OR with Wiy opt > g z 1 12
with f
Logical exclusive OR
XORWFf,d with W with constant W XORk ->W Z 1 1,2
Meisam Fanoody 36

rtmmz3319@yahoo.com

Logica exclusive OR

XORLW k with W with f W XORf->d Z
INCF f,d Increment f by 1 f+1->f Z
DECFf,d Decrement f by 1 f-1->f Z
Rotate left f through
RLFT.d CARRY hbit C
Rotate right f through
RRFT.d CARRY hit =
COMFfd Complement f f->d Z
Bit-oriented I nstructions
BCFf,b Clear bitbinf 0->f(b)
BSFf,b Clear bitbinf 1->f(b)
Program Control Instructions
Test bit b of f. Skip
BTFSCf,b the following Skipif f(b) =0
instruction if clear.
Test bit b of f. Skip
BTFSSf,b the following Skipif f(b) =1
instruction if set.
Decrement f. Skip the
DECF&Z f,d following instruction f-1->dskipifZ=1
if clear.
Increment f. Skip the
INCFSZ f,d following instruction f+1->dskipif Z=0
if set.
GOTOk Go to address k->PC
CALL k Call subroutine PC->TOS, k ->PC
RETURN Return from 105> PC
subroutine
RETLW k Retrn with consanty > w, Tos > Pe
RETFIE Return from interrupt -CI;?ES = PCL >
Other instructions
, TOS > PC, 1 ->
NOP No operation GIE
, 0->WDT, 1->TO, TO,
CLRWDT Clear watchdog timer 1->PD PD
, 0->WDT, 1->TO, TO,
SLEEP Go into sleep mode 0->PD PD
Meisam Fanoody 37

rtmmz3319@yahoo.com

1

1

1,2
1,2

1,2

1,2

1,2

1,2
1,2

1, 2,

1, 2,

*1 When an 1/O register is modified as a function of itself, the value used will be that
value present on the pins themselves.
*2 If the instruction is executed on the TMR register and if d=1, the prescaler will be
cleared.

*3 If the PC is modified or test result is logic one (1), the instruction requires two
cycles.

Meisam Fanoody 38
rtmmz3319@yahoo.com

13

Program Counter 1

Data Bus

8 Level Stack
(13-bit)

Y

RAM
Fie
Registers
up to
368x8

k4

RAQ
RA1
RA2

RA4
RAS

Program 14

Bus RAM Addr ("M} g

A PORTE

RBO/INT
RB1
RB2
RB3
RB4
RBS
RB6
RB7

RCO
RC1
RC2
RC3
RC4
RCS
RC&
RC7

H Direct Addr 7

£
Power-up 3
W Timer ﬁl?

Instruction Oscillator
Decode & =21 | Start-up Timer

Control Power-on
Reset 8

Walchdog

Timer
Brown-out
Reset 2

b

MCLR VDD, Vss

Al
|

PORTC

PORTD

RDO
RD1
RD2
RD3
RD4
RDS5
RD&
RD7

REO
RE1
RE2
RE3
RE4
RES
RE&
RE7

Timing
EQIEP Generation S
OSC1/CLKIN
0SC2/CLKOUT

Internal
RG clock @

DXDDDIXIIXX] DDXIXDIXDIA]X]

PORTE

h'd

Timer1

ft ft ft
¥ ¥ ¥

Synchronous
Serial Port

N

PORTF

RFO
RF1
RF2

CCPs USARTs

— T T I 7

Comparators

RF4
RF5
RF&

Other
Modules

Parallel
Slave Port

ft il
¥

Data EEPROM
up to
256 x 8

LCD Drivers PORTG

RGO
RG1
RG2
RG3
RG4
I RG5
| RG&
|

Voltage
Referance

RG7

Peripheral Modules

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: | General Purpose /0

The architecture of 8-bit PIC microcontrollers. Which of these modules are to belong
to amicrocontroller depends on itstype

Meisam Fanoody 39
rtmmz3319@yahoo.com

Chapter 2: Programming
Microcontrollers

You certainly know that it is not enough just to connect the microcontroller to other
components and turn the power supply on to make it work, don’t you? There is
something else that must be done. The microcontroller needs to be programmed to be
capable of performing anything useful. If you think that it is complicated, then you are
mistaken. The whole procedure is very simple. Just read the following text and you
will change your mind.

2.1 PROGRAMMING LANGUAGES
2.2 THE BASICS OF C PROGRAMMING LANGUAGE
2.3 COMPILER MIKROC PRO FOR PIC

2.1 PROGRAMMING LANGUAGES

Programming

micracontrallar
<mmm
i Bin,
L Program

107100910111 00
“*H(Hy O RIS e 7 100
DO CO 9000
A0T111010404 00
TO11007107 0100
0110011011181

H00I0004N N s Hmx.
TroacTo e e 101000

1100010001001 Meee :?;Elﬂiﬁii
om0 10 Jaetiola AETRCES1
10001 0/od] 101 e |
DR

IEERIEROEEERNEE
1100107510010
LRIl] = R U
1101109210010
1100211 161010

Executive code in binary
and hexadecimal format

Program exacution

The microcontroller executes the program loaded in its Flash memory. This is the so
called executable code comprised of seemingly meaningless sequence of zeros and
ones. It is organized in 12-, 14- or 16-bit wide words, depending on the
microcontroller’s architecture. Every word is considered by the CPU as a command
being executed during the operation of the microcontroller. For practical reasons, asit
is much easier for us to deal with hexadecima number system, the executable code is
often represented as a sequence of hexadecimal numbers called a Hex code. It used to
be written by the programmer. All instructions that the microcontroller can recognize
are together called the Instruction set. As for PIC microcontrollers the programming
words of which are comprised of 14 bits, the instruction set has 35 different
instructionsin total.

Meisam Fanoody 40
rtmmz3319@yahoo.com

Programrming
microcontraller Program

ﬁ- - Py E
—

Lk 11 1EE1103 Assambly language
mamary 16010010211902 |
D3 A 10 E0 04
il o
1 1080
I ietnarn | it ont, f
CPU 100100 FrAing | FIB e enl, w
aCECEEROEN-0E 10100011 mavwfPORTE
1f1joaa 1eaaean TG, 2FCZARAT golo L
100l 161061 210 Fassuzn o
| DABTFOS4!
11001006 101000t | Dacrameant
s w10 TR EIEEEEEECE decl ot f
100G 10 10 Exacuthve code in binery maof et w
|01, N 1101 910 and hexadecimal format mawwl PORTE
1[1/0)1ju1)e{10 100010 goin Loop
1[t/o0oma1]a1 e 0o

Program execulion

As the process of writing executable code was endlessly tiring, the first ‘higher’
programming language called assembly language was created. The truth is that it
made the process of programming more complicated, but on the other hand the
process of writing program stopped being a nightmare. Instructions in assembly
language are represented in the form of meaningful abbreviations, and the process of
their compiling into executable code is left over to a special program on a PC called
compiler. The main advantage of this programming language is its simplicity, i.e.
each program instruction corresponds to one memory location in the microcontroller.
It enables a complete control of what is going on within the chip, thus making this
language commonly used today .

However, programmers have always needed a programming language close to the
language being used in everyday life. As aresult, the higher programming languages
have been created. One of them is C. The main advantageof these languages is
simplicity of program writing. It is no longer possible to know exactly how each
command executes, but it is no longer of interest anyway. In case it is, a sequence
written in assembly language can always be inserted in the program, thus enabling it.

Programming
microcontroller Program

compilation
nl
- - T AR Y

Bin. :
Program 1011001101100 C programming Ianguage
: memary 1001001001100
0011001100904
s “USART o
1110011011104 USART _Init(19200); If Initialize USART (192
CP U 0001011010 oot [FeX
41/800[10/110101 1 101100011 ANSEL = (x04; If Configure ANZ pin as
1100010001000 11000 | 2FCIART TRISA = OxFF: ’ P
100000/101001010 FA3E0021A = .
! DABTFOS41 ANSELH =0; Il Configure AN pin as
1/00/10go/1o[olalh]
. o/og10/11 101001 do{
110001010100110 Executive code in binary temp_res = ADC_Read(2)>> 2; /f Read 10-bit AD
Bt a0 0 and hexadecimal format USART_Write(temp_res); // Send ADC
1010101010010 Delay_ms(1000);
11000/11/8101010 }while (1); Il Endless loop
}
Program execution
Meisam Fanoody 41

rtmmz3319@yahoo.com

Similar to assembly language, a specialized program in a PC called compiler is in
charge of compiling program into machine language. Unlike assembly compilers,
these create an executable code which is not always the shortest possible.

c Co
Program.C - Ms
%

a— 0 Ayroller in reaj N,
E\M"ﬂ" i-ll q’
Program.hex

Figures above give a rough illustration of what is going on during the process of
compiling the program from higher to lower programming language.

Hereis an example of asimple program written in C language:

Meisam Fanoody 42
rtmmz3319@yahoo.com

—

S

) O
IT Il

vold main() |
TRISB = 0; // All port B pins are configured as
// outputs
FORTB = 0b01010101; // Logic state on port B pins
!
Program written in C
; ADDRESS OPCODE ASM
50000 52804 GOTO main
$0004 $ _main:
sTest,c,1 :: void main() {
;Test.c,3 :: TRISB = 0; J/ All port B pins
$0004 $1303 BCF STATUS, RP1
$0005 $1683 BSF STATUS, REO
$0006 $0186 CLRF TRISE, 1
;Test.c,d :: PORTB = 0b01010101; // Logic state
50007 53055 MOVLW 85
$0008 $1283 BCF STATUS, RPF0
50009 50086 MOVWF PORTB
sTest.c,5 :: }
50002 5280 GOTO 3
Compiled Program

:100000000428FF3FFF3FFF3F03138316860155304F
:10001000831286000A28FF3FFF3FFF3FFF3FFF3F5D
:04400E00F22FFFFF8F

:00000001FF

Executable Code of the program (HEX code)

Meisam Fanoody 43
rtmmz3319@yahoo.com

ADVANTAGES OF HIGHER PROGRAMMING LANGUAGES

If you have ever written a program for the microcontroller in assembly language, then
you probably know that the RISC architecture lacks instructions. For example, thereis
no appropriate instruction for multiplying two numbers, but there is also no reason to
be worried about it. Every problem has a solution and this one makes no exception
thanks to mathematics which enable us to perform complex operations by breaking
them into a number of simple ones. Concretely, multiplication can be easly
substituted by successive addition (axb=a+a+a+ ... + a). And herewe are, just at
the beginning of a very long story... Don’t worry as far as the higher programming
languages, such as C, are concerned because somebody has already solved this and
many other similar problems for you. It will do to write a*b.

Program Written in C language

int num_a = 34 i ADDRESS
int num b = 14;
int result: 0000 MOVLW 128
GOTO m S000R .
void main{) | 50050 M- F00LE 51C03
result = num a * num b S005D L0008 BTE'SS G i
1 - - MOVLH cl 5001F 50033 $0CFS
S005E S000C GOTO 5+11 RRF STACE 9, F
BCF 5T BT 50020 50034 50CF3
S5005F S000D MOVE STACl RRF ET.F.E‘BE_S, F
BCF =T 2 50021 50035 51C0a3
L0060 S000E ADDWF BTFSS 5TATUS, €
MOVHEF CZ s0022 50036 3281cC
F‘ 50061 S000F MOVE STAC) GOTD $=26
MOVLE CZ 50023 50037 51C7TD
50062 50010 BTFSC BTFSS ET.F.L'K_J._:I, Q
MOVHF I4 30024 0038 52844
S0063 @ 50011 INCFSZ GOTO 5+12
MOVLEH EI §0025 50039 509FB
S0064 50012 ADDWE COMF STACK_11, F
MOVHE I8 50028 50038 503FA
50065 50013 BTFSC COMF ETF-.CEE_'lI:I, F
MOVTH I 50027 0038 509F3
0066 £0014 INCF STAC) COMF STACK 3, F
MOVHE El S0028 s003c 50974
S0067T 20015 BCE STATI COMF ETRE‘[{_E, F
RETURN GZ 50029 50030 50AFS
50004 50016 BTES3 INCE ETF-.CE‘-'._Q, F
50004 Co S002A FO03E 51303
BCF ST $0017 GOTO $+47 BTFSC S5TATUS, Z
0005 CZ 50028 5003F 50AF9
BCF ST 50018 MOVE STAC) INCF STACK 9%, F
L0006 IX 5002C 50040 51303
s5001% ADDWE BTF3C STATUS, Z
ET 50020 50041 SOAFR
BTFSC INCF STACK 10, F
5002E 50042 51903
BTFEC STATUS, E
50043 50AFB

Same program compiled into assembly code

PREPROCESSOR

A preprocessor is an integral part of the C compiler and its function is to recognize
and execute preprocessor instructions. These are specia instructions which do not

Meisam Fanoody 44
rtmmz3319@yahoo.com

belong to C language, but are a part of software package coming with the compiler.
Each preprocessor command starts with “#°. Prior to program compilation, C compiler
activates the preprocessor which goes through the program in search for these signs. If
any encountered, the preprocessor will simply replace them by another text which,
depending on the type of command, can be a file contents or just a short sequence of
characters. Then, the process of compilation may start. The preprocessor instructions
can be anywhere in the source program, and refer only to the part of the program
following their appearance up to the end of the program.

PREPROCESSOR DIRECTIVE #include

Many programs often repeat the same set of commands for several times. In order to
speed up the process of writing a program, these commands and declarations are
usually grouped in particular files that can easily be included in the program using this
directive. To be more precise, the #include command imports text from another
document, no matter what it is (commands, comments etc.), into the program.

File_name [22IF

8%

I """"'J':“'l]
e i '
i

$include “file name”|

PREPROCESSOR DIRECTIVE # define

The #define command provides macro expansion by replacing identifiers in the
program by their values.

#def i ne synmbol sequence_of characters

Example:
#define Pl 3.14

As the use of any language is not limited to books and magazines only, this
programming language is not closely related to any special type of computers,
processors or operating systems. C language is actually a general-purpose language.
However, exactly this fact can cause some problems during operation as C language
dightly varies depending on its application (this could be compared to different
dialects of one language).

Meisam Fanoody 45
rtmmz3319@yahoo.com

22 THE BASICS OF C PROGRAMMING
LANGUAGE

The main idea of writing program in C language is to break a bigger problem down
into several smaller pieces. Suppose it is necessary to write a program for the
microcontroller that is going to measure temperature and show results on an LCD
display. The process of measuring is performed by a sensor that converts temperature
into voltage. The microcontroller uses its A/D converter to convert this voltage
(analogue value) to a number (digital value) which is then sent to the LCD display via
several conductors. Accordingly, the program is divided in four parts that you have to
go through as per the following order:

125°C
0 .

AID -

™ _ | Bin/Dec
Dec/LCD
' figpasassaas]
LD

23. 30

Activate and set built-in A/D converter;

M easure analogue value;

Calculate temperature; and

Send datain the proper form to LCD display.

el O RN

As seen, the higher programming languages such as C enable you to solve this
problem easily by writing four functions to be executed cyclically and over and over

again.

This book describes a very concrete application of C programming language, i.e. C
language used for the mikroC PRO for PIC compiler. In this case, the compiler is
used for programming PIC microcontrollers. Anyway, this note refers to details on
the programming language that are intentionally left out herein because they have no
practical application, rather than to variations on the standard C language
(basically, there are no differences).

Figure below illustrates the structure of a simple program, pointing out the parts it
consists of.

Meisam Fanoody 46
rtmmz3319@yahoo.com

/* Text between these signs is not compiled into exe-
cutable code and represents a comment, */

[/ This sign is used for short comments
// within one program line

I]
/* Program name: LED demo
38
s * Configuration:
£ MCU: PIC16F887
< Oscillator: HS, 08.0000 Mz
0 Notes: - This example demonstrates change
: of PORTB pins logic state v/
i
: Comments ===
E void main() { .
9
B TRISE = 0; // A1l PORTB ping are configured as outputs
5 PORTB = 0b01010101; // Logic state of port B pins
L
i) !
Type of funcfion
Function name
. I
vold main () {
Command; — Start of function
Command — No parameters in this function
} — End of command
|
End of function
COMMENTS

Comments are part of the program used to clarify the operation of the program or
provide more information about it. Comments are ignored and not compiled into
executable code by the compiler. Simply put, the compiler can recognize special
characters used to designate where comments start and terminate and completely

Meisam Fanoody 47
rtmmz3319@yahoo.com

ignores the text inbetween during compilation. There are two types of such characters.
One designates long comments extending several program lines, while the other
designates short comments taking up a single line. Even though comments cannot
affect the program execution, they are as important as any other part of the program,
and here is why... A written program can always be improved, modified, upgraded,
simplified...It is amost always done. Without comments, trying to understand even
the simplest programs is waste of time.

DATA TYPESIN C LANGUAGE

There are several types of data that can be used in C programming language. A table
below shows the range of values which these data can have when used in their basic
form.

Data Sk
tVpe Description (Number Range of values
yp of bits)
char Character 8 0to 255
int Integer 16 -32768 to 32767
. . +1.17549435082 10% to
float Floating point 32 +6.80564774407 -10%
double DoUbIE precision ., from +1.17549435082 10%® to
floating point +6.80564774407 -10%®

By adding prefix (qualificator) to any data type, the range of its possible values
changes as well as the number of memory bytes needed.

, z
Datatype B?;ﬁx (b (SI;Iuember of Range
bits)

char signed char 8 -128t0 128

unsigned int 16 0 to 65535

short int 8 0to 255
int signed short int 8 -128t0 127

long int 32 0 to 4294967295

signed long int 32 -2147483648 to 2147483647
VARIABLES

Any number changing its value during program operation is called a variable. Simply
put, if the program adds two numbers (numberl and number2), it is necessary to have
a value to represent what we in everyday life call the sum. In this case numberl,
number2 and sum are variables.

Declaring Variables

Meisam Fanoody 48
rtmmz3319@yahoo.com

Variable name can include any of the alphabetical characters A-Z (a-z), the
digits 0-9 and the underscore character ' . The compiler is case sensitive and
differentiates between capital and small letters. Function and variable names
usually contain lower case characters, while constant names contain uppercase
characters.

Variable names must not start with a digit.

Some of the names cannot be used as variable names as aready being used by
the compiler itself. Such names are caled the key words. The mikroC
compiler recognizesin total of 33 such words:

mikroC - keywords

absolute data if return typedef
asm default inline rX typeid

at delete int sfr typename
auto do io short union

bit double long signed unsigned
bool else mutable Sizeof using
break enum namespace static virtual
case explicit operator struct void
catch extern org switch volatile
char false pascal template while
class float private this

code for protected throw

const friend public true

continue goto register try

Pointers

A pointer is a specia type of variable holding the address of character variables. In
other words, the pointer ‘pointsto’ another variable. It is declared as follows:

type_of variabl e *poi nt er _nane;

In order to assign the address of a variable to a pointer, it is necessary to use the '='
character and write variable name preceded by the '&' character. In the following
example, the pointer ‘multiplex’ is declared and assigned the address of the first out
of eight LED displays:

unsigned int *rultiplex; // Declare nanme and type of pointer
mul ti pl ex

mul tiplex = &displayl; /1 Pointer multiplex is assigned the address
of

/1 variable displayl

To change the value of the pointed variable, it is sufficient to write the *' character in
front of its pointer and assign it a new value.

Meisam Fanoody 49
rtmmz3319@yahoo.com

*nmul tiplex = 6; // Variable displayl is assigned the nunber 6

Similarly, in order to read the value of the pointed variable, it is sufficient to write:

temp = *multiplex; // The value of variable displayl is copied to
tenp

Changing individual bits

There are a few ways to change only one bit of a variable. The simplest one is to
specify the register name, bit's position or a name and desired state:

(PORTD. F3 = 0) ; /1 Clear the RD3 bit

(PORTC. RELAY = 1) ; // Set the PORTC output bit (previously naned
RELAY)
/1 RELAY nust be defined as constant

Declarations

Every variable must be declared prior to being used for the first time in the program.
Since variables are stored in RAM memory, it is necessary to reserve space for them
(one, two or more bytes). You know what type of data you write or expect as a result
of an operation, while the compiler does not know that. Don’t forget, the program
deals with variables to which you assigned the names gate, sum, minimum etc. The
compiler recognizes them as registers of RAM memory. Variable types are usually
assigned at the beginning of the program.

unsi gned int gatel; // Declare nane and type of variable gatel

Apart from the name and type, variables are usually assigned initial values at the
beginning of the program as well. It is not a ‘must-do’ step, but a matter of good
habits. In this case, it looks as follows:

unsi gned int gatel; /1 Declare type and nane of the variable
signed int start, sum // Declare type and nanme of other two
vari abl es

gatel = 20; /1 Assign variable gatel an initial value

The process of assigning initial value and declaring type can be performed in one
step:

unsi gned int gatel=20; // Declare type, nanme and val ue of variable

If there are several variables being assigned the same initial value, the process can be
even simplified:

unsi gned i nt gatel=gat e2=gat e3=20;
signed int start=sn¥0;

Type of variable is not accompanied by the ‘+” or ‘> sign by default. For
example, char can be written instead of signed char (variableis asigned byte).
In this case the compiler considers variable positive values.

Meisam Fanoody 50
rtmmz3319@yahoo.com

If you, by any chance, forget to declare variable type, the compiler will
automatically consider it a signed integer. It means that such a variable will
occupy two memory bytes and have valuesin the range of -32768 to +32767.

CONSTANTS

A constant is a number or a character having fixed value that cannot be changed
during program execution. Unlike variables, constants are stored in the flash program
memory of the microcontroller for the purpose of saving valuable space of RAM. The
compiler recognizes them by their name and prefix const.

INTEGER CONSTANTS

Integer constants can be decimal, hexadecimal, octal or binary. The compiler
recognizes their format on the basis of the prefix added. If the number has no prefix, it
is considered decimal by default. The type of a constant is automatically recognized
by its size. In the following example, the constant MINIMUM will be automatically
considered a signed integer and stored within two bytes of Flash memory (16 bits):

Format Prefix Example

Decimal const MAX =100
Hexadecimal Ox or OX const MAX = OxFF

Octal 0 const MAX =016

Binary Ob or OB const MAX =0b11011101

const MNIMUM = -100; // Declare constant M N MUM
FLOATING POINT CONSTANTS

Floating point constants consist of an integer part, a dot, a fractiona part and an
optional e or E followed by a signed integer exponent.

const T_NMAX
const T_MAX

32.60; // Declare temperature T_MAX
3.260E1; // Declare the same constant T_MAX

In both examples, a constant named T_MAX is declared to have the fractional value
32.60. It enables the program to compare the measured temperature to the meaningful
constant instead of numbers representing it.

CHARACTER CONSTANTS (ASCII CHARACTERYS)

A character constant is a character enclosed within single quotation marks. In the
following example, a constant named |_CLASS is declared as A character, while a
constant named |1_CLASSis declared as B character.

const |_CLASS = "A'; [/ Declare constant |_CLASS
const |1 _CLASS = 'B'; // Declare constant |1l _CLASS

Meisam Fanoody 51
rtmmz3319@yahoo.com

When defined this way, the execution of the commands sending the 1_CLASS and
Il_CLASS constants to an LCD display, will cause the characters A and B to be

displayed, respectively.
STRING CONSTANTS

A constant consisting of a sequence of characters is called a string. String constants
are enclosed within double quotation marks.

const Message_ 1
const Message_2
const Message_3

"Press the START button"; // Message 1 for LCD
"Press the RIGHT button"; // Message 2 for LCD
"Press the LEFT button"; // Message 3 for LCD

In this example, sending the Message 1 constant to an LCD display will cause the
message 'press the START button' to be displayed.

ENUMERATED CONSTANTS

Enumerated constants are a specia type of integer constants which make a program
more comprehensive and easier to follow by assigning elements the ordinal numbers.
In the following example, the first element in curly brackets is automatically assigned
the value 0, the second one is assigned the value 1, the third one the value 2 etc.

enum MOTORS {UP, DOWN, LEFT, RIGHT}; // Declare constant MOTORS

On every occurrence of the words 'LEFT', 'RIGHT', 'UP" and 'DOWN' in the program,
the compiler will replace them by the appropriate numbers (0-3). Concretely, if the
port B pins O, 1, 2 and 3 are connected to motors which make something goes up,
down, left and right, the command for running motor ‘RIGHT’ connected to bit 3 of
port B looks as follows:

PORTB.RIGHT = 1; // set the PORTB bit 3 connected to the notor
'R GHT'

OPERATORS, OPERATIONS AND EXPRESSIONS

An operator is a symbol denoting particular arithmetic, logic or some other operation.
There are more than 40 operations available in C language, but at most 10-15 of them
are used in practice. Every operation is performed upon one or more operands which
can be variables or constants. Besides, every operation features priority execution and
associativity aswell.

ARITHMETIC OPERATORS

Arithmetic operators are used in arithmetic operations and always return positive
results. Unlike unary operations being performed upon one operand, binary operations
are performed upon two operands. In other words, two numbers are required to
execute a binary operation. For example: a+b or a/b.

Meisam Fanoody 52
rtmmz3319@yahoo.com

Operator Operation

+ Addition

- Subtraction

* Multiplication
/ Division

% Reminder

ASSIGNMENT OPERATORS
There are two types of assignments in C language:

Simple operators assign values to variables using the common '=' character.
For example: a= 8

Compound assignments are specific to C language and consist of two
characters as shown in the table. An expression can be written in a different
way as well, but this one provides more efficient machine code.

Example
Operator : .

Expression Equivaent
+= a+=8 a=a+8
-= a-=8 a=a-8
= a=8 a=a*8
/= a/=8 a=al/8
%= a%-=8 a=a%38

INCREMENT AND DECREMENT OPERATORS

Increment and decrement by 1 operations are denoted by '++' and '--. These
characters can either precede or follow a variable. In the first case (++x), the x
variable will be first incremented by 1, then used in expression. Otherwise, the
variable will be first used in expression, then incremented by 1. The same applies to
the decrement operation.

Operator Example Description

++a . .
++ Variable"a" isincremented by 1
at++
- ;b Variable"b" isincremented by 1

RELATIONAL OPERATORS

Relational operators are used in comparisons for the purpose of comparing two
variables which can be integers (int) or floating point numbers (float). If an expression

Meisam Fanoody 53
rtmmz3319@yahoo.com

evaluates to true, a 1 is returned. Otherwise, a 0 is returned. This is used in
expressions such as ‘if the expression is true then...’

Operator Meaning Example Truth condition

> is greater than b>a if b isgreater than a

>= isgreater thanor equal to a>=5 If aisgreater than or equal to 5
< Isless than a<b if alslessthan b

<= isless than or equal to a<=b if alslessthan or equal to b
== isequal to a== if alsequal to 6

I= isnot equal to al=b if alsnot equal to b

LOGIC OPERATORS

There are three types of logic operations in C language: logic AND, logic OR and
negation (NOT). For the sake of clearness, logic states in tables below are represented
as logic zero (O=false) and logic one (1=true). Logic operators return true (logic 1) if
the expression evaluates to non-zero, and false (logic 0) if the expression evaluates to
zero. This is very important because logic operations are commonly used upon
expressions, not upon single variables (numbers) in the program. Therefore, logic
operations refer to the truth of the whole expression.

For example: 1 && O isthesameas(true expression) && (fal se expression)

TheresultisO, i.e. - Falsein either case.

Operator Logical AND
Operandl Operand2 |Result

0 0 0
&& 0 1 0
1 0 0
1 1 1

Operator Logical OR
Operandl Operand2 Result

0 0 0
N 0 1 1
1 0 1
1 1 1
Operator Logical NOT
Operandl Result
! 0 1
1 0
Meisam Fanoody 54

rtmmz3319@yahoo.com

BITWISE OPERATORS

Unlike logic operations being performed upon variables, the bitwise operations are
performed upon single bits within operands. Bitwise operators are used to modify the
bits of avariable. They arelisted in the table below:

Operand Meaning Example Result
~ Bitwise complement a=-~b b=5 a=-5
<< Shift left a=b<<2 |b=11110011 a=11001100
>> Shift right a=b>>2 b=11110011 a=00011110
& Bitwise AND c=agb 7 7 I ¢ = 11000000
| Bitwise OR c=alb 27,0l ¢ = 11101111
A I A a = 11100011 __

Bitwise EXOR c=a”b b=11001100 = 00101111

HOW TO USE OPERATORS?

Except for assignment operators, two operators must not be written next to
each other.

X*%d2; // such expression will generate an error

Operators are grouped together using parentheses similar to arithmetic
expressions. The expressions enclosed within parentheses are calculated first.
If necessary, multiple (nested) parentheses can be used.

Each operator hasits priority and associativity as shown in the table.

Priority Operators Associativity

High 0O [->. from left to right
'~ ++ -- +(unary) -(unary) *Pointer &Pointer fromrightto left
* | % from left to right
+ - from left to right
<> from left to right
< <= > >= from left to right
== != from left to right
& from left to right
n from left to right
| from left to right
&& from left to right
'l from right to left
?: from right to left

Meisam Fanoody 55

rtmmz3319@yahoo.com

Low = 4= -=F= /= /=& "= |= <= >= from left to right

DATA TYPE CONVERSION

The main datatypes are put in hierarchical order asfollows:

=== e e e e i e i e i i o i e e

char 4 int 4 long < float 4 double Data Types
Ll | |

Low priority High priority

If two operands of different type are used in an arithmetic operation, the lower
priority operand type is automatically converted into the higher priority operand type.
In expressions free from assignment operation, the result is obtained in the following

way:

If the highest priority operand is of type double, then types of al other
operands in the expression as well as the result are automatically converted
into type double.

If the highest priority operand is of type long, then types of all other operands
in the expression as well as the result are automatically converted into type
long.

If the operands are of long or char type, then types of all other operands in the
expression as well as the result are automatically converted into type int.

Auto conversion is also performed in assignment operations. The result of the
expression right from the assignment operator is always converted into the type of
variable left from the operator. If the result is of higher-ranked type, it is truncated or
rounded in order to match the type of variable. When converting real datainto integer,
numbers following the decimal point are always truncated.

int x; /1 Variable x is declared as integer int

X = 3; /1 Variable x is assigned val ue 3

X += 3.14; // Nunber PI (3.14) is added to variable x by performng
/1 the assignnent operation

/* The result of addition is 6 instead of expected 6.14. To obtain
t he

expected result without truncating the nunbers follow ng the deci nmal
poi nt, comon addition should be perfornmed (x+3.14), . */

CONDITIONAL OPERATORS

A condition is a common ingredient of the program. When met, it is necessary to
perform one out of several operations. In other words 'If the condition is met (...), do
(...). Otherwise, if the condition is not met, do (...)". Conditional operands if-else and
switch are used in conditional operations.

Meisam Fanoody 56
rtmmz3319@yahoo.com

CONDITIONAL OPERATOR if-else

The conditional operator can appear in two forms - as if and if-else operator.
Hereis an example of the if operator:

i f(expression) operation;

If the result of expression enclosed within brackets is not O (true), the operation is
performed and the program proceeds with execution. If the result of expression is 0
(false), the operation is not performed and the program immediately proceeds with
execution.

As mentioned, the other form combines both if and else operators:

i f (expression) operationl el se operation2;

If the result of expression is not O (true), operationl is performed, otherwise
operation2 is performed. After performing either operation, the program proceeds
with execution.

The syntax of the if-else statement is:

i f (expression)
operationl

el se
operation2

If either operationl or operation2 is compound, a group of operations these consist of
must be enclosed within curly brackets. For example:

i f(expression) {
vy

... I/ operationl

o

el se

operation2

The if-else operator can be written using the conditional operator '?:' as in example
below:

(expressionl)? expression2 : expression3

If expressionl is not O (true), the result of the whole expression will be equa to the
result obtained from expression2. Otherwise, if expressionl is O (false), the result of
the whole expression will be equal to the result obtained from expression3.

maximum= (a > b)? a : b // Variable maximumis assigned the val ue of
/1 larger variable (a or b)

Switch OPERATION

Meisam Fanoody 57
rtmmz3319@yahoo.com

Unlike the if-else statement which makes selection between two options in the
program, the switch operator enables you to choose between several operations. The
syntax of the switch statement is:

switch (selector) /1 Selector is of char or int type
{

case constant 1:

operationl /1 Group of operators are executed if
- /1 selector and constantl are equa

br eak;

case constant 2:

operation2 /1 Group of operators are executed if
Ca /1 selector and constant2 are equa

br eak;

defaul t:

expected operation // Goup of operators are executed if no
C /1 constant is equal to selector

br eak;
}

The switch operation is executed in the following way: selector is executed first and
compared to constantl. If match is found, statements in that case block are executed
until the break keyword or the end of the switch operation is encountered. If no match
is found, selector is further compared to constant2 and if match is found, statements
in that case block are executed until the break keyword is encountered and so on. If
the selector doesn’t match any constant, operations following the default operator are
to be executed.

It is also possible to compare an expression with a group of constants. If it matches
any of them, the appropriate operations will be executed:

switch (nunber) // nunber represents one day in a week. It is
/1l necessary to determ ne whether it is a week-

{ /1 day or not.

casel: case2: case3: case4d: case5: LCD nessage = 'Wekday'; break
case6: case7: LCD nessage = 'Wekend'; break

def aul t:

LCD nmessage_1 = ' Choose one day in a week'; break

}

PROGRAM LOOP

It is often necessary to repeat a certain operation for a couple of times in the program.
A set of commands being repeated is called the program loop. How many times it will
be executed, i.e. how long the program will stay in the loop, depends on the
conditions to leave the loop.

While LOOP

The while loop looks as follows:

whi | e(expression){
conmands

Meisam Fanoody 58
rtmmz3319@yahoo.com

}

The commands are executed repeatedly (the program remains in the loop) until the
expression becomes false. If the expression is false on entry to the loop, then the loop
will not be executed and the program will proceed from the end of the while loop.

A specia type of program loop is the endless loop. It is formed if the condition
remains unchanged within the loop. The execution is simple in this case as the result
in brackets is aways true (1=1), which means that the program remans in the same

loop:
whi I e(1){
. Il Expressions enclosed within curly brackets will be
... Il endlessly executed (endl ess |oop).
}
For LOOP

Thefor loop looks as follows:

for(initial_expression; condition_expression; change_expression) {
operations

The execution of such program sequence is similar to the while loop, except that in
this case the process of setting initial value (initialization) is performed within
declaration. The initial_expression setsthe initial variable of the loop, which is further
compared to the condition_expression before entering the loop. Operations within the
loop are executed repeatedly and after each iteration the value of expression is
changed. The iteration continues until the condition_expression becomes false.

for(k=1; k<5; k++) // Increase variable k 5 tines (from1l to 5) and
operation /1 repeat expression operation every tine

Operation is to be performed five times. After that, it will be validated by checking
that the expression k<5 is false (after 5 iterations k=5) and the program will exit the
for loop.

Do-while LOOP

The do-while loop looks as follows:

do
operation
whi I e (check_condition);

In this case, the operation is executed at least once regardless of whether the
condition is true or false as the expression check condition is executed at the end of
the loop. If the result is not O (true), the procedure is repeated. In the following

Meisam Fanoody 59
rtmmz3319@yahoo.com

example, the program remains in do-while loop until the variable a reaches 1E06 (a
million iterations).

a=20; // Set initial value
do
a = atl // Operation in progress

while (a <= 1E06); // Check condition

WRITING CODE IN ASSEMBLY LANGUAGE

Part of ASM
code in program

BSF PORTB,3 —

HOP

BCF PORTE, 3

BSF PORTE, 3

HOP

HOF

NOF

BCF PORTE, 3 >
L 4

- | IO O I
PORTB,3 |
ji:if%l < 6uS

Sometimes the process of writing a program in C language requires parts of the code
to be written in assembly language. This enables complicated parts of the program to
be executed in a precisely defined way for exact period of time. For example, when it
is necessary to have very short pulses (a few microseconds) appearing periodically on
a microcontroller pin. In such and similar cases, the simplest solution is to use
assembly code for the part of the program controlling pul se duration.

One or more assembly instructions are inserted in the program written in C language
using the asm command:

asm

Assenbl y | anguage instructions

Codes written in assembly language can use constants and variables previously
defined in C language. Of course, as the whole program is written in C language, the
rules thereof are applied when declaring these constants and variables.

unsi gned char maxi num = 100; // Declare variabl es: maxi rum = 100

Meisam Fanoody 60
rtmmz3319@yahoo.com

asm
{ I/ Start of assenbly code
MOVF maxi mum W// W= maxi rum = 100

j.)/ End of assenbly code
ARRAYS

A group of variables of the same type is called an array. Elements of an array are
called components, while their type is called the main type. An array is declared by
specifying its name, type and the number of elementsit will comprise:

conponent _type array_nane [nunber_of conmponents];

Such a complicated definition for something so simple, isn’t it? An array can be
thought of as a shorter or longer list of variables of the same type where each of these
is assigned an ordina number (numbering always starts at zero). Such an array is
often called a vector. The figure below shows an array named shelf which consists of
100 elements.

Array " shelf" Elements of array Contents of element
7 shelf[Q] 7

23 shelf[1] 23

34 shelf[2] 34

0 shelf[3] 0

0 shelf[4] 0

12 shelf[5] 12

9 shelf[6] 9

23 shelf [99] 23

In this case, the contents of a variable (an element of the array) represents a number of
products the shelf contains. Elements are accessed by indexing, i.e. by specifying their
ordinal number (index):

shel f[4] = 12; /1 12 itens is ‘'‘placed’ on shelf [4]
temp = shelf [1]; // Variable shelf[1] is copied to
/1 variable tenp

Elements can be assigned contents during array declaration. In the following example,
the array named calendar is declared and each element is assigned specific number of

days:

unsi gned char cal endar [12] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};

TWO-DIMENSIONAL ARRAY

Meisam Fanoody 61
rtmmz3319@yahoo.com

Apart from one-dimensional arrays which could be thought of as a list, there are also
multidimensional arrays in C language. In a few following sentences we are going to
describe only two-dimensional arrays called matrices which can be thought of as
tables. A twodimensional array is declared by specifying data type of the array, the
array name and the size of each dimension. Look at the example below:

conponent _type array_nanme [nunber_of rows] [nunber_of_col ums];

number_of rows and number_of columns represent the number of rows and columns
of atable, respectively.

int Table [3][4]; // Table is defined to have 3 rows and 4 col ums

This array can be represented in the form of atable.

table[0][O] table[0][1] table[0][2] table[0][3]
table[1][O] table[1][1] table[1][2] table[1][3]
table[2][0] table[2][1] table[2][2] table[2][3]

Similar to vectors, the elements of a matrix can be assigned values during array
declaration. In the following example, the elements of the two-dimensional array
Table are assigned values. As seen, this array has two rows and three columns:

int Table[2][3] = {{3,42, 1}, {7,7, 19}};

The matrix above can aso be represented in the form of a table the elements of which
have the following values:

3 42 1
7 7 19
FUNCTIONS

Every program written in C language consists of larger or smaler number of
functions. The main idea is to divide a program into several parts using these
functions in order to solve the actual problem easier. Besides, functions enable us to
use the skills and knowledge of other programmers. For example, if it is necessary to
send a string to an LCD display, it is much easier to use already written part of the
program than to start over.

Functions consist of commands specifying what should be done upon variables. They
can be compared to subroutines. As a rule, it is much better to have a program
consisting of large number of simple functions than of a few large functions. A
function body usually consists of several commands being executed by the order they
are specified.

Every function must be properly declared so as to be properly interpreted during the
process of compilation. Declaration contains the following elements:

Meisam Fanoody 62
rtmmz3319@yahoo.com

Function name

Function body

List of parameters
Declaration of parameters
Type of function result

Thisis how afunction looks like:

type_of result function_name (type argunentl, type argument2,...)

{

Conmmand;
Command,;

Example:

/* Function conputes the result of division of the nunerator nunber
by the denomi nat or
denom The function returns a structure of type div_t. */

div_t div(int nunber, int denom;

Note that a function does not need to have parameters, but must have brackets to be
used for entering them. Otherwise, the compiler would misinterpret the function.

If the function, after being executed, returns no result to the main program or to the
function it is caled by, the program proceeds with execution after encountering a
closing curly bracket. Such functions are used when it is necessary to change the state
of the microcontroller output pins, during data transfer via serial communication,
when writing data on an LCD display etc. The compiler recognizes those functions by
the type of their result specified to be void.

void function_nane (type argunentl, type argunment2,...)

{

Commands;

}
Example:

void interrupt() {
cnt ++ ; /1 Interrupt causes cnt to be incremented by 1
PIRL. TMRLIF = 0; // Reset bit TMRLIF

}

The function can be assigned an arbitrary name. The only exception is the name main
which has a specia purpose. Namely, the program always starts execution with this
function. It means that every program written in C language must contain one
function named 'main’ which does not have to be placed at the beginning of the
program.

If it is necessary that called function returns results after being executed, the return
command, which can be followed by any expression, is used:

Meisam Fanoody 63
rtmmz3319@yahoo.com

type_of result function_nanme (type argunmentl, type argument2,...)

{

Commands;

return expression;

}

If the function contains the return command without being followed by expression,
the function stops its execution when encounters this command and the program
proceeds with execution from the first command following a closing curly bracket.

DECLARATION OF A NEW FUNCTION

Apart from the functions that C language ‘automatically' recognizes, there are also
completely new functions being often used in programs. Each 'non-standard' function
should be declared at the beginning of the program. The function declaration is called
aprototype and looks as follows:

type_of result function_name (formal paraneters)

{

description of formal paraneters
definition and decl aration
operators

Type of functions which do not return a value is void. If the type of result is not
specifically declared in the program, it is considered to be of type int (signed integer).
Parameters written in the function prototype define what is to be done with real
parameters. Prototype function parameters are called FORMAL PARAMETERS. The
following example declares a function which computes the volume of a cylinder.

Example:

const double PI = 3.14159; // Declare constant PI

float volune (float r, float h) // Declare type float for
/1 formal parameters r and h

float v; /1 Declare type of result v
v = Pl*r*r*h; // Declare function vol une
return v;

}

If such calculation needs to be performed later in the program (it can be the volume of
a tank in practice), it is sufficient to define REAL PARAMETERS and call the
function. During the process of compiling, the compiler is to replace formal
parameters by real as shown below:

float radius=5, height=10, tank; // declare type float for

/1 real paraneters radius,

- /1 height and tank

tank = vol une (radi us, height); /1 calculate the volune of tank
/1 by calling the volume function

FUNCTION LIBRARIES

Meisam Fanoody 64
rtmmz3319@yahoo.com

Names of all functions being used in C language are stored in the file called header.
These functions are, depending on their purpose, sorted in smaller files called
libraries. Prior to using any of them in the program, it is necessary to specify the
appropriate header file using the #include command at the beginning of the program.
If the compiler encounters an unknown function during program execution, it will
first look for its declaration in the specified libraries.

STANDARD ANSI C LIBRARIES

The functions of C language were not standardized in the beginning and software
manufacturers modified them according to their needs. But C language became very
popular soon and it was difficult to keep everything under control. It was necessary to
introduce a sort of standard to put things in order. The established standard is called
ANSI C and contains 24 libraries with functions. These libraries are usually provided
with every C compiler as the most frequent operations are performed using them.

<assert. h> <conpl ex. h> <ctype. h>

<errno. h> <fenv. h> <fl oat. h>
<inttypes.h> <iso0646. h> <limts.h>
<l ocal e. h> <mat h. h> <setj np. h>

<signal .h> <stdarg. h> <stdbool.h>
<stdint. h> <stddef.h> <stdio.h>

<stdlib. h> <string.h> <tgmath. h>
<time. h> <wchar. h> <wct ype. h>

Everything you have read so far about programming in C language is just a theory. It
is useful to know, but dont forget that this programming language is not much in
connection with something concrete and tangible. You will experience many problems
with accurate names of registers, their addresses, names of particular control bits
and many others while writing your first program in C language. The bottom line is
that it is not sufficient to be familiar with the theory of C language to make the
microcontroller do something useful.

2.3 COMPILER MIKROC PRO FOR PIC

The first thing you need to write a program for the microcontroller is a PC program
which understands the programming language you use, C in this case, and provides a
window for writing program. Besides, the software must 'know' the architecture of the
microcontroller in use. In this case, you need acompiler for C language.

There is no compiler to be used for only one concrete microcontroller as there is no
compiler to be used for all microcontrollers. I1t’s al about software used to program a
group of similar microcontrollers of one manufacturer. This book gives description of
the mikroC PRO for PIC compiler. As the name suggests, the compiler is intended
for writing programs for PIC microcontrollers in C language. It is provided with all
data on internal architecture of these microcontrollers, operation of particular circuits,
instruction set, names of registers, their accurate addresses, pinouts etc. When you
start up the compiler, the next thing to do isto select a chip from the list and operating
frequency and of course - to write a program in C language.

The installation of mikroC PRO for PIC is similar to the installation of any Windows
program:

Meisam Fanoody 65
rtmmz3319@yahoo.com

8 mikral PRO dor P A0 Setop

8 mikrol PRO dpr FEC 008 Seiop

PRO den P 3009 Selup
B mikrol PR R FIC A0 Setop

alalling
g st Completing the mikrod PRO for PIC

2009 Setup Wizard

bl PR e PR DO b been ivilisled o poun
comgaEsl.

X Shusa e
b ik Firest, b e s virasrd
P s
e " I I
1 i ' mikrol PRO for PIC 2009 Setup =
oi
b [e weank bo irestal FSCFiash Programmer v, 7117

Wizard is in charge of the whole procedure, you should just click options Next, OK,
Next, Next... All in all, the same old procedure except for the last option ‘Do you want
to install PICFLASH v7.11 programmer?'. Why is that? The compiler’s task is to
convert a program written in C language into Hex code. What comes next is to
program the microcontroller. 1t’s the responsibility of hardware and software, not any
software, but PICFLASH v7.11 programmer. Install it! Of course: Next, OK, Next,

Next...

ﬂ FEFLASH with mikralCl w717 Sstup

W T ASH with mikralOl wF.11 Satup

Bl 7k 11 ASH with mikralCll w111 Satup

Completing the PICFLASH with
mikrol GO w711 Setup ‘Wizand

g POCFLASH with redbrel 5T 1L b beeen it e o o
comprar.
3 Click: Pinsish, bo o bhis winard.
|
& 8 mikrol PRO for PIC 2009 Setup
~
O
el o oo waant: b install Lv1SPOCFash Frogramer v.1,017

s 1 &= |

When the ingtallation of this software is complete, you will be prompted for the
installation of another similar program. It is software for programming a special group
of PIC microcontrollers which operate in low consumption mode (3.3 V). Skip it...

The last step - driver installation!

Meisam Fanoody 66

rtmmz3319@yahoo.com

& mikroC FRO for PIC 20095 [

Do weoas wearkt bo Install PICFash divers?

iz lio

Driver is a program which enables the programmer’s software you have just installed
on your PC and hardware to communicate with each other. If you have followed
instructions so far you will definitely need it. Click Yes.

File and Folder Tasks

] Fiaha a new Fokder
i) Publit this Fokder 12 the
Wehi

bl Share e i

Be ff wen Felss Dk bl
oes = £ - ¥ Do [raiies | [T~

PEFE———— ——— il

Diher Plices

i FicFiash mshalkr
) My Docaments
oy Shared Cuuenes
o Hy Computer

N Py Pl Pl

Fie andl Fodder Tasks

2 ke & e Tk
@ Publ i ker t e
Web

nad Shee thes toider

Type of drivers depends on operating system in use. Select the appropriate folder and
start up installation.

mikmalbkkdrondn USE1BF Device [xB6 Plasform) Installer

mikr bk kdromdin LS EF Bavice (kU5 Flsform] Installes

mikral kekiromiks LISETEN Device [l Flatform) Installer

Congrabulations Yo hawse finished
drivers' Instalation.

T chige saae g e blly sty on this podngads

Vi o i corwescl yoan desios o bhis compuler I o desice
. carmswh rouctions planes rmad il

Now you are safe, just keep on clicking Next, OK, Next, Next...

Meisam Fanoody 67
rtmmz3319@yahoo.com

IDE FOR MIKROC PRO FOR PIC

Thisiswhat you get when you start up IDE for mikroC PRO for PIC for the very first

time:
Menu Toolbar Project Manager
i =
Code Explorer — =" B
Routine List ———
#'-“'w" -Jl :::5
ke | ,.,
Project Settings ——J:,, | B - s AL
(main seftings of |~ e ——
the microcontroller) { = ==~ ™ —
Error Window Code Editor Library Editor

Unfortunately, a detailed description of all the options available in this compiler
would take too much of our time, so that we are going to skip it. Instead, we are going
to describe only the process of writing a program in C language, simulator checking

as well as its loading into the microcontroller memory. For more information refer to
help [F1].

PROJECT MANAGER

Meisam Fanoody 68
rtmmz3319@yahoo.com

£ | Project Manager -
*'.:I 1 00 % o9 X b
Sources
] led_biinking.c
He-ader Fies
Bimarms ﬁ Save Proped: Group
Privjesct lervel defiras 1 Clase Projoct Chrl4t
Image Filas X
S Cukpuk Fllas = Add Projedt
Other Fies B Racove Project
1 #Add File To Project. ..
.......... T Remowe File From Project

Build Crk-Fo

25 uE Programmer Fl1

A program written in mikroC compiler is not a separate document, but part of a
project which includes Hex code, assembly code, header and other files. Some of
them are created during the operation of compiler, while some are imported from
other programs. However, the Project Manager Window enables you to handle them
al. It is sufficient to right click any folder and select the option you need for your

project.

CODE EXPLORER

-E Code Explorer |
= i
= Functions
rmain
Glabals
TypeDef

Includes

The Code Explorer window enables you to easily locate functions and procedures
within long programs. For example, if you look for a function used in the program,
just double click its name in this window, and the cursor will be automatically
positioned at appropriate point in the program.

PROJECT SETTINGS

Meisam Fanoody 69
rtmmz3319@yahoo.com

| Project Settings

= ;o Device

Mame: PiGFERT
=g Dscilator

Value: 8.000000 MHz

- Buald/ Debiigger Type

Release ICD Debug

In order to enable the compiler to operate successfully, it is necessary to provide it
with basic information on the microcontroller in use as well as with the information
on what is expected from it after the process of compilation:

Device - When you select the microcontroller, the compiler automatically knows
which definition file, containing all SFR registers for specific MCU, their memory
addresses and similar, to use.

Oscillator - This option is used to select the operating speed of the microcontroller.
On the basis of it, the compiler makes changes in the configuration word. The
operating speed is set so as to enable the microcontroller’s interna oscillator to
operate with selected quartz crystal.

Build type - release After the process of compilation is complete, the compiler has no
influence on the program execution. For the purpose of debugging, a software
simulator can be used.

Build type - ICD debug: When the process of compilation is complete and the
microcontroller is progranmed, the compiler remains connected to the
microcontroller and still can affect its operation. The connection is established via
programmer which is connected to the PC via USB cable. A software making all this
work is called the ICD (In Circuit Debugger). It enables the program to be executed
step by step and provides an access to the current content of all registers of the
microcontroller. Simulation is not carried out, their contents is literally read in true
MCU controlling true device.

CODE EDITOR
A Code Editor is a centra part of the compiler window used for writing a program. A
large number of options used for setting its function and layout can be found in the

Tools/Options menu [F12].

SOFTWARE SIMULATOR

Meisam Fanoody 70
rtmmz3319@yahoo.com

Eun | Took Help
Start Debugger [
® Toggle Bragkpoint 43
Breakpoints Shit+H4
Wshh Window Shft+FE
Y Sopestch

Prior to starting up the ssimulator, select the appropriate mode in the Project Settings
Window (Build type - release) and click the Run /Start Debugger option.

The compiler will be automatically set in simulation mode. As such, it monitors the
state of all register bits. It also enables you to execute the program step by step while
monitoring the operation of the microcontroller on the screen (i.e. smulation of
operation).

A few icons, used only for the operation of this simulator, will be added to the toolbar
when setting the compiler in this mode.

Step Into [F7] —[I—Hun To Cursor [F4]

Step Over [F8] | | Step Out [Shift+F9]

They have the following meanings:

Step Into - Click on this icon executes one program line in which the cursor is
positioned.

Step Over - This command is similar to the previous one. If the cursor is positioned
in the line which calls a program routine than it will be executed first and the program
proceeds with execution at the first next program line. It seems as if one program line
is skipped even though the whole routine is executed. As aresult, the state of registers
change. This command is commonly used when it is necessary to speed up the
execution of long program loops.

Run To Cursor - This command is used to execute a particular part of the program,
i.e. from the last executed line -to the line in which the cursor is placed.

Step out - By clicking thisicon, the program exits routine being currently executed.

Meisam Fanoody 71
rtmmz3319@yahoo.com

x|
; S

a= Add n Add Al o Remove A
Select variable o fist
Sy for varisble by sssembly name:

PS4_bit [

Madre Wah.s Addrass

5 bt 084,

SBOREN_bit [00BE. 4

SO _hit 0 O=0LET A

S5 bk (=008F. 0

SEM_bi a1,

SENDE_bit 0 Ow=0058.3

VP _hit 0094, 7

SFERG 0 =099

SPBRGH o D94

SPEN_hit 0 D00 8.7
+ Epolina D023

R0 _bk 001 85,6

R _bi 0 O=0LB5.?

SROON o O=0LBES

SREN_bit | =085 o
P (a0 Cychem (3,00

The simulator and debugger have the same function to monitor the state of registers
during program execution. The difference is that the simulator executes the program
on the PC, while the debugger uses a true microcontroller. Any change of a pin logic
state is reflected on appropriate register (port). As the Watch Window allows you to
monitor the state of all registersit is easy to check whether a pin is set to zero or one.
In order to activate this window it is necessary to select View/Windows and click the
Watch Values option. Then you can make a list of registers the state of which you
want to monitor.

Stopsatch ®
Cipclas: Tifne:
Currert Counk; (154 7700w
Dielta: 2 1.00 us
Shopwatich 154 77.00
[ResstTozera |
Clock: g MHz

If you want to find out how long it takes for the microcontroller to execute a part of
the program, select the Run/View Stopwatch option. A window as shown in figure
on the right will appear. Do you know how the stopwatch works? Well, it’s as simple
asthat.

COMPILER’STOOLS
This compiler provides special tools which considerably simplify the process of

writing a program. All these tools are available from the Tools menu. In the following
text we are going to give a brief description of all of them.

Meisam Fanoody 72
rtmmz3319@yahoo.com

PICFLASH PROGRAMMER

PICflash programmer is a stand-alone program which can operate independently of
the compiler, i.e. it can be used as a separate program. However, in this case, its
operation is closely related to the operation of the compiler so that it can be activated
from within the compiler itself. If installed, the PIC flash programmer is activated by
selecting Tools/me_Programmer or pressing [F11]. A window that appears contains
options to be used for the process of programming microcontrollers.

Type of the
Code protection microcontroller
Bl mikroLlektranika - PicFLASH [v7.11] with mikrakCD EG /
fle [evien fuffr Windows USB fAbout Hstory
Cardueatin Bk '-:':fm- /
Code Protegt e =
Dscllator 5 : More |T|a_“ 7 Options for pro-
I3 rite .
Wakiehog Tirmir Diatled - ™ W00k - 1FFFh A1) 3 3 gramming and
.) e = Varfy Elark I :
Options for changing S S| Cortd FLASH Pragram Memmary 4 | | checking pro-
Enabie Wrile Enabile Enaee Rz
Config Word (type of et | Enated [| ' |4 gram memary
oscillator, watchdog o e C ¥ e putecion 1 N
. . , 5 Brown Dut Detect 800 Erablad - 0000 - DOFFh Probecied b
timer operation, inter- bt St bores 0006 - O7FFh Proected towd || save :
nal oscillator etc.). — 000K - 0FFFh Fotced — ~ | | Options for
Fal-salie Ok, Mordor Enabled . e -wn'ting hex
ik O - '
Low Voltage Program [issbisd = o code into pro-
In-Circuit Debay D Erabied w s = B
B = Cal. Wosd 7] DT (EEPROH) grammer
Browineoit Rietet 5ol setbo AV = -
|0 Locations | CODE ‘ﬂ
IFFF JFFF FFFF IFFF | Cleai l .
Oopitionn
Progam b emony Soe: 8 E Desice Statu Idie Type : R
DATA Sin' 256 Byles Aukbess: Oh Rt BTN =
Fike He|MIKROC PRO FOR: PTCYEXAMPLESWED: BLTREING]LED BLINKTHG, HEX
Dasvici= PICIEFEET Cpration: Mona

It’s the right time to explain the operation of the programmer. As you know, the
compiler is a software which compile the program written in a higher programming
language into executable code, i.e. Hex code. That’s the code the microcontroller
understands and executes. The programmer, which loads this code into the chip, is
comprised of software and hardware together called - PICflash programmer.
Programmer’s hardware provides all necessary voltage levels and socket for placing
the microcontroller in. Programmer’s software is installed on the PC and is used to
pass on the Hex code to hardware over USB cable. This book provides discussion on
the software only.

USART TERMINAL

Meisam Fanoody 73
rtmmz3319@yahoo.com

e

Settings Communication

Qom Port: o

Baud: FE00 *| Appsnd: 0 CR Send 4 typing

Stop Bits; |One Stop B b LF Send as number

parity: | Nons 3 Clear History

Clnald Marity Fepsive dsts as

= ASCI HEX DEC
Daka bits: | Eight
Commands Disconnacted fram oML
RIS DTR
& off 2 Off
ain On
Copnect
Shatus

Send Racaive CTS e
L L L] L

Lzg Files -
Eead fram: =
¥rite ko ._'fl

¥ gppendto & Cpsate file

The USART terminal is a replacement for the standard Windows Hyper Terminal. It
can be used for checking the operation of the microcontroller which uses USART
communication. Such a microcontroller is built in a device and connected to the
RS232 connector on PC over seria cable. The USART termina window, shown on
the right, contains options for setting serial communication and for displaying
sent/received data.

EEPROM EDITOR

) PE—
& H
i EEPROM Editor “|use Ecprom inproject | tele |
Peuicn; EEPRD* Size: EEFROM Fills EEPROM File
F TR - Byted | Yalisa: BlFF Filn [rosd | | sawe |
EEFROM Data
OE | OF

[Leesy FF FF (FF FF FF FF FF FF FF FF FF FF FF FF FF FF YRR R

(LN FF FF FF PF FF|(FF PP FF PF FF FF PP FF PP FF PP R R R

LSRN FF FF FF | FF FF | FF FF FF FF FF FF FF FF FF | FF FF FPFFFPY R AR FRY

sl FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF bid i diiidibal

LS} FF FF FF FF FF FF FF FF FF FF FF FF FF |FF|FF FF LA adisadasataial

(SR FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF PP B R R

LN FF FF |FF FF FF FF FF FF FF FF FF FF FF FF FF FF BRI R VA EEY

il FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FPER YRR YRR

LSS FF FF FF FF FF FF P FF FF FF FF FF FF FF FF PP B TR R

LS FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF HERR IR R s
EEFROM Edit:

Impist Farmal: Edil Value:

- PROM &

Do C2 AL oAl etD Hew Mor 0w 00000000 [wan |

= Hew Start Address: Qs 0

& £ H

~ Flaat [#] Awtalnc T Byte " word 2 nwaord

) &trimg

If you select the EEPROM Editor option from the Tools menu, a window, as shown
in figure on the right, will appear. This is how the EEPROM memory within the
microcontroller looks like. If you want to change its contents after loading the
program into the microcontroller this is the right place to do it. If a new content is a
data of specific type (char, int or double), then you should select it, enter the value in
the Edit Value field and click Edit. Then click the Save button to save the data as a

Meisam Fanoody 74
rtmmz3319@yahoo.com

document with .hex extension. If the Use EEPROM in Project option is active, the
data will be automatically loaded into the chip during the process of programming.

ASCII CHART

If you need numerical representation of any ASCII character, just select the
appropriate option from the Tools menu and the table, as shown in figure below, will

As seen, the characters representing numbers have curious equivalents. For this
reason, program command for displaying number 7 on an LCD display will not
display anything similar this number. Instead, the equivalent of the command BEL
will be displayed. If you send the same number as a character, you will get the
expected result - the number 7. Accordingly, if you want to display a number without
previously converting it into character, then it is necessary to add the number 48 to
each digit the number consists of.

p q r 5 t u v o oW X] z { | 1 ~ [iEL

- ASCII symboaol

| ——Decimal equivalent

A A A A A A E T E E E £ I 1 I I

B R O O 4 i i B 0 o0 oo ¥ P B —
1 r5|

:] a 4 a k] [t [} - =] [=] i i

E
F

SEVEN SEGMENT EDITOR

A seven segment editor enables you to easily find out which number is necessary to
be set on an output port in order to display a desired symbol. Of course, what goes
without saying is that port pins must be connected to display segments properly. You
just have to place the cursor on any display segment and click it. The number that you
should copy to the program will be shown immediately. That’s all.

Meisam Fanoody 75
rtmmz3319@yahoo.com

LCD CUSTOM CHARACTER

Apart from the standard characters, the microcontroller can also send characters
created on your own to a display. By selecting the LCD custom character tool you
will spare yourself from tedious work on creating functions for sending appropriate
code to a display. Just create a symbol by clicking small squares in the LCD custom
character window, select position and row and click the GENERATE button. The
required code appears in another window. No more clicks are needed. Copy to
Clipboard - Paste...

TLED camtom charactar

Fant - o sl makioBasic mikinl
¥ 5w ool e conet char chacactsc(] & {14,10,19,9,.31,8,14,17);2
™ 5210+ o ine n* B void CustonChsc [char por cow, char pos chac) {
char i}
LCD_ Cond [&4) 2
CGEHAM addrass for (i = 0; <=¥; a44) LOD Che Cpichacmctec(i]}:
LCD_Cral (LCD_RETURN_HOME) »
Char: - x LCP_Che [pos_row, pos_char, 0):
Char data e |7 :

v = il
lood.. | Fileh Ovmal inom

.Jl__. DEERE ? Eopy be Clipbeaed | [Gcee

GRAPHIC LCD BITMAP GENERATOR

This is another irreplaceable tool in the event that the microcontroller you are writing
program for uses graphic LCD display (GLCD). This tool enables you to display any
bitmap easily. In order to take advantage of it, select ToolsGlcd Bitmap Editor and
appropriate window appears. Select type of display to be used and load a bitmap. The
bitmap must be monochromatic and in resolution specified (128 x 64 pixels in this
example). Further procedure is the same as in the example above Copy to Clipboard...

Meisam Fanoody 76
rtmmz3319@yahoo.com

Micrcerirola
i .
Garranon calhods E:OFI"IFI"IDFI cathode E — . !
i ———display number = = E
[T [
S o —]|
Camimin srode: = 1 7]
14 — Common anode = T 0
: H
Deooding Foame: display number
¥ Lecmal
HEX _ Port and LED display connection
— Number format

iroCiektronika Graphic LD Dibmap gener atbor

=]
K500 | 16563 | Hikia3110
i & T iy [ol -
File insched; - rone - i.?'xi: P':Ir.l'\.;f}ﬁ/
Fichrs preview I2irt i | bwe - x o
. losdEMPRchae T

GLOD Size 1 oonkrodsr

{20 123wt {ESTI08)

Tl miroPRSCEAL code
(Tl irdroBRSIC coda
(%) ol coda

e

Femr: .01 - 002005 Srrstern phatus: Win KT e 02

A code generated using tools for controlling LCD and GLCD displays contains
functions of the Lcd library. If you use them in the program, don’t forget to check the

box next to this library in the Library Manager window so as to enable the compiler to
recognize its functions correctly.

LIBRARIES

|

3 @
*

(]

FE85
Softmare_J20
Softmare_SPL
Sufteare_LART

¥
]

SPI_Ethasrat
SPI_led

One of the most useful options of this program is Library Manager and surely
deserves our attention.

Meisam Fanoody 77
rtmmz3319@yahoo.com

It is previousy mentioned that the main advantage of the higher programming
languages such as C is that these enable you to use the knowledge and work of other
people. Function libraries are the best example of it. If you need a function to perform
certain task while writing a program, you just have to look for it within some of the
libraries which are integrated in the compiler and use it. For example, if you need a
function to generate sound on some of the pins, open the Sound library in the Library
Manager window and double click the appropriate function Sound_Play. A detailed
description of this function appears on the screen. Copy it to your program and set
appropriate parameters. If this library is checked, its functions will be automatically
recognized during the process of compiling so that it is not necessary to use the
#include command.

STANDARD ANSI C LIBRARIES

Standard ANSI C libraries includes standard functions of C language:

Library Description

ANSI C Ctype Library 'Mainly used for testing or data conversion

ANSI C Math Library 'Used for floating point mathematical operations

ANSI C Stdlib Library Contains standard library functions

ANSI C String Library 'Used to perform string and memory manipulation operations

MISCELLANEOUSLIBRARIES

Miscellaneous libraries contain some of the general-purpose functions which are not
included in standard ANSI C libraries:

Library Description

Button Library Used for a project development

Conversion Library Used for data type conversion

Sprint Library Used for easy data formatting

PrintOut Library Used for easy data formatting and printing

Time Library Used for time calculations (UNIX time format)

Trigonometry Library \Used for fundamental trigonometry functions implementation
Setjmp Library Used for program jumping

HARDWARE SPECIFIC LIBRARIES

Hardware specific libraries include functions intended to be used for controlling the
operation of various hadware modules:

Library Description

ADC Library Used for A/D converter operation

CAN Library Used for operation with CAN module
Meisam Fanoody 78

rtmmz3319@yahoo.com

CANSPI Library

Compact Flash Library
EEPROM Library

EthernetPl C18FxxJ60
Library

Flash Memory Library

Graphic Lcd Library

|2C Library

Keypad Library

Lcd Library

Manchester Code Library
Multi Media Card Library

One Wire Library

Port Expander Library
PS/2 Library
PWM Library

RS-485 Library

Software 12C Library
Software SPI Library
Software UART Library
Sound Library

SPI Library

SPI Ethernet Library
SPI Graphic Lcd Library

SPI Lcd Library

SPI Lcd8 Library

SPI 6963C Graphic Lcd

Library
UART Library
USB Hid Library

Used for operation with externa CAN module
(MCP2515 or MCP2510)

Used for operation with Compact Flash memory cards
Used for operation with built-in EEPROM memory

Used for operation with built-in Ethernet module

Used for operation with built-in Flash memory

Used for operation with graphic LCD module with
128x64 resolution

Used for operation with built-in serial communication
module [2C

Used for operation with keyboard (4x4 push buttons)
Used for operation with LCD display (2x16 characters)
Used for communication using Manchester code

Used for operation with multimedia MMC flash cards

Used for operation with circuits using One Wire serial
communication

Used for operation with port expander MCP23S17
Used for operation with standard keyboard PS/2
Used for operation with built-in PWM module

Used for operation with modules using RS485 serial
communication

Used for 12C software simulation

Used for SPI software simulation

Used for UART software simulation

Used for audio signal generation

Used for operation with built-in SPI module

Used for SPI communication with ETHERNET module
(ENC28J60)

Used for 4-bit SPI communication with graphic LCD
display

Used for 4-bit SPI communication with LCD display
(2x16 characters)

Used for 8-bit SPI communication with LCD display
Used for SPI communication with graphic LCD display

Used for operation with built-in UART module
Used for operation with built-in USB module

ACCESSING INDIVIDUAL BITS

Meisam Fanoody
rtmmz3319@yahoo.com

79

The mikroC PRO for PIC compiler allows you to access individual bits of 8-bit
variables by their name or position in the byte:

| NTCON. BO 0; /I Clear bit 0 of the | NTCON register
ADCONO. F5 1; // Set bit 5 of the ADCONO register
INTCONNGE = 0; // Cear @obal Interrupt Bit (JE)

SBIT TYPE

The mikroC PRO for PIC compiler has an shit data type which provides access to
registers, SFRs, variables, etc. In order to declare a bit of a variable, it is sufficient to
write:

extern shit Sone_Bit; /1 Sonme_Bit is defined

char MyVar;

shit Some Bit at MyVar.FO; // This is where Sonme_Bit is declared
void main() {

If you declare an sbit variable in a unit so as to point it to a specific bit of SFR
register, it is necessary to use the keyword sfr in declaration, because you are pointing
it to the variable defined as sfr variable:

extern sfr sbhit Abit; // Abit is precisely defined

sbit Abit at PORTB.FO: // Now, Abit is declared
void main() {

BIT TYPE

The mikroC PRO for PIC compiler provides a bit data type that may be used for
variable declarations. It cannot be used for argument lists and function-return values.

bit bf; /1 Valid bit variable
bit *ptr; // Invalid bit variable. There are no pointers to bit
vari abl es

Meisam Fanoody 80
rtmmz3319@yahoo.com

Chapter 3: PIC16F887 Microcontroller

The PIC16F887 is a well known product by Microchip. It features all the components
which modern microcontrollers normally have. For its low price, wide range of
application, high qual-ity and easy availability, it is an ideal solution in applications
such as the control of different processes in industry, machine control devices,
measurement of different values etc. Some of its main features are listed below.

3.1 THE PIC16F887 BASIC FEATURES

3.2 CORE SFRS

3.3INPUT/OUTPUT PORTS

34TIMER TMRO

35TIMER TMR1

3.6 TIMER TMR2

3.7 CCP MODULES

3.8 SERIAL COMMUNICATION MODULES
3.9 ANALOG MODULES

3.10 CLOCK OSCILLATOR

3.11 EEPROM MEMORY

3.12 RESET! BLACK-OUT, BROWN-OUT OR NOISES?

3.1 THE PIC16F887 BASIC FEATURES

RISC architecture
o Only 35instructionsto learn
o All single-cycle instructions except branches
Operating frequency 0-20 MHz
Precision internal oscillator
o Factory calibrated
o Software selectable frequency range of 8SMHz to 31KHz
Power supply voltage 2.0-5.5V
o Consumption: 220uA (2.0V, 4MHz), 11uA (2.0 V, 32 KHz) 50nA
(stand-by mode)
Power-Saving Sleep Mode
Brown-out Reset (BOR) with softwar e control option
35 input/output pins
o High current source/sink for direct LED drive
o software and individually programmable pull-up resistor
o Interrupt-on-Change pin
8K ROM memory in FLASH technology
o Chip can be reprogrammed up to 100.000 times
In-Circuit Serial Programming Option
o Chip can be programmed even embedded in the target device

256 bytes EEPROM memory

o Datacan be written more than 1.000.000 times
368 bytesRAM memory
A/D converter:

o 14-channels

Meisam Fanoody 81
rtmmz3319@yahoo.com

o 10-bit resolution
3 independent timer s/counters
Watch-dog timer
Analogue comparator module with
o Two analogue comparators
o Fixed voltage reference (0.6V)
o Programmable on-chip voltage reference
PWM output steering control
Enhanced USART module
o Supports RS-485, RS-232 and LIN2.0
o Auto-Baud Detect
Master Synchronous Serial Port (M SSP)
o supports SPI and 12C mode

RE3MCLR/Vpp RBTICSPDAT
RAWANOLLPWUIC12INO- RBEICSPCLK
RA1IANA/C12IN1- RBSIAN1ITIG
RAZIANZNref/CVrefiC2IN+ RE4/ANT1
RAJANIVrafs/C1IN+ REJANSPGMICT2IN2-
RATOCKIC1OUT RB2IANS
RASIAN4/SSIC20UT RBAANT0/C12ING-
REO/ANS REO/AN12/INT
RE1IANG Vidd
RE2IANT Vs
vdd RDTIP1D
Vas RDEIP1C
RATIOSCAICLKIN RDSIP1B
RAGIOSC2/CLKOUT RD4
RCOT10SOITICKI RCTIRX/DT
RC1/T10SUCCP2 RCETXICK
RC2IP1AICCP RCS/SDO
RCHSCKISCL RCAISDISDA
ROO RD3
RD4 RD2
Meisam Fanoody 82

rtmmz3319@yahoo.com

1 RCATIOSVCCP2

1 RCETHCH
[RCHSDO

[RC4SDIBSDA
] RCIWSCK/SCL

—J RCZP1AICCP1

— RD3
1 RDZ
1 RD1

[RDO

RCTIRXIDT

ROTIP1D

Vas

Vdd

REWAN1ZINT
REATAMNAO/CY 2IN3-
REZIANE
REJANS/PGMICT 2IN2-

00000000000
THEHTTFS
Qgeggaaga
HE
FHELES
B

g £

: 2

NC
RCOT1DSOMICKI
RABOSCZCLKOUT
RAT/OSC1/CLKIN
Was

vdd

REZIANT

RE1IANE

REDIANS
RAS/ANAISSICIOUT
RAATOCKICIOUT

Oscillator
0 - 20MHz

CEGEL
Oscillator

CCP1, CCP2
PWM

A/D
Converter

Vref
e CCP/PWM

modules

I/O Ports (25mA)
PortB [PortC

T0 T1 T2

(35 instructions)

‘ Interrupts WDT

P wd

PortD ¥ PortE |

Meisam Fanoody
rtmmz3319@yahoo.com

83

Program
Memory 8K

EEPROM (256)

RESET

P Supply,
O s @

PINOUT DESCRIPTION

Most pins of the PIC16F887 microcontroller are multi-functional as seen in figure
above. For example, designator RA3/AN3/Vref+/CLlIN+ for the fifth pin of the
microcontroller indicates that it has the following functions:

RA3 Port A third digital input/output
AN3 Third analog input

Vref+ Positive voltage reference
C1IN+ Comparator C1 positive input

Such pin functionality is very useful as it makes the microcontroller package more
compact without affecting its operation. These various pin functions cannot be used
simultaneously, but can be changed at any point during operation.

The following tables refer to the PDIP 40 microcontroller.

Meisam Fanoody 84
rtmmz3319@yahoo.com

Number

General purpose input Port E

Reset pin. Low logic level on this pin
resets microcontroller.

Vpp Programming voltage
RAQ General purpose /O port A
ANO A/D Channel 0 input
ULPWU | Stand-by mode deactivation input
C12INO- Comparator C1 or C2 negative input
RA1 General purpose /O port A
RA1/AN1/C12IN1- 3 AN A/D Channel 1
C12IN1- Comparator C1 or C2 negative input
RAZ General purpose /O port A
ANZ A/D Channel 2
A/D Negative Voltage Reference

RE3/MCLR/Npp 1 MCLR

RAO/ANO/ULPWU/C12INO- 2

RA2/AN2/Vref-/CVref/C2IN+ 4 Vret- | input
CVref Comparator Voltage Reference
OQutput

C2IN+ Comparator C2 Positive Input

RA3 General purpose /O port A

AN3 A/D Channel 3

Vref+ AJD Positive Voltage Reference Input
C1IN+ Comparator C1 Positive Input

RA4 General purpose /O port A

RA4/TOCKI/C10UT 6 TOCKI Timer TO Clock Input

C10UT Comparator C1 Output

RAS General purpose /O port A

AN4 A/D Channel 4

RA3/AN3/Vref+/C1IN+ 5

RAS/AN4/SS/C20UT 7
S8 SPI module Input (Slave Select)
C20UT = Comparator C2 Output
REO/ANS 8 REO General purpose /O port E
ANS A/D Channel 5
RE1/ANG 9 RE1 General purpose I/O port E
ANG A/D Channel 6
RE2/AN7 10 RE2 General purpose |/O port E
AN7 A/D Channel 7
Vdd 11 + Positive supply
\'ss 12 - Ground (GND)
Meisam Fanoody 85

rtmmz3319@yahoo.com

Number

General purpose I/O port A
RA7/OSC1/CLKIN 13 OSC1 Crystal Oscillator Input
CLKIN External Clock Input
0sC2 Crystal Oscillator Qutput
RAB/OSC2/CLKOUT 14 CLKO Fosc/4 Output
RAG General purpose /O port A
RCO General purpose /O port C
RCO/M10S0O/T1CKI 15 T10S0 | Timer T1 Oscillator Qutput
T1CKI Timer T1 Clock Input
RC1 General purpose /O port C
RC1/T1030/T1CKlI 16 T108SI Timer T1 Oscillator Input
CCP2 CCP1 and PWM1 module /O
RC2 General purpose /O port C
RC2/P1A/CCP1 17 P1A PWM Module Output
CCP1 CCP1 and PWM1 module I/O
RC3 General purpose /O port C

RC3/SCK/SCL 18 SCK MSSP module Clock I/O in SPI mode
SCL MSSP module Clock I/O in I°C mode
RDO 19 RDO General purpose /O port D
RD1 20 RD1 General purpose /O port D
RD2 21 RD2 General purpose /O port D
RD3 22 RD3 General purpose /O port D
RC4 General purpose /O port A
RC4/SDI/SDA 23 SOl MSSP module Data input in SPI mode

SDA MSSP module Data I/O in I°C mode
RC5S General purpose /O port C
SDO MSSP module Data output in SPl mode
RC6 General purpose /O port C
RCB/TX/CK 25 TX USART Asynchronous Output

CK USART Synchronous Clock

RCY General purpose /O port C
RC7/RX/DT 26 RX USART Asynchronous Input

DT USART Synchronous Data

RC5/SDO 24

Meisam Fanoody 86
rtmmz3319@yahoo.com

L)y Description
DIP 40 P

General purpose /O port D
RD5 General purpose /O port D

RD5/P1B 28
P1B PWM Output
RDG/P1C 29 RD6 General purpose /O port D
P1C PWM Output
RD7/P1D 30 RD7 General purpose /O port D
P1D PWM Output
\ss 31 - Ground (GND)
Vdd 32 + Positive Supply
RBO General purpose I/O port B
RBO/AN12/INT 33 AN12 A/D Channel 12
INT External Interrupt
RB1 General purpose /O port B
RB1/AN10/C12INT3- 34 AN10 A/D Channel 10
C12INT3- Comparator C1 or C2 Negative Input
RB2/ANS 35 RB2 General purpose I/O port B
ANS8 A/D Channel 8
RB3 General purpose /O port B
RB3/ANS/PGM/C12IN2- 36 AND | A/D Ghannel 9 -
PGM Programming enable pin
C12IN2- Comparator C1 or C2 Negative Input
RBA/ANT1 37 RB4 General purpose /O port B

AN11 A/D Channel 11
RB5 General purpose /O port B
RBS/AN13/T1G 34 AN13 A/D Channel 13
TG Timer T1 External Input
RB6 General purpose /O port B
ICSPCLK Serial programming Clock
RB7 General purpose /O port B

RB6/ICSPCLK 34

RB7/ICSPDAT 40 i ,
ICSPDAT Programming enable pin

CENTRAL PROCESSOR UNIT (CPU)

We are not going to bore you with the operation of the CPU at this stage. However,
we will just state that the CPU is manufactured with RISC technology as it is an
important factor when deciding which microcontroller to use.

RISC stands for Reduced Instruction Set Computer, which gives the PIC16F877 two
great advantages:

The CPU only recognizes 35 simple instructions. Just to mention that in order
to program other microcontrollers in assembly language it is necessary to
know more than 200 instructions by heart.

The execution time is the same for amost all instructions, and lasts for 4 clock
cycles. The oscillator frequency is stabilized by a quartz crystal. The execution

Meisam Fanoody 87
rtmmz3319@yahoo.com

time of jump and branch instructions is 2 clock cycles. It means that if the
microcontroller’s operating speed is 20MHz, the execution time of each
instruction will be 200nS, i.e. the program will execute 5 million instructions
per second!

L

Temporary Data E:/\

(RAM memory) _ C:l ’\:3 ROM memory

IR

Oscillator, timers, counters...

MEMORY

The PIC16F887 has three types of memory ROM, RAM and EEPROM. All of them
will be separately discussed since each has specific functions, features and
organization.

ROM MEMORY

ROM memory is used to permanently save the program being executed. Thisiswhy it
is often called ‘program memory’. The PIC16F887 has 8Kb of ROM (in total of 8192
locations). Since the ROM memory is made with FLASH technology, its contents can
be changed by providing a special programming voltage (13V).

However, it is not necessary to explain it in detail as being automatically performed
by means of a special program on the PC and a simple electronic device called the
programmer.

Meisam Fanoody 88
rtmmz3319@yahoo.com

Writing program
in assembly language,
(simulator tool), Copy program
compiling to to ROM Memory

machine code
HH"—».
.a-*'/}

EEPROM MEMORY

Similar to program memory, the contents of EEPROM is permanently saved, even
when the power goes off. However, unlike ROM, the contents of EEPROM can be
changed during the operation of the microcontroller. This is why this memory (256
locations) is perfect for permanently saving some of the results created and used
during the operation.

RAM MEMORY

Thisis the third and the most complex part of microcontroller memory. In this case, it
consists of two parts: general-purpose registers and special-function registers (SFR).
All these registers are divided in four memory banks to be explained later in the
chapter.

Even though both groups of registers are cleared when power goes off and even
though they are manufactured in the same manner and act in a similar way, their
functions do not have many things in common.

Meisam Fanoody 89
rtmmz3319@yahoo.com

=

GENERAL-PURPOSE REGISTERS

General-purpose registers are used for storing temporary data and results created
during operation. For example, if the program performs counting (products on the
assembly line), it is necessary to have aregister which stands for what we in everyday
life call ‘sum’. Since the microcontroller is not creative at al, it is necessary to
specify the address of some general purpose register and assign it that function. A
simple program to increment the value of this register by 1, after each product passes
through a sensor, should be created.

Now the microcontroller can execute the program as it knows what and where the
sum to be incremented is. Similarly, each program variable must be preassigned some
of the general- purpose registers.

SPECIAL FUNCTION REGISTERS (SFRS)

Meisam Fanoody 90
rtmmz3319@yahoo.com

Specia-function registers are aso RAM memory locations, but unlike general-
purpose registers, their purpose is predetermined during manufacturing process and
cannot be changed. Since their bits are connected to particular circuits on the chip
(A/D converter, serial communication module, etc.), any change of their contents
directly affects the operation of the microcontroller or some of its circuits. For
example, the ADCONO register controls the operation of A/D converter. By changing
its bits it is determined which port pin is to be configured as converter input, the
moment conversion isto start as well as the speed of conversion.

Another feature of these memory locations is that they have their names (both
registers and their bits), which considerably simplifies the process of writing a
program. Since high-level programming languages can use the list of all registers with
their exact addresses, it is enough to specify the name of aregister in order to read or
change its contents.

RAM MEMORY BANKS

The RAM memory is partitioned into four banks. Prior to accessing any register
during program writing (in order to read or change its contents), it is necessary to
select the bank which contains that register. Two bits of the STATUS register are
used for bank selection to be discussed later. In order to ssimplify the operation, the
most commonly used SFRs have the same address in all banks, which enables them to
be easily accessed.

Meisam Fanoody 91

rtmmz3319@yahoo.com

Addr. Name Addr.
00h INDF 80h
01h TMRO 81h
02h PCL 82h
03h STATUS 83h
04h FSR 84h
05h PORTA 85h
06h PORTB 86h
07h PORTC &7h
08h PORTD 88h
09h PORTE 89h
0Ah PCLATH 8Ah
0Bh INTCON 8Bh
OCh PIR1 8Ch
0Dh PIR2 8Dh
OEh TMRIL 8Eh
OFh TMR1H 8Fh
10h T1CON 90h
11h TMR2 91h
12h T2CON 92h
13h SSPBUF 93h
14h SSPCON 94h
15h CCPR1L 95h
16h CCPR1H 96h
17h | CCP1CON 97h
18h RCSTA 98h
19h TXREG 99h
1Ah RCREG 9Ah
1Bh CCPR2ZL 9Bh
1Ch CCPR2H 9Ch
1Dh | CCP2CON 9Dh
1Eh ADRESH 9Eh
1Fh ADCONOD 9Fh
20h Alh

General

Purpose

Registers
7Fn | 96 bytes FFh

Bank 0

Name

INDF

OPTION_REG

PCL

STATUS

FSR

TRISA

TRISB

TRISC

TRISD

TRISE

PCLATH

INTCON

PIE1

PIEZ2

PCON

OSCCON

OSCTUNE

SSPCON2

PR2

SSPADD

SSPSTAT

WPUB

IOCB

VRCON

TXSTA

SPBRG

SPBRGH

PWM1CON

ECCPAS

PSTRCON

ADRESL

ADCON1

General
Purpose
Registers

80 bytes

Bank 1

Addr.

100h
101h
102h
103h
104h
105h
106h
107h
108h
108h
10Ah
10Bh
10Ch
10Dh
10Eh
10Fh
110h

17Fh

Name

INDF

TMRO

PCL

STATUS

FSR

WDTCON

PORTE

CM1CONOD

CM2CONOD

CM2CON1

PCLATH

INTCON

EEDAT

EEADR

EEDATH

EEADRH

General
Purpose
Registers

96 bytes

Bank 2

Addr.

180h
181h
182h
183h
184h
185h
186h
187h
188h
189h
18Ah
18Bh
18Ch
18Dh
18Eh
18Fh
180h

1EFh |

Name
INDF

OPTION_REG

PCL

STATUS

FSR

SRCON

TRISE

BAUDCTL
ANSEL

ANSELH

PCLATH

INTCON

EECON1

EECONZ

Mot Used

Not Used

General
Purpose
Registers

96 bytes

Bank 3

Handling banks may be difficult only if you write a program in assembly language.
When using higher programming languages such as C and compilers such as mikroC
PRO for PIC, al you have to do is to specify the register name. On the basis of that,
the compiler selects necessary bank and appropriate instructions used for bank
selection will be built in the code during the process of compilation. Y ou have been
using only assembly language so far and this is the first time you use the C compiler,
haven’t you? Isn’t this a wonderful news?

Meisam Fanoody

rtmmz3319@yahoo.com

92

SFRs bank 0

Address | Name Bit7 | Bit6 | Bit5 | Bit4 | Bit3 Bit2 Bit1 Bit0
00h INDF Indirect register
01h TMRO |Timer TO Register
02h PCL Least Significant Byte of Program Counter
osh | sTATUS | IRP | RP1 | RPO TO PD z DC C
O4h FSR Indirect Data Memory Address Pointer
0sh | PORTA RAT7 RAG RAS RA4 RA3 RA2 RA1 RAD
06h | PORTB RE7 RB6 RBE5 RB4 RB3 RB2 RB1 RBO
07h | PORTC RC7 RC6 RC5 RC4 RC3 RC2 RC1 RCO
08h | PORTD RD7 RD6 RD5 RD4 RD3 RD2 RD1 RDO
0%h | PORTE - - - - RE3 RE2 RE1 RED
AR PCLATH - - - Upper 5 bits of Program Counter
OBh | INTCON | GIE PEIE TOIE INTE RBIE TOIF INTF RBIF
0Ch PIR1 - ADIF RCIF TXIF SSPIF | CCPIIF | TMR2IF | TMRI1IF
0Dh PIR2 OSFIF C2IF C1IF EEIF BCLIF | ULPWUIF - CCP2IF
0Eh TMRE1L |Least Significant Byte of the 16-bit Timer TMRO
OFh TMR1H | Most Significant Byte of the 16-bit Timer TMRO
10h | TICON | T1GINV | TMR1GE | T1CKPS1 | TICKPS0 | TIOSCEN | T1SYNC | TMR1CS | TMR1ON
11h TMR2 |Timer T2 Register
12h | T2CcON - |TouTtPs3| TouTPs2 | TOUTPS1 | TOUTPSO | TMR20N | T2CKPS1 | T2CKPSD
13h SSPBUF |Synchronous Serial Port Receive BufferTransmit Register
14h | ssPcon | wcoL | ssPov | ssPEN | ckp | ssPm3 | ssPmz | ssPm1 | ssPMmo
15h CCPRI1L |Capture/ComparePWM Register 1 Low Byte (LSB)
16h CCPR1H |Capture/ComparePWM Register 1 High Byte (LSB)
i7h |CCPICON| P1iM1 PIMO | DC1B1 DC1BD | CCP1M3 | CCPiM2 | CCP1M1 | CCP1MO
18h RCSTA | SPEN RX9 SREN CREN | ADDEN | FERR | OERR RX3D
18h TXREG |EUSART Transmit Data Register
1Ah RCREG |EUSART Receive Data Register
1Bh CCPRZL |Capture/Compare PWM Register 1 Low Byte (LSE)
1Ch CCPR2H |Capture/Compare PWM Register 1 High Byte (LSE)
1oh |ccpecon| - | - | pcze1 | pczeo | ccpama | copzmz | copami | copamo
1Eh ADRESH |A/D Result Register High Byte
1Fh | ADCONO | ADCS1 | ADCso | cHsa | cHsz | cHs1 | cHSo |GO/DONE| ADON

Meisam Fanoody 93

rtmmz3319@yahoo.com

SFRs bank 1

Address [Name Btz | Bit6 | Bits | B4 | B3 Bit2 Bit1 Bit0
80h INDF Indirect Register
8th |oPTION REG| RBPU | INTEDG | Tocs | Tose | psa ps2 | ps1 | pso
82h PCL Least Significant Byte of Program Counter
83h STATUS IRF | RP1 | RPO TO | PD z DC C
84h FSR Indirect Data Memory Address Pointer
B5h TRISA TRISA7 | TRISA6 | TRISA5 | TRISA4 | TRISA3 | TRISAZ | TRISA1 | TRISAO
86h TRISB TRISB7 | TRISB6 | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISBO
87h TRISC TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISCO
88h TRISD TRISD7 | TRISD6 | TRISD5 | TRISD4 | TRISD3 | TRISD2 | TRISD1 | TRISDO
8h TRISE - - - - TRISE3 | TRISE2 | TRISE1 | TRISED
8Ah PCLATH - - - Upper 5 bits of the Ptogram Counter
8Bh INTCON GIE PEIE TOIE INTE RBIE TOIF INTF | RBIF
8Ch PIE1 - ADIE RCIE TXIE | SSPIE | CCP1IE | TMRZIE | TMRIIE
8Dh PIE2 OSFIE C2IE C1IE EEIE | BCLEE |ULPWUIE| - CCP2IE
8Eh PCON - - ULPWUE | SBOREN - - POR BOR
8Fh OSCCON - IRCF2 | IRCF1 IRCFO | OSTS HTS LTS SCS
90h | OSCTUNE - - - TUN4 | TUN3 | TUN2 | TUN1 | TUND
91h | SSPCONZ | GCEN |ACKSTAT | ACKDT | ACKEN | RCEN PEN RSEN | SEN
92h PR2 Timer T2 Period Register
93h SSPADD Synchronous Serial Port {I* C mode) Address Register
93h SSPMSK MSK7 MSKE MSKs | MSk4 | MSK3 | Msk2 | Msk1 | mMsko
94h SSPSTAT SMP CKE DIA P S RAW UA BF
95h WPUB WPUB7 | WPUB6 | WPUBS | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUBO
96h IOCB IOCB7 | lOCB6 | I0CB5 | IOCB4 | 10CB3 | I10CB2 | 10CB1 | I0CBO
97h VRCON VREN | VROE VRR VRSS VR3 VR2 VR1 VRO
98h TXSTA CSRC TX9 TXEN SYNC | SENDB | BRGH | TRMT | TX9D
9gh SPBRG BRG7 BRG6 BRGS | BRG4 | BRG3 | BRGZ | BRG1 | BRGD
9Ah SPBRGH BRG15 | BRG14 | BRG13 | BRG12 | BRG11 | BRG10 | BRGY | BRGB
g8h | PWM1CON | PRSEN | PDCs PDC5 Ppoc4 | Pbca | Pobcz | pobc1 | Poco
9Ch ECCPAS | ECCPASE| ECCPASZ | ECCPAS1 | ECCPASD | PSSAC1 | PSSACD |PSSBD1 |PSSBDD
9Dh | PSTRCON - - - STRSYNC| STRD | STRC | STRB | STRA
9Eh ADRESL A/D Result Register Low Byte
9Fh ADCON1 ADFM - | vere1 | vereo - - - -

Meisam Fanoody
rtmmz3319@yahoo.com

94

SFRs bank 2

Meisam Fanoody
rtmmz3319@yahoo.com

Address | Name Bit7 Bt6 | Bit5 | Bit4 | B3 Bit2 Bit1 Bit0
100h INDF Indirect register
101h TMRD Timer TO Register
102h PCL Least Significant Byte of the Program Counter
103h STATUS IRP RP1 RPO TO PD z DC c
104h FSR Indirect Data Memory Address Pointer
105h WDTCON - - - WDTPS3 WDTPS2 WDTPS1 WDTPS0 SWDTEN
106h PORTE RBT RB& RB5 RB4 RB3 RB2 RB1 RBO
107h | CM1CONO C10N | c1ouT C10E C1POL - C1R C1CH1 C1CHO
108h | CM2CONO C20M J C20UT C20E C2POL - C2R C2CH1 C2CHO
109h | CMZCON1T | MC10UT | MC20UT | C1RSEL C2RSEL - - T1GSS C28YNC
104R PCLATH - - - Upper 5 bits of the Program Counter
10Bh INTCOMN GIE PEIE TOIE INTE REIE TOIF INTF RBIF
10Ch | EEDAT | EEDAT?7 | EEDATE | EEDATS | EED AT4 EEDATZ | EEDAT2 | EEDATY | EEDATO
10Dh EEADR EEADRT | EEADRGE | EEADRS EEADR4 EEADR3 EEADR2 EEADR EEADRO
10Eh EEDATH | EEDATHS | EEDATH4 EEDATH3 | EEDATHZ | EEDATH1 | EEDATHO
10Fh EEADRH] EEADRH4 EEADRH3 | EEADRH2 | EEADRH1 | EEADRHO
SFRs bank 3
Address Name Bit7 | Bt | Bits | B4 | Bit3 | Bit2 | Bit1 | Bito
180h INDF Indirect Register
181h | OPTION_ REG | RBPU |INTEDG | Tocs | TosE | Psa | ps2 | ps1 | pso
182h PCL Least Significan Byte of the Program Counter
183h STATUS mp | Rt | RPO | TO | D | z [Dc | c
184h FSR Indirect Data Memory Address Pointer
185h SRCON SR1 SRO C1SEN | C2REN | PULSS | PULSR - FVREMN
186h TRISB TRISBT TRISBE | TRISB5 | TRISB4 | TRISB3 | TRISB2 | TRISB1 | TRISBO
187h BAUDCTL ABDOWF | RCIDL - SCKP | BRG16 - WUE ABDENM
188h ANSEL ANST ANSE ANSS ANS4 | ANS3 ANS2 ANS1 ANSO
189h ANSELH - - ANS13 | ANS12 | ANS11 ANS10 ANS9 ANSE
19Ah PCLATH - - - Upper 5 bits of the Program Counter
19Bh INTCON GIE PEIE TOIE INTE RBIE TOIF INTF RBIF
19Ch EECON1 EEPGD - - - WRERR | WREN WR RD
190h EECOMN2 EEPROM Control Register 2
STACK

A pat of RAM used as stack consists of eight 13-bit registers. Before the
microcontroller starts to execute a subroutine (CALL instruction) or when an interrupt
occurs, the address of the first next instruction to execute is pushed onto the stack, i.e.
one of its registers. Thanks to that the microcontroller knows from where to continue
regular program execution upon a subroutine or an interrupt execution. This addressis
cleared after returning to the program because there is no need to save it any longer,
and one location of the stack becomes automatically available for further use.

It is important to bear in mind that data is always circularly pushed onto the stack. It
means that after the stack has been pushed eight times, the ninth push overwrites the
value that was stored with the first push. The tenth push overwrites the second push
and so on. Data overwritten in this way is not recoverable. In addition, the
programmer cannot access these registers for write or read and there is no Status bit to

95

indicate stack overflow or stack underflow conditions. For this reason, it is necessary
to take special care of it during program writing.

Let'sdoit in mikroC...

/* VWen entering or exiting an assenbly instruction in the program
the conpiler

doesn’t save data on the currently active RAM bank. It neans that in
this program

section, bank selection depends on the SFR registers in use. Wen
swi t chi ng back

to the program section witten in C, the control bits RPO and RP1
must return the

state they had before assenbly |anguage code execution. In this
exanpl e, the problem

is solved by using the saveBank auxiliary variable which saves the
state of

these two bits. */

saveBank = STATUS & 0b01100000; // Save the state of bits RPO and RP1
/1 (bits 5 and 6 of the STATUS register)
asm { /1 Start of assenbly sequence

/1 Assenbly code

} /1 End of assenbly sequence

STATUS &= 0b10011111; /'l Bits RPO and RP1 return their
original state

STATUS | = saveBank

INTERRUPT SYSTEM

The first thing the microcontroller does when an interrupt request arrives is to execute
the current instruction and then stops the regular program execution. As a result, the
current program memory address is automatically pushed onto the stack and the
default address (predefined by the manufacturer) is written to the program counter.
The location from where the program proceeds with execution is called an interrupt
vector. For the PIC16F887 microcontroller, this address is 0004h. As seen in figure
below, the location containing the interrupt vector is passed over during regular
program execution.

A part of the program to be executed when an interrupt request arrives is caled an
interrupt routine. Itsfirst instruction islocated at the interrupt vector. How long will it
take to execute this subroutine and what it will be like depends on the skills of the
programmer as well as on the interrupt source itself. Some of the microcontrollers
have more interrupt vectors (every interrupt request has its vector), but in this case
there is only one. Consequently, the first part of the interrupt routine consists in
interrupt source detection.

Finally, when the interrupt source is recognized and the interrupt routine is executed,
the microcontroller reaches the RETFI E instruction, pops the address from the stack
and proceeds with program execution from where it left off.

Meisam Fanoody 96
rtmmz3319@yahoo.com

) 2/ ©

Inatructiona Addresses Inatruetions Addresses Instrustions Addrasams

ooh 00h]
[FXFex. |
[nferrupt voctor p D4h
Interrupt E'i:
= I St M
'-".l T
§ [
\ H
a:ﬂgw H . 3
M M ag 1
: e
: g
. ! [EEE
H
Generation of interrupt Interrupt execution Return to the main program

mikroC recognizes an interrupt routine to be executed as the voi d interrupt()
function. The body of that function, i.e. interrupt routine, should be written by the
user.

void interrupt() { // Interrupt routine
cnt ++ /1 Interrupt causes variable cnt to be increnented by
1

}
In Short: How to Use SFRs

Y ou have bought the microcontroller and have a good idea how to use it... Thereis a
long list of SFRs and their bits. Each of them controls some process. All in all, it
looks like a big control table with a lot of instruments and switches. Now you are
concerned about whether you will manage to learn how to use them al? You will
probably not, but don’t worry, you don’t have to! Such powerful microcontrollers are
similar to supermarkets: they offer so many things at low prices and it is up to you to
choose those you need. Therefore, select the field you are interested in and study only
what you need to know. When you completely understand hardware operation, study
SFRswhich are in control of it (there are usually afew of them).

As all devices have a sort of control system, the microcontroller hasits ‘levers’ which
you have to be familiar with in order to be able to use it properly. Of course, we are
talking about SFRs from which the process of programming begins and where it ends.

3.2 CORE SFRS

The following text describes the core SFRs of the PIC16F887 microcontroller. Bits of
each of these registers control different circuits within the chip, so that it is not
possible to classify them in some special groups. For this reason, they are described
along with the processes they are in control of.

STATUS Register

Meisam Fanoody 97
rtmmz3319@yahoo.com

RW() RW({) RW®) R R(1) RW() RW(x) RW(x) Features

STATUS| RP | RP1 | RPO [TO | PD | Z | DC | C | Bitname
Bit 7 Bit 6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bito

The STATUS register contains. the arithmetic status of data in the W register, the
RESET status and the bank select bits for data memory.

| RP - Bit selects register bank. It is used for indirect addressing.

o 1-BanksOand 1 are active (memory locations 00h-FFh)

o 0-Banks2 and 3 are active (memory locations 100h-1FFh)
RP1,RPO - Bits select register bank. They are used for direct addressing.

RP1 RPO Active Bank
0 0 BankO
0 1 Bank1l
1 0 Bank2
1 1 Bank3

TO - Time-out bit.

o 1- After power-on, after executing the CLRWDT instruction which resets
the watch-dog timer or the SLEEP instruction which sets the
microcontroller into low-consumption mode.

o 0 - After watch-dog timer time-out has occurred.

PD - Power-down bit.
o 1 - After power-on or after executing the CLRWDT instruction which
resets the watchdog timer.
o 0 - After executing the SLEEP instruction which sets the
microcontroller into low-consumption mode.

Z - Zero bit
o 1- Theresult of an arithmetic or logic operation is zero.
o 0- Theresult of an arithmetic or logic operation is different from zero.

DC - Digit carry/borrow bit is changed during addition and subtraction if an
‘overflow’ or a ‘borrow’ of the result occurs.

o 1- A carry-out from the 4th low-order bit of the result has occurred.

o 0- No carry-out from the 4th low-order bit of the result has occurred.

C - Carry/Borrow bit is changed during addition and subtraction if an
‘overflow’ or a ‘borrow’ of the result occurs, i.e. if the result is greater than
255 or less than 0.

o 1- A carry-out from the most significant bit (MSB) of the result has

occurred.
o 0 - No carry-out from the most significant bit (MSB) of the result has
occurred.
Meisam Fanoody 98

rtmmz3319@yahoo.com

OPTION_REG Register

RW(1) RW(1) RW(1) RW({1) RW(1) RW (1) RIW (1) RW (1) Features
OPTION | RBPU [INTEDG| TOCS | TOSE | PSA | PS2 | PS1 | PS0 | Bitname
Bit 7 Bit& Bit5 Bit 4 Bit3 Bit2 Bit 1 Bit 0

Legend: R/W - Readable/Writable Bit, (1) After reset, bit is set

The OPTION_REG register contains various control bits to configure TimerO/WDT
prescaler, timer TMRO, external interrupt and pull-ups on PORTB.

OPTION_REG

CEE

RBPU - Port B Pull up Enable bit.
o 1-PortB pull-ups are disabled.
o 0- PortB pull-ups are enabled.

INTEDG - Interrupt Edge Select bit.
o 1-Interrupt onrising edge of RBO/INT pin.
o O- Interrupt on falling edge of RBO/INT pin.

OPTION_REG

() e o

TOCS- TMRO Clock Source Select bit.
o 1- Transition on TOCKI pin.
o O- Internal instruction cycle clock (Fosc/4).

Meisam Fanoody 99
rtmmz3319@yahoo.com

]:.-:I Pin RAATOCKIC10UT

TOSE - TMRO Source Edge Select bit selects pulse edge (rising or faling)
counted by the timer TMRO through the RA4/TOCKI pin.

o 1-Increment on high-to-low transition on TOCKI pin.

o 0- Increment on low-to-high transition on TOCKI pin.

_ OPTION.REG
| -

14n
0}

Prescaler y

[N
|

| osc_ I

PSA - Prescaler Assignment bit assigns prescaler (only one exists) to the
timer or watchdog timer.

o 1-Prescaerisassignedtothe WDT.

o O- Prescaerisassigned to the TMRO.

PS2, PS1, PSO Prescaler Rate Select bits
Prescaler rate is selected by combining these three bits. As shown in the table below,

prescaler rate depends on whether prescaler is assigned to the timer (TMRO) or watch-
dog timer (WDT).

pPS2 PS1 PSO TMRO WDT
0 0 0 1.2 1.1

0 0 1 14 1.2

0 1 0 1:8 14

0 1 1 1:16 1.8

1 0 1 1.64 1:32
1 1 0 1:128 1.64
1 1 1 1:256 1:128

In order to achieve 1.1 prescaler rate when the timer TMRO counts up pulses, the
prescaler should be assigned to the WDT. As a result, the timer TMRO does not use
the prescaler, but directly counts pulses generated by the oscillator, which was the
objective.

Meisam Fanoody 100
rtmmz3319@yahoo.com

Let'sdoit in mikroC...

/* 1If the CLRADT command is not executed, WOT wll reset the
m crocontrol | er
every 32.768 uS (f = 4 Miz) */

void main() {
OPTI ON_REG = 0b00001111; // Prescaler is assigned to WDT (1:128)

asm CLRWDT; /1 Assenbly command to reset WDOT
/1 Time between these two CLRWDT comrands
nmust not

/1 exceed 32.768 nicroseconds (128x256)
asm CLRWDT; /1 Assenbly command to reset WDT
/1 Time between these two CLRWDT commands
must not

/1 exceed 32.768 mnicroseconds (128x256)

asm CLRVWDT; /1 Assenbly command to reset WDT

INTERRUPT SYSTEM REGISTERS

When an interrupt request arrives, it doesn’t mean that an interrupt will automatically
occur, because it must also be enabled by the user (from within the program). Because
of this, there are special bits used to enable or disable interrupts. It is easy to
recognize them by the letters IE contained in their names (stands for Interrupt
Enable). Besides, each interrupt is associated with another bit called the flag which
indicates that an interrupt request has arrived regardless of whether it is enabled or
not. They are also easily recognizable by the last two letters contained in their names-
IF (Interrupt Flag).

Interrupt b —— IEbit Interrupt
>
request ~{IF bit|—— ot ——>
Flag Enabled

As seen, everything is based on a simple and efficient idea. When an interrupt request
arrives, the flag bit is set first.

If the appropriate IE bit is not set (0), this condition will be completely ignored.
Otherwise, an interrupt occurs! If several interrupt sources are enabled, it is necessary
to detect the active one before the interrupt routine starts execution. Source detection
is performed by checking flag bits.

It isimportant to know that the flag bits are not automatically cleared, but by software
while the interrupt routine execution is in progress. If we neglect this detail, another
interrupt will occur immediately after returning to the main program, even though

Meisam Fanoody 101
rtmmz3319@yahoo.com

there are no more requests for its execution. Simply put, the flag, as well asthe IE bit,
remain set.

All interrupt sources typical of the PIC16F887 microcontroller are shown on the next
page. Note several things:

The GIE bit enables all unmasked interrupts and disables all interrupts
simultaneously.

The PEIE bit enables al unmasked peripheral interrupts and disables al peripheral
interrupts. This doesn’t concern Timer TMRO and PORTB interrupt sources.

To enable an interrupt caused by changing logic state on PORTB, it is necessary to
enable it for each bit separately. In this case, bits of the |OCB register act as control
|E bits.

i SFRs: INTCON, PIE1, PIEZ, PIR1, PIR2Z and IOCB -

OSCILLATOR o] o] & Pin REO/INT

AID converter g IV T py g 11Ty

USART !

transmitter SRR b7y B T R
msse (spl, 12c) [

Transmission

OC-RB1
OC-RB2
OC-RB3

OC-RBS5

FIEIEIE
allale
ENEAE
S

Error ;
CCP1 module ERRESC RN ST
Waking up

Timer1 weESITTTLESEG IR

-
Timer 2 _‘_.'-_"E‘-_‘
B e, L — Interrupt CPU
Analog @ — |_O| b
comparator 2 —__"E-_' [_’
S>> L ;

o
]
]
o
3

o
=]
~
w

INTCON Register

The INTCON register contains various enable and flag bits for TMRO register
overflow, PORTB change and external INT pin interrupts.

RW@O) RW(O) RW(© RW(©) RW(© RW(@® RW(0 RWEK Features
INTCON [GIE [PEIE [TOE | INTE | RBIE | TOF | INTF | RBIF | Bitname
Bit7 Bit6 Bits Bit4 Bit3 Bit2 Bit 1 Bit0

Meisam Fanoody 102
rtmmz3319@yahoo.com

Legend: R/W - Readable/Writable Bit, (0) After reset, bit is cleared, (X) After
reset, bit isunknown

GIE - Global Interrupt Enable bit - controls all possible interrupt sources
simultaneously.

o 1- Enablesall unmasked interrupts.

o O- Disablesal interrupts.

PEIE - Peripheral Interrupt Enable bit acts smilar to the GIE it, but
controls interrupts enabled by peripherals. It means that it has no impact on
interrupts triggered by the timer TMRO or by changing the state of PORTB or
the RBO/INT pin.

o 1- Enablesall unmasked peripheral interrupts.

o O- Disablesall periphera interrupts.

TOIE - TMRO Overflow Interrupt Enable bit controls interrupt enabled by
TMRO overflow.

o 1- Enablesthe TMRO interrupt.

o 0- Disablesthe TMRO interrupt.

INTE - RBO/INT External Interrupt Enable bit controls interrupt caused by
changing the logic state of the RBO/INT input pin (external interrupt).

o 1-EnablestheINT external interrupt.

o O0-Disablesthe INT external interrupt.

RBIE - RB Port Change Interrupt Enable bit. When configured as inputs,
PORTB pins may cause an interrupt by changing their logic state (no matter
whether it is high-to-low transition or vice versa, the fact that something is
changed only matters). This bit determines whether an interrupt is to occur or
not.

o 1- Enablesthe port B change interrupt.

o 0- Disablesthe port B change interrupt.

TOIF - TMRO Overflow Interrupt Flag bit registers the timer TMRO register
overflow, when counting starts at zero.
o 1-TMRO register has overflowed (bit must be cleared from within the
software).
o 0-TMRO register has not overflowed.

INTF - RBO/INT External Interrupt Flag bit registers the change of the
RBO/INT pin logic state.
o 1 - The INT externa interrupt has occurred (must be cleared from
within the software).
o O-ThelNT external interrupt has not occurred.

RBIF - RB Port Change Interrupt Flag bit registers any change of logic
state of some PORTB input pins.
o 1- At least one of the PORTB general purpose I/0 pins has changed
state. Upon reading PORTB, the RBIF bit must be cleared from within
the software.

Meisam Fanoody 103
rtmmz3319@yahoo.com

o 0- None of the PORTB general purpose I/O pins has changed the state.

Let'sdoit in mikroC...

/1 The PORTB.4 pin is configured as an input sensitive to logic state
change

void initMin() {

ANSEL = ANSELH = 0; // Al 1/O pins are configured as digital

PORTB = O0; /1 Al PORTB pins are cl eared

TRI SB = 0b00010000; // Al PORTB pins except PORTB.4 are configured
as outputs

RBIE = 1; /1 Interrupts on PORTB change are enabl ed
| OCB4 = 1, /1 Interrupt on PORTB pind4 change is enabl ed
GE =1, /!l dobal interrupt is enabled

C /1l Fromthis point, any change of the PORTB.4 pin
logic state
/1 will cause an interrupt

PIE1 Register

The PIEL register contains peripheral interrupt enable bits.

RW() RW(0) RW(@® RW(0) RW() RW(@® RW({) Features
PIET| - | ADIE | RCIE | TXIE | SSPIE [CCP1IE | TMR2IE [TMR1IE | Bit name
Bit7 Bit 6 Bit 5 Bitd Bit 3 Bit 2 Bit 1 BitD

Legend: (-) Unimplemented bit, (R/W) - Readable/Writable Bit, (0) After reset,
bit iscleared

ADIE - A/D Converter Interrupt Enable bit.
o 1-Enablesthe ADC interrupt.
o 0- Disablesthe ADC interrupt.

RCIE - EUSART Receive Interrupt Enable bit.
o 1- Enablesthe EUSART receive interrupt.
o 0- Disablesthe EUSART receive interrupt.

TXIE - EUSART Transmit Interrupt Enable bit.
o 1-Enablesthe EUSART transmit interrupt.
o 0- Disablesthe EUSART transmit interrupt.

SSPIE - Master Synchronous Serial Port (MSSP) Interrupt Enable bit -
enables an interrupt request to be generated upon each data transmission via
synchronous serial communication module (SPI or 12C mode).

o 1- Enablesthe MSSP interrupt.

o O- Disablesthe MSSP interrupt.

Meisam Fanoody 104
rtmmz3319@yahoo.com

CCP1IE - CCP1 Interrupt Enable bit enables an interrupt request to be
generated in CCP1 module used for PWM signal processing.

o 1- Enablesthe CCP1 interrupt.

o 0- Disablesthe CCP1 interrupt.

TMR2IE - TMR2to PR2 Match Interrupt Enable bit
o 1- Enablesthe TMR2 to PR2 match interrupt.
o 0- Disablesthe TMR2 to PR2 match interrupt.

TMRI1IE - TMR1 Overflow Interrupt Enable bit enables an interrupt
request to be generated upon each timer TMR1 register overflow, i.e. when the
counting starts from zero.

o 1-Enablesthe TMR1 overflow interrupt.

o 0- Disablesthe TMR1 overflow interrupt.

Let'sdoit in mikroC...

/* Each overflow in the Tinerl register consisting of TMRIH and
TMRLL, causes an interrupt

to occur. In every interrupt rutine, variable cnt will be increnented
by 1. */
unsi gned short cnt; /1 Define variable cnt

void interrupt() {

cnt ++ ; /1 Interrupt causes cnt to be incremented by 1
PIRL. TMRLI F = O; /1l Reset bit TMRLIF

TVMR1H = 0x80; /1 TMR1IH and TMRLIL tiner registers are returned
TMRLIL = 0x00; /1l their initial val ues

}

void main() {
ANSEL = ANSELH = 0; // Al 1/O pins are configured as digital

TI1CON = 1; // Turn on tinmer TMRL

PIRL. TMRLI F = O; /] Reset the TMRLIF bit

TMR1H = 0x80; // Set initial value for tiner TMRL
TVRIL = 0x00;

PIEL. TMRLIE = 1; /1 Enable an interrupt on overfl ow

cnt = 0O; /'l Reset variable cnt

| NTCON = 0xCO; /1 Enable interrupt (bits G E and PEIE)
PIE2 Register

The PIE2 Register al'so contains various interrupt enable bits.

RW(0) RWI(RW({@ RW({) RW() RW(D) RW(0) Features
PIE2 | OSFIE | C2IE | C1IE | EEIE | BCLIE [ULPWUIE[- |CCP2IE | Bit name
Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit 1 Bit0

Legend: (-) Unimplemented bit, (R/W) - Readable/Writable Bit, (0) After reset,
bit iscleared

Meisam Fanoody 105
rtmmz3319@yahoo.com

OSFIE - Oscillator Fail Interrupt Enable bit.
o 1- Enablesoscillator fail interrupt.
o O- Disables oscillator fail interrupt.

C2IE - Comparator C2 Interrupt Enable bit.
o 1- Enables Comparator C2 interrupt.
o 0 - Disables Comparator C2 interrupt.

C1lIE - Comparator C1 Interrupt Enable bit.
o 1- Enables Comparator C1 interrupt.
o 0- Disables Comparator C1 interrupt.

EEIE - EEPROM Write Operation Interrupt Enable bit.
o 1- Enables EEPROM write operation interrupt.
o 0- Disables EEPROM write operation interrupt.

BCLIE - BusCallision Interrupt Enable bit.
o 1- Enablesbus collision interrupt.
o 0- Disablesbus collision interrupt.

ULPWUIE - Ultra L ow-Power Wake-up Interrupt Enable bit.
o 1- EnablesUltraLow-Power Wake-up interrupt.
o 0- Disables Ultra Low-Power Wake-up interrupt.

CCP2IE - CCP2 Interrupt Enable bit.
o 1- Enables CCP2interrupt.
o O- Disables CCP2 interrupt.

Let'sdoit in mikroC...

/* Conparator C2 is configured to use pins RAO and RA2 as inputs.
Every change on the conparator’'s output will cause the PORTB.1 out put
pin

to change its logic state in interrupt routine. */

void interrupt() {

PORTB.F1 = ~PORTB.F1 ; // Interrupt will invert logic state of the
PORTB. 1 pin
PIR2. C2I F = 0O; /1l Interrupt flag bit C2IF is cleared
}
void main() {
TRI SB = 0O; /1 Al PORTB pins are configured as outputs
PORTB. 1 = 1; /1 The PORTB.1 pin is set
ANSEL = 0b00000101; /1 RAQ/ C12I NO- and RA2/ C2I N+ pins are anal og
i nputs
ANSELH = O; /1 Al other 1/0O pins are configured as
digital
C2CHO = C2CH1L = O0; /'l The RAO pin is selected to be C2 inverting
i nput
QIE = 1; /1 Enabl es conpatator C2 interrupt
GE =1, /1 dobal interrupt is enabled
C2ON = 1, /1 Conparator C2 is enabled

Meisam Fanoody 106

rtmmz3319@yahoo.com

PIR1 Register

The PIR1 register contains the interrupt flag bits.

RIW (0) R(D) R(0) RW(0) RW(0) RW(0) RWI(0) Features
PIR1| - | ADIF | RCIF | TXIF [SSPIF [CCP1IF | TMR2IF | TMR1IF | Bit name
Bit7 Bit 6 Bit5 Bit 4 Bit3 Bit 2 Bit1 Bit 0

Legend: (-) Unimplemented bit, (R/W) - Readable/Writable Bit, (R) - Readable
Bit, (0) After reset, bit is cleared

ADIF - A/D Converter Interrupt Flag bit.
o 1- A/D conversion is completed (bit must be cleared from within the
software).
o 0-A/D conversion isnot completed or has not started.

RCIF - EUSART Receive Interrupt Flag bit.
o 1- The EUSART receive buffer is full. Bit is cleared by reading the
RCREG register.
o 0-The EUSART receive buffer is not full.

TXIF - EUSART Transmit Interrupt Flag bit.
o 1- The EUSART transmit buffer is empty. The bit is cleared by any
write to the TXREG register.
o 0-TheEUSART transmit buffer isfull.

SSPIF - Master Synchronous Serial Port (M SSP) Interrupt Flag bit.

o 1- The MSSP interrupt conditions during data transmit/receive have
occurred. They differ depending on MSSP operating mode (SPI or
1°C). This bit must be cleared from within the software before
returning from the interrupt service routine.

o 0-NoMSSPinterrupt condition has occurred.

CCP1IF - CCP1 Interrupt Flag bit.

o 1- CCPlinterrupt condition has occurred (CCPL is unit for capturing,
comparing and generating PWM signal). Depending on operating
mode, capture or compare match has occurred. In both cases, bit must
be cleared in software. This bit is not used in PWM mode.

o 0-No CCPLl interrupt condition has occurred.

TMR2IF - Timer2 to PR2 Interrupt Flag bit
o 1-TMR2 (8-bit register) to PR2 match has occurred. This bit must be
cleared from within the software prior to returning from the interrupt
service routine.
o 0-NoTMR2 to PR2 match has occurred.

Meisam Fanoody 107
rtmmz3319@yahoo.com

TMR1IF - Timer 1 Overflow Interrupt Flag bit
o 1-The TMR1 register has overflowed. This bit must be cleared from
within the software.
o 0-TheTMRL1 register has not overflowed.

PIR2 Register

The PIR2 register contains the interrupt flag bits.

RW(0) FRW(0) RW(@® RW(0) RW(0O RW(0) RW(0) Features
PIR2 | OSFIF | C2IF | C1IF | EEIF | BCLIF [ULPWUIF| - | CCP2F | Bit name
Bit7 Bit6 Bit5 Bit4 Bit 3 Bit2 Bit 1 Bit0

Legend: (-) Unimplemented bit, (R/W) - Readable/Writable Bit, (0) After reset,
bit iscleared

OSFIF - Oscillator Fail Interrupt Flag bit.
o 1 - System oscillator failed and clock input has changed to internal
oscillator INTOSC. This bit must be cleared from within the software.
o 0- System oscillator operates normally.

C2IF - Comparator C2 Interrupt Flag bit.
o 1 - Comparator C2 output has changed (bit C20UT). This bit must be
cleared from within the software.
o 0- Comparator C2 output has not changed.

C1IF - Comparator C1 Interrupt Flag bit.
o 1 - Comparator C1 output has changed (bit C1OUT). This bit must be
cleared from within the software.
o 0- Comparator C1 output has not changed.

EEIF - EE Write Operation Interrupt Flag bit.
o 1- EEPROM write complete. This bit must be cleared from within the
software.
o 0- EEPROM writeisnot complete or has not started yet.

BCLIF - Bus Callision Interrupt Flag bit.
o 1- A buscollision has occurred in the MSSP when configured for 12C
Master mode. This bit must be cleared from within the software.
o 0- Nobuscollision has occurred.

ULPWUIF - Ultra Low-power Wake-up Interrupt Flag bit.
o 1 - Wake-up condition has occurred. This bit must be cleared from
within the software.
o 0-NoWake-up condition has occurred.

CCP2IF - CCP2 Interrupt Flag bit.

Meisam Fanoody 108
rtmmz3319@yahoo.com

o 1 - CCP2 interrupt condition has occurred (unit for capturing,
comparing and generating PWM signal). Depending on operating
mode, capture or compare match has occurred. In both cases, the bit
must be cleared from within the software. This bit is not used in PWM
mode.

o 0-No CCP2interrupt condition has occurred.

Let'sdoit in mikroC...

/1 Modul e ULPWJ activation sequence

void main() {

PORTA. 0 = 1; /1 PORTA.O0 pin is set
ANSEL = ANSELH = 0; // Al 1/O pins are configured as digital
TRI SA = 0; /1 PORTA pins are configured as outputs
Del ay _ns(1); /1 Charge capacitor

ULPWJI F = O; /1 Clear flag

PCON. ULPWJE = 1; /1 Enabl e ULP Wake-up

TRISA 0 = 1; /1 PORTA.0 is configured as an input
ULPWJI E = 1, /1 Enabl e interrupt

G E=PEE-=1; /1 Enabl e peripheral interrupt

asm SLEEP; /1 Go to sleep node

PCON register

The PCON register contains only two flag bits used to differentiate between Power-on
reset, Brown-out reset, Watchdog Timer reset and external reset over the MCLR pin.

RW() RW() RW(0) RW(x) Features
PCON[- | - [ulPwue[sBoREN] - | - | POR | BOR | Bitname
Bit7 Bite Bits Bit4 Bit 3 Bit2 Bit 1 Bit0

Legend: (-) Unimplemented bit, (R/W) - Readable/Writable Bit, (1) - After reset,
bit is set, (0) After reset, bit iscleared

ULPWUE - Ultra L ow-Power Wake-up Enable bit
o 1- UltraLow-Power Wake-up enabled.
o 0- UltraLow-Power Wake-up disabled.

SBOREN - Software BOR Enable bit
o 1-Brown-out Reset enabled.
o 0- Brown-out Reset disabled.

POR - Power-on Reset Status bit
o 1- No Power-on reset has occurred.
o 0 - Power-on reset has occurred. This bit must be set from within the
software after a Power-on Reset occurs.

BOR - Brown-out Reset Status bit

Meisam Fanoody 109
rtmmz3319@yahoo.com

o 1- No Brown-out reset has occurred.
o O - Brown-out reset has occurred. This bit must be set from within the
software after a Brown-out Reset occurs.

PCL AND PCLATH REGISTERS

The size of the program memory of the PIC16F887 is 8K and has 8192 locations for
program storing. For this reason, the program counter must be 13-bits wide (2*2 =
8192). To enable access to any program memory location during operation, it is
necessary to access its address through SFRs. Since all SFRs are 8-bits wide, this
addressing register is ‘artificially’ created by dividing its 13 bits into two independent
registers PCLATH and PCL.

If the program execution doesn’t affect the program counter, the value of this register
is automatically and constantly incremented +1, +1, +1, +1... In thisway, the program
is executed as it is written- instruction by instruction, followed by constant address
increment.

Bit12 Bit11 Bit10 Bit3 Bit8 Bit7 Bité Bit5 Bit4 Bitd Btz Bit1 Bitd

Program Counter (PC) [N Git 4 | Bit 3] Bit 2| Bit 1/8it 0 || Bit 7| Bit 6| Bit 5 [Bit 4 |8it 3| Bit 2 Bit 1[Bit 0]

AN

PCLATH PCL

If the program counter is changed from within the software, then there are severa
things that should be kept in mind in order to avoid problems:

i

Eight lower bits (the low byte) come from the PCL register which is readable
and writable, whereas five upper bits coming from the PCLATH register are
write-only.

The PCLATH register is cleared on any reset.

In assembly language, the value of the program counter is marked with PCL
and refersto 8 lower bitsonly. Y ou should take care when using the ‘ADDWF
PCL’ instruction. Thisis ajump instruction which specifies the target location
by adding some number to the current address. It is often used when jumping
into a look-up table or program branch table to read them. Aproblem arises if
the current address is such that addition causes a change on some bit
belonging to the higher byte of the PCLATH register.

Execution of any instruction upon the PCL register simultaneously causes the
Program Counter bits to be replaced by the contents of the PCLATH register.
However, the PCL register has access to only 8 lower bits of the instruction
result and the following jump will be completely incorrect. The problem is
solved by setting such instructions at addresses ending by xx00h. This enables
the program to jump up to 255 locations. If longer jumps are executed by this
instruction, the PCLATH register must be incremented by 1 for each PCL
register overflow.

On subroutine call or jump execution (instructions CALL and GOTO), the
microcontroller is capable of providing only 11-bit addressing. Similar to

Meisam Fanoody 110
rtmmz3319@yahoo.com

RAM which is divided in ‘banks’, ROM is divided in four ‘pages’ in size of
2K each. Such instructions are executed within these pages without any
problem. Simply put, since the processor is provided with 11-bit address from
the program, it is capable of addressing any location within 2KB. Figure
below illustrates the jump to the subroutine PP1 address.

However, if a subroutine or a jump address is not within the same page as the
jump location, two ‘missing’- higher bits should be provided by writing to the
PCLATH register. Figure below illustrates the jump to the subroutine PP2
address.

PCLATH 4,3: 00 01 10 1

T e T PP PR

| T . e |
Instructions:
EETUREN, RETLW or EETFIE

2K 4K 6K 8K

In both cases, when the subroutine reaches instructions RETURN, RETLW Or RETFI E
(return to the main program), the microcontroller will simply proceed with program
execution from where it left off because the return address is pushed and saved onto
the stack which, as mentioned, consists of 13-bit registers.

INDIRECT ADDRESSING REGISTERS

In addition to direct addressing, which is logical and clear (it is sufficient to specify
the address of a register to read its contents), this microcontroller is capable of
performing indirect addressing by means of the INDF and FSR registers. It sometimes
makes the process of writing a program easier. The whole procedure is enabled
because the INDF register is not true one (physically does not exist), but only
specifies the register the address of which is located in the FSR register. For this

Meisam Fanoody 111
rtmmz3319@yahoo.com

reason, write or read from the INDF register actually means write or read from the
register the address of which is located in the FSR register. In other words, registers’
addresses are specified in the FSR register, and their content is stored in the INDF
register. The difference between direct and indirect addressing is illustrated in the
figure below:

As seen, the problem with the ‘missing addressing bits’ is solved by a ‘borrow’ from
another register. This time, it is the seventh bit, called the IRP bit of the STATUS
register.

Direct addressing Indirect addressing
'_'.5 . 4(3|2|1|0|STATUS register STATUS register Es 5(4|3|2(1]0
v v
RPIL,RPO 6 |nstruction © IRP 7 FSRregister 0
oo 1 P

; .
- v . 'S

» 00 01

Lh_\l 80h
I.-"- B Content y) [e 4—) ™
| ™ A
\ 3 INDF register \..1

. Content \
~ — AN
)
- ’/]
FFh 1FFh —
Bank 0 Bank 1 Bank 2 Bank 3

One of the most important features of the microcontroller is a number of input/output
pins which enable it to be connected to peripherals. The PIC16F887 hasin total of 35
general-purpose |/O pins available, which is quite enough for most applications.

3.3INPUT/OUTPUT PORTS

In order to synchronize the operation of 1/O ports with the internal 8-bit organization
of the microcontroller, they are, similar to registers, grouped into five ports denoted
by A, B, C, D and E. All of them have several featuresin common:

For practical reasons, many 1/O pins are multifunctional. If apin performs any
of these functions, it may not be used as a general-purpose input/output pin.
Every port has its ‘satellite’, i.e. the corresponding TRIS register: TRISA,
TRISB, TRISC etc. which determines the performance of port bits, but not
their contents.

By clearing any bit of the TRIS register (bit=0), the corresponding port pin is
configured as an output. Similarly, by setting any bit of the TRIS register (bit=1), the

Meisam Fanoody 112
rtmmz3319@yahoo.com

corresponding port pin is configured as an input. This rule is easy to remember 0 =
Output, 1 = I nput.

MICROCONTROLLER

PORTA and TRISA register

Port A is an 8-bit wide, bidirectional port. Bits of the TRISA and ANSEL registers
control the Port A pins. All Port A pins act as digital inputs/outputs. Five of them can
also be analog inputs (denoted by AN):

| RA7 | RA6 | RA5 | RA4 | RA3 | RA2 | RA1 | RA0

| TRISAT | TRISAG | TRISA5 | TRISA4 | TRISA3 | TRISA2 | TRISA1 | TRISAO

Legend

RMW Readable/Writable bit
(%) After reset, bit is unknown
(1) After reset, bit is set

Meisam Fanoody 113
rtmmz3319@yahoo.com

RAO = ANO (determined by the ANSO bit of the ANSELregister)
RA1 = AN1 (determined by the ANS1 bit of the ANSELregister)
RA2 = AN2 (determined by the ANS2 bit of the ANSELregister)
RA3 = AN3 (determined by the ANS3 bit of the ANSELregister)
RA5 = AN4 (determined by the ANS4 bit of the ANSEL register)

Similar to bits of the TRISA register determine which of the pins are to be configured
as inputs and which ones as outputs, the appropriate bits of the ANSEL register
determine whether pins are to be configured as analog inputs or digital inputs/outputs.

Each bit of this port has an additional function related to some of the built-in
periphera units, which will be described in later chapters. This chapter covers only
the RAO pin’s additional function sinceit isrelated to port A and the ULPWU unit.

Let'sdoit in mikroC...

/1 The PORTA.2 pin is configured as a digital input.
/1 Al other PORTA pins are digital outputs

ANSEL = ANSELH = 0; // Al 1/O pins are configured as digital

PORTA = 0; /1 Al PORTA pins are cleared

TRI SA = 0b00000100; // Al PORTA pins except PORTA.2 are configured
as outputs

ULPWU UNIT

The microcontroller is commonly used in devices which operate periodically and
completely independently using a battery power supply. Minimum power
consumption is one of the priorities here. Typical examples of such applications are:
thermometers, fire detection sensors and the like. It is known that a reduction in clock
frequency reduces the power consumption, thus one of the most convenient solutions
to this problem is to slow down the clock, i.e. to use 32KHz quartz crystal instead of
20MHz.

Microcontroller

Setting the microcontroller to sleep mode is another step in the same direction. till,
the problem is how to wake up the microcontroller and set it to normal mode? It is
obviously necessary to have an external signal to change the logic state of some of the

Meisam Fanoody 114
rtmmz3319@yahoo.com

pins. This signal must be generated by additional electronics, which causes higher
power consumption of the entire device...

The ideal solution would be that the microcontroller wakes up periodicaly by itself,
which is not impossible at al. The circuit which enables it is shown in figure on the
left.

The principle of operation is simple:

A pin is configured as an output and a logic one (1) is brought to it. This causes the
capacitor to be charged. Immediately after this, the same pin is configured as an input.
The change of logic state enables an interrupt and the microcontroller is set to Seep
mode. All that’s left now is to wait for the capacitor to discharge by the leakage
current flowing out through the input pin. When it occurs, an interrupt takes place and
the microcontroller proceeds with the program execution in norma mode. The whole
procedure is repeated.

PIC16F&8T

Theoretically, thisis a perfect solution. The problem is that all pins able to cause an
interrupt in this way are digital and have relatively large leakage current when their
voltage is not close to the limit values Vdd (1) or Vss (0). In this case, the condenser
is discharged for a short time since the current amounts to several hundreds of
microamperes. This is why the ULPWU circuit, capable of registering slow voltage
drops with minimum power consumption, was designed. Its output generates an
interrupt, while its input is connected to one of the microcontroller pins. It isthe RAO
pin. Referring to figure (R=200 ohms, C=1nF), discharge time is approximately
30mS, while a total consumption of the microcontroller is 1000 times lower (severd
hundreds of nanoamperes).

PORTB and TRISB register

Port B is an 8-bit wide, bidirectional port. Bits of the TRISB register determine the
function of its pins.

Meisam Fanoody 115
rtmmz3319@yahoo.com

| RB7 | RB6 | RB5 | RB4 | RB3 | RB2 | RB1 | RBO |

Legend

- Bit is unimplemented
R/W Readable/Writable bit

(x) After reset, bit is unknown
(1) After reset, bit is set

Similar to port A, alogic one (1) in the TRISB register configures the appropriate
portB pin as an input and vice versa. Six pins of this port can act as analog inputs
(AN). The bits of the ANSELH register determine whether these pins are to be
configured as analog inputs or digital inputs/outputs:

RBO = AN12 (determined by the ANSI12 bit of the ANSELH register)
RB1 = ANI10 (determined by the ANSIO bit of the ANSELH register)

RB2

AN8 (determined by the ANS8 bit of the ANSELH register)

RB3

AN9 (determined by the ANS9 bit of the ANSELH register)
RB4 = ANI11 (determined by the ANSI11 bit of the ANSELH register)
RB5 = AN13 (determined by the ANS13 bit of the ANSELH register)

Each port B pin has an additional function related to some of the built-in peripheral
units, which will be explained in later chapters.

This port has several features which distinguish it from other ports and make its pins
commonly used:

All the port B pins have built in pull-up resistors, which make them ideal for
connection to push buttons (keyboard), switches and optocouplers. In order to
connect these resistors to the microcontroller ports, the appropriate bit of the
WPUB register should be set.*

| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 |WPUB1 | WPUBO_

Legend

R'W Readable/Writable bit
(1) After reset, bit is set

Meisam Fanoody 116
rtmmz3319@yahoo.com

Having a high level of resistance (severa tens of kiloohms), these ‘virtual’ resistors
do not affect pins configured as outputs, but serves as a useful complement to inputs.
As such, they are connected to the inputs of CMOS logic circuits. Otherwise, they
would act asif they are floating due to their high input resistance.

Pin with pull-up resistor Pin without pull-up resistor
= e A - e
WEE

Digital output

-

m m
MCU MCU

* Apart from the bits of the WPUB register, there is another bit affecting the
installation of all pull-up resistors. It is the RBPU bit of the OPTION_REG.

If enabled, each port B bit configured as an input may cause an interrupt by
changing its logic state. In order to enable pins to cause an interrupt, the
appropriate bit of the IOCB register should be set.

| 10CB7 | I0CB6 | I0CB5 | IOCB4 | 10CB3 | IOCB2 | 10CB1 | 10CBO |

Legend

R/W Readable/Writable bit
(0 After reset, bit is cleared

Thanks to these features, the port B pins are commonly used for checking push
buttons on the keyboard because they unerringly register any button press. Thus, there
isno need to ‘scan’ these inputs all the time.

Meisam Fanoody 117
rtmmz3319@yahoo.com

1K
RBO '
E Z A r] EEE
RB1 ST T — —Z8lo
- A S
RB2 T T 5 — #|0| -
.- 2 2 T S
o r 2 — |
o L pA KA
L
y ||11‘|
E 4w
. 1
MCU

When the X, Y and Z pins are configured as outputs set to logic one (1), it is only
necessary to wait for an interrupt request which arrives upon any button press. After
that, by combining zeros and ones on these outputs it is checked which push button is
pressed.

Let'sdoit in mikroC...

/* The PORTB.1 pin is configured as a digital input. Any change of
its logic state will cause

an .i.n.terrupt. It also has a pull-up resistor. Al other PORTB pins
are digital outputs.*/

ANSEL = ANSELH = 0; // Al 1/O pins are configured as digital

PORTB = O0; /1 Al PORTB pins are cleared

TRI SB = 0b00000010; // Al PORTB pins except PORTB.1 are configured
as outputs

RBPU = 0; /1 Pull-up resistors are enabl ed

WPUB1 = 1; /1 Pull-up resistor is connected to the PORTB. 1
pi n

IOCBL = 1, /1 The PORTB.1 pin may cause an interrupt on
| ogi ¢ state change

RBIE = A E = 1; /1 Interrupt is enabled

PIN RBO/INT

The RBO/INT pin is the only ‘true’ external interrupt source. It can be configured to
react to signal raising edge (zero-to-one transition) or signal falling edge (one-to-zero
transition). The INTEDG bit of the OPTION_REG register selects the appropriate
signal.

RB6 AND RB7 PINS

Meisam Fanoody 118
rtmmz3319@yahoo.com

The PIC16F887 does not have any specia pins for programming (the process of
writing a program to ROM). Port pins, normally available as general-purpose 1/0
pins, are used for this purpose. To be more precise, it is about port B pins used for
clock (RB6) and data transfer (RB7) during program loading. Besides, it is necessary
to apply power supply voltage Vdd (5V) as well as appropriate voltage Vpp (12-14V)
for FLASH memory programming. During programming, Vpp voltage is applied to
the MCLR pin. You don’t have to think of all details concerning this process, nor
which one of these voltages is applied first since the programmer’s electronics is in
charge of that. What is very important here is that the program may be loaded to the
microcontroller even after soldering it onto the target device. Normally, the loaded
program can aso be changed in the same way. This function is called ICSP (In-
Circuit Serial Programming). In order to use it properly, it is necessary to plan ahead.

A piece of cake! It is only necessary to install a miniature 5-pin connector onto the
target device so as to provide the microcontroller with necessary programming
voltages. In order to prevent these voltages from interfering with other device
electronics connected to microcontroller pins, all additional peripheral devices should
be disconnected during the process of programming using resistors or jumpers.

.. PIC16F8ET .- PIC16F88T
| 4
v l! Vdd
Vs
E3MCLRVpp f A j

As you can see, voltages applied to programmer's socket pins are the same as those
used during ICSP programming

PORTC and TRISC register
Port C is an 8-bit wide, bidirectional port. Bits of the TRISC register determine the

function of its pins. Similar to other ports, a logic one (1) in the TRISC register
configures the appropriate portC pin as an input.

| RC7 | RC6 | RC5 | RC4 | RC3 | RC2 | RC1 | RCO

Legend

R/W Readable/Writable bit
x) After reset, bit is unknown
(1) After reset, bit is set

Meisam Fanoody 119
rtmmz3319@yahoo.com

All additional functions of port C bits will be explained later.

PORTD and TRISD register

Port D is an 8-bit wide, bidirectional port. Bits of the TRISD register determine the
function of its pins. A logic one (1) in the TRISD register configures the appropriate
portD pin as an input.

| RD7 | RD6 | RD5 | RD4 | RD3 | RD2 | RD1 | RDO |

Legend

RW Readable/Writable bit
(x) After reset, bit is unknown
(1) After reset, bit is set

PORTE and TRISE register
Port E isa4-bit wide, bidirectional port.

The TRISE register’s bits determine the function of its pins. Similar to other ports, a
logic one (1) in the TRISE register configures the appropriate portE pin as an input.

The exception is the RE3 pin which is always configured as an input.

- | - | - | - | RE3 | RE2 | RE1 | RE0 |

- | - | - | - |TRISE3 | TRISE2 | TRISE1 | TRISEO

Legend

- Bit is unimplemented
RW Readable/Writable bit

R Readable bit

{x) After reset, bit is unknown
(1) After reset, bit is set

Similar to ports A and B, three pins can be configured as analog inputs in this case.
The ANSELH register bits determine whether a pin will act as an analog input (AN)
or digital input/output:

Meisam Fanoody 120
rtmmz3319@yahoo.com

REO = AN5 (determined by the ANS5 hit of the ANSELregister);
RE1 = ANG6 (determined by the ANS6 bit of the ANSELregister); and
RE2 = AN7 (determined by the ANS7 bit of the ANSEL register).

Let'sdoit in mikroC...

/* The PORTE.O pin is configured as an analog input while another
three pins of the sane
port are configured as digital. */

ANSEL = 0b00100000; // The PORTE.O pin is configured as anal og
ANSELH = 0; /1 Al other 1/0O pins are configured as digital
TRI SE = 0b00000001; // Al PORTE pins except PORTE.O0 are configured
as outputs

PORTE = O0; /1 Al PORTE pins are cleared

ANSEL and ANSELH register

The ANSEL and ANSELH registers are used to configure the input mode of an 1/O
pin to analog or digital.

| ANS7 | ANSG | ANS5 | ANS4 | ANS3 | ANS2 | ANS1 | ANSO |

|- | - | ANS13 | ANS12 | ANS11 | ANS10 | ANS9 | ANSB |

Legend

Bit is unimplemented
R/W Readable/Writable bit
1) After reset, bit is set

Theruleis:

To configure a pin as an analog input, the appropriate bit of the ANSEL or ANSELH
registers must be set (1). To configure a pin as a digital input/output, the appropriate
bit must be cleared (0).

The state of the ANSEL bits has no influence on digital output functions. The result of
any attempt to read a port pin configured as an analog input will be 0.

Meisam Fanoody 121
rtmmz3319@yahoo.com

In Short

You will probably never write a program which doesn't use ports so the effort you
make to learn all about them will definately pay off. Anyway, they are probaly the
simplest modules within the microcontroller. Thisis how they are used:

When designing a device, select a port through which the microcontroller will
communicate to peripheral environment. If you use only digital inputs/outputs,
select any port you want. If you intend to use some of the analog inputs, select
the appropriate ports supporting such a pin configuration (ANO-AN13).

Each port pin may be configured as either input or output. Bits of the TRISA,
TRISB, TRISC, TRISD and TRISE registers determine how the appropriate
port pins- PORTA, PORTB, PORTC, PORTD and PORTE will act. Simply...
If you use some of the analog inputs, it is first necessary to set the appropriate
bits of the ANSEL and ANSELH registers at the beginning of the program.

If you use switches and push buttons as input signal source, connect them to
port B pins because they have pull-up resistors. The use of these resistors is
enabled by the RBPU bit of the OPTION_REG register, whereas the
installation of individual resistorsis enabled by bits of the WPUB register.

It isusually necessary to respond as soon as input pins change their logic state.
However, it is not necessary to write a program for checking pins’ logic state.
It is far simpler to connect such inputs to the PORTB pins and enable an
interrupt to occur on every voltage change. Bits of the IOCB and INTCON
registers arein charge of that.

Meisam Fanoody 122
rtmmz3319@yahoo.com

The PIC16F887 microcontroller has three completely separate timers/counters
marked as TMRO, TMR1 and TMR2. If you want to learn more about them, read
carefully this chapter.

34TIMER TMRO

The timer TMRO has a wide range of application in practice. Very few programs
don’t use it in some way. It is very convenient and easy to use for writing programs or
subroutines for generating pulses of arbitrary duration, time measurement or counting
external pulses (events) with almost no limitations.

The timer TMRO module is an 8-bit timer/counter with the following features:

8-bit timer/counter;

8-hit prescaler (shared with Watchdog timer);
Programmable internal or external clock source;
Interrupt on overflow; and

Programmable external clock edge selection.

Figure below illustrates the timer TMRO schematic with all bits which determine its
operation. These bits are stored in the OPTION_REG register.

i Prescaler assignment:
election]
:" :T:i:nter 1 - assigned to WDT

0 = timer PSA E 44— (- assigned to timer or counter
|

Edge selection
1 = raising edge R — |

0 = falling edge . Watch-dog timer

|
'rocsﬂ |I " i I
5 | [

> PS2, PS1, PSO

|
Bits fo'T| prescaler rate selection
N
N TMROIF

Counter (timer) Interrupt flag
8-bit register

Pin RA4/TOCK
Signal external source

OPTION_REG Register

Meisam Fanoody 123
rtmmz3319@yahoo.com

RW{1) RW(1) RW(1) RW({1) RW({1) RW(1) RW({1) RW(1) Features
OPTION_REG | REPU [INTEDG | TOCS | TOSE | PSA PS2 PS1 PS0O | Bit name
Bit 7 Bit & Bit& Bit4 Bit3 Bit 2 Bit 1 Bitd

Legend

RW Readable/Writable bit
(1) After reset, bit is set

RBPU - PORTB Pull-up enable bit
o 0-PORTB pull-up resistors are disabled.
o 1-PORTB pins can be connected to pull-up resistors.

INTEDG - Interrupt Edge Select bit
o O- Interrupt on rising edge of the INT pin (0-1).
o 1-Interrupt on falling edge of the INT pin (1-0).

TOCS- TMRO Clock Select bit
o O - Pulses are brought to TMRO timer/counter input through the RA4
pin.
o 1-Timer usesinternal cycle clock (Fosc/4).

TOSE - TMRO Sour ce Edge Select bit
o 0O- Increment on high-to-low transition on the TMRO pin.
o 1-Increment on low-to-high transition on the TMRO pin.

PSA - Prescaler Assignment bit
o O- Prescaler isassigned to the WDT.
o 1-Prescaerisassigned to the TMRO timer/counter.

PS2, PS1, PSO - Prescaler Rate Select bit
o Prescaler rate is adjusted by combining these bits. As seen in the table,
the same combination of bits gives different prescaler rate for the
timer/counter and watch-dog timer, respectively.

pPS2 PS1 PSO TMRO WDT
0 0 0 1.2 11

0 0 1 1:4 1.2

0 1 0 1.8 14

0 1 1 1:16 1.8

1 0 0 1:32 1:16
1 0 1 1.64 1:32
1 1 0 1:128 1.64
1 1 1 1:256 1:128

When PSA bit is cleared, prescaler is asigned to TMRO timer/counter as ilustrated on
the figure below:

Meisam Fanoody 124
rtmmz3319@yahoo.com

Pin RA4/TOCK

P
TOSE H WDT Prescaler |
l | P_E':D: - & PS2, PS1, PSO

s

bz TMROIF |
Dsc.%%
mr

Let'sdoit in mikroC...

/1 In this exanple, TMRO is configured as a tiner and prescaler is
assigned to it.

unsi gned cnt; /1 Define variable cnt

void interrupt() { /1 Interrupt routine

cnt ++; /1 Interrupt causes cnt to be incremented by 1
TVRO = 155; [l Timer (or counter) TMRO returns its initial
val ue

| NTCON = 0x20; // Bit TOIE is set, bit TOIF is cleared

}

void main() {

OPTI ON_REG = 0x04; // Prescaler (1:32) is assigned to the timer TVMRO
TVRO = 155; /1 Timer TO counts from 155 to 255

| NTCON = OxAQ; /1 Enable interrupt TMRO

/1 In the followng exanple, TMRO is configured as counter and
prescaler is assigned to it

OPTI ON_REG = 0x20; // Prescaler (1:2) is assigned to the counter TMRO
TMRO = 155; /1 Counter TO counts from 155 to 255
| NTCON = OxAO0; /1 Enable interrupt TMRO

When PSA bit is set, prescaler is asigned to watch-dog timer as ilustrated on the next
figure:

Meisam Fanoody 125
rtmmz3319@yahoo.com

Pin RA4/TOCK
ii o

TOSE ! : WDT Prescaler

PS2, PS1, PSO

——>{[[[[][] > (rweore)

osc.|=

s

Let'sdoit in mikroC...

/1 In this exanple, prescaler (1:64) is assigned to Watch-dog ti mer.

void main() {
OPTI ON_REG = OxOE; // Prescaler is assigned to WDT (1: 64)
asm CLRWDT; /1 Assenbly command to reset WDT

asm CLRWDT; /1 Assenbly command to reset WDT

Additionally it is also worth mentioning:

When the prescaler is assigned to the timer/counter, any write to the TMRO
register will clear the prescaler.

When the prescaler is assigned to the watch-dog timer, the CLRWDT
instruction will clear both the prescaler and WDT.

Write to the TMRO register, used as timer, will not cause the pulse counting to
start immediately, but with two instruction cycles delay. Accordingly, it is
necessary to adjust the value written to the TMRO register.

When the microcontroller is set in sleep mode, the clock oscillator is turned
off. Overflow cannot occur since there are no pulses to count. Thisis why the
TMRO overflow interrupt cannot wake up the processor from Sleep mode.
When used as an external clock counter, without prescaler, a minimal pulse
length or a delay between two pulses must be 2 Tosc + 20 nS (Tosc is the
oscillator clock signal period).

When used as an external clock counter with prescaler, aminimal pulse length
or interval between two pulsesisonly 10nS.

The 8-bit prescaler register is not available to the user, which means that it
cannot be directly read or written to.

Meisam Fanoody 126
rtmmz3319@yahoo.com

When changing the prescaler assignment from TMRO to the watch-dog timer,
the following instruction sequence written in assembly language must be
executed in order to prevent the microcontroller from reset:

BANKSEL TMRO
CLRWDT ; CLEAR VDT
CLRF TMRO ; CLEAR TMRO AND PRESCALER

BANKSEL OPTI ON_REG

BSF OPTI ON_REG, PSA ; PRESCALER | S ASSI GNED TO WDT
CLRWDT ; CLEAR VDT

MOVLW b' 11111000" ; SELECT BI TS PS2, PS1, PSO AND CLEAR
ANDWF OPTI ON_REG W ; THEM BY ' LOG C AND | NSTRUCTI ON

| ORLW b' 00000101 ;BITS PS2, PS1, AND PSO SET
MOWAF CPTI ON_REG ; PRESCALER RATE TO 1: 32

Likewise, when changing the prescaler assignment from the WDT to TMRO,
the following instruction sequence, also written in assembly language, must be
executed:

BANKSEL TMRO

CLRWDT ; CLEAR WDT AND PRESCALER

BANKSEL OPTI ON_REG

MOVLW b' 11110000' ; SELECT ONLY BI TS PSA, PS2, PS1, PSO

ANDWF OPTI ON_REG, W ; CLEAR THEM BY ' LOG C AND | NSTRUCTI ON

| ORLW b' 00000011' ; PRESCALER RATE IS 1:16
MOWE OPTI ON_REG

In Short
In order to use TMRO properly, it is necessary:
Step 1: To select mode:

Timer mode is selected by the TOCS hit of the OPTION_REG register, (TOCS:
O=timer, 1=counter).

When used, the prescaler should be assigned to the timer/counter by clearing
the PSA bit of the OPTION_REG register. The prescaler rate is set by using
the PS2-PS0 bits of the same register.

When using interrupt, the GIE and TMROIE bits of the INTCON register
should be set.

Step 2: Measuring and Counting

Tomeasuretime:
Reset the TMRO register or write some known value to it.
Elapsed time (in microseconds when using 4MHz quartz) is measured by
reading the TMRO register.
The flag bit TMROIF of the INTCON register is automatically set every time
the TMRO register overflows. If enabled, an interrupt occurs.

To count pulses:

Meisam Fanoody 127
rtmmz3319@yahoo.com

The polarity of pulses are to be counted on the RA4 pin is selected by the
TOSE bit of the OPTION_REG register (TOSE: O=positive, 1=negative
pulses).

Number of pulses may be read from the TMRO register. The prescaler and
interrupt are used in the same manner asin timer mode.

35TIMER TMR1

Timer TMR1 module is a 16-bit timer/counter, which means that it consists of two
registers (TMR1L and TMR1H). It can count up 65.535 pulses in a single cycle, i.e.
before the counting starts from zero.

16-bit counter register
M

e,

TMR1H Register TMR1L Regiser
r : Ve ! \
[B e e e e s) I I I S e
bit 15 bit8 bit7 bit 0

Similar to the timer TMRO, these registers can be read or written to at any moment. In
case an overflow occurs, an interrupt is generated if enabled.

The timer TMR1 module may operate in one of two basic modes, that is as atimer or
acounter. Unlike the TMRO timer, both of these modes have additional functions.

The TMR1 timer has following features:

16-bit timer/counter register pair;

Programmable internal or external clock source;

3-hit prescaler;

Optional LP oscillator;

Synchronous or asynchronous operation;

Timer TMR1 gate control (count enable) viacomparator or T1G pin;
Interrupt on overflow;

Wake-up on overflow (external clock); and

Time base for Capture/Compare function.

Meisam Fanoody 128
rtmmz3319@yahoo.com

1™

T10SCEN E TMR1CS B T1SYNC B TMRAON H
- i
| | i T i

T1081

Pin

™ +1

TICKPS0

TICKPS1 Clockl

Pin
TIOS0MICKI

INTERRUPT

TMR1IF

TMRIGE H
4@'

Pin
TiG

TIMER TMR1 CLOCK SOURCE SELECTION

The TMRI1CS bit of the TLICON register is used to select the clock source for this
timer:

Clock Source TMR1CS
Fosc/4 0
T1CKI pin 1

When the internal clock source is selected, the TMR1H-TMRIL register pair will be
incremented on multiples of Fosc pulses as determined by the prescaler.

When the external clock source is selected, this timer may operate as a timer or a
counter. Clock in counter mode can be synchronized with the microcontroller internal
clock or run asynchronously. In the event that an external clock oscillator is needed
and the PIC16F887 microcontroller is using INTOSC with CLKOUT, timer TMR1
can use the LP oscillator as a clock source.

TIMER TMR1PRESCALER

Timer TMR1 has a completely separate prescaler which alows 1, 2, 4 or 8 division of
the clock input frequency. The prescaler is not directly readable or writable. However,
the prescaler counter is automatically cleared after writing to the TMR1H or TMR1L
register.

TIMER TMR1OSCILLATOR
RCO/T10S0 and RC1/T10SI pins are used to register pulses coming from peripheral

electronics, but they also have an additional function. As seen in figure, they are
simultaneously configured as both input (pin RC1) and output (pin RCO) of additional

Meisam Fanoody 129
rtmmz3319@yahoo.com

LP quartz oscillator (Low Power). This circuit is primarily designed for the operation
at low frequencies (up to 200 KHz), more precisely, for the use of 32,768 KHz quartz
crystal. Such crystals are used in quartz watches because it is easy to obtain one-
second-long pulses by dividing this frequency.

Since this oscillator does not depend on internal clock, it can operate even in sleep
mode. It is enabled by setting the TIOSCEN control bit of the TLCON register. The
user must provide a software time delay (a few milliseconds) to enable the oscillator
to start up properly.

| FC1BFEET |I

f \

| T1080 T105! /
— | —
32.768 kHz
c1 c2
15 - 33pF o — 15 - 33pF
GND

Table below shows the recommended values of the capacitors to suit the quartz
oscillator. These values do not have to be exact. However, the general rule is: the
higher the capacity, the higher the stability, which, at the same time, prolongs the time
needed for oscillator stability.

Oscillator Frequency C1 C2

Lp 32 kHz 33 pF 33 pF
100 kHz 15 pF 15 pF
200 kHz 15 pF 15 pF

TIMER TMR1 GATE

Timer TMRL1 gate source is software configurable to be the T1G pin or the output of
comparator C2. This gate allows the timer to directly time external events using the
logic state of the T1G pin or analog events using the comparator C2 output. Refer to
figure on the previous page. In order to measure a signal duration, it is sufficient to
enable this gate and count pulses passing through it.

THE USE OF TIMER TMR1 OSCILLATOR

The power consumption of the microcontroller is reduced to the lowest level in Sleep
mode since the main power consumer - the oscillator - doesn’t operate. It is easy to set
the microcontroller in this mode- by executing the SLEEP instruction. The problem is
how to wake up the microcontroller because only an interrupt can make it happen.
Since the microcontroller 'slegps, an interrupt must be triggered by external

Meisam Fanoody 130
rtmmz3319@yahoo.com

electronics. It gets incredibly complicated if it is necessary to wake up the
microcontroller at regular timeintervals...

T10SCEN ' TMRICS ' T15Yuca

Pin
T1081

I?lr‘a;" cda,lgr E

§ | Ji-|-1 0scC Synchronization
=
& § T1CKPS0

o L T1CKPS1

pa

In order to solve this problem, a completely independent Low Power quartz oscillator,
capable of operating in sleep mode, is built into the PIC16F887 microcontroller.
Simply put, a previously separate circuit is now built into the microcontroller and
assigned to the timer TMR1. The oscillator is enabled by setting the TLOSCEN bit of
the TICON register. The TMR1CS bit of the same register is then used to enable the
timer TMRL to use pulse sequences from that oscillator.

A signal generated by this quartz oscillator is synchronized with the
microcontroller clock by clearing the TISYNC bit. In this case, the timer
cannot operate in sleep mode because the circuit for synchronization uses the
microcontroller clock.

The TMR1 register overflow interrupt can be enabled. If the TISYNC bit is
set, such interrupts will also occur in sleep mode.

TMR1IN TIMER MODE

In order to select this mode, it is necessary to clear the TMRICS bit. After this, the
16-bit register will be incremented on every pulse generated by the internal oscillator.
If the AMHz quartz crystal isin use, it will be incremented every microsecond.

In this mode, the TISYNC bit does not affect the timer because it counts interna
clock pulses. Since the whole electronics uses these pulses, there is no need for
synchronization.

Meisam Fanoody 131
rtmmz3319@yahoo.com

TMRACS B TMR10ON !

Pulses to count !

) (TMR1”)

' 0 Prescaler —'—
o 1,2,4,8 Lg—Pcﬂul— TMR1H | TMR1L
1, |

T1CKPS0
T1CKPS1 GATE E
=
Osc. é E
i

TMRA1IF

The microcontroller’s clock oscillator does not operate during sleep mode so the timer
register overflow cannot cause any interrupt.

Let'sdoit in mikroC...

/1 In this exanmple, TMR1 is configured as a tinmer with the prescaler
rate 1:8. Every tine

/1 TMR1IH and TMRIL registers overflow occurs, an interrupt will be
request ed.

void main() {

PIRL. TMRLI F = 0; /1 Reset the TMRLIF flag bit

TVR1IH = 0x22; /1 Set initial value for the tinmer TMRL

TMRLL = 0xO00;

TMRICS = O; /1 Timerl counts pulses from internal
osci |l | ator

TICKPS1 = T1ICKPSO = 1; // Assigned prescaler rate is 1:8

PIEL. TMRLIE = 1; /1 Enable interrupt on overflow

| NTCON = 0xQ0; /! Enable interrupt (bits A E and PEIE)
TMRION = 1; /1 Turn the timer TMRL on

TMR1IN COUNTER MODE

Timer TMR1 starts to operate as a counter by setting the TMR1CS bit. It counts
pulses brought to the PCO/T1CKI pin and is incremented on the rising edge of the
external clock input T1CKI. If the control bit TISYNC of the TICON register is
cleared, the external clock inputs will be synchronized on their way to the TMR1
register. In other words, the timer TMR1 is synchronized to the microcontroller
system clock and is called a synchronous counter.

When the microcontroller, operating in this way, is set in sleep mode, the TMR1H
and TMRIL timer registers are not incremented even though clock pulses appear on
the input pins. Since the microcontroller system clock doesn’t run in this mode, there
are no clock inputs to be used for synchronization. However, the prescaler will

Meisam Fanoody 132
rtmmz3319@yahoo.com

continue to run as far as there are clock pulses on the pins because it is just a simple
frequency divider.

Pulses to count

TMRICS 1
T10SCEN T1SYNC [TMRION
- i

Prescaler
1,2, 4,8

—

.

| v
_‘L
X

Synchronization

........... IT108C

o T1CKPS0
4 T1CKPS1
"

Pin
TIOSOMTICKI
1

=]
0
INTERRUPT

TMRAIF

This counter registers a logic one (1) on input pins. It is important to know that at
least one falling edge must be registered prior to starting pulse counting. Refer to
figure on the left. The arrows in figure denote counter increments.

TiCKI=1
& { it {4
TICKI=0
{r {r & 4
Counter on
T1CON Register

| T1GINV | TMR1GE [T1CKPS1[T1CKPS0[T10SCEN [T1SYNC [TMR1CS [TMR1ON|

Legend

R'W Readable/Writable bits
{0} After reset, bit is cleared

T1GINV - Timerl Gate Invert bit acts as logic state inverter on the T1G pin gate or
the comparator C2 output (C20UT) gate. It enables the timer to mea sure time whilst
the gateis high or low.

1 - Timer 1 counts when the T1G pin or bit C20UT gateis high (1).
0 - Timer 1 counts when the T1G pin or bit C20UT gateislow (0).

TMRI1GE - Timerl Gate Enable bit determines whether the T1G pin or comparator
C2 output (C20UT) gate will be active or not. This bit is functional only in the event
that the timer TMR1 ison (bit TMR1ON = 1). Otherwise, this bit isignored.

Meisam Fanoody 133
rtmmz3319@yahoo.com

1-Timer TMR1isononly if Timerl gateis not active.
0 - Gate has no influence on the timer TMRL.

T1CKPS1, TICKPS0 - Determine the rate of the prescaler assigned to the timer
TMRA1.

TICKPSL TICKpso rescaler
Rate

0 0 1:1

0 1 1:2

1 0 1:4

1 1 1:8

T10OSCEN - LP Oscillator Enable Control bit

1 - LP oscillator is enabled for timer TMR1 clock (oscillator with low power
consumption and frequency 32.768 kHz).
0 - LPoscillator is off.

T1SYNC - Timerl External Clock Input Synchronization Control bit enables
synchronization of the LP oscillator input or T1CKI pin input with the microcontroller
internal clock. This bit is ignored while counting pulses from the main oscillator (bit
TMR1CS=0).

1 - Do not synchronize external clock input.
0 - Synchronize external clock input.

TMRICS- Timer TMR1 Clock Source Select bit

1 - Count pulses on the T1CKI pin (on the rising edge 0-1).
0 - Count pulses of the microcontroller internal clock.

TMRI1ON - Timerl On bit

1 - Enable timer TMRL1.
0 - Stop timer TMR1.

In Short
In order to use the timer TMRL1 properly, it is necessary to perform the following:

Since it is not possible to turn off the prescaler, its rate should be adjusted by
using bits TACKPS1 and T1CKPSO of the register TACON (Refer to table).
Select the mode by the TMRI1CS bit of the same register (TMR1CS: O=the
clock sourceis quartz oscillator, 1= the clock sourceis supplied externaly).
By setting the TLOSCEN bit of the same register, the oscillator is enabled and
the TMR1H and TMRIL registers are incremented on every clock input.
Counting stops by clearing this bit.

Meisam Fanoody 134
rtmmz3319@yahoo.com

The prescaler is cleared by clearing or writing to the counter registers.
By filling both timer registers, the flag TMR1IF is set and counting starts from
zero.

3.6 TIMER TMR2

Timer TMR2 module is an 8-bit timer which operatesin avery specific way.

Synchronous
serial port

A

1:1, 1:4, 1:16

TMR2 "
B)
Interrupt

Ui ree Postscaler
T2CKPS0 Comparator . : TMR2IF
EI TMR2=PR2 1:1-1:16

' T20UTPS0O
T20UTPS2

T20UTPS3

Pulses from the quartz oscillator first pass through the prescaler the rate of which may
be changed by combining the T2CKPS1 and T2CKPSO bits. The output of the
prescaler is then used to increment the TMR2 register starting from 00h. The values
of TMR2 and PR2 are constantly compared and the TMR2 register keeps on being
incremented until it matches the value in PR2. When the match occurs, the TMR2
register is automatically cleared to 00h. The timer TMR2 postscaler is incremented
and its output is used to generate an interrupt if it is enabled.

The TMR2 and PR2 registers are both fully readable and writable. Counting may be
stopped by clearing the TMR2ON bit, which results in power saving.

The moment of TMR2 reset may also be used to determine the baud rate of
synchronous serial communication.

Thetimer TMR2 is controlled by several bits of the T2CON register.

T2CON Register

. [TOUTPS3[TOUTPS2[TOUTPS1 TOUTPSO [TMR2N| T2CKPS1 [T2CKPS0)

Legend

Bit is unimplemented
R/W Readable/Writable bit
(0) After reset, bit is cleared

Meisam Fanoody 135
rtmmz3319@yahoo.com

TOUTPS3 - TOUTPSO - Timer2 Output Postcaler Select bits are used to determine
the postscaler rate according to the following table:

Postscaler
Rate

11
1.2
1:3
1:4
15
1.6
1.7
1:8
1.9
1:10
1:11
1:12
1:13
1:14
1:15
1:16

TOUTPS3 TOUTPS2 TOUTPSL TOUTPSO

FrlRrlRrRPIRPRP|RP|R|olololo o ololo
P P PP OOOOSFPFR PFRPR PR P oOOOO
P P OOPr PrRroor roorr oo
P OrRr OPFrP OPFrR OPFr OFrR oOr or o

TMR20N - Timer2 On hit turns the timer TMR2 on.

1-Timer TMR2 ison.
0-Timer TMR2 is off.

T2CKPS1, T2CKPS0 - Timer2 Clock Prescale bits determine the prescaler rate:

T2CKPSL T2CKPSO ;;fa'er
0 0 1:1

0 1 1:4

1 X 1:16

In Short

When using the TMR2 timer, you should know several specific details related to its
registers.

At the moment of powering on, the PR2 register contains the value FFh.
Both prescaler and postscaler are cleared by writing to the TMR2 register.
Both prescaler and postscaler are cleared by writing to the T2CON register.

Meisam Fanoody 136
rtmmz3319@yahoo.com

On any reset - you guess, both prescaler and postscaler are cleared.

CCP modules can operate in many different modes, which makes them the most
complicated to deal with. Just try to analyze their operation on the basis of the tables
describing bit functions and you will understand what we are talking about. So, if you
use some of the CCP module, first select the mode you need, analyze the appropriate
figure and then change bits of the registers. Or else...

3.7CCP MODULES

The CCP module (Capture/Compare/PWM) is a peripheral which allows the user to
time and control different events.

Capture Mode provides access to the current state of a register which constantly
changesitsvalue. Inthis casg, it isthe timer TMRL register.

Compare Mode constantly compares values of two registers. One of them is the
timer TMR1 register. This circuit also allows the user to trigger an external event
when a predetermined amount of time has expired.

PWM (Pulse Width Modulation) can generate signals of varying frequency and duty
cycle on one or more output pins.

The PIC16F887 microcontroller has two CCP modules- CCP1 and CCP2.

Both of them are identical in normal mode of operation, while the Enhanced PWM
features are available on CCP1 only. This is why this chapter gives a detailed
description of the CCP1 module. Concerning CCP2, only the features distinguishing it
from CCP1 will be covered.

CCP1MODULE

A central part of thiscircuit isa 16-bit register CCPR1 which consists of the CCPR1L
and CCPR1H registers. It is used for capturing or comparing with binary numbers
stored in the timer register TMR1 (TMR1H and TMR1L).

Module CCPR1 Registers

Register CCPR1H Register CCPR1L
A ~ A -
IS0 I I I I I = = N S S S e e
bit 15 bit8 bit7 bit 0

If enabled by software, the timer TMRL1 reset may occur on match in Compare mode.
Besides, the CCP1 module can generate PWM signals of varying frequency and duty
cycle.

Bits of the CCPLCON register are in control of the CCP1 module.

Meisam Fanoody 137
rtmmz3319@yahoo.com

CCP1IN CAPTURE MODE

In this mode, the timer register TMR1 (consisting of TMR1H and TMRI1L) is copied
to the CCP1 register (consisting of CCPR1H and CCPR1L) in the following
situations:

Every faling edge (1 -> 0) on the RC2/CCP1 pin;

Every rising edge (0 -> 1) on the RC2/CCPL1 pin;

Every 4th rising edge (0 -> 1) on the RC2/CCP1 pin; and
Every 16th rising edge (0 -> 1) on the RC2/CCP1 pin.

A combination of the four bits (CCPIM3 - CCP1IMO0) of the control register
determines which of these events will cause 16-bit data to be transfered. In addition,
the following conditions must be met:

The RC2/CCP1 pin must be configured as an input; and
TMR1 module must operate as timer or synchronous counter.

1} Flag bit CCP1IF

Prescaler
1/1, 1/4, 1/16

CCPR1

Pin
RC2/CCP1

| CCPR1H || CCPRIL |,

| TMR1H || TMRIL |-

CCP1M3 M
CCP1M2 TMRA1

CCP1M1
CCP1MO

The flag bit CCP1IF is set when capture is made. If the CCP1IE bit of the PIE1
register is set when it happens, an interrupt occurs.

When the CCP1 module exsits the capture mode, an unwanted capture interrupt may
be generated. In order to avoid this, both a bit enabling CCP1IE interrupt and flag bit
CCP1IF should be cleared prior to any change occurs in the control register.

Unwanted interrupts may also be generated by switching from one capture prescaler
to another. To avoid this, the CCP1 module should be temporarily switched off before
changing the prescaler.

The following program sequence, written in assembly language, is recommended:

BANKESEL CCP1CON
CLRF CCP1CON ; CONTROL REG STER IS CLEARED
; CCP1 MODULE IS OFF

Meisam Fanoody 138
rtmmz3319@yahoo.com

MOVLW XX ; NEW PRESCALER MODE | S SELECTED
MOVWF CCP1CON ; NEW VALUE | S LOADED TO THE CONTROL REG STER
; CCP1 MODULE 1S SI MULTANEOQUSLY SW TCHED ON

Let'sdoit in mikroC...

ASM {

BANKESEL CCP1CON

CLRF CCP1CON // CONTROL REG STER | S CLEARED
/1 CCP1 MODULE IS OFF

MOVLW XX /1 NEW PRESCALER MODE | S SELECTED
MOV CCP1CON // NEW VALUE IS LOADED TO THE CONTROL REG STER
} // CCP1 MODULE IS SI MULTANEQUSLY SW TCHED ON

CCP1IN COMPARE MODE

In this mode, the value stored in the CCP1 register is constantly compared to the value
stored in the timer register TMR1. When a match occurs, the logic state of the
RC2/CCP1 output pin may be changed, which depends on the state of bits in the
control register (CCP1M3 - CCP1MO0). The flag-bit CCP1IF will be simultaneously
Set.

1| Flag bit CCP1IF

r

Timer T1 CCE‘R1
Reset £ X
| CCPR1H || CCPRIL
: L
5[
] ey
) i T LI
S TMR1H || TMRIL
TRISC,2 CCP1M2 - 5 :
CCP1M1
CCP1MO TMR1

To set the CCP1 module to operate in this mode, two conditions must be met:

The RC2/CCP1 pin must be configured as an output; and
Timer TMR1 must be synchronized with internal clock.

CCP1IN PWM MODE

Signals of varying frequency and duty cycle have a wide range of application in
automation. A typical example is a power control circuit. Refer to figure below. If a
logic zero (0) indicates the switch-off and alogic one (1) indicates the switch-on, the

Meisam Fanoody 139
rtmmz3319@yahoo.com

electrical power that load consumers will be directly proportional to the pulse
duration. Thisratio is often called Duty Cycle.

@

LY
—(V=
'y b

Another example, common in practice, is the use of PWM signals in the circuit for
generating signals of arbitrary waveforms such as sinusoidal waveform. See figure
below:

PWM signal
before filtration ‘ ‘ ‘ ‘ ‘ |
RC filter
u
- — PWM signal
-, - -
e g N o after filtration
S / _ R
—> / AN g AN
7 __/ S

Devices which operate in this way are often used in practice as adjustable frequency
drivers controlling the electric motor (speed, acceleration, deceleration etc.).

Meisam Fanoody 140
rtmmz3319@yahoo.com

Bits of CCP1CON Register

P
P

TMR2=PR2

Pin

RC2/CCP1

TRISC,2

Bits T2CKS1, T2ZCKPS0
of T2ZCON register
(Timer T2 prescaler)

Comparator

®
PRz |

The figure above shows the block diagram of the CCP1 module set in PWM mode. In
order to generate a pulse of arbitrary form on its output pin, it is necessary to set pulse
period (frequency) and pulse duration.

Period

~—+Pulse

PWM PERIOD

The output pulse period (T) is determined by the PR2 register of the timer TMR2. The
PWM period can be calculated using the following equation:

PWM Period = (PR2 +1) * 4Tosc * TMR2 Prescale Vaue

If the PWM period (T) is known, then it is easy to determine the signal frequency F
because these two values are related by equation F=1/T.

PWM DUTY CYCLE

Meisam Fanoody 141
rtmmz3319@yahoo.com

The PWM duty cycle is specified by using in total of 10 bits: eight MSbs of the
CCPRLL register and two additional LSbs of the CCP1CON register (DC1B1 and
DC1B0). Theresult isa 10-bit number contained in the formula:

Pulse Width = (CCPR1L,DC1B1,DC1B0) * Tosc * TMR2 Prescale Vaue

The following table shows how to generate PWM signals of varying frequency if the
microcontroller uses 20 MHz quartz-crystal (Tosc=50nS).

HIEIETE) 122 488 1953 7812 1563 2083
[KHZ]

TMR?2 Prescaler |16 4 1 1 1 1
PR2 Register ~ |FFh FFh FFh 3Fh 1Fh 17h

Just two more things:

The output pin will be constantly set if the pulse width is by negligence
determined to be larger than PWM period.

In this application, the timer TMR2 postscaler cannot be used for generation
of longer PWM periods.

PWM RESOLUTION

An PWM signal is nothing more than a pulse sequence with varying duty cycle. For
one specified frequency (number of pulses per second), there is a limited number of
duty cycle combinations. This number represents a resolution measured by bits. For
example, a 10- bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit
resolution will result in 256 discrete duty cycles etc. In relation to this
microcontroller, the resolution is determined by the PR2 register. The maximum value
is obtained by writing number FFh.

PWM frequencies and resolutions (Fosc = 20MH2z):

ot 1.22kHz 4.88kHz 19.53kHz 78.12kHz 156.3kHz 208.3kHz
Frequency

Timer

Prescale 16 4 1 1 1 1

PR2 Vaue FFh FFh FFh 3Fh 1Fh 17h
Maximum |, 10 10 8 7 6
Resolution

PWM frequencies and resolutions (Fosc = 8MH2z):

PWM 1.22kHz 4.90kHz 19.61kHz 76.92kHz 153.85kHz 200.0kHz
Frequency
Timer
Prescale 16 4 1 1 1 1
Meisam Fanoody 142

rtmmz3319@yahoo.com

PR2Vaue 65h 65h 65h 19h 0Ch 09h

Maximum
Resolution

Let'sdoit in mikroC...

/* In this exanple, PWWM nmodule is initialized and set to give a pul se
train of 50% dutycycle.

For this pur pose, functions PWML_Init(), PWML_Start () and
PWVL_Set Duty() are used.

Al of them are already contained in the mkroC PRO for PIC PW
library and just need to

be copied to the program */

unsi gned short duty_c; /1 Define variable duty_c

void initMin() {

ANSEL = ANSELH = 0; /1 Al 1/0Opins are configured as digital
PCRTC = TRI SC = 0; /1 Initial state of port C output pins
PWML_I ni t (5000) ; /1 PWM nodule initialization (5KHz)

}

void main() {

initMin();

duty_c = 127, /1 Initial value of duty-cycle
PWML_Start(); /1 Start PWML nodul e

PWWL_Set Duty(duty c); // Set PWM duty-cycle to 50%

CCP1CON Register

| P1M1_| P1MO_| DC1B1 | DC1BO |CCP1M3|CCP1M2|CCP1M1|CCP1MO)

Legend

RW Readable/Writable bit
{0) After reset, bit is cleared

P1IM1, PIMO - PWM Output Configuration bits - In all modes, except for PWM, the
P1A pin is Capture/Compare module input. P1B, P1C and P1D pins act as
input/output port D pins. In PWM mode, these bits affect the operation of the CCP1
module as shown in table below:

Meisam Fanoody 143
rtmmz3319@yahoo.com

PIM1

P1IMO

Mode
PWM with single output

Pin P1A outputs modulated signal.
Pins P1B, P1C and P1D ae port D
input/output

Full Bridge - Forward configur ation

Pin P1D outputs modulated signal
Pin P1A is active
Pins P1B and P1C areinactive

Half Bridge configuration

Pins P1A and P1B output modulated signal
PinsP1C and P1D are port D input/output

Full Bridge - Rever se configuration

Pin P1B outputs modulated signal
Pin P1C is active
Pins P1A and P1D are inactive

DC1B1, DC1B0 - PWM Duty Cycle Least Significant bits - are only used in PWM
mode in which they represent two least significant bits of a 10-bit number. This
number determines duty cycle of the PWM signal. The rest of bits (8 in total) are

stored in the CCPRIL register.

CCP1IM3 - CCPIMO - CCP1 Mode Select hits determine the mode of the CCP1

module.

CCP1IM3
0
0

0

Meisam Fanoody

CCP1IM2
0
0

0

rtmmz3319@yahoo.com

CCP1IM1 CCPIMO Mode

0
0

1

0 Module is disabled (reset)

1 Unused

0 Compar e mode
CCP1IF bit is set on match

1 Unused
Capture mode

0 Every falling edge on the
CCP1 pin
Capture mode

1 Every rising edge on the CCP1
pin
Capture mode

0 Every 4th rising edge on the
CCP1 pin

1 Capture mode

Every 16th rising edge on the

144

1 0
1 0
1 0
1 0
1 1
1 1
1 1
1 1
CCP2MODULE

CCP1 pin
Compare mode

Output and CCP1IF bit are set
on match

Compare mode

Output is cleared and CCP1IF
bit is set on match

Compare mode

Interrupt request arrives and bit
CCP1IF is set on match

Compare mode

Bit CCP1IF is set and timers 1
or 2 registers are cleared

PWM mode

Pins P1A and P1C are active-
high

Pins P1B and P1D are active-
high

PWM mode

Pins P1A and P1C are active-
high
Pins P1B and P1D are active-
low

PWM mode

Pins P1A and P1C are active-
low

Pins P1B and P1D are active-
high

PWM mode

Pins P1A and P1C are active-
low
Pins P1B and P1D are active-
low

Excluding the different names of registers and bits, this module is avery good copy of
the CCP1 module set in normal mode. There is only one true difference between them

when CCP2 operates in Compare mode.

The difference refers to the timer T1 reset signal. Namely, if A/D converter is
enabled, at the moment the values of the TMR1 and CCPR2 registers match, the timer
T1 reset signal will automatically start A/D conversion.

Meisam Fanoody
rtmmz3319@yahoo.com

145

Pin
RC2/CCP2
1]

TRISC,1

Start of

A/D Conversio "
+
Timer T1
Reset

CCP2ZM3
CCcP2mz
CCP2ZM1
CCP2ZMO

1] Flag bit ccP2IF

CCPR2

II CCPR2H || CCPRaL 1|

1ir

TMR1H | TMRIL

L%

TMR1

Similar to the pervious module, this circuit is also under control of the control register
bits. Thistime, it isthe CCP2CON register.

CCP2CON Register

] [ocast [oczso [cceans cceanz ccea oceau

Legend

Bit is unimplemented
RW Readable/Writable bit
(0) After reset, bit is cleared

DC2B1, DC2B0 - PWM Duty Cycle Least Significant bits - are only used in PWM
mode representing two least significant bits of a 10-bit number. This number
determines duty cycle of the PWM signal. The rest of bits (8 in total) are stored in the
CCPR2L register.

CCP2M 3 - CCP2MO - CCP2 Mode Select hits select CCP2 mode.

CCP2M3 CCP2M2 CCP2M1 CCP2MO Mode

0 0 0 0 Module is disabled (reset)

0 0 0 1 Unused

0 0 1 0 Unused

0 0 1 1 Unused
Capture mode

0 1 0 0 Every falling edge on the
CCP2 pin

Meisam Fanoody

rtmmz3319@yahoo.com

146

0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 1
In Short

Setting up CCP1 module for PWM oper ation

Capture mode

Every raising edge on the
CCP2 pin

Capture mode

Every 4th rising edge on the
CCP2 pin

Capture mode

Every 16th rising edge on the
CCP2 pin

Compare mode

Output and CCP2IF bit are set
on match

Compare mode

Output is cleared and CCP2IF
bit is set on match

Compare mode

Interrupt is generated, CCP2IF
bit is set and CCP2 pin is
unaffected on match

Compar e mode

CCP2IF bit is set, Timer 1
registers are cleared, A/D
conversion is started if the A/D
converter is on on match

PWM mode

In order to set up the CCP module for PWM operation, the following steps should be

taken:

Disable the CCP1 output pin. It should be configured as an input.
Set the PWM period by loading the PR2 register.
Configure the CCP module to operate in the PWM mode by combining bits of

the CCP1CON register.

Set duty cycle of the PWM signa by loading the CCPRI1L register and using
bits DC1B1 and DC1BO0 of the CCP1CON register.

Configure and start timer TMR2:

Clear the TMR2IF interrupt flag bit of the PIR1 register.

Set the timer TMR2 prescale value by loading bits T2CKPS1 and
T2CKPS0 of the T2CON register.

Start the timer TMR2 by setting the TMR20ON bit of the T2CON

(0]
(0]

(0]

Meisam Fanoody
rtmmz3319@yahoo.com

147

Enable PWM output pins after one PWM cycle has been compl ete:
o Wait for the timer TMR2 overflow (the TMR2IF bit of the
PIR1register is set).
o Configure the appropriate pin as an output by clearing the bit of the
TRIS register.

CCP1IN ENHANCED MODE

The enhanced mode is available on CCP1 only. The CCP1 in enhanced mode
basically doesn’t differ from the CCP1 in normal mode and enhancement refers to
transmission of PWM signal to the output pins. Why is it so important? Because the
microcontrollers are more frequently used in electric motor control systems. These
devices are not described herein, but if you ever have had a chance to work on
development of similar devices, you will recognize elements which, until quite
recently, were used as external ones. We say ‘were used’ because all these elements
are now integrated into the microcontroller and can operate in several different
modes.

SINGLE OUTPUT PWM MODE

A single output PWM mode is enabled only in the event that the PAM 1 and PIMO bits
of the CCP1CON register are cleared. In this case, one PWM signal can be
simultaneously available on maximum of four different output pins. Besides, the
PWM signal may appear in basic or inverted waveform. Signal distribution depends
on the bits of the PSTRCON register, while its polarity depends on the CCPIM1 and
CCP1MO hits of the CCP1CON register.

When an inverted output is in use, pins are low-active and pulses having the same
waveform are always generated in pairs. on the PLA and P1C pins and P1B and P1D
pins, respectively.

CCP1MOD
CCP1M1 RC2 a STRA E TRISC2 B
L ._.|:.,::\ - Pin
v RC2/P1A
ﬁ :\': "J — | |
RDS E STRE E TRISDS |
_ — [~} R Pin
E IE 'i 3 || RDSP1B
J_l—ﬂ— STRC E TRISDG
RFE B
: 1 Pin
e =~ ke *| RDBIPIC
= i L
STRD TRISD7
RD7 = -
@' J’L. _ Pin
| - RD7/P1D
>
ud =>¢ g) — L
PORT/PWM INPUT/OUTPUT
Meisam Fanoody 148

rtmmz3319@yahoo.com

HALF-BRIDGE MODE

In relation to the half-bridge mode, the PWM signal is the output on the P1A pin,
while at the same time the complementary PWM signal is the output on the P1B pin.
Such pulses activate MOSFET drivers in Half-Bridge mode which enable/disable
current flow through the device.

It is very dangerous to switch on MOSFET drivers simultaneously. The short circuit
caused in that moment will be fatal. In order to avoid this, it is necessary to provide a
short delay between switching drivers on and off. Such delay is marked as 'td' in
figure below. The problem is solved by using the PDCO-PDC6 bits of the
PWM1CON register.

- Period P Period o
Pulse Width |

PIA | - L
- Wt -«
P1B . I I
TMR2 = PR2 —> TMR2 = PR2 —» TMR2 = PR2 —»

As shown in figure below, the half-bridge mode can also be used to activate MOSFET
driversin the Full Bridge configuration:

Meisam Fanoody 149
rtmmz3319@yahoo.com

— v
r———_T____ FET
FET Driver
Driver —f_| -
_Ih-H_H}_ :_11 t4.|>1 —<\h
= B
|- |
Load
- g —
L —1 FET
FET | Driver
Driver

e L LA T

FULL-BRIDGE MODE

All four pins are used as outputs in the full-bridge mode. In practice, this mode is
commonly used to run motors, thus providing a simple and full control of speed and
rotation direction. There are two configurations of this mode: Full Bridge-Forward
and Full Bridge-Reverse.

¢V .
— FET
Driver
'_‘:-qf f,/ -
{ -_| K
Load
___r_ EE———
__j FET
Driver
.___f'
{-_' __{-:x J‘_I
L -
_|
| - o
— LIy

FULL BRIDGE - FORWARD CONFIGURATION

In Forward mode the following occurs:
Logic one (1) appears on the P1A pin (pin is active-high);
Pul se sequence appears on the P1D pin; and

Logic zero (0) appears on the P1B and P1C pins (pins are active-low).

Figure below shows the state of the P1A-P1D pins during one full PWM cycle.

Meisam Fanoody 150
rtmmz3319@yahoo.com

P1A

Period

-l
]

X

P1B

' Pulse Width .

P1C

P1D I

FULL BRIDGE - REVERSE CONFIGURATION
The similar occurs in Reverse mode, only that these pins have different functions:
Logic one (1) appears on the P1C pin (pinis active-high);

Pul se sequence appears on the P1B pin; and
Logic zero (0) appears on the P1A and P1D pins (pins are active-low).

i Period ,
' Pulse Width
P1A :
P1B I
P1C
P1D

PWM 1CON Register

PRSEN | PDC6 | PDC5 | PDC4 | PDC3 | PDC2 | PDC1 | PDCO

Legend

RW Readable/Writable bit
(0) After reset, bit is cleared

STRC PWM Restart Enable bit

Meisam Fanoody 151
rtmmz3319@yahoo.com

1 - Upon auto-shutdown, the PWM module automatically restarts, while the
ECCPASE hit of the ECCPAS register is cleared.
0 - In order to restart PWM module upon auto-shutdown, the ECCPASE bit

must be cleared in software.

PDC6 - PDCO PWM Delay Count bits - 7-digit binary number determines the
number of instruction cycles (4*Tosc) added as a time delay during activation of
PWM output pins.

PRSEN=0
-+ PWM Period -
Shiutdown Event : . E
1 ! | 1
ECCPASE bit : ! E] i
1 1 | : 1
1 1 i
PWM Activity ._I' I_I ! | |
T T'l—Narmal F'WI"-'I—PT I T EGGL sE T
Cleared by
Start of Shutdawn Shutdown Firmware PWM
PWM Pariod Event Occurs Event Clears Rasumes
PRSEN=1
- PWM Pariod -
Shutdewn Event : . .
| ! | |
ECCPASE bit : | . !
' 1 1 '
I 1
PWM Activity] ’_I :

e

Shutdown Shuldown
PWM Period Event Occurs Event Clears Resumes

PSTRCON Register

RW(E) RW(0) RW([0) RW{0) RW([1) Features

PSTRCON | - . - |STRSYNC| STRD | STRC | STRB | STRA | Bit name
Bit 7 Bit& Bit5 Bit 4 Bit3 Bit2 Bit 1 Bit0
Legend

- Bit is unimplemented
RW Readable/Writable bit
(0) After reset, bit is cleared
(1) After reset, bit is set

STRSYNC - Steering Sync bit determines the moment of PWM pulse steering:

Meisam Fanoody 152
rtmmz3319@yahoo.com

1 - Steering occurs upon the PSTRCON register has been changed, but only if
aPWM waveform is compl eted.

0 - Steering occurs upon the PSTRCON register has been changed. The PWM
signal on the output pin isimmediately changed with no regard to whether the
previous cycle is completed or not. This operation is useful when it is needed
to immediately remove a PWM signa from the pin.

STRD - Steering Enable bit D determines the P1D pin function.

1 - The P1D pin has the PWM waveform with polarity controlled by the
CCP1MO0 and CCP1M1 hits.
0 - Pinisconfigured as agenera port D input/output.

STRC Steering Enable bit C determines the P1C pin function.
1 - The P1C pin has the PWM waveform with polarity controlled by the
CCP1IMO and CCP1M1 hits.
0 - Pinisconfigured as agenera port D input/output.

STRB - Steering Enable bit B determines the P1B pin function.
1 - The P1B pin has the PWM waveform with polarity controlled by the
CCP1IMO and CCP1M1 bits.
0 - Pinisconfigured as a general port D input/output.

STRA - Steering Enable bit A determines the P1A pin function.

1 - The P1D pin has the PWM waveform with polarity controlled by the
CCP1MO0 and CCP1M1 hits.
0 - Pinisconfigured as agenera port C input/output.

ECCPAS Register

ECCPASE ECCPASZ ECCPASTECCPASI[PSSAC |PSSACD [PSSED1 PSSED)

Legend

RW Readable/Writable bit
(0) After reset, bit is cleared

ECCPASE - ECCP Auto-Shutdown Event Status bit indicates whether shut-down
of CCP module has occurred (Shutdown state):

1 - CCP module isin Shutdown state.
0 - CCP module operates normally.

Meisam Fanoody 153
rtmmz3319@yahoo.com

ECCPAS2 - ECCPASO - ECCP Auto-Shutdown Source Select bits select auto
shutdown source:

Shutdown state

ECCPAS2 ECCPAS1 ECCPASO
sour ce
Shutdown state
0 0 0 disabled
0 0 1 Comparator C1
output change
0 1 0 Comparator C2
output change
0 1 1 Comparator C1 or
C2 output change
Logic zero (0) on
1 0 0 INT pin
Logic zero (0) on
INT pin or
1 0 1 comparator C1l
output change
Logic zero (0) on
INT pin or
1 1 0 comparator C2
output change
Logic zero (0) on
INT pin or
1 1 1 comparator C1 or
C2 output change

PSSAC1, PSSACO - Pins P1A, P1C Shutdown State Control bits define the logic
state of output pins P1A and P1C when CCP module is in shutdown state.

PSSAC1 PSSACO Pinslogic state

0 0 0

0 1 1

1 X High impedance (Tri-
state)

PSSBD1, PSSBDO - Pins P1B, P1D Shutdown State Control bits define the logic
state of output pins P1B and P1D when CCP moduleisin shutdown state.

PSSBD1 PSSBDO Pinslogic state

0 0 0

0 1 1

1 X High impedance (Tri-
Meisam Fanoody 154

rtmmz3319@yahoo.com

state)

The PIC16F887 microcontroller has several independent serial communication
modules, and each of them can be configured to operate in several different modes,
which make them irreplaceable in many situations. Remember what we advised you
about the CCP modules as the same applies here. Don’t burden yourself with details
of the operation of all of them, but select one and use only what you really need.

3.8 SERIAL COMMUNICATION MODULES

The USART is one of the oldest serial communication systems. The modern versions
of this system are upgraded and called somewhat differently - EUSART.

EUSART

U T LT L i

The Enhanced Universal Synchronous Asynchronous Receiver Transmitter
(EUSART) module is a serial 1/0 communication peripheral unit. It is also known as
Serial Communications Interface (SCI). It contains all clock generators, shift registers
and data buffers necessary to perform an input/output seria data transfer
independently of the device program execution. As its name states, apart from using
the clock for synchronization, this module can also establish asynchronous
connection, which makes it unique for some of the applications. For example, in the
event that it is difficult or impossible to provide specia channels for clock and data
transfer (for example, radio or infrared remote control), the EUSART module is
definitely the best possible solution.

The EUSART system integrated into the PIC16F887 microcontroller has the
following features:

Full-duplex asynchronous transmit and receive;
Programmable 8- or 9-bit wide characters;
Address detection in 9-bit mode;

Meisam Fanoody 155
rtmmz3319@yahoo.com

Input buffer overrun error detection; and
Half-duplex communication in synchronous mode.

EUSART ASYNCHRONOUSMODE

The EUSART transmits and receives data using a standard non-return-to-zero (NRZ)
format. As seen in figure below, this mode doesn’t use clock signal, while the format
of data being transferred is very simple:

Idle State STOP bit

* START bit 8- or 0.bit data |HP|

I/OOOOOOOOO’_LOOC

Briefly, each datais transferred in the following way:

In idle state, data line has high logic level (1);

Each data transmission starts with the START bit which is always a zero (0);
Each datais 8- or 9-bit wide (the LSB bit is transferred first); and

Each data transmission ends with the STOP bit which is always a one (1).

Figure below shows a common way of connecting PIC microcontroller that uses
EUSART module. The RS-232 circuit is used as a voltage level converter.

& L
[MCLR RET[]
[R RBE[]
R
s e
R [|RaA3 RB3[]
: ||"’U"F Oote wech | i 0 ras Re2[]
Ve GND (ras T Rei]
L— et m mJT]]j' [rEC = RBO[-E—
—”%[c2= RN+ . R 9 Ve o YEC
R OUT[] . RE2
_l 100nF ? 'ﬂ mi‘ ™ VCCD_E voe O i';n? %1-
[rzour T2 IN(——EIE GND E RDE [
|;[R2IN Rz2ouT-{E1= 0sc1 pg RDS 0
- 0SC2 =~ RD4[]
AXZI .
RCO RCT [
R — RC1 RCB [
; 1| RC2 RCS[]
=6 S0/3[0 Res Rosf]
|O S-)o [s) gL 08 O] RDO RD3[]
RO RDZ2 (]

EUSART ASYNCHRONOUSTRANSMITTER

Meisam Fanoody 156
rtmmz3319@yahoo.com

TXIE CPU
| [

i "\'\//
Interrupt ‘_ HHHHHHHH TXREG

s RCE/TX pin
UL | e = m
o]
NENNNENEN] <5,
TXEN ____ Register TSR T
o SPEN

Fosc—» Rl - Tx9
(M]

SPERGH TX9D TRMT
[svwe [1]x]oo] o |
Brois] [aron [«[1[1[o[o |
arore[[1 o[0 |
SPBRG
Baud Rate Generator

In order to enable data transmission via EUSART module, it is necessary to configure
it to operate as a transmitter. In other words, it is necessary to define the state of the
following bits:

TXEN =1 - EUSART transmitter is enabled by setting the TXEN bit of the
TXSTA register.

SYNC = 0 - EUSART s configured to operate in asynchronous mode by
clearing the SYNC bit of the TXSTA register.

SPEN = 1 - By setting the SPEN bit of the RCSTAregister, EUSART is
enabled and the TX/CK pin is automatically configured as an output. If this bit
is simultaneously used for some analogue function, it must be disabled by
clearing the corresponding bit of the ANSEL register.

The central part of the EUSART transmitter is the shift register TSR which is not
directly accessible by the user. In order to start data transfer, the module must be
enabled by setting the TXEN bit of the TXSTA register. Data to be sent should be
written to the TXREG register, which will cause the following sequence of events:

Byte will be immediately transferred to the shift register TSR;

TXREG register remains empty, which is indicated by setting the flag bit
TXIF of the PIR1 register. If the TXIE bit of the PIEL register is set, an
interrupt will be generated. However, the flag is set regardless of whether an
interrupt is enabled or not and it cannot be cleared by software, but by writing
new data to the TXREG register.

Control electronics 'pushes data toward the TX pin in synchronization with
internal clock: START bit (0) ... data... STOP bit (1).

When the last bit leaves the TSR register, the TRMT bit of the TXSTA
register is automatically set.

If the TXREG register has received a new character data in the meantime, the
whole procedure will be immediately repeated after the STOP bit of the
previous character has been transmitted.

Meisam Fanoody 157
rtmmz3319@yahoo.com

9-hit datatransfer is enabled by setting the TX9 bit of the TXSTA register. The TX9D
bit of the TXSTA register is the ninth and most significant data bit. When transferring
9-hit data, the TX9D data bit must be written prior to writing the 8 least significant
bits into the TXREG register. All nine bits of datawill be transferred to the TSR shift
register immediately after the TXREG write is compl ete.

EUSART ASYNCHRONOUS RECEIVER

FERR CREN OERR RCIDL

SPEN A ¢ T. T

RC7/RX pin
o v

RSR Register

Msb g 7-0 Lsb

RCREG Registe v

IRKBD Ix X xlxlx X|X x'

FIFO

SPBRGH

- [svwc [1]xo]o]
[aron [x|1]1]0] 0 |
0|

SPBRG

In order to enable data transmission via EUSART module, it is necessary to configure
it to operate as a transmitter. In other words, it is necessary to define the state of the
following bits:

Baud Rate Generator

CREN =1 - EUSART receiver is enabled by setting the CREN bit of the
RCSTA register;

SYNC = 0 - EUSART s configured to operate in asynchronous mode by
clearing the SYNC bit stored in the TXSTA register; and

SPEN = 1 - By setting the SPEN bit of the RCSTAregister, EUSART is
enabled and the RX/DT pin is automatically configured as an input. If this bit
is simultaneously used for some analogue function, it must be disabled by
clearing the corresponding bit of the ANSEL register.

When this first and necessary step is accomplished and the START bit is detected,
data is transferred to the shift register RSR through the RX pin. When the STOP bit
has been received, the following occurs:

Datais automatically transferred to the RCREG register (if empty);

The flag bit RCIF is set and an interrupt, if enabled by the RCIE bit of the
PIEL register, occurs. Similarly to the transmitter, the flag bit is cleared by
software only, i.e. by reading the RCREG register. Bear in mind that thisis a
two character FIFO memory (first-in, first-out) which alows reception of two
characters simultaneously;

If the RCREG register is occupied (contains two bytes) and the shift register
detects new STOP bit, the overflow bit OERR will be set. In this case, a new

Meisam Fanoody 158
rtmmz3319@yahoo.com

coming datais lost, and the OEER bit must be cleared by software. It is done
by clearing and resetting the CREN bit;
Note: it isnot possibleto recelve new data asfar asthe OERR bit is set.

If the STOP hit is a zero (0), the FERR bit of the RCSTA register detecting
receive error will be set; and

To enable 9-bit data reception, it is necessary to set the RX9 bit of the RCSTA
register.

RECEIVE ERROR DETECTION

There are two types of errors which the microcontroller can automatically detect. The
first one is caled Framing error and occurs when the receiver does not detect the
STOP bit at the expected time. Such an error is indicated by the FERR bit of the
RCSTA register. If this bit is set, the last received data may be incorrect. Here are
severa things important to know:

A Framing error does not generate an interrupt by itself;

If this bit is set, the last received data has an error;

A framing error (bit set) does not prevent reception of new data;

The FERR hit is cleared by reading received data, which means that check
must be done prior to reading data; and

The FERR bit cannot be cleared by software. If needed, it can be cleared by
clearing the SPEN bit of the RCSTA register. It will ssimultaneously cause the
whole EUSART system to be reset.

Another type of error is called Overrun Error. As previously mentioned, the FIFO
memory can receive two characters only. An overrun error will be generated if the
third character is received. Simply put, there is no space for another one byte and an
error is unavoidable. When this happens the OERR bit of the RCSTA register is set.
The consequences are the following:

Data already stored in the FIFO registers (two bytes) can be normally read;

No additional datawill be received until the OERR bit is cleared; and

This bit is not directly accessed. To clear it, it is necessary to clear the CREN
bit of the RCSTAregister or reset the whole EUSART system by clearing the
SPEN bit of the RCSTA register.

9-BIT DATA RECEIVE

Apart from receiving standard 8-bit data, the EUSART system supports 9-bit data
reception. On the transmit side, the ninth bit is ‘attached’ to the original byte directly
before the STOP hit. On the receive side, when the RX9 bit of the RCSTA register is
set, the ninth data bit will be automatically written to the RX9D bit of the same
register. After receiving this byte, it is necessary to take care of how to read its bits-
the RX9D data bit must be read prior to reading 8 least significant bits of the RCREG
register. Otherwise, the ninth data bit will be cleared.

Meisam Fanoody 159
rtmmz3319@yahoo.com

RSR Register

RCREG Register [0 = -
RX9D Ix xlx X xlx X x'—‘

| FIFO

JL

.
\\//

CPU

ADDRESSDETECTION

When the ADDEN bit of the RCSTA register is set, the EUSART module is able to
receive only 9-bit data, whereas all 8-bit datawill be ignored. Although it seemslike a
restriction, such modes enable seridl communication between several
microcontrollers. The principle of operation is smple. Master device sends a 9-bit
data representing the address of one slave microcontroller. However, al of them must
have the ADDEN bit set because it enables address detection. All dSave
microcontrollers, sharing the same transmission line, receive this data (address) and
automatically check whether it matches their own address. Software, in which address
match occurs, must disable address detection by clearing its ADDEN hit.

ADDEN =1 ADDEN =1 ADDEN =1

EUSART EUSART 1 EUSART 2 EUSART 3

“~——9-bit address

The master device keeps on sending 8-bit data. All data passing through the
transmission line will be received by the addressed EUSART module only. When the
last byte has been received, the slave device should set the ADDEN bit in order to
enable new address detection.

Meisam Fanoody 160
rtmmz3319@yahoo.com

ADDEN =1 ADDEN =0

EUSART

EUSART 1

"
L]
L]
[]
]
]
1
[]
1
1
[]
1
1
[]
]
1
L]

TXSTA Register

| CSRC | TX9 | TXEN | SYNC |SENDB | BRGH | TRMT | TX9D |

Legend

RW Readable/Writable bit

R Readable bit

{0} After reset, bit is cleared
(1) After reset, bit is set

CSRC - Clock Source Select bit - determines clock source. It is used only in
synchronous mode.

1 - Master mode. Clock is generated internally from Baud Rate Generator.
0 - Save mode. Clock is generated from external source.

TX9 - 9-bit Transmit Enable bit

1 - 9-bit datatransmission viaEUSART system.
0 - 8-bit data transmission via EUSART system.

TXEN - Transmit Enable bit

1 - Transmission enabled.
0 - Transmission disabled.

SYNC - EUSART Mode Select bit

1 - EUSART operates in synchronous mode.
0 - EUSART operates in asynchronous mode.

SENDB - Send Break Character bit isonly used in asynchronous mode and when it
isrequired to observe LIN bus standard.

1 - Break character transmission is enabled.

Meisam Fanoody 161
rtmmz3319@yahoo.com

0 - Break character transmission is completed.

BRGH - High Baud Rate Select bit determines baud rate in asynchronous mode. It
does not affect EUSART in synchronous mode.

1 - EUSART operates at high speed.
0 - EUSART operates at |low speed.

TRMT - Transmit Shift Register Status bit

1 - TSR register is empty.
0- TSR register isfull.

TX9D - Ninth bit of Transmit Data can be used as address or parity bit.

I Asynchronous transmission

White to TKREG I Yy
WOI'H 1 2 T
?smﬁt%m'“gg L ! [LT LI S_l 1 T I —
RC4/C2OUTITXICK I
pm e
TXIF bit
(Transmit Buffer — 1 TeY . |
Reg. Empty Flag) 1] q :
Word1 — !
mmm;:# Transmit Shift Reg |
T M S—

RCSTA Register

| SPEN | Rx9 | SREN | CREN |ADDEN | FERR | OERR | RX9D |

Legend

RW Readable/Writable bit

R Readable bit

(0} After reset, bit is cleared
(x} After reset, bit is unknown

SPEN - Serial Port Enable bit

1 - Seria port enabled. RX/DT and TX/CK pins are automatically configured
as input and output, respectively.
0 - Serial port disabled.

RX9 - 9-bit Receive Enable bit

1 - Reception of 9-bit dataviaEUSART system.
0 - Reception of 8-bit datavia EUSART system.

Meisam Fanoody 162
rtmmz3319@yahoo.com

SREN - Single ReceiveEnable bit is used only in synchronous mode when the
microcontroller operates as master.

1 - Single receive enabled.
0 - Single receive disabled.

CREN - Continuous Receive Enable bit acts differently depending on EUSART
mode.

Asynchronous mode:

1 - Receiver enabled.
0 - Receiver disabled.

Synchronous mode:

1 - Enables continuous receive until the CREN bit is cleared.
0 - Disables continuous receive.

ADDEN - Address Detect Enable bit is only used in address detect mode.

1 - Enables address detection on 9-bit data receive.
0 - Disables address detection. The ninth bit can be used as parity bit.

FERR - Framing Error bit

1 - On receive, Framing Error is detected.
0 - No framing error.

OERR - Overrun Error bit.

1- Onreceive, Overrun Error is detected.
0 - No overrun error.

RX9D - Ninth bit of Received Data can be used as address or parity bit.

The next diagram shows three words appearing on the RX input. The receiving buffer
isread after the third word, causing the OEER bit (overrun error bit) to be set.

Meisam Fanoody 163
rtmmz3319@yahoo.com

! Asynchronous reception |

. Start
RX/DT pin N\ bit (it oy bit1)

¢ Start . Start
! E xbii?@ slt;tp\ bt (oo E Wit 78,7 s;ci:.tp\ bit E S Xhit ma;l Stgi;g
fioe Shift - __ ((M [1 ((l
Rev Buffer Reg 4] 'T Word 1) Word 2 T)]
1 HEhEG RCREG 1
RCDL —— (
\
)] |
Read Rcv (((¢ ' .
Buffer B Y .
B o))5)
((((f
RCIF ((T S
{Interrupt Flag))] 1 /)
OERR bit (¢ (s (¢ IR
CREN (L [([(3
)] 3])] | E

EUSART BAUD RATE GENERATOR (BRG)

If you carefully look at asynchronous EUSART receiver or transmitter diagram, you
will see that both of them use clock signa from the local timer BRG for
synchronization. The same clock sourceis also used in synchronous mode.

The BRG timer consists of two 8-bit registers making one 16-bit register.

Baud Rate Generator Registers
A

- ~,
SPBRGH Register SPBRG Register
A " A
[— — — — — — — — NN
bit 15 bits bit7 bit 0

A number written to these two registers determines the baud rate. Besides, both the
BRGH bit of the TXSTAregister and the BRGH16 bit of the BAUDCTL register
affect clock frequency.

The formula used to determine Baud Rate is given in the table below.

Bits BRG 'Baud Rate
SYNC BRG1G BRGH EUSART Formula

Mode

8-bit /'Fosc / [64 (n +
0 0 0

asynchronous |1)]

8-hit /'Fosc / [16 (n +
0 0 1

asynchronous |1)]

16-bit /'Fosc / [16 (n +
0 1 0

asynchronous | 1)]
0 1 1 16-hit /'Fosc / [4 (n +

asynchronous |1)]

Meisam Fanoody 164
rtmmz3319@yahoo.com

8-bit /'Fosc / [4 (n +

1 0 X asynchronous 1)]
1 1 X 16-bit /'Fosc / [4 (n +
asynchronous |1)]

Tables on the following pages contain values that should be written to the 16-bit
register SPBRG and assigned to the SYNC, BRGH and BRGH16 hits in order to
obtain some of the standard baud rates. Use the following formulas to determine the
Baud Rate:

Fosc
_ Fosc Desired Baud Rate
Desired Baud Rate = 64(SPBRGH-SPBRG - 1) SPBRGH:SPERG —T

Calc.Baud Rate - Desired Baud Rate
Desired Baud Rate

Error [%] =

SYNC =0, BRGH =0, BRG16=0
Fosc = 20 MHz Fosc = 18.432 MHz |/Fosc = 11.0592 MHz

Fosc = 11.0592 MHz
Baud Rafe

300
1200
2400
9600
10417
19.2k
57.6k
115.2k

1221 1.73
2404 0.16
9470 -1.36
10417 0.00
19.53 1.73

value

(dec.)
239
119

1200 0.00
2400 0.00
9600 0.00
10165 -2.42
19.2 0.00
576 0.00

1202 0.16
2404 0.16
9615 0.16
10417 0.00

value

Baud Rate Actual |Error SEEEE Actual |Error

value Rate | % value Rate | o value

(dec.) ' (dec.) ' (dec.)
300 300 016 207 300 0.00 191 300 016 103 300 0.16 51
1200 1202 0.16 51 1200 0.00 47 1202 0.16 25 1202 0.16 12
2400 2404 0.16 25 2400 0.00 23 2404 0.16 12 - - -
9600 - - - 9600 0.00 5 - - - - - -
10417 (10417 0.00 5 - - - 10417 0.00 2 - - -
19.2k - - - 19.2 0.00 2 - - - - - -
57.6k - - - 57.6k 0.00 0 - - - - - -
115.2k - - - - - - - - - - - -

Meisam Fanoody 165

rtmmz3319@yahoo.com

SYNC =0, BRGH =1

Fosc = 20 MHz Fosc = 18.432 MHz | Fosc = 11.0592 MHz Fosc = 8 MHz

Baud Rate SPBRG SPBRG SPBRG
Actual
Rate value value : value
(dec.) " | (dec.) ~ | (dec.)
300 - - - - - - - - - - - -
1200 - - - - - - - - - - - -
2400 - 2404 0.16 207

9600 9615 016 129 9600 0.00 119 9600 0.00 71 9615 0.16 51
10417 10417 000 119 |10378 -0.37 110 |10473 0.53 65 10417 0.00 47
19.2k 19.23k 0.16 64 19.2 0.00 59 19.2k 0.00 35 19231 0.16 25
57.6k 56.82k -1.36 21 57.6k 0.00 19 57.6k 0.00 11 55556 -3.55 8
115.2k |113.64k -1.36 10 115.2k 0.00 9 115.2k_0.00 5 - - -

Baud Rate
value
(dec.)

300 - - - - - - - - - 300 0.16 207
1200 1202 0.16 207 1200 0.00 191 1202 0.16 103 1202 0.16 51
2400 2404 016 103 2400 0.00 95 2404 0.16 51 2404 0.16 25
9600 9615 0.16 25 89600 0.00 23 9615 0.16 12 - - -

10417 10417 0.00 23 10473 0.00 1 10417 0.00 11 10417 0.00 5

19.2k 19.23k 0.16 12 19.2 0.00 1 - - - - - -

57.6k - - - 57.6k 0.00 3 - - - - - -
115.2k - - - 115.2k 0.00 1 - - - - - -

Fosc = 20 MHz Fosc = 18.432 MHz | Fosc = 11.0592 MHz

Baud Rat
augnate Actual SEBRG Actual |Error - Actual
value : value

; , o . value value
Rale | B |'gacy|| Rate [% |gac) | %8 | * [[(dec) % | (dec.)

300 300 0.00 -0.02 1666
1200 1200 -0.03 1041 | 1200 0.00 959 |1200 0.00 575 | 1199 -0.08 416
2400 2399 -0.03 520 | 2400 0.00 479 | 2400 0.00 287 | 2404 016 207
9600 9615 016 129 | 9600 0.00 119 |9600 0.00 71 9615 016 51
10417 | 10417 0.00 M9 |10378 -0.37 10 |10473 053 65 |10417 0.00 47
19.2k 19.23k 0.16 64 19.2k 0.00 59 19.2k 0.00 35 |1923k 016 25
57.6k | 56.818 -1.36 21 57.6k 0.00 18 576k 000 11 |55556 -3.55 8
1152k |113.636 -1.36 10 |115.2k 0.00 9 115.2k 0.00 5 - - -

SYNC =0, BRGH =0, BRG16 = 1

Fosc = 4 MHz Fosc = 3.6864 MHz

Baud Rate SPBRG SPBRG|, . SPBRG SPBRG

Actual |Error y
EE o value o value p value
Rate o

(dec.) {dec.) ' (dec.) ’ (dec.)

300 300.1 0.04 832 300 0.00 767 |299.8 -0108 416 |300.5 0.16 207
1200 1202 016 207 1200 0.00 191 1202 0.16 103 1202 0.16 51
2400 2404 0.16 103 2400 0.00 95 2404 016 51 2404 0.16 25

9600 9615 0.16 25 9600 0.00 23 9615 0.16 12 - -

10417 10417 0.00 23 10473 0.53 21 10417 0.00 11 10417 0.00 5

19.2k 19.23k 0.16 12 19.2k 0.00 11 - - - - - -

57 .6k - - - 57.6 0.00 3 - - - - - -
115.2k - - - 115.2k 0.00 1 - - - - - -
Meisam Fanoody 166

rtmmz3319@yahoo.com

SYNC =0, BRGH =1, BRG16 =1 or SYNC =1, BRGH16 = 1

Fosc = 20 MHz Fosc = 18.432 MHz | Fosc = 11.0592 MHz Fosc = 8 MHz

Baud Rate| SPBRG __|SPBRG SPBRG| , . SPBRG
Actual | Error =] ; Actual | Error
Rate o _;aluu \I«al ug _.falue_ Rate o yaluel
(dec.) (dec.) (dec.) (dec.)
300 300 0.00 16665 | 300 0.00 15359 | 300 0.00 9215 300 0.00 6666
1200 1200 -0.01 4166 1200 0.00 3839 (1200 0.00 2303 | 1200 -0.02 1666
2400 2400 0.02 2082 | 2400 0.00 1919 | 2400 0.00 1151 2401 0.04 832
9600 9597 -0.03 520 9600 0.00 479 9600 0.00 287 9615 0.16 207
10417 10417 0.00 479 (10425 0.08 441 10433 0.16 264 10417 0O 191
19.2k 19.23k 0.16 259 19.2k 0.00 239 19.2k 0.00 143 |19.23k 0.16 103
57.6k 57.47k -0.22 86 57.6k 0.00 79 57.6k 0.00 47 57.14k -0.79 34
115.2k [116.3k 0.95 42 115.2k 0.00 39 115.2k 0.00 23 117.6k 2.12 16

Baud Rate SPBRG SPBRG
Actual |Error] Tor

value value value value

(dec.) ~ | (dec.) ~ | (dec.) ~ | (dec.)

300 300 0.01 3332 | 300 0.00 3071 |2999 -0.02 1666 |300.1 0.04 832
1200 1200 0.04 832 | 1200 0.00 767 1199 -0.08 416 | 1202 016 207
2400 2398 0.08 416 | 2400 0.00 383 | 2404 016 207 | 2404 016 103
9600 9615 0.16 103 | 9600 0.00 96 9615 0.16 51 9615 016 25
10417 | 10417 0.00 95 10473 053 87 10417 0.00 47 10417 0.00 23
19.2k |19.23k 0.16 51 19.2k 0.00 47 |19.23k 0.16 25 |19.23k 0.16 12
576k |58.82k 2.12 16 57.6k 0.00 15 |55.56k -3.55 8 - - -
115.2k |111.1k -3.55 8 115.2k 0.00 7 - - - - - -

BAUDCTL Register

| ABDOVF| RCIDL | - | SCKP [BRG16 | - | WUE |ABDEN.

Legend

- Bit is unimplemented
RW Readable/Writable bit

R Readable bit

(0) After reset, bit is cleared
(1) After reset, bit is set

ABDOVF - Auto-Baud Detect Overflow bit is only used in asynchronous mode
during baud rate detection.

1 - Auto-baud timer has overflowed.
0 - Auto-baud timer has not overflowed.

RCIDL - Receive ldle Flag bit isonly used in asynchronous mode.

1 - Receiverisidle.
0 - START bit has been received and data receive isin progress.

Meisam Fanoody 167
rtmmz3319@yahoo.com

SCKP - Synchronous Clock Polarity Select bit. The logic state of this bit varies
depending on which EUSART mode is active.

Asynchronous mode:

1 - Transmit inverted data to the RC6/TX/CK pin.
0 - Transmit non-inverted data to the RC6/TX/CK pin.

Synchronous mode:

1 - Synchronization on the clock rising edge.
0 - Synchronization on the clock falling edge.

BRG16 16-bit Baud Rate Generator bit - determines whether the SPBRGH register
will be used, i.e. whether the BRG timer will have 8 or 16 hits.

1 - 16-bit baud rate generator is used.
0 - 8-hit baud rate generator is used.

WUE Wake-up Enable bit

1 - Receiver waits for a falling edge on the RC7/RX/DT pin to wake up the
microcontroller from sleep mode.
0 - Recelver operates normally.

ABDEN - Auto-Baud Detect Enable bit is used in asynchronous mode only.

1 - Auto-baud detect mode is enabled. Bit is automatically cleared on baud
rate detection.
0 - Auto-baud detect mode is disabled.

Let'sdoit in mikroC...

/* In this exanple, internal EUSART nobdule is initialized and set to
send back the

message imediately after receiving it. Baude rate is set to 9600
bps. The program

uses UART library routines UART1l init(), UART1 Wite_Text(),
UART1 Data_Ready(),

UART1 Wite() and UART1_Read().*/

char uart _rd;

void main() {

ANSEL = ANSELH = 0; /1 Configure AN pins as digital

CLON bit = C2ON bit = 0; /1 Disable conparators

UART1_I nit(9600); /1 Initialize UART nodul e at 9600 bps
Del ay_ns(100); /1 Wait for UART nodule to becone
stabl e

UART1_Wite Text("Start");

while (1) { /1 Endl ess | oop
if (UART1_Data_Ready()) { /1 1If data is received,
uart_rd = UART1_Read(); // read the received data,

Meisam Fanoody 168
rtmmz3319@yahoo.com

UART1 Wite(uart_rd); /1 and send data back via UART

}
}
}

In Short

Data transmission via asynchronous EUSART communication:

1.

The desired baud rate should be set by using bits BRGH (TXSTA register) and
BRG16 (BAUDCTL register) and registers SPBRGH and SPBRG.

The SYNC bit (TXSTA register) should be cleared and the SPEN bit should
be set (RCSTA register) in order to enable serial port.

The TX9 bit of the TXSTA register should be set on 9-bit data transmission.
Data transmission is enabled by setting the TXEN bit of the TXSTA register.
The TXIF bit of the PIR1 register is automatically set.

The GIE and PEIE bits of the INTCON register should be set to enable the
TXEN bit to cause an interrupt.

Value of the ninth bit should be written to the TX9D bit of the TXSTA
register on 9-bit data transmission.

Transmission starts by writing 8-bit data to the TXREG register.

Data reception via asynchronous EUSART communication:

1.

2.

SRS

7.

Baud Rate should be set by using bits BRGH (TXSTA register) and BRG16
(BAUDCTL register) and registers SPBRGH and SPBRG.

The SYNC bit (TXSTA register) should be cleared and the SPEN bit should
be set (RCSTA register) in order to enable serial port.

Both the RCIE bit of the PIE1 register and bits GIE and PEIE of the INTCON
register should be set when it is necessary to enable the data reception to cause
an interrupt.

The RX9 hit of the RCSTA register should be set on 9-bit datareceive.

Data reception is enabled by setting the CREN bit of the RCSTA register.

The RCSTA register should be read in order to check whether some errors
have occurred during transmission. The ninth bit will be stored in this register
on 9-bit data reception.

The received 8-bit data stored in the RCREG register should be read.

Setting Address Detection M ode:

1.

2.

Baud Rate should be set by using bits BRGH (TXSTA register) and BRG16
(BAUDCTL register) and registers SPBRGH and SPBRG.

The SYNC bit (TXSTA register) should be cleared and the SPEN bit should
be set (RCSTA register) in order to enable seria port.

The RCIE bit of the PIE1 bit as well as bits GIE and PEIE of the INTCON
register should be set when it is necessary to enable the data reception to cause
an interrupt.

The RX9 bit of the RCSTA register should be set.

The ADDEN of the RCSTA register should be set, which enables data to be
recognized as address.

Meisam Fanoody 169
rtmmz3319@yahoo.com

6. Data reception should be enabled by setting the CREN bit of the RCSTA
register.

7. Assoon as the 9-bit data is received, the RCIF bit of the PIR1 register will be
automatically set. If enabled, an interrupt occurs.

8. The RCSTA register should be read in order to check whether some errors
have occurred during transmission. The ninth bit RX9D is always set.

9. The received 8-bit number stored in the RCREG register should be read. It
should be checked whether the combination of these bits matches the
predefined address. If the match occurs, it is necessary to clear the ADDEN bit
of the RCSTA register, which enables 8-bit data to be received.

MASTER SYNCHRONOUS SERIAL PORT MODULE

MSSP module (Master Synchronous Serial Port) isavery useful, but at the same time
one of the most complex circuits within the microcontroller. It enables high speed
communication between the microcontroller and other peripherals or other
microcontrollers by using few input/output lines (maximum two or three). Therefore,
it is commonly used to connect the microcontroller to LCD displays, A/D converters,
seriadl EEPROMS, shift registers etc. The main feature of this type of communication
isthat it is synchronous and suitable for use in systems with a single master and one
or more slaves. A master device contains a circuit for baud rate generation and
supplies al devices in the system with the clock. Slave devices may in this way
eliminate the internal clock generation circuit. The MSSP module can operate in one
out of two modes:

SPI mode (Serial Peripheral Interface); and
12C mode (Inter-Integrated Circuit).

As seen in figure below, one MSSP module represents only a half of the hardware
needed to establish serial communication, while the other half is stored in the device it
exchanges data with. Even though the modules on both ends of the line are the same,
their modes are essentially different depending on whether they operate as a Master or
aSave

If the microcontroller to be programmed controls another device or circuit
(peripherals), it should operate as a master device. It will generate clock when needed,
i.e. only when data reception and transmission are required by the software.
Obviousdly, connection establishment depends exclusively on the master device.

Meisam Fanoody 170
rtmmz3319@yahoo.com

SPIl mode
—Processor 1} VUL & Processor 2

Master @ nnnn Slave

Processor 1\ rnnnnnnnn = Processor 2

@ nnn »

Slave

Master

Otherwise, if the microcontroller to be programmed is integrated into a more complex
device (for example, a PC) then it should operate as a Slave device. As such, it always
has to wait for data transmission request to be sent by the master device.

SPI MODE

The SPI mode allows 8 bits of data to be transmitted and received simultaneously
using 3 input/output lines:

SDO - Srial Data Out - transmit ling;
SDI - Serial Data In - receive line; and
SCK - Serial Clock - synchronization line.

Apart from these three lines, there is the forth line (SS) as well which may be used if
the microcontroller exchanges data with several peripheral devices. Refer to figure
below.

SS - Save Select - is additional pin used for specific device selection. It is active only
when the microcontroller is in slave mode, i.e. when the external - master device
requires data exchange.

When operating in SPI mode, MSSP module usesin total of 4 registers:

SSPSTAT - status register

SSPCON - control register

SSPBUF - buffer register

SSPSR - shift register (not directly available)

Meisam Fanoody 171
rtmmz3319@yahoo.com

The first three registers are writable/readable and can be changed at any moment,
while the forth register, since not available, is used for converting data into ‘serial’
format.

Selected peripheral
device to accomplish

/ SPI communication with

1| o] 1] |55=1 S5=1
Master Slave Slave
SPI _ . SPI _ _sPi
558 538
= E §| | |

As seen in figure below, the central part of the SPI module consists of two registers
connected to pins for reception, transmission and synchronization.

ssPBUF | K| |51 K | ssppuF
¢ ¢
=S sSPSR el |——{ %581 ssPsR [|
—»

The Shift register (SSPRYS) is directly connected to the microcontroller pins and used
for data transmission in seria format. The SSPRS register has its input and output so
as to shift the data in and out of device. In other words, each bit appearing on the
input (receive line) simultaneously shifts another bit toward the output (transmit line).

The SSPBUF register (Buffer) is part of memory used to temporarily hold the data
prior to being sent or immediately after being received. After all 8 bits of data have
been received, the byte is moved from the SSPRS to the SSPBUF register. This
double buffering of the received data (SSPBUF) allows the next byte to start reception
before reading the data that has just been received. Any write to the SSPBUF register
during data transmission/ reception will be ignored. From the programmers’ point of
view, thisregister is considered the most important as being most frequently accessed.
Namely, if we neglect mode settings for a moment, data transfer via SPI actually
comes to data write and read from this register, while another ‘acrobatics’ such as
moving registers are automatically performed by hardware.

Let'sdoit in mikroC...

/* In this exanple, PIC microcontroller (master) sends data byte to
peri pheral chip

Meisam Fanoody 172
rtmmz3319@yahoo.com

(slave) via SPI. Program uses SPI library functions SPI1_init() and
SPI1_Wite. */

shit Chip_Select at RCO bit; /1 Peripheral chip_select
pin is connected to RCO

shit Chip_Select Direction at TRISCO bit; // TRISCO bit defines RCO
pin to be input or output

unsi gned int val ue; /1 Data to be sent (value)
is of unsigned int type

void main() {

ANSEL = ANSELH = 0; /1 Al 1/Opins are digita
TRISBO bit = TRISBL bit = 1; /1 Configure RBO, RBl1 pins as
i nputs

Chi p_Sel ect = 0; /1 Sel ect peripheral chip

Chi p_Select_Direction = 0; /1 Configure the CS# pin as an
out put

SPI1 Init(); /1 Initialize SPlI nodul e

SPI1 Wite(val ue); /1 Send value to periphera
chip

In short

Prior to the SPI initialization, it is necessary to specify several options:

Master mode TRISC.3=0 (the SCK pin isthe clock output);

Slave mode TRISC.3=1 (the SCK pin isthe clock input);

Data input phase- middle or end of data output time (the SMP bit of the
SSPSTAT register);

Clock edge (the CKE bit of the SSPSTAT register);

Baud Rate, bits SSPM3-SSPMO of the SSPCON register (only in Master
mode);

Slave select mode, bits SSPM 3-SSPMO of the SSPCON register (Slave mode
only).

The module starts to operate by setting the SSPEN bit:

CPU
N

‘ SSPBUF |

Step 1.

Datato be transmitted should be written to the buffer register SSPBUF-. If the SPI
module operates in master mode, the microcontroller will automatically perform the
following steps 2, 3 and 4. If the SPI module operates as Slave, the microcontroller
will not perform these steps until the SCK pin detects clock signal.

Meisam Fanoody 173
rtmmz3319@yahoo.com

SSPBUF

L

SSPSR

Step 2.
The datais now moved to the SSPSR register and the SSPBUF register is not cleared.

L) SSPSR |E)

Step 3.

This datais then shifted to the output pin (MSB bit first) while the register is
simultaneously being filled with bits through the input pin. In Master mode, the
microcontroller itself generates clock, while the Slave mode uses external clock (the
SCK pin).

SSPBUF
1y e
— BF /Qx
SSPSR |, sspiF
Step 4.

The SSPSR register is full once 8 bits of data have been received. It isindicated by
setting the BF bit of the SSPSTAT register and the SSPIF bit of the PIR1 regis-ter.
The received data (one byte) is automatically moved from the SSPSR register to the
SSPBUF register. Since serial datatransmission is performed automatically, the rest
of the program is normally executed while the data transmission isin progress. In this
case, the function of the SSPIF bit is to generate an interrupt when one byte
transmission is compl eted.

CPU
*

‘SSPBUFl

Meisam Fanoody 174
rtmmz3319@yahoo.com

Step 5.
Finally, the data stored in the SSPBUF register is ready for use and should be moved
to adesired register.

1°C MODE

I°C mode (Inter IC Bus) is especially suitable when the microcontroller and an
integrated circuit, which the microcontroller should exchange data with, are within the
same device. It is usualy another microcontrollers or specialized, cheap integrated
circuits belonging to the new generation of so called 'smart peripheral components
(memories, temperature sensors, real-time clocks etc.)

Similar to seria communication in SPI mode, data transfer in 1°C mode is
synchronous and bidirectional. This time only two pins are used for data transmission.
These are the SDA (Serial Data) and SCL (Seria Clock) pins. The user must
configure these pins as inputs or outputs through the TRISC bits.

By observing particular rules (protocols), this mode enables up to 122 different
components to be simultaneously connected in a ssimple way by using only two
valuable 1/0 pins. Let’s take alook at how it works:

Clock, necessary to synchronize the operation of both devices, is aways generated by
a master device (a microcontroller) and its frequency directly affects the baud rate.
Even though there is a protocol alowing maximum 3,4 MHz clock frequency (so
called highspeed 12C bus), this book covers only the most frequently used protocol the
clock frequency of which islimited to 100 KHz. Minimum frequency is not limited.

When master and slave components are synchronized by the clock, every data
exchange is always initiated by the master. Once the M SSP modul e has been enabled,
it waits for a Start condition to occur. The master device first sends the START bit
(logic zero) through the SDA pin, then a 7-bit address of the selected slave device,
and finally, the bit which requires data write (0) or read (1) to the device. In other
words, the eight bits are shifted to the SSPSR register following the start condition.
All slave devices sharing the same transmission line will simultaneously receive the
first byte, but only one of them has the address to match and receives the whole data.

[LU ======mmemmman, Address 2

" SDA
UL SCL

[s
@sme IQSIVE I@sm\m

Address ‘i Address 2 Address 3

Meisam Fanoody 175
rtmmz3319@yahoo.com

Once the first byte has been sent (only 8-bit data are transmitted), master goes into
receive mode and waits for acknowledgment from the receive device that address
match has occurred. If the slave device sends acknowledge data bit (1), data transfer
will be continued until the master device (microcontroller) sends the Stop bit.

soa| [e[s/4[3[2[1]o] [[BYTE

: Ty vTE n-1| [7]6[s[4]3[2[1]o] [spa
ﬁDDﬁESS Acknowledge F 77 —
Data Bit (1) DATA n l
j

START bit (0) RW |p = WRITE
1 = READ L SO STOP bit i‘/

Data Bit

N

JUtuuud iU Ui UUUUUUuyuu
| ADDRESS| || BYTE1 || BYTE2 || BYTE3 || || BYTEn |||
Data Transfer Start Data Transfer End

This is the simplest explanation of how two components communicate. Such a
microcontroller is also capable of controlling more complicated situations when 1024
different components (10-bit address), shared by several different master devices, are
connected. Such devices are rarely used in practice and there is no need to discuss
them at greater length.

Figure below shows the block diagram of the MSSP module in 1°C mode.

Meisam Fanoody 176
rtmmz3319@yahoo.com

MCU
g &

SSPBUF '
g

SCL pin ﬁ‘F f SSPSR |«
SDA pin ﬁ}

V

Address
Detect

SSPADD '

START and STOP
Bits Detect

The MSSP module uses six registers for 1°C operation. Some of them are shown in
figure above:

SSPCON
SSPCON2
SSPSTAT
SSPBUF
SSPSR
SSPADD

SSPSTAT Register

Meisam Fanoody 177
rtmmz3319@yahoo.com

| SWP | CKE | DA | P_| S | RW | UA | BF |

Legend

RW Readable/Writable bit
R Readable bit
(0) After reset, bit is cleared

SMP Sample bit
SPI master mode - This bit determines input data phase.

1- Logic stateisread at end of data output time.
0- Logic stateisread in the middle of data output time.

SPI slave mode - This bit must be cleared when SPI is used in Slave mode.
I2C mode (master or slave)

1 - Slew rate control disabled for standard speed mode (100kHz).
0 - Slew rate control enabled for high speed mode (400kHz).

CKE - Clock Edge Select bit selects synchronization mode.
CKP=0:

1 - Dataistransmitted on rising edge of clock pulse (O - 1).
0 - Dataistransmitted on falling edge of clock pulse (1 - 0).

CKP=1:

1 - Dataistransmitted on falling edge of clock pulse (1 - 0).
0 - Dataistransmitted on rising edge of clock pulse (0 - 1).

D/A - Data/Addr ess bit is used in 1°C mode only.

1 - Indicates that the last byte received or transmitted was data.
0 - Indicates that the last byte received or transmitted was address.

P - Stop bit isused in I2C mode only.

1 - STOP bit was detected | ast.
0 - STOP hit was not detected | ast.

S- Start bit isused in 1?°C mode only.

1 - START bit was detected | ast.

Meisam Fanoody 178
rtmmz3319@yahoo.com

0 - START bit was not detected last.
R/W - Read Write bit is used in 1°C mode only. This bit holds the R/W bit
information following the last address match. This bit is only valid from the address
match to the next Start bit, Stop bit or not ACK hit.

In I2C dave mode

1 - Dataread.
0 - Datawrite.

In 12C master mode

1 - Transmit isin progress.
0 - Transmit is not in progress.

UA - Update Address bit is used in 10-bit 12C mode only.

1 - The SSPADD register must be updated.
0 - Addressin the SSPADD register is correct and doesn’t need to be updated.

BF Buffer Full Status bit
During data receive (in SPI and 12C modes)

1 - Receive complete. The SSPBUF register isfull.
0 - Receive not complete. The SSPBUF register is empty.

During data transmit (in I2C mode only)

1 - Datatransmit in progress (doesn’t include the ACK and STOP bits).
0 - Data transmit complete (doesn’t include the ACK and STOP bits).

SSPCON Register

| WCOL | SSPOV | SSPEN | CKP_| SSPM3 | SSPM2 | SSPM1 | SSPMO |

Legend

RW Readable/Writable bit
(0) After reset, bit is cleared

WCOL Write Collision Detect bit

1 - Collision detected. Write to the SSPBUF register was attempted while the
IC conditions were not valid for transmission to start.

Meisam Fanoody 179
rtmmz3319@yahoo.com

0 - No collision.
SSPOV Receive Overflow I ndicator bit

1 - A new byteis received before reading the previously received data. Since
there is no space for new data receive, one of these two bytes must be cleared.
In this case, data stored in the SSPSR register isirretrievably lost.

0 - Seria datais correctly received.

SSPEN - Synchronous Serial Port Enable bit determines the microcontroller pins
function and initializes M SSP modul e:

In SPI mode

1 - Enables MSSP module and configures pins SCK, SDO, SDI and SS as the
source of the serial port pins.
0 - Disables M SSP module and configures these pins as /O port pins.

In 1>2C mode

1 - Enables MSSP module and configures pins SDA and SCL as the source of
the serial port pins.
0 - Disables M SSP module and configures these pins as I/O port pins.

CKP - Clock Polarity Select bit isnot used in I>C master mode.
In SPI mode

1 - Idle state for clock isahigh level.
0 - Idle state for clock isalow level.

In I>C slave mode

1 - Enables clock.
0 - Holds clock low. Used to provide more time for data stabilization.

SSPM3-SSPMO0O - Synchronous Serial Port Mode Select bits. SSP mode is
determined by combining these bits:

SSPM 3 SSPM2 SSPM 1 SSPMO Mode

SPI master mode, clock = Fosc/4

SPI master mode, clock = Fosc/16

SPI master mode, clock = Fosc/64

SPI master mode, clock = (output TMR)/2
SPI slave mode, SS pin control enabled

SPI slave mode, SS pin control disabled, SS can
be used as /O pin

o O O o o O
R O O O O
o O, Pk, O O
Ol | Ol O

H

Meisam Fanoody 180
rtmmz3319@yahoo.com

I2C slave mode, 7-bit address used

I2C dlave mode, 10-bit address used

I2C master mode, clock = Fosc / [4(SSPAD+1)]
Mask used in I2C slave mode

Not used

I2C controlled master mode

Not used

Not used

[2C dave mode, 7-bit address used,START and
STOP bits enable interrupt

[2C dave mode, 10-bit address used, START and
STOP hits enable interrupt

[y = e = = e =)
P kOO0 o OolR Pk
OO rR P OO R Pk
R O rFRr O R O R O

[EEN
[EEN
[EN
o

SSPCON2 Register

| GCEN |ACKSTAT| ACKDT | ACKEN | RCEN | PEN | RSEN | SEN _

Legend

R/W Readable/Writable bit
R Readable bit
{0) After reset, bit is cleared

GCEN - General Call Enable bit

In I2C dlave mode only
1 - Enables interrupt when a general call address (0000h) is received in the
SSPSR.
0 - General call address disabled.

ACKSTAT - Acknowledge Status bit

In I2C Master Transmit mode only

1 - Acknowledge was not received from slave.
0 - Acknowledge was received from slave.

ACKDT - Acknowledge data bit
In I2C Master Receive mode only

1 - Not Acknowledge.
0 - Acknowledge.

Meisam Fanoody 181
rtmmz3319@yahoo.com

ACKEN - Acknowledge Sequence Enable bit

In 12C Master Receive mode
1 - Initiate acknowledge condition on the SDA and SCL pins and transmit the
ACKDT data bit. It is automatically cleared by hardware.
0 - Acknowledge condition is not initiated.

RCEN - Receive Enable bit

In 12C Master mode only

1 - Enables data receive in 1°C mode.
0 - Receive disabled.

PEN - STOP condition Enable bit
In 12C Master mode only
1 - Initiates STOP condition on the SDA and SCL pins. Afterwards, this bit is
automatically cleared by hardware.
0 - STOP condition is not initiated.
RSEN - Repeated START Condition Enabled bit
In 12C master mode only
1 - Initiates START condition on the SDA and SCL pins. Afterwards, this bit
isautomatically cleared by hardware.
0 - Repeated START condition is not initiated.
SEN - START Condition Enabled/Stretch Enabled bit
In 12C Master mode only
1 - Initiates START condition on the SDA and SCL pins. Afterwards, this bit

isautomatically cleared by hardware.
0 - START condition is not initiated.

I°C in Master Mode

The most common case is that the microcontroller operates as a master and a
peripheral component as a slave. Thisiswhy this book covers just this mode. Itisalso
considered that the address consists of 7 bits and device contains only one
microcontroller (single-master device).

In order to enable MSSP module in thismode, it is necessary to do the following:

Meisam Fanoody 182
rtmmz3319@yahoo.com

SSPADD x| x| x| x|x|x|x| v Baud Rate
SSPSTAT |1 V" Slew Rate
SSPCON 1000/ v Master Mode
SSPCON 1 v" Enable

Set baud rate (SSPADD register), turn off slew rate control (by setting the SMP bit of
the SSPSTAT register) and select master mode (SSPCON register). After al these
preparations have been finished and the module has been enabled (SSPCON register :
SSPEN hit), it is necessary to wait for internal electronics to signal that everything is
ready for datatransmission, i.e. the SSPIF bit of the PIR1 register is set.

This bit should be cleared by software and after that the microcontroller is ready to
exchange data with peripherals.

Data Transmission in 12C Master Mode

Data transmission on the SDA pin starts with a logic zero (0) which appears upon
setting the SEN bit of the SSPCONZ2 register. Even enabled, the microcontroller has
to wait a certain time before it starts communication. It is the so called 'Start
condition' during which internal preparations and checks are performed. If all
conditions are met, the SSPIF bit of the PIR1 is set and data transmission starts as
soon as the SSPBUF register is|oaded.

SSPCON2 1 START
I I v Sequence
Y I s
PIR1 | 1 | - @_—
Meisam Fanoody 183

rtmmz3319@yahoo.com

Maximum 112 integrated circuits (slave devices) may simultaneously share the same
transmission line. The first data byte sent by the master device contains the address to
match only one slave device. All addresses are listed in respective data sheets. The
eighth bit of the first data byte specifies direction of data transmission, i.e. whether
the microcontroller is to send or receive data. In this case, the eighth bit is cleared to
logic zero (0), which means that it is data transmission.

Slave Address
L
SDA pin
SSPBUF |0 |x|x|x|x|x —réﬁ_’m
SSPCON2 0 “_4’& . |Acknﬂwledge
Data
Ve
SDA pin

SSPBUF |xxxxxxxx—r4:ﬁ N
SS PCD N2 u R 41? Acknowledge

When address match occurs, the microcontroller has to wait for the acknowledge data
bit. The slave device acknowledges address match by clearing the ASKSTAT bit of
the SSPCON2 register. If the match properly occurred, all data bytes are transmitted
in the same way.

Data transmission ends by setting the SEN bit of the SSPCON2 register. The STOP
condition occurs, which enables the SDA pin to receive pulse condition:

Start - Address - Acknowledge - Data - Acknowledge....Data - Acknowledge - Stop!

Data Reception in [°C Master Mode

Preparations for data reception are similar to those for data transmission, with
exception that the last bit of the first sent byte (containing address) is set to logic one
(2). It specifies that master expects to receive data from the addressed slave device. In
relation to the microcontroller, the following occurs:

Meisam Fanoody 184
rtmmz3319@yahoo.com

After interna preparations are finished and the START bhit is set, save device starts
sending one byte at a time. These bytes are stored in the serial register SSPSR. Each
datais, after receiving the last eighth bit, loaded to the SSPBUF register from where it
can be read. Reading this register causes the acknowledge bit to be automatically sent,
which means that the master device is ready to receive new data.

Likewise, data reception ends by setting the STOP bit:

Slave Address

SSPBUF '1 x|xxx|xxxi—r) J |_’ J L
SSPCON2 | 0'| [] |])— =2
- Acknowledge

SDA pin

SSPSR |xxxxxxxx|‘_4ﬁ —|_|_|_|_L

SSPBUF |xxxxxxxx|—r -7 _IM

Data

Start - Address - Acknowledge - Data - Acknowledge....Data - Acknowledge - Stop!
In this pulse sequence, the acknowledge bit is sent to Slave device.

In order to synchronize data transmission, all events taking place on the SDA pin
must be synchronized with the clock generated in the master device. This clock is
generated by a simple oscillator the frequency of which depends on the
microcontroller’s main oscillator frequency, the value written to the SSPADD register
and the current SPI mode as well.

The clock frequency of the mode described in this book depends on selected quartz
crystal and the SPADD register. Figure below shows the formula used to calculate it.

Meisam Fanoody 185
rtmmz3319@yahoo.com

Frequency

X|X|X|X|x x|x|sspADD

Oscillat (-
scillator
L |

Fosc

Baud Rate (frequency):

| | | [1 obﬂ]sspcon

~ 4(SSPADD+1) Mode

F= Fosc

Let'sdoit in mikroC...

/* In this exanple, PIC MCU is connected to 24C02 EEPROM via SCL and
SDA pins. The program

sends one byte of data to the EEPROM address 2. Then, it reads that
data via 12C from

EEPROM and sends it to PORTB in order to check if the data was
successfully witten. */

voi d mai n(){
ANSEL = ANSELH = PORTB = TRISB = 0; // Al pins are digital. PORTB
pi ns are outputs.

| 2CL_Init(100000); /1l Initialize 12C with desired
cl ock

2C1_Start(); /1 12C start signal

| 2C1_W (OxA2) ; /1l Send byte via |2C (device
address + W

12CL W (2); /1 Send byte (address of EEPROM
| ocati on)

| 2C1_W (OxFO) ; /1 Send data to be witten

| 2C1_Stop(); /1 12C stop signal

Del ay_100ms();

[2C1_Start(); /1 12C start signal

| 2C1_W (0xA2) ; /1 Send byte via |12C (device
address + W

12C1L W(2); /1 Send byte (data address)

| 2C1_Repeated_Start(); /1 1ssue |2C signal repeated
start

| 2C1_W (OxA3) ; /1 Send byte (device address + R)
PORTB = |1 2C1_Rd(0u); /1 Read the data (NO acknow edge)
| 2CL_Stop(); /1 12C stop signal

USEFUL NOTES...

Meisam Fanoody 186
rtmmz3319@yahoo.com

When the microcontroller communicates with peripheral components, it may happen
that data transmission fails for some reason. In that case, it is recommended to check
the state of some of the bits which can clarify the problem. In practice, the status of
these bits is checked by executing a short subroutine after each byte transmission and
reception (just in case).

WCOL (SPCON,7) - If you try to write a new data to the SSPBUF register while
another data transmission/reception is in progress, the WCOL bit will be set and the
contents of the SSPBUF register remains unchanged. Write does not occur. After this,
the WCOL bit must be cleared in software.

BF (SSPSTAT,0) - In transmission mode, this bit is set when the CPU writes to the
SSPBUF register and remains set until the byte in serial format is shifted from the
SSPSR register. In reception mode, this bit is set when data or address is loaded to the
SSPBUF register. It is cleared after reading the SSPBUF register.

- VCC

SSPOV (SSPCON,6) - In reception mode, this bit is set when a new byte is received
by the SSPSR register via serial communication, whereas the previously received data
has not been read from the SSPBUF register yet.

SDA and SCL Pins - When SPP module is enabled, these pins turn into Open Drain
outputs. It means that they must be connected to the resistors which are by the other
end connected to positive power supply.

In short
In order to establish serial communication in 12C mode, the following should be done:
Setting M odule and Sending Address:

Value to determine baud rate should be written to the SSPADD register.
SlewRate control should be turned off by setting the SMP bit of the SSPSTAT
register.

In order to select Master mode, binary value 1000 should be written to the
SSPM 3-SSPMO bits of the SSPCONL register.

The SEN bit of the SSPCONZ2 register (START sequence) should be set.

The SSPIF hit is automatically set at the end of START sequence when the
module is ready to operate. It should be cleared.

Meisam Fanoody 187
rtmmz3319@yahoo.com

Slave address should be written to the SSPBUF register.
When the byte is sent, the SSPIF bit (interrupt) is automatically set after
receiving the acknowledge bit from the Slave device.

Data Transmit:

Data to be send should be written to the SSPBUF register.

When the byte is sent, the SSPIF bit (interrupt) is automatically set after
receiving the acknowledge bit from Slave device.

In order to inform the Slave device that data transmission is complete, STOP
condition should be initiated by setting the PEN bit of the SSPCON register.

Data Receive:

In order to enable reception, the RSEN bit of the SSPCON2 register should be
Set.

The SSPIF bit signals data reception. When data is read from the SSPBUF
register, the ACKEN bit of the SSPCON2 register should be set in order to
enable acknowledge bit to be sent.

In order to inform the Slave device that data transmission is complete, the
STOP condition should be initiated by setting the PEN bit of the SSPCON
register.

In addition to a large number of digital 1/0 lines used for communication with
peripherals, the PIC16F887 contains 14 analog inputs. They enable the
microcontroller to recognize not only whether a pin is driven to logic zero or one (0
or +5V), but to precisely measure its voltage and convert it into numerical value, i.e.
digital format.

3.9ANALOG MODULES

The A/D converter module has the following features:

The converter generates a 10-bit binary result using the method of successive
approximation and stores the conversion results into the ADC registers
(ADRESL and ADRESH);

There are 14 separate analog inputs;

The A/D converter converts an analog input signal into a 10-bit binary
number;

The minimum resolution or quality of conversion may be adjusted to various
needs by selecting voltage references Vref- and Vref+.

Meisam Fanoody 188
rtmmz3319@yahoo.com

Vref+ = 5V
Vref- =0V

0 gx:,". FF [Nl: merical Value]

A/D CONVERTER

Even though the use of A/D converter seems to be very complicated, it is basicaly
very simple, simpler than using timers and serial communication module, anyway.

." E"-. 0 Alss
| |: .'. 0
O— 0 0
0 i 1
Cl 0100
| 0 0101
el E 0110 —
' D111 —
[1000 |:> Justified
Cl 1001
O 1010 GO/DONE @
0 1011
. O— 1100
O 1101
~1 1110 ADRESH || ADRESL
1111

GMND

| [chs3][chs2][chs1][chso] |
ADCON1 Register

The operation of A/D converter isin control of the bits of four registers:

ADRESH Contains high byte of conversion result;
ADRESL Contains low byte of conversion result;
ADCONO Control register 0; and

Meisam Fanoody 189
rtmmz3319@yahoo.com

ADCON1 Control register 1.
ADRESH and ADRESL Registers

The result obtained after converting an analog value into digital is al0-bit number that
is to be stored in the ADRESH and ADRESL registers. There are two ways of
handling it - left and right justification which simplifies its use to a great extent. The
format of conversion result depends on the ADFM bit of the ADCON1 register. In the
event that the A/D converter is not used, these registers may be used as general-
purpose registers.

ﬁDRESH EDELESL
o[e]elo]oe “Right justified”
7T &6 5 4 3

ADEESH ADPESL
BRRRRRRR 0|0]0]0] “Leftjustified”
T 6 5 4 3 2 1 0 3 2 1 0
10 - bit result (ADFM=0)

A/D ACQUISITION REQUIREMENTS

In order to enable the ADC to meet its specified accuracy, it is necessary to provide a
certain time delay between selecting specific analog input and measurement itself.
This time is caled 'acquisition time' and mainly depends on the source impedance.
There is an equation used to calculate this time accurately, which in the worst case
amounts to approximately 20uS. So, if you want the conversion to be accurate, don’t
forget thisimportant detail.

ADC CLOCK PERIOD

The time needed to complete a one-bit conversion is defined as TAD. It isrequired to
be at least 1,6 uS. One full 10-bit A/D conversion is slightly longer than expected and
amounts to 11 TAD periods. Since both clock frequency and source of A/D
conversion are specified by software, it is necessary to select one of the available
combinations of bits ADCS1 and ADCS0 before the voltage measurement on some of
the analog inputs starts. These bits are stored in the ADCONO register.

Meisam Fanoody 190
rtmmz3319@yahoo.com

ADC Device Frequency (Fosc)

Clock ADCS1 ADCS0

Source 20Mhz 8Mhz 4 Mhz 1Mhz
Fosc/2 0 0 100 nS 250 nS 500 nS 2UuS
Fosc/8 0 1 400 nS 1uS 2UuS 8uS
Fosc/32 1 0 1.6 uS 4uS 8uS 32uS
Frc 1 1 2-6uS 2-6uS 2-6uS 2-6uS

Any change in the system clock frequency will affect the ADC clock frequency,
which may adversely affect the ADC result. Device frequency characteristics are
shown in the table above. The values in the shaded cells are outside of the range
recommended.

AID conversion TAD cycles

Teyto TADTAD] TAD2 TAD3 TaD4 TADS TAD6 TAD7 TaD8 Tap9 TaD10 Tapii
4 T b9 b8 b7 b6 b5 b4 b3 b2 bl b0
Conversion Starts

Holding Capacitor is Disconnected from Analog Input (typically 100 ns)

Get GO/DONE bit ADRESH and ADRESL registers are [oaded,

GO bit is cleared,
ADIF bit is set,
Holding capacitor is connected to analog input

HOW TO USE THE A/D CONVERTER?

In order to enable the A/D converter to run without problems as well as to avoid
unexpected results, it is necessary to consider the following:

A/D converter does not differ between digital and analog signals. In order to
avoid errors in measurement or chip damage, pins should be configured as
analog inputs before the process of conversion starts. Bits used for this
purpose are stored in the TRIS and ANSEL (ANSELH) registers,

When reading the port with analog inputs, the state of the corresponding bits
will beread asalogic zero (0); and

Roughly speaking, voltage measurement in the converter is based on
comparing input voltage with internal scale which has 1024 marks (2*° =
1024). The lowest scale mark stands for the Vref- voltage, whilst its highest
mark stands for the Vref+ voltage. Figure below shows selectable voltage
references as well as their minimum and maximum values.

Meisam Fanoody 191
rtmmz3319@yahoo.com

VCC + 0.3V

VCC (+5V) Vrer + 2V

~7 Analog Input
Voltage Vin

GND (0V)

GND - 0.3V

ADCONO Register

| ADCS1 | ADCSO | CHS3 | CHS2 | CHS1 | CHSO |GOIDONE| ADON |

Legend

RW Readable/Writable bit
(0) After reset, bit is cleared

ADCSI1, ADCS0 - A/D Conversion Clock Select bits select clock frequency used
for internal synchronization of A/D converter. It also affects duration of conversion.

ADCS1 ADCS2 Clock
0 0 Fosc/2
0 1 Fosc/8
1 0 Fosc/32
1 1 RC*

* Clock is generated by internal oscillator which is built in the converter.

CHS3-CHSO0 - Analog Channel Select bits select a pin or an analog channel for A/D
conversion, i.e. voltage measurement:

Meisam Fanoody 192
rtmmz3319@yahoo.com

CHS3 CHS2 CHS1 CHSO Channd Pin

0 0 0 0 0 RAO/ANO
0 0 0 1 1 RAT/AN1
0 0 1 0 2 RA2/AN2
0 0 1 1 3 RA3/AN3
0 1 0 0 4 RAS5/AN4
0 1 0 1 5 REO/ANS
0 1 1 0 6 REL/ANG
0 1 1 1 7 RE2/AN7
1 0 0 0 8 RB2/AN8
1 0 0 1 9 RB3/AN9
1 0 1 0 10 RBI/AN10
1 0 1 1 11 RB4/AN11
1 1 0 0 12 RBO/AN12
1 1 0 1 13 RB5/AN13
1 1 1 0 CVref

1 1 1 1 Vref = 0.6V

GO/DONE - A/D Conversion Status bit determines current status of conversion:

1- A/D conversion isin progress.
0 - A/D conversion is complete. This bit is automatically cleared by hardware
when the A/D conversion is complete.

ADON - A/D On bit enables A/D converter.

1 - A/D converter is enabled.
0 - A/D converter isdisabled.

Let'sdoit in mikroC...

/* This exanple code reads anal og value from channel 2 and displays
it on PORTB and
PORTC as 10-bit binary nunber.*/

#i ncl ude <built_in. h>
unsi gned int adc_rd;

void main() {

ANSEL = 0x04, /1 Configure AN2 as anal og pin
TRI SA = OxFF; /1 PORTA is configured as input
ANSELH = 0; /1 Configure all other AN pins as digital
/0
TRI SC = 0x3F; /1 Pins RC7 and RC6 are configured as
out put's
TRI SB = 0O; /1 PORTB is configured as an out put
Meisam Fanoody 193

rtmmz3319@yahoo.com

do {
temp _res = ADC Read(2); // Get 10-bit result of AD conversion

PORTB = tenp_res; /1 Send |ower 8 bits to PORTB

PORTC = tenp_res >> 2; // Send 2 nost significant bits to RC7, RC6
} while(1); /! Remain in the | oop

}

ADCON1 Register

| ADFM | - |VCFGT|VCFGO | - | - | - | .

Legend

Bit is unimlemented
RW Readable/Writable bit
(0) After reset, bit is cleared

ADFM - A/D Result Format Select bit

1 - Conversion result is right justified. Six most significant bits of the
ADRESH are not used.

0 - Conversion result is left justified. Six least significant bits of the ADRESL
are not used.

VCFGL1 - Voltage Reference bit selects negative voltage reference source needed for
the operation of A/D converter.

1 - Negative voltage reference is applied to the Vref- pin.
0 - Power supply voltage Vssis used as hegative voltage reference source.

VCFGO - Voltage Reference bit selects positive voltage reference source needed for
the operation of A/D converter.

1 - Positive voltage reference is applied to the Vref+ pin.
0 - Power supply voltage Vdd is used as positive voltage reference source.

In Short

In order to measure voltage on an input pin by the A/D converter, the following
should be done:

Step 1 - Port configuration:

Write a logic one (1) to a bit of the TRIS register, thus configuring the
appropriate pin as an input.

Write a logic one (1) to a bit of the ANSEL register, thus configuring the
appropriate pin as an analog input.

Meisam Fanoody 194
rtmmz3319@yahoo.com

Step 2 - ADC module configuration:

Configure voltage reference in the ADCONL register.

Select ADC conversion clock in the ADCONO register.

Select one of input channels CHO-CH13 of the ADCONO register.

Select data format using the ADFM bit of the ADCONL1 register.

Enable A/D converter by setting the ADON bit of the ADCONO register.

Step 3 - ADC interrupt configuration (optionally):

Clear the ADIF hit.
Set the ADIE, PEIE and GIE hits.

Step 4 - Wait for the required acquisition time to pass (approximately 20uS).
Step 5 - Start conversion by setting the GO/DONE bit of the ADCONO register.
Step 6 - Wait for ADC conversion to compl ete.

It is necessary to check in the program loop whether the GO/DONE pin is
cleared or wait for an A/D interrupt (must be previously enabled).

Step 7 - Read ADC results:
Read the ADRESH and ADRESL registers.

ANALOG COMPARATOR

In addition to A/D converter, there is another module, which until quite recently has
been embedded only in integrated circuits belonging to the so called analog
electronics. Owing to the fact that it is hardly possible to find any more complex
automatic device which in some way does not use these circuits, two high quality
comparators, along with additional electronics, are integrated into the microcontroller
and connected to its pins. How does a comparator operate? Basically, the analog
comparator is an amplifier which compares the magnitude of voltages at two inputs. It
has two inputs and one output. Depending on which input has a higher voltage
(analog value), a logic zero (0) or logic one (1) (digital values) will appear on its
output:

Njisha
Vin-|

ouT
Out 4

L J

Meisam Fanoody 195
rtmmz3319@yahoo.com

When the analog voltage at Vin- is higher than that at Vin+, the output of the
comparator isadigital low level.

When the analog voltage at Vin+ is higher than that at Vin-, the output of the
comparator isadigital high level.

The PIC16F887 microcontroller has two such voltage comparators the inputs of
which are connected to 1/0 pins RAO-RA3, whereas the outputs are connected to the
RA4 and RA5 pins. There is also avoltage reference internal source on the chip itself,
which will be discussed later.

These two circuits are under control of the bits stored in the following registers:

CM1CONOisin control of comparator C1;
CM2CONQOQ isin control of comparator C2;
CM2CONL1 isin control of comparator C2;

VOLTAGE REFERENCE INTERNAL SOURCE

One of two analog voltages provided on the comparator inputs is usually stable and
unchangeable. It is called 'voltage reference' (Vref). To generate it, both external and
special internal voltage source can be used. When the voltage source is selected, Vref
is derived from it by means of a ladder network consisting of 16 resistors which form
avoltage divider. The voltage source is selectabl e through the both ends of the divider
by the VRSS bit of the VRCON register.

In addition, the voltage fraction provided by the resistor ladder network may be
selected through the bits VRO-VR3 and used as a voltage reference. See figure below.

VREN

C1RSEL
vdd C2RSEL X 16 B‘"m

Vref = 0.6V f
Yy VR3

CVref VR2

Meisam Fanoody 196
rtmmz3319@yahoo.com

Vref-

The comparator voltage reference has 2 ranges each containing 16 voltage levels.
Range selection is controlled by the VRR bit of the VRCON register. The selected
voltage reference CVref may be output to the RA2/AN2 pin.

Even though the main idea was to obtain varying voltage reference for the operation
of analog modules, asimple A/D converter is obtained thereby as well. This converter
is very useful in some situations. Its operation is under control of the VRCON
register.

COMPARATORSAND INTERRUPT

Every change of the logic state of any comparator’s output causes the flag bit CMIF
of the register PIR to be set. Such changes will also cause an interrupt if the following
bits are set:

The CMIE bit of the PIE register = 1,
The PEIE bit of the INTCON register = 1; and
The GIE bit of the INTCON register = 1.

If an interrupt is enabled, any change on the comparator’s output when the
microcontroller is set in Seep mode can cause the microcontroller to exit that mode
and proceed with normal operation.

OPERATION DURING SLEEP

The comparator, if enabled before entering the Seep mode, remains active during
Seep. If the comparator is not used to wake up the device, power consumption can be
minimized in the Seep mode by turning the comparator off. It is performed by
clearing the CxON bit of the CMxCONO register.

To enable the comparator to wake up the microcontroller from sleep, the CxIE bit of
the IE2 register and the PEIE bit of the INTCON register must be set. The instruction
following the Seep instruction is always executed after exiting the Seep mode. If the
GIE bit of the INTCON register is set, the device will execute the Interrupt Service
Routine.

CM1CONO Register
RIW (0) R (0) RWI(0) RW(D) RIW (0) RW(0) RWI(0) Features
CM1CONOD | C1ON |C10UT | C10E |[C1POL | - | CIR | CICH1 | C1CHO | Bit name
Bit7 Bit6 Bit 5 Bit4 Bit3 Bit2 Bit1 BitO
Legend

- Bit is unimplamented

RW Readable/Writable bit

R Readable hit

(0) After reset, bit is cleared

Meisam Fanoody 197

rtmmz3319@yahoo.com

Bits of this register are in control of the comparator C1. It mainly affects the
configuration of its inputs. To understand it better, look at figure below which shows
only a part of electronics directly affected by the bits of thisregister.

Pins
[\ Comparator C1
| c12iNo-
C12IN1- [}
| C12IN2- [
\C12IN3- |
| C1Vin-
\ C1IN+ [
CAVref L
\‘\/ Vref = 0.6V — C1Vin+
CVref —— |
C1RSEL H

C1ON - Comparator C1 Enable bit enables comparator C1.

1 - Comparator C1 is enabled.
0 - Comparator C1 isdisabled.

C1OUT - Comparator C1 Output bit isthe output of the comparator C1.
If C1LPOL =1 (comparator output isinverted)

1 - Analog voltage at C1Vin+ islower than analog voltage at C1Vin-.
0 - Analog voltage at C1Vin+ is higher than analog voltage at C1Vin-.

If C1POL = 0 (comparator output is non-inverted)

1 - Analog voltage at C1Vin+ is higher than analog voltage at C1Vin-.
0 - Analog voltage at C1Vin+ islower than analog voltage at C1Vin-.

C10OE Comparator C1 Output Enable bit.

1 - Comparator C1OUT output is connected to the CLOUT pin.*
0 - Comparator output isinternal only.

* |n order to enable the C1OUT hit to be present on the pin, two conditions must be
met: C1ON = 1 (comparator must be on) and the corresponding TRIS bit = 0 (pin
must be configured as an output).

Meisam Fanoody 198
rtmmz3319@yahoo.com

C1POL - Comparator C1 Output Polarity Select bit enables the state of the
comparator C1 output to be inverted.

1 - Comparator C1 output isinverted.
0 - Comparator C1 output is non-inverted.

CI1R - Comparator C1 Reference Select bit

1 - Non-inverting input C1Vin+ is connected to the reference voltage C1Vref.
0 - Non-inverting input C1Vin+ is connected to the C1LIN+ pin.

C1CH1, C1CHO - Comparator C1 Channel Select bit

C1CH1 C1CHO Comparator C1Vin- input

0 0 Input C1Vin- is connected to the C12INO- pin
0 1 Input C1Vin- is connected to the C12IN1- pin
1 0 Input C1Vin- is connected to the C12IN2- pin
1 1 Input C1Vin- is connected to the C12IN3- pin

CM2CONO Register

| C20N_| C20UT | C20E [C2POL | - | C2R | C2CH1 | C2CHO |

Legend

Bit is unimplemented
RW Readable/Writable bit
R Readable bit
(0} After reset, bit is cleared

Bits of this register are in control of the comparator C2. Similar to the previous case,
figure below shows a simplified schematic of the circuit affected by the bits of this
register.

Pins
:/.--—---.‘

[c2cH1][czcHo]|

|'|II)
| c12INo-]
| C12IN1- [
| C12IN2- []
\C12IN3- [

Comparator C2

""'\02|N+ L

™,
,

Meisam Fanoody 199
rtmmz3319@yahoo.com

C20N - Comparator C2 Enable bit enables comparator C2.

1 - Comparator C2 is enabled; and
0 - Comparator C2 is disabled.

C20UT - Comparator C2 Output bit isthe output of the comparator C2.
If C2POL = 1 (comparator output inverted)

1 - Analog voltage at C1Vin+ islower than analog voltage at C1Vin-.
0 - Analog voltage at C1Vin+ is higher than analog voltage at C1Vin-.

If C2POL = 0 (comparator output non-inverted)

1 - Analog voltage at C1Vin+ is higher than analog voltage at C1Vin-.
0 - Analog voltage at C1Vin+ islower than analog voltage at C1Vin-.

C20E - Comparator C20utput Enable bit

1 - Comparator C20UT output is connected to the C20UT pin.*
0 - Comparator output isinternal only.

* |In order to enable the C20UT bit to be present on the pin, two conditions must be
met: C20N = 1 (comparator must be on) and the corresponding TRIS bit = 0 (pin
must be configured as an output).

C2POL - Comparator C2 Output Polarity Select bit enables the state of the
comparator C2 output to be inverted.

1 - Comparator C2 output isinverted.
0 - Comparator C2 output is non-inverted.

C2R - Comparator C2 Reference Select bit

1 - Non-inverting input C2Vin+ is connected to the reference voltage C2Vref.
0 - Non-inverting input C2Vin+ is connected to the C2IN+ pin.

C2CH1, C2CHO Comparator C2 Channel Select bit

C2CH1 C2CHO Comparator C2Vin- input

0 0 Input C2Vin- is connected to the C12INO- pin
0 1 Input C2Vin- is connected to the C12IN1- pin
1 0 Input C2Vin- is connected to the C12IN2- pin
1 1 Input C2Vin- is connected to the C12IN3- pin

Meisam Fanoody 200
rtmmz3319@yahoo.com

CM2CON1 Register

| MC10UT| MC20UT|C1RSEL |C2RSEL| - | - | T1GSS [C2SYNC|

Legend

- Bit is unimplemented
RW Readable/Writable bit

R Readable bit

(0 After reset, bit is cleared
(1 After reset, bit is set

MC1OUT Mirror Copy of CIOUT bit

MC20UT Mirror Copy of C20UT bit

C1RSEL Comparator C1 Reference Select bit
1 - Selectable voltage CVref is used in the voltage reference C1Vref source.
0 - Fixed voltage reference 0.6V is used in the voltage reference C1Vref
source.

C2RSEL - Comparator C2 Reference Select bit
1 - Selectable voltage CVref is used in the voltage reference C2Vref source.
0 - Fixed voltage reference 0.6V is used in the voltage reference C2Vref
source.

T1GSS- Timer1 Gate Sour ce Select bit

1 - Timer T1gate sourceis T1G.
0 - Timer T1gate source is SY NCC20UT.

C2SYNC - Comparator C2 Output Synchronization bit
1 - Comparator C2 output is synchronized to the falling edge of Timer TMR1
clock.

0 - Comparator output is asynchronous signal.

VRCON Register

| VREN | VROE | VRR | VRSS | VR3 | VR2 | VR1 | VR0 |

Legend

RW Readable/Writable bit
(0) After reset, bit is cleared

VREN Comparator C1 Voltage Reference Enable bit

Meisam Fanoody 201
rtmmz3319@yahoo.com

1 - Voltage reference CVref source is powered on.
0 - Voltage reference CVref source is powered off.

VROE Comparator C2 Voltage Reference Enable bit

1 - Voltage reference CVref is connected to the pin.
0 - Voltage reference CVref is disconnected from the pin.

VRR - CVref Range Selection bit

1 - Voltage reference source is set to low range.
0 - Voltage reference source is set to high range.

VRSS - Comparator Vref Range selection bit
1 - Voltage reference source isin the range of Vref+ to Vref-.
0 - Voltage reference source is in the range of Vdd to Vss (power supply
voltage).

VR3- VRO CVref Value Selection

If VRR =1 (low range)

Voltage reference is calculated using the formula: CVref = ([VR3:VR0]/24)Vdd

If VRR = 0 (high range)

Voltage reference is calculated using the formulaa CVref = Vdd/i4 +
([VR3:VRO0]/32)Vdds

In Short

In order to properly use built-in comparators, it is necessary to do the following:

Step 1 - Module Configuration:
In order to select the appropriate mode, bits of the CM1CONO and CM2CONO
registers should be configured. Interrupt should be disabled on any change of

mode.

Step 2 - Internal voltage reference Vref source configuration (only when used). In the
VRCON register it is necessary to:

Select one of two voltage ranges using the VRR bit.
Configure necessary Vref using bits VR3 - VRO.

Set the VROE hit if needed.

Enable voltage Vref source by setting the VREN bit.

Formula used to calculate voltage reference:

Meisam Fanoody 202
rtmmz3319@yahoo.com

VRR =1 (low range)
CVref = ([VR3:VR0]/24)VLADDER

VRR =0 (high range)
CVref = (VLADDER/4) + ([VR3:VRO]VLADDER/32)

Vladder =Vdd or ([Vref+] - [Vref-]) or Vref+
Step 3 - Start of operation:

Enable an interrupt by setting bits CMIE (PIE register), PEIE and GIE
(INTCON register).

Read the C1OUT and C20UT bhits of the CMCON register.

Read the CMIF flag bit of the PIR register. After being set, this bit must be
cleared in software.

In order to synchronize all the processes taking place within the microcontroller, a
clock signal must be used, while in order to generate the clock signal, a clock
oscillator must be used. As simple as that. This microcontroller has several
oscillators capable of working in different modes and this is where the story becomes
interesting...

3.10 CLOCK OSCILLATOR

As seen in figure below, the clock signal may be generated by one out of two built-in
oscillators.

Sleep
e

LF, XT. HS, RC, RCID, EC mode

Extemnal Oscillator

HFINTOSC

8 MHz

LFINTOSC

31 kHz

Internal Oscillator

Power-up Timer

Watchdog Ti
S OSCCON Register Programmer

Fail-Safe Clock Config word
Monitor (J)

An external oscillator is installed within the microcontroller and connected to the
OSC1 and OSC2 pins. It is called ‘external’ because it relies on an external circuit for

Meisam Fanoody 203
rtmmz3319@yahoo.com

the clock signal and frequency stabilization, such as a stand-alone oscillator, quartz
crystal, ceramic resonator or resistor-capacitor circuit. The oscillator mode is selected
by the bits of bytes, called Config Word, sent during programming.

Internal oscillator consists of two separate internal oscillators:

The HFINTOSC is a high-frequency internal oscillator which operates at 8VIHz. The
microcontroller can use clock source generated at this frequency or after being
divided in prescaler.

The LFINTOSC is a low-frequency internal oscillator which operates at 31 kHz. Its
clock sources are used for watch-dog and power-up timing, but it can also be used as
aclock source for the operation of the entire microcontroller.

The system clock can be selected between external or internal clock source via the
System Clock Select (SCS) bit of the OSCCON register.

OSCCON Register
The OSCCON register controls the system clock and frequency selection options. It

contains the following bits: frequency selection bits (IRCF2, IRCF1, IRCFO),
frequency status bits (HTS, LTS), system clock control bits (OSTA, SCS).

RW{1) RW(1) RW(0) R(1) R (0) R (0) RW (0) Features
OSCCON - | IRCF2 | IRCF1 | IRCFO | OSTS | HTS | LTS | scs | Bit name
Bit ¥ Bit & Bits Bit4 Bit3 Bit 2 Bit 1 Bit 0
Legend

- Bit is unimplemented
RW Readable/Writable bit

R Readable bit

{0} After reset, bit is cleared
i1} After reset, bit is set

IRCF2-0 - Internal Oscillator Frequency Select bits. The divider rate depends on
the combination of these three bits. The clock frequency of internal oscillator is
determined in the same way.

IRCF2 IRCF1 IRCFO Frequency OSC.

1 1 1 8 MHz HFINTOSC
1 1 0 4 MHz HFINTOSC
1 0 1 2MHz HFINTOSC
1 0 0 1 MHz HFINTOSC
0 1 1 500 kHz HFINTOSC
0 1 0 250 kHz HFINTOSC
0 0 1 125 kHz HFINTOSC
0 0 0 31 kHz LFINTOSC

Meisam Fanoody 204

rtmmz3319@yahoo.com

OSTS - Oscillator Start-up Time-out Status bit indicates which clock source is
currently in use. It isread-only.

1 - External clock oscillator isin use.
0 - Oneof internal clock oscillatorsisin use (HFINTOSC or LFINTOSC).

HTS - HFINTOSC Status bit (8 MHz - 125 kHz) indicates whether the high-
frequency internal oscillator operates in a stable way.

1-HFINTOSC is stable.
0 - HFINTOSC is not stable.

LTS- LFINTOSC Stable bit (31 kHz) indicates whether the low-frequency internal
oscillator operates in a stable way.

1-LFINTOSC isstable.
0- LFINTOSC is not stable.

SCS - System Clock Select bit determines which oscillator is to be used as a clock
source.

1 - Internal oscillator is used for system clock.

o - External oscillator iIs used for system clock.
The oscillator mode is set by bits in Config Word written to the
microcontroller memory during the process of programming.

EXTERNAL CLOCK MODES

The external oscillator can be configured to operate in one out of several modes,
which enables it to operate at different speeds and use different components for
frequency stabilization. Mode of operation is selected during the process of writing a
program into the microcontroller. First of all, it is necessary to activate the program
on a PC to be used for programming. It is the PICflash program in this case. Click on
the oscillator field and select one oscillator from the drop-down list. The appropriate
bits will be automatically set, thus becoming a part of several bytes which together
form a Config Word.

During the process of programming the microcontroller, these bytes of Config Word
are written to the microcontroller’s ROM memory and stored in specia registers
which are not available to the user. On the basis of these bits, the microcontroller
'knows what to do, athough it is not explicitly stated in the program. Mode of
operation is selected after the process of writing and compiling a program

Meisam Fanoody 205
rtmmz3319@yahoo.com

HS

EC - R4E z: /0, RAT as CLEIN
INTOSCIO - RAB a2 1/0. RAT az 140
INTOSC - RAE as CLEOUT, RAT az 1/0
RCID - RAG &z 1/0. RAT a3 RC

ALC - RAB as CLKOUT, RAT as RC

[mikroElektronika - PicFLASH [¥7.07] with mikrolCD
File Device Buffer Windows USE fbout History

Coniguiation Bk e
PIC16FEST =l
Code Protect
Dscillator Eﬁ -
i
Watchdog Timer | Enablad - 0000k - 1FFFR [A1)
Pomer tp Tener [Disaie .
FLASH Prograny Menmnory
Data EE Protect Disabled - * Wiite pralection O

Brown Dut Detect | 80D Enabled - L=l R
0000 - 07FFh Protected
Int-Ext Switchover Epsbled =

¢ 0000k - OFFFh Protected

Fail-safe Clk. Monitor | Enabled hd Sawe HEX
Low Yoltage Program Ensbled -
2] Calibrati
In-Circuit Debugger | ICD Disabled - Ee] Calkeation word Provect
Cal. Word
Brown-out Reset Sel. | et to 4.0V -

IFFF IFFF IFFF IFFF Cleat
=

Progiam Memony See 8 K Device Statuz: Idle Type Progress:
EEFPROM See: 256 Bytes Address: Oh Flevizion e T
File!
Device: PICIEFEET Operation: None

EXTERNAL OSCILLATOR IN EC MODE

The external clock (EC) mode uses external oscillator as a clock source. The
maximum frequency of this clock islimited to 20 MHz.

The advantages of the external oscillator when configured to operate in EC mode:

The independent external clock source is connected to the OSC1 input and the
OSC2 isavailable as a general purpose 1/0;

It is possible to synchronize the operation of the microcontroller with the rest
of on-board electronics;

In this mode the microcontroller starts operation immediately after the power
ison. No time delay isrequired for frequency stabilization; and

Temporary disabling the external clock source causes device to stop operation,
while leaving all data intact. After restarting the external clock, the device
proceeds with operation as if nothing has happened.

Meisam Fanoody 206
rtmmz3319@yahoo.com

External Oscillator

/
/
/

v PinOSC1 |
0SC. ST
DC-20MHz
Pin OSC2 _ |
1o}

EXTERNAL OSCILLATOR IN LP, XT OR HSMODE

The LP, XT and HS modes use external oscillator as a clock source the frequency of
which is determined by quartz crystal or ceramic resonators connected to the OSC1
and OSC2 pins. Depending on the features of the component in use, select one of the
following modes:

LP mode - (Low Power) is used for low-frequency quartz crystal only. This
mode is designed to drive only 32.768 kHz crystals usually embedded in
quartz watches. It is easy to recognize them by small size and specific
cylindrical shape. The current consumption isthe least of the three modes.

XT modeis used for intermediate-frequency quartz crystals up to 8 MHz. The
current consumption is the medium of the three modes.

HS mode - (High Speed) is used for high-frequency quartz crystals over 8
MHz. The current consumption is the highest of the three modes.

Meisam Fanoody 207
rtmmz3319@yahoo.com

LP, XT, HS mode

OSC1Pin |
20-30pF
_||
|
-L_" —— 0SC2Pin
GND _" t\

20-30pF

Quartz crystal

CERAMI|C RESONATORSIN XT ORHSMODE

Ceramic resonators are by their features similar to quartz crystals and are connected in
the same way, therefore. Unlike quartz crystals, they are cheaper and oscillators
containing them have a bit poorer characteristics. They are used for clock frequencies
ranging from 100 kHz to 20 MHz.

EXTERNAL OSCILLATOR IN RC AND RCIO MODE

There are certainly many advantages in using elements for frequency stabilization, but
sometimes they are really unnecessary. In most cases the oscillator may operate at
frequencies not precisely defined so that embedding of such elements is a waste of
money. The simplest and cheapest solution in these situations is to use one resistor
and one capacitor for the operation of oscillator. There are two modes:

5V

5 - 100K
OEC1 Fim |

i
L

GHD 0sC2Pin |

20 pF

| I —

Meisam Fanoody 208
rtmmz3319@yahoo.com

RC mode. When the external oscillator is configured to operate in RC mode, the
OSC1 pin should be connected to the RC circuit as shown in figure on the right. The
OSC2 pin outputs the RC oscillator frequency divided by 4. This signa may be used
for calibration, synchronization or other application requirements.

+5

RCIO

5 - 100K
05C1 Pin _|

il i
I OECZPin _|

1o

-

JIn
=

RCIO mode. Likewise, the RC circuit is connected to the OSCL1 pin. This time, the
available OSC2 pin is used as an additional general-purpose I/O pin.

In both cases, it is recommended to use components as shown in figure.
The frequency of such an oscillator is calculated according to the formulaf = 1/T in
which:

f = frequency [HZ];

T =R* C=timeconstant [s];
R = resistor resistance [Q2]; and
C = capacitor capacity [F].

INTERNAL CLOCK MODES

The internal oscillator circuit consists of two separate oscillators that can be selected
as the system clock source:

The HFINTOSC oscillator is factory calibrated and operates at 8 MHz. Its frequency
can be set by the user via software using bits of the OSCTUNE register.

The LFINTOSC oscillator is not factory calibrated and operates at 31kHz.

Similar to the external oscillator, the internal one can also operate in several modes.
The mode of operation is selected in the same way as with external oscillator - using
bits of the Config Word register. In other words, everything is performed within PC
software prior to writing a program into the microcontroller.

Meisam Fanoody 209
rtmmz3319@yahoo.com

INTOSC mode
OSC1Pin | <:::>
1o
-
O5C2 Pin _| Fosc
<3 JUUT
I Yy =
Foscid
INTERNAL OSCILLATOR IN INTOSC MODE

In this mode, the OSC1 pin is available as a general purpose I/O, while the OSC2 pin
outputs selected internal oscillator frequency divided by 4.

INTOSCIO mode
L ==
OSC1 Pin
II0 [<
O5C2 Pin
1o =
INTERNAL OSCILLATOR IN INTOSCIO MODE

In this mode, both pins are available as a general purpose 1/0.
INTERNAL OSCILLATOR SETTINGS
The internal oscillator consists of two separate circuits.

1. The high-frequency internal oscillator HFINTOSC is connected to the postscaler
(frequency divider). It is factory calibrated and operates a8 8MHz. By using
postscaler, this oscillator can output clock sources at one out of seven frequencies.
The frequency selection is performed within software using the IRCF2, IRCF1 and
IRCFO pins of the OSCCON register.

The HFINTOSC is enabled by selecting one out of seven frequencies (between 8
MHz and 125 kHz) and setting the System Clock Source (SCS) bit of the OSCCON
register. As seen in figure below, everything is performed by using bits of the
OSCCON register.

Meisam Fanoody 210
rtmmz3319@yahoo.com

HFINTOSC

s
g
%
=]
o

o DD D= = o=k =k
N Y e
o020 202

LFINTOSC Hiililil
—>

OSCCON Register IRCF2 | IRCF1| IRCFO] SCS |

2. The low-frequency oscillator LFINTOSC is uncalibrated and operates at 31 kHz. It
is enabled by selecting this frequency (bits of the OSCCON register) and setting the
SCS bit of the same register.

TWO-SPEED CLOCK START-UP MODE

Two-Speed Clock Start-up mode is used to provide additional power savings when
the microcontroller operates in sleep mode. What is this all about?

When configured to operate in LP, XT or HS mode, the externa oscillator will be
switched off on transition to sleep in order to reduce the overall power consumption
of the device.

When the conditions for wake-up are met, the microcontroller will not immediately
start to operate because it has to wait for the clock signal frequency to become stable.
Such delay lasts for exactly 1024 pulses, then the microcontroller proceeds with
program execution. It usually happens that only a few instructions are performed
before the microcontroller is set back to Seep mode. It means that most of time as
well as most of power obtained from batteries is wasted. The problem is solved by
using an internal oscillator for program execution while the counting of these 1024
pulses is in progress. As soon as the external oscillator frequency becomes stable, it
will automatically take over the 'leading rol€'. The whole processis enabled by setting
one hit of the configuration word. In order to program the microcontroller, it is
necessary to select the Int-Ext Swvitchover option in software.

Meisam Fanoody 211
rtmmz3319@yahoo.com

iE| mikrokleKironika - PicFLASH™ [v/.09] with mikrolCDy

Eile Device Buffer Windows USE About History
Configuration Bits
Code Protect
Dscillator HS - & Nore
watchdog Timer Enabled - " DOO0h - 1FFFh Al
Power Up Timer [izabled -
FLASH Program Memory
Master Clear Enabled - Write Enable
Data EE Protect Disabled - & \Write pratection Dff
Brown Out Detect 00 Enabled - ¢ 0000h - DOFFh Protected
(" 0000h - 07FFh Protected
Int-Ext switchover -
S (" 0000h - OFFFh Protected
Fail-safe Clk. Monitor Enabled '*
Low Yoltage Program Enabled hd
In-Circuit Debugger 0D Disabled = [#] Calibration word PlohenF
— Cal. Word /11
Brown-out Reset Sel. :etto 4.0V -
1D Locabars
IFFF IFFF | [3FFF | |3FFF
Program Memary Size: & K Dewice Statuz: Idle Tyvoe
EEPROM Size: 256 Byles Addiess: Oh Revizgion
File: CHDOCUMENTS AND SETTINGSIMARKO], MIK|DESKTOP TOUCHPANEL BIGPICS|F 18| TOUCHPANEL . HEX
Davice: PIC16FE87 Operation: None

| PIC1EFaa7 =]
[Read ” Wrike l
EEES

(e |[reet |

l Load HEX l

| Reload beX |

B

l CODE ” EEPROM]

I Cptions]

Progress:
[0% |

FAIL-SAFE CLOCK MONITOR

As its name suggests, the Fail-Safe Clock Monitor (FSCM) monitors the operation of
external oscillator and allows the microcontroller to proceed with program execution
even though the external oscillator fails for some reason. In this case, the internal

oscillator takes over itsrole.

OSC.

1]
0
=
=
0
=

LFINTOSC

HFINTOSC
OSCCON

Meisam Fanoody 212
rtmmz3319@yahoo.com

The fail-safe clock monitor detects the failure by comparing internal and external
clock sources. If it takes more than 2mS for the external oscillator clock to come, the
clock source will be automatically switched. The internal oscillator will thereby
continue the operation controlled by the bits of the OSCCON register. When the
OSFIE bit of the PIE2 register is set, an interrupt will be generated. The system clock
will keep on being sourced from internal clock until the device successfully restarts
the external oscillator and switches back to external operation.

Similarly, this module is enabled by changing configuration word directly before the
process of programming chip starts. This time, it is done by selecting the Fail-Safe
Clock Monitor option.

Dizabled

-+ mikroElektronika - PickLASH' [v7.09] with mikrolCD =i
File Device Buffer Windows USB About History
Configuration Bitz D:::TEFEE? j
/ Code Protect
Oscillator HS Fihs & Nora
’ Read l [Wite:]
Watchdog Timer | Enabled /o= (" 000Ch - 1FFFh (Al I l []
ra -
; ! Wierify Blank,
P Ti I -
ower Up Timer Dizabled / FLASH Program Memory
Master Clear | Enabled = Write Enable | pase][meser |
ya
Data EE Protect | Dicabled - * Wiite protection DFf
7 y
Brown Dut Detect | BOD Enabled - ¢ 0000k - 00FFh Pratected [lompss]
P (" 0000h - O7FFh Pratected
Int-Ext Switchover | Enabled / - sote I Reload HEX]
" D000k - OFFFh Protected
Fail-safe Clk. Monitor - ’ Save HEX]
Low Yoltage Program | Enabled =
In-Circut Debugger | ICD Disabled = Calibiration word Protect
Cal. Word
Brown-out Reset Sel. | zat o 4.00 =
l CODE l [EEPROM]
1D Locations
3IFFF 3FFF IFFF 3FFF ’ m—]
ions
Program emory Size: 8 K Dewce Statuz: Idle Type Proormss!
EEPROM Size: 256 Bytes Addrezz: Oh Revison | e A
File: C:ADOCUMENTS AND SETTINGS | MARKD),MIK\DESKTOP, TOUCHPANEL BIGPICSIP18) TOUCHPANEL HEX
Device: PIC16FE87 Operation: None

OSCTUNE Register

Modifications in the OSCTUNE register affect the HFINTOSC frequency, but not the
LFINTOSC frequency. There is no indication during the operation that frequency
shift has occurred.

Meisam Fanoody 213
rtmmz3319@yahoo.com

[- [- [TUNa | TUN3 | TUN2 | TUNT | TUNO |

Legend

- Bit is unimplemented
RW Readable/Writable bit
(0) After reset, bit is cleared

TUN4 - TUNO Frequency Tuning bits. By combining these five bits, the 8MHz
oscillator frequency shifts. In this way, the frequencies obtained by its division in the
postscaler shift too.

TUN4 TUN3 TUNZ2 TUN1 TUNO Frequency
0 1 1 1 1 Maximal

0 1 1 1 0
0 1 1 0 1

0 0 0 0 0 Calibrated

1 0 0 1 0
0 0 0 1
1 0 0 0 0 Minimal

Eeprom s a separate memory segment, not part of program memory (ROM), nor data
memory (RAM). Even though these memory locations are not easily and quickly
accessed as other registers, their purpose is irreplaceable as the EEPROM data is
permanently saved even after the loss of power and can be changed at any moment.
These exceptional features make each byte of EEPROM valuable.

3.11 EEPROM MEMORY

The PIC16F887 microcontroller has 256 locations of data EEPROM controlled by the
bits of the following registers:

EECONL1 (control register);

EECON2 (control register);

EEDAT (saves dataready for write and read); and

EEADR (saves address of EEPROM location to be accessed).

Meisam Fanoody 214
rtmmz3319@yahoo.com

In addition, EECONZ is not true register, it does not physically exist. It is used in data
write program sequence only.

The EEDATH and EEADRH registers are used during EEPROM write and read. Both
of them are also used for program (FLASH) memory write and read.

Since this is considered a risk zone (you surely do not want your microcontroller to
accidentally delete it’s own program), we will not discuss it further, but advise you to
be careful.

EECONL1 Register
RIW (x) RW (x) RW(0) RIS (0) RIS (0) Features
EECON1 | EEPGD | - . - |WRERR|WREN | WR | RD | Bitname
Bit 7 Bit 6 Bit 5 Bit4 Bit3 Bit2 Bit 1 Bit 0

Legend

- Bit is unimplemented
RW Readable/Writable bit

R Readable bit

] Bit can only be set

{0} After reset, bit is cleared
(=) After reset, bit is unknown

EEPGD - Program/Data EEPROM Select bit

1 - Access program memory.
0 - Access EEPROM memory.

WRERR - EEPROM Error Flag bit

1 - Write operation is prematurely terminated and error has occurred.
0 - Write operation completed.

WREN - EEPROM Write Enable bit.

1 - Write to data EEPROM is enabled.
0 - Writeto data EEPROM s disabled.

WR - Write Control bit

1 - Initiates write to data EEPROM.
0 - Write to data EEPROM is compl ete.

RD - Read Control bit

1 - Initiates read from data EEPROM.
0 - Read from data EEPROM s disabled.

READ FROM EEPROM MEMORY

In order to read data EEPROM memory, follow the procedure below:

Meisam Fanoody 215
rtmmz3319@yahoo.com

Step 1: Write the address (00h - FFh) to the EEADR register.

Step 2: Select EEPROM memory block by clearing the EEPGD bit of the
EECONLI1 register.

Step 3: To read location, set the RD bit of the same register.

Step 4: Datais stored in the EEDAT register and is ready for use.

The following example illustrates the above procedure when writing a program in
assembly language:

BSF STATUS, RP1 ;

BCF STATUS, RPO ;. Access bank 2
MOVF ADDRESS, W ; Move address to the Wregister
MOWNWF EEADR ; Wite address
BSF STATUS, RPO ; Access bank 3

BCF EECON1, EEPGD ; Sel ect EEPROM

BSF EECON1, RD ;. Read data

BCF STATUS, RPO ;. Access bank 2

MOVF EEDATA, W ; Data is stored in the Wregister

The same program sequence written in C language looks as follows:

W = EEPROM Read(ADDRESS) ;
The advantages of C language becomes more obvious, don’t they?
WRITE DATA TO EEPROM MEMORY

Prior to writing data to EEPROM memory it is necessary to write the address to the
EEADR register and data to the EEDAT register. All that’s left is to follow a special
sequence to initiate write for each byte. Interrupts must be disabled as long as this
procedure isin progress.

The example below illustrates the above procedure when writing a program in
assembly language:

BSF STATUS, RP1

BSF STATUS, RPO

BTFSC EECON, WR1 ; Wit for the previous wite to conplete
GOoro $-1 ;

BCF STATUS, RPO ; Bank 2

MOVF ADDRESS, W ; Move address to W

MOVWF EEADR ;. Wite address
MOVF DATA, W ; Mowve data to W
MOV EEDATA : Wite data

BSF STATUS, RPO : Bank 3

BCF EECONL, EEPGD ; Sel ect EEPROM
BSF EECON1, WREN ; Wite to EEPROM enabl ed
BCF | NCON, G E ; Al interrupts disabled

; Requi red Sentence
MOVLW 55h

MOVWF EECON2
MOVLW AAh

MOVWF EECON2

BSF EECONL, WR

Meisam Fanoody 216
rtmmz3319@yahoo.com

BSF INTCONGE ; Interrupts enabl ed
BCF EECON1, WREN ; Wite to EEPROM di sabl ed

The same program sequence written in C language looks as follows:
W= EEPROM Wit e(ADDRESS, W ;
Need a comment?

Let'sdoit in mikroC...

/1 This exanple denpnstrates the use of EEPROM Library in mkroC PRO
for PIC

char ii; /1 Loop variable

voi d mai n() {

ANSEL = 0; // Configure AN pins as digital 1/0O
ANSELH = O;

PORTB
PORTC
PORTD
TRI SB
TRI SC
TRI SD

eLeLeee°

for(ii =0; ii < 32; ii++) /1 Fill data buffer
EEPROM Wite(0Ox80+ii, ii); // Wite data to address Ox80+i i

EEPROM Wit e(0x02,0xAA); // Wite sone data to EEPROM address 2
EEPROM Wit e(0x50, 0x55); // Wite sone data to EEPROM address 0x50

Del ay_ns(1000); /1 Blink PORTB and PORTC di odes
PORTB = OxFF; /1 to indicate start of reading
PORTC = OxFF;

Del ay_ns(1000) ;

PORTB = 0x00;

PORTC = 0x00;

Del ay_ns(1000);

PORTB = EEPROM Read(0x02); // Read data from EEPROM address 2 and
display it on PORTB

PORTC = EEPROM Read(0x50); // Read data from EEPROM address 0x50 and
display it on PORTC

Del ay_ns(1000);

for(ii =0; ii < 32; ii++) { /1 Read 32 bytes block from address
0x80

PORTD = EEPROM Read(0x80+ii); // and display data on PORTD

Del ay_nmns(250) ;

}

}

At first glance, it is sufficient to turn the power on to make the microcontroller
operate. At first glance, it is sufficient to turn the power off to make it stop operating.

Meisam Fanoody 217
rtmmz3319@yahoo.com

Only at first glance... In reality, start and end of operation are critical phases of
which a special signal called RESET takes care.

3.12 RESET! BLACK-OUT, BROWN-OUT OR
NOISES?

Reset condition causes the microcontroller to immediately stop operation and clear its
registers. Areset signal may be generated externally at any moment (low logic level
on the MCLR pin). If needed, it can also be generated by internal control logic.
Power-on always causes reset. Since there are many transitional events taking place
when power supply is turned on (switch contact flashing and sparkling, slow voltage
rise, gradual clock frequency stabilization etc.), it is necessary to provide a certain
time delay for the microcontroller before it starts to operate. Two interna timers-
PWRT and OST are in charge of that. The first one can be enabled or disabled during
the process of writing a program. Let’s take alook what happens then:

' Y
i R T ——
= 3
= VCC =
& :
i:| H
= !
; a
: |
7 W) Start
0 | R

< T reset I"* Time

When the power supply voltage reaches 1.2 - 1.7V, a circuit called Power-up timer
resets the microcontroller within approximately 72mS. As soon as this time expires,
another timer called Oscillator start-up timer generates another reset signal within
1024 quartz oscillator periods. When this delay expires (marked as T reset in figure)
and the MCLR pin is set high, all conditions are met and the microcontroller starts to
execute the first instruction in the program.

Apart from this ‘controlled’ reset which occurs at the moment power goes on, there are
another two resets called Black-out and Brown-out which may occur during the
operation as well as at the moment the power supply goes off.

Meisam Fanoody 218
rtmmz3319@yahoo.com

BLACK-OUT RESET

&

IIIEE ~~fmssnssmnsnim s s s s s s et et e e et ettt e
Unom
Umin — _\

&

m

5

=

2

g

=

n

g

o

0 b

Time

Black-out reset takes place when the power supply normaly goes off. The
microcontroller then has no time to do anything unpredictable simply because the
voltage drops very fast beneath its minimum value. In other words the light goes off,
curtain falls down and the show is over!

BROWN-OUT RESET

&
Umax

Uniam __._._l‘h‘\

Urmnin

Time

& Power Supply Valtage

When the power supply voltage drops slowly (typical example is battery discharge,
although the microcontroller experiences far faster voltage drops as slow processes),
the internal electronics gradually stops to operate and the so called Brown-out reset
occurs. Here, before the microcontroller completely stops the operation thereis areal
danger that circuits which operate at higher voltages start to perform unpredictably.
Brown-out reset can also cause fatal changes in the program because it is saved in on-
chip flash memory.

NOISE

Meisam Fanoody 219
rtmmz3319@yahoo.com

r
Lrmias -4

Unam o

Umin

oty ol age

O Power Su

L

Time
Thisis aspecia type of Brown-out reset which occursin industrial environment when
the power supply voltage 'blinks for a moment and drops beneath minimum level.

Even short, such noise in power line may considerably affect the operation of the
device.

MCLR PIN

w [y
R1

1K (or more)

J_m
ID.MF {no danger)

GND

E MCLR

A logic zero (0) on the MCLR pin causes an immediate and regular reset. It is
recommended to connect it as per figure on the right. The function of additional
components is to sustain 'pure’ logic one (1) during normal operation. If their values
are selected so as to provide high logic level on the pin after T reset is over, the
microcontroller will immediately start the operation. This may be very useful when it
IS necessary to synchronize the operation of the microcontroller with additional
electronics or the operation of several microcontrollers.

In order to avoid any error which may occur on Brown-out reset, the PIC 16F887 has
built in 'protection mechanism'. It is a simple, but effective circuit which responds
every time the power supply voltage drops below 4V and keeps this level for more
than 100 micro seconds. This circuit generates a reset signal and since that moment
the whole microcontroller operates as if it has just been turned on.

Meisam Fanoody 220
rtmmz3319@yahoo.com

Chapter 4. Examples

The purpose of this chapter is to provide basic information that one needs to know in
order to be able to use microcontrollers successfully in practice. This chapter,
therefore, doesn’t contain any super interesting program or device schematic with
amazing solutions. Instead, the following examples are better proof that program
writing is neither a privilege nor a talent issue, but the ability of simply putting puzze
pieces together using directives. Rest assured that design and development of devices
mainly consists of the ‘test-correct-repeat’ work. Of course, the moreyou arein it, the
more complicated it gets since the puzze pieces are put together by both children and
first-class architects...

4.1 BASIC CONNECTING

4.2 ADDITIONAL COMPONENTS

4.3 EXAMPLE 1 - Writing header, configuring 1/O pins, using delay function
and switch operator

44 EXAMPLE 2 - Using assembly instructions and internal oscillator
LFINTOSC...

4.5 EXAMPLE 3 - TMRO as a counter, declaring new variables, enumerated
constants, using relay ...

4.6 EXAMPLE 4 - Using timers TMRO, TMR1 and TMR2. Using interrupts,
declaring new function...

4.7 EXAMPLE 5 - Using watch-dog timer

4.8 EXAMPLE 6 - Module CCP1 as PWM signal generator

4.9 EXAMPLE 7 - Using A/D converter

4.10 EXAMPLE 8 - Using EEPROM Memory

4.11 EXAMPLE 9 - Two-digit LED counter, multiplexing

4.12 EXAMPLE 10 - Using LCD display

4.13 EXAMPLE 11 - RS232 serial communication

4.14 EXAMPLE 12 - Temperature measurement using DS1820 sensor. Use of
1-wire protocol...

4.15 EXAMPLE 13 - Sound generation, sound library...

4.16 EXAMPLE 14 - Using graphic LCD display

4.17 EXAMPLE 15 - Using touch panel...

4.1 BASIC CONNECTING

In order to enable the microcontroller to operate properly it is necessary to provide:

Power Supply;
Reset Signal; and
Clock Signal.

Meisam Fanoody 221
rtmmz3319@yahoo.com

6-12V

- 4"
b LM7805

[~
100uF 10uF L J_‘HZlIZIrIF
Lr Ll_‘ —|_ i|'IOK
s

220V

MclR ~ Re7[]
RAD RrE6 []
RA1 RES |1
RESET { RAZ R4 ||
RA3 RE3 []
RA4 RB2 |1
ras O gmaei1fl
— REO O RB0 []
RE1 - vdd [—
RE2 =2} Vss
Ddd g RO7 [1
Vss oo Rosfl
osci =~ RDS [I
0scz RD4 []
RCO rReT 1
smHz $] (] RCE []
RCZ Rrcs |1
RC3 Rc4 [1
20=30pF 20=30pF i rD3 [l
RO1 roz [1
|

As seen in figure above, it is about simple circuits, but it does not have to be always
like that. If the target device is used for controlling expensive machines or life-support
devices, everything gets increasingly complicated! However, this solution is sufficient
for the time being...

POWER SUPPLY

Even though the PIC16F887 can operate at different supply voltages, why to test
'‘Murphy's low"? A 5V DC power supply is the most suitable. The circuit, shown on
the previous page, uses a cheap integrated three-terminal positive regulator LM 7805
and provides high-quality voltage stability and quite enough current to enable the
microcontroller and peripheral electronics to operate normally (enough here means
1A).

RESET SIGNAL

In order that the microcontroller can operate properly, a logic one (VCC) must be
applied on the reset pin. The push button connecting the reset pin MCLR to GND is
not necessary. However, it is amost always provided because it enables the
microcontroller to return safely to normal operating conditions if something goes
wrong. By pushing this button, OV is brought to the pin, the microcontroller is reset
and the program execution starts from the beginning. A10K resistor is used to allow
OV to be applied to the MCLR pin, via the push button, without shorting the
5VDCrail to earth.

CLOCK SIGNAL

Even though the microcontroller has a built-in oscillator, it cannot operate without
external components which stabilize its operation and determine its frequency

Meisam Fanoody 222
rtmmz3319@yahoo.com

(operating speed of the microcontroller). Depending on elements in use as well as
their frequencies, the oscillator can be run in four different modes:

LP - Low Power Crystal;
XT - Crystal / Resonator;
HS - High speed Crystal / Resonator; and
RC - Resistor / Capacitor.

ookl . kS| 09 L - FLAR ax |40, AAT ac CLEM
INEOSCI0 - AAE & 1D, AAT 25 1T
Bl [evie Bufer Wndees LGB Aboat Hesbory INTOSE - RAE s CLEDLT AAT 4z 1)
FCH0 - FAE wy 14D, AT a0 RC Devica
Conligussion Bz RC - AAF 5= CLEOUIT, R&T && BT s perenT
nde Protert = =
oecitator 3 ~ s
Ko | Eamad || ke |
Watchdeg Timer Diatied - (000 - 1EFFh | &0]]
E Verify Dlank
Power Up Timer bl
d = FLASH Program “lemary
*aster Clear Frablss - Write: Enable Erese Rzt
Data EE Probect Jigsnied - = ‘il probection O
Browm Out Debect 200 D abied = (" DO - D0FFh Piodincted | Licw FIEX |
(00K - (7FFh Protectad
Tnk-Fukt Seibchover Dicdtbed - Relosd HEX
" [00F : (FFFh Fiodected
e e ;
Low Yolage Program Djacked -
i
Ie-Cirouit Debugger 100 Diatked - (] Callbrnion wad Protec
Cal. ‘Word
Browan -k Resel 5ol catin 2 1Y -
e (v |
— |_cooe || emmnom |
WFFF IFFF AFFF AFFF Clear
Lo] [oo |
Frogesn Heray See: B K Desioe Shan Idie Tioe P
EEFROH Sew 256 Bpins Sicsesz h Fissirion |I|
Fibe CHDGCUMENTS GMD SETTINGSUHGRK D MIKI DESETOP| TOUCHPANEL BIGFICSIP ML O HPANEL HEX
Derere: PIC]GEARET g shion; Mo

Why are these modes so important? Owing to the fact that it is amost impossible to
make a stable oscillator which operates over a wide frequency range, the
microcontroller must know which crystal is connected so that it can adjust the
operation of its internal electronics to it. This is why all programs used for chip
loading contain an option for oscillator mode selection. See figure on the | eft.

Quartz Crystal

When the quartz crystal is used for frequency stabilization, a built-in oscillator
operates at a precise frequency which is not affected by changes in temperature and
power supply voltage. This frequency is usually labeled on the crysal casing.

Apart from the crystal, capacitors C1 and C2 must also be connected as per schematic
below. Their capacitance is not of great importance. Therefore, the values provided in
the table below should be considered as a recommendation, not as a strict rule.

Meisam Fanoody 223
rtmmz3319@yahoo.com

o1 Q — Mode Frequency C1,C2
L . 32 KHz 33pF
| == U OS¢t % P 200 KHz | 15pF
oD . T M % 200 KHz | 47-68 pF
— Joscz = XT 1 MHz 15 pF
cz S 4 MHz 15 pF
L B 4MHz | 15pF
T HS 8 MHz | 15-33 pF
20 MHz | 15-33 pF

Ceramic Resonator

Ceramic resonator is cheaper, but very similar to quartz by its function and the way of
operation. This is why schematics illustrating their connection to the microcontroller
areidentical. However, the capacitor value is dightly different due to different electric

features. Refer to the table below.

¢t QR il
“ - |: osc1 Mode Frequency C1,C2
H_| [— ao 455 KHz | 68-100 pF
LT [XT 2MHz | 15-68 pF
R | R]|osez 2 4MHz | 15-68 pF
©2 © HS 8 MHz | 10-68 pF
= 16 MHz | 10-22 pF

Such resonators are usually connected to oscillators when it is not necessary to
provide extremely precise frequency.

RC Oscillator

If the operating frequency is not of importance then there is no need to use additional
expensive components for stabilization. Instead, a ssimple RC network, as shown in
figure below, is sufficient. Since only the input of the local oscillator is used here, the
clock signal with the Fosc/4 frequency will appear on the OSC2 pin. This frequency
also represents the operating frequency of the microcontroller, i.e. the speed of
instruction execution.

3K <R1<100K

e
C > 20pF
R1
e —
|>—| =
OscC1 &S
e
c1 |: 0sc2 =
GND ________6::/

Meisam Fanoody 224

rtmmz3319@yahoo.com

External Oscillator
If it is required to synchronize the operation of severa microcontrollers or if for some

reason it is not possible to use any of the previous schematics, a clock signal may be
generated by an external oscillator. Refer to figure below.

_—

JUuuul JUUUT
| osc1

|: 0sc2

—

|'1 FIC16FEST

-

f

Regardless of the fact that the microcontroller is a product of modern technology, it is
of no use if not connected to additional components. Smply put, the appearance of
voltage on the microcontroller pins means nothing if not used for performing certain
operations such as to turn something on/off, shift, display etc.

4.2 ADDITIONAL COMPONENTS

This section covers the most commonly used additional components in practice such
as resistors, transistors, LED diodes, LED displays, LCD displays and RS232
communication circuits.

SWITCHESAND PUSH-BUTTONS
Switches and push-buttons are probably the ssmplest devices providing the simplest

way of detecting the appearance of a voltage on a microcontroller input pin.
Nevertheless, it isnot as ssimple as it seems... The reason for it is a contact bounce.

0.01-100mS
B EE—

Switch off moment

4 ‘

5V m
o m
Meisam Fanoody 225

rtmmz3319@yahoo.com

The contact bounce is a common problem with mechanical switches. When the
contacts strike together, their momentum and elasticity act together to cause bounce.
The result is arapidly pulsed electrical current instead of a clean transition from zero
to full current. It mostly occurs due to vibrations, slight rough spots and dirt between
contacts. This effect is usually unnoticeable when using these components in
everyday life because the bounce happens too fast to affect most equipment.
However, it causes problems in some analog and logic circuits that respond fast
enough to misinterpret on/off pulses as a data stream. Anyway, the whole process
doesn’t last long (a few micro or milliseconds), but long enough to be registered by
the microcontroller. When only a push-button is used as a counter signal source,
errors occur in almost 100% of cases!

This problem may be easily solved by connecting a smple RC circuit to suppress
qguick voltage changes. Since the bounce period is not defined, the values of
components are not precisely determined. In most cases it is recommended to use the
values as shown in figure below.

'] 5“
7t .
[7]
mKu [[S
L | 100K - E
L. - | | w I_ E
IF

= 100nF
I

If complete stability is needed then radical measures should be taken. The output of
the circuit, shown in figure below (RS flip-flop), will change its logic state only after
detecting the first pulse triggered by a contact bounce. This solution is more
expensive (SPDT switch), but the problem is definitely solved.

+5V © +——
4K7
4”[] D 74HC00

(SN 9]
u &
— DS

!

s I s 1 s I |
Microcontroller

In addition to these hardware solutions, there is a'so a ssmple software solution. When
the program tests the logic state of an input pin and detects a change, the check should
be done one more time after a certain delay. If the program confirms the change, it
means that a switch/push button has changed its position. The advantages of such
solution are obvious: it is free of charge, effects of contact bounce are eliminated and
it can be applied to the poorer quality contacts as well.

RELAY

Meisam Fanoody 226
rtmmz3319@yahoo.com

A relay is an electrical switch that opens and closes under the control of another
electrical circuit. It is therefore connected to output pins of the microcontroller and
used to turn on/off high-power devices such as motors, transformers, heaters, bulbs,
etc. These devices are amost always placed away from the board’s sensitive
components. There are various types of relays, but al of them operate in the same
way. When current flows through the cail, the relay is operated by an electromagnet
to open or close one or more sets of contacts. Similar to optocouplers, there is no
galvanic connection (electrical contact) between input and output circuits. Relays
usually demand both higher voltage and higher current to start operation, but there are
also miniature ones that can be activated by low current directly obtained from a
microcontroller pin.

Thisfigure below shows the most commonly used solution.

sV 24v

]
H

Relay

~_

PORT

10K |

Microcontroller

T1

J—GND GND

In order to prevent the appearance of high voltage self-induction, caused by a sudden
stop of the current flow through the coil, an inverted polarized diode is connected in
parallel to the coil. The purpose of this diode isto 'cut off' the voltage peak.

Meisam Fanoody 227
rtmmz3319@yahoo.com

LED DIODES

You probably know all you need to know about LED diodes, but you should also
think of the younger generations... Let’s see, how to destroy an LED?! Well...Easily.

Quick Burning

Like any other diode, LEDs have two ends- an anode and a cathode. Connect a diode
properly to the power supply voltage and it will happily emit light. Turn the diode
upside down and apply the same power supply voltage (even for a moment). It will
not emit light - NEVER AGAIN!

Slow Burning

There is a nominal, i.e. maximum current limitation specified for every LED which
must not be exceeded. If it happens, the diode will emit more intensive light, but just
for ashort period of time.

Something to Remember

Similarly, al you need to do is to discard a current limiting resistor shown below.
Depending on the power supply voltage, the effects might be spectacular!

ﬁlh (20 ili 2 mA)

<— ANODE (+) _ ud
i} % (1.6-2.4V)
v u(sv)
¥ T L3

x * Flaton
<+— CATHODE (-)’ body flange

LED DISPLAY

Meisam Fanoody 228
rtmmz3319@yahoo.com

Basically, an LED display is nothing more than several LEDs molded in the same
plastic case. There are many types of displays and some of them are composed of
several dozens built-in diodes which can display different symbols. Nevertheless, the
most commonly used display is the 7-segment display. It is composed of 8 LEDs.
Seven segments of a digit are arranged as a rectangle for symbol displaying, whereas
the additional segment is used for the purpose of displaying decimal point. In order to
simplify connection, anodes or cathodes of all diodes are connected to the common
pin so that there are common anode displays and common cathode displays,
respectively. Segments are marked with the letters from a to g, plus dp, as shown in
figure below. When connecting, each diode is treated separately, which means that
each must have its own current limiting resistor.

Here are a few important things that you should pay attention to when buying LED
displays:

As mentioned, depending on whether anodes or cathodes are connected to the
common pin, there are common anode displays and common cathode displays.
As for their appearance, there is no difference between these displays at all so
it is recommended to check carefully prior to installing them which one is
used.

Each microcontroller pin has a maximum current limitation it can receive or
give. Thus, if severa displays are connected to the microcontroller it is
recommended to use the so called Low current LEDs using only 2mA for the
operation.

Display segments are usually marked with the letters from a to g, but there is
no fast rule indicating to which display pins they are connected. For this
reason it is very important to check connecting prior to commencing writing a
program or designing a device.

a

I

d

Displays connected to the microcontroller usually occupy alarge number of valuable
I/O pins, which can be a big problem especially when it is needed to display muilti
digit numbers. The problem is more than obvious if, for example, it is needed to
display two 6-digit numbers (a ssimple calculation shows that 96 output pins are
needed in this case). The solution to this problem is called MULTIPLEXING.

Here is how an optical illusion based on the same operating principle as afilm camera
is made. Only one digit at atime is active, but they change their on/off conditions so
quickly making impression that all digits of a number are simultaneoudly active.

Meisam Fanoody 229
rtmmz3319@yahoo.com

=R L R -RE R -]

PORT 2

]

' — | 4 x Low current common
E { ' E cathode displays

@ @) o @
{i., T4

5 . ,—,: T3

£ (S — i T2

8 —-— “‘—‘> T1
g |} P -

= 4 x 10K I

Here is an explanation on the figure above. First a byte representing units is applied
on amicrocontroller PORT?2 and the transistor T1 is activated at the same time. After
a while, the transistor T1 is turned off, a byte representing tens is applied on the
PORT?2 and the transistor T2 is activated. This process is being cyclically repeated at
high speed for all digits and corresponding transistors.

A disappointing fact which indicates that the microcontroller is just a kind of
miniature computer designed to understand only the language of zeros and ones is
fully expressed when displaying any digit. Namely, the microcontroller does not
know what units, tens or hundreds are, nor what ten digits we are used to look like.
For this reason, each number to be displayed must go through the following
procedure:

First of al, a multi digit number must be split into units, tens etc. in a special
subroutine. Then each of these digits must be stored in specific bytes. Digits get
recognizable appearance by performing ‘masking’. In other words, the binary format
of each digit is replaced by a different combination of bits using a simple subroutine.
For example, the digit 8 (0000 1000) is replaced by the binary number 0111 1111 in
order to activate all LEDs displaying the digit 8. The only diode remaining inactive
here isreserved for the decimal point.

If a microcontroller port is connected to the display in such a way that bit O activates
segment ‘a’, bit 1 activates segment ‘b’, bit 2 segment ‘c’ etc., then the table below
shows the mask for each digit.

Meisam Fanoody 230
rtmmz3319@yahoo.com

- ioJofo]o]0]1]0]1] Number 5 binary Ifr\l ll;'ll'
A "]
“ OFTAGAAION] Number 5 mask L —g—]

/ dpgfedcha [| [
r Iel| lef

| |) I Ir'\
' Le—a 0O
\ .
_ 8x330R
pialiadu
= et | =
2 Lo c
t |k d
8 |9 e | o
e |& f U
] 2]
= dp Low current common
A cathode display

Digitsto display Display Segments

dp a b c d e f g
0 0 1 1 1 1 1 1 0
1 0 1 1 0 0 0 0 0
2 0 1 1 0 1 1 0 1
3 0 1 1 1 1 0 0 1
4 0 0 1 1 0 0 1 1
5 0 1 0 1 1 0 1 1
6 0 1 0 1 1 1 1 1
7 0 1 1 1 0 0 0 0
8 0 1 1 1 1 1 1 1
9 0 1 1 1 1 0 1 1

In addition to digits from 0 to 9, there are some letters- A, C, E, J, F, U, H, L, b, c, d,
o, I, t, that can also be displayed by masking.

In the event that common anode displays are used, all ones contained in the previous
table should be replaced by zeros and vice versa. Additionally, PNP transistors should
be used as drivers.

OPTOCOUPLER

An optocoupler is a device commonly used to galvanically separate microcontroller
electronics from any potentially dangerous current or voltage in its surroundings.
Optocouplers usually have one, two or four light sources (LED diodes) on their input
while on their output, opposite to diodes, there is the same number of elements
sengitive to light (phototransistors, photo-thyristors or photo-triacs). The point is that
an optocoupler uses a short optical transmission path to transfer a signal between the
elements of circuit, while keeping them electrically isolated. This isolation makes
sense only if diodes and photosensitive elements are separately powered. In this way,
the microcontroller and expensive additional electronics are completely protected
from high voltage and noises which are the most common cause of destroying,
damaging or unstable operation of electronic devices in practice. The most frequently
used optocouplers are those with phototransistors on their outputs. When it comes to

Meisam Fanoody 231
rtmmz3319@yahoo.com

the optocouplers with internal base-to-pin 6 connection (there are also optocouplers
without it), the base can be left unconnected.

24K 10K

]
Microcontroller

L]
1w||:| = 10N

Galvanically isolated

The R/C network represented by a broken line in the figure above denotes an optional
connection which lessens the effects of noises by eliminating very short pulses.

LCD DISPLAY

This component is specifically manufactured to be used with microcontrollers, which
means that it cannot be activated by standard IC circuits. It is used for displaying
different messages on a miniature liquid crystal display. The model described here is
for its low price and great capabilities most frequently used in practice. It is based on
the HD44780 microcontroller (Hitachi) and can display messagesin two lines with 16
characters each. It can display all the letters of alphabet, Greek letters, punctuation
marks, mathematical symbols etc. It is also possible to display symbols made up by
the user. Other useful features include automatic message shift (left and right), cursor
appearance, LED backlight etc.

Meisam Fanoody 232
rtmmz3319@yahoo.com

LCD Display Pins

Along one side of the small printed board of the LCD display there are pins that
enable it to be connected to the microcontroller. There are in total of 14 pins marked
with numbers (16 if there is a backlight). Their function is described in the table
bellow:

Function leTmber Name ;f;%f Description
Ground 1 Vss - ov
Power supply 2 Vdd - +5V
Contrast 3 Vee - 0-Vvdd
0 DO - D7 are interpreted as
4 RS 1 commands _
DO - D7 areinterpreted as data
Write data (from controller to
0 LCD
(():pc))grtar\t(i)lng of5 RIW 1 Read) data (from LCD to
controller)
0 Access to LCD disabled
6 E 1 Normal operating
From 1 to Data/commands are transferred
0 toLCD
7 DO 0/1 BitOLSB
8 D1 0/1 Bit 1
9 D2 0/1 Bit 2
Data /10 D3 0/1 Bit 3
commands 11 D4 0/1 Bit 4
12 D5 0/1 Bit5
13 D6 0/1 Bit 6
14 D7 0/1 Bit 7 MSB
LCD Screen

An LCD screen can display two lines with 16 characters each. Every character
consists of 5x8 or 5x11 dot matrix. This book covers a 5x8 character display which is
most commonly used.

Meisam Fanoody 233
rtmmz3319@yahoo.com

Display contrast depends on the power supply voltage and whether messages are
displayed in one or two lines. For this reason, varying voltage 0-Vdd is applied to the
pin marked as Vee. A trimmer potentiometer is usually used for this purpose. Some of
the LCD displays have built-in backlight (blue or green LEDs). When used during
operation, a current limiting resistor should be serialy connected to one of the pins
for backlight power supply (similar to LED diodes).

D +5V | :
&K
E_Contrast S30R
LED backlights
e
‘ .
L o 1 333N NIIINID 1a KiiA o
) g

gHEE“EaEE2585

o Ol

If there are no characters displayed or if all of them are dimmed when the display is
switched on, the first thing that should be done is to check the potentiometer for
contrast adjustment. Isit properly adjusted? The same applies if the mode of operation
has been changed (writing in one or two lines).

LCD Memory
LCD display contains three memory blocks:
DDRAM Display Data RAM;

CGRAM Character Generator RAM:; and
CGROM Character Generator ROM.

DDRAM Memory

DDRAM memory is used for storing characters to be displayed. The size of this
memory is capable of storing 80 characters. Some memory locations are directly
connected to the characters on display.

Meisam Fanoody 234
rtmmz3319@yahoo.com

Everything works quite simply: it is enough to configure the display to increment
addresses automatically (shift right) and set the starting address for the message to be
displayed (for example 00 hex).

Afterwards, al characters sent through lines DO-D7 will be displayed in the message
format we are used to- from left to right. In this case, displaying starts from the first
field of the first line because the initial address is 00 hex. If more than 16 characters
are sent, then all of them will be memorized, but only the first sixteen characters will
be visible. In order to display the rest of them, the shift command should be used.
Virtually, everything looks as if the LCD display is a window which shifts left-right
over memory locations containing different characters. In reality, this is how the
effect of the message shifting over the screen has been created.

DDRAM Memory

. First Line Addresses: 00 - 27 hex.
ﬂ|01|02103In4|0SIIJBIWlﬁﬂIﬂShAlOEPClDDlﬂEiﬂF |u|1 ||12[1 3|1-1|15|1e|1 7|1all9|1A|1B||E|1DI1EI1F|20I:1122|23I24l25|2_a|2_?I
0 |41|42I43|44|45Iﬂ3|47[43|49[44§41¢|40| 4Ei-€F sulm Iszlsa[sa|s_s|5als?IsslsqkAlsu}sclsukE|5F|ou |¢.1 |oz|.sa |¢4|as|oa]o?|

LCD Display Second Line Addresses: 40 - 67 hex.

If the cursor ison, it appears at the currently addressed location. In other words, when
a character appears at the cursor position, it will automatically move to the next
addressed |ocation.

Thisis a sort of RAM memory so that data can be written to and read from it, but its
content isirretrievably lost when the power goes off.

CGROM Memory

CGROM memory contains a standard character map with all characters that can be
displayed on the screen. Each character is assigned to one memory location:

Meisam Fanoody 235
rtmmz3319@yahoo.com

——4 higher bits of address

—r WP " F — B E |
woocoot | @ F1HIK A~ n._|'l=.|.'l:|-.=-.llz|
won| 0| | |2 BRI dEIEIEEE
wort| 0| | HA|CSC][5 1A TIE S e
o (ool (F[GDITIAL] | [« [TIFP|
gmw@ < 32EUelu AT =
T oro| | B B][F U] AN [ple
Emmn @) NI ._l":FF_:'gJ'[
%nxﬂﬂﬂﬂ () CEH AR FlEIE AL IR
2 P [MALVILIG] | [l Ty
3 [=oo| 0| ||| JE]D|Z I:ll"lL-'__'i=F
xoex1011 | (4) + 5 EIL K+ AW E0* ®
wotioo| 0| |w [1] | + 232t M
wao| 0] |=/=[M] 1M ¥ Eli-d o A
woox1110 | (7) . 2MH R 3| i R
w001 111 | (8) L1720 _|al 'U".JT:'nl.jl

The addresses of CGROM memory locations match the characters of ASCII. If the
program being currently executed encounters a command ‘send character P to port’
then the binary value 0101 0000 appears on the port. This value is the ASCII
equivalent to the character P. It is then written to an LCD, which results in displaying
the symbol from the 0101 0000 location of CGROM. In other words, the character ‘P’
is displayed. This applies to all letters of alphabet (capitals and small), but not to
numbers. As seen on the previous map, addresses of all digits are pushed forward by
48 relative to their values (digit O addressis 48, digit 1 addressis 49, digit 2 addressis
50 etc.). Accordingly, in order to display digits correctly it is necessary to add the
decimal number 48 to each of them prior to being sent to an LCD.

What is ASCII? From ther inception till today, computers can recognize only
numbers, but not letters. It means that all data a computer swaps with a peripheral
device has a binary format even though the same is recognized by the man as letters
(the keyboard is an excellent example). In other words, every character matches a
unique combination of zeroes and ones. ASCII is character encoding based on the

Meisam Fanoody 236
rtmmz3319@yahoo.com

English aphabet. ASCII code specifies a correspondence between standard character
symbols and their numerical equivalents.

ASCIl Hex Symbeol ASCIl Hex Symbol ASCIl Hex Symbol ASCIl Hex Symbol
0 0 MWUL 16 10 DLE 32 20 (space) 48 30 0
1 1 SO0OH 17 11 DX k1 B ! 49 3 1
2 2 5TX 18 12 DG2 34 22 " 50 3z 2
3 3 ETX 19 13 DC3 s 23 # 51 33 3
4 4 EOT 20 14 DC4 3B 24 s 52 34 4
B 5 ENQ 21 15 HMNAK 37 25 % 53 35 5
B 6 ACK 22 16 SYM 33 26 & 54 36]
7 7 BEL 23 17 ETB 39 27 ' 55 a7 T
8 8 BS 24 18 CAN 40 28 (56 38 a
9 9 TAB 25 19 EM 41 29 } 57 33 a9
10 A LF 26 1A SUB 42 2A - 58 3A :
1 B8 VT 27 1B ESC 43 2B + 59 3B :
12 C FF 28 1C Fs 44 2C . 60 3C =
13 D CR 28 1D @GS 45 2D - 61 3D =
14 E 50 30 1E RS 46 2E . 62 3E >
15 F sl N 1F us 47 2F ! 63 3F 7

ASCIl Hex Symbol ASCIl Hex Symbol ASCIl Hex Symbol ASCIl Hex Symbol

80 50

64 40 @ P 96 60 ' 1z 7 p
65 41 A 81 51 Q a7 61 a 113 M q
66 42 B g2 62 R 98 62 b 114 72 r
BT 43 c 83 &3 = 99 B3 c 115 73 5
BB 44 D 84 54 T 100 &4 d 116 74 t

B9 45 E 85 &5 U 101 65 e n"r s u
70 46 F 86 56 v 102 66 f 118 78 v
74T G 87 &7 W 103 &7 q 18 w
72 48 H 88 o8 x 104 &8 h 120 78 x
73 48 I 88 59 Y 105 69 i 121 79 y
T4 4A J 90 S5A F 106 BA i 122 TA z
[] K 91 &8 [107 6B k 123 7B {
6 4AC L 92 s5C L 108 BC I 124 7C |

77 4D M 93 5D] 109 8D m 125 7D H
78 4E M 94 5E " 110 6E n 126 TE -
7 4F o 95 ©&5F 111 6F o 127 7F

CGRAM Memory

Apart from standard characters, the LCD display can also display symbols defined by
the user itself. It can be any symbol in the size of 5x8 pixels. RAM memory called
CGRAM in the size of 64 bytes enablesit.

Memory registers are 8 bits wide, but only 5 lower bits are used. Logic one (1) in
every register represents a dimmed dot, while 8 locations grouped together represent
one character. It is best illustrated in figure below:

Meisam Fanoody 237
rtmmz3319@yahoo.com

Register

Address hex,
l CGRAM Memory LCD Display
Registers

00] 0[]0l]o EB%&E
01 of[o][1]o]o . .

Ll First symbol in CGRAM memory
02 L 0j1]1j1]0 D...E (letter € in lowercase)
03 (] J1]o[o][0]o =EE
04 3| | 1]0j[0]0]0 L L bol Ad : 0000 0000
o5 [JAolofo[a} { MEOCM e sl
o6 (L1 o[AA]o} ¢ (MMM]
o7 I Jojolololo} | IO
o8 i][] o][1][o][1]0 LI
oA AT HHEHH Second symbol in CGRAM memory
OB j ololoTo LML (letter in lowercase)
oc] oJ[o][1][o][o HE| | .
oo T T TelA[o[olo m EEE Symbol Address: 0000 0001
o [|1 11][1][1][1]1 HEREER
oF [JOJejollefe} OO
10 [|
38 [o[A]A]o QEEEQ
39\][]]1]ol[o]o]1
3A ; oo (AR [Ef:gtz}symhol in CGRAM memory
38 {J[[JoJ[o][1][o]0 gg=gg
3¢\ IAla .
30 (] olo]t[o[s CL L] Symbol Address: 0000 0111
e {oAlplfol | CIMOMC
3F [1llelelq [

Symbols are usually defined at the beginnig of the program by simple writing zeros
and ones to registers of CGRAM memory so that they form desired shapes. In order to
display them it is sufficient to specify their address. Pay attention to the first coloumn
in the CGROM map of characters. It doesn't contain RAM memory addresses, but
symbols being discussed here. In this example, ‘display 0’ means - display ‘¢’,
‘display 1’ means - display ‘7’ etc.

LCD Basic Commands

All data transferred to an LCD through the outputs DO-D7 will be interpreted as a
command or adata, which depends on the RS pin logic state:

RS =1 - Bits DO - D7 are addresses of the characters to be displayed. LCD
processor addresses one character from the character map and displaysit. The
DDRAM address specifies location on which the character is to be displayed.
This address is defined prior to transferring character or the address of the
previoudly transferred character is automatically incremented.

RS =0- BitsDO - D7 are commands for setting the display mode.

Meisam Fanoody 238
rtmmz3319@yahoo.com

Hereisalist of commands recognized by the LCD:

Command RSRW D7 D6 D5 D4 D3 D2 D1 DO Efrffeu“on
Clear display 00 00O0OOO O O 1 1.64mS
Cursor home 00 00O0OOOO O 1 x 164mS
Entry mode set 0O 0 0O0O0OOOUO 1 I/IDS 40uS
Display on/off control O 0O 000O0OO1 D U B 40uS
Cursor/Display Shift 0O 0O 00 0O 1 DICRLx x 40uS
Function set 0O 0 001 DLN F x x 40uS
Set CGRAM address 0 0 0 1 CGRAM address 40uS
Set DDRAM address 0O 0 1 DDRAM address 40uS
Read "BUSY" flag (BF) 0 1 BFDDRAM address -
Write to CGRAM or
DDRAM 1 0 D7D6D5D4 D3 D2 D1 DO040uS
Read from CGRAM or
DDRAM 1 1 D7D6D5D4 D3 D2 D1 DO 40uS
/D1 = Increnment (by 1) R'L 1 =Shift right
0 = Decrenent (by 1) 0 =Shift left

S 1 = Display shift on DL 1 = 8-bit interface

0 = Display shift off 0 = 4-bit interface
D1 = Display on N1 =D splay in tw lines

0 = Display off O = Display in one line
U1l = Cursor on F 1 = Character format 5x10 dots

0 = Cursor off 0 = Character format 5x7 dots
B 1 = Cursor blink on D)C 1 = Display shift

0 = Cursor blink off 0 = Cursor shift

WHAT ISTHE BUSY FLAG?

Compared to the microcontroller, the LCD is an extremely slow component. For this
reason, it was necessary to provide a signal which would, upon command execution,
indicate that the display is ready for the next piece of data. That signal, called the busy
flag, can be read from the line D7. The display is ready to receive new data when the
voltage on thislineis OV (BF=0).

L CD Connecting

Depending on how many lines are used for connecting an LCD to the microcontroller,
there are 8-bit and 4-bit LCD modes. The appropriate mode is selected at the
beginning of the operation in the process called 'initialization’. The 8-bit LCD mode
uses outputs DO- D7 to transfer data as explained on the previous page.

The main purpose of the 4-bit LCD mode is to save vauable 1/0O pins of the
microcontroller. Only 4 higher bits (D4-D7) are used for communication, while others
may be left unconnected. Each piece of data is sent to the LCD in two steps- four

Meisam Fanoody 239
rtmmz3319@yahoo.com

higher bits are sent first (normally through the lines D4-D7), then four lower bits.
Initialization enables the LCD to link and interpret received bits correctly.

Microcontroller

Can be connected
to Ground — |

9 +5V

In 4-bit mode is
I left unconnected

LED backlight

Contrast

| g

Dataisrarely read from the LCD (it is mainly transferred from the microcontroller to
the LCD) so it is often possible to save an extra 1/O pin by simple connecting the R/W
pin to the Ground. Such a saving has its price. Messages will be normally displayed,
but it will not be possible to read the busy flag since it is not possible to read the
display either. Fortunately, there is a ssmple solution. After sending a character or a
command it is important to give the LCD enough time to do its job. Owing to the fact
that the execution of a command may last for approximately 1.64mS, it will be
sufficient to wait about 2mS for the LCD.

LCD Initialization
The LCD is automatically cleared when powered up. It lasts for approximately 15mS.

After this, it is ready for operation. The mode of operation is set by default, which
means that:

1. Display iscleared.

2. Mode
DL = 1 - Communication through 8-hit interface
N = 0 - Messages are displayed in one line
F = 0 - Character font 5 x 8 dots

3. Display/Cursor on/off
D = 0 - Display off

Meisam Fanoody 240

rtmmz3319@yahoo.com

U = 0 - Cursor off
B =0 - Cursor blink off

4. Character entry
ID = 1 Displayed addresses are automatically incremented by 1
S =0 Display shift off

Automatic reset mostly occurs without any problems. Mostly, but not always! If for
any reason the power supply voltage doesn’t reach full value within 10mS, the display
will start to perform completely unpredictably. If the voltage unit is not able to meet
that condition or if it is needed to provide completely safe operation, the process of
initialization is applied. Initialization, among other things, causes a new reset by
enabling the display to operate normally.

There are two initialization algorithms. Which one is to be performed depends on
whether connecting to the microcontroller is through 4- or 8-bit interface. In both
cases, al that’s left to do after initialization is to specify basic commands and of
course - to display messages.

Refer to figure below for the procedure in 8-bit initialization:

Meisam Fanoody 241
rtmmz3319@yahoo.com

Power on

Wait for more than 15mS

RS RW D7 Dé D5 D4 D3 D2 D1 DO

0 0 0 0 1 1 x x x X%

Bit BF cannot be checked before this instruction
Display is set to 8-bit mode

Wait for more than 4.1mS

RS RW D7 Dé D5 D4 D3 D2 D1 DO
0O 0 0 01 1

X X X X

Wait for more than 100uS

RS RW D7 D6 D5 D4 D3 D2 D1 DO
0o 0 0 0 1 1

X X X X

Bit BF cannot be checked before this instruction
Display is set to 8-bit mode

Bit BF cannot be checked before this instruction
Display is set to 8-bit mode

Bit BF can be checked after
the following instructions

RS RW D7 Dé D5 D4 D3 D2 D1 DO
0 0 0 01 1 N F x Xx
o 0 0 00 O1 O0O0O0
0 o0 0 00O OO OO1
0O 0 0 00 OO 11IDS

Initialization ends

The number of display lines and character font
have to be defined and these values cannot
be changed after this point.

Display off
Display off
Display off

It is not a mistake! In this algorithm, the same value is transferred three times in a

row.

The procedure in 4-bit initialization is as follows:

Meisam Fanoody
rtmmz3319@yahoo.com

242

Power on
|

Wait more than15mS
|
RS RW D7 D6 D5 D4 Bit BF cannot be checked before this instruction
0 o 0 0 1 1 Display is set to 8-bit mode
|
Display is set to 8-bit mode
I
RS R'W D7 D6 D5 D4 Bit BF cannot be checked before this instruction
0O 0 0 0 1 1 Display is set to 8-bit mode
l
Wait more than 100uS
I
RS R/'W D7 D6 D5 D4 Bit BF cannot be checked before this instruction
0 0 0 0 1 1 Display is set to 8-bit mode
Bit BF can be checked after
the following instructions
RS R/W D7 D6 D5 D4 Start operation in 4-bit mode
After this point 4 higher bits are written first,
0 0 0 01 0 4 lower afterwards
0 0 0 01 0 The number of display lines and character font
have to be defined and these valuas cannot
0 0 N F x x be changed after this point
0 0 0O 0 0
0O 0 1 0 0 0 Display off
0 00000 Display clear
0o 0 0 0 0 1
0O 0 O 0 0
0 0 0 11D S Set entry mode
v
Initialization ends

Let'sdoit in mikroC...

/* In mkroC for PIC, it is sufficient to wite only one function to
perform all

Meisam Fanoody 243
rtmmz3319@yahoo.com

descri bed operations for LCD initialization. */

Léd_lnit(); // Initialize LCD

4.3 EXAMPLE 1

Writing header, configuring I/O pins, using delay function and switch
oper ator

The only purpose of this program is to turn on afew LED diodes on port B. Anyway,
use this example to study what a real program looks like. Figure below shows
connection schematic, while the program is on the next page.

vee RB7 RBO
1 | 1
HEO B0 B0
10K
RESET
ol) LED A 330R
: MCLR RE?]
RAD RES&
F
RA1 RBS Lep 77 _330R
RAZ RB4
RA3 RB3 AA 330R
RA4 RBE2 LED
ras U Re1 gl
REO O REOD LED 330R
RE1 a vdd vce
VCC RE2 Vss
Ddd g RD7 Lep 77 _330R
Vss o0 RD&
osc1 ~ RDS AX R
0sC2 RD4 LED 330
RCO RC7
RC1 RCE Z7 330R
8MH
2l RC2 RCS —'-EE'H:|_.
RC3 RC4
RD1 RD2 4"—:|1

When switching on, every other LED diode on the port B emits light, which indicates
that the microcontroller is properly connected and operates normally.

This example describes a correctly written header. It’s the same for al the programs
described in this book. To skip repetitiveness, it will not be written in the following
examples, but is considered to be at the beginning of every program and marked as
‘Header’.

Meisam Fanoody 244
rtmmz3319@yahoo.com

e a ——

- A " _ i

! n Header is placed at the beginning of the program and gives basic |}

' Program name: . L - - . H

i . - mformation in the form of comments (name of the program, release |}
Example 1

date etc.). Don't be deluded mto thinking that after a few months :

E * C ight: - . : H
i Dp{};r] ?-[;kroE:'_cktanika, 2005-2009 | YoU will know what that program 1s about and why you saved it. i

* Description:
Thiz iz a simple program used to demonstrate the operation of the micro- H

E controller, Every second LED on port B is turned on.
E * Configuration: H
E Microcontroller: PIC1EF887
Device: EasyPIC3 H
Oscillator: HS, 08.0000 MHz
SW: mikroC PRO v8.0 H

i * Notes: - H
H * H

void main () {

_—

c H

E o ANSEL = 0; J/ Bll I/0 are configured as digital H
g g 1

£s ANSELH = 0; !
g‘ 3 PORTB = (0b01010101; // Binary combination on port B H
DL.. 5 TRISB = 0; // Port B pins are configured as outputs '
I |

To make this example more interesting, we will enable LEDs connected to the port B
to blink. There are several waysto do it:

1. As soon as the microcontroller is turned on, al LEDs will emit light for a
second. The Delay function is in charge of it in the program. It’s only needed
to set delay expressed in milliseconds.

2. After one second, the program enters the for loop and remains there as long as
the variable k is less than 20. The variable is incremented by 1 after each
iteration. Within the for loop, the switch operation monitors port B logic state.
If PORTB=0xFF, its state is inverted into 0x00 and vice versa. Any change of
these logic states causes all LEDsto blink. Duty Cycleis 5:1 (500mS:100mS).

3. When the program exits the for loop, the port B logic state changes (Oxb
01010101) and the program enters the endless while loop and remains there as
long as 1=1. The port B logic state isinverted each 200mS.

Meisam Fanoody 245
rtmmz3319@yahoo.com

* IR A R R A AR LA SR A SR LS LA A LA S LR EE LR R R A RS AR R LR R EEREEEREEREEREEEEEELEELSES.;
/* Header !

int k;
void main() {
ANSEL = 0; /f BAll I/0 pins are configured as digital
ANSELH = 0;
PORTB = (xFF; // Reset port B
TRISB = 0; // Port B pins are configured as outputs
Delay ms (1000} ; /f 1s delay
PORTE = 0;
fI—
a for (k=1; k<20; k++) f// Remain in the loop as long as 1<k<20, k iz incremented
g { // by 1 after each iteration
é E switch (PORTB} { // Switch operator monitors port B =state
m
i E case 0x00: PORTB = OxFF; // If PORTB=0, change its state into OxFF
H 8‘ Delay ms(100); // and provide 100mS delay
E = break;
B
i s case OxFF: PORTBE = 0x00; // If PORTB=0xFF, change its state into 0
HE] Delay ms(500); } // and provide 500mS delay
| } /f End of for loop
PCRTB = 0b01010101; // Binary combination on port B
f—
@ a while (1) { // endless loop
E o PORTBE = ~PORTE; // Invert port B logic state
= i Delay ms (200); [/ 200mS delay

I

]

RB7 RBO
/O30 RO OB N
\ 0 2 0 3 0 3

4.4 EXAMPLE 2

RBT RBO
OWHW‘)

Using assembly instructions and internal oscillator LFINTOSC...

This is actually a sequel to the previous example, but deals with a bit more
complicated problem... The ideaisto make LED diodes on the port B blink slowly. It
can be done by setting large value for delay parameter in the Delay function. But there
is also another, more efficient manner to make this happen. You remember that this
microcontroller has built-in oscillator LFINTOSC which operates at the frequency of
31kHz? Now, it’stimeto ‘giveit a chance’.

The program starts with the do-while loop and remains there for 20 cycles. After each
iteration, 100mS delay is provided, which is reflected as relatively fast LED blinking
of the port B. When the program exits this loop, the microcontroller starts using the
LFINTOSC oscillator as a clock signal source. The LED blinking is considerably

Meisam Fanoody
rtmmz3319@yahoo.com

246

slower now even though the program executes the same do-while loop with 10 times
shorter delay.

For the purpose of making some potentionally dangerous situation more obvious here,
control hits are activated by assembly instructions. Simply put, when entering or
exiting the assembly instruction in the program, the compiler doesn’t save data on
currently active RAM bank, which means that in this program section, bank selection
depends on the SFR registers in use. When switching back to the program section
written in C, the control bits RPO and RP1 must return the state they had before
‘assembly language adventure’. In this program, the problem is solved by using the
saveBank auxiliary variable which saves the state of these two bits.

* EE IR I I I I I I I I I I b b I I b I I I I I I I I I I I I I
/* Header /

int kK = 0;
char saveBank;

void main() {

ANSEL = 0; /1 Al 1/0Opins are configured as
di gi tal
ANSELH = 0;
PORTB = O0; /1 Al port B pins are set to O
TRI SB = 0; /1 Port B pins are configured as
out puts
do {
PORTB = ~PORTB; /1 Invert port B logic state
Del ay_ns(100); /1 100nS del ay
k++; /1 Increment k by 1
}
whi | e(k<20); /1 Remain in [oop while k<20
k=0; /1 Reset variable k

saveBank = STATUS & 0b01100000; // Save the state of bits RPO and
RP1
/1l (bits 5 and 6 of the STATUS

register)
asm { /1 Start of assenbly sequence
bsf STATUS, RPO /'l Select nenory bank containing
t he OSCCON
bcf STATUS, RP1 /'l register
bcf OSCCON, 6 /1 Select internal oscillator
LFI NTGsC
bcf OSCCON, 5 /1 of 31KHz frequency
bcf OSCCON, 4
bsf OSCCON, 0 /1 Mcrocontrol |l er uses internal
oscillator
} /1 End of assenmbly sequence
STATUS &= 0b10011111; /1 Bits RPO and RP1 return their

original state
STATUS | = saveBank;

do {
PORTB = ~PORTB; /1 Invert port B logic state
Del ay _ns(10); /1 10 nS del ay
K++; /1 Increnent k by 1
Meisam Fanoody 247

rtmmz3319@yahoo.com

}
whi | e(k<20); /1 Remain in | oop while k<20
}

Y ou have noticed that the clock signal source is changed ‘on the fly’. If you want to
make sure of it, remove quartz crystal prior to switching the microcontroller on. The
microcontroller will not start to operate because the Config Word loaded with the
program requires the use of crystal on switching on. If you remove the crystal later
during operation, nothing will happen, it will not affect the microcontroller at all.

4.5 EXAMPLE 3

TMRO as a counter, declaring new variables, enumerated constants, using relay

Referring to the previous examples, the microcontroller executes the program without
being affected in any way by its surrounding. Practically, devices operating in this
manner are very rare (for example, ssimple neon sign controller). Input pins are aso
used in this example. There is a schematic in figure below, while the program is on
the next page. It’s still very simple. Timer TMRO is used as a counter. The counter
input is connected to a push button so that any button press causes timer TMRO to
count one pulse. When the number of pulses matches the number stored in the TEST
register, a logic one (5V) appears on the pin PORTD.3. This voltage activates an
electromechanical relay, and thisbit iscalled ‘RELAY’ in the program, therefore.

In this example, the TEST register stores number 5. Of course, it can be any number
obtained either by computing or defined as a constant. Besides, the microcontroller
can activate some other device instead of relay, while the sensor can be used instead
of the push button. This example illustrates one of the most common applications of
the microcontroller in the industry; when something is performed as many times as
needed, then something else should be turned on or off....

Meisam Fanoody 248
rtmmz3319@yahoo.com

vCccC

input &
1

10K
| RESET
ol
MCLR ~ RB7
: RAD RE6
RA1 RB5
RA2 RB4
RA3 RB3
i RA4 RB2
Ras U Rai
REO (@] RBO |l vCC
10K RE1 a Vdd vce
vCC RE2 Vss (o]
Ddd L RD7 Relay
Q0
Vss (o's] RD&
L 0scC1 | RD5
osc2 RD4 1
RCO RC7
sMHz $-] RC1 RC6 F
RC2 RC5 K2 P
2x20-30pF nes 22; i
-E- RD1 RD2

/*'_bader**/

void main() {
char TEST = 5;

enum out puts { RELAY = 3};

ANSEL = O;
di gi tal
ANSELH = 0;
PORTA = 0;
TRI SA = OxFF;
i nput s
PORTD = 0;
TRISD = 0b11110111,;

while the rest are

OPTI ON_REG. F5
the RA4 pin
OPTI ON_REG. F3

TVRO = 0;

do {
if (TMRO
constant TEST?
(PORTD. REL
(out put RELAY)

}
while (1);

Meisam Fanoody
rtmmz3319@yahoo.com

1l
o

1
-

== TEST)

AY =

1);

/1
/1

/1

11

/1

/1

11

/1

/1

/1

Constant TEST = 5
Const ant RELAY = 3

/1 Al 1/0O pins are configured as
Reset port A
/1 Al portA pins are configured as

Reset port D
Pin RD3 is configured as an output,

configured as inputs
Counter TMRO receives pul ses through
Prescaler rate is 1:1

Reset tiner/counter TNMRO

// Does the nunber in timer match

/! Nunbers match. Set the RD3 bit

Remain in endl ess | oop

249

Only one enumerated constant RELAY is used in this example. It is assigned a value
when declared.

enum out puts {RELAY = 3}; // Constant RELAY = 3

If several port D pins are connected to relays, the expression above could be written in
thisway aswell:

enum out puts {RELE = 3, HEATER, MOTOR = 6, PUWP};

All the constants, following those with assigned values (RELAY = 3 and MOTOR =
6), are automatically assigned values incremented by 1 relative to the previous
constant value. In this example, constants HEATER and PUMP will be assigned
values 4 and 7, respectively (HEATER =4 and PUMP = 7).

4.6 EXAMPLE 4

Using timers TMRO, TMR1 and TMR2. Using interrupts, declaring
new function...

If you have read the previous example, you probably have noticed a disadvantage of
providing delays using loops. In all those cases, the microcontroller is ‘captive’ and
does nothing. It simply waits for some time to pass. Such waste of time is an
unacceptable luxury and some other method should be applied therefore.

Do you remember the story about timers? Interrupts? This example makes links
between them in a practical way. The schematic is still the same as well as the
challenge. It is necessary to provide a delay long enough to notice changes on a port.
Timer TMRO with assigned prescaler is used for this purpose. An interrupt is
generated on every timer register overflow and every interrupt routine automatically
increments the cnt variable by 1. When it’s value reaches 400, the port B is
incremented by 1. The whole procedure is performed ‘behind the scenes’, which
enables the microcontroller to do something else.

Meisam Fanoody 250
rtmmz3319@yahoo.com

VCC

10K
RESET
=ty Lep ~7 _330R
L
: MCLR RBT |::
RAD RB6 A
RA1 RBS LED 330R
RA2 RB4
RA3 RB3 AA 330R
RA4 RB2 LED
Ras U RBi
REO () RBo Lep 77 _330R
RE1 a Vdd vce
vCC RE2 Vss
Ddd E RD7 Lep 77 _330R
:J Vss () RD&
_L 0sc1 ~l RD5 A7 330R
0sc2 RD4 LED
RCO RC7
BMHz [I RC1 RCE LED X 330R
RC2 RC5
RC3 RC4
2x20-30pF RDO RD3 LED AX 330R
RD1 RD2

/*l_bader**/

unsi gned cnt;

void interrupt() {

cnt ++;
increnented by 1
TMRO = 96;
val ue
| NTCON = 0x20;

}

void main() {
OPTI ON_REG = 0x84;

ANSEL = O0;
digital
ANSELH = 0;
TRISB = 0;
out puts
PORTB = 0xO0;
TVRO = 96;
| NTCON = OxAO;
cnt = 0;
do {
if (cnt == 400) {
i nterrupts
PORTB = PORTB++;
cnt = 0;
}
} while(1);

Meisam Fanoody
rtmmz3319@yahoo.com

/1 Define variable cnt

/1l Interrupt causes cnt to be
/1 Timer TMRO is returned its initial

/] Bit TOIE is set, bit TOIF is cleared

/1 Prescaler is assigned to timer TWMRO
/1 Al 1/0 pins are configured as

/1 Al port B pins are configured as
/1l Reset port B
/1 Timer TO counts from96 to 255
/1 Enable interrupt TMRO

/1 Variable cnt is assigned a 0

/1 Endl ess | oop
/1 Increment port B after 400

/1 1ncrenment number on port B by 1
/!l Reset variable cnt

251

..254,2565 0,1, 2 3.

B0 OH O R H
RB7 RBO

Interrupt occurs on every timer register TMRO overflow.

/*l_bader**/

unsi gned short cnt; // Define variable cnt

void interrupt() {

cnt ++ /1 Interrupt causes cnt to be
increnented by 1
PIRL. TMRLI F = O; /1 Reset bit TMRLIF
TVR1IH = 0x80; /1 TMR1IH and TMRIL timer registers
are returned
TVMRLL = 0x00; /1 their initial val ues
}
void main() {
ANSEL = O; /1 Al 1/0 pins are configured as
di gi tal
ANSELH = 0;
PORTB = OxFO; /1 Initial value of port B bits
TRISB = O0; /1l Port B pins are configured as
out put's
TICON = 1; /1 Set timer TMRL
PIRL. TMRLI F = O; /1 Reset bit TMRLIF
TMR1H = 0x80; /1 Set initial value for timer TMRL
TMRLL = 0xO00;
PIEL. TMRLIE = 1; /1 Enable interrupt on overflow
cnt = 0; /1 Reset variable cnt
| NTCON = 0xCQ0; /1 Enable interrupt (bits GE and
PEI E)
do { // Endl ess | oop
if (cnt == 76) { /1 Change port B state after 76
i nterrupts
PORTB = ~PORTB; /1 Nunber in port Bis inverted
cnt = O; /1 Reset variable cnt
}
} while (1);
}
RB7 REO

R p
(ﬁﬂﬁﬁ)

In this case, an interrupt is enabled after the timer register TMR1 (TMR1H, TMR1L)
overflow occurs. Combination of bits changing on port B is different from that in the
previous example.

/*l_bader**/

Meisam Fanoody 252
rtmmz3319@yahoo.com

unsi gned short cnt;

voi d Repl ace() {

/1

Defi ne vari abl e cnt

PORTB = ~PORTB; /1 Define new function 'Replace”
} /1 Function inverts port state
void interrupt() {
if (PPIRL.TMR2IF) { [// If bit TMRIF =1
cnt ++ ; /1 Increnment variable cnt by 1
PIRL. TMR2I F = 0;// Reset bit and
TVMR2 = 0; /1 reset register TMR2
}
}
/1 main
void main() {
cnt = 0; /1 Reset variable cnt
ANSEL = O; /1 Al 1/0Opins are configured as digita
ANSELH = 0;
PORTB = 0b10101010; // Logic state on port B pins
TRI SB = 0O; /1 Al port B pins are configured as outputs
T2CON = OxFF; /1 Set timer T2
TVR2 = 0; /1 Initial value of tinmer register TMR2
PIEL. TMR2I E = 1; /1 Enabl e interrupt
| NTCON = 0xCO0; /1 Set bits G E and PEIE
while (1) { /1 Endl ess | oop
if (cnt > 30) { // Change PORTB after nmore than 30 interrupts
Repl ace(); // Function Replace inverts the port B state
cnt = 0; /1 Reset variable cnt
}
}
}
RB7 RBO

/| O3 OB O IO HE N
\ 3o g owomo |/

This time, an interrupt occurs after timer register TMR2 overflow occurs. The
Replace function, which normally doesn’t belong to C, is used in this example to

invert port pins state.

4.1 EXAMPLE 5

Using watch-dog timer

This example illustrates how the watch-dog timer should not be used. A command
used for resetting this timer is intentionally left out in the main program loop, thus
enabling it to win the time battle and cause the microcontroller to be reset. As aresult,
the microcontroller will be reset all the time, which is reflected as PORTB LED

blinking.

Meisam Fanoody
rtmmz3319@yahoo.com

253

vCC

Q

188491 0Id

] LEp 777 _330R
RBT |r
RB6
RBS [[————————— Lep 777 330R
RB4 [F——— i
RB3 [FF 330R
e | L m——
RB1 [F——
RrBO [———— Lep 77 _330R
vaafi—o vee [|([L———p} ™1 4
Vss
RD7 %1 Lep 77 330R
RDG []
RDS5 []
ros [LEp 77 _330R
re7 [l I
Recs [1 AA 330R
Res [1 LED
RC4 [1
ro3 [LED 77 _330R
]

R i

RD2

10K
RESET
e =

MCLR

| [| RAD
[} ra1

[| raz

[| ra3

[| ras

[l ras

[} rED

[l rE1

vCe [} re2
O———{] Ddd
f[Vss
0sc1
0sc2

[| reo

wc ity e
2x20-30pF E 2;’;
—E— [l ro1

/*l_bader**/

void main() {

OPTI ON_REG = OxOE;
asm CLRWDT;
PORTB = OxOF;
TRI SB = 0;
Del ay_ns(300) ;
PORTB = OxFO;
while (1);

WDT

}

/1

11

/1
/1

1/
11

/1

Prescal er is assigned to tinmer WDOT (1:64)
Assenbly conmand to reset WDT tiner

Initial value of the PORTB register
Al port B pins are configured as outputs

30ntS del ay
Porta B value different frominitial

/1 Endl ess |oop. Program renains here until

timer resets the mcrocontroller

In order to make this example work properly, it is necessary to enable the watchdog
timer by selecting the Watchdog Timer - Enabled option in mE programmer.

RB7 RBO

TR j

4.8 EXAMPLE 6

Module CCP1 as PWM signal generator

Meisam Fanoody
rtmmz3319@yahoo.com

254

This example illustrates the use of CCP1 module in PWM mode. To make things
more interesting, the duration of the P1A output pulses (PORTC,2) may be changed
using pushbuttons symbolically marked as ‘DARK’ and ‘BRIGHT’, while the set
duration is seen as binary combination on port B. The operation of this module is
under control of the functions belonging to the specialized PWM Library. Three of

them are used here:

1. PWML1 init has the prototype:

voi d

Pwrl_I nit (1 ong freq);

Parameter freq sets the frequency of PWM signal expressed in herz. In this

example it amounts to SkHz.

N

PWM1 Start hasthe prototype: voi d Pwril_Start (voi d) ;

3. PWM1 Set Duty has the prototype: void Pwml_Set Duty(unsi gned

short

duty ratio);

Parameter duty_ratio sets pulse duration in pul se sequence.

The PWM library also contains the PWM _Stop function used to disable this mode.

Its prototypeis: voi d Pwril_St op(voi d);

Vss

RD&

,—.mK AX 330R
vce LED
o L I fimcir ~ Rerft
{| RAo RB6
{| RA1 RBS [[——— LED 77 330R
[l ra2 RB4 [————— 1
[ras RB3 [A7 330R
BRIGHT DARK RESET 0 ra4 RB2 ————— LED !
OQras U reifl—
0 reo 0O RBO [—— Lep 77 _330R
[re1 —_ vdd [—O vce
vce [] re2 2} Vss
Ddd | RD7
o
o
-“'J

.-

0sc1
05C2
RCO
RC1
RC2
RC3
RDO
RD1

8MHz |]

i

2x20-30pF

-

m

o
4
[B |

RDS
RD4
RCT
RCE&
RCS
RC4
RD3
RD2

[
a
=
X

ﬂ Lep 777 330R

i —
1

1]

1]

1

1]

1]

1

1

Lep 777 _330R

Lep 777 _330R

LEp 77 _330R

/ * FiEEiCiel'* khkhkkhkhkhkhkhhhhhhkhhhhhhhhdhhhdhhhdhhhddhdddhdddrddhrrdrrdxr*x */

unsi gned short current_duty, old_duty;

void initMin() {

ANSEL = O;
configured as digital

ANSELH = O;

PORTA = 255;

TRI SA = 255;
configured as inputs

PORTB = 0;

TRISB = 0;
configured as outputs

PORTC = 0;

TRISC = 0;

configured as outputs
PWML_| nit (5000);

(5KHz)

}

Meisam Fanoody 255
rtmmz3319@yahoo.com

11
11

/1

11

/1

11

Def i ne vari abl es
current _duty and ol d_duty

/1 Al 1/O pins are
Port Ainitial state

/1 Al port A pins are

Initial state of port B
/1 Al port B pins are

Port Cinitial state
/1 Al port C pins are

PWM nodul e initialization

void main() {

initMain();
current _duty = 16; /1 Initial value of variable
current _duty
ol d_duty = 0; /! Reset variable old_duty
PWL_Start(); /1 Start PWML nodul e
while (1) { /1 Endl ess | oop
if (Button(&PORTA, 0,1,1)) /!l 1f the button connected
to RAO is pressed
current _duty++ ; /1 increnent variable

current _duty

if (Button(&PORTA, 1,1,1)) /1 1f the pressed button is
connected to RAl
current _duty-- ; /1 decrenent value

current _duty

if (old_duty != current_duty) { /1 1f current_duty and
ol d_duty are not
PWML_Set _Duty(current_duty); // equal set PW to a new

val ue,
old duty = current _duty; /1 save the new val ue
PORTB = ol d_duty; /1 and show it on port B
}
Del ay_ns(200); /1 200ntS del ay
}
}

In order to make this example work properly, it is necessary to tick off the following
librariesin the Library Manager prior to compiling:

PWM
Button

49 EXAMPLE 7

Using A/D converter

The PIC16F887 A/D converter is used in this example. Is it necessary to mention that
everything is rather smple?! A variable analog signal is applied to the AN2 pin, while
the 10-bit result of conversion is shown on ports B and D (8 LSBs on port D and 2
MSBs on port B). GND is used as negative voltage reference Vref-, while positive
voltage reference is applied to the AN3 pin. It enables voltage measurement scale to
'stretch and shrink'.

In other words, the A/D converter always generates a 10-bit binary result, which
means that it detects a total of 1024 voltage levels (210=1024). The difference
between two voltage levels is not always the same. The less the difference between
Vref+ and Vref-, the less the difference between two of 1024 levels. As seen, the A/D
converter is able to detect slight changesin voltage.

Meisam Fanoody 256
rtmmz3319@yahoo.com

vcc

vCC

< Voltage to measure)

mcLR ~— ReT [}
:u [rao Rres [1
[ra1 res]
Il
] Raz RrB4 [1 Py
1l ra3 res fl LED 230R
[rae RB2 1
OQras 1O reifl Len 77 _330R
[] reo O reefl vecc
[rE1 = vad [—0
vee [Orez D wvasl Lep 7" _330R
O0—1] pdd E Ro7 i ;
] vas oo Rosfl A R
flosc1 ~ rosfi LED 330
f] oscz ro4 I I
BMHz #]] freo rer 1 AR
330R
2ﬂM0piH H_ [} re1 resfl T LED
[} rez Res [
O rca red 1 LED AX s30R
f| roo roa [}
|—| RD1 RD2 I
A7 330R
. LED
Lep 77 _330R
Vaoltage reference
Lep 7 _330R
Lep 77 _330R
]

/*Fbader**/

unsi gned int tenp_res;

void main() {

ANSEL = 0x0C;
anal og
TRI SA = OxFF;
i nputs
ANSELH = 0;
di gi tal
TRI SB = O0x3F;
configured as
TRISD = 0;
out put's
ADCONL. F4 = 1 ;
the RA3 pin.
do {
tenp_res = ADC Read(2);
to tenp_res
PORTD = tenp_res;
PORTB = tenp_res >> 2;
RB7
} while(1);

}

/1 Pins AN2 and AN3 are configured as
[l Al port A pins are configured as

/1l Rest of pins is configured as

/1 Port B pins RB7 and RB6 are

/1 outputs
/1 Al port D pins are configured as

/1 Voltage reference is brought to

/1l Result of A/D conversion is copied

/1 8 LSBs are nobved to port D
// 2 MSBs are noved to bits RB6 and

/1 Endl ess | oop

In order to make this example work properly, it is necessary to tick off the ADC
library inthe Library Manager prior to compiling:

ADC

4.10 EXAMPLE 8

Meisam Fanoody
rtmmz3319@yahoo.com

257

Using EEPROM Memory

This example illustrates write to and read from built-in EEPROM memory. The
program works as follows. The main loop constantly reads EEPROM memory
location at address 5 (decimal). The program then enters an endless loop in which
PORTB is incremented and PORTA.2 input state is checked. At the moment of
pressing the push button called MEMO, a number stored in PORTB will be saved in
EEPROM and directly read and shown on PORTD in binary form.

O VCC
10K 10K
RESET
== = LED Ax 330R
— o McLR ~ RET[l
RAD RB& [Fr
RA1 RBS [1 LED 330R
RAZ RBE4 [}
RA3 RB3 [} A7 330R
RA4 RB2 [——— LED
= U
= i RAS Y RB1 [—— an
g REO () RBO[—— LED 330R
=17 RE1 E; Vdd [—OVCC
vCC RE2 Vss
Ddd g RD7 [—— Lep 77 _330R
Vss o RD6 [—— | GND
—— osc1 ~| RDS [F— AR
GND 0sc2 i — LED 330R
RCO rc7 [
8MHz RC1 RC6 [1 AXA 330R
0 RC2 rRcs [LED
RC3 rRc4 []
2x20-30pF sk D3 b= LEp 7 _330R
RD1 RD2 [
GND
Lep 77 330R
Lep 7 _330R
LED 77 _330R
LEp 77 _330R
LEp 77 _330R
LED 77 330R
LEDp 77 _330R
GND

/*'_bader**/

void main() {
ANSEL = O;
digital
ANSELH = 0;

Meisam Fanoody
rtmmz3319@yahoo.com

258

11 Al

—
GND

I/ O pins are configured as

PORTB = 0; /1 Port Binitial value
TRI SB = 0; /1 Al port B pins are configured
as outputs
PORTD = O0; /1l Port Binitial value
TRI SD = 0; /1 Al port D pins are configured
as outputs
TRI SA = OxFF; /1 Al port A pins are configured
as inputs
PORTD = EEPROM Read(5); /! Read EEPROM nenory at address
5
do {
PORTB=PORTB++; /1 Increnent port B by 1
Del ay_ns(100); /1 100nt5 del ay
i f (PORTA. F2){
EEPROM Wite(5, PORTB); // If MEMO is pressed, save PORTB
PORTD = EEPROM Read(5); // Read witten data
do;
whi | e (PORTA. F2); /1l Remain in this |oop as long as
the button is
/1 pressed
}
}
while(1); /1 Endl ess | oop
}

In order to check this circuit, it is sufficient to press the MEMO button and turn off
the device. After restarting the device, the program will display the saved value on
port D. Remember that at the moment of writing, this value was displayed on port B).

In order to make this example work properly, it is necessary to tick off the EEPROM
library in the Library Manager prior to compiling:

EEPROM

4.11 EXAMPLE 9

Two-digit LED counter, multiplexing

The microcontroller operates as a two-digit counter here. The variable i is
incremented (slow enough to be visible) and its value is displayed on atwo-digit LED
display (99-0). The challenge is to enable a binary number to be converted in decimal
and split it in two digits (tens and ones). Since the LED display segments are
connected in paralel, it is necessary to ensure that they change fast in order to make
impression of simultaneous light emission (time-division multiplexing).

In this example, timer TMRO is in charge of the time-division multiplexing, while the
mask function converts a binary number into decimal format.

Meisam Fanoody 259
rtmmz3319@yahoo.com

L il
MCLR RE7
RAD RE6 [GND
RA1 rBS5 [1
RAZ re4 [1
RA3 RB3 [] 4 x 330R
RA4 rez [1 —
ras O Reifl]
RE0 () Reoll wvce
RE1 = vdd —0
RE2 *2] Vss [F—
O——{| bdd g RDT [— o« |x| =l alm|-] =|a
Vss o0 RDE [}
osci =l RD5 E l_' '_,
GND osc2 RD4 [-
0 rco RCT [e msD l ' LsD
8MH [re1 rRcé 1 GND
2t [rec2 res [1 o '
ZxZD-SDpF [:g: :::] 4x 330R = o ﬂo 'B‘I L -)40 o
EIE RD1 Ruz}——-|
GND

/*l_bader**/

unsi gned short mask(unsi gned short
digitl0, digitl, digit, i;

unsi gned short digit_no,

void interrupt() {
if (digit_no==0) {

PORTA = 0;
PORTD = digit1;

PORTD
PORTA = 1;
digit no = 1;
} else {
PORTA = 0;
PORTD = digit10;
PORTD
PORTA = 2;
digit_no = 0;
}
TVRO = O;
| NTCON = 0x20;
}

void main() {
OPTI ON_REG = 0x80;
TVRO = 0O;
I NTCON = OxAO;
PEI E, | NTE, RBI E, TOI E
PORTA ;
TRI SA
as outputs
PORTD = 0;

o O~

Meisam Fanoody
rtmmz3319@yahoo.com

nunj ;

/1
11

11
11
/1

11

11

11
/1

/1

260

Turn of f both displays
Set mask for displaying ones on

Turn on display for ones (LSD)
Turn of f both displays

Set mask for displaying tens on
Turn on display for tens (MsD)

Reset counter TMRO
Bit TOI F=0, TOI E=1

Set timer TMRO
/1 Disable interrupt

Turn of f both displays
Al'l port A pins are configured

Turn off all display segnents

TRI SD = 0; /1 Al port D pins are configured
as outputs

do {
for (i =0; i<=99; i++) { // Count fromO to 99
digit =i % 10u;
digitl = mask(digit); /1 Prepare mask for displaying
ones
digit = (char)(i / 10u) % 10u
digitl0 = nask(digit); // Prepare mask for displaying
tens
Del ay_ns(1000);
}
} while (1); /1 Endl ess | oop
}
mask.c file:

/*l_bader**/

unsi gned short nmask(unsi gned short num {
switch (num {

case 0O : return Ox3F;
case 1 : return 0x06;
case 2 : return Ox5B
case 3 : return Ox4F
case 4 . return 0x66
case 5 : return 0x6D
case 6 : return Ox7D,
case 7 : return 0xO07;
case 8 : return Ox7F;
case 9 : return Ox6F;
}

}

In order to make this example work properly, it is necessary to include document
mask.c into the project prior to compiling:

Example9.mcppi - Sources - Add File To Project

mask.c
example9.c

i~ | Project Manage |

& g [

i

- S0l IFCes

mask.c

=| exampled.c
Header Files
Banaries

Project level defines

Image Files

Meisam Fanoody 261
rtmmz3319@yahoo.com

412 EXAMPLE 10

Using LCD display

This example illustrates the use of an aphanumeric LCD display. The function
libraries ssimplify this program, which means that the effort made to create software
pays off in the end.

A message written in two lines appears on the display:

mikroElektronika
LCD example

Two seconds later, the message in the second line is changed and displays voltage
present on the A/D converter input (the RA2 pin). For example:

mikroElektronika
voltage: 3.141V

In true device, the current temperature or some other measured value can be displayed
instead of voltage.

/ Data lines
VGG
g 5K |
el [~ Control lines
8 ||
—
i
0 i
;] S 2E 85583885 C
L [—
[- g - - — - - g - -
[ras T retf— rmikroElektronika
E =L =]_]—0 vee -
[z O ves voltaget 5. 1411
vee O— pad g ro7 [1 |
—1] vas o RDG %
I -
[oscz ~oa [Q O
BMHz ﬂﬂ [reo Re [1
E RC1 RCE %
2 RC2 RCS
o [I ml
—— rm roz [1

In order to make this example work properly, it is necessary to tick off the following
libraries in the Library Manager prior to compiling:

ADC
LCD

/*l_bader**/

Meisam Fanoody 262
rtmmz3319@yahoo.com

/! LCD nodul e connections
shit LCD RS at RB4 bit;
shit LCD EN at RB5 bit;
shit LCD D4 at RBO bit;
shit LCD D5 at RB1 bit;
shit LCD D6 at RB2 hit;
shit LCD D7 at RB3 hit;
shit LCD RS Direction at
shit LCD EN Direction at
shit LCD D4 Direction at
shit LCD D5 Direction at
shit LCD D6_Direction at
shit LCD D7 _Direction at
/1 End LCD nodul e connections

unsi gned char ch;
unsi gned int adc_rd;
char *text;

| ong tlong;

void main() {

| NTCON = 0;

ANSEL = 0x04;
anal og i nput

TRI SA = 0x04;

ANSELH = 0;
as digital

Led Init();

Lcd_Cnd(_LCD_CURSOR_OFF) ;
Lcd_Crmd(_LCD CLEAR);

text = "m kr oEl ekt roni ka";
Led Qut(1,1,text);
the first |ine
text = "LCD exanple";
Led Qut(2,1,text);
ADCON1 = 0x82;
TRI SA = OxFF;

configured as inputs
Del ay_ns(2000);

text = "voltage:";
while (1) {
adc_rd = ADC Read(2);
i nput .
Lcd Qut(2,1,text);
line
tlong = (long)adc_rd *
millivolts
tlong = tlong / 1023;
ch = tlong / 1000;

mllivolts)

Lcd _Chr (2,9, 48+ch);

Led Chr _CP('.");

ch = (tlong /
mllivolts

Lcd_Chr _CP(48+ch);

100) %

Meisam Fanoody
rtmmz3319@yahoo.com

TRI SB4_bi t
TRISB5_bi't;
TRI SBO_bi't;
TRI SB1_bit;
TRI SB2_bi't;
TRI SB3 bit;

5000;

10;

263

/1

/1 Declare variabl es

/1

/1

/1 Al interrupts disabled

/1 Pin RA2 is configured as an

/1 Rest of pins are configured

/1 LCD display initialization
/1 LCD command (cursor off)
/1 LCD conmand (clear LCD)

/1 Define the first nmessage
/[l Wite the first nmessage in

/1 Define the second nessage

/1 Define the first message

/1 AD voltage reference is VCC
[l Al port A pins are

/1 Define the third nmessage

/1 AD conversion. Pin RA2 is an

I/ Wite result in the second

// Convert the result in

/1 0..1023 -> 0-5000nV
/1 Extract volts (thousands of

/] fromresult

// Wite result in ASCII| fornat

// Extract hundreds of

// Wite result in ASCII| fornat

ch = (tlong / 10) % 10; /1 Extract tens of millivolts

Lcd_Chr _CP(48+ch); /] Wite result in ASCH| fornat
ch = tlong % 10; /] Extract digits for mllivolts
Lcd_Chr_CP(48+ch); /1 Wite result in ASCI| format
Lcd _Chr _CP('V);

Del ay_ns(1);

4.13 EXAMPLE 11

RS232 serial communication

This example illustrates the use of the microcontroller’s EUSART module.
Connection to a PC is enabled through the RS232 standard. The program works in the
following manner. Every byte received via serial communication is displayed using
LED diodes connected to port B and is automatically returned to the transmitter after
that. If an error occurs on receive, it will be signalled by switching the LED diode on.
The easiest way to test the device operation practically is by using a standard
Windows program called Hyper Terminal.

Receive (Rx)

blojo .
|O 10000 0s O
+—
Transmit (Tx)
Serial — | > Voo
Communication
Cable
10K
bood RESET o
330R
O/O s]ls]le] XO —¢-- MCLR '~ RBT j—LEEH_:l—
ot s X 3308
X 0m E :; ﬁ O LED
[raa RB3
— Receiving E m E ::i]—]—
Error [l rea ¢ REO
[rE1 - Ved]
vec vee [| REZ % Vas]
10uF O——| Dad oo ROT
? {| vss ==} S
10uF o =] - osci =) RDS]
- E auef] l osc2 RO4]
18F B ot [| reo RCT
= . :;] rc1 RCE s
E ﬁ T e [I [| RE2 RGS] LED 330R
{| raeur Tasf] [RC3 RC4 [
10uF e {f =m Mw] [| RD:O RO3] LED ¥ syRp
€I —E [ro1 ROZ []
_—

/*l_bader**/

unsi gned short i;

void main() {

Meisam Fanoody 264
rtmmz3319@yahoo.com

UART1_I nit(19200); /1 Initialize USART nodul e
/1 (8 bit, 19200 baud rate, no
parity bit...)

while (1) {
if (UART1 Data Ready()) { // If data has been received
i = UART1 Read(); /] read it
UART1 Wite(i); /1 and send it back
}
}

}

In order to make this example work properly, it is necessary to tick off the UART
library in the Library Manager prior to compiling:

UART

4.14 EXAMPLE 12

Temperature measurement using DS1820 sensor. Use of ‘l-wire’
protocal...

Temperature measurement is one of the most common tasks performed by the
microcontroller. A DS1820 sensor is used for measurement here. It is capable of
measuring temperature in the range of -55 °C to 125 °C with 0.5 °C accuracy. For the
purpose of transferring data to the microcontroller, a specia type of serial
communication called 1-wireis used.

RESET

10K vec
vee
125% MCLR ' RE7 [l]
vee [rae RBs [1
[rai Ras [
[maz RB4 [}
E RA3 RE3 3
¥ RAL RB2
=5° b - Oras O Ret i
Ores () meofl
O re1 a Vdd [}
RE2 Vas
ba veeO—losa g1 wmorfl 5K
—] vss 0 RD® [1 -+
——Ff|osci =] RDS [| CONTRAST
——+F osca R0 1
BMHz ¢ [rea Re7 I
t der el o [[[[[[]]]]
2 RCZ RGS
20-30pF —% g rea R4 [de6lelelollld
[row Ro3 1 n
i Roe s EvEsHB3EEE

Due to a smple and wide use of these sensors, commands used to run and control
them are in the form of functions stored in the One Wire library. There are three
functionsin total:

Ow_Reset isused for reseting sensor;
Ow_Read is used for receiving data from sensor; and

Meisam Fanoody 265
rtmmz3319@yahoo.com

Ow_Writeisused for sending commands to sensor.

This example implies the advantage in using libraries with ready-to-use functions.
Concretely, you don’t have to study documentation provided by the manufacturer in
order to use this sensor. It is sufficient to copy some of these functions in the program.
If you want to know how any of them is declared, just right click on it and select the
Help option.

* EIE IR IR b I I I I I I I I I I I I I R I b b b b
/ * Header /

// LCD nodul e connecti ons

shit
shit
shit
shit
shit
shit
shit
shit
shit
shit
shit
shit

LCD RS at RB4 _hit;
LCD EN at RB5_hit;
LCD D4 at RBO_bit;
LCD D5 at RB1_bit;
LCD D6 at RB2_bit;
LCD D7 at RB3_bit;
LCD RS Direction at TRISB4 bhit;
LCD EN Direction at TRISB5 hit;
LCD D4 Direction at TRISBO bit;
LCD D5 Direction at TRISB1 bit;
LCD D6_Direction at TRI SB2_bit;
LCD D7 Direction at TRISB3_hit;

/! End LCD nodul e connecti ons

const unsi gned short TEMP_RESCLUTION = 9;

char

unsi

*text = "000.0000";
ghed tenp;

voi d Di spl ay_Tenperature(unsigned int temp2wite) ({

const unsi gned short RES SH FT = TEMP_RESOLUTI ON - 8;
char tenp_whol e;
unsigned int tenp_fraction;

/'l check if tenperature is negative
if (temp2wite & 0x8000) {
text[O] ="-";
temp2wite = ~tenp2wite + 1;
}
/1 extract tenp_whole
temp_whole = temp2wite >> RES SH FT ;

/1 convert tenp_whole to characters
if (tenp_whol e/ 100)
text[0] = tenp_whol e/ 100 + 48;

el se

text[0] ="'0";
text[1] = (temp_whol e/ 10)%0 + 48; // Extract tens digit
text[2] = tenp_whol e%d0 + 48; /1 Extract ones digit

/1 extract tenp_fraction and convert it to unsigned int
tenp _fraction = temp2wite << (4-RES SH FT);
tenp_fraction & 0xO0O0OF;

temp_fraction *= 625;

/1 convert tenp fraction to characters
text[4] = tenp_fraction/ 1000 + 48; /1 Extract thousands digit
text[5] = (temp_fraction/100)%0 + 48; // Extract hundreds digit

Meisam Fanoody 266
rtmmz3319@yahoo.com

text[6]
text[7]

(tenp_fraction/10)%d0 + 48; // Extract tens digit
tenmp_fraction%d0 + 48; /1 Extract ones digit

/1 Display tenperature on LCD
Lcd Qut(2, 5, text);

}

void main() {
ANSEL = O0; /1 Configure AN pins as digital 1/0
ANSELH = 0;
C1ON bit = 0; // Disable comparators

C20N_bhi t 0;

Led Init(); /1l Initialize LCD

Lcd_Cnd(_LCD CLEAR); /1l Clear LCD
Lcd_Cnd(_LCD CURSOR OFF); // Turn the cursor off
Led Qut(1, 1, " Tenperature: ");

/1 Print degree character, 'C for Centigrades

Lcd_Chr (2, 13, 223); /1l different LCD displays have
di fferent char code for degree

/1 if you see greek alpha letter try typing 178 instead of 223

Lecd_Chr(2,14,'C);

[l--- main |oop
do {
/l--- performtenperature reading
Ow_Reset (&PORTE, 2); /1 Onewire reset signal

Ov Wite(&PORTE, 2, 0xCC); // Issue command SKI P_ROM

Owv Wite(&PORTE, 2, 0x44); // Issue comrand CONVERT_ T

Del ay_us(120);

Ow_Reset (&PORTE, 2);

Owv Wite(&PORTE, 2, 0xCC); // Issue conmand SKI P_ROM

Onv Wite(&PORTE, 2, OxBE); // Issue command READ_SCRATCHPAD
temp = Ow_Read(&PORTE, 2);

temp = (Ow_Read(&PORTE, 2) << 8) + tenp;

/l--- Format and display result on Lcd
Di spl ay_Tenperature(tenmp);
Del ay_ns(500) ;
} while (1);
}

In order to make this example work properly, it is necessary to tick off the following
librariesin the Library Manager prior to compiling:

One Wire
LCD

4.15 EXAMPLE 13

Sound generation, sound library...

Audio signals are often used when it is necessary to call the user’s attention, confirm
that some of the push buttons is pressed, warn that minimum or maximum values are
reached etc. It can be just a ‘beep’ signal as well as longer or shorter melody. This

Meisam Fanoody 267
rtmmz3319@yahoo.com

example demonstrates sound generation using functions belonging to the Sound

library.
0 VCC (5V)
5
—{mcLtk ~ Re7[l
[Jrao RB6 [
[ra1 RBS [
Reset 0 raz RrB4 [
[|ra3 RE3 [
[ras RB2 []
|: RAS E RE1 :l (] [+] Q (=] + | 1uF
[reo (@) RBO [1 * * { l
[rE1 = vdd [— o
[rez ()] Vss [—
—{Josa a1 Ro7[l
I:E Vss o0 RDE []
osct =l RDS []
] osc2 RD4 [1 SRERERE
[rco rRe7 [l LTt
[rea RCE []
BMHz Ml [l rez Rres [1
kil |
-I:iii—- [l ro1 RD2 []

In adition to these functions, the Button function belonging to the same library is used
for testing push buttons.

/*'_bader**/

void Tonel() {

Sound_Pl ay(659, 250); /1 Frequency = 659Hz, duration =
250ms
}
voi d Tone2() {
Sound_Pl ay(698, 250); /1 Frequency = 698Hz, duration =
250ms
}
void Tone3() {
Sound_Pl ay(784, 250); /1 Frequency = 784Hz, duration =
250ms
}
voi d Mel odyl() { /1 Make funny melody 1
Tonel(); Tone2(); Tone3(); Tone3();
Tonel(); Tone2(); Tone3(); Tone3();
Tonel(); Tone2(); Tone3();
Tonel(); Tone2(); Tone3(); Tone3();
Tonel(); Tone2(); Tone3();
Tone3(); Tone3(); Tone2(); Tone2(); Tonel();
}
void ToneA() { /1 Tone A
Sound_Pl ay(880, 50);
}
void ToneC() { /1l Tone C
Meisam Fanoody 268

rtmmz3319@yahoo.com

Sound_Pl ay(1046, 50);

}
void ToneE() { /1 Tone E
Sound_Pl ay(1318, 50);
}
voi d Mel ody2() { /1 Make funny mel ody 2
unsi gned short i;
for (i =9; i >0; i--) {
ToneA(); ToneC(); ToneE();
}
}
void main() {
ANSEL = O0; /1 Al 1/Opins are digita
ANSELH = O;
TRI SB = 0xFO; /1 Pins RB7-RB4 are configured as
i nputs,
/1 RB3 is configured as an out put
Sound_I ni t (&PORTB, 3);
Sound_Pl ay(1000, 500);
while (1) {
if (Button(&PORTB,7,1,1)) // RB7 generates Tonel
Tonel();
while (PORTB & 0x80) ; /1 Wait for push button rel ease
if (Button(&PORTB, 6,1,1)) // RB6 generates Tone2
Tone2();
while (PORTB & 0x40) ; /1 Wait for push button rel ease
if (Button(&PORTB,5,1,1)) // RB5 generates nel ody 2
Mel ody2();
while (PORTB & 0x20) ; /1 Wait for push button rel ease
if (Button(&PORTB, 4,1,1)) // RB4 generates nelody 1
Mel ody1();
whil e (PORTB & 0x10) ; /1 Wit for push button rel ease
}
}

In order to make this example work properly, it is necessary to tick off the following
libraries in the Library Manager prior to compiling:

Button
Sound

4.16 EXAMPLE 14
Using graphic LCD display
A graphic LCD (GLCD) provides an advanced method for displaying visual

messages. While the character LCD can display only alphanumeric characters, the
GLCD can display messages in the form of drawings and bitmaps. The most

Meisam Fanoody 269
rtmmz3319@yahoo.com

commonly used graphic LCD has 128x64 pixels screen resolution. The GLCD
contrast can be adjusted using the potentiometer P1.

Here, the GLCD displays a picture of truck the bitmap of which is stored in the
truck_bnp. c file.

/

(i N
vce
Ps Lf:ﬂ';.“..m T Rz 10 VCC E::I'J‘R ~ x:%
m{f (| rA1 RBs [I-~
{ a2 wou [
R TR [RAs R B
- ' Qras T re1fic]
Qree () rBO[—| wvec
[l re1 a vdd [———©
[l re2 Vs [1
[l pdd ;”o RD7 [122-] J_
0 vss Go RDe[1°5]
o :% 0sC1 =] RD5]%/
8MHz oscz RD4 [—
I [l rco rRc7 [
6 P E RC1 RCE %
22pF 22pF RC2 RCS
oo | RC3 RC4]m
1| RDO RD3 [
RD1 RrD2 [~

decl arati ons

/1 dcd nodul e connections

char G.CD Dat aPort at PORTD

shit GLCD CS1 at RBO_bit;

shit GLCD CS2 at RB1 hit;

shit GLCD RS at RB2_bhit;

shit GLCD RWat RB3_bit;

shit GLCD EN at RB4 _bit;

shit GLCD RST at RB5 bit;

shit GLCD CS1 Direction at TRISBO bit;
shit GLCD CS2 Direction at TRISB1 bit;
shit GLCD RS Direction at TRISB2 bit;
shit GLCD RWDirection at TRI SB3_bit;
shit GLCD EN Direction at TRI SB4 bit;
shit GLCD RST Direction at TRISB5 bit;
/1 End d cd nodul e connecti ons

voi d del ay2S() { /1 2 second
del ay function
Del ay_ns(2000);

void main() {
unsi gned short ii;
char *soneText;

Meisam Fanoody 270
rtmmz3319@yahoo.com

#defi ne COVPLETE_EXAMPLE

ANSEL = O;
AN pins as digital
ANSELH = 0;

CION bit = 0;
conpar at ors

C2ON_bit = 0;

Acd Init();

G.CD

d cd_Fi |l (0x00);

while(1) {

#i f def COVPLETE_EXAMPLE
d cd_| mage(truck _bmp);
del ay2S(); delay2S();

#endi f

d cd_Fil |l (0x00);
d cd_Box(62, 40, 124, 56, 1) ;
A cd_Rect angl e(5, 5, 84, 35, 1) ;

rectangl e

hori zont al

font,

f ol der

string

circles

string

Meisam Fanoody

G cd_Line(0, 0, 127, 63, 1);
del ay2S();

for(ii = 5; ii < 60;
and vertical |ines
Del ay_ns(250);
G cd_V_Line(2, 54, i
A cd HLine(2, 120,

ii+=5){

i, 1);
ii, 1);
}

del ay2S();

G cd_Fill (0x00);

#i f def COVPLETE_EXAMPLE
d cd_Set _Font (Char acter8x7, 8, 7,

see _ Lib_G.CDFonts.c

#endi f

Gcd Wite Text("m kroE", 1, 7, 2);

for (ii = 1; ii <= 10; ii++)
Acd Crcle(63,32, 3*ii, 1);
del ay2S();

d cd_Box(12, 20, 70,57, 2);
del ay2S();

#i f def COVPLETE_EXAMPLE
dcd_Fill (OXFF):

d cd_Set Font (Character8x7, 8, 7, 32);

someText = "8x7 Font";
GQcd Wite Text(sonmeText, 5, 0, 2);

del ay2S();

A cd_Set _Font (SystenmBx5, 3, 5, 32);

271

rtmmz3319@yahoo.com

32);

11

/1

/1

/1
/1

/1

/1

/1

/1

/1

/1

/1 Configure

/1 Disable

Initialize

Clear GALCD

Draw i mage

Cl ear GCD
Dr aw box

!/l Draw
Draw | i ne

[/l Draw

Cl ear GLCD

/1 Choose

in Uses

Il Wite

!/l Draw

Dr aw box

Fill G.CD
Change font

Il Wite

Change font

someText = "3X5 CAPI TALS ONLY";

A cd Wite Text(someText, 60, 2, 2); Il Wite
string

del ay2S();

A cd_Set _Font (font5x7, 5, 7, 32); /1 Change font

someText = "5x7 Font";

Acd Wite_Text(sonmeText, 5, 4, 2); Il Wite
string

del ay2S();

A cd_Set Font (Font Systenbx7_v2, 5, 7, 32); // Change font

soneText = "5x7 Font (v2)";

Acd Wite_ Text(sonmeText, 5, 6, 2); Il Wite
string

del ay2S();

#endi f
}

}

truck_bmp.cfile

/*l_bader**/

unsi gned char const truck bnp[1024] = {

0,0,0,0,0, 248,8,8,8,8,8,8,12,12,12,12,12, 10, 10, 10, 10, 10, 10,9, 9,9, 9, 9,
9,9,9,9,9,9

,9,9,9,9,9,9,9,9, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137, 137,
9,9,9,9,9,9

,9,9,9,9,9, 13, 253, 13, 195, 6, 252, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0
,0,
0,0,255,0,0

,0,0,0,0,0,0,0, 0, 240, 240, 240, 240, 240, 224, 224, 240, 240, 240, 240, 240, 224,
192, 192, 224

, 240, 240, 240, 240, 240, 224, 192, 0, 0, 0, 255, 255, 255, 255, 255, 195, 195, 195, 19
5,195, 195, 1
95,3,0,0,0,0,0,0,0,0,0,0,0, 0, 255, 240, 79, 224, 255, 96, 96, 96, 32, 32, 32, 32,
32,32,32,32

, 32,32, 32,32, 32,64, 64, 64, 64,128, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,
o,o0,000,000000000,0,0,2550000000,0,0,0,255, 255, 255, 2
55, 255, 0, 0,

0, 0, 255, 255, 255, 255, 255, 0, 0, O, 0, 255, 255, 255, 255, 255, 0, 0, 0, 255, 255, 255
, 255, 255,12

9,129, 129, 129, 129, 129, 129, 128, 0,0,0,0,0,0,0,0,0,0,0, 0, 255, 1, 248, 8, 8, 8
,8,8,8,8,8,

8,8, 8, 8, 8,816, 224, 24, 36, 196, 70, 130, 130, 133, 217, 102, 112, 160, 192, 96, 96,
32,32,160,1

60, 224, 224, 192, 64, 64, 128, 128, 192, 64, 128, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,63

, 96, 96, 96, 224, 96, 96, 96, 96, 96, 96, 99, 99, 99, 99, 99, 96, 96, 96, 96, 99, 99, 99,9
9, 99, 96, 96,

96, 96, 99, 99, 99, 99, 99, 96, 96, 96, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99, 99,
96, 96, 96, 96

, 96, 96, 96, 64, 64, 64, 224, 224, 255, 246,1,14,6,6,2,2,2,2,2,2,2,2,2,2,2,130

, 67,114, 62,
35,16,16,0,7,3,3,2,4,4,4,4,4,4,4, 28, 16, 16, 16, 17,17, 9, 9, 41, 112, 32,67, 5
, 240, 126, 17

Meisam Fanoody 272

rtmmz3319@yahoo.com

4,128,56,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1, 1,127,127, 12
7,127, 255, 2

55, 247, 251, 123, 191, 95, 93, 125, 189, 189, 63, 93, 89, 177, 115, 243, 229, 207, 27,
63, 119, 255,

207, 191, 255, 255, 255, 255, 255, 255, 255, 255, 127, 127, 127, 127, 127, 127, 127, 1
27, 255, 255,

255, 127, 127, 125, 120, 120, 120, 120, 120, 248, 120, 120, 120, 120, 120, 120, 248, 2
48, 232, 143,

0,0,0,0,0,0,0,0, 128, 240, 248, 120, 188, 220, 92, 252, 28, 28, 60, 92, 92, 60, 120,
248, 248, 96,

192, 143, 168, 216, 136, 49, 68, 72, 50, 160, 96, 0,0, 0,0, 0, 0, 0, 0, 0, 128, 192, 248,
248, 248, 248

, 252, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 255, 255, 255, 255, 255,
246, 239, 208

246, 174, 173, 169, 128, 209, 208, 224, 247, 249, 255, 255, 252, 220, 240, 127, 255,
223, 255, 255

, 255, 255, 255, 255, 254, 254, 255, 255, 255, 255, 255, 255, 255, 254, 255, 255, 255,
255, 255, 255

, 255, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 254, 255, 255,
255, 255, 255

, 255, 254, 255, 190, 255, 255, 253, 240, 239, 221, 223, 254, 168, 136, 170, 196, 208,
228, 230, 248

, 127,126, 156, 223, 226, 242, 242, 242,242, 242,177, 32,0,0,0,0,0,0,0,0,0, 0, 1
01,1,1,3,3,

3,7,7,7,7, 7,15, 15, 15, 7, 15, 15, 15, 7, 7, 15, 14, 15, 13, 15, 47, 43, 43, 43, 43, 43,
47,111, 239,

255, 253, 253, 255, 254, 255, 255, 255, 255, 255, 191, 191, 239, 239, 239, 191, 255, 1
91, 255, 255,

255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 2
55, 255, 255,

255, 255, 255, 255, 255, 255, 127, 127, 127, 127, 255, 255, 191, 191, 191, 191, 255, 2
54, 255, 253,

255, 255, 255, 251, 255, 255, 255, 127, 125, 63, 31, 31, 31, 31, 31, 31, 63, 15, 15, 7, 7
.3,3,3,0,0,
0,0,0,000,00,0,0,0,0,0,000,0,00,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,
0,0,0,000000,1,1,01,1,00,000,0,0,0,0,0,1,1,1,1,1,1,1,1,3,3,3
11, 11,11, 11
,7,3,14,6,6,6,2,18, 19,19, 3, 23,21, 21,17, 1, 19, 19, 3, 6, 6, 14, 15, 15, 7, 15, 15
15,11, 2,0,

0,0,0,0,0,0000,00,0,0,0,0,0,0,0,0,0,0,0

b

In order to make this example work properly, it is necessary to tick off the GLCD
library in the Library Manager prior to compiling. Also, it is necessary to include
document truck_bmp.c into the project.

4.17 EXAMPLE 15

Using touch pandl...

A touch panel is a thin, self-adhesive transparent panel placed over the screen of a
graphic LCD. It is very sensitive to pressure so that even a soft touch causes some
changes on output signal. There are a few types of touch panel. The simplest one is
the resistive touch panel.

Meisam Fanoody 273
rtmmz3319@yahoo.com

=) e A
RAt LD G egEegEEERARE
0x30 e E? i E548
fe 2 i TOUCHPAHEL EXAMPLE
v e——avee [l RE1 = wad [
w Voo [me2 @ vas [
Jo: el
o '?ﬁ R
L [res Red 1
T-I-L A =
o—— i Botiom GLCD

It consists of two transparent rigid foils, forming a ‘sandwich’ structure, that have
resistive layers on their inner sides. The resistance of these layers usually does not
exceed 1K. The opposite sides of the foils have contacts available for use through a
flat cable.

The process of determining coordinates of the point in which the touch panel is
pressed can be broken up into two steps. The first one is the determination of the X
coordinate and the second one is the determination of the Y coordinate of the point.

In order to determine the X coordinate, it is necessary to connect the left contact on
the surface A to ground and the right contact to the power supply. This enables a
voltage divider to be obtained by pressing the touch panel. The value of the divider is
read on the bottom contact of the surface B. Voltage can be in the range of OV to the
power supply and depends on the X coordinate. If the point is closer to the left contact
of the surface A, the voltage will be closer to OV.

Meisam Fanoody 274
rtmmz3319@yahoo.com

-

VGG

Jlﬂg:;‘ﬁce B

AR 5

LIS
WY

In order to determine the Y coordinate, it is necessary to connect the bottom contact
on the surface B to ground, and the upper contact to power supply. In this case, the
voltage is read on the |eft contact of the surface A.

In order to connect a touch panel to the microcontroller it is necessary to create a
circuit for touch panel control. By means of this circuit, the microcontroller connects
appropriate contacts of the touch panel to ground and the power supply (as described
above) in order to determine the X and Y coordinates. The bottom contact of the
surface B and left contact of the surface A are connected to the microcontroller’s A/D
converter. The X and Y coordinates are determined by measuring voltage on these
contacts, respectively. The software consists of writing a menu on graphic LCD,
turning the circuit for touch panel control on/off (driving touch panel) and reading the
values of A/D converter which actually represent the X and Y coordinates of the
point.

Once the coordinates are determined, it is possible to decide what we want the
microcontroller to do. In this example, microcontroller turns on/off two digital pins,
connected to LED diodes A and B.

This example use functions belonging to the Glcd and ADC library.

Considering that the touch panel surface is dlightly larger than the surface of the
graphic LCD, in case you want greater accuracy when determining the coordinates, it
is necessary to perform the software calibration of the touch panel.

const char msgl[]
const char msg2[]

" TOUCHPANEL EXAMPLE";
"M KROELEKTRONI KA";

const char msg3[] = "BUTTONL"
const char msg4[] = "BUTTON2";
const char msg5[] = "RC6 OFF"
const char msg6[] = "RC7 OFF"
const char msg7[] = "RC6 ON “;
const char nmsg8[] = "RC7 ON ";

long x_coord, y coord, x _coordl28, y coord64; // scaled x-y position
char nsg[16];

char * CopyConst 2Ram(char * dest, const char * src){
for(;*dest++ = *src++;)

return dest;

}

// dcd nodul e connections
char GLCD Dat aPort at PORTD

Meisam Fanoody 275
rtmmz3319@yahoo.com

shit GLCD CS1 at RBO_bit;
shit GLCD CS2 at RB1 bit;
shit GLCD_RS at RB2_bit;
shit GLCD RW at RB3 hit;
shit GLCD EN at RB4 bit;
shit GLCD RST at RB5 bit;

shit GLCD CS1 Direction at TRISBO bit;
shit GLCD CS2 Direction at TRISB1 bit;
shit GLCD RS Direction at TRISB2 bit;
shit GLCD_ RWDirection at TRISB3_bit;
shit GLCD EN Direction at TRISB4 bit;
shit GLCD RST Direction at TRISB5 bit;
/1 End d cd nodul e connecti ons

unsi gned int GetX() {
/lreadi ng X

PORTC. FO = 1; /1 DRIVEA = 1 (LEFT
drive on, RIGHT drive on

/[l , TOP drive off)

PORTC. F1 = 0; /1 DRIVEB = 0 (BOTTOM
drive off)

Del ay_ns(5);

return ADC read(0); /1 reading X value
from RAO (BOTTOM

}

unsigned int GetY() {

/lreading Y

PORTC. FO = 0; /1 DRIVEA = 0 (LEFT
drive off , RIGHT drive off

/1 , TOP drive on)

PORTC. F1 = 1; // DRIVEB = 1 (BOTTOM
drive on)

Del ay_ns(5);

return ADC read(1); /'l reading Y val ue
fromRAL (from LEFT)

}

void main() {

PORTA = 0x00;

TRI SA = 0x03; /1 RAO i RAL are
anal og i nputs

ANSEL = 0x03;

ANSELH = O; /1 Configure other AN
pins as digital 1/0O

PORTC = 0 ;

TRISC = 0 ; /] PORTC is output

Acd_Init(); /1 dcd_Init_EP5

G cd_Set _Font (Font Systenbx7_v2, 5, 7, 32); /1 Choose font size
5x7

Acd Fill(0); /1 Cear GCD

CopyConst 2Ran{ nmsg, nsg1l) ; /1 Copy " TOUCHPANEL

EXAMPLE" string to RAM

A cd Wite_Text(msg, 10,0, 1);

CopyConst 2Ran{ nmsg, nsg2) ; /1 Copy
"M KROCELEKTRONI KA" string to RAM

Acd Wite_Text(msg, 17,7,1);

/1 Di splay Buttons on G.CD:

Meisam Fanoody 276
rtmmz3319@yahoo.com

G cd_Rect angl e(8, 16, 60, 48, 1) ;

d cd_Rectangl e(68, 16, 120, 48, 1) ;

d cd_Box(10, 18, 58, 46, 1) ;

G cd_Box(70, 18, 118, 46, 1) ;

CopyConst 2Ran{ nmsg, nsg3) ; /1 Copy "BUTTONL"
string to RAM

A cd Wite_Text(msg, 14, 3,0);

CopyConst 2Ran{ nsg, nsg5) ; /1 Copy "RC6 OFF"
string to RAM

G cd Wite_Text(nsg, 14,4, 0);

CopyConst 2Ran{ nmsg, nsg4) ; /1 Copy "BUTTON2"
string to RAM

A cd Wite_Text(msg, 74, 3,0);

CopyConst 2Ran{ nmsg, nsg6) ; /1 Copy "RC7 OFF"
string to RAM

G cd Wite_Text(mnsg, 74,4, 0);

while (1) {
/1 read X-Y and convert it to 128x64 space
x_coord = Get X();
y_coord = GetY();
x_coordl28 = (x_coord * 128) / 1024,
y_coord64 = 64 -((y_coord *64) / 1024);

/[1if BUTTONl is sel ected
if ((x_coordl28 >= 10) && (x_coordl28 <= 58) && (y_coord64 >= 18)
&& (y_coord64 <= 46))
i f(PORTC. F6 == 0) {
PORTC. F6 = 1;
CopyConst 2Ranm(nsg, nsg7) ; /1 Copy "RC6 ON "
string to RAM
A cd Wite_Text(msg, 14,4, 0);

el se {
PORTC. F6 = 0;
CopyConst 2Ran{ nmsg, nsg5) ; /1 Copy "RC6 OFF"

string to RAM
A cd Wite_Text(msg, 14,4, 0);
}

}

/1if BUTTON2 is sel ected
if ((x_coordl28 >= 70) && (x_coordl28 <= 118) && (y_coord64 >=
18) && (y_coord64 <= 46)) {
i f(PORTC. F7 == 0) {
PORTC. F7 = 1;
CopyConst 2Ran{ nmsg, nsg8) ; /1 Copy "RC7 ON "
string to RAM
A cd Wite_Text(msg, 74,4, 0);

el se {
PORTC. F7 = 0;
CopyConst 2Ran{ nsg, nsg6) ; /1l Copy "RC7 OFF"

string to RAM
A cd Wite_Text(nsg, 74, 4, 0);
}

}
Del ay_ns(100);
}
}

Meisam Fanoody 277
rtmmz3319@yahoo.com

In order to make this example work properly, it is necessary to tick off the following
librariesin the Library Manager prior to compiling:

GLCD
ADC
C_Stdlib

Meisam Fanoody 278
rtmmz3319@yahoo.com

	PIC Microcontrollers
	Chapter 1- World of Microcontrollers
	Chapter 2- Programming Microcontrollers
	Chapter 3-PIC16F887 Microcontroller

	Chapter 4- Examples

