

UNIVERSIDAD DE VALLADOLID

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍAS AGRARIAS
DEPARTAMENTO DE INGENIERÍA AGRÍCOLA Y FORESTAL

TESIS DOCTORAL:

CORRECCIÓN DEL MODELO DE BIGELOW. APLICACIÓN EN EL CÁLCULO DE LOS EFECTOS DE COCCIÓN Y DE ESTERILIZACIÓN SOBRE Bacillus coagulans EN UNA CONSERVA DE JUDÍAS VERDES

(Phaseolus vulgaris var. Helda)

Presentada por: D. AGUSTÍN LEÓN ALONSO-CORTÉS para optar al grado de doctor por la Universidad de Valladolid

Dirigida por: Dr. D. Juan Ignacio Reguera Useros

RESUMEN

1. RESUMEN

En este trabajo se calcularon los efectos de cocción y de esterilización sobre *Bacillus coagulans* en una conserva de judías verdes extrafinas de la variedad *Helda*, sobre la que se aplicaron una serie de tratamientos térmicos a las temperaturas de 105, 107, 110 y 115 °C, durante tiempos comprendidos entre 3 y 35 min. De éstos se seleccionaron los que consiguieron con mayor exactitud los efectos ideales previamente establecidos de n = 1,09 para el efecto de cocción y n = 5 para el efecto de esterilización sobre *Bacillus coagulans*.

Los tratamientos seleccionados fueron los aplicados a la temperatura de 115 °C a los tiempos de 10 y 20 min. El primero consiguió un efecto de cocción de n = 1,11 y un efecto estimado de esterilización sobre B. coagulans comprendido entre 2,23 y 4,65; y el segundo un efecto estimado de esterilización sobre B. coagulans más ajustado (2,66 < n < 5,13) y un efecto de cocción aceptable (n = 1,15)

Para evaluar los efectos de los tratamientos, primero se calcularon y analizaron la validez de las cinéticas térmicas necesarias y luego se cuantificaron por medio de un novedoso método estadístico basado en la corrección del modelo tradicional logarítmico de Bigelow.

Los valores de los parámetros termocinéticos y del test de exactitud de las cinéticas resultaron ser D_{100} = 7,52 min, Z = 16 °C y A_f = 1,13 para la cinética de cocción y D_{121} = 0,0264 min, Z = 10,64 °C y A_f = 1,04 para la cinética de termodestrucción de B. coagulans.

Con el método propuesto se consiguió disminuir el error de cuantificación del efecto de cocción desde el 1.200 % (obtenido con el modelo de Bigelow) al 3,11 % en el tratamiento de 115 °C durante 10 min y desde el 2.260 % al 9,46 % en el tratamiento de 115 °C – 20 min, resultando ser mayor el error cuanto mas alta fue la temperatura del tratamiento.

Resumen

También se calcularon los efectos de los tratamientos sobre otros dos indicadores de calidad de las conservas de judías verdes: la inactivación térmica de la enzima peroxidasa y la *cocción botulínica*. No obstante, debido a que los test de exactitud de sus cinéticas resultaron ser superiores a 1,15 y por tanto, poco satisfactorios, el cálculo de los efectos estimados de los tratamientos sobre ambos indicadores se consideró de apoyo.

Teniendo en cuenta los efectos de los tratamientos sobre los mencionados indicadores *de apoyo* y el efecto estimado de esterilización sobre *B. coagulans*, el error cometido al cuantificar los tratamientos con el modelo de Bigelow resultó ser mayor cuanto menor fue el valor del tiempo de reducción decimal (*D*).

2. ABSTRAC

In this study they were calculated the effects of cooking and sterilization on *Bacillus* coagulans of green beans canned in several thermal treatments applied at 105, 107, 110 and 115 °C among 3 and 35 min and they were selected those that obtained with better accuracy the ideal effects before established (n = 1.09 for cooking and n = 5 for sterilization on *B. coagulans*)

The treatments selected were the applied at 115 °C during 10 and 20 min, the first one obtained a cooking effect of n = 1.11 and an estimated effect of sterilization on *Bacillus coagulans* between 2.23 and 4.65 and the second one was closer to the ideal sterilization (2.66 < n < 5.13) and obtained an acceptable effect of cooking (n = 1.16)

To evaluate effects, thermal kinetics (cooking and sterilization on *B. coagulans*) were first calculated and analyzed their validity. The quantification of the treatments was done by a new and original statistical method of calculation based on the correction of the traditional logarithmic model of Bigelow.

The values of the thermal kinetics and theirs accuracy factors were: $D_{100} = 7.52$ min, Z = 16 °C and $A_f = 1.13$ for the kinetic of cooking and $D_{121} = 0.0264$ min, Z = 10.64 °C and $A_f = 1.04$ for the kinetic of *B. coagulans*.

When the effects of cooking of the treatments were quantified by the model of Bigelow, for the treatment of 115 °C - 10 min was committed an error of 1200 % down to 3.11 % when it was quantified by this method; and from 2260 % to 9.46 % for the 115 °C - 20 min treatment, turning out to be major error as higher was the temperature of the treatment.

Also, the effects of the treatments on other two indicators: "thermal inactivation of peroxidase and sterilization of *Clostridium botulinum*" were calculated. Nevertheless, due to the analysis of validity of the kinetics were higher than 1.15 and therefore,

Resumen

slightly satisfactory, the study of the estimated effects of the treatments on them were considerated of support.

Considering the effects of the treatments on the mentioned indicators and the estimated effect of sterilization on *B. coagulans*, the error committed by the model of *Bigelow* turned out to be major as lower was the value of the *decimal reduction time* (*D*).

<u>ÍNDICE</u>

3. ÍNDICE

1. RESUMEN	1
2. ABSTRACT	3
3. ÍNDICE	7
4. INTRODUCCIÓN	13
4.1 Interés del tema	14
4.2 Estudios previos	15
4.3. El modelo de Bigelow	16
4.3.1. Cinéticas térmicas	16
4.3.1.1. Cinética de termodestrucción microbiana	16
4.3.1.1.1 Parámetros <i>D</i> , <i>Z</i> y <i>n</i>	17
4.3.1.1.2. Técnicas de medida de la termorresistencia	
de los microorganismos. Métodos indirectos y directos	21
4.3.1.1.3. Microorganismos de referencia	30
4.3.1.1.4. Microorganismos alterantes de conservas de judías verde	es.
Bacillus coagulans	33
4.3.1.2. Cinética de cocción de vegetales	36
4.3.1.3. Otros factores de calidad de referencia	37
4.3.2. Cuantificación de tratamientos térmicos	38
4.3.2.1. Cálculo del valor esterilizante. Valor $m{F}$	38
4.3.2.1.1. Tratamientos ideales	38
4.3.2.1.1.1. Relación de letalidad entre dos tratamientos	38
4.3.2.1.1.2. Unidad letal básica. Coeficiente letal. Letalidad	
de un tratamiento a temperatura constante	40
4.3.2.1.2. Tratamientos reales	41
4.3.2.1.2.1. Factores que afectan a la penetración de calor	
en el envase. Proceso de localización práctica del punto crítico	o41
4.3.2.1.2.2. Efecto esterilizante en el punto crítico	45
4.3.2.2. Cálculo del valor de cocción. Valor $oldsymbol{C}$	48
4.4. La textura de las judías verdes	50
4.4.1. Aspectos generales	50
4.4.2 La textura en los vegetales. Variación de la textura con el calor	52
4.4.3. Determinación analítica de la textura	56

4.5. Las judías verdes como materia prima de la industria conservera	
4.5.1. Generalidades	
4.5.2. Normas de calidad de las conservas de judías verdes	
4.5.3. Composición nutricional y química de las judías verdes	
4.6. Proceso de elaboración de una conserva de judías verdes	66
4.7. Tratamiento térmico	
4.7.1. Tipos de autoclaves	71
4.7.2. Temperaturas características y sondas de medida	74
4.7.2.1. Temperaturas características	74
4.7.2.2. Sondas de medida	76
4.7.2.3. Sistemas de registro. Cálculo automático de efectos	79
4.7.2.4. Sondas inalámbricas, registradores de temperatura programables	
o data-loggers	80
5. OBJETIVOS	85
6. MATERIAL Y MÉTODOS	89
6.1. Producto estudiado	89
6.2. Plan de actuación.	90
6.3. Metodología	92
6.3.1. Fase I. Obtención de las cinéticas térmicas a temperatura constante	92
6.3.1.1. Cinética de termodestrucción de <i>Bacillus coagulans</i>	92
6.3.1.1.1. Control del crecimiento de la bacteria en una solución de	
judías verdes. Obtención del tiempo de generación y de la	
concentración deseada de esporas para las pruebas de	
termodestrucción	93
6.3.1.1.2. Ensayos de termodestrucción. Tratamientos a temperatura	
constante. Recuento de microorganismos. Curvas de supervivencia.	
Curva de tratamientos de letalidad equivalente. Parámetros Z y D_{121} .	94
6.3.1.2. Cinética de cocción de judías verdes. Medida de la textura.	54
·	
Curvas de cocción. Curva de tratamientos de cocción equivalente.	06
Parámetros Z y D ₁₀₀	
6.3.1.3. Análisis de validez de las cinéticas de cocción y termodestrucción	
6.3.2. Tratamientos de esterilización en autoclave	
6.3.2.1. Toma de datos de las temperaturas de producto. Sonda Picovacq	
6.3.2.2. Procesado de las temperaturas de producto	110

6.3.2.3. Error del modelo de Bigelow	111
6.3.3. Corrección del modelo de Bigelow	
6.3.3.1. Fase II. Corrección del efecto de cocción	
6.3.3.1.1. Alternativa I	
6.3.3.1.2. Alternativa II	115
6.3.3.2. Fase III. Modelos predictivos	117
6.3.3.2.1. Predicción del efecto de cocción. Alternativa III	
6.3.3.2.2. Predicción del efecto de esterilización sobre B. coagulans	119
6.3.3.2.3. Error del modelo de Bigelow	119
6.3.4. Fase IV. Selección de tratamientos. Criterios de selección	120
7. RESULTADOS Y DISCUSIÓN	123
7.1. Modelo de Bigelow. Cinéticas térmicas de referencia y validación (Fase I)	
7.1.1. Cinética de termodestrucción de <i>B. coagulans</i>	
7.1.2. Cinética de cocción	129
7.1.3. Error del modelo de Bigelow	134
7.2. Modelo de Bigelow corregido (Fase II)	136
7.2.1. Fase II. Corrección del efecto de cocción	136
7.2.1.1 Alternativa I	137
7.2.1.2. Alternativa II	139
7.2.2. Modelos predictivos. Alternativa III (Fase III)	143
7.2.2.1. Predicción del efecto de cocción	144
7.2.2.2. Predicción del efecto de esterilización sobre B. coagulans (Fase III bis)148
7.2.2.3. Error del modelo de Bigelow	152
7.3. Fase IV. Selección de tratamientos.	154
7.4. Sonda Picovacq. Test de trabajo en vacío. Calibrado del autoclave	155
7.5. Tratamiento de escaldado	161
7.5.1. Cuantificación del efecto de cocción	161
7.5.2. Cuantificación del efecto de termodestrucción sobre <i>B. coagulans</i>	163
8. ANEXOS	169
ANEXO Nº 1. Cuantificación del proceso de inactivación térmica de la enzima peroxidasa	169
1.1. Introducción	169

1.2. Cinética de inactivación térmica de la enzima peroxidasa en judías verdes. Estimación de la concentración de la peroxidasa por espectrometría.......170 1.3. Curvas de inactivación térmica de la enzima peroxidasa. Curva de tratamientos de termoinactivación equivalente. Análisis de validez de la cinética de inactivación térmica......171 1.4. Tratamiento de escaldado. Cuantificación de la inactivación térmica de la 1.5. Error de proceso175 1.6. Cuantificación del proceso de inactivación térmica de la enzima peroxidasa en los tratamientos de autoclavado. Predicción mediante la alternativa III. Error del modelo de Bigelow......176 2.3. Curvas de supervivencia. Curva de tratamientos de termodestrucción 2.4. Tratamiento de escaldado. Cuantificación de la termodestrucción sobre C. botulinum 2.5. Error de proceso187 2.6. Cuantificación del proceso de cocción botulínica en los tratamientos de autoclavado. Predicción mediante alternativa III. Error del modelo de Bigelow 188 2.7. Resumen de los efectos obtenidos sobre todos los factores de referencia 10. BIBLIOGRAFÍA.......201 13. ADDENDA. Tratamientos térmicos de autoclavado. Valores C y F a las temperaturas de referencia ($t_{T_{rof}}^{Z}$) y valores de los tiempos de proceso $t_{T_{rof}}^{Z}$ 221

<u>INTRODUCCIÓN</u>

4. INTRODUCCIÓN

Los vegetales y hortalizas representan una parte importante de una dieta equilibrada gracias a sus aportes de vitaminas y minerales y proporcionan a la misma, color, sabor y textura.

Los vegetales frescos tienen una corta vida útil y están expuestos a condiciones que destruyen su calidad en un corto periodo de tiempo antes de ser cocidos y consumidos. Por este motivo y por la dependencia estacional de su cultivo y recolección, se hace necesario la aplicación de tecnologías de conservación que garanticen el mantenimiento de sus características nutricionales y organolépticas y alarguen su vida útil (Giannakourou y Taoukis, 2003).

La forma más antigua de proteger los alimentos fue conservarlos en lugares oscuros y frescos con sustancias protectoras como miel, vinagre, aceite, sal, etc. A continuación se describen una serie de acontecimientos que destacaron en el desarrollo del envasado y tratamiento térmico de alimentos.

En 1803, Nicolas Appert instauró los métodos de esterilización introduciendo el alimento en frascos de vidrio con tapones herméticos y aplicando al conjunto un baño de agua hirviendo. Siete años más tarde Peter Duran patentó la lata de hojalata como envase más resistente para conservas.

En 1815, Raymon Chevalier-Appert, sobrino de Nicolas Appert, inventó el autoclave y consiguió aplicar a los envases condiciones de alta temperatura y presión. Sobre el 1860, Pasteur asoció la presencia de microorganismos con la alteración de alimentos y recomendó el proceso térmico para su destrucción (pasteurización).

Debido a las guerras del siglo XX, las conservas de alimentos se extendieron y la industria conservera adquirió importancia en el sector alimentario. No obstante, no fue hasta el 1950 cuando las cualidades nutricionales del alimento conservado, como las vitaminas y la degradación de éstas con el calor, comenzaron a adquirir importancia.

Hoy en día se tiene en cuenta que cuando se aplica un tratamiento térmico a un alimento, el objetivo es proporcionar a éste las condiciones de calentamiento y enfriamiento que minimicen en lo posible los procesos de degradación de nutrientes y factores de calidad organolépticos, para obtener un producto microbiológicamente seguro y organolépticamente estable (Casp y Abril, 1999).

Al efecto destructivo del calor sobre los microorganismos se le conoce como *efecto esterilizante* y al efecto sobre los otros factores que pueden utilizarse para cuantificar el valor nutricional del producto (proteínas, vitaminas, etc..) o la calidad organoléptica (color, textura, consistencia, etc..) se le denomina de forma genérica *efecto de cocción*.

Por otra parte, los efectos de esterilización y de cocción deben conseguirse en el punto de calentamiento más lento del envase o *punto crítico* (Holdsworth y Simpson, 2007), por lo que es necesario para realizar el control del tratamiento, disponer de una sonda que recoja y procese las temperaturas alcanzadas en dicho punto.

Con Bigelow como pionero, el efecto esterilizante o valor F fue aplicado sobre el 1920 por la industria conservera americana, adoptado posteriormente por la británica y actualmente, junto al efecto de cocción o valor C, se utilizan en la mayoría de los países (Holdsworth y Simpson, 2007).

4.1. Interés del tema

El modelo de Bigelow es un método de cálculo que proporciona los efectos de los tratamientos térmicos utilizando estimaciones estadísticas que hacen un uso doble de la función logarítmica.

No obstante, está demostrado que el uso de este tipo de métodos de base logarítmica utilizados frecuentemente para diseñar procesos de la industria alimentaria, conducen a veces a resultados mal dimensionados (Nevares, 2002).

En este estudio se evalúa el comportamiento del modelo de Bigelow en el cálculo de los efectos de cocción y esterilización en tratamientos térmicos aplicados a conservas de judías verdes extrafinas de la variedad *Helda*.

4.2. Estudios previos

Para la cuantificación de tratamientos térmicos mediante los valores esterilizante F y de cocción C se requieren unos parámetros que se obtienen de las cinéticas térmicas del microorganismo y del factor de cocción de referencia (parámetros termocinéticos) respectivamente, así como del historial térmico sufrido por el *punto crítico* del envase durante los tratamientos.

La cinética de termodestrucción microbiana fue estudiada principalmente por Bigelow (1921), Ball (1923) y Stumbo (1973) y sobre las cinéticas relativas a los factores de calidad asociados al efecto de cocción, la mayor información se puede obtener de las publicaciones de Lund (1975, 1982 y 1983) y de Rao y Lund (1986).

Teniendo en cuenta que el comportamiento ante el calor de una población de microorganismos sobre un alimento es diferente en función del grado de protección otorgado por la riqueza y el tipo de nutrientes del alimento y de las condiciones de acidez del mismo (Silla, 1992), lo ideal es disponer de la cinética de termodestrucción del microorganismo que se considera obtenida en un sustrato lo más parecido al que se elabora en la conserva.

No obstante, actualmente se dispone de información sobre cinéticas térmicas de diferentes microorganismos obtenidas en sustratos de naturaleza variable que pueden servir para cuantificar los tratamientos de forma orientativa. Algunas son incluso accesibles bajo soporte informático, como las contenidas en el programa *PMP61* (*Pathogen Modeling Program*, v. 6.1) de Mark Tamplin U.S.D.A. (Department of Agriculture. United States). En este programa, las referencias más importantes para *Clostridium botulinum* se deben a Juneja *et al.* (1995).

4.3. El modelo de Bigelow

El modelo se utiliza para obtener los parámetros termocinéticos y con ellos los efectos conseguidos por los tratamientos térmicos.

4.3.1. Cinéticas térmicas

Se basan en cuantificar el efecto del calor conseguido al aplicar una temperatura constante sobre un alimento sintetizado a un punto, en función de la velocidad con la que los cambios que provoca en él se llevan a cabo. Para su análisis se parte de una velocidad de reacción que se considera proporcional a una potencia de la magnitud de la propiedad considerada en un instante concreto:

$$\frac{dP}{dt} = -k \cdot P^n$$

Actualmente se admite que la potencia n, en el análisis de las propiedades que interesa evaluar (variaciones de la microbiota, componentes nutricionales y propiedades reológicas del alimento) es la unidad, tratándose en todos estos casos de cinéticas de primer orden (n = 1).

P es la magnitud de la propiedad considerada, t es el tiempo de proceso y k es la constante de proporcionalidad que caracteriza la reacción. El signo negativo de esta ecuación indica que la magnitud de la propiedad que se mide a temperatura constante decrece con el tiempo.

4.3.1.1. Cinética de termodestrucción microbiana

En este caso la propiedad P a evaluar es una población de microorganismos que se designa con la letra N. La ecuación anterior toma la forma siguiente:

$$\frac{dN}{dt} = -k \cdot N$$

La expresión $\frac{dN}{dt}$ representa la velocidad de destrucción de los microorganismos por el calor la cual es proporcional a N (número de células o esporas microbianas existentes en un instante concreto del proceso).

4.3.1.1.1 Parámetros D, Z y n

Integrando la anterior ecuación diferencial entre un instante inicial (t = 0) donde la población es N_0 y un instante genérico t, se tiene:

$$\int_{N_0}^{N} \frac{dN}{N} = -k \int_{0}^{t} dt \implies Ln \ N - Ln \ No = -k \cdot t \implies Ln \left[\frac{N_0}{N} \right] = k \cdot t \implies \frac{N_0}{N} = e^{(k \cdot t)}$$

Tomando logaritmos decimales en ambos términos y despejando t.

$$log\left[\frac{N_0}{N}\right] = k \cdot t \cdot log(e)$$

$$t = log \left\lceil \frac{N_0}{N} \right\rceil \cdot \left(\frac{2,303}{k} \right)$$

Para $N=\frac{N_0}{10}$, el tiempo de tratamiento es igual a $\frac{2,303}{k}$. Este valor se denomina tiempo de reducción decimal, se designa por D y se define como el tiempo de calentamiento a la temperatura constante T, necesario para reducir 10 veces una población de microorganismos localizada en una zona puntual de sustrato. En función de este parámetro la ecuación anterior toma la forma siguiente:

$$t = log \left\lceil \frac{N_0}{N} \right\rceil \cdot D$$

Despejando *log N* se obtiene la ecuación:

$$\log N = \log No - \frac{1}{D} \cdot t$$

Esta ecuación expresa que la representación gráfica del logaritmo de microorganismos supervivientes en función del tiempo de exposición a una temperatura constante T, se ajusta a una línea recta de pendiente $-\frac{1}{D}$ y log~No como ordenada en el origen.

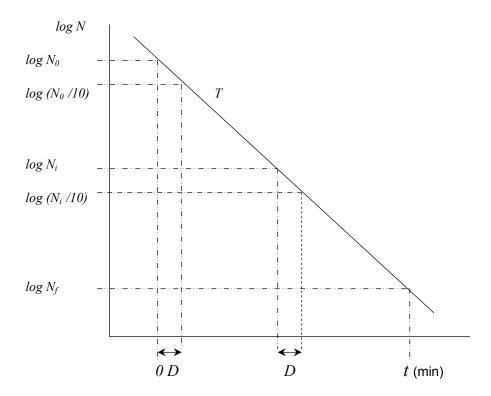


Figura 4.1. Curva genérica de supervivencia de una población microbiana N bajo el efecto de una temperatura T.

Estas gráficas se denominan *curvas de supervivencia* y se elaboran midiendo el *historial térmico* o comportamiento de una suspensión de sus células o esporas de volumen muy pequeño ante el efecto de una temperatura T, quedando su termorresistencia caracterizada por el parámetro D.

Las diferentes técnicas utilizadas para la medida de la termorresistencia de los microorganismos se describen en el apartado siguiente.

En tratamientos térmicos reales, a N_0 se le denomina *nivel de infección inicial* y el *factor de reducción* se designa como n y su valor es:

$$n = log N_0 - log N_f = log \left[\frac{N_0}{N_f} \right]$$

El factor de reducción n se diseña de forma que el tratamiento consiga una población N_f lo suficientemente pequeña como para que, tras ser aplicado, el alimento no suponga un riesgo sanitario.

La expresión de un tratamiento térmico en función de los parámetros anteriores es:

$$t = n \cdot D$$

Si el ensayo representado en la la figura 4.1. se repite a diferentes temperaturas, se podrán calcular los valores de D para cada una de ellas. Representando estos valores en coordenadas semilogarítmicas en función de la temperatura del ensayo se obtiene también una relación lineal del tipo siguiente:

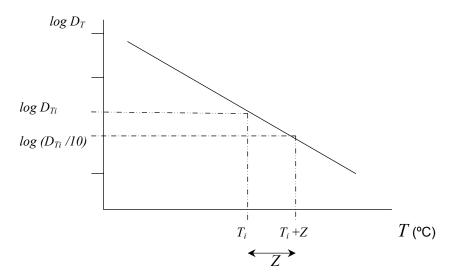


Figura 4.2. Curva de tratamientos de efecto equivalente.

El parámetro Z expresa la capacidad relativa de resistencia al calor de la población microbiana y representa el incremento de temperatura medido en grados centígrados necesario para reducir 10 veces el tiempo de reducción decimal.

La ecuación genérica de la recta es:

$$log D_T = -\frac{1}{Z} \cdot T + cte_I$$

Donde la constante cte_I es la ordenada en el origen y T la temperatura del tratamiento.

Si en el eje de ordenadas en lugar de los logaritmos de los tiempos de reducción decimal se representan los logaritmos de la duración de los tratamientos t aplicados a las temperaturas T (designados como t_T), que consiguen un mismo factor de reducción n ($t_T = n \cdot D_T$), se obtiene análogamente una recta de ecuación:

$$log t_T = -\frac{1}{Z} \cdot T + cte_2$$

En este caso, la constante cte_2 es la ordenada en el origen y Z representa el incremento de temperatura medido en grados centígrados necesario para reducir 10 veces la duración del tratamiento.

Estas ecuaciones representan el conjunto de pares de puntos (tiempos / temperaturas) de igual letalidad o efecto reductor y se utilizarán posteriormente para la cuantificación de los tratamientos reales.

4.3.1.1.2. Técnicas de medida de la termorresistencia de microorganismos

Los métodos existentes para la medida de la termorresistencia de los microorganismos pueden ser agrupados en a) sistemas de calentamiento indirecto en los que los microorganismos no entran en contacto con el fluido calefactor, y b) sistemas de calentamiento directo, en los que no existe una separación física entre el fluido calefactor y la suspensión de microorganismos (Brown et al, 1988).

<u>Métodos indirectos</u>

En estos métodos, una suspensión de microorganismos en un sustrato, que puede ser tampón fosfato o un puré del propio alimento, se disponen en pequeños tubos de vidrio de aproximadamente 0,7 mm de diámetro interno (tubos capilares) y se calienta el conjunto en un baño termostatizado de agua o aceite, en función de la temperatura (Stern y Proctor, 1954). Para llevar cabo el tratamiento térmico también se ha utilizado un bloque de aluminio calentado por resistencias eléctricas y taladrado con orificios para alojar los tubos capilares. El sistema es fácil de manejar y evita los problemas inherentes al baño de aceite (Mallidis y Scholefield, 1985). Otro método indirecto es el calentamiento de la suspensión de esporas en un sistema continuo (Franklin et al., 1958 y Shin et al., 1982).

El principal inconveniente de los métodos indirectos es el tiempo que tarda la muestra en alcanzar la temperatura del ensayo (periodo *lag* o de inercia), lo que impide su uso para tratamientos a altas temperaturas (superiores a 130 °C) durante tiempos cortos (del orden de segundos), es decir, para tratamientos característicos del rango UHT. Con el uso de capilares de espesor de pared muy pequeño, del orden de 0,15 mm, se reduce considerablemente la inercia térmica pero la manipulación de los tubos (apertura, cierre y vaciado) resulta una tarea muy laboriosa, especialmente cuando se trabaja con suspensiones de alimento viscosas.

Métodos directos

Entre los métodos directos se encuentran los sistemas basados en la mezcla de pequeñas cantidades de esporas con grandes cantidades de sustrato caliente en agitación dentro de un recipiente herméticamente cerrado.

Método del matraz

La principal ventaja de estos sistemas es la eliminación de los periodos de inercia, pues el sustrato se calienta a la temperatura deseada previamente a la inoculación de esporas; además permiten estudiar el comportamiento de las esporas frente a cambios de pH o composición del sustrato. Sin embargo, para conseguir rapidez en la subida de temperatura y una distribución homogenea del microorganismo inoculado, los sustratos no deben ser excesivamente viscosos. Estos sistemas se pueden emplear para estudiar la termorresistencia de microorganismos a temperaturas inferiores al punto de ebullición del agua y generalmente para bacterias no esporuladas o esporuladas de baja termorresistencia (O.E.P.M., 2003).

Termorresistómetros

Este tipo de sistemas someten directamente al sustrato con las esporas a la acción del fluido calefactor que suele ser vapor de agua. Los pricipales termorresistómetros se describen a continuación.

El termorresistómetro de Stumbo (1948) fue diseñado para estudiar la termorresistencia a temperaturas comprendidas entre 104 y 150 °C para esporulados de alta termoresistencia como Clostridium sporogenes y Clostridium botulinum. El termorresistómetro (figura 4.3) consta de tres cámaras (una central y dos laterales para la carga y descarga de muestras), que están recorridas por un transportador con seis orificios para ubicar seis muestras. Las muestras de 0,01 a 0,02 ml se sitúan en unas cubetas de aluminio de 7 mm de diámetro y 1,5 mm de profundidad. Un sistema de cadenas mueve al transportador desde la cámara de carga a la central de tratamiento y desde ésta a la de descarga, donde se encuentran los tubos con medio de cultivo para recoger las muestras. El equipo lleva

un temporizador graduado en incrementos de 0,001 min que comienza a funcionar cuando la muestra entra en la cámara central. Los recuentos de esporas se determinan por la técnica del número más probable.

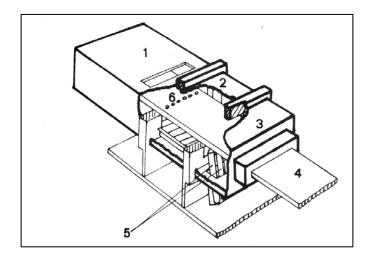


Figura 4.3. Termorresistómetro de Stumbo.

- 1, cámara de carga.
- 2, cámara de tratamiento.
- 3, cámara de descarga.
- 4, placa de transporte.
- 5, tubos de recogida de muestras.
- 6, pocillos para alojar las muestras.

Fuente: Rodrigo et al. (1991).

Este equipo aportó las siguientes ventajas (Stumbo, 1953):

- Los cambios térmicos a los que se somete el producto son muy rápidos debido al pequeño volumen de la muestra, por lo que los periodos de inercia en el calentamiento y enfriamiento de la muestra son muy pequeños. Esto permite trabajar con tiempos del orden de 6 segundos, con un error no mayor del 5 %.
- Realiza un buen cronometraje, de forma que los tiempos de tratamiento se pueden conseguir dentro de un margen de 0,0005 min.
- Realiza una recogida de muestras en un cultivo de forma automática, lo que disminuye los riesgos de contaminación.
- Permite preparar y tratar hasta 300 muestras en 8 horas.

El termorresistómetro de Pflug y Esselen (1953) está basado en el termorresistómetro de Stumbo con una serie de modificaciones que permiten controlar la temperatura con un error menor. En este sistema se reemplaza la bandeja transportadora por cilindros individuales accionados por un pistón neumático y las cubetas de aluminio por cubetas de estaño de 0,2 mm de grosor, 11 mm de diámetro y 8 mm de profundidad.

El termorresistómetro de David y Merson (1990) fue especialmente desarrollado para estudiar los parámetros termocinéticos a temperaturas de hasta 155 °C y tiempos extremadamente cortos. El sistema (figura 4.4) consta de un único cilindro para transportar el contenedor de la muestra dentro y fuera de la cámara de tratamiento accionado por un pistón neumático. El cilindro está fabricado con polisulfona para que la conducción calor axial sea mínima y está recorrido por una perforación interna a través de la cual pasa un termopar fino, que sirve para la lectura de la temperatura de la muestra durante el tratamiento.

Figura 4.4. Termorresistómetro de David y Merson. 1, cámara de tratamiento. 2, pistón. 3, pocillo para alojar la muestra. 4, orificio de salida del termopar. 5, zona de carga de la muestra. 6, tubo de recogida de la muestra. 7, antecámara. 8, manómetro. 9, termómetro digital. 10 y 11, termopares. Fuente: Rodrigo *et al.* (1991).

La muestra de 0,05 ml se disemina en un filtro de membrana hidrofílica de 10 mm de diámetro, que a su vez se coloca entre dos filtros de membrana hidrofóbicos del mismo diámetro. Este "sandwich" se sostiene en un pequeño anillo metálico localizado en el cilindro. Los termopares del anillo van conectados a un ordenador que proporciona 60 lecturas de temperatura por segundo a la vez que se controla el tiempo de permanencia de la muestra en la cámara de tratamiento.

La cámara de tratamiento es un cilindro de acero inoxidable que alcanza rápidamente temperaturas altas al suministrar vapor de agua saturado. El sistema permite alcanzar los 151,8 °C en 0,3 segundos.

El equipo presenta dos inconvenientes. Uno es que sólo puede tratar una muestra cada vez, lo que dificulta la aplicación de la técnica del número más probable para el recuento de supervivientes. En segundo lugar, al igual que los sistemas anteriores, la temperatura que se alcanza en la cámara de tratamiento depende de los sistemas de apertura y cierre de las válvulas de vapor, por lo que pueden originarse pequeñas fluctuaciones.

Basándose anteriores. (1988)los sistemas Brown desarrolló en un termorresistómetro que incorpora notables mejoras respecto a los diseños anteriores. En el denominado termorresistómetro de Campdem (figura 4.5), la muestra se carga y se descarga por el mismo extremo, lo que permite conseguir tiempos de exposición más pequeños y reducir la longitud de la varilla o pistón que se introduce en la cámara, con lo que se disminuye la absorción de calor. El recorrido del pistón está controlado por un ordenador y los cilindros portamuestras están recorridos por una perforación interna a través de la cual discurre un termopar fino retráctil, que durante el tratamiento está en contacto con la superficie superior de la muestra. Como en el diseño de David (1985), los termopares van conectados a un ordenador que es capaz de tomar hasta 100 lecturas por segundo. La computadora también controla el tiempo de permanencia de las muestras en la cámara.

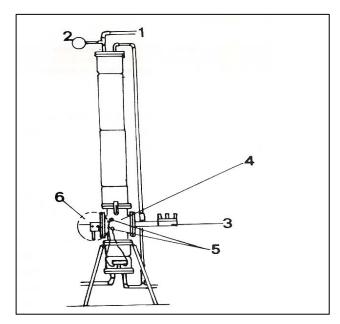


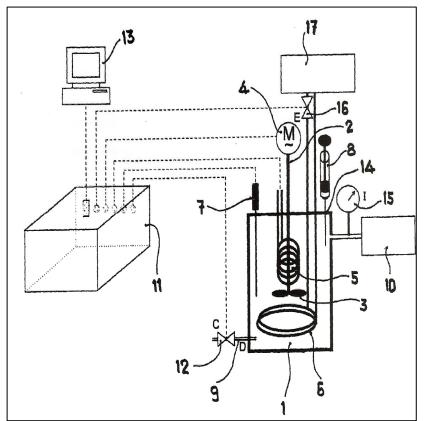
Figura 4.5. Termorresistómetro de Campdem (Brown *et al.*, 1988). 1, entrada de vapor. 2, manómetro. 3, sistema de arranque. 4, cámara de tratamiento. 5, termómetro de resistencia de platino. 6, punto de carga y descarga de muestras.

Fuente: Rodrigo et al. (1991).

En este termorresistómetro, cada muestra de 0,01 ml se esparce en un disco de filtro de membrana de 10 mm de diámetro, situado en una cubeta de aluminio de 11 mm de diámetro, 5-6 mm de altura y un orificio en la base de 4 mm de diámetro. Estas cubetas se introducen en un orificio practicado en los cilindros encargados de introducir las muestras en la cámara de tratamiento.

La cámara de tratamiento forma parte del mismo tanque de compensación de vapor, que consiste en una tubería de 15 cm de diámetro y 195 cm de longitud, situada por encima y por debajo de la cámara. Esto hace que se pueda realizar un buen control de la temperatura de la cámara, mediante 4 resistencias de platino conectadas al ordenador y una buena distribución de calor en las muestras.

La cámara de descarga está refrigerada por agua y presurizada con aire comprimido estéril para prevenir la evaporación de las muestras. Este termorresistómetro permite alcanzar los 140 °C en 0,2 segundos.


El *termorresistómetro TR-SC* (1989) fue puesto en funcionamiento por el equipo de los Dres. Sala y Condón en la Universidad de Zaragoza. Su funcionamiento consiste en precalentar, con una resistencia eléctrica dispuesta en un pequeño tanque, el sustrato donde se va a determinar la termorresistencia. El calentamiento de los microorganismos es instantáneo al entrar éstos en contacto con el sustrato precalentado a la temperatura de tratamiento y los sustratos pueden ser líquidos fluidos o viscosos o líquidos con partículas.

Su diseño permite trabajar desde temperaturas de pasteurización hasta temperaturas de la gama de UHT (135,8 °C), así como esterilizar en su interior el sustrato a emplear. También proporciona un seguimiento constante de la evolución del pH del sustrato.

El termorresistómetro "Mastia" (2003) puesto en funcionamiento por el equipo del Dr. Palop en la Universidad de Cartagena es un equipo diseñado para simular tratamientos térmicos que se aplican habitualmente en la industria alimentaria. Su diseño permite trabajar con medios de calentamiento líquidos tales como tampones o alimentos líquidos o finamente particulados e inocular microorganismos o

compuestos diversos y obtener muestras para estudiar la evolución de esos microorganismos o compuestos a lo largo del tratamiento térmico.

El termorresistómetro (figura 4.6) consta de un vaso principal en el que se aplican los tratamientos térmicos, un motor para garantizar la homogeneidad del medio de calentamiento, una unidad principal de control, mediante la que se regulan el calentamiento, la toma de muestras y la agitación, una fuente externa de presión y un colector de fracciones, para permitir tomar muestras en experimentos de corta duración.

- 1. Vaso principal
- 2. Eje de agitación
- 3. Hélice
- 4. Motor
- 5. Resistencia eléctrica
- 6. Refrigeración
- 7. Sonda
- 8. Jeringuilla de inyección de microorganismos
- 9. Tubo de muestreo
- 10. Nitrógeno seco
- 11. Unidad de control
- 12. Válvula
- 13. Ordenador
- 14. Puerto de inyección
- 15. Manoreductor
- 16. Válvula de refrigeración
- 17. Agua de refrigeración

Figura 4.6. Termorresistómetro "Mastia".

Fuente: O.E.P.M. (2003).

El vaso principal (1) es de acero inoxidable de 400 ml (medidas externas: 8,5 cm de diámetro x 12 cm de altura), la tapa se cierra mediante una junta tórica de estanqueidad. La tapa alberga un tubo que sirve de guía para el eje de agitación (2), el cual está dotado de una hélice (3) en su extremo inferior y es accionado por el motor (4). La tapa además alberga otros 7 puertos: dos de ellos son para los brazos

de la resistencia eléctrica (5), dos para los brazos del serpentín de refrigeración (6) con una válvula (16), uno para una sonda Pt-100 (7) que determina la temperatura durante el tratamiento, uno para la inyección de microorganismos y un último para el tubo de muestreo (9). Finalmente la tapa está dotada de un conector rápido de presión a través del cual se conecta el instrumento a la fuente de presión externa (botella de nitrógeno seco) (10).

La agitación del contenido del termorresistómetro se consigue mediante un motor (4) que acciona al eje con la hélice (3) a través de un alambre acerado. La velocidad del motor (4) es regulada por un variador de frecuencia a través del autómata (11). La homogeneidad se ve favorecida por la presencia en el interior del instrumento de una pantalla deflectora que mejora la turbulencia.

El tubo de muestreo (9) es de acero inoxidable, disponiéndose de tubos intercambiables de distintos diámetros internos desde 0,5 hasta 2 mm y se prolonga en su extremo final por un tubo de silicona. Este último es cerrado por una válvula solenoide de pinzamiento (12) cuya apertura puede ser accionada a través de un interruptor en la unidad principal de control ó autómata (11). La electroválvula, normalmente cerrada, mantiene cerrado el tubo de extracción incluso cuando el vaso principal (1) está presurizado y únicamente se abre cuando es accionada desde la unidad principal para tomar muestras. El tiempo de apertura de la electroválvula puede ser regulado mediante un temporizador a través del autómata (11). El autómata (11) permite también el control de la temperatura. Para ello dispone de un controlador proporcional integral derivativo (PID) conectado a la resistencia eléctrica (5) de 1100 w, a una válvula que regula el flujo de agua de refrigeración (17) a través del serpentín de refrigeración (6) y a la sonda Pt-100 (7). El PID, así como la válvula de muestreo y el motor (4) de agitación, son controlados mediante un autómata programable (11) que permite realizar rampas de calentamiento y perfiles de temperatura complejos.

El autómata (11) se puede conectar a un ordenador y después, mediante un software específico *Scada*, se registran los datos de temperatura y tiempo de tratamiento de la muestra. Este software también permite la programación de los perfiles de temperatura a realizar directamente a través del ordenador.

El instrumento se puede mantener bajo presión gracias a la existencia de juntas de teflón (PTFE) en todos los puertos incluido el del eje. El puerto de inyección (14) de microorganismos (8) se cierra mediante un septo de cromatografía. La presión externa la proporciona una botella de nitrógeno seco (10) y se regula mediante un manoreductor (15). Esta presión permite la extracción de muestras a bajas temperaturas de trabajo (inferiores a 100 °C) o cuando el medio de calentamiento es demasiado viscoso. El mantenimiento de una presión constante de trabajo a lo largo de un experimento y de un tiempo de apertura de la válvula solenoide (12), también constante, permiten obtener muestras de idéntico volumen a lo largo del experimento.

La inyección de muestras se puede realizar mediante una jeringuilla médica estéril o bien mediante una tipo *Hamilton* (8) cuando el instrumento se halla bajo presión.

4.3.1.1.3. Microorganismos de referencia

Son aquellos que el tratamiento térmico debe destruir al tratarse, por lo general, de microorganismos alterantes o patógenos capaces de crecer en una conserva concreta, de forma que la termorresistencia de estos microorganismos define la letalidad mínima que debe alcanzar el tratamiento.

En función de la acidez del alimento, los microorganismos utilizados como referencia se muestran en la siguiente tabla.

Tabla 4.1. Clasificación de alimentos según su pH y microorganismos de referencia.

ALIMENTOS	Microorganismos de referencia
Grupo I: De acidez baja (pH > 5) Productos cárnicos, marinos, leche, hortalizas Grupo II: De acidez media (4,5 < pH < 5) Mezclas de carne y vegetales, sopas, salsas	Aerobios y anaerobios esporulados Mohos y levaduras Bacterias no esporuladas
Grupo III: Acidos (3,7 < pH < 4,5)	Bacterias esporuladas Bacterias no esporuladas
Frutas (pera, piña), tomate	Mohos y levaduras
Grupo IV: Muy ácidos (pH < 3,7)	Mohos y levaduras Bacterias lácticas
Encurtidos, cítricos, zumos	

Fuente: Cameron y Esty (1940).

Los valores de los parámetros termocinéticos de algunos de los microorganismos de referencia más importantes en diferentes sustratos se especifican en la tabla 4.2.

Tabla 4.2. Parámetros termocinéticos de microorganismos de referencia.

Microorganismo	T (°C)	D (seg)	Z (°C)		
Clostridium botulinum					
Tipo A (en agua)	121	6	8,3		
A35B (en tampón fosfato)	121	19,2	10,8		
213B (en vegetales)	121	6,6	9,8		
213B (en tampón fosfato)	110	96	10,3		
62 ^a (en puré de guisantes)	121	5,34	8,3		
Clostridium thermosaccharolyticum					
S9 (en agua)	132	4,4	6,9		
Desulfotomaculum nigrificans					
ATCC7946 (en alimentos infantiles)	121	1.550	6,7		
Bacillus stearothermophilus					
TH34 (en agua)	120	1.000	7,3		
FS 7954 (en tampón fosfato)	121	6	8,3		
NCIB 8919 (en agua)	121	186	7		
Bacillus subtilis					
5230 (en agua)	121	6	8,3		
5230 (en tampón fosfato)	121	21,9	8,8		

Fuente: Casp y Abril (1999).

Los valores de los factores de reducción n recomendados para algunos de los microorganismos de referencia más frecuentemente utilizados pueden obtenerse de las publicaciones de Hayes (1992) y Brennan et al. (1998) y el intervalo más probable para sus parámetros D y Z en función del pH del alimento, de las publicaciones de Stumbo (1973) y Brennan et al. (1998). Dichos valores se muestran en la tabla 4.3.

Tabla 4.3. Factores de reducción recomendados para algunos microorganismos de referencia.

Microorganismo	pH de la conserva	T (°C)	D (min)	Z (°C)	n
Clostridium botulinum	> 4,5	121	0,1 - 0,2	14 - 18	12*
			0,1 - 0,3*	8 - 11*	
Clostridium sporogenes	> 4,5	121	0,1 - 1,5	14 - 18	5*
			0,8 - 1,5*	9 - 11*	
Clostridium thermosaccharolyticum	> 4,5	121	3 - 4	16 - 22	5*
			3-4*	7 - 10,5*	
Bacillus stearothermophilus	> 4,5	121	4 - 5	14 - 22	5*
			4 - 5*	9,5 - 10*	
Bacillus coagulans	4 - 4,5	121	0,01 - 0,07	14 - 18	5*
			0,01 - 0,07*	10*	
Clostridium pasterianum	4,2 - 4,5	100	0,1 - 0,5	12 - 16	5*
			0,1 - 0,5*	8*	

Adaptación de las fuentes de Stumbo (1973) y Brennan et al.* (1998).

4.3.1.1.4. Microorganismos alterantes de conservas de judías verdes. *Bacillus coagulans*

El pH de las judías verdes se encuentra entre 4,6 y 6,5 sin embargo, como para la realización del trabajo se adiciona al producto zumo de limón hasta obtener un pH de 5 unidades, según la clasificación de *Cameron y Esty* (1940) del apartado anterior, se trata de una *conserva de acidez media* (4,5 < pH < 5).

Los principales microorganismos capaces de alterar conservas vegetales de acidez media son los siguientes:

Aerobios esporulados

Los más difundidos son los del género *Bacillus*, tienen su origen en el suelo y en el agua por lo que casi siempre están presentes en las materias primas empleadas para la elaboración de las conservas vegetales.

La mayoría son mesófilos (su temperatura óptima de crecimiento está comprendida entre los 28 y 40 °C) aunque existen algunos termófilos (55 °C - 70 °C)

Su metabolismo puede ser de tipo aerobio o anaerobio facultativo. Estos últimos son capaces de crecer en condiciones de vacío y alterar alimentos que se mantienen en un envase herméticamente cerrado. Los tipos de alteraciones asociadas al género *Bacillus* son:

- ▶ Fermentación simple: es la alteración más común y se debe al ataque de los carbohidratos con producción de ácido y sin producción de gas. Es principalmente causada por los esporulados aerobios termófilos siguientes:
 - Bacillus stearothermophilus (alterante de hortalizas de pH > 5)
 - Bacillus coagulans: esta especie es acidodúrica (puede crecer a un pH de hasta 4,2)
- ▶ Producción de ácido y gas: destacan Bacillus macerans y Bacillus polymixa.

Anaerobios esporulados

Sus esporas proceden principalmente del suelo, por lo que pueden aparecer frecuentemente en hortalizas. Pueden ser termófilos (55 °C) y mesófilos (37 °C).

<u>Termófilos</u>: los de metabolismo sacarolítico son los más importantes.
 Fermentan azúcares con gran producción de gas. Este gas puede causar el abombamiento de los envases. Destaca Clostridium thermosaccharolyticum.

Mesófilos:

- Proteolíticos: Clostridium perfringens, Clostridium sporogenes y Clostridium bifermentans.
- Sacarolíticos: los más frecuentes son *Clostridium butyricum* y *Clostridium pasteurianum*.

En este grupo, aunque preferiblemente se utiliza como microorganismo de referencia en conservas cárnicas y vegetales de pH > 5, por su carácter patógeno, hay que destacar a *Clostridium botulinum*. Este microorganismo es el causante de una enfermedad neurológica grave llamada botulismo y se clasifica, según el tipo de toxina que sintetiza, en cepas designadas desde la A a la G. Las cepas patógenas para el hombre se dividen en dos grupos:

- 1. Proteolíticos: (A y B) son resistentes al calor, mesófilos y tolerantes al CINa.
- 2. No proteolíticos: (E, B y F) son menos resistentes al calor, psicrotrofos y sensibles al ClNa.

En este trabajo, por su importancia, se analiza la termodestrucción de los tratamientos térmicos aplicados sobre *C. botulinum* no proteolítico (anexo nº 2), aunque se utiliza como referencia para la cuantificación de los tratamientos de esterilización el esporulado *Bacillus coagulans*.

Bacillus coagulans es un bacilo Gram positivo, anaerobio facultativo y termófilo, causante en conservas vegetales de acidez media y baja de la alteración denominada "agriado plano" o "fermentación simple", que consiste en el ataque de los carbohidratos con producción de ácido sin producción de gas.

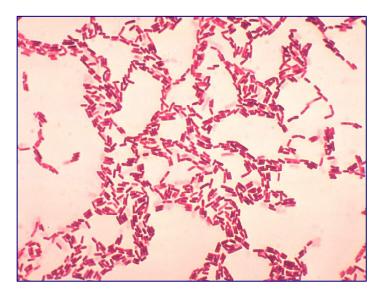


Figura 4.7. Tinción de Gram de *Bacillus coagulans*. Fotografía al microscopio óptico 1000 x.

Bacillus coagulans es una bacteria formadora de ácido láctico (L+) aislada y descrita por primera vez en 1932 en la "V edición del Manual de Bergey". Al presentar características comunes a las familias de las Lactobacillaceae y de las Bacillaceae, inicialmente su posición taxonómica fue objeto de debate. No obstante, en la VII edición del Manual de Bergey (1939) fue finalmente ubicada en la familia de las Bacilaceas.

La célula vegetativa tiene un tamaño del orden de 0,9 μm de longitud y de 0,3 a 0,5 μm de diámetro. En función de sus requerimientos de oxígeno es anaerobio facultativo y puede crecer en condiciones de microaerofilia. Su temperatura óptima de crecimiento en fase estacionaria es de 40 a 50 °C y sus esporas muestran una resistencia alta a agentes químicos y físicos. Los resultados en las pruebas bioquímicas de identificación "Voges Proskauer" (VP) y "Rojo de Metilo" (RM) son positivos mientras que en las de "Citrato" y "Nitratos" son negativos.

4.3.1.2. Cinética de cocción de vegetales

Las modificaciones de las características organolépticas de los alimentos son el resultado de los cambios producidos en su composición química durante su procesado térmico. La mayoría de los alimentos se ablandan durante esta fase, por lo tanto, el conocimiento de este fenómeno se puede utilizar en la cuantificación de tratamientos térmicos.

En el estudio de la cinética *de ablandamiento* (en lo sucesivo denominada cinética *de cocción*) se pueden expresar los valores de sus parámetros característicos de forma análoga a los de termodestrucción de acuerdo con el modelo de Bigelow.

La nomenclatura y el significado de los principales parámetros se definen a continuación:

- Propiedad a evaluar: fuerza de compresión aplicada sobre el alimento (P)
- dP / dt : velocidad de ablandamiento
- D (tiempo de reducción decimal): tiempo de calentamiento a la temperatura constante T necesario para reducir 10 veces la fuerza de compresión con la que se cuantifica el ablandamiento del alimento
- n: factor de reducción de ablandamiento o cocción ($n = log P_0 log P_t$)

En la siguiente tabla se muestra el valor de los parámetros termocinéticos de cocción para algunos vegetales.

Tabla 4.4. Parámetros termocinéticos de cocción de algunos vegetales.

Factor de calidad: Textura	T(°C)	$D(10^{-3}s)$	Z (°C)
Alubias	110	84,9	21,3
Zanahorias	121,1	0,59	47
Guisantes	100	0,14	31,8
Patata	100	0,048	17

Fuente: Casp y Abril (1999).

Los parámetros cinéticos de cocción de judías verdes a la temperatura de 100 °C (D_{100} = 2 min; Z = 16,9 °C) fueron calculados por Tijskens y Schijvens (1987).

4.3.1.3. Otros factores de calidad de referencia

Las enzimas tienen especial interés en la reología de los alimentos vegetales ya que frecuentemente sus reacciones están implicadas en procesos de alteración del color, aroma, textura, sabor y comestibilidad del alimento.

Algunas vitaminas como la A, B_1 (tiamina), B_5 (ácido pantoténico), B_6 (piridoxina) o C (ácido ascórbico), así como algunos pigmentos implicados en el color del alimento (clorofila o carotenoides) poseen una resistencia al calor característica y pueden utilizarse para optimizar el proceso térmico de alimentos. En la tabla siguiente se muestran algunos ejemplos.

Tabla 4.5. Parámetros termocinéticos de algunos factores de calidad de vegetales.

Factor de calidad	T(°C)	$D(10^{-3}s)$	Z (°C)
Enzimas			
Pectinesterasa	80	3,7-16,7	7,8
Polifenoloxidasa	89	0,1	7,8
Vitaminas			
A	122	2,4	23
B_1	150	0,83	22
B ₆	121	24	45
B ₅	121,1	138	35,8
С	121,1	50	18,2
Color (Pigmentos verdes)			
Espárrago	121,1	1,02	41,6
Judías verdes	121,1	1,26	38,8
Guisantes	121,1	1,5	39,4
Espinacas	148,8	0,21	51,1
(Pigmentos rojos)			
Uva	121	7,2	54,7

Fuente: Casp y Abril (1999).

Los parámetros cinéticos de termoinactivación de la enzima peroxidasa a la temperatura de 120 °C (D_{120} = 13,8 min; Z = 27,8 °C) fueron descritos por Adams (1991).

4.3.2. Cuantificación de un tratamiento térmico

A continuación se desarrolla el análisis de la cuantificación de un tratamiento térmico mediante el cálculo del efecto esterilizante. La cuantificación mediante el cálculo del efecto de cocción se realiza de forma análoga ya que, como se indicó anteriormente, la variación de la propiedad considerada responde a una cinética de primer orden, por lo que sólo se expresa el significado de los parámetros principales.

4.3.2.1. Cálculo del valor esterilizante. Valor F

Para comenzar dicho análisis es necesario diferenciar entre tratamientos ideales y reales. En los primeros se analiza el efecto del calor suponiendo que se aplica una temperatura constante y que ésta se alcanza de forma inmediata en una porción puntual de alimento. En un tratamiento real hay que tener en cuenta la evolución de temperaturas que tiene lugar durante un *ciclo de autoclavado* y su repercusión o efecto en una zona puntual de alimento situada en el punto de calentamiento más lento de un envase o *punto crítico*.

4.3.2.1.1. Tratamientos ideales

El objetivo es calcular el efecto letal (o duración) de un tratamiento t_{Ti} aplicado a la temperatura constante T_i mediante la comparación con otro tratamiento denominado "de referencia". Este segundo (t_{Tref}) se define por medio de un microorganismo, una temperatura de referencia T_{ref} y un efecto reductor de n unidades.

4.3.2.1.1.1. Relación de letalidad entre dos tratamientos

La relación de letalidad entre dos tratamientos se puede deducir a partir de la gráfica de tratamientos de efecto equivalente (figura 4.2; apartado 4.3.1.1.1.),

particularizada para el tratamiento de referencia t_{Tref} obtenido a la temperatura de referencia T_{ref} para un factor de reducción n.

Partiendo de la ecuación de la recta genérica:

$$log t_T = -\frac{1}{Z} \cdot T + cte_2$$

Particularizando la ecuación para el punto ($log\ t_{Tref}$, T_{ref}), el valor de la constante es:

$$cte_2 = log \ t_{Tref} + \frac{1}{Z} T_{ref}$$

Por lo tanto, la ecuación genérica de la recta queda de la forma:

$$log t_T = log t_{Tref} + \frac{1}{Z} (T_{ref} - T)$$

Su expresión para un tratamiento genérico t_{T_i} a la temperatura T_i de igual efecto reductor n es:

$$log t_{Ti} = log t_{Tref} + \frac{1}{Z} (T_{ref} - T_i)$$

Agrupando términos homogéneos:

$$log\left[\frac{t_{T_i}}{t_{Tref}}\right] = \frac{1}{Z} (T_{ref} - T_i)$$

La relación de letalidad entre dos tratamientos la expresa la ecuación:

$$(1) t_{Ti} = t_{Tref} \cdot 10^{\left(\frac{T_{ref} - T_i}{Z}\right)}$$

4.3.2.1.1.2. Unidad letal básica. Coeficiente letal. Letalidad de un tratamiento a temperatura constante

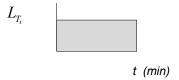
Para comenzar a establecer comparaciones entre el efecto de dos tratamientos se adopta el término *unidad letal básica* a la letalidad conseguida por un tratamiento t_{Tref} aplicado a la temperatura de referencia T_{ref} mantenida durante 1 min (t_{Tref} = 1 min) y un efecto reductor de n unidades sobre el microorganismo de referencia considerado.

La letalidad de un tratamiento genérico t_{Ti} a una temperatura T_i con el mismo efecto reductor n se expresa en función de la letalidad del tratamiento de referencia según el cociente:

$$L_{T_i} = \frac{t_{Tref}}{t_{T_i}}$$

Este cociente se denomina *relación de modificación* o *coeficiente letal*. Teniendo en cuenta que $t_{Tref} = 1$ min y la expresión (1) para t_{Ti} descrita en el apartado anterior, el valor del *coeficiente letal* es el siguiente:

$$L_{T_i} = rac{1}{t_{T_i}} = rac{1}{1 \cdot 10^{\left(rac{T_{ref} - T_i}{Z}
ight)}}$$


$$L_{T_i} = 10^{\left(\frac{T_i - T_{ref}}{Z}\right)}$$

Si el tratamiento t_{Ti} tiene una duración de t min, el efecto letal es:

$$F_{Ti} = L_{T_i} \cdot t$$

(2) Nótese que el tratamiento t_{Ti} asociado a un efecto letal o factor de reducción se designa mediante F_{Ti} . En lo sucesivo, si se desea asociar un tratamiento a una duración (tiempo de proceso) se designará como t_{Ti} y si se desea asociarlo a un efecto letal se designará como F_{Ti} .

Gráficamente, el valor del efecto letal F_{Ti} es el área siguiente:

4.3.2.1.2. Tratamientos reales

El proceso descrito anteriormente es válido para un tratamiento a temperatura constante donde los tiempos de calentamiento y de enfriamiento son despreciables. Ésta consideración en la práctica no es viable ya que cualquier tratamiento está compuesto por un periodo de calentamiento, otro de mantenimiento de la temperatura y un tercero de enfriamiento. Por lo tanto, es necesario conocer el efecto de las temperaturas de estos tres periodos en el punto de calentamiento más lento del envase (*punto crítico*) y calcular en él, el efecto letal.

4.3.2.1.2.1. Factores que afectan a la penetración del calor en el envase. Proceso de localización práctica del *punto crítico*

Para localizar el *punto crítico* es necesario conocer los factores que afectan a la penetración del calor en el envase. Estos factores son, como se indica en la tabla 4.6., función del tipo de instalación, producto y envase utilizados.

y de esterilización sobre Bacillus coagulans en una conserva de judías verdes (Phaseolus vulgaris var. Helda)

Tabla 4.6. Factores que afectan a la penetración de calor en el envase.

	Factor	Comentario
Proceso	Tipo de fluido calefactor (coeficiente superficial de transmisión de calor)	El coeficiente de transmisión de calor sobre la superficie del envase es una característica del envase y del fluido calefactor usado. El valor más alto para este coeficiente se obtiene mediante la condensación de vapor de agua sobre envases metálicos.
	Sistema de agitación	La agitación de los envases incrementa la transmisión de calor para determinados productos como líquidos viscosos y sólidos en el seno de líquidos.
Producto	Naturaleza	La naturaleza del producto condiciona la transmisión o penetración de calor mediante convección o conducción. Algunos productos cambian de sistema de transmisión de calor a lo largo del proceso.
	Temperatura inicial	Cuanto más alta sea la temperatura inicial, antes se alcanzará la temperatura de trabajo. Los procesos más sensibles a las diferencias de temperatura inicial son los que transcurren por conducción.
F	Propiedades termofísicas	Es importante la difusividad térmica del producto.
Envase	Materiales	Pueden ser muy distintos: hojalata, aluminio, vidrio, film plástico, etc. La conductividad térmica de estos materiales determina la penetración del calor.
	Geometría	La relación superficie/volumen del envase condiciona la penetración de calor; ésta mejora al incrementarse dicha relación.

Fuente: Casp y Abril (1999).

Es de gran importancia la posición del producto en el envase, sobre todo si son productos como espárragos o judías verdes enteras, ya que los huecos dispuestos verticalmente entre las piezas facilitan las corrientes de convección formadas en el líquido de gobierno. De la misma forma, sólidos envasados con holgura en un seno líquido se calientan más rápidamente que si estuvieran compactados.

Para un producto concreto, tanto la forma como el tamaño del envase influyen en la penetración del calor, que depende en gran parte de la relación entre superficie y el volumen del recipiente (los botes pequeños se calientan rápidamente por que la superficie expuesta al calentamiento es grande con relación al volumen).

La agitación de los envases durante el tratamiento térmico aumenta considerablemente la velocidad de penetración del calor, principalmente en la fracción líquida del contenido del envase. No obstante, la agitación solo es ventajosa para productos que son lo suficientemente líquidos o viscosos para permitir que en su seno se formen corrientes de convección.

El factor más importante condicionante de la penetración del calor es la naturaleza del producto, ya que determinará el sistema de transmisión de calor que va a producirse el intercambio térmico.

En la práctica se pueden encontrar los siguientes tipos de productos:

- Líquidos de baja viscosidad que permiten la formación de corrientes de convección con lo que el calentamiento es mas rápido (zumo, leche, etc..)
- Sólidos o líquidos de alta viscosidad en los que el calor se transmite por conducción y por tanto el calentamiento es más lento. Durante el proceso térmico la temperatura tomará un valor distinto en cada punto de la masa del producto.
- Líquidos que contienen en su seno sólidos de pequeño tamaño. La penetración del calor viene determinada en gran medida por la movilidad del líquido (proporcional a la relación líquido / sólido existente). La temperatura de los sólidos puede considerarse la misma que la del líquido que los rodea.
- Sólidos en líquido de gobierno. En este caso el líquido se calentará por convección (con mayor o menor facilidad dependiendo de la posibilidad de que en su seno se formen corrientes de convección por los espacios libres

entre los sólidos) y servirá de vector de transmisión de calor al sólido, que a su vez se calentará por conducción.

 Productos que comienzan a calentarse por conducción y en un determinado momento (por cambios en su estructura y propiedades reológicas) pasan a terminar el proceso calentándose por convección.

Como se ha indicado previamente, la temperatura debe medirse en el punto del envase en el que el calentamiento sea mas lento (*punto crítico*), ya que de esta forma se tendrá la seguridad de que todas las demás zonas del envase han recibido un tratamiento térmico de mayor intensidad. Por lo tanto, en la práctica, el problema se reduce a localizar dicho *punto crítico* y colocar en él el sensor de temperatura.

Generalmente se admite que:

- En productos que se calientan por convección (fundamentalmente de naturaleza líquida y con baja viscosidad) en envases cilíndricos, el punto crítico se sitúa en el eje longitudinal a 1/5 de la altura medido desde la base.
- En productos que se calientan por conducción, en envases cilíndricos o de otras formas, el *punto crítico* se localiza en el centro geométrico.
- En productos del tipo sólidos en líquido de gobierno es necesario asegurarse que el centro del sólido de mayor tamaño situado en una zona central del envase recibe el tratamiento adecuado, siendo en dicho punto donde debe evaluarse el efecto.

Proceso de localización práctica del punto crítico

El proceso de localización del *punto crítico* se realiza en la práctica introduciendo varias sondas en diferentes puntos de varios envases de control llenos de alimento (figura 4.8.) y aplicando al conjunto un tratamiento en autoclave u otro sistema de calentamiento.

Con los datos proporcionados por la sonda se visualizan las gráficas de penetración de calor de cada uno de los puntos y se determina el punto de inercia térmica más lenta.

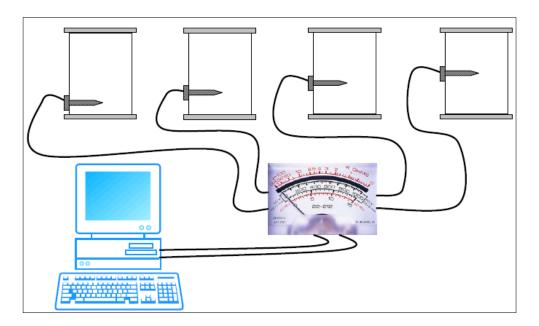
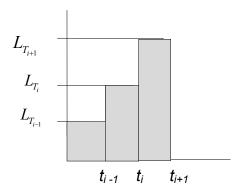



Figura 4.8. Determinación del *punto crítico* de un envase.

4.3.2.1.2.2. Efecto esterilizante en el punto crítico

Un tratamiento térmico real puede considerarse como una sucesión de pequeños tratamientos conseguidos por cada una de las temperaturas que intervienen, de forma que cada temperatura tiene sobre el punto crítico una *relación de modificación* $L_{\rm T_c}$ diferente.

En este caso, el efecto esterilizante global o valor F se calcula sumando los productos de las *relaciones de modificación* de cada temperatura por el tiempo que se aplican cada una de ellas. Gráficamente su valor es el área que se destaca.

El efecto letal de cada temperatura en el punto crítico del envase tiene el valor siguiente:

$$F_{T_i} = L_{T_i} \cdot \Delta t_i = 10^{\left(\frac{T_i - T_{ref}}{Z}\right)} \cdot \Delta t_i$$

El efecto letal global o efecto esterilizante del tratamiento completo es el sumatorio de los efectos letales anteriores:

$$F = \sum F_{T_i} = \sum L_{T_i} \cdot \Delta t_i = \sum 10^{\left(rac{T_i - T_{ref}}{Z}
ight)} \cdot \Delta t_i$$

Habitualmente, el efecto esterilizante $\mathbf{\it{F}}$ se designa con unos índices característicos, un subíndice para la temperatura de referencia utilizada y un superíndice para el parámetro Z característico del microorganismo de referencia:

$$F_{T_{ref}}^{Z} = \sum 10^{\left(\frac{T_i - T_{ref}}{Z}\right)} \cdot \Delta t_i$$

Para la evaluación del efecto esterilizante se considera como referencia la temperatura de 121 °C (T_{ref} = 121 °C)

y ac occimination cost of many control of the control of particle (cost of the cost of the

$$F_{121}^Z = \sum 10^{\left(\frac{T_i - 121}{Z}\right)} \cdot \Delta t_i$$

Para facilitar la notación de apartados posteriores y con el objetivo de caracterizar el tratamiento en base a su duración (*tiempo de proceso*), teniendo en cuenta la consideración señalada en (2):

$$F_{121}^Z = t_{121}^Z$$

Como en el modelo de Bigelow los tratamientos se expresan en función del factor de reducción y del tiempo de reducción decimal según la expresión $t = n \cdot D$, el valor del factor de reducción n conseguido por el tratamiento es:

$$n = \frac{t_{121}^Z}{D_{121}}$$

Para comparar los efectos obtenidos por varios tratamientos es interesante caracterizar los tratamientos en base a la *temperatura de trabajo* (T_{ai}) que es aplicada y a la duración o efecto referido a dicha temperatura: $F_{T_{ai}}^Z = t_{T_{ai}}^Z$ (tiempo que se mantiene la temperatura T_{ai} o *tiempo de proceso*). En estas condiciones la expresión del factor de reducción conseguido por el tratamiento es:

$$n = \frac{t_{T_{ai}}^Z}{D_{T_i}}$$

4.3.2.2. Cálculo del valor de cocción. Valor C

Designaciones específicas:

- a) Tratamientos ideales:
- Relación de modificación (coeficiente de ablandamiento o cocción):

$$L_{T_i} = 10^{\left(\frac{T_i - T_{ref}}{Z}\right)}$$

• Efecto de ablandamiento o cocción a temperatura constante de duración t:

$$C_{Ti} = L_{T_i} \cdot t$$

- b) Tratamientos reales:
- Efecto de ablandamiento o cocción:

$$C_{T_{rof}}^{Z} = \sum C_{Ti} = \sum L_{T_i} \cdot \Delta t_i$$

La temperatura de referencia que se suele considerar para evaluar los procesos de cocción es de 100 °C (T_{ref} = 100 °C). A esta temperatura el efecto de cocción es:

$$C_{100}^Z = \sum 10^{\left(\frac{T_i-100}{Z}\right)} \cdot \Delta t_i$$

• Efecto del tratamiento en términos del tiempo de proceso:

$$C_{100}^Z = t_{100}^Z$$

• Expresión del factor de reducción:

$$n = \frac{t_{100}^Z}{D_{100}}$$

• Expresión del factor de reducción en función de la *temperatura de trabajo* (T_{ai}) y del efecto referido a dicha temperatura $C_{T_{ai}}^Z = t_{T_{ai}}^Z$ (*tiempo de proceso*):

$$n = \frac{t_{T_{ai}}^Z}{D_{T_{ai}}}$$

4.4. La textura de las judías verdes

4.4.1. Aspectos generales

La palabra textura deriva del latín *textura* que significa tejido y originalmente se tomó en referencia a la estructura, sensación y apariencia de los tejidos.

Hoy en día la textura de un alimento se asocia con "todos los atributos mecánicos, geométricos y superficiales del producto, perceptibles por medio de receptores mecánicos, táctiles y si es apropiado, visuales y auditivos" (ISO 5492-1992). Se trata por tanto de nuestra percepción del producto y de cómo éste se comporta al ser manipulado e ingerido.

La textura juega un papel muy importante en la apreciación que hacemos del alimento y a menudo constituye un criterio por el cual juzgamos su calidad. Es una cualidad sensorial especialmente importante en las hortalizas, ya que una textura firme se considera un índice de frescura y un factor determinante en su aceptabilidad (García *et al.*, 2000).

La apariencia juega un papel importante en la percepción de la textura. Características como el color, tamaño y forma, así como aspectos de su estructura, se adelantan a la interacción física con el alimento, es decir, incluso antes de que el alimento esté en la boca, ya se tiene una determinada información sobre él.

Con el alimento en la boca, las primeras masticaciones rompen la mayor parte de la estructura fracturándose los materiales quebradizos y desgarrándose los fibrosos. Simultáneamente, el alimento es mezclado, amasado y transformado en *bolo alimenticio*. Durante el ciclo de masticación se perciben una alta variedad de características sobre su composición física, deformación y rotura.

Los esfuerzos por medir todos estos atributos de textura de una forma objetiva han dado lugar a algunas técnicas instrumentales. Scott-Blair (1958) clasifica las técnicas de medición de la textura en:

- - 1. Ensayos fundamentales. Miden propiedades reológicas como la viscosidad y el módulo elástico. Desde el punto de vista práctico presentan poco interés ya que solamente pueden ser útiles para definir o caracterizar algunos sistemas, pero proporcionan las bases para el desarrollo de los ensayos empíricos e imitativos. Además se ha demostrado que, en general, ofrecen correlaciones pobres con la evaluación sensorial de la textura y las pruebas requieren un material homogéneo de forma y tamaño perfectamente determinado.
 - Ensayos empíricos. Son los más utilizados en la industria alimentaria debido principalmente a su rapidez, sencillez y mejor correlación con las pruebas sensoriales. Sin embargo, los resultados no pueden extrapolarse a otro sistema de medida.
 - 3. Ensayos imitativos. Se desarrollan bajo condiciones que simulan a las que se llevan a cabo en la práctica. Se realizan mediante una máquina denominada texturómetro equipada para proporcionar medidas de esfuerzo y/o deformación durante la secuencia de ensayo. Los análisis desarrollados con el texturómetro se denominan perfiles de textura (TPA: Textura Profile Analisis) (Aguilera y de Dios, 2001)

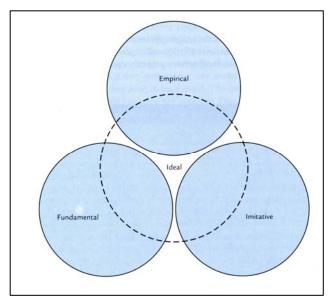


Figura 4.9. Representación esquemática del sistema ideal de medida de la textura y su relación con los ensayos imitativos, fundamentales y empíricos.

Fuente: Roudot (2004).

4.4.2. La textura en vegetales

En frutas y hortalizas la textura viene dada por la estructura de las células que lo constituyen. Las células de los organismos vegetales contienen citoplasma, núcleo y orgánulos, limitadas por una membrana semipermeable denominada *plasmalema* que a su vez está rodeada por la pared celular (compuesta de fibras de celulosa y hemicelulosas en una matriz de agua y pectinas). Estas estructuras se muestran en la figura siguiente:

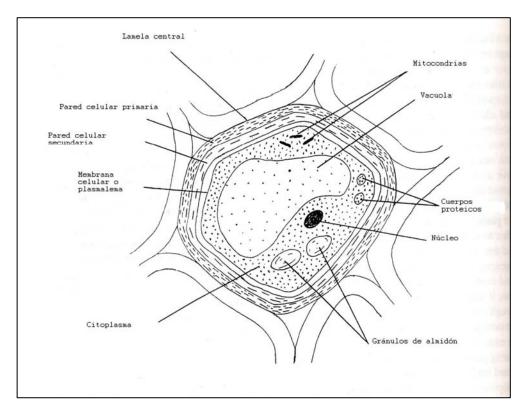


Figura 4.10. Estructura de la célula vegetal. Fuente: Rosenthal (1999).

Las pectinas son polímeros de ácido galacturónico y entrelazan las paredes celulares vecinas formando una red denominada *lamela central*.

La pared celular proporciona rigidez manteniendo la forma de la planta y de los tejidos. Además, en el interior de cada célula existe una presión de turgencia necesaria para mantener los niveles adecuados de azúcar y sal de forma que, cuando la turgencia se pierde, la estructura se colapsa y la planta empieza a marchitarse por pérdida de agua.

Las diferentes plantas y órganos de la planta tienen diferentes grados de textura, dependiendo de la rigidez proporcionada por la pared celular, determinada a su vez

por la fuerza de los enlaces de la *lamela central* y el grado de apoyo de sustancias en el interior de la célula como los gránulos de almidón y de otros tejidos como las

fibras.

Variación de la textura con el calor

La lesión de los tejidos que experimenta la materia vegetal durante el tratamiento térmico es de dos tipos: alteración o destrucción de las membranas celulares semipermeables y rotura de las estructuras intercelulares con el resultado de la separación celular. Estos efectos en los tejidos producen perdida de turgencia y adhesión celular, lo que se traduce en una pérdida de consistencia o

reblandecimiento.

Otras influencias importantes sobre la textura de los alimentos tratados con calor son las derivadas de la desnaturalización de las proteínas que provoca cambios en las propiedades fisico-químicas de los tejidos y originan un aumento de la elasticidad y flexibilidad del producto. Sin embargo, el calor provoca también la inactivación de enzimas implicadas en procesos de ablandamiento de la textura.

La desnaturalización de las proteínas por el calor origina una red de aspecto fibroso, capaz de retener un gel formado a su vez por el efecto del calor sobre los gránulos de almidón.

El almidón es una mezcla de carbohidratos que las plantas sintetizan y se deposita en el citoplasma de la célula en forma de gránulos insolubles constituidos por amilosa y amilopectina. Su proceso de gelatinización se inicia dentro de un margen de temperaturas correspondiente a la solubilización de las macromoléculas de su composición. La amilosa origina una solución opaca que da lugar a un coagulo consistente al enfriarse, mientras que la amilopectina da origen a una pasta translucida y viscosa que retiene su fluidez al enfriarse. Para que ocurra la gelatinización del almidón este compuesto tiene que ser expuesto al calor en

y de esterilización sobre Bacillus coagulans en una conserva de judías verdes (Phaseolus vulgaris var. Helda)

presencia de agua formándose un gel de volumen muy superior al del orgánulo de partida (*hinchamiento del almidón*) que causa la distensión de la célula.

Cuando se aplica calor para que comiencen a separarse las células se deben producir dos situaciones simultáneamente: la rotura de las paredes celulares y la disolución de la red de pectinas de la *lamela central* de las células. La rotura se produce en el lugar más delicado de éste, normalmente se inicia en la superficie de la célula y se abre paso hasta la *lamela central*. El proceso observado a una escala macrométrica se aprecia (figura 4.11.) como una separación de células.

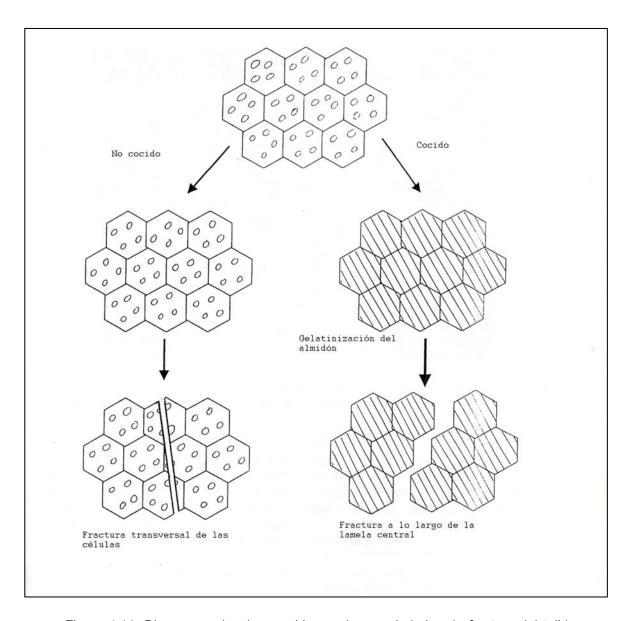


Figura 4.11. Diagrama sobre los cambios en las propiedades de fractura del tejido vegetal como resultado de un tratamiento térmico. Fuente: Rosenthal (1999).

El efecto de los tratamientos térmicos de escaldado y esterilización aplicados sobre las judías verdes se aprecia en la figura siguiente.



Figura 4.12. Escaneado con microscopio electrónico de los planos de rotura de (i) judías verdes crudas y (ii) judías verdes tras un escaldado a 90 °C y una esterilización a 118 °C durante 30 min.

Se puede apreciar:

- (a) fractura entre células,
- (b) parénquima externo y
- (c) parénquima interno.

Fuente: Stolle-Smith et al. (1998).

En el tratamiento térmico de esterilización la modificación de la textura puede minimizarse utilizando productos menos maduros y tratamientos térmicos menos intensos (García *et al.*, 2000).

4.4.3. Determinación analítica de la textura

En los últimos años el analizador de textura utilizado en este trabajo de la firma *Stable Micro Systems* (SMS) ha cobrado gran auge entre los especialistas en diversas empresas productoras de alimentos (Aguilera y de Dios, 2001)

Para el análisis de la textura de los vegetales las más utilizadas son las pruebas de punción y de corte.

Pruebas de penetración o punción

En éstas la penetración de la sonda en el alimento se lleva a cabo hasta una profundidad tal que se cause un flujo del material. Por lo general, se mide la fuerza máxima que opone la muestra a ser penetrada, asociando dicho valor a una medida de la firmeza o consistencia del producto y a su cohesión interna.

Este tipo de test se caracteriza por:

- (a) La fuerza máxima medida por el instrumento.
- (b) La penetración de la sonda en el alimento que causa un flujo de material.
- (c) La profundidad de penetración que normalmente es constante.

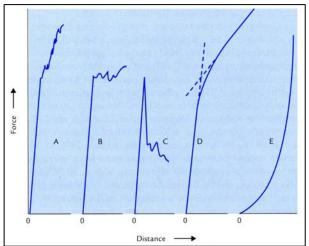


Figura 4.13. Representación esquemática de diferentes tipos de curvas fuerza-distancia en un test de punción.

Fuente: Roudot (2004).

En la figura anterior se diferencian cinco tipos básicos de curvas. En los tipos A, B y C hay un aumento inicial rápido en la fuerza aplicada en muy poca distancia en la que se deforma la superficie del alimento pero no se produce la punción.

En el momento en que se atraviesa la superficie del alimento, la fuerza de penetración cambia bruscamente. A este punto se le llama "punto de cedida", que marca el punto en que la sonda penetra en el alimento y es el punto más interesante en el test de penetración. En estos gráficos, una vez atravesado el punto de cedida, la fuerza ejercida continúa aumentando (A), es aproximadamente constante (B) o decrece bruscamente (C). Las curvas de tipo D y E se obtienen principalmente en

El objetivo de esta prueba es determinar la firmeza del producto tratado o el grado de madurez o marchitez inicial del producto fresco, para evaluar si éstos se encuentran dentro del rango sensorial aceptable para el consumidor.

Pruebas de corte

pastas de almidón o similares.

Durante la masticación los alimentos se ven sometidos principalmente a fuerzas de cizalla. Se entiende por cizalla el desplazamiento de unas capas de material sobre otras por la acción de una fuerza que actúa tangencialmente a la superficie considerada.

La sonda utilizada para las pruebas de corte en este trabajo es la denominada HDP/BSK (juego de cuchilla con filo o célula de carga nº 25) y el parámetro que se mide es la fuerza máxima de cizalla. La sonda consiste en una lámina metálica de aproximadamente 2 mm de espesor provista de una cuchilla. La muestra se coloca atravesada y apoyada en la parte inferior y se fuerza su corte haciendo descender la sonda a una velocidad determinada. Pueden determinarse también los efectos de extensión, compresión y flexión del producto (Roudot, 2004).

El objetivo de esta prueba es determinar la ternura del producto final, obteniéndose una idea del futuro comportamiento de éste durante la masticación en la boca, así como determinar la aceptabilidad del producto tras un proceso de cocción, es decir, decidir si el tratamiento térmico aplicado ha sido suficiente o excesivo.

4.5. Las judías verdes como materia prima de la industria conservera

4.5.1. Generalidades

Antes de llegar a Europa las judías verdes ya eran extensamente cultivadas en América. Se introdujeron en Perú y México hace no menos de 7.000 años y fueron traídas a Europa por Cristóbal Colón. Gracias a su carácter no perecedero las semillas secas de las judías verdes se extendieron rápidamente por todo el mundo, pero no fue hasta el siglo XVIII cuando se empezaron a consumir las vainas en fresco.

Se trata de cultivo de ciclo corto (65 días) que en España alcanza unos rendimientos de 7 a 14 Tm/Ha. Según fuentes de la FAO, en el 2005 se produjeron en España 214.700 toneladas en una área total de 17.500 Ha, de las que aproximadamente dos tercios se produjeron en Andalucía.

Gran parte de la judía verde no se consume en fresco debido a su corta vida útil de entre 1 y 2 semanas (a temperaturas entre 4 y 10 °C), sino que es sometida a un proceso de transformación del tipo de la congelación o tratamiento térmico. (García et al., 2000).

Características varietales

Nombre científico: Phaseolus vulgaris

Familia: Leguminosae

Figura 4.14. Judias verdes arracimadas.

El fruto de la judía verde está constituido por las vainas y las semillas de su interior. La vaina consta de un exocarpio o capa externa formada por células pequeñas de paredes gruesas (recubiertas exteriormente por una cutícula espesa) y una capa subepidérmica o tejido de resistencia. Más interiormente aparece el mesocarpio o

parte carnosa constituida por numerosos estratos de células (de 10 a 20 normalmente) de paredes finas con abundantes cloroplastos y haces vasculares intermedios. La capa más interna de la vaina es el endocarpio o pergamino que interviene en su dehiscencia.

Las dos unidades de la vaina están unidas por 2 suturas (ventral y dorsal) llamadas hebras o hilos, generalmente finos y poco resistentes en las variedades y tamaños utilizados en la industria conservera.

Las semillas aparecen en un número que oscila entre 4 y 8 unidades por fruto y están situadas a lo largo de la vaina en pequeñas cavidades dispuestas entre las dos mitades de la misma.

Se trata de una planta vigorosa, de tallo herbáceo de enrame y porte erguido que se enrolla a cualquier soporte o tutor y lo recorre siempre en sentido contrario a las agujas del reloj.

Su ligero sistema radicular está constituido por una raíz principal y muchas raíces secundarias bastante ramificadas. Noduliza mediante asociación simbiótica con especies de *Rhizobium phaseoli*.

Los frutos que se utilizan para industrialización son de color verde, calibre comprendido entre 6 y 10,5 mm de diámetro y porcentaje en peso de semillas que oscila entre el 20% y el 40 %. Estas características dependen de factores como la variedad, condiciones de cultivo, fecha de recolección, etc.

Las variedades comerciales se diferencian en función del tipo de mata (baja o de enrame), color de la vaina (amarillo, verde o jaspeado) y sección de la misma (redonda, aplanada o elíptica).

4.5.2. Normas de calidad de las conservas de judías verdes

Legislación aplicable a conservas vegetales

Real Decreto 2420/1978, de 2 de junio, por el que se aprueba la Reglamentación Técnico-Sanitaria para la elaboración y venta de conservas vegetales (BOE nº 244 de 12 de octubre y corrección de errores en BOE nº 267 de 8 de noviembre).

Resolución de 1 de agosto de 1979, de la secretaría de Estado para la Sanidad, por la que se aprueba la lista positiva de aditivos autorizados para uso en la elaboración de conservas y semiconservas vegetales (BOE nº 249 de 17 de octubre y corrección de errores en BOE nº 308 de 25 de diciembre).

Orden de 21 de junio de 1983 sobre características y formatos de envases de conservas vegetales, zumos vegetales y derivados y platos preparados cocinados esterilizados (BOE nº 155 de 30 de junio).

Orden de 13 de febrero de 1984, del ministerio de Economía y Hacienda, por la que se dictan normas de calidad para exportación de conservas y semiconservas vegetales (BOE nº 54, de 3 de marzo de 1984 corrección de errores en BOE nº 78, de 31 de marzo).

Orden de 21 de noviembre de 1984 por la que se aprueban las normas de calidad para las conservas vegetales (BOE nº 287, 288 y 289 de 30 de noviembre, 1 y 3 de diciembre y correcciones de errores en BOE nº 9, 10 y 11 de 9, 10 y 11 de enero de 1985).

Orden de 29 de enero de 1988 del ministerio de Relaciones con las cortes y de la secretaría del gobierno por el que se aprueban los métodos oficiales de análisis de zumos de frutas y otros vegetales y sus derivados (BOE nº 31, de 5 de febrero de 1988 y corrección de errores en BOE nº 95, de 20 de abril).

Real Decreto 1650/1991, de 8 de noviembre, por el que se aprueba la Reglamentación Técnico-Sanitaria para la elaboración y venta de zumos de frutas y de otros productos similares (BOE nº 278 de 20 de noviembre).

La conserva de judías verdes es el producto obtenido a partir de las vainas verdes, frescas y sanas de variedades adecuadas de *Phaseolus vulgaris*, envasadas con un líquido de gobierno y esterilizadas mediante el empleo exclusivo de calor en envases herméticamente cerrados. Pueden además adicionarse uno o varios de los ingredientes que se mencionan más adelante.

Caracteres sanitarios

Las judías verdes que se utilizan para la preparación de conservas deben estar sanas, limpias y exentas de residuos de anticriptogámicos utilizados durante su cultivo en el campo. Deben también estar exentas de lesiones o manchas anormales así como de cualquier otro defecto que pueda afectar a su comestibilidad, al buen aspecto del producto final o a su conservación.

Ingredientes autorizados

Pueden añadirse al líquido de gobierno los siguientes ingredientes en las proporciones máximas indicadas en el Código Alimentario Español: sal común, sacarosa o dextrosa, derivados de sodio (glutamato monosódico, inosinato disódico, guanilato disódico, carbonato disódico, bicarbonato sódico e hidróxido sódico), hidróxido cálcico e hidróxido de magnesio. Su función es favorecer la conservación del color verde y la textura. El pH resultante de la conserva no debe exceder de 8.

Peso escurrido

Los envases deben presentar la máxima cantidad de producto que permita una elaboración correcta. Normalmente el volumen ocupado por el producto se cuantifica mediante el peso escurrido. El peso escurrido se mide sobre un tamiz de 3,2 mm de luz de malla, dejando escurrir durante dos minutos el contenido del bote y pesándolo a continuación. El peso escurrido debe cumplir con los mínimos indicados en la tabla siguiente.

Tabla 4.7. Pesos escurridos en conservas de judías verdes.

Formato (kg)	Capacidad (ml)	Peso escurrido mínimo (g)
1/2	425	230
1	850	460
3	2650	1330
A-10	3100	1560
50	4250	2150

Fuente: infoagro (2009).

El peso escurrido mínimo para formatos no incluidos en el cuadro anterior se deduce de forma proporcional a los conocidos.

Calibres

El calibre es la longitud del diámetro mayor perpendicular al eje longitudinal. En función de esta medida las judías se clasifican en las siguientes categorías:

a) Extrafinas: inferior a 6,5 mm.

b) Muy finas: de 6,5 a 8 mm.

c) Finas: de 8 a 10 mm.

d) Medianas: superiores a 10 mm.

Se toleran hasta un 10% de unidades de calibre inmediatamente superior al declarado en la etiqueta.

Tipos comerciales

- Judías verdes o judías verdes enteras. Preparadas a partir de vainas enteras, despuntadas y de longitud superior a 6 cm.
- Judías verdes cortadas en tiras. Preparadas a partir de vainas despuntadas y cortadas longitudinalmente.
- Judías verdes cortadas en trozos. Preparadas a partir de vainas de judías despuntadas y cortadas transversalmente en trozos de entre 2,5 y 6 cm.
- Judías verdes cortadas tipo menestra. Conservas preparadas a partir de judías despuntadas y cortadas transversalmente en trozos menores de 2,5 cm.

Calidades

- Calidad extra. Se incluyen en esta categoría las judías verdes enteras y en trozos con líquido de gobierno transparente o ligeramente turbio, de color y consistencia buenos y regularmente libres de defectos.
- Categoría I. Se trata de conservas de judías verdes enteras y en trozos con líquido de gobierno ligeramente turbio, color y consistencia buenos y regularmente libres de defectos.
- Categoría II. Corresponde esta categoría las conservas de judías verdes enteras, en trozos, en tiras y cortadas tipo menestra con líquido de gobierno turbio, color y consistencia aceptables y libres de defectos graves.
- Categoría III. Se incluyen bajo esta categoría las conservas que no reúnan los factores de calidad exigidos en las categorías anteriores.

En la tabla 4.8. se resumen los principales factores de calidad y defectos en función de las categorias extra, primera y segunda.

Tabla 4.8. Factores de calidad y defectos en conservas de judías verdes.

Factores de calidad	Extra	Primera	Segunda
Turbidez	3	2	1
Sedimentos	Escasos	Escasos	
Calibre máximo en mm	10	10	
Color	Uniforme	Prácticamente	
		uniforme	
En 100 g de peso escurrido:			
Semillas sueltas	2	6	12
Semillas desarrolladas	0	3	6
Filamentos resistentes	2	5	10
Manchas o defectos en la piel	5	10	15
Judías sin despuntar	2	3	4

Fuente: infoagro (2009).

4.5.3. Composición nutricional y química de las judías verdes

La judía verde es un alimento rico en fibra, bajo en calorías y grasa y supone una fuente importante de vitaminas y minerales. Presenta pequeñas cantidades de alfa y beta-carotenos (provitamina A) y luteína, ambos son antioxidantes efectivos y capaces de estimular la función inmune. En la tabla 4.9. se aprecia su composición en fresco y cocida.

Tabla 4.9. Composición química de judías verdes crudas y cocidas.

Componentes	Cantidad por 100 gramos		
	Cruda	Cocida	
Agua (g)	90,3	90,4	
Energía (kcal)	24	24	
Proteínas (g)	2,1	1,8	
Hidratos de carbono (g)	3,6	3,9	
Azúcares (g)	2,2	2,5	
Almidón (g)	1,4	1,4	
Lípidos (g)	0,2	0,2	
Fibra (g)	3,1	3	
Sodio (mg)	4	3	
Magnesio (mg)	28	20	
Fósforo (mg)	38	40	
Potasio (mg)	243	240	
Calcio (mg)	56	40	
Hierro (mg)	1	1,2	
Beta-caroteno (µg)	340	336	
Vitamina E (mg)	0,24	0,2	
Vitamina C (mg)	16	10	
Tiamina (mg)	0,08	0,06	
Riboflavina (μg)	0,1	0,07	
Ac. pantoténico (mg)	0,7	0,07	
Vitamina B6 (mg)	0,9	0,06	
Vitamina B12 (mg)	0,14	0	
Folatos (µg)	60		

Fuente: Favier et al. (1995).

Los componentes que resultan más dañados después del tratamiento térmico son la vitamina C, el ácido pantoténico, la vitamina B6 y la vitamina B12. El potasio y el magnesio también sufren pérdidas durante este tratamiento.

4.6. Proceso de elaboración de una conserva de judías verdes

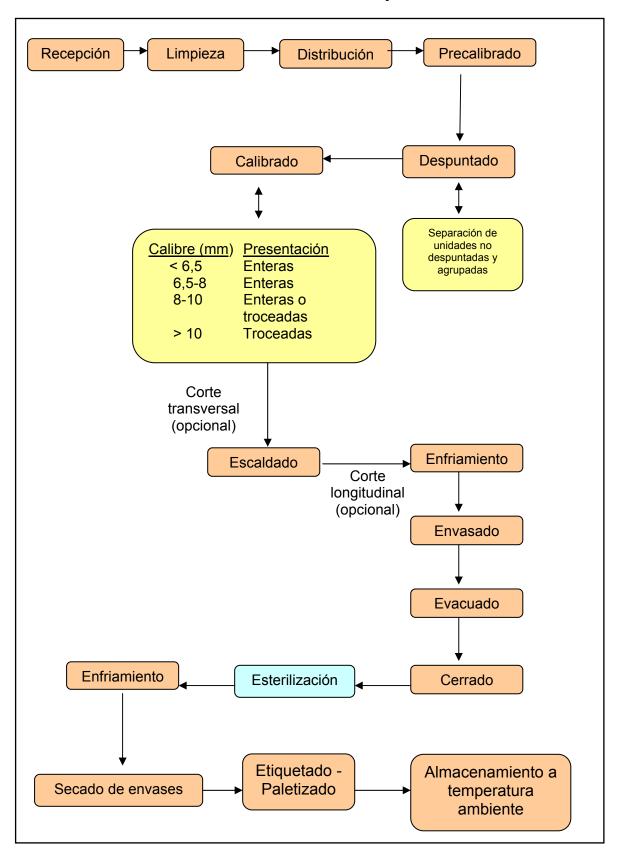


Figura 4.15. Proceso de elaboración de una conserva de judías verdes.

Recepción de la materia prima

La materia prima puede llegar a la fábrica en cajas de madera o plástico normalizadas o en sacos y si no puede ser transformada rápidamente debe almacenarse a una temperatura comprendida entre 4 y 10 °C y una atmósfera con una humedad relativa entorno al 90 %. Temperaturas inferiores a 4 °C pueden causar daños en el producto que se manifiestan en forma de manchas de color pardo.

A la entrada en fábrica se realiza un control de calidad con el objeto de adecuar la línea de procesado y realizar el pago del producto en función de su calidad.

Las operaciones de carga y descarga pueden realizarse en industrias de gran capacidad mediante el sistema de "pallets" o cargas reunidas. En estos casos las líneas de fabricación deben contar con máquinas despaletizadoras que descargan el producto a la plataforma de alimentación.

Alimentación

Su finalidad es conseguir un aporte uniforme de materia prima. Los alimentadores pueden ser de cinta transportadora o de tambor giratorio y llevan sistemas de regulación o dosificadores para controlar el paso de las judías.

Corte de racimos

Se realiza cuando la materia prima que llega a fábrica tiene un contenido elevado en unidades arracimadas. La operación se realiza mecánicamente mediante un tambor horizontal de chapa perforada con unos ganchos internos donde quedan sujetas las vainas por los racimos. La separación se realiza con ayuda de unas cuchillas especiales que recorren el interior del tambor. Las judías desprendidas caen al fondo del tambor y pasan a la limpiadora.

Limpieza

Su objetivo principal es liberar a la materia prima de todo tipo de impurezas sin provocar daños. La modalidad más utilizada es la limpieza en húmedo que consiste en pasar las judías a través de un sistema que aplica agua mediante duchas.

Distribución

Los sistemas de distribución son cintas transportadoras instaladas para el avance de producto. El tiempo que pasa el producto en movimiento se puede aprovechar para realizar una inspección visual del mismo.

Precalibrado

Consiste en separar las judías verdes en dos calibres para mejorar la eficacia de las despuntadoras. Por lo general suelen calibrarse en dos tamaños, mayores y menores de 8 mm. La instalación utilizada es un calibrador de tambor rotatorio.

Despuntado

La operación se realiza para eliminar los extremos de las vainas (más fibrosos). La instalación es un tambor rotatorio con unas ranuras transversales de anchura concreta de forma que, cuando el tambor gira, las judías por acción de la fuerza centrífuga quedan atrapadas por sus extremos en las ranuras. Posteriormente los extremos son eliminados por un sistema de cuchillas dispuestas en la parte exterior que recorren el tambor.

Calibrado

Se realiza para separar en grupos las vainas despuntadas de cara a homogeneizar las operaciones posteriores de cortado y escaldado. En la tabla 4.10. se muestran los calibres de las judías verdes en función de su categoría.

Tabla 4.10. Calibres de judías verdes.

Categorías	Calibre en mm
Extrafinas	Inferiores a 6,5
Muy finas	6,5 a 8
Semifinas	8 a 10
Medianas	Superiores

Fuente: infoagro (2009).

Cortado

Esta operación se suele realizar para las judías de calibres mayores y puede ser transversal o longitudinal. Con el corte transversal se obtienen trozos de unos 2 cm y tiras de judías, con el longitudinal. Para aplicar un corte longitudinal las judías deben ser carnosas, sin hilos y con semillas pequeñas.

El escaldado se realiza después si el corte es transversal y antes si es longitudinal.

Selección y repaso

La finalidad de esta operación es eliminar destríos (vainas rotas, mal despuntadas, manchadas, atacadas por insectos, materias extrañas, etc.) que puedan haber llegado al calibrado, así como las judías que estén incluidas en un calibre que no les corresponda.

Escaldado

El principal objetivo del escaldado es inactivar las enzimas implicadas en la alteración del producto y dotar al mismo de una flexibilidad mediante el aporte de humedad a los tejidos que facilite las operaciones posteriores de cortado (longitudinal), llenado y esterilización (el producto no absorberá el agua del líquido de gobierno).

El escaldado se puede realizar de dos formas: con agua, sumergiendo el producto en un tanque de agua caliente por donde avanza el producto por medio de un tornillo sin fin o con vapor, colocando el producto en una cinta transportadora de malla metálica y aplicando vapor sobre la misma en un contenedor hermético.

El primero es el sistema más utilizado por conseguir una mayor uniformidad de tratamiento y ofrecer la posibilidad de añadir aditivos al agua. El escaldado con agua se realiza a una temperatura que oscila entre 80 y 85 °C y durante un tiempo comprendido entre 2 y 6 min (según el tamaño y el grado de madurez de las vainas).

Enfriamiento

Después del escaldado se realiza un enfriamiento rápido del producto con agua fría para detener el efecto del tratamiento térmico anterior.

Envasado

Puede realizarse de forma manual o mecánica mediante llenadoras volumétricas.

El envasado se completa con la adición del líquido de gobierno o salmuera al 2 o 2,5% de ClNa. La salmuera se añade caliente (95°C) y puede portar aditivos para mejorar la apariencia del producto.

Evacuado - Precalentamiento

Los botes llenos se someten a un calentamiento previo a la operación de cerrado con el fin de eliminar el aire del interior de los envases.

Cerrado

El cerrado se realiza inmediatamente después del precalentamiento con el fin de mantener la capa de vapor de agua en la parte superior de los botes, de forma que, una vez aplicado el cierre y el posterior tratamiento de esterilización, el vapor de agua se condense en el interior del envase y se logre el vacío adecuado.

Esterilización

La esterilización de conservas de judías verdes se realiza en autoclave a temperaturas superiores a 100 °C y tiempos más o menos prolongados en función del formato del envase.

4.7. Tratamiento térmico

En este apartado se describen los diferentes sistemas que dispone la industria conservera para la aplicación del tratamiento de esterilización así como las sondas de medición de temperatura para controlar el proceso.

4.7.1 Tipos de autoclaves

En función del fluido calefactor utilizado, los autoclaves pueden ser clasificados en los tipos siguientes.

Con vapor como fluido calefactor

En estos autoclaves (figura 4.16.) el vapor se introduce por la parte inferior del depósito por medio de una conducción perforada. En la parte superior del depósito van instaladas las válvulas de purga y en el inferior se ubica un sistema de drenaje de condensados.

La carga se realiza por medio de jaulas metálicas en las que se colocan los envases con un determinado orden y se introducen al interior del autoclave por medio de unas guías metálicas que funcionan a modo de raíles.

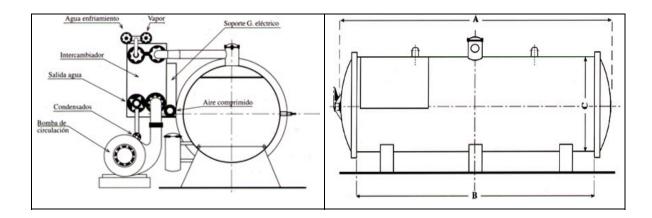
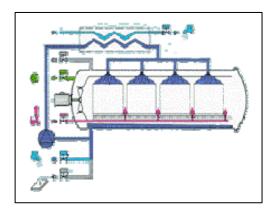


Figura 4.16. Autoclave de carga horizontal. Sección transversal y longitudinal.

Las diferentes fases por las que transcurre un ciclo de autoclavado son las siguientes:


Fase de purga: La válvula de purga en está fase permanece abierta hasta que el indicador de temperatura alcanza los 100 °C. Este proceso es indicativo de que todo el aire se ha expulsado.

Fase de rampa: En esta fase la temperatura evoluciona hasta la temperatura programada (*temperatura de trabajo*).

Fase de meseta: Una vez que se estabiliza la temperatura de trabajo, ésta se mantiene el tiempo programado. El control lo realizan los automatismos asociados a la válvula de vapor. En esta fase el vapor de agua circula a través de la carga y los condensados formados son drenados hacia el exterior.

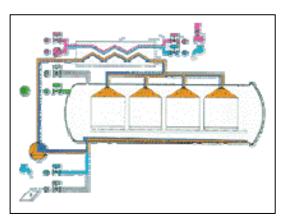
Fase de enfriamiento: Se lleva a cabo mediante una inundación gradual del depósito con agua fría. La salida controlada del vapor por la válvula de purga y la inyección o escape de aire comprimido permiten regular la presión de enfriamiento.

Con vapor como fluido calefactor y ventilados

Durante la fase de calentamiento y meseta, el vapor es directamente inyectado por la parte inferior del autoclave mediante una conducción perforada. Una turbina de ventilación consigue la homogeneidad del tratamiento térmico.

Figura 4.17. Autoclave horizontal de vapor y ventilado.

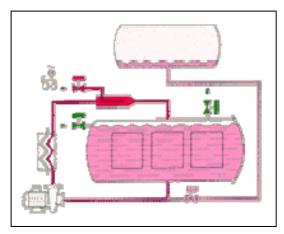
La abertura de la válvula de entrada de vapor está automáticamente controlada según los parámetros de temperatura programados y la presión está también automáticamente regulada mediante la inyección o escape de aire comprimido.


En la etapa de enfriamiento, los condensados de vapor son bombeados y pulverizados sobre los envases a enfriar por la parte superior. Este volumen en circulación se enfría por mezcla directa con agua fresca o a través de un intercambiador. En esta fase se sigue regulando la presión de la misma manera que

durante las etapas de calentamiento y mantenimiento.

Las ventajas que ofrece este sistema son:

- Consumo optimizado de vapor
- Rapidez de calentamiento
- Homogeneidad de tratamiento


Con agua caliente pulverizada

En esta instalación, un pequeño volumen de agua de unos 400 litros es almacenado en la parte baja del autoclave y bombeado hacia la parte superior del mismo donde es calentado a través de un intercambiador y pulverizado sobre los envases. La etapa de enfriamiento es análoga a la instalación anterior.

Figura 4.18. Autoclave horizontal de agua caliente pulverizada.

Inundados con agua caliente

En la etapa de calentamiento y meseta, un volumen de agua precalentado a una temperatura determinada y almacenado en un tanque en la parte superior del autoclave inunda la cámara de tratamiento y es bombeado en circuito cerrado. Este volumen de agua se calienta en un intercambiador con vapor.

Figura 4.19. Autoclave horizontal de agua caliente inundado.

En la etapa de enfriamiento el volumen de agua presente en el autoclave se extrae y es bombeado a un intercambiador donde es enfriado con agua fría e introducido de nuevo en el tanque.

Las ventajas del sistema son:

- Eficiencia energética

- Gasto minimizado de agua (el volumen de agua usado para el tratamiento

térmico está almacenado y es utilizado en el ciclo siguiente)

Se trata de un sistema ideal para el tratamiento térmico de productos en envases

frágiles y de plástico térmosellados.

Sistemas continuos

Son grandes instalaciones de alto grado tecnológico que trabajan de forma continua

y suelen ser adoptadas por industrias conserveras de alta producción. Son los

esterilizadores hidrostáticos o neumohidrostáticos y los autoclaves continuos.

Estas instalaciones minimizan el shock térmico y de presión del envase y poseen un

alto grado de automatismo. Se caracterizan también por un fácil control de proceso y

una excelente uniformidad de tratamiento, utilizando eficientemente el agua y vapor

de agua.

4.7.2. Temperaturas características y sondas de medida

El control de la evolución de la temperatura durante un tratamiento térmico es una

parte extremadamente importante del proceso y su inspección rutinaria es

requerimiento obligado del personal técnico. En este apartado se describen las

temperaturas características de un programa de autoclavado y las sondas utilizadas

para dicho registro.

4.7.2.1 Temperaturas características

Las temperaturas características de un ciclo o programa de autoclavado son la

temperatura de trabajo o temperatura de meseta; su evolución durante el tratamiento

en el interior de la instalación (temperaturas de entorno; T_e) y la repercusión de éstas

últimas en el interior del envase ($temperaturas de producto; T_i$)

74

Temperaturas de entorno

En general, un estudio de homogeneidad en la distribución de las temperaturas en el autoclave (figura 4.20.) se realiza instalando sondas a lo largo del depósito y probando el autoclave cargado con los envases que tratará durante una producción normal. Cualquier cambio que se realice al sistema de proceso, por ejemplo, un cambio en la carga de autoclavado, llevará a la revisión del proceso.

En un ciclo de autoclavado lo ideal es que la *temperatura de trabajo* se alcance tan rápido como sea posible y que se mantenga uniforme durante el tiempo programado, con un mínimo de diferencia entre la más alta y la más baja (Normas de envasado USDA. Departemt of Agriculture. United States)



Figura 4.20. Estudio de la distribución de temperaturas de entorno en un tratamiento a la temperatura de trabajo de 116 °C durante 30 min. El control se realiza con 12 termopares. El incremento de las temperaturas en la fase de meseta no debe superar los 0,5 °C.

y de esterilización sobre Bacillus coagulans en una conserva de judías verdes (Phaseolus vulgaris var. Helda)

Temperaturas de producto

Como se indicó en el apartado 4.3.2.1.2.1., en un ciclo de autoclavado es necesario estudiar la evolución de las temperaturas en varios puntos de un envase para seleccionar el de calentamiento más lento o *punto crítico*.

Procesando cada una de las temperaturas del *punto crítico* mediante el modelo de Bigelow se obtiene el efecto del tratamiento térmico.

4.7.2.2. Sondas de medida

La medida de la temperatura en el interior del autoclave y en el interior de los envases se viene realizando desde 1920 con termopares de resistencia de cobre o platino. Un termopar consta, en esencia, de dos hilos conductores de metales diferentes unidos por sus extremos (figura 4.21.). Si estas uniones se encuentran a temperaturas distintas, se produce una diferencia de potencial eléctrico que es proporcional a la diferencia de temperaturas (efecto Seebeck) que se llama fuerza electromotriz termoeléctrica.

La fuerza electromotriz depende exclusivamente de la naturaleza de los conductores que forman el par y de la diferencia de temperaturas entre las uniones.

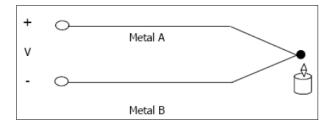


Figura 4.21. Esquema del sistema de medida con termopar.

Existen disponibles comercialmente distintos tipos de termopares y su elección depende de las condiciones ambientales de trabajo del termopar y del margen de temperaturas. Los principales son los siguientes:

a) Hierro-Constantan (aleación de cobre y niquel). Es el denominado *termopar J*. Se utiliza en atmósferas reductoras para un margen de temperaturas de 0 a 750 °C. El error de medida en este margen es del 0,4 al 0,75 %.

- b) Chromel (aleación de cromo y niquel)-Constantan ($termopar\ tipo\ K$). Se utiliza para atmósferas muy oxidantes para temperaturas de hasta 1.250 °C. Los errores son similares al anterior.
- c) Cobre-Constantan (*termopar T*). Es de uso alimentario principalmente ya que resulta adecuado para atmósferas medianamente oxidantes o reductoras y resiste bien la humedad. El margen de temperaturas en que puede utilizarse es de 0 a 350 °C con un error del 0,4 al 0,75 % (+/- 0,5 a 1 °C).

Existen dispositivos de medida de mayor sensibilidad que los termopares, son los denominados termistores y las sondas de platino.

Los termistores se fabrican a partir de óxidos de niquel, manganeso, hierro, cobalto, cobre, magnesio, titanio y otros metales, pudiéndose obtener una respuesta del orden de 1.000 a 50.000 veces más sensible que la del termopar para un rango de medidas de hasta 300 °C.

Las sondas de platino poseen una sensibilidad de unas 10 veces mayor que los termopares pero su exactitud, estabilidad, reproductibilidad de medida y durabilidad hacen que éstos sistemas sean considerados como dispositivos ideales para la medida de temperatura entre un rango de -270 a 660 °C.

Colocación de la sonda

La colocación de la sonda en el envase y el conjunto en el autoclave es una operación bastante dificultosa de realizar ya que, además de tener que instalar la sonda en el envase y cerrar el mismo de forma hermética con un sistema de racores estanco (figura 4.22.), requiere de otro sistema de racores para pasar el cableado

hacia el registrador de temperatura externo (figura 4.23.) y salvar la tapa del

autoclave, de forma que se eviten fugas de vapor durante el proceso térmico.

Figura 4.22. Racores del envase. Cableado interno (envase - autoclave).

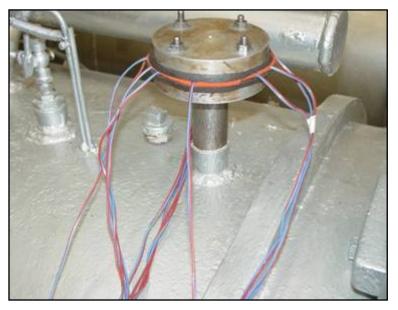


Figura 4.23. Racores externos. Cableado externo (autoclave - sistema de registro).

Otra fuente frecuente de problemas es el cableado y las conexiones. Los cables son en general muy delicados y se rompen con facilidad si se doblan o se someten a tensiones mecánicas.

El aislamiento de los cables (generalmente de teflón o silicona) también da lugar a problemas cuando se producen grietas o fisuras que permiten al agua del autoclave alcanzar el cableado.

Por otra parte, hay que tener en cuenta sobre las conexiones al sistema de registro que cada uno de los cables de la sonda tiene que ser del mismo metal a lo largo de toda su longitud, así como en todas las conexiones intermedias. También es muy importante una limpieza escrupulosa de todas las conexiones para evitar posibles errores de medida debidos a contactos defectuosos originados por óxidos metálicos (pares termoeléctricos parásitos)

4.7.2.3. Sistemas de registro. Cálculo automático del efecto del tratamiento

Los sistemas de medición de temperatura por medio de sondas conectadas mediante cableado a un sistema de registro externo, suelen poseer un calculador automático del valor esterilizante o de cocción del tratamiento, mediante el procedimiento basado en la obtención del *coeficiente letal* o *de cocción*.

Un prototipo muy utilizado de este tipo de registradores-calculadores es el de la marca ELLAB de fabricación danesa (figura 4.24.).



Figura 4.24. Registrador-calculador automático del valor *F* modelo ELLAB CTF 9008.

4.7.2.4. Sondas inalámbricas, registradores de temperatura programables o data-loggers

Para minimizar los problemas descritos asociados al cableado de los sistemas anteriores, actualmente se opta por sondas inalámbricas, registradores de temperatura programables o *data-loggers* los cuales, una vez programada la periodicidad de toma de temperaturas, son colocados en el punto crítico (figura 4.25) e introducidos en el autoclave (figura 4.26). Una vez finalizado el tratamiento, se extraen y se conectan al ordenador para el cálculo de los efectos deseados.

Este tipo de registradores puede obtenerse con el módulo de programación externo como muestra la figura 4.25. o integrado (figuras 4.27. y 4.28.).

Figura 4.25. Registrador con módulo de programación externo y sonda axial, modelo EBI 10-T23X.

Figura 4.26. Esquema de instalación del registrador en el envase y del conjunto en el autoclave.

Registradores con módulo de programación integrado

Este tipo de registradores integran la sonda de temperatura, normalmente una sonda de platino PT100 y el módulo de programación en un pequeño sistema que se introduce todo él en el envase. Requieren ser resistentes al agua y a temperaturas de hasta 130-150 °C, características de los procesos de esterilización. Los registradores Micro-Daq (figura 4.27.) y Picovacq (figuras 4.28. y 4.29.) son algunos ejemplos. El registrador Picovacq es de tamaño más pequeño y por tanto más adecuado para pequeños envases.

Figura 4.27. Registrador Micro-Daq. Tamaño en relación con varios envases.

Figura 4.28. *Data-logger* Picovacq utilizado en el trabajo.

Figura 4.29. Tamaño del registrador en relación a varios envases.

OBJETIVOS

5. OBJETIVOS

El objetivo principal del presente estudio es cuantificar los efectos de esterilización sobre *Bacillus coagulans* y de ablandamiento o cocción en una conserva de judías verdes, sobre la que se aplican una serie de tratamientos térmicos a las temperaturas de 105, 107, 110 y 115 °C, durante tiempos comprendidos entre 3 y 35 min, para seleccionar aquel o aquellos que más se aproximen a unos efectos ideales previamente establecidos.

Para la consecución de este objetivo, primero se deben obtener los parámetros termocinéticos de los indicadores citados a partir de sus cinéticas térmicas y analizar su validez.

A continuación, se realiza una primera cuantificación de los tratamientos por medio del método tradicional de Bigelow para determinar el error cometido.

Por último, se diseña, contrasta y analiza la validez de un método estadístico basado en la corrección del método anterior que permita minimizar dicho error.

MATERIAL Y MÉTODOS

6. MATERIAL Y MÉTODOS

6.1. Producto estudiado

Se trabajó con judías verdes frescas extrafinas de la variedad *Helda* de calibre comprendido entre 4 y 6 mm y unos 8 cm de longitud, obtenidas en comercios de la localidad de Palencia.

La variedad *Helda* se caracteriza por su vaina de color verde, sección aplanada y forma recta con ápice afilado (figura 6.1.). Es resistente al virus del mosaico común de la judía y su elevado potencial productivo y calidad la hacen recomendable para productores especializados.

.

Figura 6.1. Judías verdes extrafinas de la variedad Helda enteras y en cortes de 2 cm.

Las judías verdes se cortaron para su procesado en trozos de unos 2 cm y se escaldaron a 85 °C durante 1,5 min.

6.2. Plan de actuación

Para lograr los objetivos anteriores se propone un plan de actuación compuesto por las siguientes fases:

- ▶ FASE I: Obtención y análisis de validez de las cinéticas térmicas de referencia:
 - Cinética de ablandamiento o cocción
 - Cinética de termodestrucción de Bacillus coagulans

De esta fase se obtendrán los parámetros necesarios para poder cuantificar los tratamientos térmicos de autoclavado y obtener los tiempos de proceso de los tratamientos que permitan abordar las fases siguientes.

► FASE II: Corrección del efecto de cocción

En esta fase se propone y analiza la validez de un modelo matemático que permita corregir el efecto de cocción con valores reales obtenidos tras la aplicación de los tratamientos térmicos, con el objetivo de diseñar un modelo predictivo que permita cuantificar dicho efecto con valores reales obtenidos de la fase anterior.

Una vez analizada la validez de dicho modelo para cuantificar el efecto de cocción, se construye un modelo de análoga base matemática que permita cuantificar el efecto de esterilización.

► FASE III: Obtención de los modelos predictivos para el efecto de cocción y esterilización de *B. coagulans*

Por último, con los valores reales obtenidos tras la aplicación de los tratamientos térmicos para el efecto de cocción, los valores predichos para el efecto de esterilización y los valores considerados como ideales para ambos efectos, se procederá a la selección de los tratamientos.

► FASE IV: Selección de tratamientos

En la figura siguiente se esquematiza el plan global descrito y las interrelaciones de sus componentes.

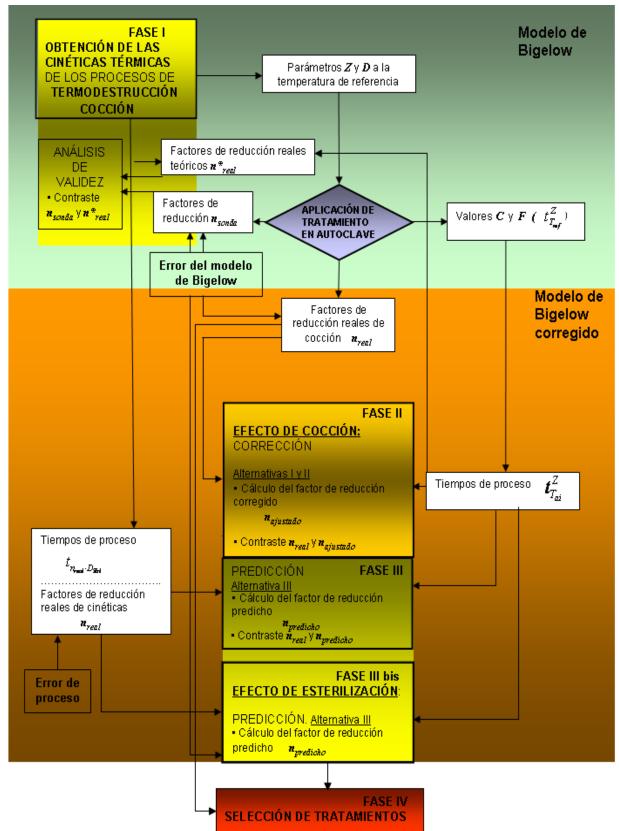


Figura 6.∠. Esquema dei pian de trabajo.

6.3. Metodología

En este apartado se describen los métodos para la obtención de las cinéticas térmicas consideradas (fase I) y la aplicación de los tratamientos térmicos de autoclavado.

Posteriormente, se corrige el efecto de cocción, se analiza la validez de las bases correctoras (fase II) y se definen los modelos predictivos para obtener los efectos de cocción (fase III) y esterilización (fase III bis).

Por último, se definen los criterios para realizar la selección de tratamientos y se lleva a cabo la misma (fase IV).

6.3.1. Fase I. Cinéticas térmicas a temperatura constante

En este apartado se definen los métodos requeridos para la realización de los ensayos de termodestrucción de *Bacillus coagulans* y de ablandamiento o cocción de las judías verdes.

Los ensayos de apoyo sobre la termoinactivación de la enzima peroxidasa y de termodestrucción de *Clostridium botulinum* se describen en los anexos nº 1 y 2 respectivamente.

6.3.1.1. Cinética de termodestrucción de Bacillus coagulans

Para el análisis de la termodestrucción de *B. coagulans* se utilizó uno de los métodos directos descritos en el apartado 4.3.1.1.2., el *método de la mezcla* o *método del matraz* basado en el tratamiento con calor de una solución compuesta por pequeñas cantidades de esporas y gran cantidad de sustrato.

Este método resulta adecuado para el estudio de la termodestrucción de bacterias no esporuladas o esporuladas de baja termorresistencia (O.E.P.M, 2003) y *Bacillus coagulans* fue considerado como un miembro perteneciente a ésta segunda categoría.

Se trabajó con una solución de judías verdes extrafinas elaborada con agua (50 %

p/v), CINa (2% p/v), sacarosa (20 g/l) y zumo de limón (hasta alcanzar un pH = 5,0).

El conjunto se trituró finamente con una minipimer, se esterilizó a 121 °C durante 15

min y se filtró con un equipo MILLIPORE - MilliQ con una membrana de $0,40~\mu m$ de

tamaño de poro.

Sobre dicho sustrato primero se evaluó el crecimiento de la bacteria con el objetivo de calcular su tiempo de generación para proceder posteriormente con la inoculación en una batería de tubos con el mismo sustrato, con concentraciones de células de forma controlada y homogénea.

6.3.1.1.1. Control del crecimiento de *Bacillus coagulans* en una solución de judías verdes

Las esporas de *Bacillus coagulans* 12T se obtuvieron de la Colección Española de Cultivos Tipo (CECT) y fueron revivificadas en medio líquido (caldo de soja-triptona, Oxoid). Para controlar su concentración y pureza durante la conservación se realizaron recuentos en agar PCA (Plate Count Agar, Oxoid), estudios morfológico-microscópicos y resiembras entre ambos medios. El cultivo en medio líquido se conservó hasta su utilización a temperatura de refrigeración.

Obtención del tiempo de generación de *B. coagulans* y de la concentración deseada de esporas para las pruebas de termodestrucción

La determinación del tiempo de generación se consiguió inoculando una concentración aproximada de 10^4 ufc/ml del cultivo en el medio líquido anterior a una solución de 150 ml elaborada a base de judías verdes de características descritas. El conjunto se incubó a 50 °C en condiciones de aerobiosis y con un sistema de agitación durante 8 h, con recuento final de $N_f = 8.10^5$ ufc/ml. Con estos valores se determinó el *tiempo de generación* (t_g) aplicando la fórmula:

$$t_g = \frac{t_{inc} \cdot \log(2)}{\log N_f - \log N_0} = \frac{8 \cdot \log(2)}{5 + \log(8) - 4} = 1,26 \text{ h}$$

Con el objetivo de conseguir alrededor de 10¹⁰ ufc/ml para ser utilizada en el proceso de inoculación posterior y proceder con las pruebas de termodestrucción en un momento deseado del día, se repitió el procedimiento anterior incubando el cultivo durante 24 h.

Transcurrido este tiempo, el pH del sustrato (inicialmente de 5,0) descendió en una unidad.

6.3.1.1.2. Ensayos de termodestrucción

En esta fase los tubos de solución de judías verdes inoculados con la bacteria se sometieron a diferentes tratamientos a temperatura constante en un baño termostatizado, de forma que, los recuentos post-tratamiento de supervivientes vivientes permitieron calcular los parámetros buscados.

<u>Tratamientos a temperatura constante</u>

El procesado a temperatura constante se consiguió depositando los tubos de ensayo contenidos en gradillas, con 9 ml de solución estéril de judías de las características descritas en un baño isotérmico SELECTA modelo Frigiterm S-382. Cuando éstos alcanzaron la temperatura deseada ($temperatura de ensayo; T_{ai}$) se inocularon con una micropipeta en condiciones asépticas con 1 ml de la solución de esporas de partida.

Los tubos inoculados se mantuvieron en el baño isotérmico (figura 6.3) el *tiempo de tratamiento* (t_{ai}) requerido hasta su retirada, con posterior enfriamiento en un baño de agua fría y siguiente recuento de esporas.

Para el control de la temperatura se utilizó un termómetro de mercurio inmerso en un tubo de ensayo (tubo de control) con 10 ml de solución de judías (figura 6.4).

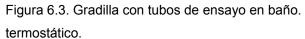


Figura 6.4. Detalle del tubo de control.

Recuento de microorganismos

Los recuentos se realizaron mediante siembras en masa por duplicado en agar PCA seguidas de incubación a 45 °C durante 24 horas.

Curvas de supervivencia de Bacillus coagulans

Se trabajó a las *temperaturas de ensayo* (T_{ai}) de 80, 90 y 95 °C, para cada temperatura con intervalos de tiempo (*tiempos de tratamiento*; t_{ai}) comprendidos entre 5 y 40 min y cada experiencia se repitió 3 veces.

Obtenidos los recuentos finales, por medio de regresiones lineales se calcularon las ecuaciones de las curvas de supervivencia y a partir de la inversa de sus pendientes se obtuvieron los valores de los tiempos de reducción decimal para cada temperatura (D_{Tai}).

Curva de tratamientos de letalidad equivalente. Parámetros Z y D₁₂₁

Los valores de los parámetros D_{80} , D_{90} y D_{95} se representaron en una gráfica en una escala semilogarítmica en función de la temperatura. Mediante una regresión lineal se calculó la ecuación de la recta que rinde los tratamientos de letalidad equivalente, siendo la inversa de la pendiente de dicha recta, el valor del parámetro Z. De esta recta y mediante extrapolación se calculó el valor del parámetro D_{121} .

6.3.1.2. Cinética de cocción de judías verdes

Para los ensayos de cocción se aplicaron tratamientos a las temperaturas de 75, 80, 85 y 92 °C durante intervalos de tiempo comprendidos entre 1,5 y 60 min en un baño termostatizado, a muestras de judías verdes según se describe a continuación.

Con la ayuda de una cestilla plástica perforada, 100 gramos de judías de igual categoría, despuntadas y cortadas, se depositaron en un baño termostátizado SELECTA modelo Tectron 2000, en el seno de una solución elaborada con CINa (2%) y zumo de limón (pH = 5). Una vez finalizado el tratamiento se retiró la cestilla para su enfriamiento en agua fría.

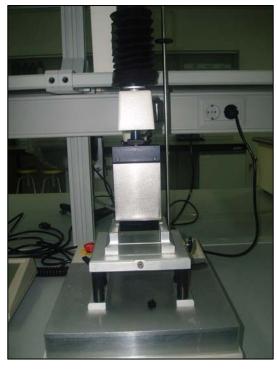


Figura 6.5. Baño termostatizado y cestilla plástica perforada con judías verdes troceadas.

De la muestra así tratada se tomaron 3 unidades y se realizó la medida instrumental de la textura de cada una de ellas.

Medida de la textura

La medida instrumental de la textura se realizó utilizando un texturómetro Texture Analyser TA modelo XT2 (Stable Micro Systems) trabajando a compresión con una sonda HDP/BSK (juego de cuchilla con filo o célula de carga nº 25) de corte simple o cizalla.

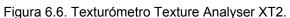


Figura 6.7. Detalle de sonda de corte simple.

Para el ensayo se escogieron 3 unidades y se hizo un corte a cada una. Se seleccionó un recorrido de la sonda de 2 cm, una velocidad de bajada de 1 mm/s y se anotó la medida de la fuerza máxima de compresión que ofreció el producto en Newton.

Curvas de cocción. Curva de tratamientos de cocción equivalente. Obtención de los parámetros Z y D_{100}

Las curvas de cocción se obtuvieron representando en una grafica semilogarítmica las fuerzas máximas de corte frente al tiempo para cada temperatura. Las inversas de las pendientes rindieron los valores de los parámetros D_{75} , D_{85} y D_{92} . Con los logaritmos de estos valores se construyó la curva de tratamientos de efecto equivalente y se calculó el valor del parámetro Z. De esta curva y mediante extrapolación se calculó el valor del parámetro D_{100} .

6.3.1.3. Análisis de validez de las cinéticas de cocción y termodestrucción

Se propuso un método consistente en referir los *tiempos de proceso* de los tratamientos de autoclavado ($t_{T_{ai}}^{Z}$) a la más alta de las temperaturas utilizadas en la elaboración de los ensayos a temperatura constante (en nuestro caso, 92 °C para los ensayos de cocción de las judías verdes y a 95 °C para los de termodestrucción de *B. coagulans*).

Los *tiempos de proceso* así calculados se introdujeron en la ecuación de la *curva de cocción o supervivencia* correspondiente, sustituyéndolos por sus homólogos $t_{n_{real}\cdot D_{Tai}}$. El resultado fueron los factores de reducción reales $(n*_{real})$ que teóricamente obtuvieron los tratamientos.

Por último, se contrastaron los factores de reducción así obtenidos con los rendidos por la sonda (n_{sonda}). El contraste se realizó con el *parámetro* A_f "de exactitud" (Accuracy factor) descrito por Ross (1996).

$$A_f = 10^{\frac{\sum \left| log \left(\frac{n_{sonda}}{n_{real}} \right) \right|}{n}}$$

Donde n es el número de observaciones. La exactitud del proceso se midió en función de la proximidad del valor del parámetro a la unidad. Valores de A_f para el proceso de análisis de validez de las cinéticas superiores a 1,15 se consideraron como poco satisfactorios.

Los tratamientos también se contrastaron de forma individual mediante la función estadística *error relativo* (%)

$$E_r(\%) = \left\lceil \frac{\left(n_{sonda} - n *_{real}\right)}{n *_{real}} \right\rceil \cdot 100$$

Las cinéticas y las aplicaciones derivadas de los indicadores "termoinactivación de la enzima peroxidasa" y "cocción botulínica" se consideraron *de apoyo* por obtenerse valores para el test de exactitud de sus cinéticas poco satisfactorios. No obstante, su estudio se consideró y realizó en los anexos nº 1 y nº 2 respectivamente.

6.3.2. Tratamientos de esterilización en autoclave

Para la aplicación de los tratamientos de esterilización o autoclavado sobre el producto envasado se utilizó un autoclave vertical de 30 l de capacidad de la marca Autester modelo E-30 Dry-PV (figura 6.6.), provisto de un sistema digital de registro de la temperatura de entorno (T_e), que se anotó en los diferentes tratamientos con una periodicidad de 1 min.

Figura 6.8. Autoclave vertical Autester E-30 Dry-PV.

Características principales:

- Dimensiones: 100 x 59 x 48 cm

- Volumen: 30 litros

- Temperatura: 100 a 134 °C

- Consumo: 2.800 W

- Peso: 87 Kg

 Elementos calefactores: de acero inox. Incoloy de gran duración

Depósito, tapa y cierre de acero inox.
 AISI 316

- Sistema de purgado automático por vacío

 Contiene depósito para agua destilada para alimentar la caldera y filtro exterior de vaciado

Características técnicas principales.

Para la elaboración de las conservas se trabajó con judías verdes despuntadas, cortadas en trozos de unos 2 cm y escaldadas a 85 °C durante 1,5 min.

Los envases utilizados fueron latas cilíndricas de hojalata de ½ Kg y 425 ml de capacidad. Los pesos característicos medios de las conservas fueron de 350 g (peso neto) y 200 g (peso escurrido).

La salmuera se elaboró con agua, ClNa (2% p/v), azúcar (20 g/l) y zumo de limón (siendo el valor de pH del conjunto de 5 unidades). Se añadió en caliente a 85 °C en

el envase con el producto, justo después de haber sido colocada la sonda cuyas características se describen en el apartado siguiente.

Los envases se cerraron con una cerradora Ezquera 2026

Figura 6.9. Cerradora de envases metálicos.

A los envases se les aplicaron una serie de tratamientos a las *temperaturas de trabajo* (T_{ai}) de 105, 107, 110 y 115 °C durante tiempos (t_{ai}) comprendidos entre 3 y 35 min.

Para conseguir una fase de enfriamiento rápida (que evite la sobrecocción del producto) se extrajeron los envases del autoclave al final de la fase de meseta tras la eliminación forzada del vapor y se sumergieron en un baño de agua fría durante aproximadamente 5 min hasta que la temperatura descendió a unos 35 °C.

Figura 6.10. Enfriamiento del envase en un baño de agua fría.

Con el objetivo de comprobar la hermeticidad del envase, finalizada la fase de enfriamiento y antes de abrirlo, se midió con un vacuómetro el grado de vacío, resultando ser en todos los casos superior a 0,1 bar.

Figura 6.11. Vacuómetro.

6.3.2.1. Toma de datos de las temperaturas de producto

La sonda inalámbrica utilizada para la toma de datos de la temperatura de producto en el punto crítico del envase fue un registrador autónomo o *data-logger* de la marca Picovacq. La periodicidad con la que se programó la sonda para la toma de datos fue de 1 min.

Características principales:

- Dimensiones: Diámetro 15 mm
 - Altura: 22 mm
- Volumen: 3,8 cc
- Peso: 16 g (0.56 oz.)
- 1 vía de temperatura (Pt1000)
- Memoria: 16.000 adquisiciones

Figura 6.12. Data-logger Picovacq. Características principales.

La sonda se instaló en el *punto crítico* del envase por medio de un apoyo metálico. El aspecto del conjunto antes de recibir las judías y terminado el tratamiento se aprecia en las figuras siguientes.

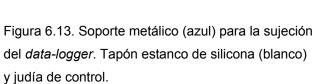


Figura 6.14. Soporte metálico y *data-logger* instalado en el envase.

Figura 6.15. Aspecto de un envase abierto tras ser aplicado el tratamiento térmico.

y de esternización sobre bacinas coaguians. En una conserva de judias verdes (r nascolas valgans val. ricida)

Características de la sonda Picovacq

- a) Descripción general del registrador Picovacq
- b) Descripción detallada del registrador Picovacq
- c) Características funcionales y precauciones de uso
- d) Características técnicas
- e) Certificado de calibrado de la sonda

a) Descripción general del registrador Picovacq

El registrador Picovacq es un datalogger autónomo equipado con un captador de temperatura tipo PT1000. El equipo está fabricado totalmente en INOX 316L y está concebido para su exposición a temperaturas hasta de 150 °C y una presión máxima de 10 bar. El diámetro del Picovacq es de 15 mm y la altura es de 22 mm más la vaina exterior.

b) Descripción detallada del registrador Picovacq

Captador: La parte del captador contiene el elemento sensible y está montado en una vaina de acero inoxidable. Cuerpo principal: Es la parte principal del Picovacq. Contiene el captador, la conexión, la electrónica y la junta tórica de estanqueidad.

Pila: Corresponde al componente inferior del registrador

Figura 6.16. Data-logger Picovacq.

La conexión con el ordenador se efectúa mediante un cable interface.

Figura 6.17. Cable interface de conexión.

c) Características funcionales y precauciones de uso

Definiciones:

- Rango de funcionamiento: Condiciones extremas en las cuales se puede someter al Picovacq sin provocar desgaste o malfuncionamiento.
- Rango de calibración: Campo de medición en el cual se ha calibrado.
 Fuera de este rango los valores medidos por el Picovacq son potencialmente incorrectos.
- Rango de funcionamiento en temperatura: 30 °C a 150 °C.
- Rango de funcionamiento en presión absoluta: 10 mbar a 15 bar.
- Rango de calibración en temperatura: 0°C a 140 °C.
- Rango de calibración en presión absoluta: 30 mbar a 15 bar.

Estanqueidad:

La estanqueidad del Picovacq se asegura mediante una junta tórica montada sobre el cuerpo principal. Cualquier deterioro de esta junta comporta una pérdida de estanqueidad. Se recomienda engrasar con grasa de silicona regularmente la junta, para evitar que resulte deteriorada en alguna manipulación de montaje y desmontaje del cuerpo del equipo; por ejemplo en un cambio de la pila.

Resistencia mecánica:

El Picovacq está fabricado para soportar sin problemas el estrés mecánico que se produce habitualmente en la industria (rotación, vibración, etc..). Sin embargo, situaciones más extremas (como caídas o golpes) pueden provocar como mínimo una degradación de las características metrológicas y en casos peores, un deterioro irremediable del Picovacq.

y de esterilización sobre *Bacilius coagulans* en una conserva de judias verdes (*Phaseolus vulgans* var. *Heida*) **m**

d) Características técnicas

Tabla 6.1. Características técnicas de la sonda Picovacq.

Rango de	De 0 a 150 °C y de 10 mbar a 10 bar
funcionamiento	
Rango de medida	De 0 a 140 °C
Resolución de	Convertidor 16 bit, resolución: <+/- 0,0013 °C
temperatura	
Recalibración	Opcional. Se aconseja una recalibración anual
Elementos sensibles	Sonda de platino Pt1000
Dimensiones	Ø 15 mm x 22 mm
Materiales	INOX 316L
Capacidad de	16.000 adquisiciones
memoria	Almacenamiento de datos en memoria no volátil
Control de tiempo	Reloj en tiempo real
Cadencia de	Programable por el usuario
adquisición	Tiempo de adquisición de datos programable
Autonomía de la pila	A definir
Entorno informático	Transferencia de datos mediante un interface
del programa de	conectado al port serie del ordenador.
adquisición de datos	PC compatible
	Entorno Windows 95 [®] mínimo. ó NT.
	Procesador Pentium [®] .
	Programa TMI-Orion (Programación del
	registrador, visualización de los registros,)

Fuente: Data-logger Picovacq.

e) Certificado de calibrado de la sonda

TMI-ORION
PIT de la Pompignane
Rue de la Vieille Poste
34055 Montpellier cedex 1
France

Tél.: (0)4 99 52 67 10 – Fax: (0)4 99 52 67 19 e-mail: tmi@tmigi.com - web: tmi-orion.com TO/CET/010201 ed11 Mise à jour : 06/12/07

TEMPERATURE TEMPERATURE

CERTIFICAT D'ETALONNAGE CALIBRATION CERTIFICATE

N° T82322

DELIVRE A: TEINCO ISSUED FOR:

INSTRUMENT ETALONNE CALIBRATED INSTRUMENT

Désignation : PicoVACQ Designation :

Type: PVQ/1Tc

Type:

Capteur étalonné : Pt1000 canne/rod

Calibrated sensor:

Pleine échelle : 0..140°C

Full scale :

Constructeur : TMI-Orion

Manufacturer :

Ce certificat contient 6 pages
This certificate includes 6 pages

Le responsable Assurance Qualité Quality Control manager C.MENUET

LA REPRODUCTION DE CE CERTIFICAT N'EST AUTORISEE QUE SOUS LA FORME D'UN FAC-SIMILE PHOTOGRAPHIQUE INTEGRAL THIS CERTIFICATE MAY NOT BE REPRODUCED OTHER THAN IN FULL BY PHOTOGRAPHIC PROCESS Date d'émission : 04/06/2008 Date of issue : 06-04-2008

N° de série : PV073657 Serial number :

Identification number:

N° d'identification :

Le responsable du service métrologie Metrology manager S. JANSANA

> AF AQ 150 700 N°30530

y de esterilización sobre Bacillus coagulans en una conserva de judías verdes (Phaseolus vulgaris var. Helda)

L'enregistreur est entièrement immergé dans le milieu de comparaison. The logger is totally immersed in the comparison medium. Moyens d'étalonnage : Calibration devices : Thermomètre étalon certificat d'étalonnage COFRAC ou A2LA ou équivalent EA Standard thermometer COFRAC or A2LA or EA equivalent calibration certificate Plag Rang D9805292-25 1 L8 D9904827-20 1 L9 0711P Q47 0074A	alibration date : 06-03 empérature du laboratoire : (aboratory temperature :	2-2008 23 +/-6) °C			
Moyens d'étalonnage : Calibration devices : Thermomètre étalon certificat d'étalonnage COFRAC ou A2LA ou équivalent EA Standard thermometer COFRAC or A2LA or EA equivalent calibration certificate D9805292-25 1 L8 D9904827-20 1 L9 O711P Q47 0074A	enregistreur est entièrement ir	nmergé dans le milieu de	e comparaison.		
Thermomètre étalon certificat d'étalonnage COFRAC ou A2LA ou équivalent EA Standard thermometer COFRAC or A2LA or EA equivalent calibration certificate Plag Rang D9805292-25 1 L8 D9904827-20 1 L9 0711P Q47 0074A	enregistreur est entièrement ir he logger is totally immersed in	nmergé dans le milieu de n the comparison mediun	e comparaison. n.		
Ou équivalent EA Standard thermometer COFRAC or A2LA or EA equivalent calibration certificate Comparison medium D9805292-25 1 L8 D9904827-20 1 L9 O711P Q47 0074A					
Ou équivalent EA Standard thermometer COFRAC or A2LA or EA equivalent calibration certificate Comparison medium D9805292-25 1 L8 D9904827-20 1 L9 O711P Q47 0074A	oyens d'étalonnage : alibration devices :				
	oyens d'étalonnage : alibration devices :				
	alibration devices : Milieu de comparaiso	Standard thermo	ou équivalent EA meter COFRAC or A2	LA or EA equivalent	Plage Range
	alibration devices : Milieu de comparaiso	Standard thermo	ou équivalent EA ometer COFRAC or A2i calibration certificate	LA or EA equivalent	
	Milieu de comparaiso Comparison mediun Bain d'huile	Standard thermo	ou équivalent EA ometer COFRAC or A2i calibration certificate	O711P Q47 0074A	Range 0°C à 150°C
Bain d'huile 0°C à 15	Milieu de comparaiso Comparison mediun Bain d'huile Oil bath ES_041101 Bain d'huile Oil bath	Standard thermo	ou équivalent EA ometer COFRAC or A2i calibration certificate	O711P Q47 0074A	

Milieu de comparaison Comparison medium	Standard thermo	Plage Range		
	D9805292-25 1 L8 H12 0710-112	D9904827-20 1 L9 H22 0804-040	0711P Q47 0074A 118 0801-117	
Bain d'huile Oil bath ES_041101				0°C à 150°C 0°C to 150°C
Bain d'huile Oil bath ES_041102				0°C à 150°C 0°C to 150°C
Bain d'huile <i>Oil bath</i> ES_071101				0°C à 150°C 0°C to 150°C
Bain d'huile Oil bath ES_082201				0°C à 150°C 0°C to 150°C
Bain d'eau <i>Water bath</i> ES_020302				35°C à 90°C 35°C to 90°C
Bain d'alcool Alcohol bath ES_020304				-30°C à 30°C -30°C to 30°C
Bain d'alcool <i>Alcohol bath</i> ES_063401				-80°C à 30°C -80°C to 30°C
Enceinte climatique Air Climatic chamber Air ES_020305				-70°C à 175°C -70°C to 175°C
Four d'étalonnage Dry-Well Calibrator ES 050601				35°C à 600°C 35°C to 600°C

TMI-Orion TO/CET/010201 ed11 Certificat d'étalonnage N° T82322

page 3/6

METHODE D'ETALONNAGE ET RESULTATS CALIBRATION METHODOLOGY AND RESULTS

Plage d'ajustage en température : 0..140°C

Temperature adjustment range :

La procédure d'étalonnage utilisée : TO/ETA/020401. La procédure d'ajustage utilisée : TO/ETA/021502. Calibration is done according to the procedure :TO/ETA/020401 . Adjustment is done according to the procedure : TO/ETA/021502

Les étalonnages sont effectués par comparaison à un thermomètre à résistance de platine (pour des températures comprises entre -80 et 400°C) ou thermocouple (pour des températures supérieures à 400°C) plongé dans le milieu de comparaison . Calibration is made using thermometer with Pt sensor (for temperature between -80 and 400°C) or thermocouple (above 400°C) put in the comparison medium.

1- En cas d'étalonnage périodique de l'enregistreur et si son état le permet, un étalonnage de contrôle est effectué de façon à estimer son erreur à son arrivée au laboratoire. Les résultats sont présentés en page 4.

Si l'outil n'est pas fonctionnel ou que son état ne permet pas d'effectuer cet étalonnage, la mention « Pas d'étalonnage avant ajustage » apparaît en page 4.

In case of periodical calibration and if the logger is undamaged, a calibration control is done in order to estimate the error of the logger entering the laboratory. Results are mentioned on page 4. If the logger is not functional or his status does not permit this calibration, then the message "No calibration before adjustment" appears on page 4.

2- L'outil est ajusté à différentes températures mentionnées en page 5. Les résidus de la fonction de transfert aux points d'ajustage y sont également présentés.

The logger is adjusted at temperatures mentioned on page 5. The transfer function residual errors at the adjusted temperatures are also mentioned.

3- Une vérification de l'enregistreur est effectuée à des températures pouvant être différentes de celles utilisées lors de l'ajustage. Un avis de conformité de l'enregistreur est émis. Les résultats de l'étalonnage de vérification se trouvent en page 6.
The logger is verified at temperatures that can be different from the ones used for the adjustment. A conformity statement is made for the logger. Verification results are mentioned on page 6.

La méthode d'évaluation des incertitudes est mentionnée dans la procédure TMI-Orion TO/MET/984201. Uncertainty evaluation method is mentioned in the TMI-Orion TO/MET/984201 procedure.

Les procédures TMI-Orion sont consultables sur place, après accord de TMI-Orion. Procedures are available on site after agreement with TMI-Orion.

Les moyennes des températures étalons, lues sur la chaîne de mesure ainsi que les corrections déterminées ont été arrondies en tenant compte de la résolution de l'indicateur numérique. Compte tenu de l'arrondissage nécessité par la résolution de l'instrument, il peut exister une différence entre les erreurs mentionnées en 3^{ème} colonne et celles que l'on pourrait déduire des valeurs issues des 1^{ère} et 2^{ème} colonnes. Cette différence est au maximum égale à la valeur d'un pas de résolution du dispositif concerné.

The average temperatures read on measuring system, standard temperatures and corrections were round to the digital indicator resolution. A difference can therefore be found between the corrections mentioned in the third column and those that could be deduced by substracting the first and the second columns. This maximum difference is equal to the resolution of the device concerned

Les incertitudes élargies mentionnées sont celles correspondant à deux fois l'incertitude-type. Les incertitudes-types ont été calculées en tenant compte des différentes sources d'incertitude, étalon de référence, moyens d'étalonnage, conditions d'environnement, contribution de l'instrument étalonné, répétabilité,...

The expanded uncertainties mentioned are those corresponding to twice combined standard uncertainty. The standard uncertainties were calculated by considering the different sources of uncertainties, standard instrument, calibration devices, environment conditions, contribution of the calibrated instrument, repeatability,...

métodos

TMI-Orion

Certificat d'étalonnage N° T82322

page 4/6

TO/CET/010201 ed11

Pas d'étalonnage avant ajustage / No calibration before adjustment

TMI-Orion

Certificat d'étalonnage N° T82322

page 5/6

TO/CET/010201 ed11

Ajustage / Adjustment

c:\nvacq\pv073657\temp_c.ECT

Date (DD/MM/YY hh:mm:ss): 04/06/08 10:09:09

Voie / Channel: 1

V.C.V. / R.V.=Valeur Conventionnellement Vraie / Reference Value

V.I. / L.I.V.=Valeur Indiquée / Logger Indicated Value

V.C.V. d'ajustage(°C)	V.I.(°C)	Résidus(°C)	Incertitude(°C)
R.V.for calibration(°C)	L.I.V.(°C)	Error(°C)	Uncertainty(°C)
-0.01	-0.01	0.00	0.10
29.99	29.99	0.00	0.10
59.99	59.98	-0.01	0.10
90.01	90.01	0.00	0.10
120.00	120.00	0.00	0.10
139.98	139.98	0.00	0.10

TMI-Orion

Certificat d'étalonnage N° T82322

page 6/6

TO/CET/010201 ed11

Norme ou texte de référence : Spécifications constructeur Reference standard or document : Manufacturer specifications

CONSTAT

STATEMENT

Il a été constaté que l'erreur de justesse de l'enregistreur identifié en première page, augmentée de l'incertitude d'étalonnage élargie, est inférieure à l'erreur maximale tolérée définie.

It was verified that the bias of the logger identified on the first page, added to the expanded calibration uncertainty, is below the specified maximum permissible error defined.

c:\nvacq\pv073657\temp_c.VRF

Date (DD/MM/YY hh:mm:ss): 04/06/08 10:10:22

Voie / Channel: 1

V.C.V. / R.V.=Valeur Conventionnellement Vraie / Reference Value

V.I. / L.I.V.=Valeur Indiquée / Logger Indicated Value

V.C.V.(°C)	V.I.(°C)	Erreur(°C)	Incertitude(°C)	Incertitude + Erreur (°C)
R.V.(°C)	L.I.V.(°C)	Error(°C)	Uncertainty(°C)	Uncertainty + Error (°C)
89.99	89.99	-0.00	0.10	0.10
120.99	120.99	0.00	0.10	0.10
133.99	134.00	0.01	0.10	0.11

Fin du certificat d'étalonnage. End of the calibration certificate.

6.3.2.2. Procesado de las temperaturas de producto.

Finalizado el tratamiento se abrió la conserva, se extrajo la sonda del interior del envase y se conectó al ordenador con el cable *interface*. Mediante el software "xVacq" de la sonda se obtuvieron las gráficas de penetración de calor de los tratamientos y se exportaron los datos a una hoja de cálculo *Excel*.

En el entorno Excel se calcularon los valores de las relaciones de modificación (coeficientes letal y de cocción) a cada temperatura (L_{Ti}) y mediante su sumatorio (siguiendo el modelo de Bigelow) se obtuvieron los valores F y C o tiempos de proceso a las temperaturas de referencia ($t_{T_{ref}}^{Z}$)

Con el objetivo de comprobar el proceso de cálculo anterior y que la sonda proporciona los valores F según el modelo de Bigelow, en el apartado 7.4 se contrastaron estos valores obtenidos para un tratamiento sin carga. Dicho tratamiento se aprovechó también para calibrar el autoclave mediante el contraste entre las *temperaturas de entorno* (T_e) rendidas por el sistema de registro, las temperaturas captadas por la sonda calibrada y la *temperatura de trabajo* (T_{ai}) con la que se programó el tratamiento.

Según se describe en los apartados 4.3.2.1.2.2. y 4.3.2.2., con los valores de F y C y los tiempos de reducción decimal a las temperaturas de referencia se calcularon los factores de reducción (n_{sonda}) que obtuvieron los tratamientos mediante el modelo de Bigelow.

Para calcular los *tiempos de proceso* ($t_{T_{ai}}^{Z}$) necesarios para corregir el modelo de Bigelow, los valores de F y C se refirieron a las temperaturas de trabajo (T_{ai}) de cada tratamiento según la fórmula descrita en el apartado 4.3.2.1.1.1.

6.3.2.3. Error del modelo de Bigelow

El error cometido al cuantificar el efecto de cocción mediante el modelo de Bigelow se apreció al contrastar los valores de los factores de reducción obtenidos con dicho modelo (n_{sonda}) y los valores reales (n_{real}), obtenidos con la ayuda de un texturómetro al final de los tratamientos tratando varias unidades de producto próximas al punto crítico del envase.

El contraste se realizó evaluando el modelo de Bigelow mediante el factor de exactitud A_f (accuracy factor) de Ross

$$A_f = 10 \frac{\sum \left| log \binom{n_{sonda}}{n_{real}} \right|}{n}$$

Los tratamientos también se contrastaron de forma individual mediante la función estadística *error relativo* (%)

$$E_r (\%) = \begin{bmatrix} |(n_{sonda} - n_{real})| / n_{real} \end{bmatrix} \cdot 100$$

6.3.3. Corrección del modelo de Bigelow

El proceso partió de la corrección del modelo tradicional de cálculo (modelo de Bigelow), aplicado a la cuantificación de un efecto de fácil medida experimental (efecto de cocción), con el objetivo de diseñar un modelo predictivo que permitiese cuantificar con la misma base matemática, un efecto de medida experimental dificultosa (efecto de esterilización).

El efecto considerado "de fácil medida experimental" fue el de *ablandamiento* o *cocción*, ya que puede ser determinado sin problema con la ayuda de un texturómetro tratando el producto antes y después del proceso térmico. Sin embargo, para determinar el *efecto esterilizante* se requiere de la realización de dificultosos recuentos de supervivientes post-tratamiento.

En este trabajo, una vez corregido el modelo de Bigelow para el efecto de cocción y analizada la validez del modelo propuesto (Fase II), se diseñó un nuevo modelo de predicciones para cuantificar el efecto de cocción (Fase III) y otro análogo para el efecto de esterilización (Fase III bis). Ambos se dedujeron matemáticamente de forma análoga y partieron de medidas obtenidas en los ensayos a temperatura constante.

Se utilizó el programa informático de estadística *Statgraphics Plus 5.1.* Las designadas como *bases correctoras* son regresiones múltiples y simples. El tipo de ajuste seleccionado fue el lineal. Los valores ajustados o predichos proporcionados por el programa se acompañaron de los límites inferiores y superiores para un intervalo de confianza del 95 %.

6.3.3.1. FASE II. Corrección del efecto de cocción.

En este proceso se trató de corregir los factores de reducción del proceso de cocción proporcionados por una sonda programada con el modelo de Bigelow (n_{sonda}) con los factores de reducción reales obtenidos de forma experimental con un texturómetro (n_{real}) .

Un tratamiento térmico puede ser caracterizado por la *temperatura de trabajo* (T_{ai}) que se aplica en el programa de autoclavado y el tiempo que se mantiene dicha temperatura (t_{ai}). Durante el tratamiento se considera que el producto sufre el efecto de las temperaturas que se alcanzan en el punto crítico del envase (T_i) y son captadas por la sonda cada minuto.

Teniendo en cuenta, según se describió en el apartado 4.3.2.1.2.2., que el factor de reducción de cocción proporcionado por una sonda programada con el modelo de Bigelow puede expresarse en función de las *temperaturas de trabajo* de los tratamientos (T_{ai}) y de sus efectos $t_{T_{ai}}^{Z}$ (*tiempos de proceso*) dados en minutos:

$$n_{\mathsf{sonda}} = f(T_{\mathsf{ai}}, t_{T_{\mathsf{ai}}}^{Z})$$

El objetivo fue obtener un factor de reducción $n = f(n_{real}, T_{ai}, t_{T_{ai}}^{Z})$ que permitiera corregir los valores proporcionados por la sonda.

6.3.3.1.1. Alternativa I

En este caso los factores de reducción reales de cocción (n_{real}) se obtuvieron de forma experimental al final del tratamiento de autoclavado, tratando varias unidades de producto (judías verdes) próximas al punto crítico de un envase con un texturómetro.

La expresión del factor de reducción n_{sonda} obtenido con el modelo de Bigelow en función de la temperatura de trabajo T_{ai} y del *tiempo de proceso* $t_{T_{ai}}^{Z}$ del tratamiento es:

(1)
$$n_{sonda} = \frac{t_{T_{ai}}^{Z}}{D_{T_{ai}}}$$

Como según el modelo de Bigelow:

$$log D_{Tai} = -\frac{1}{Z} \cdot T_{ai} + cte$$

Designando las constantes como $\frac{1}{Z} = B$ y cte = A, se tiene:

(2)
$$\log D_{Tai} = -B \cdot T_{ai} + A$$

Tomando logaritmos decimales en (1)

$$log n_{sonda} = log t_{T_{ai}}^{Z} - log D_{Tai}$$

Agrupando y sustituyendo el valor de $log D_{Tai}$ según la ecuación (2), se tiene:

(3)
$$log\left(\frac{t_{T_{ai}}^{Z}}{n_{sonda}}\right) = A - B \cdot T_{ai}$$

Para ajustar el valor de las constantes A y B se sustituyeron en esta ecuación los valores de n_{sonda} por los de n_{real} y se obtuvo por medio de la regresión múltiple:

$$log\left(\frac{t_{T_{ai}}^{Z}}{n_{real}}\right) = f(T_{ai}, t_{T_{ai}}^{Z})$$

la ecuación: $log\left(\frac{t_{T_{ai}}^Z}{n_{real}}\right) = f(T_{ai}, t_{T_{ai}}^Z) = C - D \cdot T_{ai} + E \cdot t_{T_{ai}}^Z$ que corrigió el modelo en base a

la expresión siguiente:

$$n = \frac{t_{T_{ai}}^{Z}}{10^{(C-D \cdot T_{ai} + E \cdot t_{T_{ai}}^{Z})}}$$

La base correctora para obtener los valores ajustados ($n_{ajustado}$) se obtuvo por medio de la regresión múltiple $n = f(T_{ai}, t_{T_{ai}}^{Z})$

6.3.3.1.2. Alternativa II

Esta nueva alternativa se consideró porque los coeficientes estadísticos de la alternativa anterior lo recomendaron y se elaboró para los tratamientos en autoclave aplicados a diferentes tiempos (t_{ai}) pero a una misma temperatura de trabajo T_{ai} , es decir:

$$T_{ai} = cte$$

La expresión (3) queda entonces de la forma:

$$log\left(\frac{t_{T_{ai}}^{Z}}{n_{sonda}}\right) = cte$$

Sustituyendo en esta ecuación los valores de n_{sonda} por los de n_{real} se obtuvo por medio de la regresión simple:

$$log\left(\frac{t_{Tai}^{Z}}{n_{real}}\right) = f(t_{T_{ai}}^{Z})$$

la ecuación: $log\left(\frac{t_{Tai}^Z}{n_{real}}\right) = f\left(t_{T_{ai}}^Z\right) = C + E \cdot t_{T_{ai}}^Z$ que, en base a la expresión siguiente, corrigió el modelo.

$$n = \frac{t_{Tai}^Z}{10^{(C+E\cdot t_{T_{ai}}^Z)}}$$

En este caso, la base correctora para obtener los valores ajustados ($n_{ajustado}$) se obtuvo por medio de la regresión simple:

$$n = f(t_{T_{ai}}^Z)$$

Evaluación del proceso corrector

Los modelos se evaluaron mediante los parámetros estadísticos A_f "factor de exactitud" (accuracy factor) de Ross y los tratamientos de forma individual mediante la función error relativo (%).

6.3.3.2. FASE III. Modelos predictivos

Una vez analizada la validez de la base matemática del modelo de corrección propuesto para el cálculo del efecto de cocción utilizando valores reales obtenidos tras la aplicación de los tratamientos térmicos, se diseñó un modelo predictivo elaborado con la misma base matemática pero partiendo de valores reales obtenidos en los tratamientos a temperatura constante.

Por último, se analizó la validez de este modelo para el efecto de cocción y se aplicó uno análogo para el cálculo del efecto de esterilización (fase III bis).

6.3.3.2.1. Predicción del efecto de cocción. Alternativa III

Como se ha indicado previamente, en este caso los factores de reducción reales de cocción (n_{real}) se obtienen de forma experimental con un texturómetro al final de los tratamientos aplicados a temperatura constante, llevados a cabo para el estudio de la cinética térmica de cocción descrita en el apartado 6.3.1.2.

Para esta alternativa, el desarrollo matemático es análogo al de la alternativa I teniendo en cuenta las siguientes consideraciones:

$$1^{\rm a}$$
) $n_{\rm sonda} = n_{\rm real}$

En la práctica, esta consideración equivale a decir que, si en los tratamientos de autoclavado de la alternativa I la sonda se coloca en el punto crítico del envase para posteriormente obtener los valores de los factores de reducción mediante el modelo de Bigelow (n_{sonda}) y mediante la ayuda de un texturómetro los factores de reducción reales (n_{real}), para esta alternativa de tratamientos a temperatura constante, la sonda se coloca en el interior de la judía y los factores de reducción obtenidos por el modelo de Bigelow serán los mismos que los obtenidos con la ayuda de un texturómetro (n_{real}).

Para pequeños productos como judías verdes extrafinas, guisantes, etc.., se admite que el calor aplicado con un baño de fluido calefactor se transmite al interior del producto de forma inmediata a la exposición y la temperatura asociada se mantiene constante durante todo el tratamiento.

En definitiva, el grado de validez de esta hipótesis, denominado en este estudio como *error de proceso*, es función del tamaño de producto con el que se trabaja y de la tecnología de la sonda utilizada. El *error de proceso* puede determinarse estimando el tiempo que tarda dicho producto, al ser sometido a un tratamiento a temperatura constante y con la sonda en él introducida, en alcanzar y mantener la temperatura del proceso. Esta estimación se cuantificó en el apartado 7.2.2. contrastando los valores de n_{sonda} y n_{real} obtenidos en el tratamiento de escaldado.

- (2^a) Las temperaturas designadas como (T_{ai}) corresponden a las temperaturas de trabajo en los tratamientos de autoclavado (alternativa I) y a las temperaturas de ensayo en los tratamientos a temperatura constante de esta alternativa.
- $3^{\rm a}$) Para homogeneizar el proceso corrector, los *tiempos de proceso* designados como $t_{T_{\rm ai}}^{\rm Z}$ en la alternativa I, se designaron para la alternativa actual como $t_{n_{\rm real}\cdot D_{T_{\rm ai}}}$ y se calcularon en los tratamientos a temperatura constante mediante la fórmula:

$$t_{n_{rad} \cdot D_{Tai}} = n_{real} \cdot D_{Tai}$$

Esta consideración equivale a expresar los tiempos de los tratamientos a temperatura constante (t_{ai}) de forma homogénea con los *tiempos de proceso* de los tratamientos de autoclavado $(t_{T_{ai}}^{Z} = n_{sonda} \cdot D_{Tai})$ es decir, en función de n y D_{Tai}

Por otra parte, en relación con la hipótesis anterior ($n_{sonda} = n_{real}$), el denominado error de proceso puede calcularse también en función del grado de bondad del método medido en términos de la proximidad del tiempo de tratamiento (t_{ai}) al tiempo de proceso ($t_{T_{ai}}^{Z}$ o $t_{n_{real}\cdot D_{Tai}}$) correspondiente.

 $4^{\rm a}$) Los valores de los factores de reducción predichos finales ($n_{predicho}$) se obtuvieron introduciendo en la base correctora $n = f(T_{ai}, t_{n_{real} \cdot D_{Tai}})$ los valores de T_{ai} y $t_{T_{ai}}^{Z}$ asociados a los tratamientos en autoclave.

Evaluación del modelo de predicciones

Como en los casos anteriores, el modelo se evaluó mediante el *parámetro* A_f y la función *error relativo* (%).

6.3.3.2.2. Predicción del efecto de esterilización sobre *B. coagulans* (Fase III bis)

Se utilizó el modelo de predicciones descrito en la alternativa anterior, teniendo en cuenta que los factores de reducción reales se obtuvieron de forma experimental, mediante los recuentos de supervivientes realizados al final de los tratamientos a temperatura constante (cinética de termodestrucción)

En este caso el grado de validez de la hipótesis ($n_{sonda} = n_{real}$) designado como *error* de proceso se asoció al grado de bondad del método y se determinó contrastando los valores de los tiempos de tratamiento (t_{ai}) de los ensayos con los tiempos de proceso ($t_{T_{oi}}^{Z}$ o $t_{n_{real} \cdot D_{Tai}}$) correspondientes.

6.3.3.2.3. Error del modelo de Bigelow

De la misma forma que se determinó el error cometido por el modelo de Bigelow para cuantificar el efecto de cocción, se evaluó el error cometido al cuantificar el efecto de esterilización con el mismo modelo. Para este análisis el modelo se contrastó mediante el *parámetro* A_f y la función *error relativo* (%) utilizando los factores de reducción calculados por el modelo de Bigelow (n_{sonda}) y los valores predichos ($n_{predicho}$) obtenidos según se describió en el apartado anterior.

6.3.4. Fase IV. Selección de tratamientos

Para determinar el tratamiento ideal entre los tratamientos térmicos de autoclavado aplicados, se contrastaron los factores de reducción obtenidos con los factores de reducción ideales utilizando los criterios de selección que se detallan seguidamente.

Para el proceso de cocción se utilizaron los factores de reducción reales obtenidos tras la aplicación de los tratamientos de autoclave (n_{real}) y para el proceso de esterilización, los factores de reducción obtenidos según la alternativa III (Fase III bis) designados como $n_{predicho}$.

Criterios de selección de tratamientos

Los criterios de selección considerados basados en la obtención de los factores de reducción ideales fueron los siguientes:

▶ Factor de reducción ideal para el proceso de cocción:

$$n_i = log \left[\frac{P_0}{P_{f_i}} \right]$$

Donde P_{f_i} fue el valor de la fuerza de compresión en Newton que ofrecío el producto considerado sensorialmente (con la ayuda de un panel de cata) como óptimo y P_{θ} el valor de la fuerza de compresión que ofreció el producto de partida (escaldado sin autoclavar). Dichos valores se obtuvieron en los ensayos de cocción a temperatura constante con la ayuda de un texturómetro.

▶ Para determinar el factor de reducción ideal a conseguir en el proceso de esterilización se utilizó la recomendación indicada por Hayes (1992) y Brennan *et al.* (1998) para el microorganismo de referencia *Bacillus coagulans*.

RESULTADOS Y DISCUSIÓN

7. RESULTADOS Y DISCUSIÓN

7.1. Modelo de Bigelow. Cinéticas térmicas de referencia (Fase I)

En este apartado se muestran los resultados de los ensayos realizados a temperatura constante sobre los indicadores de termodestrucción sobre *Bacillus coagulans* y de cocción de judías verdes extrafinas de la variedad *Helda*. Se analiza la validez de dichos ensayos y se evalúa el error cometido al cuantificar los tratamientos de autoclavado con el modelo de Bigelow.

7.1.1. Cinética de termodestrucción de Bacillus coagulans

Las curvas de supervivencia de *B. coagulans* obtenidas mediante regresiones lineales y los valores de los tiempos de reducción decimal a las temperaturas de ensayo consideradas, se observan en la figura 7.1.

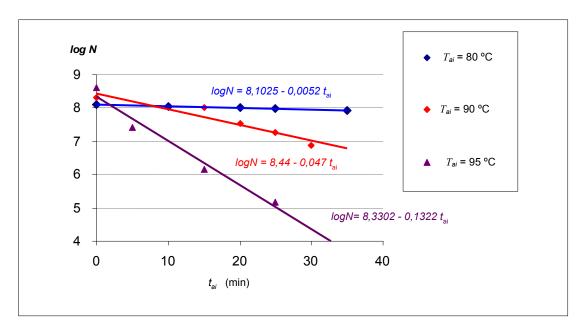


Figura 7.1. Curvas de supervivencia de *B. coagulans* en solución de judías verdes (pH = 5) a 80, 90 y 95 °C. D_{80} = 192,31 min, D_{90} = 21,28 min, D_{95} = 7,56 min.

Las ecuaciones características de las curvas de supervivencia y sus coeficientes estadísticos principales se destacan en la tabla 7.1.

Tabla 7.1. Ecuaciones de las curvas de supervivencia de *B. coagulans* y coeficientes estadísticos.

<i>T_{ai}</i> (⁰C)	Ecuaciones de las curvas de supervivencia	Coeficiente correlación	R² (%)	Error estandar	Error absoluto	p - valor
80	log N = 8,1025 – 0,0052 t _{ai}	-0,999342	99,8685	0,0029453	0,00201462	< 0,01
90	log N = 8,44 - 0,047 t _{ai}	-0,955082	91,2181	0,19386	0,115938	< 0,05
95	log N = 8,3302 - 0,1322 t _{ai}	-0,985566	97,1341	0,308427	0,212797	< 0,05

El *coeficiente de correlación*, que mide la relación relativa entre variables, fue en todos los casos superior a 0,95. Este dato indicó que las variables interrelacionan fuertemente y debido a que el *p-valor* en todos los casos fue inferior a 0,05, la relación pudo establecerse para niveles de confianza del 95 %.

Los *errores estandar* y *absoluto*, valores que intervienen en la evaluación del grado de validez del futuro modelo de predicciones, fueron menores cuanto más baja fue la temperatura del ensayo.

Los valores de Z y del tiempo de reducción decimal a la temperatura de 121 °C se muestran en la figura siguiente (curva de tratamientos de termodestrucción equivalente).

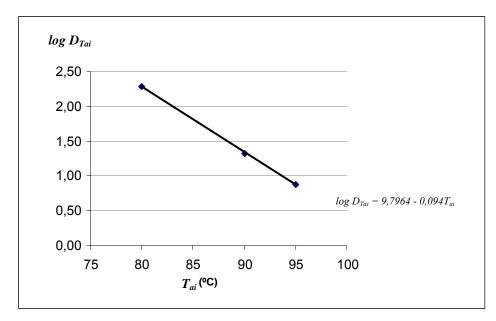


Figura 7.2. Curva de tratamientos de termodestrucción equivalente de *B coagulans* en solución de judías verdes (pH = 5). D_{121} = 0,0264 min, Z = 10,64 °C.

El valor obtenido del tiempo de reducción decimal para *B. coagulans* (D_{121} = 0,0264 min) estuvo dentro del rango de valores propuestos por Stumbo (1973) y descritos por Brennan *et al.* (1980) (0,01< D_{121} <0,07), mientras que el valor calculado para el parámetro Z (Z =10,64 °C) fue inferior a los propuestos por Stumbo (1973) (14<Z<18) y ligeramente superior al descrito por Brennan *et al.* (Z =10 °C).

La ecuación de la curva de tratamientos de termodestrucción equivalente y sus estadísticos principales se destacan en la tabla siguiente.

Tabla 7.2. Ecuación de la curva de tratamientos de termodestrucción equivalente de *B. coagulans* y coeficientes estadísticos.

Ecuación de la curva de tratamientos de	Coeficiente	R^2
termodestrucción equivalente	correlación	(%)
$log D_{Tai} = 9,7964 - 0,094 T_{ai}$	-0,999913	99,9825

El coeficiente R^2 , que evalúa los ajustes en cuanto a la variabilidad del término independiente, fue superior al 99 %.

y de estermización sobre Basimas sougarans en una conserva de judició (r. masocias vargans var. riolad)

Análisis de validez de la cinética de termodestrucción de B. coagulans

El método consistente en referir los *tiempos de proceso* de los tratamientos a la temperatura más alta utilizada en los ensayos de termodestrucción (en nuestro caso 95 °C), introducirlos en la ecuación de la curva de supervivencia correspondiente (sustituyendo $t_{n_{real} \cdot D_{95}}$ por los valores de t_{95}^Z obtenidos), para contrastar los factores de reducción obtenidos mediante la función *error relativo* (%), con los rendidos por la sonda para dichos tiempos de proceso, rindió los siguientes resultados (tabla 7.3.).

Tabla 7.3. Análisis de validez de la cinética de termodestrucción de *B. coagulans*.

Tratamientos de a	autoclave.		Curva de supervivencia a 95 ºC	1
Tiempos de proce	eso referidos	a 95 ºC	n_{real} = 0,1323 $t_{n_{real} \cdot D_{95}}$	
Tratamiento	t_{95}^{Z} (min)	n _{sonda}	n* _{real}	Error relativo (%)
105 °C - 3 min	36,92	5,05	4,88	3,31
105 °C - 7 min	71,92	9,83	9,52	3,31
105 °C - 10 min	92,86	12,69	12,29	3,31
105 °C - 20 min	182,32	24,92	24,12	3,31
105 °C - 30 min	270,20	36,93	35,75	3,31
107 °C - 3 min	52,31	7,21	6,92	4,24
107 °C - 6 min	99,34	13,70	13,14	4,24
107 °C - 10 min	177,94	24,54	23,54	4,24
107 °C - 20 min	266,76	36,79	35,29	4,24
107 °C - 30 min	424,35	58,52	56,14	4,24
110 °C - 3 min	94,98	13,20	12,57	5,01
110 °C - 10 min	264,26	36,71	34,96	5,01
110 °C - 15 min	404,10	56,14	53,46	5,01
110 °C - 25 min	686,58	95,39	90,83	5,01
110 °C - 35 min	961,66	133,60	127,23	5,01
115 °C - 3 min	316,10	43,40	41,82	3,78
115 °C - 10 min	835,45	114,71	110,53	3,78
115 °C - 20 min	1636,78	224,73	216,55	3,78
115 °C - 30 min	2373,41	325,87	314,00	3,78

Los *errores relativos* (%) existentes entre ambos factores de reducción estuvieron comprendidos entre el 3 y el 5 %. Dichos valores validaron favorablemente los ensayos de termodestrucción para la obtención del parámetro Z con el objetivo de calcular los *tiempos de proceso* de los tratamientos mediante el modelo de Bigelow.

El valor de exactitud de Ross del proceso de validación fue:

$$A_f = 10^{\frac{\sum \left| log \left(\frac{n_{sonda}}{n_{real}} \right) \right|}{n}} = 1,04$$

Los datos de partida para la obtención de las curvas de supervivencia linealizadas necesarias para realizar el ajuste anterior se indican en la tabla 7.4. Las gráficas correspondientes y la ecuación de la curva de supervivencia a 95 °C referida a n_{real} se muestran en la figura 7.3.

Tabla 7.4. Ensayos de termodestrucción de *B. coagulans*. Cálculo de los tiempos de proceso a las temperaturas de ensayo.

T _{ai} (°C)	<i>t_{ai}</i> (min)	<i>N_f</i> (ufc/ml)	$oldsymbol{n}_{real}$	$t_{n_{real} \cdot D_{Tai}}$ (min)
80	10	113.200.000	0,05	9,61
$(D_{80}$ = 192,31 min)	20	100.000.000	0,10	19,23
$(N_0 = 126.000.000 \text{ ufc/ml})$	25	92.800.000	0,13	25,00
	35	83.200.000	0,18	34,61
90	15	100.800.000	0,30	6,38
$(D_{90} = 21,28 \text{ min})$	20	33.200.000	0,78	16,59
$(N_0 = 200.000.000 \text{ ufc/ml})$	25	18.600.000	1,03	21,92
	30	7.600.000	1,42	30,20
95	5	26.240.000	1,18	8,92
$(D_{95} = 7,56 \text{ min})$	15	1.484.000	2,43	18,37
$(N_0 = 400.000.000 \text{ ufc/ml})$	25	150.000	3,42	25,86

lda) y discusión

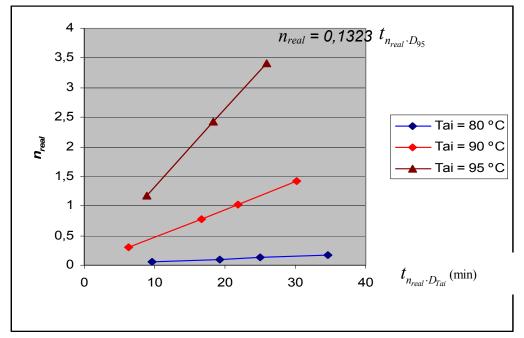


Figura 7.3. Curvas de supervivencia de B. coagulans linealizadas. Ecuación de la curva de supervivencia a 95 °C referida a n_{real} .

El valor absoluto de la pendiente de la curva de supervivencia linealizada para la temperatura de 95 °C fue el mismo que el de la curva de supervivencia correspondiente (figura 7.1.). En este tipo de ajustes el término independiente tomó un valor nulo.

7.1.2. Cinética de cocción de judías verdes

Las curvas de cocción obtenidas mediante regresiones simples y los valores de los tiempos de reducción decimal para las temperaturas de ensayo consideradas se observan en la figura siguiente:

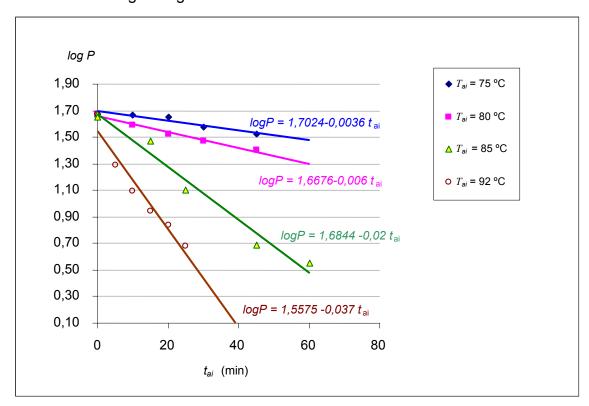


Figura 7.4. Curvas de cocción de judías verdes extrafinas en tratamientos a 75, 80, 85 y 92 °C. D_{75} = 277,78 min, D_{80} = 166,67 min, D_{85} = 50 min, D_{92} = 27,03 min

Las ecuaciones características de las curvas de cocción y sus coeficientes estadísticos principales se destacan en la tabla 7.5.

Tabla 7.5. Ecuaciones de las curvas de cocción de judías verdes y coeficientes estadísticos.

<i>T_{ai}</i> (°C)	Ecuaciones de las curvas de cocción	Coeficiente correlación	R² (%)	Error estandar	Error absoluto	p - valor
75	log P = 1,7024 - 0,0036 t _{ai}	-0,953364	90,8903	0,0223973	0,0143607	< 0,01
80	log P = 1,6676 - 0,006 t _{ai}	-0,991793	98,3653	0,0154487	0,0111311	< 0,01
85	log P = 1,6844 - 0,02 t _{ai}	-0,985132	97,0485	0,0957726	0,0669604	< 0,01
92	log P = 1,5575 - 0,037 t _{ai}	-0,973137	94,6996	0,091334	0,0689524	< 0,01

El *coeficiente de correlación* fue superior a 0,95 en todos los casos y el *p-valor* fue inferior a 0,01; por lo tanto, la relación entre las variables consideradas pudo establecerse para niveles de confianza del 99%.

Los valores de los *errores estandar* y *absoluto* fueron, como en la cinética de termodestrucción de *B. coagulans*, menores cuanto más baja fue la temperatura del ensayo.

Los valores de Z y del tiempo de reducción decimal a la temperatura de 100 °C se muestran en la figura siguiente:

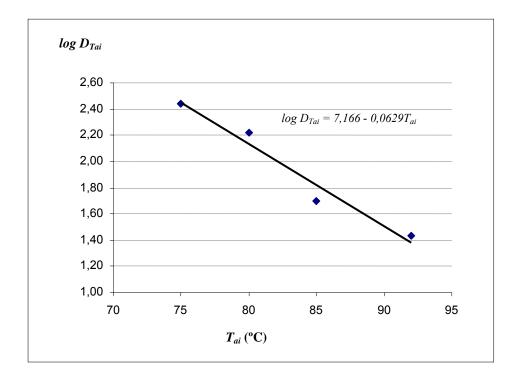


Figura 7.5. Curva de tratamientos de cocción equivalente de judías verdes extrafinas. D_{100} = 7,52 min, Z = 16 °C.

El valor del tiempo de reducción decimal obtenido en los ensayos de cocción de las judías verdes ($D_{100} = 7,52$ min) fue superior al valor propuesto por Tijskens y Schijvens (1987) de 2 min, mientras que el valor del parámetro Z (Z = 16 °C) fue ligeramente inferior al determinado por los autores anteriores (Z = 16,9 °C).

La ecuación de la curva de tratamientos de cocción equivalente y sus coeficientes estadísticos principales se destacan en la tabla siguiente.

Tabla 7.6. Ecuación de la curva de tratamientos de cocción equivalente de judías verdes y coeficientes estadísticos.

Ecuación de la curva de tratamientos de	Coeficiente	R ²
cocción equivalente	correlación	(%)
$log D_{Tai} = 7,166 - 0,0629 T_{ai}$	-0,981004	96,2369

Los valores del coeficiente de correlación y R^2 fueron 0,98 y 96,23 % respectivamente.

y de esterilización sobre Bacillus coagulans en una conserva de judías verdes (Phaseolus vulgaris var. Helda) y

Análisis de validez de la cinética de cocción

Para analizar la validez de la cinética de cocción se utilizó un método análogo al descrito anteriormente. En este caso se refirieron los tiempos de proceso de los tratamientos de autoclavado a la temperatura de 92 °C. El resultado de este ajuste se muestra en la tabla siguiente.

Tabla 7.7. Análisis de validez de la cinética de cocción de judías verdes.

Tratamientos de a	autoclave.		Curva de cocción a 92 ºC	
Tiempos de proceso referidos a 92 ºC			n_{real} = 0,037 $t_{n_{real} \cdot D_{92}}$	
Tratamiento	t_{92}^{Z} (min)	n _{sonda}	n* _{real}	Error relativo (%)
105 °C - 3 min	34,65	1,45	1,28	11,49
105 °C - 7 min	61,00	2,55	2,26	11,49
105 °C - 10 min	76,99	3,22	2,85	11,49
105 °C - 20 min	145,44	6,08	5,38	11,49
105 °C - 30 min	210,00	8,78	7,77	11,49
107 °C - 3 min	43,20	1,81	1,60	11,63
107 °C - 6 min	74,72	3,13	2,76	11,63
107 °C - 10 min	126,18	5,28	4,67	11,63
107 °C - 20 min	187,45	7,85	6,94	11,63
107 °C - 30 min	284,27	11,90	10,52	11,63
110 °C - 3 min	63,07	2,64	2,33	11,71
110 °C - 10 min	155,38	6,51	5,75	11,71
110 °C - 15 min	226,37	9,49	8,38	11,71
110 °C - 25 min	373,23	15,64	13,81	11,71
110 °C - 35 min	516,58	21,65	19,11	11,71
115 °C - 3 min	150,11	6,31	5,55	12,03
115 °C - 10 min	342,81	14,42	12,68	12,03
115 °C - 20 min	643,66	27,07	23,82	12,03
115 °C - 30 min	915,22	38,49	33,86	12,03

Los *errores relativos (%)* existentes entre ambos factores de reducción estuvieron comprendidos entre el 11 y el 12 %. Dichos valores validaron de forma admisible los

ensayos de cocción cuando el objetivo fue calcular el parámetro Z y con éste, los *tiempos de proceso* de los tratamientos mediante el modelo de Bigelow.

El valor de exactitud de Ross del proceso de validación fue:

$$A_f = 10^{\frac{\sum \left|log\binom{n_{sonda}}{n^*_{real}}\right|}{n}} = 1,13$$

Los datos de partida para la obtención de las curvas de cocción linealizadas necesarias para el ajuste anterior se muestran en la tabla 7.8. Las gráficas correspondientes y la ecuación de la curva de cocción a 92 $^{\circ}$ C referida a n_{real} se muestran en la figura 7.6.

Tabla 7. 8. Ensayos de cocción de judías verdes. Cálculo de los tiempos de proceso a las temperaturas de ensayo.

T _{ai} (°C)	t _{ai} (min)	P _{fe} (N)	$oldsymbol{n}_{real}$	$t_{n_{real}\cdot D_{Tai}}$ (min)
75	10	47,12	0,01	2,65
$(D_{75} = 277,78 \text{ min})$	20	46,05	0,02	6,71
$(P_{0e} = 48,22 \text{ N})$	30	38,30	0,10	26,86
,	45	34,14	0,15	42,72
80	10	40,11	0,08	13,74
$(D_{80} = 166,67 \text{ min})$	20	34,14	0,15	25,63
$(P_{0e} = 48,22 \text{ N})$	30	29,73	0,21	34,36
·	45	25,90	0,27	45,46
85	1,5	44,90	0,03	1,44
$(D_{85} = 50 \text{ min})$	15	29,73	0,21	10,29
$(P_{0e} = 48,22 \text{ N})$	25	12,98	0,57	28,69
	45	4,93	0,99	49,36
	60	3,66	1,12	55,95
92	5	19,64	0,39	10,44
$(D_{92} = 27,03 \text{ min})$	10	12,68	0,58	15,62
$(P_{0e} = 48,22 \text{ N})$	15	8,98	0,73	19,79
	20	6,97	0,84	22,60
	25	4,82	1,00	26,91

Donde:

 P_{0e} fue valor de la fuerza de compresión en Newton obtenida en el texturómetro del producto *fresco*, es decir, antes de ser aplicado el tratamiento.

 P_{fe} fue el valor de la fuerza de compresión testada en el producto tras el tratamiento. n_{real} fue el factor de reducción real de valor $n_{real} = log P_{0e} - log P_{fe}$

 $t_{n_{real} \cdot D_{Tai}}$ fueron los valores de los *tiempos de proceso* referidos a las temperaturas de los ensayos de cocción (*temperaturas de ensayo*; T_{ai}) obtenidos mediante la fórmula

$$t_{n_{real} \cdot D_{Tai}}$$
 = $n_{real} \cdot D_{Tai}$

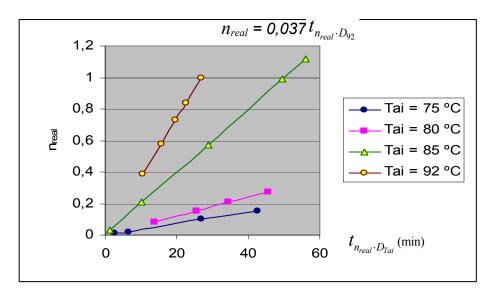


Figura 7.6. Curvas de cocción linealizadas. Ecuación de la curva de cocción a 92 °C referida a n_{real}

7.1.3. Error del modelo de Bigelow

Para determinar el error cometido al cuantificar los tratamientos con el modelo de Bigelow en la tabla 7.9. se contrasta, mediante la función *error relativo* (%), los factores de reducción obtenidos con dicho modelo para el proceso de cocción y los valores reales obtenidos testando el producto con la ayuda de un texturómetro al final de los tratamientos térmicos.

Tabla 7.9. Error del modelo de Bigelow en la cuantificación del efecto de cocción.

r				
		TEXTUR		
Tratamientos		Sonda (Bigelow)	Real	
- 400				5 (0/)
<i>T_{ai}</i> (°C)	t _{ai} (min)	n_{sonda}	n_{real}	Er (%)
105	3	1,45	0,58	147,97
105	7	2,55	0,89	187,24
105	10	3,22	0,97	232,96
105	20	6,08	1,08	460,84
105	30	8,78	1,11	688,58
107	3	1,81	0,71	153,27
107	6	3,13	0,80	292,09
107	10	5,28	0,87	504,43
107	20	7,85	1,11	604,30
107	30	11,90	1,18	909,13
110	3	2,64	0,80	231,51
110	10	6,51	0,98	564,73
110	15	9,49	1,10	762,06
110	25	15,64	1,12	1.290,80
110	35	21,65	1,34	1.515,79
115	3	6,31	1,02	519,08
115	10	14,42	1,11	1.201,07
115	20	27,07	1,15	2.260,00
115	30	38,49	1,31	2.838,82

Como puede apreciarse, el error fue grande en todos los casos y aumentó con la *temperatura de trabajo* de los tratamientos. En los tratamientos resaltados en rojo (tratamientos seleccionados en el apartado 7.3.) los errores oscilaron entre el 1.200 y 2.260 %.

El valor del *test de exactitud de Ross* para el ajuste anterior fue:

$$A_{f} = 10 \frac{\sum \left| log \left(\frac{n_{sonda}}{n_{real}} \right) \right|}{n} = 6,97$$

7.2. Modelo de Bigelow corregido

7.2.1. Corrección del efecto de cocción (Fase II)

Los datos de partida (n_{real} y $t_{T_{ai}}^{Z}$) obtenidos en los tratamientos de autoclavado, necesarios para aplicar los modelos de las alternativas I y II, se muestran en la tabla siguiente:

Tabla 7.10. Valores de n_{real} y $t_{T_{oi}}^{Z}$ de los tratamientos térmicos de autoclavado.

			TEXTURA		
Tratamientos			Real	Sonda	
<i>T_{ai}</i> (⁰C)	t _{ai} (min)	$P_{o}(N)$	P_f (N)	n_{real}	$t_{T_{ai}}^{Z}$ (min)
105	3	44,9	11,70	0,58	5,27
105	7	44,9	5,82	0,89	9,28
105	10	44,9	4,85	0,97	11,71
105	20	44,9	3,70	1,08	22,13
105	30	44,9	3,46	1,11	31,95
107	3	44,9	8,67	0,71	4,92
107	6	44,9	7,15	0,80	8,51
107	10	44,9	6,00	0,87	14,37
107	20	44,9	3,45	1,11	21,35
107	30	44,9	2,97	1,18	32,37
110	3	37,3	5,95	0,80	4,65
110	10	37,3	3,91	0,98	11,46
110	15	37,3	2,96	1,10	16,70
110	25	37,3	2,80	1,12	27,53
110	35	37,3	1,71	1,34	38,10
115	3	44,9	4,29	1,02	5,37
115	10	44,9	3,50	1,11	12,26
115	20	44,9	3,20	1,15	23,01
115	30	44,9	2,20	1,31	32,72

Donde:

 P_0 fue valor de la fuerza de compresión en Newton obtenida en el texturómetro del producto de partida (escaldado).

 P_f fue el valor de la fuerza de compresión obtenida por el producto tras la aplicación del tratamiento térmico.

 n_{real} fueron los factores de reducción de valor n_{real} = $log P_0 - log P_f$

 $t_{T_{ai}}^{Z}$ fueron los *tiempos de proceso* referidos a las *temperaturas de trabajo* (T_{ai}) de los tratamientos aplicados en el autoclave.

La fuerza de compresión inicial del producto que se sometió a los tratamientos de autoclavado (P_0 = 44,9 N) fue algo menor para los tratamientos a 110 °C (P_0 = 37,3 N), debido a que éstos se realizaron con un día de diferencia y el producto se ablando algo más.

7.2.1.1. Alternativa I

Las ecuaciones de la regresión múltiple y de la base correctora de la alternativa I, así como sus coeficientes estadísticos, se muestran en la tabla siguiente:

Tabla 7.11. Ecuaciones de la regresión múltiple y base correctora de la alternativa I

	R ²	Error	Error	p-valor
	(%)	estandar	absoluto	(ANOVA)
Regresión múltiple				
$\log\left(\frac{t_{T_{ai}}^{Z}}{n_{real}}\right) = f(T_{ai}, t_{T_{ai}}^{Z}) = C-D \cdot T_{ai} + E \cdot t_{T_{ai}}^{Z} =$				
$=1,93876-0,0105052 \cdot T_{ai} + 0,0205829 \cdot t_{Tai}^{z}$	91,48	0,072296	0,054230	< 0,01
Base correctora				
$n = f(T_{ai}, t_{Tai}^{z}) =$ $= -1,75948 + 0,0234088 \cdot T_{ai} + 0,0132556 \cdot t_{Tai}^{z}$	50,81	0,183264	0,151619	< 0,01
1,70710 10,02510001 at 10,0152550 t _{Tai}				

En ambos ajustes el *p-valor* (tabla ANOVA) fue inferior a 0,01, por lo tanto, existió una relación estadísticamente significativa entre variables para un nivel de confianza del 99%.

Los coeficientes R^2 fueron 91,48 % en la regresión múltiple de partida y 50,81 % en la base correctora. El *error estándar* de la base correctora fue 0,183264. Este valor se utilizó para construir los límites de la predicción para futuras observaciones realizadas con este ajuste. Puesto que el *p-valor* más alto de la base correctora fue 0,06 para el término T_{ai} , pudo mejorarse el ajuste eliminando este término.

Introduciendo en la base correctora anterior, los valores de las *temperaturas de trabajo* (T_{ai}) y los *tiempos de proceso* ($t_{T_{ai}}^{Z}$) de los tratamientos de autoclavado, se obtuvieron (tabla 7.12.) los siguientes valores ajustados ($n_{ajustado}$) de los factores de reducción obtenidos por los tratamientos.

Tabla 7.12. Factores de reducción obtenidos por los tratamientos según la alternativa I.

		TEXTURA					
Tratamientos		Real		Alternativa I	Error relativo		
T _{ai} (⁰C)	t _{ai} (min)	n_{real}	lim.inf	n _{ajustado}	(%)		
105	3	0,58	0,35	0,77	1,19	31,54	
105	7	0,89	0,41	0,82	1,24	7,46	
105	10	0,97	0,44	0,85	1,27	11,68	
105	20	1,08	0,58	0,99	1,40	8,51	
105	30	1,11	0,69	1,12	1,55	0,79	
107	3	0,71	0,40	0,81	1,22	13,48	
107	6	0,80	0,45	0,45 0,86 1,2		7,53	
107	10	0,87	0,53 0,94 1,3		1,34	7,05	
107	20	1,11	0,63 1,03 1,4		1,43	7,73	
107	30	1,18	0,75	1,17	1,60	0,44	
110	3	0,80	0,46	0,88	1,29	10,03	
110	10	0,98	0,56	0,97	1,37	1,24	
110	15	1,10	0,64	1,04	1,44	5,78	
110	25	1,12	0,77	1,18	1,59	4,97	
110	35	1,34	0,89	1,32	1,76	1,43	
115	3	1,02	0,56	1,00	1,45	1,58	
115	10	1,11	0,67	1,10	1,52	1,19	
115	20	1,15	0,81	1,24	1,66	7,88	
115	30	1,31	0,93	1,37	1,81	4,31	

En la tabla anterior también se muestran los valores reales de los factores de reducción (n_{real}) y su contraste, mediante la función *error relativo* (%), con los valores de $n_{ajustado}$ obtenidos.

En la zona resaltada en rojo (considerada como ideal en el apartado 7.3.) los *errores* relativos (%) oscilaron entre el 1,19 y el 7,88 %. El valor del test de Ross para el proceso corrector de la alternativa I fue:

$$A_{f} = 10 \frac{\sum \left| log \binom{n_{ajustado}}{n_{real}} \right|}{n} = 1,07$$

7.2.1.2. Alternativa II

Las ecuaciones de la regresión múltiple y de la base correctora de la alternativa II en función de las temperaturas de trabajo, así como sus estadísticos, se muestran en la tabla 7.13.

Tabla 7.13. Ecuaciones de la regresión múltiple y base correctora de la alternativa II.

	Coef.	R^2	Error	Error	p-valor
	corr.	(%)	estandar	absoluto	(ANOVA)
TRATAMIENTOS A 105 °C					
Regresión simple					
$\log\left(\frac{t_{Tai}^{Z}}{n_{real}}\right) = f(t_{T_{ai}}^{Z}) = C + E.t_{Tai}^{Z} =$					
$= 0.853407 + 0.0194423. t_{Tai}^{z}$	0,996	99,29	0,020566	0,012446	< 0,01
Base correctora					
$n = f(t_{Tai}^{Z}) = 0,666633 + 0,0162199 \cdot t_{Tai}^{Z}$	0,794	63,16	0,155147	0,11295	> 0,01
TRATAMIENTOS A 107 °C					
Regresión simple					
$\log\left(\frac{t_{Tai}^{Z}}{n_{real}}\right) = f(t_{T_{ai}}^{Z}) = C + E \cdot t_{Tai}^{z} =$					
$= 0.831933 + 0.0202178 \cdot t_{Tai}^{z}$	0,951	90,45	0,082864	0,055528	< 0,05
Base correctora					
$n = f(t_{Tai}^{z}) = 0,684766 + 0,0159391 \cdot t_{Tai}^{z}$	0,733	53,73	0,186637	0,132593	> 0,01
TRATAMIENTOS A 110 °C					
Regresión simple					
$\log\left(\frac{t_{Tai}^{Z}}{n_{real}}\right) = f(t_{T_{ai}}^{Z}) = C + E \cdot t_{Tai}^{z} =$					
$= 0.783564 + 0.0197098 \cdot t_{Tai}^{z}$	0,947	89,78	0,101782	0,076615	< 0,05
Base correctora					
$n = f(t_{Tai}^{Z}) = 0.856452 + 0.0117737 \cdot t_{Tai}^{Z}$	0,564	31,89	0,263387	0,193458	> 0,01
TRATAMIENTOS A 115 °C					
Regresión simple					
$\log\left(\frac{t_{Tai}^{Z}}{n_{real}}\right) = f(t_{T_{ai}}^{Z}) = C + E.t_{Tai}^{Z} =$					
$= 0,672963 + 0,0241474 \cdot t_{Tai}^{z}$	0,959	92,10	0,104092	0,073391	< 0,05
Base correctora					
$n = f(t_{Tai}^{Z}) = 1,01116 + 0,00823098 \cdot t_{Tai}^{Z}$	0,423	17,91	0,259446	0,181683	> 0,01

En todas las regresiones simples el *coeficiente de correlación* fue superior a 0,94. Como el *p-valor* fue inferior a 0,05, la relación entre variables fue fuerte y pudo establecerse para niveles de confianza del 95 %.

Para las bases correctoras, el *coeficiente de correlación* disminuyó a medida que se aumentó la *temperatura de trabajo* de los tratamientos y varió entre 0,8 para 105 °C y 0,42 para 115 °C. Los *errores estandar* evolucionaron de la misma forma y variaron entre 0,15 para 105 °C y 0,26 para 115 °C.

En la tabla 7.14. se muestran los valores ajustados de los factores de reducción $(n_{ajustado})$, obtenidos al introducir en las bases correctoras los valores de las temperaturas de trabajo (T_{ai}) y los tiempos de proceso $(t_{T_{ai}}^Z)$ de los tratamientos de autoclavado. En la tabla también se muestra el contraste con los valores reales de dichos factores (n_{real}) .

y de esterilización sobre Bacillus coagulans en una conserva de judías verdes (Phaseolus vulgaris var. Helda)

Tabla 7.14. Factores de reducción obtenidos por los tratamientos según la alternativa II.

				TEXTURA		
Tratam	nientos	Real		Alternativa II		Error relativo
T _{ai} (⁰C)	t _{ai} (min)	n_{real}	lim.inf	n ajustado	lim.sup	(%)
105	3	0,58	0,16	0,75	1,35	28,77
105	7	0,89	0,25	0,82	1,38	7,95
105	10	0,97	0,31	0,86	1,41	11,37
105	20	1,08	0,47	1,03	1,58	5,39
105	30	1,11	0,53	1,18	1,84	6,44
107	3	0,71	0,04	0,76	1,48	6,85
107	6	0,80	0,14	0,82	1,50	2,82
107	10	0,87	0,26	0,91	1,57	4,54
107	20	1,11	0,36	1,03	1,69	8,02
107	30	1,18	0,42	1,20	1,98	1,80
110	3	0,80	-0,12	0,91	1,95	14,30
110	10	0,98	0,04	0,99	1,95	1,21
110	15	1,10	0,13	1,05	1,98	4,30
110	25	1,12	0,23	1,18	2,13	4,98
110	35	1,34	0,22	1,31	2,39	2,59
115	3	1,02	-0,37	1,06	2,48	3,49
115	10	1,11	-0,18	1,11	2,40	0,35
115	20	1,15	-0,07	1,20	2,47	4,66
115	30	1,31	-0,19	1,28	2,75	2,24

En la zona destacada en rojo (considerada como ideal en el apartado 7.3.) los errores relativos (%) oscilaron entre el 0,35 y el 4,66 %.

El valor del test de Ross para el modelo corrector de la alternativa II fue:

$$A_{f} = 10 \frac{\sum \left| log \binom{n_{ajustado}}{n_{real}} \right|}{n} = 1,06$$

En base a los valores del *test de Ross* de las alternativas I y II pudo considerarse este modelo como más exacto que el de la alternativa I (A_f = 1,07).

7.2.2. Modelos predictivos. Alternativa III (Fase III)

El análisis del grado de validez de la hipótesis de partida ($n_{sonda} = n_{real}$) con la que se diseñó el modelo de esta alternativa (función de los factores: tamaño del producto con que se trabajó, tecnología de la sonda que se utilizó y *grado de bondad* del modelo) fue el siguiente:

En el tratamiento de escaldado, que se aplicó a 85 °C durante 1,5 min para la elaboración de las conservas del trabajo (apartado 7.5), la judía verde extrafina con la sonda Picovacq, introducida por la parte del captador en su interior, necesitó un tiempo estimado de 1 min para alcanzar dicha temperatura y la mantuvo con un error de unos 0,4 °C durante aproximadamente 1 min.

Como en esta experiencia los factores de reducción del proceso de cocción resultaron ser de n_{sonda} = 0,0234 y n_{real} = 0,0309 (apartado 7.5.1. a), el modelo predictivo que se desarrolla a continuación rendirá unos resultados con un *error relativo* (%) (*error de proceso*) del orden del 24,27 %.

El valor de este error calculado en términos de la proximidad entre el tiempo de tratamiento y el *tiempo de proceso* del tratamiento de escaldado (tabla 7.26. del apartado 7.5.1. b) fue el siguiente:

 t_{85} = 1,5 min

 t_{85}^{Z} = 1,173 min

Error de proceso = 21,8 %

El valor de este error calculado en términos de la proximidad entre el tiempo de tratamiento y el *tiempo de proceso* del ensayo a la temperatura de 85 °C (primer tratamiento destacado en color verde de la tabla 7.8.) fue:

 t_{85} = 1,5 min

 $t_{nrealD85} = 1,44 \text{ min}$

Error de proceso = 4 %

7.2.2.1. Predicción del efecto de cocción

Los datos de partida (n_{real} y $t_{n_{real} \cdot D_{Tai}}$) obtenidos en los ensayos de cocción de las judías verdes necesarios para la aplicar el modelo de esta alternativa se indican en la tabla siguiente.

Tabla 7.15. Valores de $n_{\rm real}$ y $t_{n_{\rm real} \cdot D_{\rm Tai}}$ obtenidos en los ensayos de cocción de las judías verdes.

T _{ai} (°C)	P _{fe} (N)	n_{real}	$t_{n_{real}\cdot D_{Tai}}$ (min)
75	47,12	0,01	2,65
$(D_{75} = 277,78 \text{ min})$	46,05	0,02	6,71
$(P_{0e} = 48,22 \text{ N})$	38,30	0,10	26,86
	34,14	0,15	42,72
80	40,11	0,08	13,74
$(D_{80} = 166,67 \text{ min})$	34,14	0,15	25,63
$(P_{0e} = 48,22 \text{ N})$	29,73	0,21	34,36
	25,90	0,27	45,46
85	44,90	0,03	1,44
$(D_{85} = 50 \text{ min})$	29,73	0,21	10,29
$(P_{0e} = 48,22 \text{ N})$	12,98	0,57	28,69
	4,93	0,99	49,36
	3,66	1,12	55,95
92	19,64	0,39	10,44
$(D_{92} = 27,03 \text{ min})$	12,68	0,58	15,62
$(P_{0e} = 48,22 \text{ N})$	8,98	0,73	19,79
	6,97	0,84	22,60
	4,82	1,00	26,91

Donde:

 P_{0e} fue valor de la fuerza de compresión en Newton obtenida en el texturómetro sobre el producto *fresco*.

 P_{fe} fue el valor de la fuerza de compresión testada en el producto tras el tratamiento. n_{real} fue el factor de reducción real de valor $n_{real} = log P_{0e} - log P_{fe}$

 $t_{n_{real} \cdot D_{Tai}}$ fueron los valores de los *tiempos de proceso* referidos a las temperaturas de los ensayos de cocción (*temperaturas de ensayo*; T_{ai}) obtenidos mediante la fórmula $t_{n_{real} \cdot D_{Tai}} = n_{real} \cdot D_{Tai}$

Las ecuaciones de la regresión múltiple y de la base correctora de esta alternativa en función de las temperaturas de ensayo, así como sus valores estadísticos se muestran en la tabla 7.16.

Tabla 7.16. Ecuaciones de la regresión múltiple y base correctora para la alternativa III.

	R^2	Error	Error	p-
	(%)	estandar	absoluto	valor
Regresión múltiple				
$\log\left(\frac{t_{n_{real}D_{Tai}}}{n_{real}}\right) = f(T_{ai}, t_{n_{real}D_{Tai}}) =$				
$= C - D \cdot T_{ai} + E \cdot t_{n_{real} \cdot D_{Tai}} =$				
$= 7,16786 - 0,0624286 \cdot T_{ai} - 0,00133741 \cdot t_{n_{real} \cdot D_{Tai}}$	96,65	0,08253	0,062837	< 0,01
Base correctora				
$n = f(T_{ai}, t_{n_{real} \cdot D_{Tai}}) =$				
$= -3,48551 + 0,0437002 \cdot T_{ai} + 0,0102391 \cdot t_{n_{real} \cdot D_{Tai}}$	83,49	0,1546	0,1220	< 0,01

En ambos ajustes el *p-valor* (tabla *ANOVA*) fue inferior a 0,01, por lo tanto existió una relación estadísticamente significativa entre variables para un nivel de confianza del 99%.

Los valores de los coeficientes estadísticos R^2 fueron de 96,65 % para la regresión múltiple y de 83,49 % para la base correctora. El *error estándar* de la base correctora fue de 0,1546 (este valor se utilizó para construir los límites de predicción de las futuras observaciones).

Introduciendo en la base correctora anterior los valores de las temperaturas de trabajo (T_{ai}) y los tiempos de proceso $(t_{T_{ai}}^{Z})$ de los tratamientos de autoclavado, se obtuvieron (tabla 7.17.) los siguientes valores predichos $(n_{predicho})$ para los factores de reducción:

Tabla 7.17. Factores de reducción obtenidos por los tratamientos según la alternativa III.

					TEXTURA		
Tratar	nientos	Real	Alternativa III				
<i>T_{ai}</i> (⁰C)	t _{ai} (min)	n_{real}	lim.inf	Er (%)	$oldsymbol{n}_{predicho}$	Er (%)	lim.sup
105	3	0,58	0,71	21,99	1,16	98,09	1,60
105	7	0,89	0,76	14,64	1,20	34,96	1,64
105	10	0,97	0,78	18,82	1,22	26,53	1,66
105	20	1,08	0,90	17,37	1,33	22,65	1,76
105	30	1,11	0,99	10,70	1,43	28,48	1,87
107	3	0,71	0,78	9,30	1,24	73,72	1,70
107	6	0,80	0,82	2,91	1,28	60,11	1,73
107	10	0,87	0,89	1,30	1,34	53,02	1,79
107	20	1,11	0,96	13,92	1,41	26,43	1,86
107	30	1,18	1,07	9,31	1,52	29,03	1,97
110	3	0,80	0,88	10,94	1,37	71,74	1,85
110	10	0,98	0,96	1,98	1,44	46,89	1,92
110	15	1,10	1,02	7,62	1,49	35,63	1,97
110	25	1,12	1,13	0,31	1,60	42,58	2,08
110	35	1,34	1,23	8,18	1,71	27,76	2,19
115	3	1,02	1,07	4,64	1,60	56,40	2,12
115	10	1,11	1,14	3,11	1,67	50,30	2,19
115	20	1,15	1,26	9,46	1,78	54,79	2,30
115	30	1,31	1,35	3,23	1,88	43,15	2,40

Puede observarse que los valores más próximos a los reales se obtuvieron de los límites inferiores de los valores predichos. Del contraste de estos últimos con los reales se apreció que, en la zona resaltada en rojo (tratamientos a 115 °C durante 10 y 20 min; zona considerada como ideal en el apartado 7.3.) los *errores relativos (%)* oscilaron entre el 3,11 y el 9,46 %.

Los resultados del *test de Ross* de la alternativa III para los límites inferiores de los valores predichos y para los valores predichos fueron respectivamente:

$$\sum \frac{\log \left(\frac{\lim \inf n_{predicho}}{n_{real}}\right)}{n} = 1,09$$

$$\sum \log \binom{n_{predicho}}{n_{real}} = 1,45$$

En base a los resultados del *test de Ross*, para las alternativas correctoras I y II (1,07 y 1,06 respectivamente) y para la alternativa predictiva III (1,45), se consideró la elaboración de una alternativa predictiva de análoga base matemática para la cuantificación del efecto esterilizante de los tratamientos.

7.2.2.2. Predicción del efecto de esterilización sobre B. coagulans (Fase III bis)

Los datos de partida $(n_{real}, t_{n_{real} \cdot D_{Tai}})$ obtenidos en los ensayos de termodestrucción y los tiempos de proceso $(t_{T_{ai}}^Z)$ de los tratamientos de esterilización sobre B. coagulans, necesarios para la aplicar del modelo de esta alternativa, se muestran en las tablas 7.18. y 7.20. respectivamente.

Tabla 7.18. Valores de n_{real} y $t_{n_{real} \cdot D_{Tai}}$ obtenidos en los ensayos de termodestrucción de B. coagulans para las temperaturas T_{ai} .

T _{ai} (°C)	N _f (ufc/ml)	n_{real}	$t_{n_{real} \cdot D_{Tai}}$ (min)
80	113.200.000	0,05	9,61
(<i>D</i> ₈₀ = 192,31 min)	100.000.000	0,10	19,23
$(N_0 = 126.000.000 \text{ ufc/ml})$	92.800.000	0,13	25,00
	83.200.000	0,18	34,61
90	100.800.000	0,30	6,38
$(D_{90} = 21,28 \text{ min})$	33.200.000	0,78	16,59
$(N_0 = 200.000.000 \text{ ufc/ml})$	18.600.000	1,03	21,92
	7.600.000	1,42	30,20
95	26.240.000	1,18	8,92
$(D_{95} = 7,56 \text{ min})$	1.484.000	2,43	18,37
$(N_0 = 400.000.000 \text{ ufc/ml})$	150.000	3,42	25,86

Donde:

 N_0 fue el recuento de microorganismos antes de ser aplicado el tratamiento.

 N_f fue el recuento de supervivientes.

 n_{real} fue el factor de reducción de valor $n_{real} = log(N_0) - log(N_f)$

 $t_{n_{real} \cdot D_{Tai}}$ fueron los *tiempos de proceso* referidos a las temperaturas de los ensayos de termodestrucción (T_{ai}) .

El análisis de grado de validez de la hipótesis de partida ($n_{sonda} = n_{real}$) asociado al grado de bondad del modelo (error de proceso) se muestra en la tabla siguiente:

Tabla 7.19. Evaluación del *error de proceso* de la alternativa predictiva III para *B. coagulans*.

T _{ai} (°C)	t _{ai} (min)	$t_{n_{real} \cdot D_{Tai}}$ (min)	Error de proceso (%)	Error de proceso medio para cada temperatura (%)	Error de proceso medio (%)
80	10	9,61	3,80	2,19	19,61
	20	19,23	3,85		
	25	25,00	0,00		
	35	34,61	1,11		
90	15	6,38	57,47	21,88	
	20	16,59	17,05		
	25	21,92	12,32		
	30	30,20	0,67		
95	5	8,92	78,40	34,77	
	15	18,37	22,47		
	25	25,86	3,44		

En la tabla anterior puede observarse que los *tiempos de proceso* fueron más próximos a los tiempos de tratamiento para las temperaturas más bajas y los tiempos de tratamiento más largos. El *error de proceso medio* medido en términos relativos fue del orden del 19,61 % (A_f = 1,20).

El valor de este error calculado en términos de la proximidad entre el tiempo de tratamiento y el *tiempo de proceso* del tratamiento de escaldado (tabla 7.27.; apartado 7.5.2) fue:

 t_{85} = 1,5 min

 t_{85}^{Z} = 1, 023 min

Error de proceso = 32 %

y de esterilización sobre Bacillus coagulans en una conserva de judías verdes (Phaseolus vulgaris var. Helda)

Tabla 7.20. Valores de los *tiempos de proceso* $t_{T_{ai}}^Z$ de los tratamientos de esterilización sobre *B. coagulans* para las temperaturas T_{ai} .

Tratan	nientos	Bacillus coagulans
T _{ai} (°C)	t _{ai} (min)	$t_{T_{ai}}^{Z}$ (min)
105	3	4,24
105	7	8,26
105	10	10,66
105	20	20,93
105	30	31,02
107	3	3,90
107	6	7,40
107	10	13,25
107	20	19,87
107	30	31,60
110	3	3,69
110	10	10,28
110	15	15,72
110	25	26,71
110	35	37,41
115	3	4,17
115	10	11,01
115	20	21,57
115	30	31,28

y discusión

Las ecuaciones de la regresión múltiple y de la base correctora de la alternativa predictiva III para *B. coagulans* en función de las temperaturas de ensayo, así como sus estadísticos, se indican en la tabla siguiente.

Tabla 7.21. Ecuaciones de la regresión múltiple y base correctora de la alternativa III para *B. coagulans.*

	R ²	Error	Error	p-valor
	(%)	estandar	absoluto	(ANOVA)
Regresión múltiple				
$\log\left(\frac{t_{n_{real}D_{Tai}}}{n_{real}}\right) = f(T_{ai}, t_{n_{real}D_{Tai}}) =$				
$= C-D.T_{ai} + E.t_{n_{real}\cdot D_{Tai}} =$				
$= 9,80993 - 0,0941008 \cdot T_{ai} - 0,00003949 \cdot t_{n_{real} \cdot D_{Tai}}$	99,97	0,00964	0,007263	< 0,01
Base correctora				
$n = f(T_{ai}, t_{n_{real} \cdot D_{Tai}}) = -12,85 + 0,147911 \cdot T_{ai} +$				
$+$ 0,04485 . $t_{n_{real} \cdot D_{Tai}}$	74,9794	0,620056	0,4607	< 0,01

Como en ambos ajustes el *p-valor* (tabla *ANOVA*) fue inferior a 0,01, existió una relación estadísticamente significativa entre variables para un nivel de confianza del 99%.

Los valores del estadístico R^2 fueron 99,97 % para la regresión múltiple y 74,98 % para la base correctora.

El valor del *error estándar* de la base correctora (0,62) se utilizó para construir los límites de predicción de las futuras observaciones.

En la tabla siguiente se muestran los valores predichos $(n_{predicho})$ de los factores de reducción sobre *Bacillus coagulans* de los tratamientos de autoclavado obtenidos al introducir en la base correctora anterior, los valores de las temperaturas de trabajo (T_{ai}) y los tiempos de proceso $(t_{T_{ai}}^{Z})$ asociados a los tratamientos.

Tabla 7.22. Cuantificación del efecto de esterilización sobre *B. coagulans* mediante la alternativa predictiva III (efecto estimado).

		В	acillus coagular	าร
Tratam	ientos		Alternativa III	
<i>T_{ai}</i> (⁰C)	t _{ai} (min)	lim.inf	$oldsymbol{n}_{predicho}$	lim.sup
105	3	0,88	2,87	4,86
105	7	1,10	3,05	5,00
105	10	1,23	3,16	5,09
105	20	1,67	3,62	5,57
105	30	1,98	4,07	6,16
107	3	1,07	3,15	5,23
107	6	1,27	3,31	5,35
107	10	1,56	3,57	5,58
107	20	1,84	3,87	5,90
107	30	2,19	4,39	6,59
110	3	1,37	3,59	5,80
110	10	1,72	3,88	6,04
110	15	1,96	4,13	6,29
110	25	2,35	4,62	6,88
110	35	2,62	5,10	7,58
115	3	1,89	4,35	6,80
115	10	2,23	4,65	7,08
115	20	2,66	5,13	7,60
115	30	2,95	5,56	8,18

Se consideró también la importancia de los valores de los límites inferiores por lo observado en la evaluación del efecto de cocción.

y de esterilización sobre Bacillus coagulans en una conserva de judías verdes (Phaseolus vulgaris var. Helda) y c

7.2.2.3. Error del modelo de Bigelow

En la tabla que se muestra a continuación se contrastan mediante la función *error* relativo (%) los valores obtenidos al cuantificar el efecto esterilizante de los tratamientos con el modelo de Bigelow (n_{sonda}) y los valores de $n_{predicho}$ obtenidos en el apartado anterior.

Tabla 7.23. Error del modelo de Bigelow en la cuantificación del efecto estimado de esterilización.

		B. coagula	ns	
Tratar	nientos	Sonda (Bigelow)	Alternativa III	
T_{ai} (°C)	t _{ai} (min)	n_{sonda}	$n_{\it predicho}$	Er (%)
105	3	5,05	2,87	75,96
105	7	9,83	3,05	222,30
105	10	12,69	3,16	301,58
105	20	24,92	3,62	588,40
105	30	36,93	4,07	807,37
107	3	7,21	3,15	128,89
107	6	13,70	3,31	313,90
107	10	24,54	3,57	587,39
107	20	36,79	3,87	850,65
107	30	58,52	4,39	1.233,03
110	3	13,20	3,59	267,69
110	10	36,71	3,88	846,13
110	15	56,14	4,13	1.259,32
110	25	95,39	4,62	1.964,72
110	35	133,60	5,10	2.519,61
115	3	43,40	4,35	897,70
115	10	114,71	4,65	2.366,88
115	20	224,73	5,13	4.280,70
115	30	325,87	5,56	5.760,97

Como puede apreciarse, el error fue muy grande en todos los casos. En el tratamiento resaltado en rojo (uno de los tratamientos seleccionados en el apartado 7.3.) el *error relativo* (%) fue superior al 4.280 %.

El valor del test de exactitud de Ross para el modelo de Bigelow fue:

$$A_{f} = 10^{\frac{\sum \left| log \left(\frac{n_{sonda}}{n_{predicho}} \right)}{n} \right|} = 9,16$$

7.3. Fase IV. Selección de tratamientos

Criterios de selección

- En el proceso de cocción el valor de la fuerza de compresión en Newton que ofreció el producto considerado sensorialmente como ideal fue de:

$$P_{f_i}$$
 = 3,66 N

Dicho valor se determinó con la ayuda de un panel de cata y un texturómetro. Se obtuvo en los ensayos de cocción a temperatura constante y resultó ser ideal para el tratamiento a la temperatura de ensayo de 85 °C durante 60 min (segundo tratamiento destacado con color verde en la tabla 7.8.).

Como la resistencia a compresión del producto de partida (escaldado sin autoclavar; primer tratamiento destacado con color verde en la tabla 7.8.) fue de:

$$P_0 = 44.9 \text{ N}$$

El factor de reducción ideal del proceso de cocción fue:

$$n_i = log \left[\frac{P_0}{P_{f_i}} \right] = 1,09$$

 Para determinar el factor de reducción ideal del proceso de esterilización se utilizó la indicación descrita por Hayes (1992) y Brennan et al. (1998) que para Bacillus coagulans recomiendan un factor de reducción igual o superior a 5.

Selección de tratamientos

En la tabla siguiente se muestran los efectos de cocción de las judías verdes y los efectos de esterilización sobre B. coagulans, obtenidos en los tratamientos de autoclavado. Para reflejar los primeros se utilizaron los factores de reducción reales (n_{real}) obtenidos con la ayuda de un texturómetro testando el producto al final de los tratamientos; mientras que, para reflejar los segundos se utilizaron los factores de reducción obtenidos en el modelo de predicciones de la fase III bis $(n_{predicho})$ y los límites inferiores de los mismos.

Tabla 7.24. Selección de tratamientos en base a los criterios de cocción y esterilización ideales.

Tratan	nientos	Textura	B. coagula	ans
T _{ai} (°C)	t _{ai} (min)	n_{real}	límite inferior	n _{predicho}
105	3	0,58	0,88	2,87
105	7	0,89	1,10	3,05
105	10	0,97	1,23	3,16
105	20	1,08	1,67	3,62
105	30	1,11	1,98	4,07
107	3	0,71	1,07	3,15
107	6	0,80	1,27	3,31
107	10	0,87	1,56	3,57
107	20	1,11	1,84	3,87
107	30	1,18	2,19	4,39
110	3	0,80	1,37	3,59
110	10	0,98	1,72	3,88
110	15	1,10	1,96	4,13
110	25	1,12	2,35	4,62
110	35	1,34	2,62	5,10
115	3	1,02	1,89	4,35
115	10	1,11	2,23	4,65
115	20	1,15	2,66	5,13
115	30	1,31	2,95	5,56

Se destacaron los tratamientos con un color más intenso a medida que los factores de reducción que obtuvieron se aproximaron a los factores considerados como ideales: 1,09 para efecto de cocción y 5 para el de esterilización.

Puede apreciarse que a medida que aumentó la *temperatura de trabajo* de los tratamientos, a una menor duración de estos en relación con los de temperaturas más bajas, los factores de reducción se aproximaron de forma casi simultánea a los ideales. Esta es la causa por la que, en la práctica, la industria conservera tiende a aplicar tratamientos térmicos a temperaturas altas durante tiempos cortos, para conseguir de forma simultánea un producto microbiológicamente seguro y organolépticamente estable.

7.4. Sonda Picovacq. Test de trabajo en vacío. Calibrado del autoclave

Para comprobar que el proceso de cálculo utilizado por el software *xVacq* de la sonda para la cuantificación de tratamientos térmicos fue el modelo de Bigelow, se aplicó un tratamiento de autoclavado sin carga a 121 °C durante 5 min.

A continuación se contrasta el valor *F* obtenido por el software de la sonda (figuras 7.7 y 7.8.) con el obtenido utilizando una hoja de cálculo Excel (tabla 7.25.) mediante el proceso descrito en el apartado 4.3.2.

El test anterior se aprovechó también para realizar el calibrado del autoclave con la sonda Picovacq previamente calibrada.

Cuantificación del tratamiento mediante el software xVacq de la sonda.

Una vez aplicado el tratamiento y conectada la sonda al ordenador, se seleccionó en el programa xVacq la carpeta "cálculos" - valor F. El programa requirió la introducción de la temperatura de referencia así como el valor Z del microorganismo de referencia y rindió la curva de penetración de calor, la curva de evolución del valor F (figura 7.7.) y un listado con ambos valores (figura 7.8.).

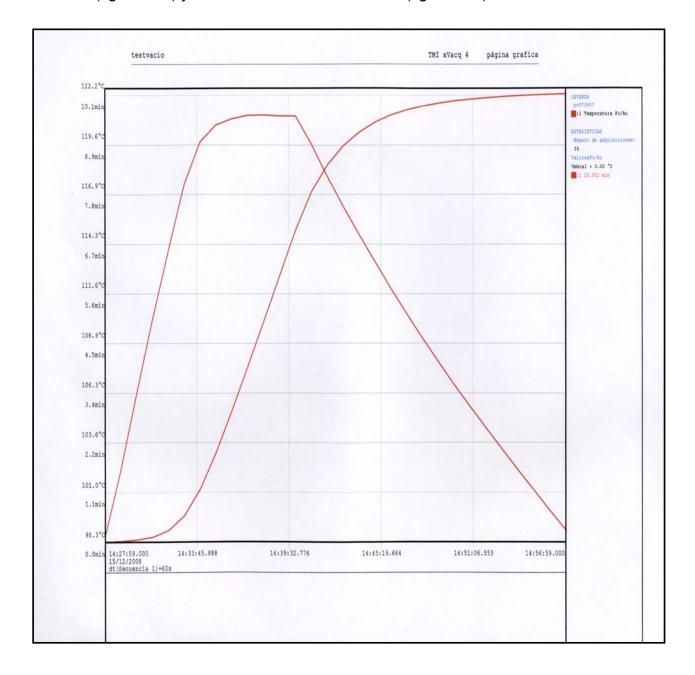


Figura 7.7. Gráfica de penetración de calor y curva de evolución del valor *F* para un tratamiento sin carga a 121 °C durante 5 min.

N°	Fecha	Hora	pv073657 1: Temperatura °C Fo/Ao	
	15/12/2008	14:13:59.000	25.399	
	15/12/2008	14:14:59.000 14:15:59.000	26.718	0
	15/12/2008	14:16:59.000	30.236	0
	15/12/2008	14:17:59.000	36.267	0
5	15/12/2008	14:18:59.000	42.815	0
1	15/12/2008	14:19:59.000 14:20:59.000	50.641	0
	15/12/2008	14:21:59.000	66.506	0
.0	15/12/2008	14:22:59.000	76.729	0
.1	15/12/2008	14:23:59.000	84.628	0.000208
3	15/12/2008	14:25:59.000	94.344	0.002936
4	15/12/2008	14:26:59.000	96.945	0.007109
.6	15/12/2008	14:27:59.000 14:28:59.000	98.622	0.013691
7	15/12/2008	14:29:59.000	106.24	0.052569
.8	15/12/2008	14:30:59.000	110.23	0.11748
.9	15/12/2008	14:31:59.000	113.92	0.26603
20	15/12/2008		119.67	1.1822
22	15/12/2008	14:34:59.000	120.58	2.0106
23	15/12/2008		120.90	2.9554 3.9529
24	15/12/2008		121.08	4.9728
26	15/12/2008		121.04	5.9885
27	15/12/2008		121.04	6.9981
28	15/12/2008		119.56	7.8611 8.4714
30	15/12/2008		116.22	8.896
31	15/12/2008	14:43:59.000	114.70	9.1983
32	15/12/2008		113.24	9.4172 9.5773
33 34	15/12/2008		110.47	9.6959
35	15/12/2008	14:47:59.000	109.14	9.7847
36	15/12/2008		107.87	9.8517
37 38	15/12/2008		105.46	9.9422
39	15/12/2008	14:51:59.000	104.33	9.9728
10	15/12/2008		103.21	9.9968
11	15/12/2008		102.11	10.016
43	15/12/2008		99.954	10.042
44	15/12/2008		98.914	10.052
15	15/12/2008		97.893	10.059
46 47	15/12/2008		95.962	10.003
48	15/12/2008	15:00:59.000	95.016	10.074
49	15/12/2008		94.180	10.077
50 51	15/12/2008		92.800	10.08
52	15/12/2008		90.661	10.084
53	15/12/2008	15:05:59.000	89.647	10.085
54	15/12/2008		88.707	10.086
55 56	15/12/2008		86.954	10.087
57	15/12/2008	15:09:59.000	86.142	10.088
58	15/12/2008		85.403	10.088
59 60	15/12/2008		84.682 73.995	10.089

Figura 7.8. Listado de evolución de temperaturas y valor F para un tratamiento sin carga a 121 °C durante 5 min.

Tabla 7.25. Cuantificación del tratamiento sin carga a 121 °C durante 5 min mediante una hoja de cálculo Excel.

Trotomionto 404 00/ 5		Esterilización B.	O = mtim = mid	_	Esterilización B.
Tratamiento 121 ºC/ 5 min		coagulans	Continuació		coagulans
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/10,638))	minuto	T _i (°C)	L _{TI} =10^((Ti - 121)/10,638))
1	25,40	1,03101E-09			
2	26,72	1,3716E-09	36	107,87	0,05833052
3	27,37	1,57927E-09	37	106,64	0,04468093
4	30,24	2,93724E-09	38	105,46	0,034646527
5	36,27	1,08354E-08	39	104,33	0,027086352
6	42,81	4,47072E-08	40	103,21	0,02126544
7	50,64	2,43238E-07	41	102,11	0,016765707
8	56,78	9,18197E-07	42	101,03	0,013273732
9	66,51	7,54072E-06	43	99,95	0,010511548
10	76,73	6,8928E-05	44	98,91	0,008391907
11	84,63	0,000381004	45	97,89	0,006727576
12	89,99	0,001216431	46	96,93	0,005458588
13	94,34	0,003120664	47	95,96	0,004429758
14	96,95	0,005480145	48	95,02	0,003609663
15	98,62	0,007878114	49	94,18	0,003012137
16	102,15	0,016899053	50	92,80	0,002234369
17	106,24	0,04093886	51	91,64	0,001737963
18	110,23	0,097145446	52	90,66	0,001406253
19	113,92	0,216027165	53	89,65	0,001129179
20	117,42	0,460845318	54	88,71	0,000921185
21	119,67	0,749480423	55	87,80	0,000757532
22	120,58	0,912883782	56	86,95	0,000630396
23	120,90	0,977571483	57	86,14	0,000528782
24	121,08	1,017753053	58	85,40	0,000450582
25	121,10	1,021858738	59	84,68	0,000385488
26	121,04	1,009591106	60	73,99	3,81418E-05
27	121,04	1,009591106			
28	119,56	0,731608933	t_{Tref}^{z} (min)	$= t_{121}^z = F =$	10,16
29	117,83	0,503416046			
30	116,22	0,355036176			
31	114,70	0,255587148			
32	113,24	0,186299018			
33	111,81	0,136939716			
34	110,47	0,102318668			
35	109,14	0,076782171			
			1		

Los valores de *F* calculados por los dos métodos fueron:

- Mediante el software xVacq de la sonda: F = 10,09 min

- Mediante la hoja de cálculo Excel: F = 10,16 min

La diferencia entre ambos valores (0,07 min) fue debida al número de decimales

considerados en los cálculos.

Calibrado del autoclave

El test anterior se aprovechó para contrastar las temperaturas de entorno rendidas

por el sistema de registro del autoclave durante el tratamiento.

En el listado de la figura 7.8. puede comprobarse que la temperatura de trabajo con

la que se programó el tratamiento (121 °C) se alcanzó en el interior del autoclave

con un error de +/- 0,1 °C y el tiempo de tratamiento (5 min) se mantuvo en su

totalidad.

7.5. Tratamiento de escaldado

Teniendo en cuenta el calibre (extrafino) y el excelente grado de frescura de las judías verdes utilizadas, a las conservas elaboradas en este trabajo se las aplicó un tratamiento poco agresivo de escaldado a la temperatura de 85 °C durante 1,5 min.

7.5.1 Cuantificación del efecto de cocción del escaldado

A continuación se desarrolla la cuantificación del efecto de cocción sobre las judías verdes obtenida en el tratamiento de escaldado mediante *a)* método real y *b)* método de Bigelow.

a) Cuantificación real.

El factor de reducción real obtenido en la fase de estudio de la cinética de cocción para el tratamiento a 85 °C durante 1,5 min (tabla 7.8.) resultó ser n_{real} = 0,0309

$$n_{real} = log P_{0e} - log P_{fe} = 0.0309$$

Donde P_{0e} fue la fuerza de compresión que ofreció el producto fresco (P_{0e} = 48,22 N) y P_{fe} fue la fuerza de compresión que ofreció el producto escaldado (P_{fe} = 44,9 N).

 P_{fe} se designó como P_0 en la cuantificación del efecto de cocción de los tratamientos de autoclavado. Ambos valores se refirieron a la fuerza de compresión que ofreció el producto escaldado sin autoclavar.

y de esterilización sobre Bacillus coagulans en una conserva de judías verdes (Phaseolus vulgaris var. Helda) y dis

b) Cuantificación mediante el modelo de Bigelow.

Los *tiempos de proceso* a la temperatura de referencia (100 °C) y de trabajo (85 °C) obtenidos en el escaldado de las judías verdes se muestra en la tabla siguiente.

Tabla 7.26. Evolución de la temperatura de producto en el tratamiento de escaldado. Tiempos de proceso para el efecto de cocción a las temperaturas de referencia y de trabajo.

Escaldado: 85 °C - 1,5 min					
	Textura				
minuto	<i>T_i</i> (⁰C)	$L_i=10^{(T_i-100)/16)}$			
1	74,62	0,0259			
2	84,60	0,1090			
3	47,25	0,0005			
$t_{T_{ref}}^{Z}$ (min) 0,1354					
t_{85}^{Z} (min) 1,1729					

De los datos anteriores se deduce que el factor de reducción obtenido por el tratamiento fue:

$$n_{sonda} = \frac{t_{85}^Z}{D_{85}} = 0.0234$$

7.5.2 Cuantificación de la termodestrucción del escaldado sobre B. coagulans

La cuantificación de la termodestrucción sobre *B. coagulans* obtenida en el tratamiento de escaldado se realizó únicamente mediante el método de Bigelow. Los *tiempos de proceso* a la temperatura de referencia (121 °C) y de trabajo (85 °C) obtenidos se muestran en la tabla siguiente:

Tabla 7.27. Evolución de la temperatura de producto en el tratamiento de escaldado. Tiempos de proceso para *B. coagulans* a las temperaturas de referencia y de trabajo.

Escaldado: 85 °C - 1,5 min					
	Bacillus coagulans				
minuto	$T_i(^{\circ}C)$ $L_{i=10}^{\circ}((T_i-121)/10,64))$				
1	74,62	4,37499E-05			
2	84,60	0,000379269			
3	47,25 1,17114E-07				
$t_{T_{ref}}^{Z}$ (min) = 0,000423136					
	t_{85}^Z (min) =	1,023148557			

El factor de reducción para *B. coagulans* obtenido por el tratamiento fue:

$$n_{sonda} = \frac{t_{85}^Z}{D_{85}} = 0.016$$

La aportación de la termodestrucción conseguida sobre *B. coagulans* en el tratamiento de escaldado se despreció para el cálculo global del efecto esterilizante de los tratamientos de autoclavado.

.

ANEXOS

ANEXO Nº 1

ANEXO Nº 1. Cuantificación de la inactivación térmica de la enzima peroxidasa

El proceso de cuantificación del efecto de inactivación térmica de la enzima peroxidasa se desarrolla como anexo independiente debido a que, como se indicó en el apartado 6.3.1. y 6.3.1.3., el valor del test de exactitud en la evaluación de la validez de su cinética térmica (apartado 1.3.), resultó poco satisfactorio.

1.1. Introducción

Las enzimas tienen especial interés en la reología de los alimentos vegetales, ya que frecuentemente sus reacciones están implicadas en procesos de alteración del color, aroma, textura, sabor y comestibilidad del alimento.

Las peroxidasas son un grupo de enzimas presentes en la pared celular, citoplasma y vacuolas de la célula vegetal, que oxidan sustratos a expensas del peróxido de hidrógeno según la ecuación:

$$2H_2O_2 \longrightarrow 2H_2O + O_2$$

Esta reacción es importante en la célula porque previene la acumulación de peróxido de hidrógeno, subproducto tóxico del metabolismo respiratorio que puede interrumpir el equilibrio químico de la célula (Sakharov *et al.*, 1999).

La peroxidasa puede funcionar utilizando un donador universal llamado guayacol (grupo fenólico). Este proceso es utilizado por la planta para reacciones catalíticas en el proceso de lignificación del xilema, de forma que, cuando la planta entra en contacto con un agente patógeno, una de las posibles respuestas es aumentar la cantidad de peroxidasa provocando un aumento de la lignificación.

Sin embargo, para el buen funcionamiento del enzima es necesaria la presencia de un activador metálico, normalmente, Fe^{+2} o Fe^{+3} . Esto se traduce en una competencia con las clorofilas por dicho metal que puede terminar con la

degradación de las mismas y la consecuente aparición del color parduzco característico.

En la industria de algunas conservas vegetales, la peroxidasa se utiliza como indicador o factor de referencia del proceso térmico de escaldado, ya que su termorresistencia es más alta que la de otras enzimas vegetales. La ausencia de actividad enzimática del material vegetal tras el proceso de escaldado, indica que el tratamiento es efectivo y que el resto de las enzimas causantes de alteración se inactivaron.

La evaluación del proceso de inactivación térmica de la peroxidasa partió, como en todos los casos abordados en el estudio, de la obtención de los parámetros termocinéticos a la temperatura de referencia.

1.2. Cinética de inactivación térmica del enzima peroxidasa en judías verdes

La evaluación de la actividad peroxidásica se realizó evaluando espectrofotometricamente la cantidad de color de aspecto parduzco, originado al poner en contacto un extracto enzimático con una solución compuesta por guayacol y peróxido de hidrógeno.

Los ensayos a temperatura constante y la obtención del extracto enzimático de partida se indican a continuación.

Con la ayuda de una cestilla perforada se introdujeron en un baño termostátizado a temperatura constante (75, 85 y 92 °C durante intervalos de tiempo comprendidos entre 0,5 y 10 min), 100 q de judías cortadas en trozos de unos 2 cm.

Para simular la transmisión de calor de la salmuera de la futura conserva, se utilizó como fluido calefactor una solución acuosa preparada con CINa (2% p/v) y zumo de limón (pH = 5). Una vez finalizado el tratamiento se retiró la cestilla para su enfriamiento rápido en agua fría.

De la muestra así tratada se tomaron 30 g de judías verdes y se trituraron con 30 ml de agua destilada durante 3 min. El triturado se filtró y centrifugó (en una centrífuga KOKUSAN modelo H -103 N) a 3000 x g. El extracto enzimático así obtenido se pasó a un matraz erlenmeyer de 100 ml (previamente esterilizado y colocado en un baño de hielo).

El procedimiento se repitió hasta obtener 30 ml de extracto enzimático.

Estimación de la concentración de la enzima por espectrometría

Los matraces con 30 ml de extracto enzimático se estabilizaron en un baño termostático a 25 °C y se les añadieron 1 ml de una solución de guayacol al 1% (en etanol) y 1 ml de una solución de peróxido de hidrógeno al 3 % (en agua destilada). Pasados 3,5 min se cuantificó la cantidad de color parduzco originado midiendo su absorbancia en un espectrofotómetro SPECTRONIC mod. 4001 a una longitud de onda de 470 nm.

Para un tiempo inicial, la absorbancia de la mezcla reactiva sin peroxido de hidrógeno se utilizó como blanco. Un incremento de la absorbancia de 0,001 unidades se asoció a una unidad de concentración enzimática por mililitro de extracto.

1.3. Curvas de inactivación térmica de la enzima peroxidasa. Curva de tratamientos de termoinactivación equivalente. Análisis de validez de la cinética de inactivación térmica

Con los valores de los logaritmos de la concentración de enzima (c) para los diferentes tratamientos se construyeron las curvas de inactivación enzimática y se calcularon los valores de los parámetros D_{75} , D_{85} y D_{92} (figura A.2.1.). Estos valores se representaron en una gráfica a escala semilogarítmica en función de la temperatura, calculándose finalmente el valor del parámetro Z. De esta curva y mediante extrapolación se obtuvo el valor del parámetro D_{100} (figura A.2.2.).

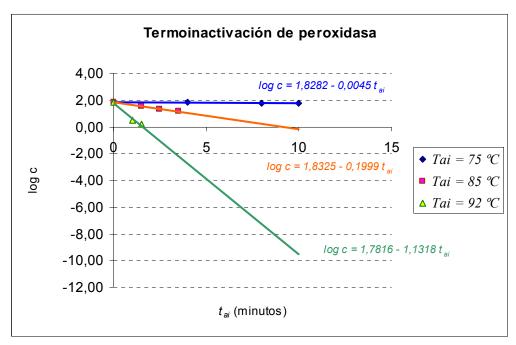


Figura A.1.1. Curvas de inactivación térmica de la enzima peroxidasa en judías verdes en tratamientos a 75, 85 y 92 °C. D_{75} = 222,2 min, D_{85} = 5,00 min, D_{92} = 0,88 min.

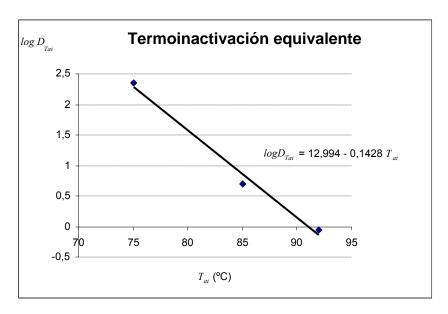


Figura A.1.2. Curva de tratamientos de termoinactivación equivalente de la enzima peroxidasa. D_{100} = 0,052 min, Z = 7,00 °C.

Los parámetros cinéticos de termoinactivación de la enzima peroxidasa a la temperatura de 120 °C (D_{120} = 13,8 min ; Z = 27,8 °C) fueron calculados por Adams (1991), por lo tanto, el valor del tiempo de reducción decimal a la temperatura de referencia (100 °C) fue D_{100} = 72,5 min.

Los valores del tiempo de reducción decimal y de Z obtenidos en los ensayos de termoinactivación de la peroxidasa ($D_{100} = 0,052$ min y Z = 7 °C) fueron muy inferiores a los calculados por el autor anterior.

El análisis de validez de la cinética correspondiente se muestra en la tabla siguiente.

Tabla A.1.1. Análisis de validez de la cinética de inactivación térmica de la peroxidasa.

Tratamientos de autoclave. Tiempos de proceso referidos a 92 ºC		Curva de inactivación a 92 °C n_{real} = 1,1325 $t_{n_{real} \cdot D_{92}}$		
Tratamiento	t_{92}^Z (min)	n sonda	n* _{real}	Error rel. (%)
105 °C - 3 min	237,69	330,27	269,19	22,69
105 °C - 7 min	526,31	731,31	596,05	22,69
105 °C -10 min	694,89	965,55	786,96	22,69
105 °C -20 min	1.420,54	1.973,83	1.608,76	22,69
105 °C -30 min	2.175,63	3.023,02	2.463,90	22,69
107 °C -3 min	414,88	574,20	469,85	22,21
107 °C -6 min	890,78	1.232,84	1.008,80	22,21
107 °C -10 min	1.690,67	2.339,91	1.914,68	22,21
107 °C -20 min	2.551,50	3.531,31	2.889,58	22,21
107 °C -30 min	4.324,95	5.985,78	4.898,01	22,21
110 °C - 3 min	1.054,91	1.489,47	1.194,68	24,68
110 °C -10 min	3.425,66	4.836,84	3.879,56	24,68
110 °C -15 min	5.546,66	7.831,58	6.281,59	24,68
110 °C -25 min	9.732,75	13.742,11	11.022,34	24,68
110 °C -35 min	13.792,10	19.473,68	15.619,55	24,68
115 °C - 3 min	6.023,78	7.800,00	6.821,93	14,34
115 °C -10 min	19.036,68	24.650,00	21.559,04	14,34
115 °C -20 min	39.077,32	50.600,00	44.255,07	14,34
115 °C -30 min	57.669,94	74.675,00	65.311,21	14,34

Los *errores relativos* (%) existentes entre ambos factores de reducción estuvieron comprendidos entre el 14,34 y el 24,68 %. Dichos valores fueron demasiado altos para considerar como válidos los ensayos de termoinactivación para la obtención del parámetro Z con el objetivo de calcular los *tiempos de proceso* de los tratamientos mediante el modelo de Bigelow.

El valor de exactitud de Ross del proceso de validación fue:

$$A_f = 10 \frac{\sum \left| log \left(\frac{n_{sonda}}{n_{real}} \right) \right|}{n} = 1,21$$

Análogamente, el valor obtenido para el test de validez de la cinética de inactivación térmica de la peroxidasa resultó demasiado alto, ya que superó al límite superior considerado como tolerable en el apartado 6.3.1.3. ($A_f = 1,15$).

1.4. Tratamiento de escaldado. Cuantificación de la inactivación térmica de la peroxidasa

A continuación se cuantifica el tratamiento de escaldado aplicado a las conservas del trabajo (85 °C durante 1,5 min) en términos de la reducción obtenida sobre la enzima peroxidasa, mediante a) método real y b) método de Bigelow.

a) Cuantificación real

El factor de reducción de la concentración del enzima, obtenido en la fase de estudio de la cinética de inactivación para el tratamiento a 85 °C durante 1,5 min, resultó ser n_{real} = 0,28 (ver apartado siguiente).

Teniendo en cuenta que la concentración inicial de enzima en el producto fue de 67,03 Uds/ml la reducción conseguida fue del 47,52 %.

b) Cuantificación mediante el método de Bigelow

Los valores de las *relaciones de modificación* para cada temperatura de producto y el *tiempo de proceso* referido a 85 °C se muestran en la siguiente tabla.

Tabla A.1.2. Evolución de la temperatura de producto en el tratamiento de escaldado. Tiempos de proceso para el efecto de termoinactivación de la peroxidasa a la temperatura de referencia y de trabajo.

Escaldado: 85 °C - 1,5 min					
	Termoinactivación peroxidasa				
minuto	Ti (°C) L _i (perox)=10^((T _i - 100)/7))				
1	74,62	0,00023673			
2	84,60	0,00630957			
3	47,25	2,91534E-08			
	$t_{T_{ref}}^{Z}$ (min)	= 0,00654633			
	t_{85}^{Z} (min)	= 0,9096124			

De los valores anteriores se deduce que el factor de reducción obtenido fue:

$$n_{sonda} = \frac{t_{85}^Z}{D_{85}} = 0.18$$
; valor equivalente a un porcentaje de reducción del 34,22 %.

1.5. Error de proceso

De los factores de reducción calculados en el apartado anterior (n_{sonda} = 0,28 y n_{real} = 0,18) se obtuvo un error de proceso del 55,5 %.

El valor de este error, calculado en términos de la proximidad entre el tiempo de tratamiento (t_{85} = 1,5 min) y el *tiempo de proceso* (t_{85}^Z = 0,909 min) en el tratamiento de escaldado fue del 39,4 %.

El valor de este error calculado en términos de la proximidad entre el tiempo de tratamiento y el *tiempo de proceso* del ensayo a la temperatura de 85 °C ($t_{nrealD85}$ = 1.41 min) fue del 6 %

1.6. Cuantificación del proceso de inactivación térmica de la enzima peroxidasa en los tratamientos de autoclavado. Predicción mediante alternativa III. Error del modelo de Bigelow

La aportación de la termoinactivación conseguida sobre la peroxidasa en el tratamiento de escaldado se despreció para el cálculo del efecto conseguido por los tratamientos de autoclavado.

Los factores de reducción de la concentración de la enzima y los *tiempos de proceso* en los tratamientos a temperatura constante se indican en la tabla siguiente.

Tabla A.1.3. Ensayos de termoinactivación de la peroxidasa. Cálculo de los tiempos de proceso a las temperaturas de ensayo.

T_{ai} = 75 °C (D_{75} = 222,22 min)						
t _{ai} (min)	$t_{n_{real} \cdot D_{75}}$ (min)	n _{real}	log c	c (Uds/ml)		
0			1,83	67,03		
4	2,51	0,01	1,81	65,31		
8	8,57	0,04	1,79	61,34		
10	9,18	0,04	1,78	60,95		
	$T_{ai} = 85^{\circ}$	PC (D ₈₅ =	= 5,00 mi	n)		
t_{ai} (min)	$t_{n_{real} \cdot D_{85}}$ (min)	n_{real}	log c	c (Uds/ml)		
0			1,83	67,03		
1,5	1,41	0,28	1,54	34,97		
2,5	2,47	0,49	1,33	21,49		
3,5	3,49	0,70	1,13	13,44		
	$T_{ai} = 92$ °C ($D_{92} = 0.88$ min)					
t_{ai} (min)	$t_{n_{real} \cdot D_{92}}$ (min)	n_{real}	log c	c (Uds/ml)		
0			1,83	67,03		
1	1,16	1,31	0,52	3,28		
1,5	1,46	1,65	0,17	1,49		

y de esterilización sobre Bacillus coagulans en una conserva de judías verdes (Phaseolus vulgaris var. Helda)

La predicción (según el modelo de la alternativa III) de la termoinactivación de la enzima peroxidasa en los tratamientos de autoclavado se muestra en la siguiente tabla.

Tabla A.1.4. Cuantificación del efecto de termoinactivación de la peroxidasa mediante la alternativa predictiva III.

		Peroxidasa				
Tratan	nientos	Condo			Altamatica	
	<u> </u>	Sonda			Alternativa	111
<i>T_{ai}</i> (⁰C)	t _{ai} (min)	n_{sonda}	$t_{T_{ai}}^{Z}$ (min)	lim.inf	$n_{\it predicho}$	lim.sup
105	3	330,27	3,30	0,83	3,26	5,68
105	7	731,31	7,31	0,47	3,51	6,56
105	10	965,55	9,66	0,21	3,66	7,12
105	20	1.973,83	19,74	-1,11	4,31	9,73
105	30	3.023,02	30,23	-2,61	4,98	12,57
107	3	574,20	2,99	0,92	3,48	6,03
107	6	1.232,84	6,41	0,63	3,70	6,77
107	10	2.339,91	12,17	-0,03	4,07	8,16
107	20	3.531,31	18,36	-0,85	4,46	9,77
107	30	5.985,78	31,13	-2,66	5,28	13,22
110	3	1.489,47	2,83	1,04	3,83	6,61
110	10	4.836,84	9,19	0,42	4,24	8,05
110	15	7.831,58	14,88	-0,28	4,60	9,48
110	25	13.742,11	26,11	-1,83	5,32	12,47
110	35	19.473,68	37,00	-3,41	6,02	15,45
115	3	7.800,00	3,12	1,19	4,45	7,72
115	10	24.650,00	9,86	0,50	4,88	9,27
115	20	50.600,00	20,24	-0,84	5,55	11,93
115	30	74.675,00	29,87	-2,19	6,17	14,52

El coeficiente \mathbb{R}^2 de la base correctora empleada en el ajuste fue 74,27 %.

En la franja de tratamientos a 115 °C considerada en el trabajo como ideal, los factores de reducción predichos, obtenidos sobre la concentración de peroxidasa tras el escaldado fueron de 4,88 para el tratamiento de 10 min y de 5,55 para el de 20 min. Estos datos equivalieron a conseguir una reducción superior en ambos casos al 99,99 % de la concentración inicial de la enzima.

y de esterilización sobre Bacillus coagulans en una conserva de judías verdes (Phaseolus vulgaris var. Helda)

En la tabla siguiente se contrastan mediante la función error relativo (%) los valores obtenidos al cuantificar el efecto esterilizante de los tratamientos con el modelo de Bigelow y los valores de $n_{predicho}$ obtenidos en el apartado anterior.

Tabla A.1.5. Error del modelo de Bigelow en la cuantificación del efecto estimado de termoinactivación de la peroxidasa.

		Peroxidasa	9	
Tratan	nientos	Sonda (Bigelow)	Alternativa III	
<i>T_{ai}</i> (⁰C)	t _{ai} (min)	n _{sonda}	$n_{\it predicho}$	Er (%)
105	3	330,27	3,26	10.030,98
105	7	731,31	3,51	20.735,04
105	10	965,55	3,66	26.281,15
105	20	1.973,83	4,31	45.696,52
105	30	3.023,02	4,98	60.603,21
107	3	574,20	3,48	16.400,00
107	6	1.232,84	3,70	33.220,00
107	10	2.339,91	4,07	57.391,65
107	20	3.531,31	4,46	79.077,35
107	30	5.985,78	5,28	113.267,05
110	3	1.489,47	3,83	38.789,56
110	10	4.836,84	4,24	113.976,42
110	15	7.831,58	4,60	170.151,74
110	25	13.742,11	5,32	258.210,34
110	35	19.473,68	6,02	323.383,06
115	3	7.800,00	4,45	175.180,90
115	10	24.650,00	4,88	505.022,95
115	20	50.600,00	5,55	911.611,71
115	30	74.675,00	6,17	1.210.191,73

En el tratamiento resaltado en rojo (uno de los tratamientos seleccionados en el apartado 7.3.), el error relativo (%) fue superior al 911.611 %.

ANEXO Nº 2

ANEXO Nº 2. Cuantificación del proceso de *cocción botulínica* en los tratamientos de autoclavado aplicados en el trabajo

El proceso de cuantificación del efecto de cocción botulínica se desarrolla, como en el caso anterior, en un anexo independiente debido a que el valor del test de exactitud en la evaluación de la validez de su cinética térmica (apartado 2.3.) resultó poco satisfactorio.

2.1. Introducción

Para el tipo de conserva que se elabora en este trabajo el indicador microbiano que se utilizó fue *Bacillus coagulans*, ya que el pH del producto se modificó con zumo de limón hasta un valor de 5 uds. No obstante, si el producto se hubiese mantenido a su pH natural (entre 4,6 y 6,5 uds), el indicador considerado hubiera sido *Clostridium botulimun*. Por la importancia de este indicador se analiza la termodestrucción conseguida en los tratamientos de autoclavado aplicados.

La evaluación del proceso partió, como todos los anteriores, de la obtención de los parámetros termocinéticos a la temperatura de referencia.

2.2. Cinética de termodestrucción de Clostridium botulinum

Se utilizaron los datos obtenidos de la aplicación informática *PMP61* (*Pathogen Modeling Program*, v.6.1) de Mark Tamplin. USDA (United States. Department of Agriculture) (figura A.2.1.). De este programa se pueden obtener, entre otras, las curvas de supervivencia de *Clostridium botulinum* (no proteolítico) en tratamientos a temperaturas constantes comprendidas ente 70 y 90 °C y en sustratos de composición variable:

- pH: entre 5 y 7 unidades
- Concentración de cloruro sódico: entre el 0 y el 3 % (g/dl)
- Concentración de pirofosfato sódico: entre el 0 y el 0,3 % (g/dl)

Se particularizó la aplicación a las condiciones siguientes:

- Temperaturas utilizadas: 70, 80 y 90 °C
- Características de la conserva:
 - o pH = 6
 - Concentración de cloruro sódico: 2 % (g/dl)
 - o Concentración de pirofosfato sódico: 0 % (g/dl)

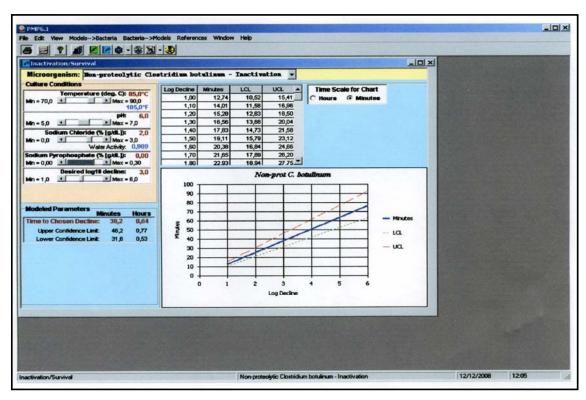


Figura A.2.1. Programa *PMP61* (*Pathogen Modeling Program*, v.6.1) de Mark Tamplin.

2.3. Curvas de supervivencia de C. botulinum. Curva de tratamientos de termodestrucción equivalente. Análisis de validez de la cinética

Las curvas de supervivencia de C. botulinum, la curva de tratamientos de efecto equivalente y los valores de los parámetros Z y D_{121} , se muestran en las figuras A.2.2. y A.2.3.

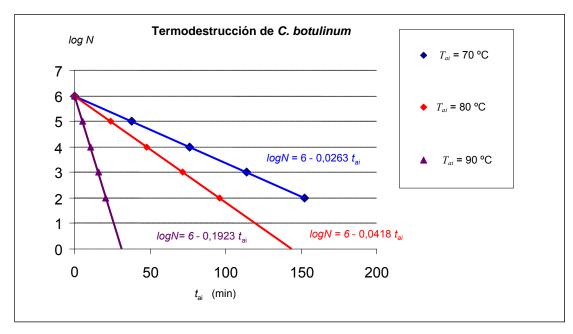


Figura A.2.2. Curvas de supervivencia de *C. botulinum* en solución pH = 6 y 2% NaCl en tratamientos a 70, 80 y 90 °C. D_{70} = 38,02 min, D_{80} = 23,92 min, D_{90} = 5,20 min.

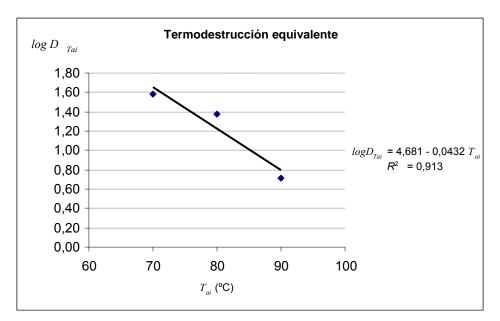


Figura A.2.3. Curva de tratamientos de termodestrucción equivalente de *C. botulinum.* D_{121} = 0,28 min, Z = 23,15 °C

El valor obtenido del tiempo de reducción decimal para *C. botulinum* (0,28 min) estuvo dentro del rango de valores descritos por Brennan *et al.* (1980) $(0,1< D_{121}<0,3)$ pero fue ligeramente superior a los propuestos por Stumbo (1973) $(0,1< D_{121}<0,2)$.

El valor calculado para el parámetro Z (Z = 23,15 °C) fue superior a los propuestos por los autores anteriores (14<Z<18; Stumbo y 8<Z<11; Brennan *et al.*).

Los valores de los coeficientes de correlación y de R^2 en todas las regresiones lineales de las curvas de supervivencia fueron la unidad. Esto fue debido a que las curvas de supervivencia primarias del programa informático de donde se obtuvieron los datos se encontraron, como puede observarse en la tabla A.2.3., de forma linealizada.

Para las temperaturas seleccionadas (70, 80 y 90 °C) el coeficiente estadístico R^2 resultó ser 0,913.

El análisis de validez para la cinética de termodestrucción de *C. botulinum* se muestra en la tabla siguiente.

Tabla A.2.1. Análisis de validez de la cinética de termodestrucción de C. botulinum.

Tratamientos de autoclave. Tiempos de proceso referidos a 90 ºC		Curva de supervivencia a 90 °C n_{real} = 0,1923 $t_{n_{real} \cdot D_{90}}$		
Tratamiento	t_{90}^Z (min)	n _{sonda}	n* _{real}	Error rel. (%)
105 °C-3min	28,50	4,58	5,48	16,45
105 °C-7 min	46,24	7,43	8,89	16,45
105 °C-10 min	57,31	9,21	11,02	16,45
105 °C-20 min	103,90	16,69	19,98	16,45
105 °C-30 min	146,76	23,58	28,22	16,45
107 °C-3 min	33,03	5,34	6,35	15,90
107 °C-6 min	52,89	8,55	10,17	15,90
107 °C-10 min	84,40	13,65	16,23	15,90
107 °C-20 min	124,00	20,05	23,84	15,90
107 °C-30 min	181,28	29,32	34,86	15,90
110 °C-3 min	41,89	6,74	8,05	16,31
110 °C-10 min	93,21	15,00	17,92	16,31
110 °C-15 min	130,12	20,94	25,02	16,31
110 °C-25 min	208,71	33,59	40,13	16,31
110 °C-35 min	285,17	45,89	54,84	16,31
115 °C-3 min	81,14	12,98	15,60	16,80
115 °C-10 min	163,84	26,21	31,51	16,80
115 °C-20 min	295,70	47,31	56,86	16,80
115 °C-30 min	411,69	65,87	79,17	16,80

Los *errores relativos* (%) existentes entre ambos factores de reducción están comprendidos entre el 15,90 y el 16,80 %. Dichos valores fueron demasiado altos para considerar como válidos los ensayos de termodestrucción para la obtención del parámetro Z, con el objetivo de calcular los *tiempos de proceso* de los tratamientos mediante el modelo de Bigelow.

El valor de exactitud de Ross del proceso de validación fue:

$$A_f = 10 \frac{\sum \left| log \left(\frac{n_{sonda}}{n} \right) \right|}{n} = 1,19$$

El valor obtenido para el test de validez de esta cinética de resultó demasiado alto, ya que superó al límite superior considerado como tolerable en el apartado 6.3.1.3. $(A_f = 1,15)$

2.4. Tratamiento de escaldado. Cuantificación de la termodestrucción sobre *C. botulinum*

La cuantificación de la termodestrucción sobre *C. botulinum* obtenida en el tratamiento de escaldado se realiza únicamente mediante el método de Bigelow. Los *tiempos de proceso* a la temperatura de referencia (121 °C) y de trabajo (85 °C) obtenidos se muestran en la tabla siguiente:

Tabla A.2.2. Evolución de la temperatura de producto en el tratamiento de escaldado. Tiempos de proceso para *C. botulinum* a las temperaturas de referencia y de trabajo.

Escaldado: 85 ºC - 1,5 min					
			Clostridium botulinum		
minuto	$T_i(^{\circ}C)$		$L_i=10^{(T_i-121)/23,15)}$		
1	74,62		0,009921		
2	84,60		0,02677		
3	47,25		0,000652		
	$t_{T_{ref}}^{Z}$ (min)	=	0,037343		
	t_{85}^Z (min)	=	1,340541		

De los datos anteriores se deduce que el factor de reducción para *C. botulinum* obtenido por el tratamiento fue:

$$n_{sonda} = \frac{t_{85}^Z}{D_{85}} = \frac{1,34}{10,2} = 0,13$$

La aportación de la termodestrucción conseguida sobre *C. botulinum* en el tratamiento de escaldado se despreció para el cálculo global del efecto esterilizante de los tratamientos de autoclavado.

2.5 Error de proceso

El valor del *error de proceso* calculado en términos de la proximidad entre el tiempo de tratamiento y el *tiempo de proceso* obtenido en el tratamiento de escaldado fue:

$$t_{85} = 1.5 \text{ min}$$

$$t_{85}^{Z}$$
 = 1,34 min

Error de proceso = 10,66 %

2.6. Cuantificación del proceso de cocción botulínica en los tratamientos de autoclavado. Predicción mediante la alternativa III. Error del modelo de Bigelow

Los datos de partida necesarios para cuantificar el efecto de termodestrucción de los tratamientos de autoclavado se muestran en la siguiente tabla.

Tabla A.2.3. Ensayos de termodestrucción de *C. botulinum*. Cálculo de los tiempos de proceso a las temperaturas de ensayo.

	T_{ai} = 70 °C (D_{70} = 38,02 min)		T_{ai} = 80 °C (D_{80} = 23,92 min)		T_{ai} = 90 °C (D_{90} = 5,2 min)	
t _{ai} (min)	$t_{n_{real}\cdot D_{70}}$ (min)	$oldsymbol{n}_{real}$	$t_{n_{real} \cdot D_{80} \; ext{(min)}}$	$oldsymbol{n}_{real}$	$t_{n_{real} \cdot D_{90}}$ (min)	$n_{\it real}$
5,2					5,2	1,0
10,4					10,4	2,0
15,6					15,6	3,0
20,8					20,8	4,0
24,0			23,9	1,0		
38,0	38,0	1,0				
47,8			47,8	2,0		
71,7			71,8	3,0		
76,0	76,0	2,0				
95,7			95,7	4,0		
114,0	114,1	3,0				
152,0	152,1	4,0				

Puede observarse que los tiempos de tratamiento (t_{ai}) fueron los mismos que los tiempos de proceso ($t_{n_{real}\cdot D_{Tai}}$).

La predicción de la termodestrucción conseguida sobre *C. botulinum* en los tratamientos de autoclavado aplicados en el trabajo se muestra en la tabla A.2.4. y el error cometido al cuantificar los tratamientos con el modelo de Bigelow, en la tabla A.2.5.

Tabla A.2.4. Cuantificación del efecto de esterilización sobre *C. botulinum* mediante la alternativa predictiva III.

C. botulinum							
Tratan	nientos	Sc	onda		Alternativa III		
<i>T_{ai}</i> (⁰C)	t _{ai} (min)	n _{sonda}	$t_{T_{ai}}^{Z}$ (min)	lim.inf	$n_{predicho}$	lim.sup	
105	3	4,58	6,41	1,09	4,41	7,73	
105	7	7,43	10,40	1,20	4,55	7,89	
105	10	9,21	12,89	1,26	4,63	8,00	
105	20	16,69	23,37	1,52	4,99	8,46	
105	30	23,58	33,01	1,75	5,32	8,89	
107	3	5,34	6,09	1,20	4,68	8,16	
107	6	8,55	9,75	1,29	4,81	8,32	
107	10	13,65	15,56	1,44	5,01	8,57	
107	20	20,05	22,86	1,61	5,26	8,90	
107	30	29,32	33,42	1,86	5,62	9,38	
110	3	6,74	5,73	1,35	5,09	8,84	
110	10	15,00	12,75	1,52	5,34	9,15	
110	15	20,94	17,80	1,64	5,51	9,38	
110	25	33,59	28,55	1,88	5,88	9,87	
110	35	45,89	39,01	2,11	6,23	10,36	
115	3	12,98	6,75	1,61	5,84	10,07	
115	10	26,21	13,63	1,76	6,07	10,38	
115	20	47,31	24,60	2,01	6,45	10,89	
115	30	65,87	34,25	2,21	6,78	11,35	

En la franja de tratamientos a 115 °C considerada como ideal en el trabajo, los factores de reducción predichos sobre *Clostridium botulinum* fueron de n = 6,07 para el tratamiento de 10 min y de n = 6,45 para el de 20 min.

Tabla A.2.5. Error del modelo de Bigelow en la cuantificación del efecto estimado de esterilización sobre *C. botulinum*.

		C. botulir	num	
Tratan	nientos	Sonda (Bigelow)	Alternativa III	
<i>T_{ai}</i> (⁰C)	t _{ai} (min)	n_{sonda}	$n_{predicho}$	Er (%)
105	3	4,58	4,41	3,85
105	7	7,43	4,55	63,30
105	10	9,21	4,63	98,92
105	20	16,69	4,99	234,47
105	30	23,58	5,32	343,23
107	3	5,34	4,68	14,10
107	6	8,55	4,81	77,75
107	10	13,65	5,01	172,46
107	20	20,05	5,26	281,18
107	30	29,32	5,62	421,71
110	3	6,74	5,09	32,42
110	10	15,00	5,34	180,90
110	15	20,94	5,51	280,04
110	25	33,59	5,88	471,26
110	35	45,89	6,23	636,60
115	3	12,98	5,84	122,26
115	10	26,21	6,07	331,80
115	20	47,31	6,45	633,49
115	30	65,87	6,78	871,53

En el tratamiento resaltado en rojo (uno de los tratamientos seleccionados en el apartado 7.3.), el *error relativo (%)* fue superior al 633 %.

2.7. Resumen de los efectos obtenidos sobre todos los factores de referencia considerados en el trabajo

En la siguiente tabla se muestra el resumen de los efectos obtenidos sobre todos los factores de referencia considerados en el trabajo.

Tabla A.2.6. Efectos de cocción de judías verdes, esterilización sobre *B. coagulans*, inactivación térmica de la peroxidasa y esterilización sobre *C. botulinum*, obtenidos por los tratamientos.

Tratamie	entos	Textura	B. coagulans	Peroxidasa	C. botulinum
T _{ai} (⁰C)	t _{ai} (min)	n_{real}	$oldsymbol{n}_{predicho}$	$oldsymbol{n}_{predicho}$	$n_{predicho}$
105	3	0,58	2,87	3,26	4,41
105	7	0,89	3,05	3,51	4,55
105	10	0,97	3,16	3,66	4,63
105	20	1,08	3,62	4,31	4,99
105	30	1,11	4,07	4,98	5,32
107	3	0,71	3,15	3,48	4,68
107	6	0,80	3,31	3,70	4,81
107	10	0,87	3,57	4,07	5,01
107	20	1,11	3,87	4,46	5,26
107	30	1,18	4,39	5,28	5,62
110	3	0,80	3,59	3,83	5,09
110	10	0,98	3,88	4,24	5,34
110	15	1,10	4,13	4,60	5,51
110	25	1,12	4,62	5,32	5,88
110	35	1,34	5,1	6,02	6,23
115	3	1,02	4,35	4,45	5,84
115	10	1,11	4,65	4,88	6,07
115	20	1,15	5,13	5,55	6,45
115	30	1,31	5,56	6,17	6,78

Es importante destacar que para los tratamientos aplicados en el trabajo a temperaturas comprendidas entre 105 y 115 °C, la termodestrucción conseguida sobre *C. botulinum* fue mayor que la conseguida sobre *B. coagulans*.

En función de los valores D_{121} obtenidos en apartados previos para C. botulinum $(D_{121}=0.28 \text{ min})$ y B. coagulans $(D_{121}=0.0264 \text{ min})$ puede considerarse que, a apriori, C. botulinum fue más termorresistente que B. coagulans ya que obtuvo un valor D_{121} mayor. No obstante, el parámetro Z (que expresa la termorresistencia relativa de los microorganismos) intervino en la cuantificación de ambos efectos de forma diferente y en contra de lo previsto, para este margen de temperaturas, la termodestrucción resultó mayor sobre C. botulinum $(Z=23.15 \, ^{\circ}\text{C})$ que sobre B. coagulans $(Z=10.64 \, ^{\circ}\text{C})$.

Si se aplicaran tratamientos a temperaturas mayores a 115 °C, la termodestrucción sobre *B. coagulans* llegaría a ser en algún momento, mayor que la conseguida sobre *C. botulinum*.

CONCLUSIONES

10. CONCLUSIONES

De acuerdo con los objetivos planteados, considerando el material y los métodos empleados y los resultados descritos anteriormente, en este estudio se obtienen las siguientes conclusiones:

- **1.** De los tratamientos aplicados en el trabajo, los que alcanzan con mayor exactitud los efectos considerados como ideales, n=1,09 para el efecto de cocción de las judías verdes y n=5 para el efecto de esterilización sobre *Bacillus* coagulans, son los aplicados a la temperatura de 115 °C durante 10 y 20 min. El primero (115 °C durante 10 min) consigue un efecto de cocción de n=1,11 y un efecto de esterilización comprendido entre 2,23 y 4,65; mientras que el segundo (115 °C durante 20 min) consigue un efecto de esterilización más ajustado (2,66 < n < 5,13) y un efecto de cocción aceptable (n=1,15).
- **2.** Los valores de los parámetros termocinéticos obtenidos en el trabajo mediante el modelo de Bigelow y del *test de exactitud* de sus cinéticas para los indicadores anteriores son D_{100} = 7,52 min, Z = 16 °C y A_f = 1,13 para la cinética de cocción y D_{121} = 0,0264 min, Z = 10,64 °C y A_f = 1,04 para la cinética de termodestrucción de B. coagulans.
- **3.** Los valores de los mismos parámetros termocinéticos para los indicadores considerados *de apoyo* son D_{100} = 0,0052 min, Z = 7 °C y A_f = 1,21 para la cinética de termoinactivación de la enzima peroxidasa y D_{121} = 0,28 min, Z = 23,15 °C y A_f = 1,19 para la cinética de termodestrucción de *Clostridium botulinum*.
- **4.** El modelo de Bigelow puede utilizarse para la obtención del parámetro Z con el objetivo de calcular los *tiempos de proceso* de los tratamientos (valores F y C tradicionales), pero no para determinar sus efectos dados en términos de los factores de reducción conseguidos, ya que se cometerán errores altos, especialmente cuando se aplican tratamientos a temperaturas superiores a 100 °C

o/y se cuantifican efectos asociados a valores bajos del tiempo de reducción decimal

(D).

- **5.** En nuestro caso, al cuantificar mediante el modelo de Bigelow el efecto de cocción asociado a un valor D_{121} = 0,37 min, se cometen para los tratamientos de 115 °C durante 10 y 20 min unos errores relativos del 1.200 % y 2.260 % respectivamente.
- **6.** Al cuantificar los efectos estimados de esterilización sobre *Clostridium botulinum*, *Bacillus coagulans* y de termoinactivación de la enzima peroxidasa, asociados a valores D_{121} de 0,28, 0,026 y 0,0000052 min respectivamente, los errores relativos asociados al modelo de Bigelow, para la cuantificación del tratamiento de 115 °C durante 20 min, aumentan de forma exponencial desde el 630,5 % para la esterilización de *C. botulinum* al 4.280,7 % para la esterilización de *B. coagulans*, hasta el 911.611 % para la termoinactivación de la peroxidasa.
- **7.** No obstante, para tratamientos aplicados a temperaturas inferiores a 100 °C, como es el caso del escaldado aplicado a las conservas del trabajo (85 °C durante 1,5 min), el modelo de Bigelow comete un error relativo significativamente menor.

Para los indicadores anteriores, dicho error obscila entre el 4 y el 24,3 % para efecto de cocción de las judías verdes, entorno al 32 % para el efecto de termodestrucción sobre *B. coagulans*, entre el 6 y el 55,5 % para el efecto de termoinactivación de la enzima peroxidasa y entorno al 10,6 % para el efecto de termodestrucción sobre *Clostridium botulinum*.

8. Con el método predictivo propuesto, aplicado a la cuantificación del efecto de cocción, se consigue para el tratamiento de 115 °C durante 10 min disminuir el error relativo del 1.200 %, obtenido con el modelo de Bigelow (A_f = 6,97), al 50,3 % en la alternativa que considera los valores predichos (A_f =1,45) hasta el 3,1 % en la misma alternativa para los límites inferiores (A_f = 1,09). Análogamente, para el tratamiento de 115 °C durante 20 min, se consigue disminuir el error desde el 2.260

- %, obtenido con el modelo de Bigelow, al 54,8 % en la alternativa de valores predichos, hasta el 9,5 % en la misma alternativa para los límites inferiores.
- **9.** El modelo predictivo desarrollado en este estudio aplicado a la cuantificación del efecto de esterilización puede contribuir a la elaboración de unos programas de control de calidad de producto final más eficientes en la industria conservera.
- **10.** La metodología llevada a cabo en este trabajo puede servir de apoyo a futuras lineas de investigación cuyo objetivo sea la evaluación del comportamiento del modelo de Bigelow para diferentes productos tratados por calor.

BIBLIOGRAFÍA

10. BIBLIOGRAFÍA

ADAMS, J.B. (1991) "Enzyme inactivation during heat processing of food stuffs". J. Food Sci. Technol., 26, 1-20.

ADAMS, J.B.; BLUNDESTONE, H. (1971) <u>Canned fruits other than citrus. vol II</u> Academic Press. London.

AGUILERA, J.M.; DIOS, J. de (2001) <u>Métodos para medir propiedades físicas en industrias de alimentos</u>. Zaragoza. Acribia.

ALVAREZ, M.D.; CANET, W. (2002) "A comparison of various rheological properties for modelling the kinetics of thermal softening of potato tissue (c.v. Monalisa) by water cooking and pressure steaming". J. Food Sci. Technol., 37, 41-55.

ARNTFIELD, S.D.; CINQ-MARS, C.D.; RYLAND, D.; WATTS, B.; MALCOLMSON, L. (2000) "Evaluation of lentil texture measurements by compression testing". J. Text. Stud., 31, 391-405.

AVALLONE, C.; CRAVZOV, A.L.; MONTENEGRO, S.B.; PELLIZZARI, E. (2002) "Estudio de la actividad de la peroxidasa, pectinesterasa y polifenoloxidasa en el extracto enzimático de sandia (Citrullus vulgaris Schard)". Servicio de Publicaciones audiovisuales. Facultad de Agroindustrias – UNNE. Chaco. Argentina.

ÁVILA I.M.; SCOUT, C.; SILVA, C.; HENDRICKX, M. (1999) "Development of a novel methodology to validate optimal sterilization conditions for maximizing the texture quality of white beans in glass jars". Biotechnol. Prog., 15, 565-572.

BALL, C. (1923) "Thermal process time for canned fooods". Nath. Res. Council, Bull. 7-1, 37. Washinton.

BALL, C.; OLSON, F. (1957) Sterilization in food technology. McGraw Hill. New York.

BIGELOW, W.D. (1921) "The logarithmic nature of thermal death time curves". J. Infect. Dis., 29, 528-536.

BOURNE, M.; HUANG,Y. (1983) "Kinetics of thermal softening of vegetables". J. Text. Stud., 14, 1-9.

BRENNAN, J.G.; BUTTERS, J.R.; COWELL, N.D.; LILLY, A.E.V. (1998) <u>Las</u> operaciones de la ingeniería de los alimentos. Zaragoza. Acribia.

BROWN, K.L.; GAZE, J.E.; McCLEMENT, R.H.; WITHERS, P. (1988) "Construction of a computer controlled thermorresistometer for determination of the heat resistance of bacterial spores over the temperature range 100-150 °C". J. Food Sci. Technol., 23, 361-371.

CAMERON, E.J.; ESTY, J.R. (1940) "Comments on the microbiology of spoilage in canned food". Food Res., 5/459

CASP, A.; ABRIL, J. (1999) <u>Procesos de conservación de alimentos</u>. Madrid. Mundi-Prensa.

CONDÓN, S.; LOPEZ, P.; ORIA, R.; SALA, F.J. (1989) "Thermal death determination: Desing and evaluation of a thermorresistometer". J. Food Sci., 54/2, 451-457.

DAVID, J.R.D. (1985) "Kinetics of inactivation of bacterial spores at high temperatures in a computer-controlled reactor". Tesis doctoral. Universidad de California.

DAVID, J.R.D.; MERSON, R.L. (1990) "Kinetics parameters for inactivation of Bacillus stearothermophillus at high temperatures". J. Food Sci., 55/2, 488-515.

DUARTE, A.C.P.; COELHO, M.A.Z.; LEITE, S.G.F. (2002) "Identification of peroxidase and tyrosinase in green coconut water". Ciencia y Tecnología

Alimentaria. Sociedad Mexicana de Nutrición y Tecnología de Alimentos, 3/5, 266-270.

DURAN, L.; LORENZO, P.; RODRIGO, M. (1972) <u>Especificaciones del proceso de</u> fabricación de conservas de judías verdes. Valencia (España). IATA

ESKIN, N.A.M. (1990) Biochemistry of foods. California (EUA). Academic Press.

FAVIER, J.C.; RIPERT, J.I.; TOQUE, C.; FEINBERG, M. (1995) <u>Répertoire general</u> des aliments. Table de composition. 2^{eme} ed. Paris (France). INRA

FELLOWS, P. (1994) Tecnología del procesado de los alimentos. Zaragoza. Acribia.

FRANKLIN, J.G.; WILLIAMS, D.J.; CHAPMAN, H.; CLEGG, L.F.L. (1958) "Methods of assessing the sporocidal efficiency of an ultra-high temperature milk sterilizing plant II. Experiments with suspensions of spores in milk." J. Appl. Bacteriol., 21, 47-50

GARCÍA, C.; GARCÍA, T.; GARCÍA, C.; VILLARINO, A. (2000) <u>Elaboración de conservas vegetales</u>. Secretariado de Publicaciones y Medios audiovisuales de la Universidad de León. ISBN.84-7719-991-4

GIANNAKOUROU, M.C.; TAOUKIS, P.S. (2003) "Kinetic modelling of vitamin C loss in frozen green vegetables under variable storage conditions". Food Chem., 83, 33-41.

GÜNES, B.; BAYINDIRLI, A. (1993) "Peroxidase and lipoxigenase inactivation during blanching of green beans, peas and carrots". Lebensm.-Wiss. U.-Technol., 25/5, 406-410.

HAYES, G.D. (1992) <u>Manual de datos para ingeniería de los alimentos</u>. Zaragoza. Acribia.

HERSOM, A.C.; HULLAND, E.D. (1995) Conservas alimenticias. Zaragoza. Acribia.

HOLDSWORTH, D.; SIMPSON, R. (2007) <u>Thermal processing of packaged foods</u>. 2nd ed. Berlin (Germany). Springer.

HOYEM, T.; KVALE, O. (1977) "Physical, chemical and biological changes in food caused by thermal processing". Applied Science Publishers, London.

INGALLINERA, B.; BARBAGALLO, R.N.; SPAGNA, G.; PALMERI, R.; TODARO, A. (2005) "Effects of termal treatments on pectinesterase activity determined on blood orange juices". Enzyme Microb. Techol., 36, 258-263.

JUNEJA V.K.; EBLEN, B.S. (1995) "Influence of sodium chloride on thermal inactivation and recovery of nonproteolytic Clostridium botulinum type B strain KAP B5 spores". J. Food Protect., 58/7, 813-816.

JUNEJA, V.K.; EBLEN, B.S.; MARMER, B.S.; WILLIAMS, A.C.; PALUMBO S.A.; MILLER, A.J. (1995) "Thermal resistance of nonproteolytic type B and type E Clostridium botulinum spores in phosphate buffer and turkey slurry". J. Food Protect., 58/7, 758-763.

JUNEJA, J.K.; MARMER, B.S.; PHILLIPS J.G.; MILLER, A.J. (1995) "Influence of the intrinsic properties of food on thermal inactivation of spores of nonproteolytic Clostridium botulinum. Development of a predictive model". J. Food Safety, 15, 349-364.

KALA, A.; PRAKASH, J. (2006) "Comparative evaluation of the nutrient composition and sensory attributes of tour vegetables cooked by different methods". J. Food Sci. Technol., 41, 163-171.

LING, A.C.; LUND, D. B. (1978) "Determining kinetic parameters for thermal inactivation of heat resistant and heat labile isoenzymes from thermal destruction curves". J. Food Sci. Technol., 43, 1307-1310.

LOPEZ, R.; ABRIL, J.; CASP, A. (2002) "Cinética de cocción de vegetales". Actas del 2º Congreso Español de Ingeniería de Alimentos [cd-rom]. (2002) Universitat de Lleida. ISBN 84-8409-162-7

LUND, D.B. (1975) <u>Nutritional evaluation of food processing</u>. Wesport, CT. Avi Publishing Co.

LUND, D.B. (1982) "Quantifying reactions influencing quality of foods: texture, flavor and appareance". Journal of Food Processing and Preservation, 6, 133-153.

LUND, D.B. (1983) "Kinetics of fisical changes in foods". American Society of Agricultural Engineers. Winter Meeting. Chicago II.

MAFART, P. (1994) <u>Ingeniería industrial alimentaria. vol I</u>. Zaragoza. Acribia.

MALLIDIS, C.G.; SCHOLEFIELD, J. (1985) "Determination of the heat resistence of spores using a solid heating block system". J. Appl. Bacteriol., 59, 407-411.

MARTINS R.C.; SILVA, C.L.M. (2004) "Green beans (Phaseolus vulgaris L.) quality lost upon thawing". J. Food Eng., 65, 37-48.

NEVARES, I.G. (2002) "Contribución al cálculo rápido de la media logarítmica de la diferencia de temperaturas en el condensador de una instalacción de refrigeración". Tesis doctoral. Universidad de Valladolid.

NOVAK, J.S.; TUNICK M.H.; JUNEJA, V.K. (2001) "Heat treatment adaptations in Clostridium perfringens vegetative cells". J. Food Protect., 64/10,1527-1534.

O.E.P.M. (2003) "Termorresistómetro para la medida de la resistencia al calor de microorganismos en condiciones controladas de temperatura, capaz de simular condiciones de calentamiento isotermico y no isotérmo". Servicio de publicaciones audiovisuales de la Oficina Española de Patentes y Marcas.

PEÑAS, M. (2007) "Estudio del efecto de la temperatura de cocción en la calidad nutricional y la textura en un producto de V gama esterilizado a partir de judía verde (Phaseolus vulgaris var. Perona)". Servicio de publicaciones audiovisuales de la Escuela Superior de Agricultura. Universidad Politécnica de Catalunya.

PFLUG, I.H; ESSELEN, W.B. (1953) "Development and application of and apparatus for study of thermal resistente of bacterial spores and thiamine at temperaturas above 250 °F". J. Food Technol., 7, 237-241.

RAO, M.A.; LUND, D.B. (1986) "Kinetics of thermal softening of foods. A review". Journal of Food Processing and Preservation, 10, 311-329.

RAYMOND, H, M. (1986) <u>Classical and modern regresión with applications.</u> Belmont (California). Duxbury Press.

REDD, G. (1975) Encymes in Food Processing 2ª ed. New York. Academic Press.

REES, J.A.G.; BETTISON, J. (1994) <u>Procesado térmico y envasado de los</u> alimentos. Zaragoza. Acribia.

RODRIGO, M; LORENZO, P.; SAFÓN, J. (1983) "Optimización de las técnicas de esterilización por calor. I. Planteamientos generales". Rev. Agroquím. Tecnol. Aliment., 20/2, 3-11.

RODRIGO, M; LORENZO, P.; SAFÓN, J. (1983) "Optimización de las técnicas de esterilización de alimentos por calor.II: Concepto actualizado de la esterilización por calor y efectos de la misma sobre los alimentos. Cinética y parámetros". Rev. Agroquím. Tecnol. Aliment., 20/4, 424-443.

RODRIGO, M.; MARTINEZ, A. (1988) "Determination of a process time for a new product: canned low acid artichoke hearts". J. Food Sci. Technol., 23, 31-41.

RODRIGO, M; MARTINEZ, A.; CARBALLO, B. (1991) "Medida de la termorresistencia de microorganismos. Métodos de medida". Rev. Agroquím. Tecnol. Aliment., 31/4, 175-188.

RODRIGO, M.; SAFÓN, J. (1982) "Optimización del proceso de esterilización-cocción. Bases científicas". Rev. Agroquím. Tecnol. Aliment., 21/1, 22-37.

RODRIGO, M; SAFÓN, J.; LORENZO, P. (1983) "Optimización de las técnicas de esterilización por calor.III. Medida y control de temperatura". Rev. Agroquím. Tecnol. Aliment., 23/1, 11-26.

ROSENTHAL, A. J. (1999) <u>Food texture. Measurement and perception.</u> Gaithersburg. Maryland. Aspen.

ROSS, T. (1996) "Indices for performance evaluation of predictive models in food microbiology". J. Appl. Bacteriol., 81, 501-508.

ROUDOT, A.C. (2004) Reología y análisis de la textura de los alimentos. Zaragoza. Acribia.

SAKHAROW, I.; BAUTISTA, A.G.; SAKHAROVA, I.V.; ROJAS, A.; PLETJUSCHKINA, O. (1999) "Peroxidase of tropical plants". Rev. Col. Quimica, 28, 97-106.

SCOTT-BLAIR, G. (1958) "Reology in food research". Food Res., 8, 1-56.

SHIN, C.; CUEVAS, R., PORTER, U.L.; CAYAN, C.H. (1982) "Inactivation of Bacillus stearothermophillus spores in soybean water extracts at ultrahigh temperatures in a scraped heat exchanger". J. Food Protect., 45/2, 145-149.

SIELAFF, H. (2000) <u>Tecnología de la fabricación de conservas</u>. Zaragoza. Acribia.

SILLA, M.H. (1992) "Resistencia térmica bacteriana. Parámetros de medida y su control". Alimentación Equipos y Tecnología, 5/92, 57-61.

SMITH, T.; TUNG, M. (1982) "Comparison of formula methods of calculating thermal process lethality". J. Food Sci. Technol., 47, 626-630.

SOLOMON, W.K.; JINDAL, V.K. (2003) "Comparison of mechanical tests for evaluating textural changes in potatoes during thermal softening". J. Text. Stud., 33, 529-542.

SOYSAL, C.; SÖYLEMEZ, Z. (2005) "Kinetics and inactivation of carrot peroxidase by heat treatment". J. Food Eng., 68, 349-356.

STERN, J.A., PROCTOR, B.E. (1954) "A micro-method and apparatus for the multiple determination of rates of destruction of bacteria and bacterial spores subjected to heat". J. Food Technol., 8, 139-143.

STOLLE-SMITS, T.; DONKERS, J. A.; VAN DIJK, C. (1998) "An electron microscopy study on the texture of fresh, blanched and sterilized green bean pods (Phaseous vulgaris L.)". Lebensm.-Wiss. U.-Technol., 31, 237-244.

STUMBO, C.R. (1953) "A technique for studying resistente of bacterial spores to temperatures in the higher range". J. Food Technol., 2, 228-240.

STUMBO, C.R. (1973) <u>Thermobacteriology in Food Processing</u> 2nd ed. New York, London. Academie Press.

TIJSKENS, L.; SCHIJVENS, E. (1987) <u>Influence of HTST treatments on product quality and nutritive value of food and feed</u>; Preservation criteria based on texture kinetics, 84 -102. Third Workshop COST 91 bis, Wageningen, Netherlandas. K.O. Paulus.

Bibliografía

VILLALONGA, M. (1995) "Aislamiento, purificación y caracterización cinética de la peroxidasa de la raíz de yuca". Facultad de Ciencia y Tecnología de los Alimentos. Universidad Central de Venezuela.

WONG, D. W. S. (1995) Química de los alimentos. Zaragoza. Acribia.

Enlaces a Internet

Cinética de termodestrucción de *Clostridium botulinum*. Programa *PMP61* (*Pathogen Modeling Program*, v. 6.1) de Mark Tamplin USDA (United States. Department of Agriculture) http://www.ars.usda.gov/Services/docs.htm?docid=11550

Data-logger Microdaq: http://www.microdaq.com

Data-logger Picovacq: http://www.tmi-orion.com

Infoagro: http://www.infoagro.com

Normas de envasado USDA (Departemt of Agriculture. United States): http://www.usda.gov

Texturómetro ANALYSER TA: http://www.stablemicrosystems.com

ÍNDICE DE FIGURAS Y TABLAS

11. ÍNDICE DE FIGURAS

Figura 4.1. Curva genérica de supervivencia de una población microbiana N bajo el efecto de una temperatura T	18
Figura 4.2. Curva de tratamientos de efecto equivalente.	19
Figura 4.3. Termorresistómetro de Stumbo	23
Figura 4.4. Termorresistómetro de David y Merson.	24
Figura 4.5. Termorresistómetro de Campdem	25
Figura 4.6. Termorresistómetro " <i>Mastia</i> ".	27
Figura 4.7. Tinción de Gam de <i>Bacillus coagulans</i> (1000 x)	35
Figura 4.8. Determinación del <i>punto crítico</i> de un envase	45
Figura 4.9. Representación esquemática del sistema ideal de medida de la textura	51
Figura 4.10. Estructura de la célula vegetal.	52
Figura 4.11. Diagrama sobre los cambios en las propiedades de fractura del tejido vegetal comoresultado de un tratamiento térmico.	54
Figura 4.12. Escaneado con microscopio electrónico de los planos de rotura de judías verdes crudas y después de un tratamiento térmico	55
Figura 4.13 Representación esquemática de diferentes tipos de curvas fuerza-distancia en un test de punción	56
Figura 4.14. Judías verdes arracimadas	58
Figura 4.15. Proceso de elaboración de una conserva de judías verdes	66
Figura 4.16. Autoclave de carga horizontal. Sección transversal y longitudinal	71
Figura 4.17. Autoclave horizontal de vapor y ventilado	72
Figura 4.18. Autoclave horizontal de agua caliente pulverizada.	73
Figura 4.19. Autoclave horizontal de agua caliente inundado	73
Figura 4.20. Estudio de la distribución de las temperaturas de entorno	75
Figura 4.21. Esquema del sistema de medida con termopar.	76
Figura 4.22. Racores del envase. Cableado interno (envase - autoclave)	78
Figura 4.23. Racores externos. Cableado externo (autoclave - sistema de registro)	78
Figura 4.24. Registrador-calculador automático del valor F modelo ELLAB CTF 9008	.79

Figura 4.25. Registrador con modulo de programación externo y sonda axial, modelo EBI 10-T23X	80
Figura 4.26. Esquema de instalación del registrador en el envase y del conjunto en el autoclave	80
Figura 4.27. Registrador Micro-Daq. Tamaño en relación con varios envases	81
Figura 4.28. Registrador Picovacq utilizado en el trabajo	81
Figura 4.29. Registrador Picovacq. Tamaño en relación con varios envases	81
Figura 6.1. Judías verdes extrafinas de la var. Helda enteras y en cortes de 2 cm	89
Figura 6.2. Esquema del plan de trabajo	91
Figura 6.3. Gradilla con tubos de ensayo en baño termostático para los ensayos de termodestrucción de <i>B. coagulans</i>	95
Figura 6.4. Detalle del tubo de control.	95
Figura 6.5. Baño termostatizado y cestilla plástica perforada con judías verdes troceadas para ensayos de cocción	96
Figura 6.6. Texturómetro Texture Analyser XT2.	97
Figura 6.7. Detalle de sonda de corte simple.	97
Figura 6.8. Autoclave vertical Autester E-30 Dry-PV. Características técnicas	99
Figura 6.9. Cerradora Ezquerra 2026 de envases metálicos.	100
Figura 6.10. Baño de agua fría para enfriamiento de envases post-tratamiento	100
Figura 6.11. Vacuómetro	101
Figura 6.12. Data-logger Picovacq. Características principales	101
Figura 6.13. Soporte del <i>data-logger</i> para su sujeción en el envase	102
Figura 6.14. Soporte y data-logger instalados en el envase.	102
Figura 6.15. Aspecto de un envase abierto tras el tratamiento térmico.	102
Figura 6.16. Componentes de la sonda Picovaq	103
Figura 6.17. Cable interface de conexión del Picovacq al ordenador	103
Figura 7.1. Curvas de supervivencia de <i>B. coagulans</i> .	123
Figura 7.2. Grafica de tratamientos de termodestrucción equivalente para <i>B. coagulans</i> .	124

Figura 7.3. Curvas de supervivencia de <i>B. coagulans</i> linealizadas. Ecuación de la curva de supervivencia a 95 °C referida a <i>nreal</i>
Figura 7.4. Curvas de cocción de judías verdes extrafinas
Figura 7.5. Curva de tratamientos de cocción equivalente de judías verdes extrafinas 130
Figura 7.6. Curvas de cocción linealizadas. Ecuación de la curva de cocción a 92 $^{\circ}$ C referida a n_{real}
Figura 7.7. Grafica de penetración de calor y curva de evolución del valor F rendidas por el software de la sonda Picovacq
Figura 7.8. Listado de evolución de temperaturas y valor F para un tratamiento sin carga a 121 °C durante 5 min
Figura A.1.1. Curvas de inactivación térmica de la enzima peroxidasa
Figura A.1.2. Curva de tratamientos de termoinactivación equivalente de la peroxidasa 172
Figura A.2.1. Portada del programa <i>PMP61 (Pathogen Modeling Program</i> , v.6.1)
Figura A.2.2. Curvas de supervivencia de <i>C. botulinum</i>
Figura A.2.3. curva de tratamientos de termodestrucción equivalente para <i>C. botulinum</i> 183

12. ÍNDICE DE TABLAS

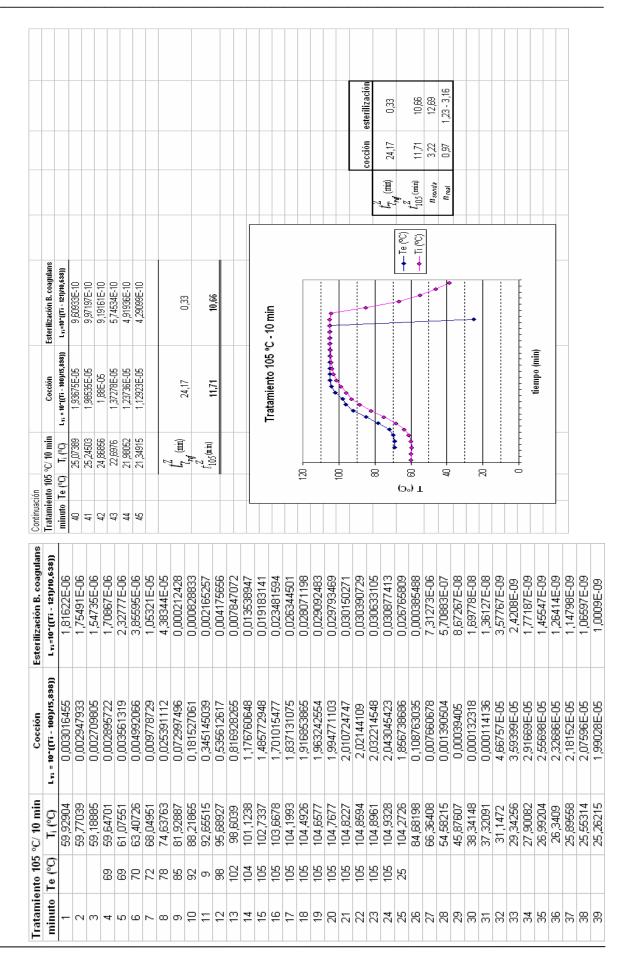
Tabla 4.1. Clasificación de alimentos según su pH y microorganismos de referencia	30
Tabla 4.2. Parámetros termocinéticos de microorganismos de referencia	.31
Tabla 4.3. Factores de reducción recomendados para microorganismos de referencia	.32
Tabla 4.4. Parámetros termocinéticos de cocción de algunos vegetales	36
Tabla 4.5. Parámetros termocinéticos de algunos factores de calidad de vegetales	.37
Tabla 4.6. Factores que afectan a la penetración de calor en el envase	.42
Tabla 4.7. Pesos escurridos en conservas de judías verdes	.62
Tabla 4.8. Factores de calidad y defectos en conservas de judías verdes	64
Tabla 4.9. Composición química de judías verdes crudas y cocidas	65
Tabla 4.10. Calibres de judías verdes	.68
Tabla 6.1. Características técnicas de la sonda Picovacq	.105
Tabla 7.1. Ecuaciones de las curvas de supervivencia de <i>B. coagulans</i> y coeficientes estadísticos	.124
Tabla 7.2. Ecuación de la curva de termodestrucción equivalente de <i>B. coagulans</i> y coeficientes estadísticos	.125
Tabla 7.3. Análisis de validez de la cinética de termodestrucción de B. coagulans	.126
Tabla 7.4. Ensayos de termodestrucción de <i>B. coagulans</i> . Cálculo de los tiempos de proceso a las temperaturas de ensayo	.127
Tabla 7.5. Ecuaciones de las curvas de cocción de judías verdes y coeficientes estadísticos	. 129
Tabla 7.6. Ecuación de la curva de tratamientos de cocción equivalente de judías verdes y coeficientes estadísticos	.131
Tabla 7.7. Análisis de validez de la cinética de cocción de judías verdes	.132
Tabla 7.8. Ensayos de cocción de judías verdes. Cálculo de los tiempos de proceso a las temperaturas de ensayo	. 133
Tabla 7.9. Error del modelo de Bigelow en la cuantificación del efecto de cocción	.135
Tabla 7.10. Valores de $n_{{\it real}}$ y $t_{T_{ai}}^Z$ de los tratamientos térmicos de autoclavado	.136
Tabla 7.11. Ecuaciones de la regresión múltiple y base correctora de la alternativa I	.137
Tabla 7.12. Factores de reducción obtenidos por los tratamientos según la alternativa I	.138

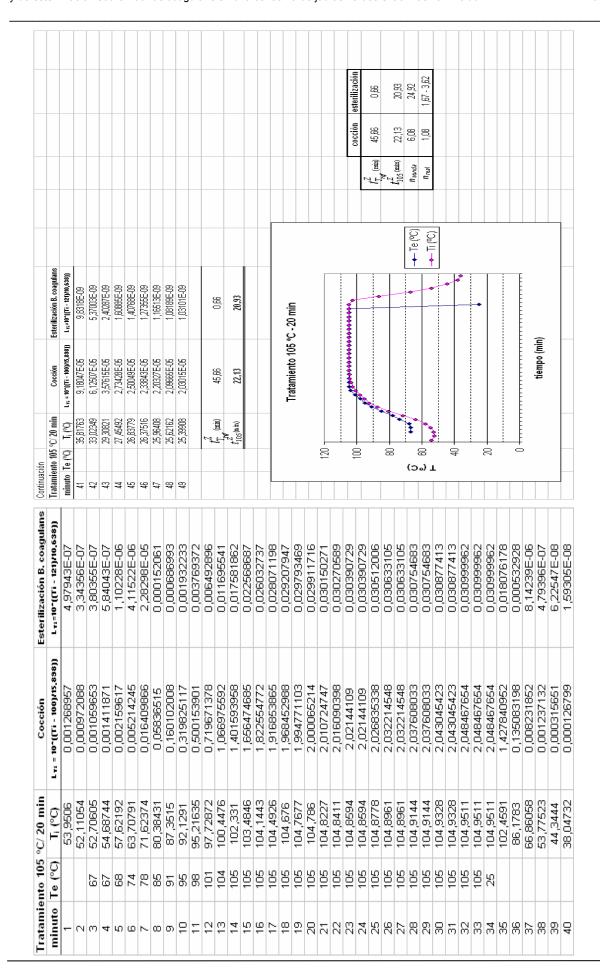
Tabla 7.13. Ecuaciones de la regresión múltiple y base correctora de la alternativa II	140
Tabla 7.14. Factores de reducción obtenidos por los tratamientos según la alternativa II	142
Tabla 7.15. Valores de $n_{{\it real}}$ y $t_{n_{{\it real}} \cdot D_{{\it Tai}}}$ obtenidos en los ensayos de cocción de las judías verdes	144
Tabla 7.16. Ecuaciones de la regresión múltiple y base correctora para la alternativa III	145
Tabla 7.17. Factores de reducción obtenidos por los tratamientos según la alternativa III	146
Tabla 7.18. Valores de $n_{{ extit{real}}}$ y $t_{n_{{ extit{real}}} \cdot D_{{ extit{Tai}}}}$ obtenidos en los ensayos de termodestrucción de $ extit{B.}$ coagulans	148
Tabla 7.19. Evaluación del <i>error de proceso</i> de la alternativa predictiva III para el cálculo del efecto de esterilización sobre <i>B. coagulans</i>	149
Tabla 7.20. Valores de los <i>tiempos de proceso</i> $t_{T_{ai}}^{Z}$ de los tratamientos de esterilzación sobre <i>B. coagulans</i>	150
Tabla 7.21. Ecuaciones de la regresión múltiple y base correctora de la alternativa III para <i>B. coagulans</i>	151
Tabla 7.22. Cuantificación del efecto estimado de esterilización sobre <i>B. coagulans</i> mediante la alternativa predictiva III	152
Tabla 7.23. Error del modelo de Bigelow en la cuantificación del efecto estimado de esterilización	153
Tabla 7.24. Selección de tratamientos en base a los criterios de cocción y esterilización ideales	155
Tabla 7.25. Cuantificación del tratamiento sin carga a 121 °C durante 5 min mediante una hoja de cálculo Excel	159
Tabla 7.26. Evolución de la temperatura de producto en el tratamiento de escaldado. Tiempos de proceso para el efecto de cocción a las temperaturas de referencia y de trabajo	162
Tabla 7.27. Evolución de la temperatura de producto en el tratamiento de escaldado. Tiempos de proceso para <i>B. coagulans</i> a las temperaturas de referencia y de trabajo	163
Tabla A.1.1. Análisis de validez de la cinética de inactivación térmica de la peroxidasa	173
Tabla A.1.2. Evolución de la temperatura de producto en el tratamiento de escaldado. Tiempos de proceso para el efecto de termoinactivación de la peroxidasa a las temperaturas de referencia y de trabajo	175
Tabla A.1.3. Ensayos de termoinactivación de la peroxidasa. Cálculo de los tiempos de proceso a las temperaturas de ensayo	176

Tabla A.1.4. Cuantificación del efecto de termoinactivación de la peroxidasa mediante la alternativa predictiva III
Tabla A.1.5. Error del modelo de Bigelow en la cuantificación del efecto estimado de termoinactivación de la peroxidasa
Tabla A.2.1. Análisis de validez de la cinética de termodestrucción de <i>C. botulinum</i> 185
Tabla A.2.2. Evolución de la temperatura de producto en el tratamiento de escaldado. Tiempos de proceso para <i>C. botulinum</i> a las temperaturas de referencia y de trabajo 186
Tabla A.2.3. Ensayos de termodestrucción de <i>C. botulinum</i> . Cálculo de los tiempos de proceso a las temperaturas de ensayo
Tabla A.2.4. Cuantificación del efecto de esterilización sobre <i>C. botulinum</i> mediante la alternativa predictiva III
Tabla A.2.5. Error del modelo de Bigelow en la cuantificación del efecto estimado de esterilización sobre <i>C. botulinum</i>
Tabla A.2.6. Efectos de cocción de judías verdes, esterilización sobre B. coagulans, inactivación térmica de la peroxidasa y esterilización sobre C. botulinum, obtenidos por los tratamientos

ADDENDA

13. ADDENDA. Tratamientos térmicos de autoclavado. Valores C y F a las temperaturas de referencia ($t_{T_{ref}}^Z$) y valores de los tiempos de proceso $t_{T_{ai}}^Z$

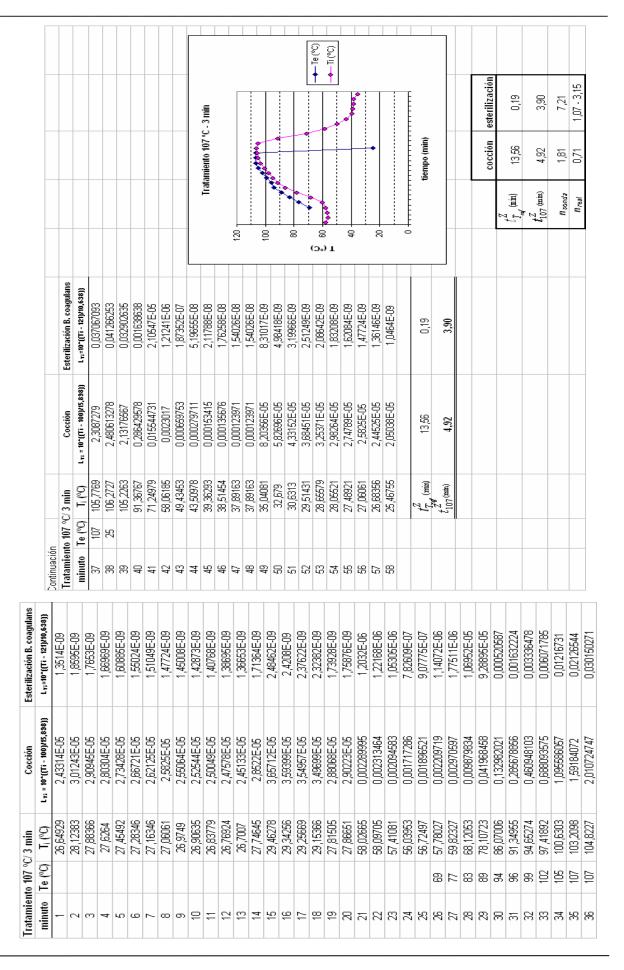

Tratami	entos a 105 °C	222
	■ 105 °C – 3 min	
	■ 105 °C – 7 min	
	■ 105 °C – 10 min	
	■ 105 °C – 20 min	
	■ 105 °C – 30 min	
Tratami	entos a 107 °C	228
	■ 107 °C – 3 min	
	■ 107 °C – 6 min	
	■ 107 °C – 10 min	
	■ 107 °C – 20 min	
	■ 107 ° C – 30 min	
Tratami	entos a 110 °C	234
	■ 110 °C – 3 min	
	■ 110 °C – 10 min	
	■ 110 °C – 15 min	
	■ 110 °C – 25 min	
	■ 110 ° C – 35 min	
Tratami	entos a 115 °C	240
	■ 115 °C – 3 min	
	■ 115 °C – 10 min	
	■ 115 °C – 20 min	
	■ 115 °C – 30 min	
Resum	en	246
Efecto d	de inactivación térmica de la peroxidasa	250
Efecto o	de esterilización sobre <i>C. botulinum</i>	274

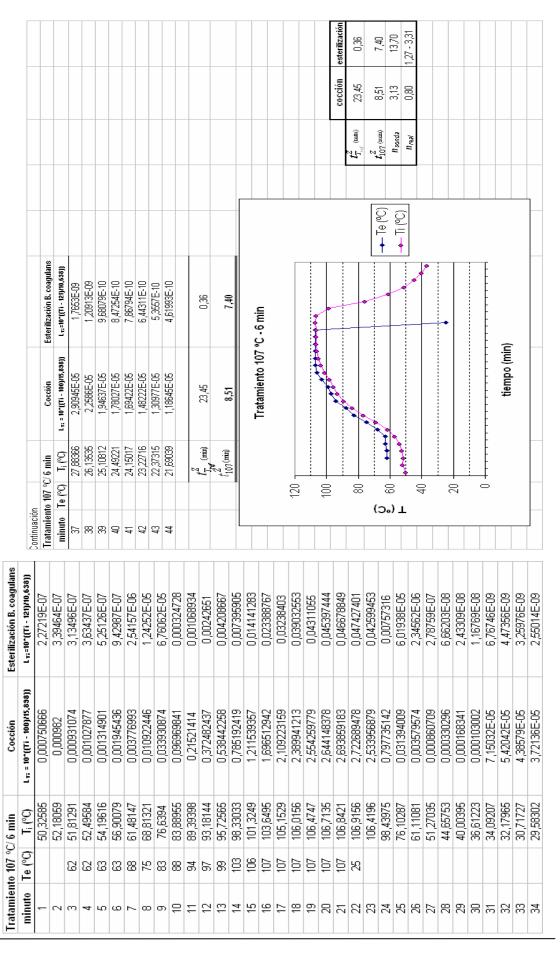

- Tratamientos a 105 °C


- 105 °C 3 minutos
- 105 °C 7 minutos
- 105 °C 10 minutos
- 105 °C 20 minutos
- 105 °C 30 minutos

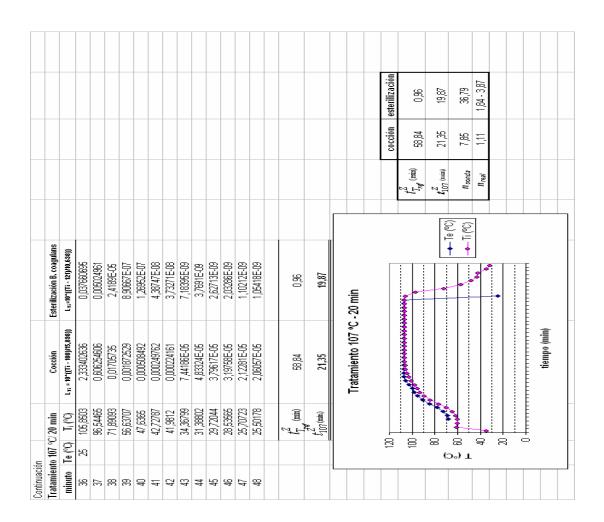
											I ratam lento 105 °C - 3 min		120		100			+	09			20			(ni m) en eneig	nem bo (mm)				cocción esterilización	$t_{T_{eff}}^Z$ (min) 10,88 0,13	$\mathcal{L}_{10S \text{ (rwin)}}^Z$ 5,27 4,24	1,45	0.58	00,0	0000	200
Esterilización B. coagulans	L _{T:} =10^((Ti - 121)/10,638))	1,70097E-09	2,72666E-09	2,89386E-09	1,7653E-09	1,58514E-09	1,45547E-09	1,35643E-09	1,28303E-09	4,97943E-07	5,79623E-07	4,84887E-07	5,97507E-07	8,77215E-07	1,68922E-06	6,03652E-06	3,24312E-05	0,00017902	0,000760499	0,002073717	0,003936174	0,007109694	0,012608343	0,018584793	0,023481594	0,026765809	0,028071198 L	0,009117661	4,96073E-05	1,78871E-06	2,09071E-07	4,91145E-08	1,73637E-08	1.65385E-08		1,6171E-08	1,6171E-08 5,7215E-09
_	Lr: = 10^((Ti - 100)/15,898))	2,83807E-05	3,89182E-05	4,04993E-05	2,90945E-05	2,70725E-05	2,55698E-05	2,43919E-05	2,35006E-05	0,001268957	0,001404711	0,001246595	0,001433568	0,001853557	0,002873628	0,006738023	0,020755008	0,06510056	0,171370859	0,335311528	0,514857454	0,76472754	1,122002204	1,45460053	1,701015477	1,856738686	1,916853865	0,903224476	0,027582566	0,002985806	766607000,0	0,000269347	0,000134323	0,000130017		0,000128076	0,000128076 6,3905E-05
€ °C/3 min) T; (°C)	27,71215	29,89225	30,1672	27,88366	27,38633	26,99204	26,66643	26,40942	53,9506	54,65234	53,82784	54,79274	9299999	59,59413	65,47801	73,24562	81,13837	87,82113	92,45558	95,4164	98,14799	100,7948	102,5873	103,6678	104,2726	104,4926	99,29724	75,20921	59,85853	49,94128	43,24909	38,44531	38,22035		38,11653	38,11653 33,31639
- 00 □	minuto Te (°C)	1	2	9	4	5	و	7	00	0	0	11 62											`	_	24 105	`	26 25	27	28	29	8	93	32	83		34	35
Te (°) Ti (°) Continue Co	27/215 288907E-05 1/7009E-09 29/206E-09 29/206E	29 89225 38 81 81 82 60 2 7 623 66 69 0 3 7 633 66 69 0 3 7 633 66 69 0 3 7 634 66 90 3 7 634 66 90 3 7 634 66 90 3 7 634 66 90 3 7 634 66 90 3 7 634 66 90 3 7 634 66 90 3 7 634 66 90 3 7 634 66 90 3 7 634 66 90 3 7 634 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3 7 6 64 66 90 3	201672 404693E-G6 1,5654E-G9 1,5654E	27, 88366 2, 20046E-05 1,5651E-09 2,5680E-05 1,5651E-09 2,5806E-05 1,5651E-09 2,5806E-05 1,5651E-09 2,5806E-05 1,5651E-09 2,5806E-05 1,5651E-09 2,590204 2,5680E-05 1,2654T-09 2,5806E-05 1,2803E-07 2,5806E-05 1,2803E-07 2,5902E-07	26 98053 2 /07/25E-05 1,86614E00 26 98054 2,55698E-05 1,46547E-09 26 66643 2,55698E-05 1,36343E-07 55 66653 2,5668E-05 1,2633E-07 62 54,65234 0,00148695 4,8487E-07 63 54,79274 0,00148695 4,8487E-07 64 56,56576 0,00148695 1,8948E-07 64 56,56576 0,00148695 1,8948E-07 64 56,56576 0,00148695 1,8948E-07 64 56,56576 0,00148695 1,8948E-07 68 59,9413 0,00186567 1,87215E-07 71 66,47801 0,00186567 1,87215E-07 80 81,4887 0,00186568 0,000706499 1,7217689 81 81,4887 0,17177689 0,000706499 1,7217689 82 81,4888 0,174776 0,000706499 1,7217689 83 81,4799 0,7647764 0,000706943 1,7217689 84 81,4799 0,7647764 0,000706943 1,7217689 85 824,4888 0,000706997 1,76871646 1,76871646	26 99024 2 56090E-OS 1 4564/E-OS 26 96643 2 46919E-OS 1 25633E-OS 1 25631E-OS 2 3631E-OS 3 36	26 68643 2 43919E-06 1 38643E-09 26 40342 2 35000E-06 1 28030E-09 52 95040 0 1001289657 4 79243E-07 1 720 62 53 9504 0 1001289657 4 79245E-07 1 120 63 64 78274 0 1001286955 6 77215E-07 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25 40842 2 53006E-06 1,28308E-09 Tratamiento 105 °C-3 min 62 53 82784	53,9506 0,001,289957 4,979,43E-U7 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120	E.S. 58274 0,001.404711 5,796.23E-07 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	E. 2. 53 92784 0,001246595 484897E-07 120 120 140 120 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 140 14	63 54/9274 0,000139568 5,97507E-07 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120 120	66 69,5413 0,000873628 1,689278-06 1,000873628 1,000873628 1,000873628 1,000873628 1,000873628 1,000873628 1,000873628 1,000873628 1,000873628 1,000873628 1,000873628 1,000873628 1,000873777 1,000873777 1,000873777 1,000873777 1,000873777 1,000873777 1,000873777 1,000873638 1,00087377 1,00087377 1,00087377 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087388 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087389 1,00087	66 59,59413 0,002/3628 1,68922E-06 100 71 64,78011 0,006738023 6,08622E-06 90 80 81,7387 0,006738023 3,24312E-05 80 86 81,13837 0,00671006 3,24312E-05 80 92 87,24562 0,020710249 0,000710249 0,000710249 94 24,6568 0,336311628 0,000710396174 20 96 24,6568 0,74672754 0,000710396174 20 101 396,14799 0,74472754 0,00071039637 20 104 100,7248 1,72002204 0,00170396174 40 105 10,2472 1,316653865 0,0027446 0,002746809 106 10,4272 1,316653865 0,00317761 49 25 10,4202 1,316653865 0,00317761 4,500738606 25 10,4202 1,316653865 0,00317761 1,73871E-08 26 10,60033817 1,436508 0,00317761 27	71 65,47801 0,006738023 6,03652E-06 80 73,24862 0,000780499 72,24862 0,000780499 72,24862 0,000780499 71,27002204 1,020020335174 0,01780859 0,000780499 1,020020203477 1,0560823476 0,002885864 0,002885864 0,002885866 0,002876889 1,0200204 1,0200204 0,00288586 0,002876889 1,0200204 0,00288586 0,002876889 1,0200204 0,00288586 0,002876889 1,0200204 0,00288586 0,002876899 1,0200289347 0,000289347 1,000289347 1,000289347 1,000289347 1,000289347 1,000289347 1,000289347 1,000289347 1,00028965 1,00071808 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076 1,000718076	80 73,24562 0,020756008 3,24312E-05 80 1,3837 0,06510056 0,000073777 1,63386E-08 0,0000730777 1,45400056 1,78871E-06 1,78971E-06 1,78971E-06 1,78971E-06 1,78971E-06 1,78871E-06 1,78871E-08 1,78871E-06 1,78871E-06 1,78871E-06 1,78871E-06 1,78871E-06 1,78871E-06 1,78871E-06 1,78871E-06 1,78871E-08 1,78871E-06 1,78871E-06 1,78871E-06 1,78871E-06 1,78871E-06 1,78871E-06 1,78871E-06 1,78871E-06 1,78871E-08 1,78871E-08	86 81,13837 0,06510056 0,00017902 25 60 0,00017902 29 6 60 0,00017902 20 6 60 0,0001780499 20 6 60 0,0001780499 20 6 60 0,0001780449 20 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	92 87,82113 0,171370859 0,0000760499 140 140 140 140 140 140 140 140 140 140	96 92,45668 0,335311528 0,002073717 40 101 102,14799 0,007109684 20,007109684 20 102 102,5873 1,45460053 0,012608373	98 96,4164 0,514867454 0,0003936174 20	101 98,14799 0,76472754 0,007109694 20 104 100,7948 1,122002204 0,012608343 0 105 102,5873 1,45460053 0,018584793 0 105 102,5873 1,45460053 0,018584793 0 105 102,5873 1,45460053 0,018584793 0 105 103,6678 1,701015477 0,023481594 Itemporal 25 104,2726 1,856738686 0,028071198 Itemporal 25 104,4926 1,916863865 0,0280711661 Itemporal 26 104,4926 1,916863866 0,009177661 Itemporal 25 104,4926 1,78871E-06 Itemporal 26 99,29724 0,000709997 2,09071E-07 Itemporal 26 49,94128 0,000134323 1,73837E-08 Itemporal 27 38,44531 0,0001340303 1,65385E-08 Itemporal 27 38,11653 0,000128076 5,7215E-09 27	104 100,7948 1,122002204 0,012608343 0 105 102,5873 1,45460053 0,018584793 0 105 102,6878 1,701015477 0,023481594 tiempo 105 104,2726 1,865738686 0,026765809 tiempo 25 104,4926 1,916853865 0,028071198 cocción 25 104,4926 1,916853865 0,009117661 cocción 25 104,4926 0,903224476 0,009117661 cocción 25 104,4926 0,002985806 1,78871E-06 t.7 59,85853 0,002985806 1,78871E-06 t.7 49,94128 0,0007985806 1,78871E-06 t.7 49,2453 0,000134323 1,73637E-08 t.3 38,44531 0,000134323 1,73637E-08 n.sords 1,45 38,11653 0,000138076 1,6171E-08 n.sords 0,58 33,31639 6,3905E-05 5,7215E-09 0,13	105 102,5873 1,45460053 0,018584793 0 1 105 103,6678 1,701015477 0,023481594 #tiempool 105 104,2726 1,856738686 0,026765809 #tiempool 25 104,4926 1,916853865 0,028071198 Cocción 25 104,4926 1,916853865 0,002117661 Cocción 25 104,4926 1,916853865 0,000117661 Cocción 25 104,4926 1,916853865 0,000117661 Cocción 25 104,4926 1,78871E-06 \$t_{T,y}(xmh) 10,88 49,94128 0,000128076 1,73837E-08 \$t_{Los}(xmh) 5,27 43,24909 0,000134323 1,73637E-08 \$t_{Los}(xmh) 1,45 38,11653 0,000128076 1,6171E-08 \$r,213 0,58 33,31639 6,3905E-05 5,7215E-09 0,013 4,7 1,088 0,13	105 103,6678 1,701015477 0,023481594 tiempo 105 104,2726 1,856738686 0,026765809 4,00071198 4,00071198 4,00071198 4,00071198 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,000717661 4,00	105 104,2726 1,856738686 0,026766809 uempore 25 104,4926 1,916853865 0,009117661 \rightarrow 25 104,4926 1,916853865 0,009117661 \rightarrow 75,20921 0,027682666 4,96073E-05 \rightarrow \rightarrow 59,85853 0,002986806 1,78871E-06 \rightarrow \rightarrow 49,94128 0,000709997 2,09071E-07 \rightarrow \rightarrow 43,24909 0,000134323 1,73637E-08 \rightarrow \rightarrow 38,44531 0,000130017 1,65385E-08 \rightarrow \rightarrow 38,11653 0,000128076 1,6171E-08 \rightarrow 33,31639 6,3905E-05 5,7215E-09 \rightarrow \uparrow \uparrow \rightarrow \rightarrow	25 $104,4926$ $1,916853865$ $0,002117661$ Cocción 99,29724 $0,903224476$ $0,002117661$ Cocción 75,20921 $0,027582566$ $4,96073E-05$ Cocción 59,85853 $0,002985806$ $1,78871E-06$ $t_{T,y}^{Z}$ (win) 49,94128 $0,000709997$ $2,09071E-07$ $t_{T,y}^{Z}$ (win) $t_{T,y}^{Z}$ (win) 49,94531 $0,000134323$ $1,73637E-08$ t_{Sord3} $1,45$ 38,44531 $0,000130017$ $1,6539E-08$ t_{Sord3} t_{Sord3} 38,11653 $0,000128076$ $t_{1,6171E-08}$ t_{Rosin} t_{Sord3} $t_{T,y}^{Z}$ (win) $t_{T,y}^{Z}$ (win) $t_{1,6171E-08}$ t_{Rosin} $t_{1,6171E-08}$ 33,31639 $t_{1,6171E-08}$ $t_{1,6171E-08}$ $t_{1,6171E-08}$ $t_{1,6171E-08}$	99,29724 0,903224476 0,009117661 Coctión 75,20921 0,027582566 4,96073E-05 Coctión 69,8863 0,002985806 1,78871E-06 $t_{T,q}^Z$ (win) 49,94128 0,000709997 2,09071E-07 $t_{T,q}^Z$ (win) 43,24909 0,000269347 4,9145E-08 $t_{1,0}^Z$ (win) 38,44531 0,000134323 1,73637E-08 n_{sords} 1,45 38,22036 0,000138076 1,6171E-08 n_{rest} 0,58 33,31639 6,3905E-05 5,7215E-09 n_{rest} 0,58 t_T^Z (win) 10,88 0,13	75,20921 0,027682566 4,96073E-05 coctión 59,85853 0,002985806 1,78871E-06 $t_{T,q}^Z$ (min) 10,88 49,94128 0,00070997 2,09071E-07 $t_{T,q}^Z$ (min) 10,88 49,9428 0,000789347 4,91145E-08 $t_{T,g}^Z$ (min) 5,27 38,44531 0,000134323 1,73637E-08 n_{sonds} 1,45 38,22035 0,000130017 1,6171E-08 n_{rest} 0,58 33,31639 6,3905E-05 5,7215E-09 n_{rest} 0,58 t_T^Z (min) 10,88 0,13	69,85853 0,002985806 1,78871E-06 coction 49,94128 0,000709997 2,09071E-07 $t_{L_0}^Z$ (with) 10,88 43,24909 0,000289347 4,91145E-08 $t_{L_0}^Z$ (with) 5,27 38,44531 0,000134323 1,73637E-08 n_{sords} 1,45 38,22035 0,000130017 1,65385E-08 n_{resl} 0,58 38,11653 0,000128076 1,6171E-08 n_{resl} 0,58 t_T^Z (with) 10,88 0,13	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	43,24909 0,000269347 4,91145E-08 \$\vec{t}_{10.8}^Z\text{(min)}\$ \$\vec{t}_{10.8}^Z\text{(min)}\$ \$\vec{t}_{10.8}^Z\text{(min)}\$ \$\vec{t}_{10.8}^Z\text{(min)}\$ \$\vec{t}_{10.8}^Z\text{(min)}\$ \$\vec{t}_{10.8}^Z\text{(min)}\$ \$\vec{t}_{10.8}^Z\text{(min)}\$ \$\vec{t}_{20.8}^Z\text{(min)}\$ \$\vec{t}_{20.8}^Z\t	38,44531 0,000134323 1,73637E-08	38,22035 0,000130017 1,65385E-08	38,11653 0,000128076 33,31639 6,3905E-05 \$\frac{Z}{\trian}\$\$ 10,88	33,31639 6,3905E-05 \$\begin{align*} \lambda_T & \text{(wint)} & \text{10,88} \end{align*}	10,88	

						7 min							-1-4	(S) II +		•	•							esterilización	0,26	8.26	6,83	1,10 - 3,05							
						Tratamiento 105 °C - 7 min			00000											(wint)	nembo (mm)			cocción	19,15	9.28	2,55	68,0							
						Tratami				**************************************	100	•													$t_{I_{r,q}^{Z}}^{Z}$ (min)	$t_{105\mathrm{(min)}}^Z$	n sonda	n real							
								120 ⊤	<u>:</u>	<u>\$</u> →	<u>:</u>	# <u>;</u>		9 3 5		}	<u> </u>	∐: 8																	
Esterilización B. coagulans	L _{Ti} =10*((Ti - 121)/10,638))	1,23102E-06	6,72203E-07	6,47136E-07	1,02535E-06	2,24054E-06	8,62508E-06	5,59269E-05	0,000317224	0,001216431	0,002873308	0,005165523	0,009789711	0,015798926	0,02126544	0,025319743	0,027739	0,029207947	0,029911716	0,030150271	0,030390729	0,027960228	0,001509083	1,52354E-05	8,22278E-07	1,25522E-07	2,66233E-08	1,036E-08	1,00548E-08	5,41023E-09	2,67644E-09	1,75224E-09	1,3119E-09	0,26	8,26
Cocción	Lr: = 10*((Ti - 100)/15,898))	0,002325289	0,001551136	0,001512187	0,002057561	0,003471459	0,008555268	0,029886879	0,095464548	0,234657272	0,417081361	0,617550406	0,947246648	1,304815556	1,59184072	1,789000209	1,901645019	1,968452988	2,000065214	2,010724747	2,02144109	1,911780012	0,271070825	0,012519087	0,001775055	0,000504652	0,000178795	9,50765E-05	9,31928E-05	6,15572E-05	3,8437E-05	2,89503E-05	2,38531E-05	19,15	9,28
C/7 min	(°C)	58,13225	55,33695	55,16137	57,28768	90668'09	67,12665	75,76319	83,78153	89,99116	93,96227	96,67211	99,62581	101,837	103,2098	104,016	104,4376	104,676	104,786	104,8227	104,8594	104,4743	90,98715	69,75521	56,26797	47,58417	40,41994	36,05941	35,92124	33,05795	29,80635	27,84936	26,51222	L. (min)	t ₁₀₅ (mint)
Tratamiento 105 °C/ 7 min	(°C)					73										105	105	105	105			105	23												
Fratamie	minuto	-	2	m	뒥	ιΩ	9	7	ω	6	10	11	12	13	14	15	16	17	19	19	29	71	22	23	24	25	26	27	88	53	R	3	32		



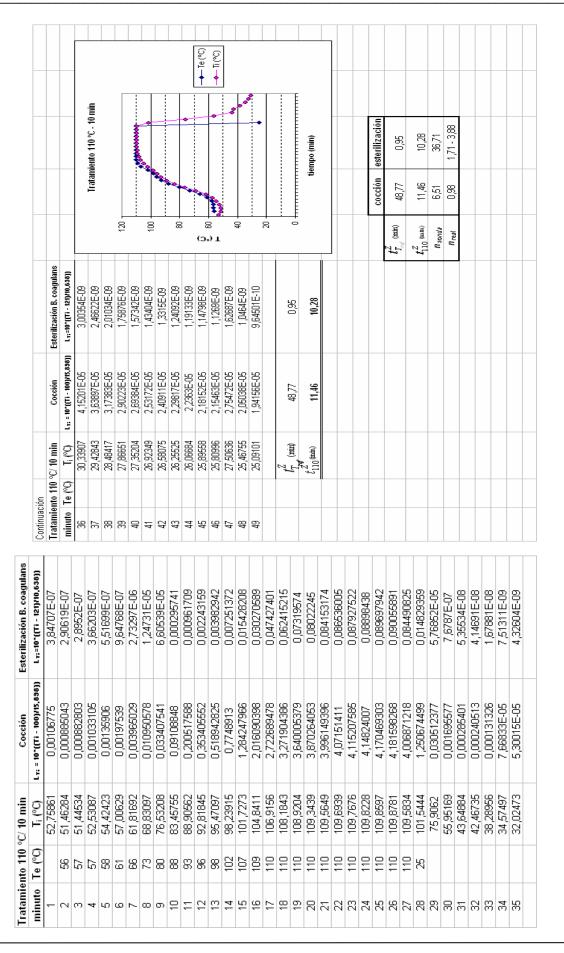


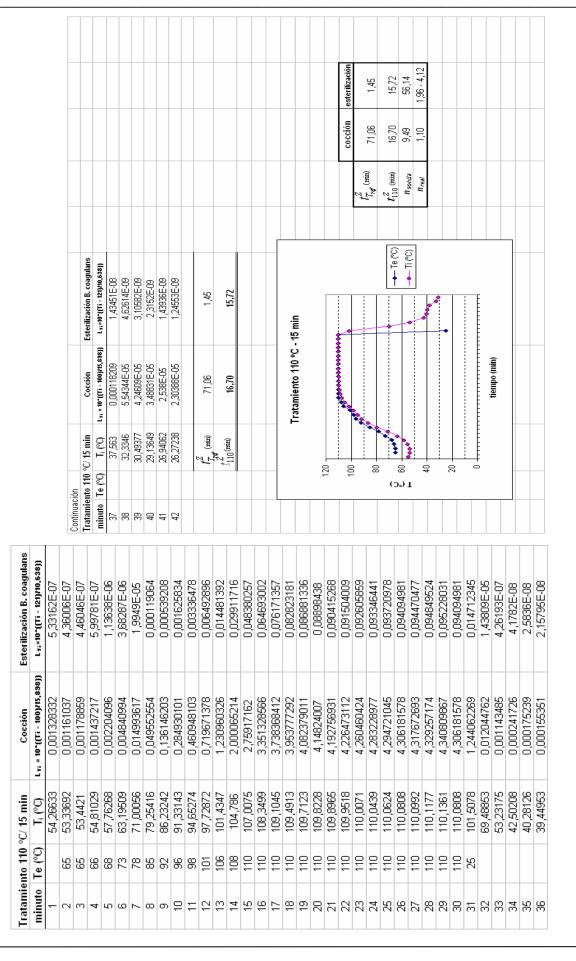
oro	col of least		Coccion	ester IIIzación p. coagulans
minuto	Te (°C)	T; (°C)	$L_{Ti} = 10^{+}([Ti - 100]/15,898])$	LT:=10*((Ti - 121)/10,638))
-		56,93595	0,001955368	9,5019E-07
2		56,10982	0,001734859	7,94607E-07
e	72	54,93316	0,001463022	6,15947E-07
4	72	66066,33	0,001806966	8,44468E-07
2	73	60,19351	0,00313424	1,92322E-06
9	78	68,49346	0,010428151	1,15944E-05
7	88	78,12513	0,042077404	9,32501E-05
00	91	85,9438	0,130572299	0,000506553
6	95	91,44017	0,289453087	0,001664555
0	8	94,88906	0,47699826	0,003511583
7	101	97,87453	0,735031286	0,006701082
12	104	100,5938	1,089809552	0,012071563
5	105	102,4408	1,424061502	0,018004719
7	105	103,5762	1,678597354	0,023020616
15	105	104,2176	1,842006811	0,026449059
16	105	104,5293	1,927069915	0,028295075
17	105	104,6943	1,973677251	0,02932387
9	105	104,7677	1,994771103	0,029793469
19	105	104,8227	2,010724747	0,030150271
20	105	104,8778	2,026835338	0,030512006
21	105	104,8961	2,032214548	0,030633105
22	105	104,9144	2,037608033	0,030754683
23	105	104,9328	2,043045423	0,030877413
24	105	104,9511	2,048467654	0,03099962
52	105	104,9695	2,053934023	0,03112367
56	105	104,9878	2,059385151	0,031247196
27	105	105,0062	2,064880654	0,031371891
28	105	105,0429	2,075885626	0,031622092
53	105	105,0612		0,031747596
8	105	105,0795	2,086919025	0,031873598
31	105	105,0795	2,086919025	0,031873598
32	105	105,0979	2,092488002	0,032000793
33	105	105,0979	2,092488002	0,032000793
34	105	105,1162	2,098041453	0,0321278
35	105	105,1162	2,098041453	0,0321278
8	105	105,1162	2,098041453	0,0321278
37	105	105,1162	2,098041453	0,0321278
88	105	105,1162	2,098041453	0,0321278
93	105	105,1162	2,098041453	0,0321278
ę	401	105 1040	0.40084044	0.0000000

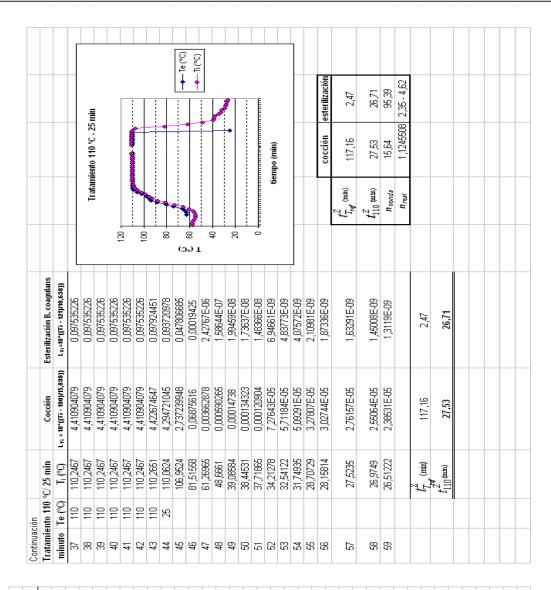

- Tratamientos a 107 °C

- 107 °C 3 minutos
- 107 °C 6 minutos
- 107 °C 10 minutos
- 107 °C 20 minutos
- 107 ° C 30 minutos

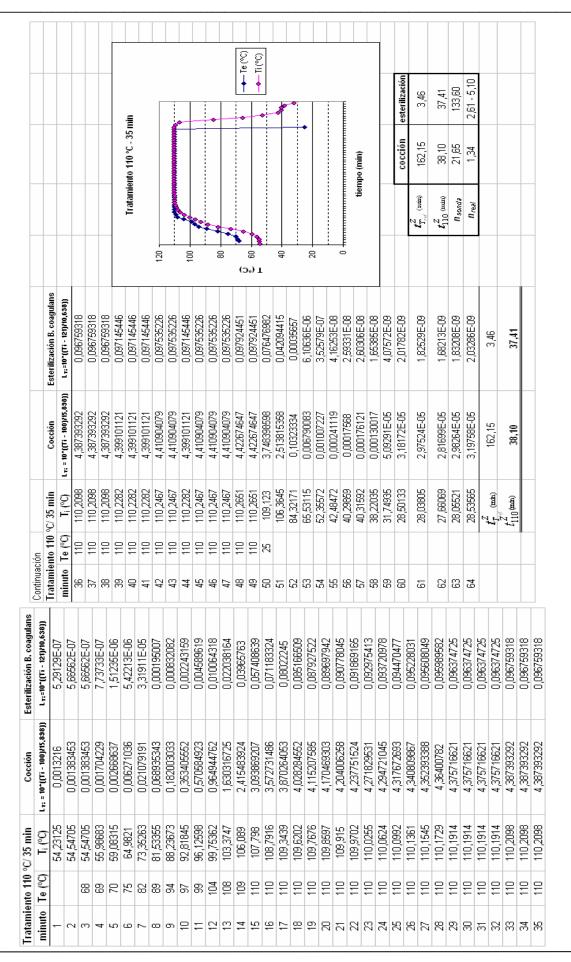
	(0)						
- I:	<u>ا</u> (ر	L _{T:} = 10*((Ti - 100)/15,838))	L _{T:} =10^((Ti - 121)/10,638))				
뒶	51,91794	0,000945346	3,20704E-07				
듄	51,86542	0,000938182	3,17079E-07				
ſΖĬ	52,51335	0,001030487	3,64817E-07				
\$	54,5997	0,001394042	5,73056E-07				,
ģ	58,02665	0,002289995	1,2032E-06		Tratamien	Tratamiento 107 °C - 10 min	
ĝ	63,28349	0,004903374	3,75402E-06				
2	70,0931	0,013146988	1,63915E-05	120 —			
ò	78,10723	0,041968458	9,28895E-05		No.	000000000000000000000000000000000000000	
Ř	85,58314	0,123926784	0,000468513	 - - -		-	
8	90,91468	0,268240496	0,001485596	<u></u>	*	•	
<u>8</u>	94,32563	0,439619034	0,003108415		27		-+- Tratamiento 107
9	96,94527	0,642472358	0,005480145	(o.c)			°C/10 min
É	100,064	1,009312527	0,010763683	1		-	(℃) -
2	102,7337	1,485772948	0,019183141	94		T	
5	104,511	1,921969021	0,028183219			•	
Ş	105,575	2,242193249	0,035482107	 			
8	106,2176	2,460895767	0,040777021				
8	106,5849	2,595354905	0,044151215		,		
8	106,7503	2,658279112	0,045760493		tempo (min)	min)	
8	106,8238	2,686728621	0,046494319				
8	106,8605	2,70104779	0,046865125				
8	106,9156	2,722689478	0,047427401				
8	8026'901	2,744544317	0,047997462			cocción	esterilización
[6]	107,0259	2,766534514	0,048573323		$oldsymbol{t}_{T_{ref}^{Z}}^{Z}$ (win)	39,61	0,64
ò	107,0443	2,773917056	0,04876716		t_{107}^Z (min)	14,37	13,25
8	106,8789	2,708255579	0,047052146		n sonda	5,28	24,54
8	106,2727	2,480613278	0,041266253		n real	78'0	1,56 - 3,57
2	104,8594	2,02144109	0,030390729				
8	82,5401	0,079754452	0,000242476				
5	27,93512	2,93121E-05	1,78507E-09				
of H	t _{T.} (min)	39,61	0,64				
₹92	7 (min)	14,37	13,25				

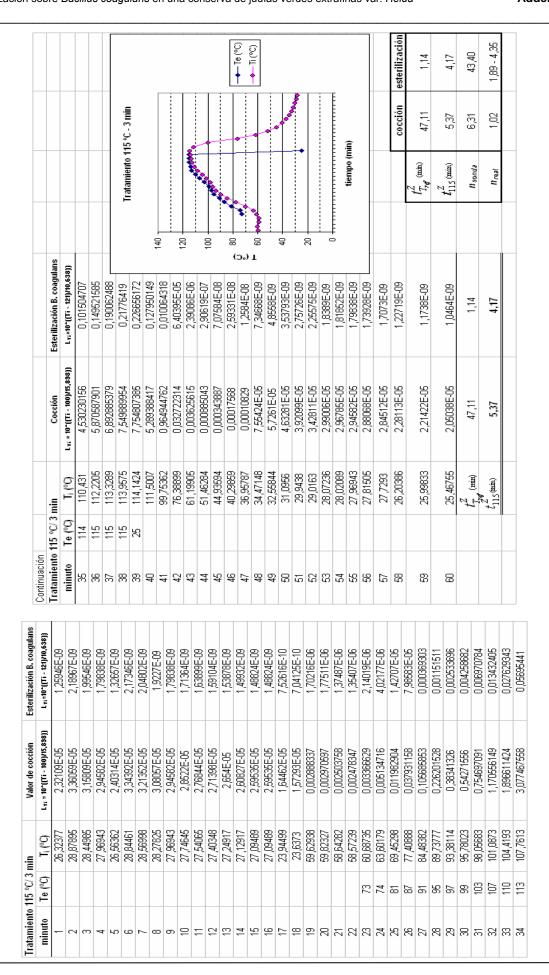

Hatalmento IVI C. ZV min				,
minuto	Te (°C)	L; (°C)	$L_{Ti} = 10^{\circ} ((Ti - 100)/15,898))$	L _{Ti} =10^((Ti - 121)/10,638))
-		34,76474	7,88202E-05	7,82814E-09
2		61,02258	0,003534122	2,30125E-06
m		59,89378	0,003001089	1,80241E-06
₽	88	59,82327	0,002970597	1,77511E-06
72	83	61,46381	0,003767345	2,53187E-06
9	73	64,41562	0,005777063	4,79644E-06
7	29	69,64853	0,012327141	1,48877E-05
	88	76,85409	0,035002516	7,0822E-05
o	9	83,88955	0,096969841	0,000324728
0	8	89,3578	0,21408934	0,001060596
Ξ	88	92,90919	0,358080774	0,002287652
12	6	90680'56	0,491017526	0,003666937
€	6	9606,76	0,677284546	0,0059298
-	92	100,338	1,050172244	0,011421355
钇	107	102,8436	1,509611745	0,019644936
9	107	104,511	1,921969021	0,028183219
17	107	105,5016	2,218483013	0,034922844
9	107	106,0523	2,402678626	0,03934385
19	107	106,3278	2,500488772	0,041761355
8	107	106,4563	2,547461836	0,042939197
71	107	106,5482	2,58159605	0,043801881
22	107	106,6217	2,609224879	0,044504298
ಣ	107	106,6584	2,623130984	0,044859234
24	107	106,6951	2,637111204	0,045217
52	107	106,7135	2,644148378	0,045397444
28	107	106,7319	2,65120433	0,045578607
23	107	106,7503	2,658279112	0,045760493
8	107	106,7686	2,665334169	0,04594211
83	107	106,787	2,672446656	0,046125447
8	107	106,787	2,672446656	0,046125447
34	107	106,8054	2,679578123	0,046309516
35	107	106,8054	2,679578123	0,046309516
8	107	106,8054	2,679578123	0,046309516
뚕	107	106,8238	2,686728621	0,046494319
ų,	107			


minuto Te (°C) T ₁ (°C) 1 50,04615 2 62,48813 3 61,56974 4 60,74028 5 68 60,52869 6 68 61,37565 7 69 63,38968 7 66,77191 9 81 72,5146	L	L _{Ti} =10*((Ti - 121)/10,638))	Continuación						
8 8 8 8 8									
8 8 8 8 8		2,13871E-07	Tratamiento	Tratamiento 107 °C/30 min	Cocción	Esterilización B. coagulans			
888888888888888888888888888888888888888	0,004369846	3,16031E-06	2	Te (°C) T; (°C)	L#:	Lr;=10^((Ti - 121)/10,638))			
8 2 8 8 8	0,00382559	2,59059E-06	Ж			0,050948899			
88 88 82 82 88	0.003392537	2.16485E-06	37	107 107,2465		0,050948899			
88 82 88	0,0032901	2,06789E-06	88			0,050948899			
8 23 88		2,48396E-06	ස	107 107,2648		0,051151108	Tratam	Tratamiento 107 °C - 30 min	0 min
22 28		3.84122E-06	8			0,051151108			
22		7.98761E-06	4		. ,	0,050948899	120		
	0.018659858	2.7685E-05	42	107 107,2281		0,05074639			
	0,050592856	0.000122819	£3			0,05074639	100		•
	0,130231771	0,00050458	4			0,05074639	•		•
		0,001462481	\$	107 107,2281		0,05074639	8		
8	0,430460394	0,003012137	46			0,05074639	8		
133	0,649288055	0,005567255	-74	\forall		0,042939197			
	1,02274773	0,010978508	8	93,03623		0,00235143	 		
	1,481840153	0,019107307	49	70,44888		1,77036E-05	L		
17 107 104,4376	1,901645019	0,027739	8	56,76013		9,14709E-07	40		+
107		0.034922844	5	46,57295		1,00847E-07			•
107		0.039974777	25	38,98194		1,95023E-08			•
107		0.042939197	83	34,76474		7,82814E-09	07		
107	2 616149747	0.04468093	24	33,10963	w	5,47109E-09			
107		0.045760493	딺	30,59692		3,17594E-09	0		ш
101		0,045,0849	KS	29,73762		2,63691E-09	₽	tiempo (min)	
10,	2,722689478	0,04287.8348 0.04747401	<u>1</u> 55	29,30821	.,	2,40287E-09			
+	2.751828321	0.048187958	88	30,11564	4 4,0198E-05	2,86175E-09			
107		0,04876716		t					
107		0,049352256		7. (III)	v 89.23	3		cocción	esterilización
	2,811085611	0,049746933		8 t 7			f (min)	1	
107	2,826067552	0,05014368		¹ 107 (zmin)	32,37	31,60	Tyde (1100.)	89,23	1,53
107		0,050343784					Z	:	
_	2,84117049	0,050544686					L107 (mint)	32,37	9. 18.
107	2,84117049	0,050544686					n sonda	# 8,	29'85
107	2,8487522	0,05074639					n _{real}	1,18	2,19 - 4,39
107	2,856354141	0,050948899							
5 107 107,2465	2,856354141	0,050948899							

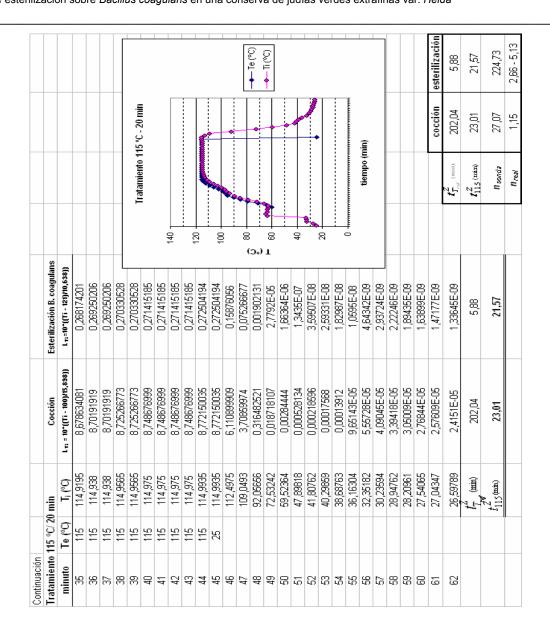

Tratamientos a 110 °C

- 110 °C 3 minutos
- 110 °C 10 minutos
- 110 °C 15 minutos
- 110 °C 25 minutos
- 110 ° C 35 minutos


												<u>်</u>	(00)																				
				Tratamiento 110 °C - 3 min			00000		-			→ Te(°C)	(0) II II (0)	-	000	•				tiempo (min)				esterilización	0,34	3,69	13,20	1,37 - 3,58					
			,	Iratamier						*	8	۰,	900							tiemp				cocción	19,80	4,65	2,64	62'0					
						120 —				8		: : (oc)	3	Ş	}	:;	 ≅	:	ţ						$t_{T_{ref}}^{Z}$ (min)	$t_{110^{(\mathrm{min})}}^Z$	n sonda	n _{real}					
Esterilización B. coagulans	L _{Ti} =10*((Ti - 121)/10,638))	1,25946E-09	1,73284E-09	2,81948E-09	1,41817E-09	2,24654E-07	5,58021E-07	4,40997E-07	7,50549E-07	1,99805E-06	5,54827E-06	2,65348E-05	0,000173539	0,00076647	0,002114834	0,004258682	0,009081715	0,020601697	0,037961872	0,055388527	0,069224739	0,078015156	0,062914357	0,00108581	4,90798E-06	2,32437E-07	3,47557E-08	1,3715E-08	1,01302E-08	5,35005E-09	2,56917E-09	0,34	3,69
Cocción	$L_{Ti} = 10^{\circ} ((Ti - 100)/15,898))$	2,32109E-05	2,87353E-05	3,97998E-05	2,51293E-05	0,000744986	0,001369462	0,001169914	0,001669887	0,003215324	0,006368285	0,018147186	0,063759917	0,172269973	0,339745907	0,54271556	0,900840192	1,558420364	2,345872698	3,020590384	3,506650148	3,798679545	3,289389944	0,217481814	0,00586661	0,000762159	0,000213706	0,000114709	9,36602E-05	6,10981E-05	3,73992E-05	19,80	4,65
C/ 3 min	L; (°C)	26,32377	27,7979	30,0469	26,87207	50,27341	54,47687	53,38951	55,84628	98696,08	92880'99	72,31855	80,9947	87,85726	92,54629	95,78023	99,27899	103,0633	105,8871	107,6325	108,6627	109,215	108,2211	89,46635	64,52182	50,43076	41,65143	37,35549	35,95578	33,00627	29,61737	$t_{T,\sigma}^Z$ (min)	t ^{Z*} 110(min)
nto 110 °	Te (°C)										88	8	88	83	97	8	104	107	109	110	110	110	52										
Tratamiento 110 °C/3 min	minuto Te (°C)	_	2	m	ঘ	Ŋ	و	7	ω	60	0	Ξ	12	13	14	र्घ	16	17	9	19	29	21	22	23	24	25	26	27	88	23	R		

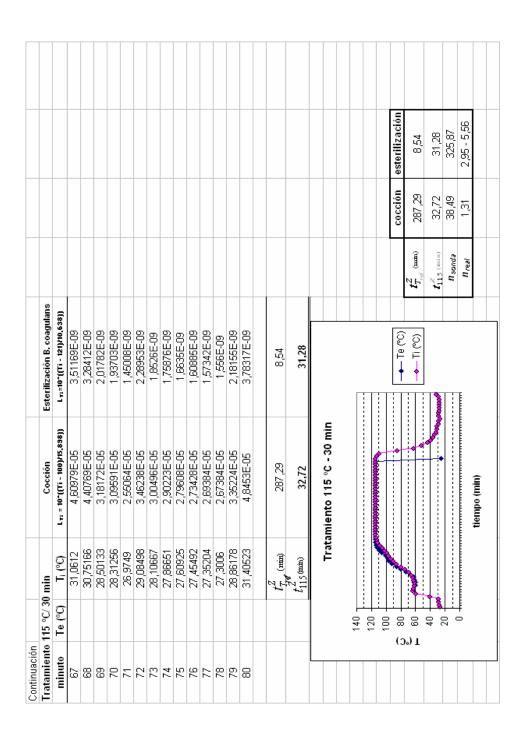


			100000	CONTRACTOR OF SOMBUILD
minuto	(°C)	(°C)	LT; = 10*((Ti - 100)/15,898))	LT:=10*((Ti - 121)/10,638))
-		57,44599	0,002105283	1,0611E-06
2		57,2525	0,002047103	1,01758E-06
m		56,39099	0,001806966	8,44468E-07
4		55,21404	0,001523767	6,54556E-07
5		54,54705	0,001383453	5,66562E-07
9	ස	54,42423	0,00135906	5,51699E-07
7	8	55,07359	0,001493084	6,34956E-07
ω	64	56,83045	0,001925717	9,28738E-07
6	99	59,91141	0,003008762	1,8093E-06
9	74	65,35401	0,006618092	5,8766E-06
Ξ	8	72,79981	0,01945723	2,9448E-05
12	88	80,81513	0,062123027	0,000166923
5	88	87,64048	0,166945189	0,000731337
14	98	92,25605	0,325760069	0,001986063
15	88	95,27091	0,504121871	0,00381415
16	102	98,33033	0,785192419	0,007395905
17	106	101,9102	1,318722689	0,016051239
9	109	105,0062	2,064880654	0,031371891
19	110	107,081	2,788700903	0,049156094
8	110	108,3131	3,333513758	0,064179748
21	110	109,0677	3,718496198	0,075567037
22	110	109,4728	3,943197542	0,082492195
23	110	109,6755	4,060678124	0,086192047
24	110	109,8044	4,137199885	69069880'0
53	19	109,8965	4,192756931	0,090415268
38	110	109,9518	4,226473112	0,091504009
27	110	110,0255	4,271829531	0,092975413
28	110	110,0624	4,294721045	0,093720978
23	110	110,0992	4,317672693	0,094470477
8	110	110,1361	4,340809867	0,095228031
3	110	110,1545	4,352393388	0,095608049
33	110	110,1729	4,36400782	0,095989582
83	110	110,1914	4,375716621	0,096374725
34	110	110,2098	4,387393292	0,096759318
Ж	110	110,2098	4,387393292	0,096759318
緩	11	110,2282	4,399101121	0.097145446

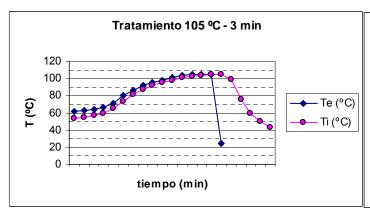

- Tratamientos a 115 °C

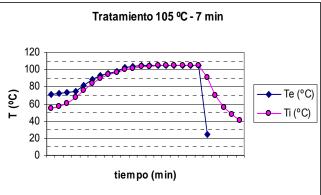
- 115 °C 3 minutos
- 115 °C 10 minutos
- 115 °C 20 minutos
- 115 °C 30 minutos

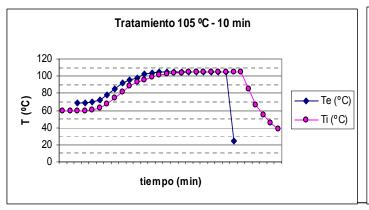
minuto Te (°C) T ₁ (°C) t ₁ = to*(trr. too)rs.8399 34	L ₁₁ =10		
43,61408 42,34579 40,1256 33,83346 29,42843 29,75878 27,5878 27,5878 27,5878 27,5862 26,80821 26,48082 26,78638 26,78638 26,78638 27,78638 26,78638 26,78638	5,3152E-08 4,03922E-08 2,49782E-08 6,39905E-09 2,46622E-09 2,13345E-09 1,78507E-09 1,54508E-09 1,54511E-09		
42,34679 40,12526 33,83346 29,42843 28,78878 27,54578 27,54578 27,54682 26,4029 26,4029 26,4082 26,78638 7,7 7,7 7,7 7,7 7,7 (min) 7,7 7,7 (min) 7,7 7,7 (min)	4,03922E-08 2,49782E-08 6,39906E-09 2,46622E-09 1,78607E-09 1,64508E-09 1,51611E-09		
40,12526 33,83346 29,42843 28,78878 27,93512 27,5578 27,5678 26,68921 26,68921 26,4092 26,78638 26,78638 27,78064 26,78638 26,78638	2,49782E-08 6,39905E-09 2,46622E-09 2,13345E-09 1,78507E-09 1,64508E-09 1,51611E-09		
33,63346 29,42843 28,75878 27,93612 27,5678 27,1806 26,68921 26,64929 26,40822 26,78638 26,78638 7,7 7,7 7,7 (min) 7,7 7,7 (min) 7,7 7,7 (min) 7,7 7,7 (min)	6,3906E-09 2,4622E-09 2,13346E-09 1,78607E-09 1,64508E-09 1,51611E-09		
29,42843 28,75878 27,5878 27,5678 27,5678 27,1806 26,98921 26,64929 26,46082 26,70664 26,70664 26,70664 26,70664 26,70664 26,70664	2,46522E-09 2,13345E-09 1,78507E-09 1,64508E-09 1,51611E-09		
28,75878 27,93512 27,5578 27,1806 26,89921 26,54929 26,46082 26,30664 26,78638 7,7 (min) 7,7 (min) 7,7 (min) 7,7 (min)	2,13345E-09 1,78607E-09 1,64508E-09 1,51611E-09		
27,93612 27,5678 27,1806 26,88921 26,46392 26,46382 26,3064 26,78638 7,7 (min) 7,7 (min) 7,7 (min) 7,7 (min) 7,7 (min)	1,78507E-09 1,64508E-09 1,51611E-09		
27,5578 27,1806 28,88921 26,54929 26,46082 26,3064 26,78638 7,7 (min) 7,7 (115 (min)	1,64508E-09 1,51611E-09		
27,1806 26,88921 26,64929 26,46082 26,30664 26,78638 7,7 1,7 (min) 1,7 (min)	1,51611E-09		
26,88921 26,64929 26,46082 26,30664 26,78638 7,7 (min) 1,7 (115,(min))			
26,64929 26,46082 26,30664 26,78638 7,7 7,7 7,7 1,7 1,15,7 115,7	1,42344E-09		
26,46082 26,30664 26,78638 7,787 7,78 (mix) 1,15 (mix) 1,15 (mix)	1,3514E-09		
26,30664 26,78638 t_T^Z (min) t_{15}^Z (min) t_{115}^Z (min)	1,29738E-09		
26,78538 \frac{7}{7}\text{(min)} \\ \frac{7}{2}\text{(min)} \\ \text{(}\frac{7}{115}\text{(min)} \\ \text{(}\frac{7}{115}\text{(}\frac{7}{115}\text{(}\frac{7}{115}\text{(}\frac{7}{115}\text{(}\frac{7}{115}\text{(}\frac{7}{115}\text{(}\frac{7}{115}\text{(}\frac{7}{115}\text{(}\frac{7}{115}\text{(}\frac{7}{115}\text{(}\frac{7}{115}\text{(}\frac{7}{115}\text{(}\frac{7}{115}(1,2548E-09		
min)	1,3921E-09		
tún)	3,00		
	11,01		
Tratamiento 115 °C - 10 min			
***************************************		njizoo	esterilización
(20)	+ Te (°C)	$t_{T_{r,q}}^Z$ (min) 107,60	
40	(0.)	t ₁₁₅ (min) 12,26	11,01
			114,71
0	T.	n _{real} 1,11	2,23 - 4,65
tiempo (min)			

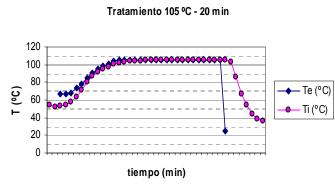

arallle lite	Tratamiento 113 °C 10 min		Valor de coccion	Estel IIIzacion D. coagulans
minuto	Te (°C)	T; (°C)	$L_{Ti} = 10^{\circ} ((Ti - 100)/15,898))$	Lr;=10*((Ti - 121)/10,638))
-		57,6747	0,002176189	1,11495E-06
2		58,46674	0,002440713	1,32345E-06
m	62	57,74508	0,002198485	1,13206E-06
₽	62	57,99145	0,00227835	1,19407E-06
ĸ	æ	59,18885	0,002709805	1,54735E-06
و	88	61,76395	0,003934726	2,70181E-06
7	92	66,75417	0,008105956	7,957E-06
ω	83	73,51318	0,021575094	3,43648E-05
6	88	80,54585	0,059746797	0,000157472
6	g	86,68354	0,145338754	0,000594514
Ξ	8	91,34955	0,285678856	0,001632224
12	88	94,5437	0,453725625	0,003258653
Ω	8	96,9991	0,647576913	0,005545342
4	90	100,1736	1,025462097	0,011022081
5	110	103,7594	1,723733001	0,023951804
16	113	107,3384	2,894627296	0,051972504
1,	114	110,2651	4,422674647	0,097924451
8	115	112,2205	5,870587901	0,149521585
19	115	113,3659	6,929922751	0,191590736
8	115	114,0129	7,610712851	0,22039118
71	115	114,4014	8,051232582	0,239725499
22	115	114,6049	8,292065517	0,250520787
23	115	114,7159	8,426451689	0,256612649
24	115	114,7714	8,49445931	0,259713907
52	115	114,8454	8,585990703	0,263907298
92	115	114,8825	8,632250621	0,266035074
27	115	114,9195	8,678634081	0,268174201
88	115	114,9195	8,678634081	0,268174201
83	52	112,2944	5,933760027	0,151932501
R		103,4663	1,652090047	0,022479469
3		266,08	0,060214606	0,000159318
32		63,30117	0,004915946	3,76841E-06
ç		20 04042	N 00073000A	7 4 20 7 4 F 0 7

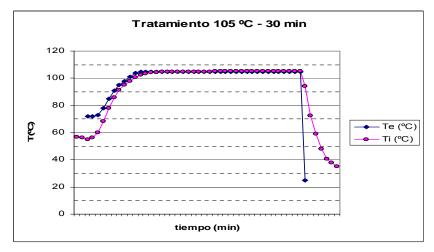
arallean	Hatamiento 113 °C/ 20 min	=	Valor de cocción	Estel IIIzacion D. coagulans
minuto	Te (°C)	(°C)	L _{T;} = 10*((Ti - 100)/15,898))	L _{Ti} =10*((Ti - 121)/10,638))
-		24,83434	1,8707E-05	9,12378E-10
2		27,04347	2,57609E-05	1,47177E-09
ന		32,28295	5,50212E-05	4,57471E-09
4		32,43791	5,62701E-05	4,73075E-09
æ		32,95458	6,06424E-05	5,29053E-09
ڡ		63,65485	0,005174328	4,06822E-06
7		64,43332	0,005791892	4,81485E-06
ω		63,60179	0,005134716	4,02177E-06
60		63,07134	0,004755001	3,58553E-06
e	8	62,66483	0,004483123	3,28353E-06
Ξ	75	62,61182	0,004448835	3,24607E-06
12	7	65,70832	0,006966574	6,34507E-06
5	62	71,76623	0,016752044	2,35449E-05
14	88	78,53719	0,04466506	0,000101949
5	8	84,69999	0,109047111	0,000386993
9	88	89,57492	0,220928685	0,001111629
17	26	93,05438	0,365690433	0,002360686
9	88	95,36183	0,510804245	996688600'0
19	102	97,18207	0,66488939	0,005768354
23	106	99,69884	0,957319128	0,009945689
21	60	102,7337	1,485772948	0,019183141
22	112	105,8503	2,333402636	0,037660695
23	114	108,8284	3,591824711	0,071752587
24	115	111,1317	5,014123113	0,118128265
52	115	112,6268	6,226417943	0,163266529
38	115	113,5507	7,117910078	0,19940966
27	115	114,1424	7,754807385	0,226656172
88	115	114,4569	8,116211911	0,24262267
53	115	114,6419	8,33662107	0,252535167
R	115	114,7529	8,471729335	0,258676012
3	115	114,8084	8,54010238	0,261802207
33	115	114,864	8,609151935	0,264971918
æ	115	114,8825	8,632250621	0,266035074
75	115	111 001	Q CEE411001	0.057400406

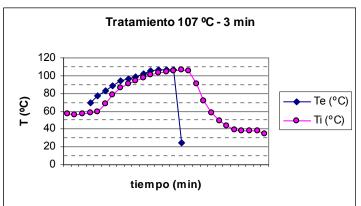

to min oto	Tratamiente 115 of/ 30 min	in in	Consider	Codenilizacija D. codenilizacija
minite	200	1. PC	COCCIOII	Lester IIIIzacion b. coaguians
34	115	114.7899	8.517250271	0.260755967
: KR	115	114,8084	8,54010238	0,261802207
æ	115	114,8269	8,563015803	0,262852645
37	115	114,8454	8,585990703	0,263907298
æ	115	114,864	8,609151935	0,264971918
ස	115	114,8825	8,632250621	0,266035074
40	115	114,8825	8,632250621	0,266035074
41	115	114,901	8,655411281	0,267102496
42	115	114,9195	8,678634081	0,268174201
43	115	114,9195	8,678634081	0,268174201
44	115	114,938	8,70191919	0,269250206
45	115	114,9565	8,725266773	0,270330528
46	115	114,9565	8,725266773	0,270330528
47	115	114,975	8,748676999	0,271415185
48	115	114,975	8,748676999	0,271415185
49	115	114,975	8,748676999	0,271415185
22	115	114,9935	8,772150035	0,272504194
51	115	114,9935	8,772150035	0,272504194
52	115	114,9935	8,772150035	0,272504194
23	115	115,012	8,795686051	0,273597572
54	115	115,012	8,795686051	0,273597572
돲	115	115,012	8,795686051	0,273597572
99	52	115,012	8,795686051	0,273597572
25		112,3128	5,949594362	0,152538803
89		109,1598	3,768430615	0,077088578
69		84,5919	0,10735325	0,000378044
8		62,5058	0,004381043	3,17242E-06
61		51,55035	0,000896332	2,96176E-07
62		43,61408	0,000283968	5,3152E-08
63		39,24169	0,000150745	2,06302E-08
64		36,04213	9,48389E-05	1,03214E-08
93		33,5749	6,6343E-05	6,05077E-09
99		31,69773	5,05498E-05	4.03043E-09

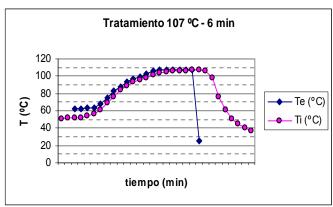

2	Iratamiento 115 °C/30 min	E E	Valor de cocción	Esterilización B. coagulans
minuto	Te (°C)	L; (°C)	L _{T:} = 10*((Ti - 100)/15,898))	L _{T;} =10*((Ti - 121)/10,638))
-		26,83779	2,50049E-05	1,40768E-09
2		27,23203	2,64742E-05	1,53308E-09
m		29,13649	3,48831E-05	2,3152E-09
뒥		28,62147	3,23757E-05	2,07098E-09
ď		39,89998	0,000165825	2,37895E-08
ی		59,27694	0,0027446	1,57714E-06
7		63,86711	0,005335871	4,25949E-06
00		62,77087	0,004552508	3,35976E-06
60	8	61,76395	0,003934726	2,70181E-06
0	8	61,69332	0,00389468	2,66082E-06
Ξ	<u>6</u>	62,13481	0,004151853	2,92764E-06
12	æ	63,28349	0,004903374	3,75402E-06
13	29	65,54887	0,006807532	6,12982E-06
4	73	69,18637	0,011529011	1,34705E-05
5	200	74,29839	0,024173703	4,07311E-05
16	88	79,9357	0,054693484	0,00013799
17	92	85,54708	0,123281233	0,000464871
18	98	90,37134	0,247940639	0,001320764
19	88	93,83512	0,409470785	0,002795309
20	101	96,21698	0,578154995	0,004680916
21	90	98,84104	0,845474015	0,008260369
22	109	101,9834	1,332778049	0,016307581
23	112	105,4282	2,195023503	0,034372397
24	114	108,6627	3,506650148	0,069224739
52	115	111,1501	5,027503381	0,118599668
26	115	112,6822	6,276578777	0,165236089
27	115	113,6062	7,175356813	0,201819599
28	115	114,1424	7,754807385	0,226656172
53	115	114,4754	8,13798802	0,243596154
R	115	114,6419	8,33662107	0,252535167
31	115	114,7159	8,426451689	0,256612649
35	115	114,7529	8,471729335	0,258676012
83	115	114,7714	8,49445931	0,259713907

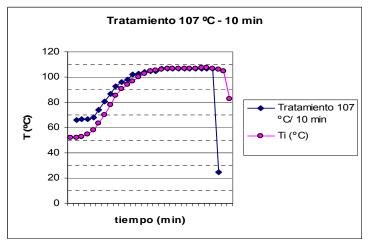


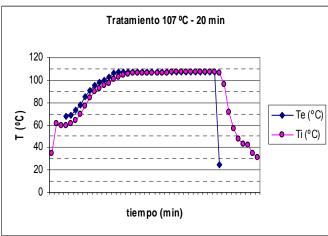

Resumen

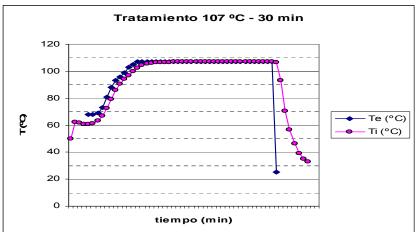

		TEXTU	JRA	B. coa	gulans
T _{ai} (°C)	t _{ai} (min)	Sonda		Sonda	
		n _{sonda}	$t_{T_{ai}}^{Z}$ (min)	n _{sonda}	$t_{T_{ai}}^{Z}$ (min)
105	3	1,45	5,27	5,05	4,24
105	7	2,55	9,28	9,83	8,26
105	10	3,22	11,71	12,69	10,66
105	20	6,08	22,13	24,92	20,93
105	30	8,78	31,95	36,93	31,02
107	3	1,81	4,92	7,21	3,90
107	6	3,13	8,51	13,70	7,40
107	10	5,28	14,37	24,54	13,25
107	20	7,85	21,35	36,79	19,87
107	30	11,90	32,37	58,52	31,60
110	3	2,64	4,65	13,20	3,69
110	10	6,51	11,46	36,71	10,28
110	15	9,49	16,70	56,14	15,72
110	25	15,64	27,53	95,39	26,71
110	35	21,65	38,10	133,60	37,41
115	3	6,31	5,37	43,40	4,17
115	10	14,42	12,26	114,71	11,01
115	20	27,07	23,01	224,73	21,57
115	30	38,49	32,72	325,87	31,28

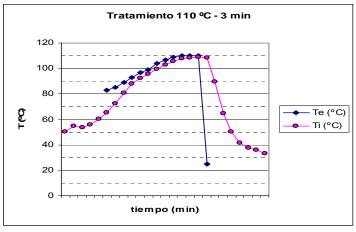


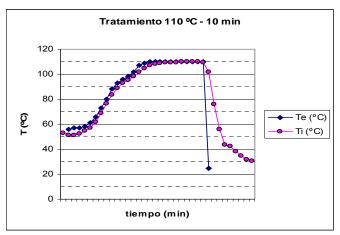


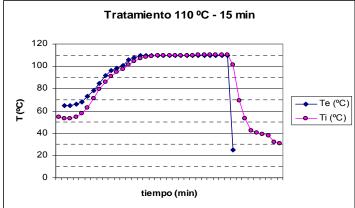


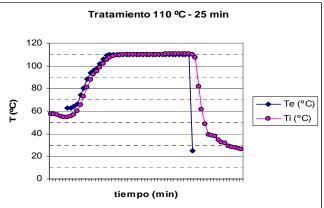


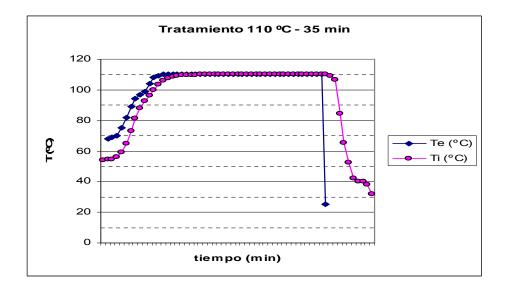


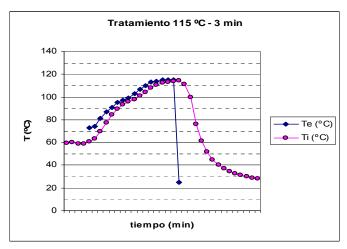


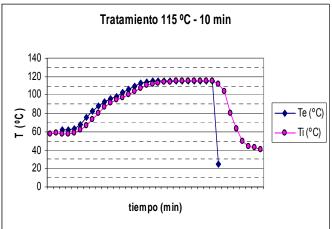


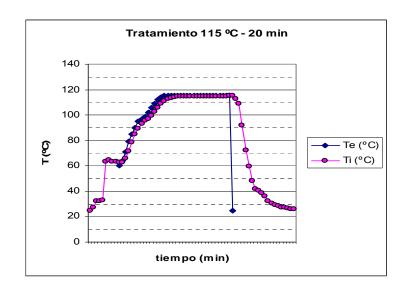


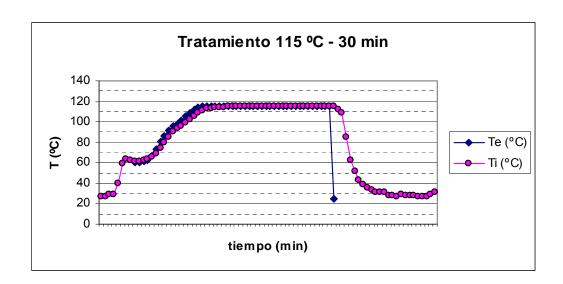












b) Efecto de inactivación térmica de la enzima peroxidasa. Cálculo de los tiempos de proceso

-	Tratamientos a 105 °C
	■ 105 °C – 3 min
	■ 105 °C – 7 min
	■ 105 °C – 10 min
	■ 105 °C – 20 min
	■ 105 °C – 30 min
-	Tratamientos a 107 °C
	■ 107 °C – 3 min
	■ 107 °C – 6 min
	■ 107 °C – 10 min
	■ 107 °C – 20 min
	■ 107 ° C – 30 min
-	Tratamientos a 110 °C
	■ 110 °C – 3 min
	■ 110 °C – 10 min
	■ 110 °C – 15 min
	■ 110 °C – 25 min
	■ 110 ° C – 35 min
	T 1 14500
-	Tratamientos a 115 °C
	■ 115 °C – 3 min
	■ 115 °C – 10 min
	■ 115 °C – 20 min
	■ 115 °C – 30 min

- Tratamientos a 105 °C

- 105 °C 3 minutos
- 105 °C 7 minutos
- 105 °C 10 minutos
- 105 °C 20 minutos
- 105 °C 30 minutos

Tratamie	nto 105 °C/ 3 min	Termoinactivación peroxidasa
minuto T _i (°C)		LT:=10^((Ti - 100)/7))
1	27,71215	4,71156E-11
2	29,89225	9,65177E-11
3	30,1672	1,05654E-10
4	27,88366	4,98501E-11
5	27,38633	4,23271E-11
6	26,99204	3,71785E-11
7	26,66643	3,34022E-11
8	26,40942	3,06945E-11
9	53,9506	2,63946E-07
10	54,65234	3,32478E-07
11	53,82784	2,535E-07
12	54,79274	3,48193E-07
13	56,56676	6,24096E-07
14	59,59413	1,6894E-06
15	65,47801	1,17027E-05
16	73,24562	0,000150642
17	81,13837	0,002020605
18	87,82113	0,018203774
19	92,45558	0,083603742
20	95,4164	0,221411411
21	98,14799	0,543784899
22	100,7948	1,298801726
23	102,5873	2,342147736
24	103,6678	3,341730547
25	104,2726	4,077288371
26	104,4926	4,383287934
27	99,29724	0,79360741
28	75,20921	0,000287381
29	59,85853	1,84291E-06
30	49,94128	7,05918E-08
31	43,24909	7,81137E-09
32	38,44531	1,60869E-09
33	38,22035	1,49395E-09
34	38,11653	1,44379E-09
35	33,31639	2,97694E-10
	t _{Tref} z (min)	17,10634332
	t ₁₀₅ ^z (min)	3,30271782

Tratamiento 105 °C/7 min		Termoinactivación peroxidasa
minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))
1	58,13225	1,04446E-06
2	55,33695	4,16451E-07
3	55,16137	3,9308E-07
4	57,28768	7,91116E-07
5	60,89906	2,59508E-06
6	67,12665	2,01283E-05
7	75,76319	0,000344825
8	83,78153	0,004820318
9	89,99116	0,037167702
10	93,96227	0,137235713
11	96,67211	0,334647159
12	99,62581	0,884187327
13	101,837	1,829905116
14	103,2098	2,874371229
15	104,016	3,747263956
16	104,4376	4,304699671
17	104,676	4,655860935
18	104,786	4,827411111
19	104,8227	4,886041404
20	104,8594	4,945383779
21	104,4743	4,356981484
22	90,98715	0,051576278
23	69,75521	4,77877E-05
24	56,26797	5,65675E-07
25	47,58417	3,25105E-08
26	40,41994	3,08009E-09
27	36,05941	7,33888E-10
28	35,92124	7,0128E-10
29	33,05795	2,73432E-10
30	29,80635	9,38287E-11
31	27,84936	4,92908E-11
32	26,51222	3,17501E-11
	t _{Tref} z (min)	37,87797177
	t ₁₀₅ ² (min)	7,313091407

Tratamiento 105 °C/ 10 min Termoinactivación perox			
minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))	
1	59,92904	1,88615E-06	
2	59,77039	1,79025E-06	
3	59,18885	1,47855E-06	
4	59,64701	1,71904E-06	
5	61,07551	2,75016E-06	
6	63,40726	5,92196E-06	
7	68,04951	2,72674E-05	
8	74,63763	0,000238125	
9	81,92887	0,002620656	
10	88,21865	0,020746746	
11	92,65515	0,089276204	
12	95,68927	0,242204065	
13	98,6039	0,631767299	
14	101,1238	1,447247664	
15	102,7337	2,457698313	
16	103,6678	3,341730547	
17	104,1993	3,980155135	
18	104,4926	4,383287934	
19	104,6577	4,627918629	
20	104,7677	4,798439241	
21	104,8227	4,886041404	
22	104,8594	4,945383779	
23	104,8961	5,005446884	
24	104,9328	5,066239472	
25	104,2726	4,077288371	
26	84,68198	0,006482036	
27	66,36408	1,56628E-05	
28	54,58215	3,2489E-07	
29	45,87607	1,85357E-08	
30	38,34148	1,55468E-09	
31	37,32091	1,11133E-09	
32	31,1472	1,45843E-10	
33	29,34256	8,05527E-11	
34	90082, 27	5,01322E-11	
35	26,99204	3,71785E-11	
36	26,3409	3,00104E-11	
37	25,89558	2,59212E-11	
38	25,55314	2,31598E-11	
39	25,26215	2,10457E-11	
40	25,07389	1,9782E-11	
41	25,24503	2,09276E-11	
42	24,86856	1,849E-11	
43 22,6976 9,05316E-1:		9,05316E-12	
44 21,98052 7,15089E-1		7,15089E-12	
45	21,34915	5,80984E-12	
	t _{Tref} ^z (min)	50,01027133	
	t ₁₀₅ ² (min)	9,655471727	

Tratamie	nto 105 °C/ 20 min	Termoinactivación peroxidasa	
minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))	
1	53,9506	2,63946E-07	
2	52,11054	1,44095E-07	
3	52,70605	1,75276E-07	
4	54,68744	3,36339E-07	
5	57,62192	8,83057E-07	
6	63,70791	6,53756E-06	
7	71,62374	8,83585E-05	
8	·		
9	87,3515	0,01559809	
		·	
10	92,1291	0,075090624	
11	95,21635	0,207310562	
12	97,72872	0,473730589	
13	100,4476	1,158624899	
14	102,331	2,152781735	
15	103,4846	3,146299056	
16	104,1443	3,908794667	
17	104,4926	4,383287934	
18	104,676	4,655860935	
19	104,7677	4,798439241	
20	104,786	4,827411111	
21	104,8227	4,886041404	
22	104,8411	4,915703891	
23	104,8594	4,945383779	
24	104,8594	4,945383779	
25	104,8778	4,975406526	
26	104,8961	5,005446884	
27	104,8961	5,005446884	
28	104,9144	5,035668619	
29	104,9144	5,035668619	
30	·	5,066239472	
	104,9328	·	
31	104,9328	5,066239472	
32	104,9511	5,096828259	
33	104,9511	5,096828259	
34	104,9511	5,096828259	
35	102,4591	2,245432478	
36	86,1783	0,010604042	
37	66,86058	1,84415E-05	
38	53,77523	2,4915E-07	
39	44,3444	1,11995E-08	
40	38,04732	1,41129E-09	
41	35,81763	6,77782E-10	
42	33,02349	2,7035E-10	
43	29,30821	7,96476E-11	
44	27,45492	4,32929E-11	
45	26,83779	3,53391E-11	
46	26,37516	3,03505E-11	
47	25,96408	2,65118E-11	
48	25,62162	2,36874E-11	
49	25,39908	2,20154E-11	
70	20,00000	Z ₁ Z0107E-11	
	t _{Tref} z (min)	102,2340722	
	t ₁₀₅ ² (min)	19,7383091	
		-	

Tratamie	nto 105 °C/ 30 min	Termoinactivación peroxidasa
minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))
1	56,93595	7,04681E-07
2	56,10982	5,37E-07
3	54,93316	3,64653E-07
4	56,39099	5,89035E-07
5 60,19351		2,05759E-06
6	68,49346	3,15548E-05
7	78,12513	0,000749926
	70,12513 85,9438	
8	•	0,009816834
9	91,44017	0,059864194
10	94,88906	0,186151146
11	97,87453	0,497005768
12	100,5938	1,215706032
13	102,4408	2,231956439
14	103,5762	3,242542778
15	104,2176	4,004186395
16	104,5293	4,436524224
17	104,6943	4,683971951
18	104,7677	4,798439241
19	104,8227	4,886041404
20	104,8778	4,975406526
21	104,8961	5,005446884
22	104,9144	5,035668619
23	104,9328	5,066239472
24	104,9511	5,096828259
25		
	104,9695	5,127770404
26	104,9878	5,158730701
27	105,0062	5,190048647
28	105,0429	5,253083277
29	105,0612	5,284800184
30	105,0795	5,316708589
31	105,0795	5,316708589
32	105,0979	5,348985598
33	105,0979	5,348985598
34	105,1162	5,381281541
35	105,1162	5,381281541
36	105,1162	5,381281541
37	105,1162	5,381281541
38	105,1162	5,381281541
39	105,1162	5,381281541
40	105,1182	5,413950563
41	105,1162	5,381281541
42	·	5,381281541
	105,1162	·
43	105,0062	5,190048647
44	94,10759	0,143955129
45	72,67502	0,000124862
46	58,907	1,34763E-06
47	48,05521	3,79591E-08
48	40,54129	3,20552E-09
49	37,66677	1,24524E-09
50	34,95453	5,10258E-10
51	31,47404	1,62397E-10
52	28,63863	6,39026E-11
53	28,84461	6,83824E-11
54	28,56998	6,24757E-11
55	28,29541	5,70804E-11
	t _{Tref} ^z (min)	156,5767364
	t ₁₀₅ z (min)	30,23023494

Tratamientos a 107 °C

- 107 °C 3 minutos
- 107 °C 6 minutos
- 107 °C 10 minutos
- 107 °C 20 minutos
- 107 ° C 30 minutos

	to 107 °C/3 min	Termoinactivación peroxidas			_
minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))	minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))
1	26,64929	3,32145E-11	54	28,05521	5,2744E-11
2	28,12383	5,3948E-11	55	27,48921	4,3784E-11
3	27,88366	4,98501E-11	56	27,06061	3,80266E-11
4	27,6264	4,58051E-11	57	26,68356	3,3591E-11
5	27,45492	4,32929E-11	58	25,46755	2,25168E-11
6	27,28346	4,09188E-11			
7	27,16346	3,93351E-11		t _{Tref} z (min)	29,85814873
8	•	· · · · · · · · · · · · · · · · · · ·		t ₁₀₇ ^z (min)	2,985814873
	27,06061	3,80266E-11	_	407 (11111)	2,900014073
9	26,9749	3,69694E-11			
10	26,90635	3,61451E-11			
11	26,83779	3,53391E-11			
12	26,76924	3,45512E-11			
13	26,7007	3,37809E-11			
14	74645, 27	4,76502E-11			
15	29,46278	8,3802E-11			
16	29,34256	8,05527E-11			
17	29,25669	7,83092E-11			
18	29,15366	7,56997E-11			
19	27,81505	4,87376E-11			
20	27,86651	4,95696E-11			
21	58,02665	1,0088E-06			
22	58,09705	1,03244E-06			
23	57,41081	8,23816E-07			
24	56,03953	5,24726E-07			
25	56,72497	6,57435E-07			
26		9,30272E-07			
	57,78027	·			
27	59,82327	1,82166E-06			
28	68,12053	2,79119E-05			
29	78,10723	0,000745524			
30	86,07006	0,010233132			
31	91,34955	0,05810606			
32	94,65274	0,172228776			
33	97,41892	0,427833006			
34	100,6303	1,230390182			
35	103,2098	2,874371229			
36	104,8227	4,886041404			
37	105,7769	6,687617546			
38	106,2727	7,872270346			
39	105,2263	5,579744152			
40	91,36767	0,05845343			
41	71,24979	7,81317E-05			
42	58,06185	1,02055E-06			
43	49,43453	5,97532E-08			
44	43,50978	8,51076E-09			
45	39,36293	2,17551E-09			
46	38,51454	1,64575E-09			
47	37,89163	1,34084E-09			
48	37,89163	1,34084E-09			
	·	5,24947E-10			
49 50	35,04081	·			
50	32,679	2,41387E-10			
51	30,6313	1,23079E-10			
52	29,51431	8,52346E-11			
53	28,65579	6,42643E-11			

Tratamiento 107 °C/6 min		Termoinactivación peroxidasa	
minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))	
1	50,32585	8,01111E-08	
2	52,18059	1,47454E-07	
3	51,81291	1,30656E-07	
4	52,49584	1,63565E-07	
5	54,19616	2,8615E-07	
6	56,90079	6,96578E-07	
7	61,48147	3,14306E-06	
8	68,81321	3,50545E-05	
9	76,6394	0,000460014	
10	83,88955	0,004994674	
11	89,39398	0,030538963	
12	93,18144	0,10615	
13	95,72565	0,2451199	
14	98,33033	0,577398584	
15	101,3249	1,546220506	
16	103,6495	3,321675038	
17	105,1529	5,446638749	
18	106,0156	7,233882139	
19	106,4747	8,41312115	
20	106,7135	9,100629387	
21	106,8421	9,493860743	
22	106,9156	9,726192417	
23	106,4196	8,262009962	
24	98,43975	0,598559245	
25	76,10287	0,000385589	
26	61,11081	2,78228E-06	
27	51,27035	1,093E-07	
28	44,65753	1,24146E-08	
29	40,00395	2,68618E-09	
30	36,61223	8,80246E-10	
31	34,09207	3,84221E-10	
32	32,17965	2,04823E-10	
33	30,71727	1,2661E-10	
34	29,58302	8,71829E-11	
35	28,56998	6,24757E-11	
36	28,41552	5,93808E-11	
37	27,88366	4,98501E-11	
38	26,13535	2,80483E-11	
39	25,10812	2,0006E-11	
40	24,49221	1,6337E-11	
41	24,15017	1,45986E-11	
42	23,22716	1,07758E-11	
43	22,37315	8,13673E-12	
44	21,69039	6,49999E-12	
		-,:::::::	
	t _{Tref} ^z (min)	64,10787967	
	t ₁₀₇ ^z (min)	·	
	4107 (MIIII)	6,410787967	

Tratamiento 107 °C/ 10 min		Termoinactivación peroxidasa	
minuto T _i (°C)		L _{Ti} =10^((Ti - 100)/7))	
1	51,91794	1,35249E-07	
2	51,86542	1,32933E-07	
3	52,51335	1,6451E-07	
4	54,5997	3,26771E-07	
5	58,02665	1,0088E-06	
6	63,28349	5,6857E-06	
7	70,0931	5,34055E-05	
8	78,10723	0,000745524	
9	85,58314	0,008718637	
10	90,91468	0,050361324	
11	94,32563	0,154659184	
12	96,94527	0,366108658	
13	100,064	1,021275368	
14	102,7337	2,457698313	
15	104,511	4,409898274	
16	105,575	6,257899316	
17	106,2176	7,730873579	
18	106,5849	8,723685494	
19	106,7503	9,21146214	
20	106,8238	9,436883017	
21	106,8605	9,551496669	
22	106,9156	9,726192417	
23	106,9708	9,904409121	
24	107,0259	10,0855596	
25	107,0443	10,14678765	
26	106,8789	9,609482495	
27	106,2727	7,872270346	
28	104,8594	4,945383779	
29	82,5401	0,003204266	
30	65,07064	1,02351E-05	
31	51,16537	1,0559E-07	
32	42,27634	5,67235E-09	
33	36,56039	8,65363E-10	
34	33,60937	3,27812E-10	
35	31,61169	1,69919E-10	
36	30,08127	1,02709E-10	
37	29,0163	7,23555E-11	
38	28,3812	5,87142E-11	
39	27,93512	5,07011E-11	
40	24,38959	1,57948E-11	
	_ :	.,=====================================	
	t _{Tref} ^z (min)	121,6751264	
	t ₁₀₇ ^z (min)	12,16751264	
	-101 ()	12,10731204	

Tratamier	nto 107 °C/ 20 min	Termoinactivación peroxidasa
minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))
1	34,76474	4,79377E-10
2	61,02258	2,7027E-06
3	59,89378	1,8644E-06
4	59,82327	1,82166E-06
5	61,46381	3,12486E-06
6	64,41562	8,2512E-06
7	· .	4,61398E-05
8	69,64853	·
9	76,85409	0,000493675
	83,88955	0,004994674
10	89,3578	0,030177671
11	92,90919	0,097057062
12	95,08906	0,198809504
13	97,3096	0,412721547
14	100,338	1,117598253
15	102,8436	2,548171015
16	104,511	4,409898274
17	105,5016	6,108616447
18	106,0523	7,321739713
19	106,3278	8,016253242
20	106,4563	8,362354443
21	106,5482	8,619005203
22	106,6217	8,829927604
23 106,6584		8,937169609
24 106,6951		9,045714098
25	106,7135	9,100629387
26	106,7319	9,15587806
27	106,7503	9,21146214
28	106,7686	9,267078826
29	106,787	9,32333799
30	106,787	9,32333799
31	106,8054	9,379938696
32	106,8054	9,379938696
33	106,8054	9,379938696
34	106,8238	9,436883017
35	106,8238	9,436883017
36	105,8503	6,851050091
37	96,54465	0,320906543
		·
38	71,89093	9,64758E-05
39	56,63707	6,38698E-07
40	47,6365	3,3075E-08
41	42,72787	6,58062E-09
42	41,9812	5,14754E-09
43	34,36799	4,20725E-10
44	31,38802	1,57866E-10
45	29,72044	9,12143E-11
46	28,53565	6,17742E-11
47	25,70723	2,43639E-11
48	25,50178	2,27718E-11
	t _{Tref} z (min)	183,6281262
	t ₁₀₇ ^z (min)	18,36281262
	e ₁₀₇ (mm)	10,30201202

		Termoinactivación peroxidasa			activación peroxidas
minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))	minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))
1	50,04615	7,30694E-08	54	33,10963	2,7812E-10
2	62,48813	4,37685E-06	55	30,59692	1,21695E-10
3	61,56974	3,23566E-06	56	29,73762	9,17312E-11
4	60,74028	2,46302E-06	57	29,30821	7,96476E-11
5	60,52859	2,29735E-06	58	30,11564	1,03877E-10
6	61,37555	3,03544E-06		00,1100+	1,000112 10
7	63,38958	5,88762E-06		4 Z (m;in)	311,2605094
	·			t _{Tref} z (min)	
8	66,77191	1,79114E-05		t ₁₀₇ z (min)	31,12605094
9	72,5146	0,000118444			
10	79,39761	0,001139729			
11	85,92577	0,009758784			
12	90,84223	0,049175314			
13	94,18027	0,147438193			
14	97,01813	0,374989037			
15	100,1553	1,052411813			
16	102,7154	2,442948354			
17	104,4376	4,304699671			
18	105,5016	6,108616447			
19		·			
	106,1258	7,500915719			
20	106,4563	8,362354443			
21	106,64	8,883240673			
22	106,7503	9,21146214			
23	106,8421	9,493860743			
24	106,9156	9,726192417			
25	106,9891	9,964209661			
26	107,0443	10,14678765			
27	107,0994	10,33237119			
28	107,1362	10,45820481			
29	107,1729	10,58522271			
30	107,1913	10,64948415			
31	107,2097	10,71413571			
32	107,2097	10,71413571			
33	107,2281	10,77917975			
34	107,2465	10,84461868			
35	107,2465	10,84461868			
36	107,2465	10,84461868			
37	107,2465	10,84461868			
38	107,2465	10,84461868			
		10,91009598			
39	107,2648				
40	107,2648	10,91009598			
41	107,2465	10,84461868			
42	107,2281	10,77917975			
43	107,2281	10,77917975			
44	107,2281	10,77917975			
45	107,2281	10,77917975			
46	107,2281	10,77917975			
47	106,4563	8,362354443			
48	93,03623	0,101198882			
49	70,44888	6,0036E-05			
50	56,76013	6,65083E-07			
51	46,57295	2,33112E-08			
52	38,98194	1,91926E-09			
53	34,76474	4,79377E-10			

Tratamientos a 110 °C

- 110 °C 3 minutos
- 110 °C 10 minutos
- 110 °C 15 minutos
- 110 °C 25 minutos
- 110 ° C 35 minutos

Tratamie	nto 110 °C/ 3 min	Termoinactivación peroxidasa	
minuto	T _i (°C)	LT:=10^((Ti - 100)/7))	
1	26,32377	2,98417E-11	
2	27,7979	4,84634E-11	
3 30,0469		1,01555E-10	
4	26,87207	3,57399E-11	
5	50,27341	7,87411E-08	
6	54,47687	3,13831E-07	
7	53,38951	2,19462E-07	
8	55,84628	4,92409E-07	
9	60,36986	2,18048E-06	
10	65,08835	1,02949E-05	
11	72,31855	0,000111047	
12	80,9947	0,001927335	
13	87,85726	0,01842141	
14	92,54629	0,086135918	
15	95,78023	0,249560424	
16	99,27899	0,788857523	
17	103,0633	2,739140351	
18	105,8871	6,93448616	
19	107,6325	12,31280901	
20 108,6627		17,27939655	
21	109,215	20,72185218	
22	108,2211	14,94317413	
23	89,46635	0,031274679	
24	64,52182	8,54454E-06	
25	50,43076	8,2924E-08	
26	41,65143	4,61838E-09	
27	37,35549	1,12405E-09	
28	35,95578	7,09293E-10	
29	33,00627	2,68823E-10	
30	29,61737	8,81736E-11	
31	28,15814	5,45603E-11	
32	26,92349	3,63495E-11	
33	26,06684	2,74233E-11	
34	25,38196	2,18917E-11	
35	21,55388	6,21457E-12	
36	20,92274	5,0495E-12	
37	20,36011	4,19636E-12	
38	19,88293	3,58678E-12	
	t _{Tref} z (min)	76,10716893	
	t ₁₁₀ ² (min)	2,83696605	

Tratamie	ento 110 °C/ 10 min	Termoinactivación peroxidasa
minuto	T _i (°C)	LT:=10^((Ti - 100)/7))
1	52,75861	1,78332E-07
2	51,46284	1,16445E-07
3	51,44534	1,15776E-07
4	52,53087	1,65461E-07
5	54,42423	3,08444E-07
6	57,00629	7,21176E-07
7	61,81692	3,50973E-06
8	68,83097	3,52599E-05
9	76,53208	0,000444058
10	83,45755	0,004333042
11	88,90562	0,026006899
12	92,81845	0,094202903
13	95,47097	0,225421697
14	98,23915	0,560337902
15	101,7273	1,76505053
16	104,8411	4,915703891
17	106,9156	9,726192417
18	108,1843	14,76337714
19	108,9204	18,80801044
20	109,3439	21,61936118
21	109,5649	·
	·	23,24953577
22	109,6939	24,25732222
23	109,7676	24,85257703
24	109,8228	25,3079602
25	109,8597	25,61701788
26	109,8781	25,77253528
27	109,5834	23,39144994
28	101,5444	1,661990632
29	75,9062	0,000361434
30	55,95169	5,09782E-07
31	43,64884	8,90911E-09
32	42,46735	6,04018E-09
33	38,28956	1,52835E-09
34	34,57497	4,50368E-10
35	32,02473	1,94647E-10
36	30,33907	1,11799E-10
37	29,42843	8,28604E-11
38	28,48417	6,07369E-11
39	27,86651	4,95696E-11
40	27,35204	4,18524E-11
41	26,92349	3,63495E-11
42	26,58075	3,2474E-11
43	26,25525	2,91767E-11
44	26,06684	2,74233E-11
45	25,89558	2,59212E-11
46	25,80996	2,52013E-11
47	27,50636	4,40317E-11
48	25,46755	2,25168E-11
49	25,09101	1,98937E-11
	t _{Tref} z (min)	246,6192334
	t ₁₁₀ ^z (min)	9,192963058

Tratamie	ento 110 °C/ 15 min	Termoinactivación peroxidasa
minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))
1	54,26633	2,92832E-07
2	53,33692	2,15698E-07
3	53,4421	2,23291E-07
4	54,81029	3,50209E-07
5	57,76268	9,24905E-07
6	63,19509	5,52275E-06
7	71,00056	7,19818E-05
8	79,25416	0,001087198
9	86,23242	0,010794508
10	91,33143	0,057760754
11	94,65274	0,172228776
12	72872, 97	0,473730589
13	101,4347	1,603087187
14	104,786	4,827411111
15	107,0075	10,02470101
16	108,3499	15,58988305
17	109,1045	19,98217956
18	109,4913	22,69342256
19	109,7123	24,4045851
20	109,8228	25,3079602
21	109,8965	25,92899681
22	109,9518	26,40497218
23	110,0071	26,88968497
24	110,0439	27,21716318
25	110,0624	27,38329558
26	110,0808	27,54953581
27	110,0992	27,71678526
28	110,1177	27,88596733
29	110,1361	28,05525922
30	110,0808	27,54953581
31	101,5078	1,642101508
32	69,48853	4,37742E-05
33	53,23175	2,08363E-07
34	42,50208	6,10958E-09
35	40,28126	2,94274E-09
36	39,44953	2,23838E-09
37	37,563	1,20345E-09
38	32,3346	2,15533E-10
39	30,49377	1,17636E-10
40	29,13649	7,52734E-11
41	26,94062	3,65549E-11
42	26,27238	2,93415E-11
	t _{Tref} z (min)	399,3722528
	t ₁₁₀ z (min)	14,88697502
	110 11	,

Tratamie	nto 110 °C/ 25 min	Termoinactivación peroxidasa	Continuac	ción Ter	moinactivación peroxidasa
minuto	T _i (°C)	LT:=10^((Ti - 100)/7))	minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))
1	57,44599	8,33404E-07	54	31,75	1,7779E-10
2	57,2525	7,82014E-07	55	28,71	6,53623E-11
3	56,39099	5,89035E-07	56	28,16	5,45603E-11
4	55,21404	3,9995E-07	57	27,52	4,42807E-11
5	54,54705	3,2116E-07	58	26,97	3,69694E-11
6	54,42423	3,08444E-07	59	26,51	3,17501E-11
7	55,07359	3,81893E-07	- 33	20,51	5,115012 11
8	56,83045	6,80646E-07		z (min)	700,3970418
		·			·
9	59,91141	1,87525E-06	T 110	z (min)	26,10795615
10	65,35401	1,1235E-05			
11	72,79981	0,000130094			
12	80,81513	0,001816788			
13	64048, 87	0,017153561			
14	92,25605	0,078292729			
15	95,27091	0,211064753			
16	98,33033	0,577398584			
17	101,9102	1,874501163			
18	105,0062	5,190048647			
19	107,081	10,27002329			
20	108,3131	15,40230483			
21	109,0677	19,74175302			
22	109,4728	22,55574327			
23	109,6755	24,11094796			
24	109,8044	25,15524615			
25	109,8965	25,92899681			
26	109,9518	·			
	·	26,40497218			
27	110,0255	27,05292856			
28	110,0624	27,38329558			
29	110,0992	27,71678526			
30	110,1361	28,05525922			
31	110,1545	28,22557885			
32	110,1729	28,39693246			
33	110,1914	28,57026612			
34	110,2098	28,74371229			
35	110,2098	28,74371229			
36	110,2282	28,91821142			
37	110,2467	29,09472695			
38	110,2467	29,09472695			
39	110,2467	29,09472695			
40	110,2467	29,09472695			
41	110,2467	29,09472695			
42	110,2467	29,09472695			
43	110,2651	29,27135704			
44	110,0624	27,38329558			
45	106,9524	9,84464364			
46	81,51558	0,002287539			
47	61,26965	2,93152E-06			
48	48,6661	4,64072E-08			
49	39,08584	1,98599E-09			
50	38,44531	1,60869E-09			
51	37,71865	1,26667E-09			
52	34,21278	3,99784E-10			
	·	2,30691E-10			
53	32,54122	∠'2008.IE-10			

Tratamiento 110 °C/ 35 min Termoinactivación		Termoinactivación peroxidasa	Continuac	ión Terr	noinactivación peroxidasa
minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))	minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))
1	54,23125	2,89472E-07	54	52,36	1,56198E-07
2	54,54705	3,2116E-07	55	42,48	6,07479E-09
3	54,54705	3,2116E-07	56	40,3	2,95956E-09
4	55,98683	5,15708E-07	57	40,32	2,97648E-09
5	59,08315	1,42802E-06	58	38,22	1,49395E-09
6	64,9821	9,94129E-06	59	31,75	1,7779E-10
7	73,35263	0,000156039	60	28,74	6,61046E-11
8	81,53355	0,002301101	61	28,5	6,10807E-11
9	88,23673	0,0208705	62	28,04	5,24471E-11
10	92,81845	0,094202903	63	27,66	4,63247E-11
11	96,12598	0,279620219	64	28,06	5,2744E-11
12	99,75362	0,922152732	65	28,54	6,17742E-11
13	103,3747	3,034589844	66	28,28	5,67591E-11
14	106,089	7,410664343	67	28,69	6,49942E-11
15	107,798	13,00169578	68	28,93	7,03408E-11
16	108,7916	18,02780522	69	31,41	1,58762E-10
17	109,3439	21,61936118			·
18	109,6202	23,67632461	t-	_{ref} z (mir	992,6987367
19	109,7676	24,85257703		₁₀ z (mir	37,00377577
	·	· ·		10 (******	31,00311311
20	109,8597	25,61701788			
21	109,915	26,0872663			
22	109,9702	26,56527315			
23	110,0255	27,05292856			
24	110,0624	27,38329558			
25	110,0992	27,71678526			
26	110,1361	28,05525922			
27	110,1545	28,22557885			
28	110,1729	28,39693246			
29	110,1914	28,57026612			
30	110,1914	28,57026612			
31	110,1914	28,57026612			
32	110,1914	28,57026612			
33	110,2098	28,74371229			
34	110,2098	28,74371229			
35	110,2098	28,74371229			
36	110,2098	28,74371229			
37	110,2098	28,74371229			
38	110,2098	28,74371229			
39	110,2282	28,91821142			
40	110,2282	28,91821142			
41	110,2282	28,91821142			
42	110,2467	29,09472695			
43	110,2467	29,09472695			
44	110,2282	28,91821142			
45	110,2467	29,09472695			
46	110,2467	29,09472695			
47	110,2467	29,09472695			
48	110,2651	29,27135704			
49	110,2651	29,27135704			
50	109,123	20,10414992			
51	106,3645	8,113612938			
52	84,32171	0,005757637			
53	65,53115	1,19091E-05			

- Tratamientos a 115 °C

- 115 °C 3 minutos
- 115 °C 10 minutos
- 115 °C 20 minutos
- 115 °C 30 minutos

Tratamiento	115 °C/ 3 min	Termoinactivación peroxidas	a Continua	ción Ter	moinactivación peroxidasa
minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))	minuto		L _{Ti} =10^((Ti - 100)/7))
1	26,32377	2,98417E-11	54	28,02	5,21519E-11
2	28,87895	6,91592E-11	55	27,97	5,12765E-11
3	28,44985	6,00551E-11	56	27,82	4,87376E-11
4	27,96943	5,12765E-11	57	27,73	4,73821E-11
5	26,56362	3,22915E-11	58	26,2	2,86876E-11
6	28,84461	6,83824E-11	59	26	2,68122E-11
7	28,56998	6,24757E-11	60	25,47	2,25168E-11
8	28,27825	5,67591E-11	61	25,13	2,01189E-11
9	27,96943	5,12765E-11	62	25,01	1,93416E-11
10	27,74645	4,76502E-11	63	24,92	1,88049E-11
11	· ·	·	63	24,92	1,00049E-11
	27,54065	4,45312E-11		7	
12	27,40348	4,25666E-11	_	z (min)	434,5615188
13	27,24917	4,04599E-11	t ₁₁₅	z (min)	3,127476991
14	27,12917	3,88939E-11			
15	27,09489	3,84578E-11			
16	27,09489	3,84578E-11			
17	23,94499	1,36458E-11			
18	23,6373	1,23323E-11			
19	59,62938	1,7091E-06			
20	59,82327	1,82166E-06			
21	58,64282	1,02100E-00 1,23547E-06			
22		·			
	58,57239	1,20717E-06			
23	60,68735	2,42051E-06			
24	63,60179	6,31329E-06			
25	69,45298	4,32653E-05			
26	77,40888	0,000592512			
27	84,48382	0,006072994			
28	89,73777	0,034195357			
29	93,38114	0,113357059			
30	95,78023	0,249560424			
31	98,05683	0,527720889			
32	101,0873	1,429975417			
33	104,4193	4,278864871			
34	7613, 107	12,8456813			
35	110,431	30,91312124			
36	112,2205	55,69108951			
37	113,3289	80,19154326			
38	113,9575	98,61172852			
39	114,1424	104,7955538			
40	111,5007	43,94982426			
41	99,75362	0,922152732			
42	76,38899	0,000423642			
43	61,19905	2,86423E-06			
44	51,46284	1,16445E-07			
45	44,93594	1,36052E-08			
46	40,29859	2,95956E-09			
46		9,86237E-10			
	36,95787	·			
48	34,47148	4,35294E-10			
49	32,55844	2,32002E-10			
50	31,0956	1,43388E-10			
51	29,9438	9,81683E-11			
52	29,0163	7,23555E-11			
53	28,07236	5,30424E-11			

Tratamiento	115 °C/ 10 min	Termoinactivación peroxidasa
minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))
1	57,6747	8,98522E-07
2	58,46674	1,16594E-06
3	57,74508	9,19566E-07
4	57,99145	9,97192E-07
5	59,18885	1,47855E-06
6	61,76395	3,44911E-06
7	66,75417	1,78072E-05
8	73,51318	0,000164501
9	80,54585	0,001662784
10	86,68354	0,012521276
11	91,34955	0,05810606
12	94,5437	0,166160799
13	96,99991	0,372748337
14	100,1736	1,058766033
15	103,7594	3,44395242
16	107,3384	11,17745312
17	110,2651	29,27135704
18	112,2205	55,69108951
19	113,3659	81,17350255
20	114,0129	100,4252351
21	114,4014	114,1150322
22	114,6049	122,0152982
23	114,7159	126,5527039
24	114,7714	128,8842949
25	114,8454	132,0600412
26	114,8825	133,6815365
27	114,9195	135,31849
28	114,9195	135,31849
29	112,2944	57,06145706
30	103,4663	3,127416436
31	80,5997	0,0016925
32	63,30117	5,71887E-06
33	50,04615	7,30694E-08
34	43,61408	8,80782E-09
35	42,34579	5,80342E-09
36	40,12526	2,79554E-09
37	33,83346	3,52888E-10
38	29,42843	8,28604E-11
39	28,75878	6,64788E-11
40	27,93512	5,07011E-11
41	27,5578	4,47831E-11
42	27,1806	3,95575E-11
43	26,88921	3,59419E-11
44	26,64929	3,32145E-11
45	26,46082	3,12178E-11
46	26,30664	2,96741E-11
47	26,78638	3,47465E-11
71	20,1 0000	5 -11-400E-111
	tZ (min)	1370 000005
	t _{Tref} z (min)	1370,989205
	t ₁₁₅ ² (min)	9,866812887

Tratamiento	115 °C/ 20 min 1	ermoinactivación peroxida	sa Continua	ción Terr	noinactivación peroxidasa
minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))	minuto	T _i (°C)	L _{Ti} =10^((Ti - 100)/7))
1	24,83434	1,8283E-11	54	38,69	1,74217E-09
2	27,04347	3,78128E-11	55	36,16	7,59337E-10
3	32,28295	2,11902E-10	56	32,35	2,16758E-10
4	32,43791	2,22984E-10	57	30,24	1,0807E-10
5	32,95458	2,64291E-10	58	28,95	7,07392E-11
6	63,65485	6,42445E-06	59	28,21	5,5492E-11
7	64,43332	8,29938E-06	60	27,54	4,45312E-11
8	63,60179	6,31329E-06	61	27,04	3,78128E-11
9	63,07134	5,30246E-06	62	26,6	3,26576E-11
10	62,66483	4,63879E-06	63	26,22	2,88497E-11
11	62,61182	4,5586E-06	64	25,98	2,66617E-11
12	65,70832	1,26238E-05	- 04	20,00	2,00011 2-11
13	71,76623	9,25986E-05	_	z (min)	2813,005459
		·			•
14	78,53719	0,000858785	I 115	z (min)	20,24479727
15	84,69999	0,006520551			
16	89,57492	0,032411778			
17	93,05438	0,101804874			
18	95,36183	0,217472469			
19	97,18207	0,395766082			
20	99,69884	0,905684933			
21	102,7337	2,457698313			
22	105,8503	6,851050091			
23	108,8284	18,24735831			
24	111,1317	38,92627596			
25	112,6268	63,65442089			
26	113,5507	86,26095972			
27	114,1424	104,7955538			
28	114,4569	116,2174731			
29	114,6419	123,5093966			
30	114,7529	128,1023636			
31	114,8084	130,4625054			
32	114,864	132,8705007			
33	114,8825	133,6815365			
34	114,901	134,4975229			
35	114,9195	135,31849			
36	114,938	136,1444682			
37	114,938	136,1444682			
38	114,9565	136,9754882			
39	114,9565	136,9754882			
40	114,975	137,8115808			
41	114,975	137,8115808			
42	114,975	137,8115808			
43	114,975	137,8115808			
43	114,975	138,6527767			
45	114,9935	138,6527767			
46	· ·	•			
46	112,4975	61,00383572 19,62262674			
48	109,0493	·			
49	92,05656	0,073320068			
50 50	72,53242	0,000119141			
	59,52364	1,65068E-06			
51	47,89818	3,60481E-08			
52	41,80762	4,86186E-09			
53	40,29859	2,95956E-09			

		Termoinactivación peroxida:			
minuto	T _i (°C)	L _{Ti} =10*((Ti - 100)/7))		T _i (°C)	L _{Ti} =10^((Ti - 100)/7))
11	26,83779	3,53391E-11	54	115	139,4991073
2	27,23203	4,02324E-11	55	115	139,4991073
3	29,13649	7,52734E-11	56	115	139,4991073
4	28,62147	6,35429E-11	57	112,3	57,40786934
5	39,89998	2,59587E-09	58	109,2	20,34898994
6	59,27694	1,52202E-06	59	84,59	0,006292784
7	63,86711	6,88904E-06	60	62,51	4,40236E-06
8	62,77087	4,80345E-06	61	51,55	1,19845E-07
9	61,76395	3,44911E-06	62	43,61	8,80782E-09
10	61,69332	3,3699E-06	63	39,24	2,09046E-09
11	62,13481	3,89661E-06	64	36,04	7,29729E-10
12	63,28349	5,6857E-06	65	33,57	3,24116E-10
13	65,54887	1,19787E-05	66	31,7	1,74797E-10
14	69,18637	3,96326E-05	67	31,06	1,41775E-10
15	74,29839	0,000212981	68	30,75	1,2805E-10
16		'	_		
	79,9357	0,001360415	69	28,5	6,10807E-11
17	85,54708	0,00861583	70	28,31	5,74033E-11
18	90,37134	0,042118912	71	26,97	3,69694E-11
19	93,83512	0,131614233	72	29,08	7,40087E-11
20	96,21698	0,288116793	73	28,11	5,36444E-11
21	98,84104	0,68302136	74	27,87	4,95696E-11
22	101,9834	1,920184047	75	27,61	4,55475E-11
23	105,4282	5,962894738	76	27,45	4,32929E-11
24	108,6627	17,2793987;5	77	27,35	4,18524E-11
25	111,1501	39,16259204	78	27,3	4,11502E-11
26	112,6822	64,82504951	79	28,86	6,87697E-11
27	113,6062	87,85022075	80	31,41	1,58762E-10
28	114,1424	104,7955538			
29	114,4754	116,9268596	t- ·	z (min)	3654,734741
30		· · · · · · · · · · · · · · · · · · ·		z (min)	29,87260232
	114,6419	123,5093966	V115	(111111)	Z9,0/Z00Z3Z
31	114,7159	126,5527039			
32	114,7529	128,1023636			
33	114,7714	128,8842949			
34	114,7899	129,6709991			
35	114,8084	130,4625054			
36	114,8269	131,2588429			
37	114,8454	132,0600412			
38	114,864	132,8705007			
39	114,8825	133,6815365			
40	114,8825	133,6815365			
41	114,901	134,4975229			
42	114,9195	135,31849			
43	114,9195	135,31849			
44	114,938	136,1444682			
45	114,9565	136,9754882			
46		· · · · · · · · · · · · · · · · · · ·			
	114,9565	136,9754882			
47	114,975	137,8115808			
48	114,975	137,8115808			
49	114,975	137,8115808			
50	114,9935	138,6527767			
51	114,9935	138,6527767			
52	114,9935	138,6527767			
53		139,4991073			

c) Efecto de esterilización sobre *C. botulinum*. Cálculo de los tiempos de proceso

-	Fratamientos a 105 °C27	5
	■ 105 °C – 3 min	
	■ 105 °C – 7 min	
	■ 105 °C – 10 min	
	■ 105 °C – 20 min	
	■ 105 °C – 30 min	
-	Fratamientos a 107 °C28	1
	■ 107 °C – 3 min	
	■ 107 °C – 6 min	
	■ 107 °C – 10 min	
	■ 107 °C – 20 min	
	■ 107 ° C – 30 min	
-	Fratamientos a 110 °C28	7
	■ 110 °C – 3 min	
	■ 110 °C – 10 min	
	■ 110 °C – 15 min	
	■ 110 °C – 25 min	
	■ 110 ° C – 35 min	
-	Fratamientos a 115 °C29	3
	■ 115 °C – 3 min	
	■ 115 °C – 10 min	
	■ 115 °C – 20 min	
	■ 115 °C – 30 min	

- Tratamientos a 105 °C

- 105 °C 3 minutos
- 105 °C 7 minutos
- 105 °C 10 minutos
- 105 °C 20 minutos
- 105 °C 30 minutos

Hataiiie	nto 105 °C/ 3 min	Esterilización C.botulinum
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))
1	27,71215	9,33872E-05
2	29,89225	0,000116001
3	30,1672	0,000119217
4	27,88366	9,49939E-05
5	27,38633	9,04093E-05
6	26,99204	8,69323E-05
7	26,66643	8,41619E-05
8	26,40942	8,20378E-05
9	53,9506	0,00126969
10	54,65234	0,001361477
11	53,82784	0,001254281
12	54,79274	0,001380623
13	56,56676	0,00164705
14	59,59413	0,002225761
15	65,47801	0,003996151
16	73,24562	0,008653181
17	81,13837	0,018972097
18	87,82113	0,036879708
19	92,45558	0,058476275
20	95,4164	0,078501307
21	98,14799	0,103008281
22	100,7948	0,134030977
23	102,5873	0,160189848
24	103,6678	0,178364678
25	104,2726	0,189423617
26	104,4926	0,193614271
27	99,29724	0,115482391
28	75,20921	0,010519525
29	59,85853	0,002285071
30	49,94128	0,000852136
31	43,24909	0,000437955
32	38,44531	0,000271596
33	38,22035	0,000265586
34	38,11653	0,000262858
35	33,31639	0,000163069
		·
	t _{Tref} z (min)	1,304556599
	t ₁₀₅ ^z (min)	6,406305341

Tratamie	nto 105 °C/7 min	Esterilización C.botulinur
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))
1	58,13225	0,001924556
2	55,33695	0,001457415
3	55,16137	0,001432184
4	57,28768	0,001769489
5	60,89906	0,002534236
6	67,12665	0,004708228
7	75,76319	0,011115427
8	83,78153	0,024676906
9	89,99116	0,045764136
10	93,96227	0,067930295
11	96,67211	0,088944525
12	99,62581	0,119318794
13	101,837	0,148670438
14	103,2098	0,170421678
15	104,016	0,184650247
16	104,4376	0,192557995
17	104,676	0,197178524
18	104,786	0,199347701
19	104,8227	0,200076713
20	104,8594	0,200808392
21	104,4743	0,193262177
22	90,98715	0,050529918
23	69,75521	0,00611508
24	56,26797	0,001598822
25	47,58417	0,000674046
26	40,41994	0,000330537
27	36,05941	0,00021422
28	35,92124	0,000211296
29	33,05795	0,000158931
30	29,80635	0,000115014
31	27,84936	9,46704E-05
32	26,51222	8,28809E-05
	t _{Tref} ^z (min)	2,118675471
	t ₁₀₅ ^z (min)	10,4042109
	V105 (11111)	10,4042103

Tratamie	nto 105 °C/ 10 min	Esterilización C.botulinur
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))
1	59,92904	0,002301153
2	59,77039	0,002265126
3	59,18885	0,002137824
4	59,64701	0,002137624
5	61,07551	0,002579106
6	63,40726	0,002579100
7	68,04951	0,003252315
8		·
9	74,63763	0,009938157
	81,92887	0,020524009
10	88,21865	0,038367099
11	92,65515	0,059648624
12	95,68927	0,080661061
13	98,6039	0,107786873
14	101,1238	0,1384895
15	102,7337	0,162539516
16	103,6678	0,178364678
17	104,1993	0,18804761
18	104,4926	0,193614271
19	104,6577	0,196819949
20	104,7677	0,198985181
21	104,8227	0,200076713
22	104,8594	0,200808392
23	104,8961	0,201542746
24	104,9328	0,202279785
25	104,2726	0,189423617
26	84,68198	0,026989015
27	66,36408	0,004364325
28	54,58215	0,001352005
29	45,87607	0,00056873
30	38,34148	0,000268805
31	37,32091	0,000242858
32	31,1472	0,000131422
33	29,34256	0,000109829
34	27,90082	9,51562E-05
35	26,99204	8,69323E-05
36	26,3409	8,14806E-05
37	25,89558	7,79503E-05
38	25,55314	7,534E-05
39	25,26215	7,31907E-05
40	25,07389	7,18329E-05
41	25,24503	7,30661E-05
42	24,86856	7,03808E-05
43	22,6976	5,67121E-05
44	21,98052	5,28081E-05
45	21,34915	4,95938E-05
45	21,34313	#190900E-00
	t _{Tref} z (min)	2,622743096
	t ₁₀₅ ² (min)	12,87954322

Tratamie	nto 105 °C/ 20 min	Esterilización C.botulinum	
minuto	T _i (°C)	L Ti =10^((Ti - 121)/23,15))	
1	53,9506	0,00126969	
2	52,11054	0,001057337	
3	52,70605	0,001121857	
4	54,68744	0,001366239	
5	57,62192	0,001829304	
6	63,70791	0,003351041	
7	71,62374	0,007364041	
8	80,38431	0,017601211	
9	87,3515	0,03519663	
10	92,1291	0,05660788	
11	95,21635	0,076954748	
12	97,72872	0,098800951	
13	100,4476	0,129481387	
14	102,331	0,156157812	
15	103,4846	0,175143994	
16	104,1443	0,187021704	
17	104,4926	0,193614271	
18	104,676	0,197178524	
19	104,7677	0,198985181	
20	104,786	0,199347701	
21	104,8227	0,200076713	
22	104,8411	0,200443215	
23	104,8594	0,200808392	
24	104,8594	0,200808392	
25	104,8778	0,201176234	
26	104,8961	0,201542746	
27	104,8961	0,201542746	
28	104,9144	0,201909925	
29	104,9144	0,201909925	
30	104,9328	0,202279785	
31	104,9328	0,202279785	
32	104,9511	0,202648307	
33	104,9511	0,202648307	
34	104,9511	0,202648307	
35	102,4591	0,158160195	
36	86,1783	0,031320082	
37	66,86058	0,004585262	
38	53,77523	0,004303202	
39	44,3444	0,001247733	
40	38,04732		
	· .	0,000261054	
41 42	35,81763 33,02349	0,00020913	
	· · · · · · · · · · · · · · · · · · ·	0,000158387	
43	29,30821	0,000109454	
44	27,45492	9,10282E-05	
45	26,83779	8,56087E-05	
46	26,37516	8,17587E-05	
47	25,96408	7,84832E-05	
48	25,62162	7,58549E-05	
49	25,39908	7,41943E-05	
	t _{Tref} ^z (min)	4,759200869	
	t ₁₀₅ ^z (min)	23,37107794	
	,	,	

Tratamie	nto 105 °C/ 30 min	Esterilización C.botulinum	
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))	
1	56,93595	0,001708655	
2	56,10982	0,001573869	
3	54,93316	0,001400041	
4	56,39099	0,001618505	
5	60,19351	0,002362489	
6	68,49346	0,005393851	
7	78,12513	0,014058979	
8	85,9438	0,030598019	
9	91,44017	0,052858824	
10	94,88906	0,07448994	
11	97,87453	0,100244282	
12	100,5938	0,13137801	
13	102,4408	0,157872576	
14	103,5762	0,176747	
15	104,2176	0,188390204	
16	·		
	104,5293	0,194322316	
17	104,6943	0,197537752	
18	104,7677	0,198985181	
19	104,8227	0,200076713	
20	104,8778	0,201176234	
21	104,8961	0,201542746	
22	104,9144	0,201909925	
23	104,9328	0,202279785	
24	104,9511	0,202648307	
25	104,9695	0,20301952	
26	104,9878	0,20338939	
27	105,0062	0,20376196	
28	105,0429	0,204507116	
29	105,0612	0,204879696	
30	105,0795	0,205252954	
31	105,0795	0,205252954	
32	105,0979	0,205628938	
33	105,0979	0,205628938	
34	105,1162	0,206003562	
35	105,1162	0,206003562	
36	105,1162	0,206003562	
37	105,1162	0,206003562	
38	105,1162	0,206003562	
39	105,1162	0,206003562	
40	105,1182	0,206380921	
41	105,1340	· · · · · · · · · · · · · · · · · · ·	
		0,206003562	
42	105,1162	0,206003562	
43	105,0062	0,20376196	
44	94,10759	0,068919294	
45	72,67502	0,008175755	
46	58,907	0,002078725	
47	48,05521	0,000706378	
48	40,54129	0,000334551	
49	37,66677	0,000251358	
50	34,95453	0,000191926	
51	31,47404	0,000135765	
52	28,63863	0,000102402	
53	28,84461	0,000104521	
54	28,56998	0,000101705	
55	28,29541	9,89651E-05	
	t _{Tref} z (min)	6,722079964	
	t ₁₀₅ ^z (min)	33,01021727	
	105 (11111)	JJ ₁ 0 10Z 17 Z7	

Tratamientos a 107 °C

- 107 °C 3 minutos
- 107 °C 6 minutos
- 107 °C 10 minutos
- 107 °C 20 minutos
- 107 ° C 30 minutos

Tratamiento 107 °C/3 min		Esterilización C.botulinum	Continuación		Esterilización C.botulinum
minuto	T _i (°C)	L _{T:} =10^((Ti - 121)/23,15))	minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))
1	26,64929	8,40186E-05	54	28,055	9,66287E-05
2	28,12383	9,72905E-05	55	27,489	9,13392E-05
3	27,88366	9,49939E-05	56	27,061	8,75272E-05
4	27,6264	9,25941E-05	57	26,684	8,43055E-05
5	27,45492	9,10282E-05	58	25,468	7,47013E-05
6	27,28346	8,94889E-05	- 30	20,400	1,410102.00
7	27,16346	8,84272E-05		^z (min)	1,512276865
	·	·			<u> </u>
8	27,06061	8,75272E-05	ι ₁₀ .	z ^z (min)	6,086714456
9	26,9749	8,67842E-05			
10	26,90635	8,61945E-05			
11	26,83779	8,56087E-05			
12	26,76924	8,5027E-05			
13	26,7007	8,44493E-05			
14	27,74645	9,37063E-05			
15	29,46278	0,00011115			
16	29,34256	0,000109829			
17	29,25669	0,000108895			
18	29,15366	0,000107784			
19	27,81505	9,43479E-05			
20	27,86651	9,4832E-05			
21	58,02665	0,001904447			
22	58,09705	0,001917829			
23	57,41081	0,001791293			
24	56,03953	0,001562904			
25	56,72497	0,001673173			
26	57,78027	0,001858344			
27	59,82327	0,002277072			
28	68,12053	0,005197442			
29	78,10723	0,014033971			
30	86,07006	0,0309847			
31	91,34955	0,052384527			
32	94,65274	0,072759452			
33	97,41892	0,072733432			
34	100,6303	0,093002939			
	103,2098				
35		0,170421678			
36	104,8227	0,200076713			
37	105,7769	0,219995951			
38	106,2727	0,231116809			
39	105,2263	0,208271895			
40	91,36767	0,052479023			
41	71,24979	0,007095171			
42	58,06185	0,001911126			
43	49,43453	0,00081025			
44	43,50978	0,000449459			
45	39,36293	0,000297551			
46	38,51454	0,000273472			
47	37,89163	0,000257043			
48	37,89163	0,000257043			
49	35,04081	0,00019358			
50	32,679	0,000153052			
51	30,6313	0,000124849			
52	29,51431	0,000111721			
53	28,65579	0,000102577			

Tratamiento 107 °C/6 min		Esterilización C.botulinum	
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))	
1	50,32585	0,000885362	
2	52,18059	0,00106473	
3	51,81291	0,001026495	
4	52,49584	0,001098644	
5	54,19616	0,001301083	
6	56,90079	0,00170269	
7	61,48147	0,002685376	
8	68,81321	0,005568151	
9	76,6394	0,012127614	
10	83,88955	0,024943466	
11	89,39398	0,043125005	
12	93,18144	0,062854206	
13	95,72565	0,080953461	
14	98,33033	0,104893505	
15	101,3249	0,141287478	
16	103,6495	0,178040317	
17	105,1529	0,206756915	
18	106,0156	0,22528159	
19	106,4747	0,235807294	
20	106,7135	0,24147522	
21	106,8421	0,244583776	
22	106,9156	0,246378378	
23	106,4196	0,234518499	
24	98,43975	0,106041329	
25	76,10287	0,011497387	
26	61,11081	0,002588177	
27	51,27035	0,000972568	
28	44,65753	0,000503813	
29	40,00395	0,00031714	
30	36,61223	0,000226329	
31	34,09207	0,000176148	
32	32,17965	0,000145636	
33	30,71727	0,000125921	
34	29,58302	0,000112487	
35	28,56998	0,000101705	
36	28,41552	0,000100154	
37	27,88366	9,49939E-05	
38	26,13535	7,98316E-05	
39	25,10812	7,20779E-05	
40	24,49221	6,77949E-05	
41	24,15017	6,55273E-05	
42	23,22716	5,97793E-05	
43	22,37315	5,49112E-05	
44	21,69039	5,1306E-05	
	1		
	t _{Tref} z (min)	2,42181427	
	t ₁₀₇ ^z (min)	9,747482265	
	407 (11111)	3,141402203	

Tratamier	nto 107 °C/ 10 min	Esterilización C.botulinum	
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))	
1	51,91794	0,001037275	
2	51,86542	0,00103187	
3	52,51335	0,001100559	
4	54,5997	0,001354367	
5	58,02665	0,001904447	
6	63,28349	0,003212523	
7	70,0931	0,006324087	
8	78,10723	0,014033971	
9	85,58314	0,029519843	
10	90,91468	0,050167001	
11	94,32563	0,070430277	
12	96,94527	0,091394233	
13	100,064	0,124634177	
14	102,7337	0,162539516	
15	104,511	0,193968935	
16	105,575	0,215622116	
17	106,2176	0,22985365	
18	106,5849	0,238406172	
19	106,7503	0,242360703	
20	106,8238	0,244138993	
21	106,8605	0,245031807	
22	106,9156	0,246378378	
23	106,9708	0,247734813	
24	107,0259	0,249096239	
25	107,0443	0,249552536	
26	106,8789	0,245480658	
27	106,2727	0,231116809	
28	104,8594	0,200808392	
29	82,5401	0,02181048	
30	65,07064	0,003837469	
31	51,16537	0,000962466	
32	42,27634	0,000397567	
33	36,56039	0,000225165	
34	33,60937	0,000167891	
35	31,61169	0,000137637	
36	30,08127	0,000118202	
37	29,0163	0,000106322	
38	28,3812	9,98132E-05	
39	27,93512	9,54814E-05	
40	24,38959	6,71064E-05	
. =		- i	
	t _{Tref} z (min)	3,866259945	
	t ₁₀₇ ^z (min)	15,56118515	
	407 (IIIIII)	15,56118515	

Tratamier	nto 107 °C/ 20 min	Esterilización C.botulinum
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))
1	34,76474	0,000188337
2	61,02258	0,002565563
3	59,89378	0,002293097
4	59,82327	0,002277072
5	61,46381	0,002680664
6	64,41562	0,003595426
7	69,64853	0,006050537
8	76,85409	0,012389371
9	83,88955	0,024943466
10	89,3578	0,042970094
11	92,90919	0,061175015
12	95,08906	0,075986586
13	97,3096	0,094766881
14	100,338	0,128077547
15	102,8436	0,164325992
16	104,511	0,104323932
17	105,5016	0,19396935
18		
	106,0523	0,226105442
19	106,3278	0,232386911
20	106,4563	0,235376131
21	106,5482	0,2375375
22	106,6217	0,239280401
23	106,6584	0,240155447
24	106,6951	0,241033692
25	106,7135	0,24147522
26	106,7319	0,241917556
27	106,7503	0,242360703
28	106,7686	0,242802246
29	106,787	0,243247013
30	106,787	0,243247013
31	106,8054	0,243692595
32	106,8054	0,243692595
33	106,8054	0,243692595
34	106,8238	0,244138993
35	106,8238	0,244138993
36	105,8503	0,221607938
37	96,54465	0,087824036
38	71,89093	0,007562369
39	56,63707	0,001658608
40	47,6365	0,000677564
41	42,72787	0,000415829
42	41,9812	0,000386065
43	34,36799	0,000181049
44	31,38802	0,000134608
45	29,72044	0,000114035
46	28,53565	0,000101358
47	25,70723	7,65036E-05
48	25,50178	7,49561E-05
. =		
	t _{Tref} z (min)	5,679404219
		·
	t ₁₀₇ z (min)	22,85885115

Tratamiento 107 °C/ 30 min		Esterilización C.botulinum	Continuación	ı	Esterilización C.botulinum
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))	minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))
1	50,04615	0,000861071	54	33,11	0,00015975
2	62,48813	0,002968174	55	30,597	0,000124423
3	61,56974	0,002709057	56	29,738	0,00011423
4	60,74028	0,002494528	57	29,308	0,000109454
5	60,52859	0,002442553	58	30,116	0,000118607
6	61,37555	0,002657234	30	30,110	0,000110007
		·	_	Z (!)	0.20402502
7	63,38958	0,003246601		r (min)	8,30193502
8	66,77191	0,004545	τ ₁₀ ;	z ^z (min)	33,41419092
9	72,5146	0,008046338			
10	79,39761	0,015955871			
11	85,92577	0,030543195			
12	90,84223	0,04980679			
13	94,18027	0,069419318			
14	97,01813	0,092058966			
15	100,1553	0,125771139			
16	102,7154	0,162243933			
17	104,4376	0,192557995			
18	105,5016	0,21405367			
19	106,1258	0,227764461			
20	106,4563	0,235376131			
21	106,64	0,239716332			
22	106,7503	0,242360703			
23	106,8421	0,244583776			
		·			
24	106,9156	0,246378378			
25	106,9891	0,248186148			
26	107,0443	0,249552536			
27	107,0994	0,250923951			
28	107,1362	0,251844082			
29	107,1729	0,252765073			
30	107,1913	0,25322809			
31	107,2097	0,253691955			
32	107,2097	0,253691955			
33	107,2281	0,25415667			
34	107,2465	0,254622236			
35	2465, 107	0,254622236			
36	107,2465	0,254622236			
37	107,2465	0,254622236			
38	107,2465	0,254622236			
39	107,2648	0,255086118			
40	107,2648	0,255086118			
41	107,2465	0,254622236			
42	107,2281	0,25415667			
43	107,2281	0,25415667			
44	107,2281	0,25415667			
45		•			
	107,2281	0,25415667			
46	107,2281	0,25415667			
47	106,4563	0,235376131			
48	93,03623	0,061952919			
49	70,44888	0,006551886			
50	56,76013	0,001679034			
51	46,57295	0,000609549			
52	38,98194	0,000286486			
53	34,76474	0,000188337			

Tratamientos a 110 °C

- 110 °C 3 minutos
- 110 °C 10 minutos
- 110 °C 15 minutos
- 110 °C 25 minutos
- 110 ° C 35 minutos

Tratamiento	110 °C/ 3 min	Esterilización C.botulinum
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))
1	26,32377	8,13418E-05
2	27,7979	9,41871E-05
3	30,0469	0,000117799
4	26,87207	8,59011E-05
5	50,27341	0,000880756
6	54,47687	0,001337922
7	53,38951	0,001200772
8	55,84628	0,001533149
9	60,36986	0,002404293
10	65,08835	0,003844235
11	72,31855	0,007890955
12	80,9947	0,018702914
13	87,85726	0,037012478
14	92,54629	0,059006256
15	95,78023	0,081394131
16	99,27899	0,115272956
17	103,0633	0,167956395
18	105,8871	0,222420568
19	107,6325	0,264588031
20	108,6627	0,293137429
21	109,215	0,309691101
22	108,2211	0,280540573
23	89,46635	0,043436547
24	64,52182	0,003633606
25	50,43076	0,000894649
26	41,65143	0,000373608
27	37,35549	0,000243695
28	35,95578	0,000212023
29	33,00627	0,000158116
30	29,61737	0,000112872
31	28,15814	9,76231E-05
32	26,92349	8,63416E-05
33	26,06684	7,92895E-05
34	25,38196	7,40681E-05
35	21,55388	5,06141E-05
36	20,92274	4,75344E-05
37	20,36011	4,49474E-05
38	19,88293	4,28639E-05
	t _{Tref} ^z (min)	1,918782541
	t ₁₁₀ ² (min)	5,730437037

Tratamiento 110 °C/ 10 min		Esterilización C.botulinum		
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))		
1	52,75861	0,001127737		
2	51,46284	0,000991368		
3	51,44534	0,000989644		
4	52,53087	0,001102479		
5	54,42423	0,001330935		
6	57,00629	0,001720651		
7	61,81692	0,002776486		
8	68,83097	0,005577996		
9	76,53208	0,011998847		
10	83,45755	0,023894387		
11	88,90562	0,041080308		
12	92,81845	0,060625374		
13	95,47097	0,07892855		
14	98,23915	0,103946515		
15	101,7273	0,147057088		
16	104,8411	0,200443215		
17	106,9156	0,246378378		
18	108,1843	0,279515598		
19	108,9204	0,300748191		
20	109,3439	0,313687173		
21	109,5649	0,320658825		
22	109,6939	0,324799649		
23	109,7676	0,327189333		
24	109,8228	0,328990673		
25	109,8597	0,330200356		
26	109,8781	0,33080522		
27	109,5834	0,321249405		
28	101,5444	0,144406025		
29	75,9062	0,011274666		
30	55,95169	0,001549308		
31	43,64884	0,000455719		
32	42,46735	0,000405192		
33	38,28956	0,000267421		
34	34,57497	0,000184815		
35	32,02473	0,000143409		
36	30,33907	0,000121272		
37	29,42843	0,000110771		
38	28,48417	0,000100841		
39	27,86651	9,4832E-05		
40	27,35204	9,01014E-05		
41	26,92349	8,63416E-05		
42	26,58075	8,34478E-05		
43	26,25525	8,07894E-05		
44	26,06684	7,92895E-05		
45	25,89558	7,79503E-05		
46	25,80996	7,72893E-05		
47	27,50636	9,14951E-05		
48	25,46755	7,47013E-05		
49	25,09101	7,19553E-05		
	·			
	t _{Tref} ^z (min)	4,267742012		
	t ₁₁₀ ^z (min)	12,7455959		
	e110 (11111)	12,1433333		

Tratamiento	110 °C/ 15 min	Esterilización C.botulinun	
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))	
1	54,26633	0,001310195	
2	53,33692	0,001194507	
3	53,4421	0,001207069	
4	54,81029	0,001383035	
5	57,76268	0,001855096	
6	63,19509	0,0031844	
7	71,00056	0,006921448	
8	79,25416	0,015729828	
9	86,23242	0,031489132	
10	91,33143	0,0522902	
11	94,65274	0,072759452	
12	97,72872	0,098800951	
13	101,4347	0,142838951	
14	104,786	0,199347701	
15	107,0075	0,248640777	
16	108,3499	0,284157678	
17	109,1045	0,306306003	
18	109,4913	0,318320003	
19	109,7123	0,325394619	
20	109,8228	0,328990673	
21	109,8965	0,331411192	
22	109,9518	0,33323909	
23	110,0071	0,335077069	
24	110,0439	0,336305788	
25	110,0624	0,336925186	
26	110,0808	0,337542369	
27	110,0992	0,338160682	
28	110,1177	0,338783497	
29	110,1361	0,339404083	
30	110,0808	0,337542369	
31	101,5078	0,143881289	
32	69,48853	0,00595501	
33	53,23175	0,001182077	
34	42,50208	0,000406594	
35	40,28126	0,000326009	
36	39,44953	0,000300125	
37	37,563	0,000248777	
38	32,3346	0,000147898	
39	30,49377	0,000123153	
40	29,13649	0,0001076	
41	26,94062	8,64888E-05	
42	26,27238	8,09271E-05	
	t _{Tref} z (min)	5,959358989	
	t ₁₁₀ ² (min)	17,79760382	

ratamiento	110 °C/ 25 min	Esterilización C.botulinum			Esterilización C.botulinun
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))	minuto	T _i (°C)	L _{Ti} =10*((Ti - 121)/23,15))
1	57,44599	0,001797572	54	31,749	0,000139534
2	57,2525	0,001763308	55	28,707	0,000103104
3	56,39099	0,001618505	56	28,158	9,76231E-05
4	55,21404	0,001439706	57	27,524	9,16512E-05
5	54,54705	0,001347293	58	26,975	8,67842E-05
6	54,42423	0,001330935	59	26,512	8,28809E-05
7	55,07359	0,001419734		25,512	0,20000
8	56,83045	0,001690819	t-	 _{ef} z (min)	9,558015268
9	59,91141	0,002297122		o ^z (min)	
	· · · · · · · · · · · · · · · · · · ·		411	0 (111111)	20,34431103
10	65,35401	0,003947167			
11	72,79981	0,008277865			
12	80,81513	0,018371833			
13	87,64048	0,036222967			
14	92,25605	0,057327195			
15	95,27091	0,077373497			
16	98,33033	0,104893505			
17	101,9102	0,14975682			
18	105,0062	0,20376196			
19	107,081	0,250465147			
20	108,3131	0,283119487			
21	109,0677	0,305186891			
22	109,4728	0,317734808			
23	109,6755	0,324205766			
24	109,8044	0,328389127			
25	109,8965	0,331411192			
26	109,9518	0,33323909			
27	110,0255	0,335690866			
28	110,0624	0,336925186			
29	110,0992	0,338160682			
30	110,1361	0,339404083			
31	110,1545	0,340025806			
32	110,1729	0,340648668			
33	110,1725	0,341276066			
34	110,1914	·			
		0,341901218			
35	110,2098	0,341901218			
36	110,2282	0,342527515			
37	110,2467	0,343158373			
38	110,2467	0,343158373			
39	110,2467	0,343158373			
40	110,2467	0,343158373			
41	110,2467	0,343158373			
42	110,2467	0,343158373			
43	110,2651	0,343786974			
44	110,0624	0,336925186			
45	106,9524	0,247281841			
46	81,51558	0,019697427			
47	61,26965	0,002629392			
48	48,6661	0,000750629			
49	39,08584	0,000289462			
50	38,44531	0,000271596			
51	37,71865	0,000252658			
52	34,21278	0,000178276			
53	32,54122	0,000150969			

Tratamiento	110 °C/ 35 min	Esterilización C.botulinum	Continua	ación	Esterilización C.botulinum
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))	minuto	T _i (°C)	L Ti=10^((Ti - 121)/23,15))
1	54,23125	0,001305632	54	52,356	0,001083439
2	54,54705	0,001347293	55	42,485	0,000405893
3	54,54705	0,001347293	56	40,299	0,000326571
4	55,98683	0,001554733	57	40,316	0,000327135
5	59,08315	0,002115466	58	38,22	0,000265586
6	64,9821	0,003803823	59	31,749	0,000139534
7	73,35263	0,008745774	60	28,742	0,000103456
8	81,53355	0,019732665	61	28,501	0,000101013
9	88,23673	0,038436157	62	28,038	9,64639E-05
10	92,81845	0,060625374	63	27,661	9,29104E-05
11	96,12598	0,084241927	64	28,055	9,66287E-05
12	99,75362	0,120845312	65	28,536	0,000101358
13	103,3747	0,173239909	66	28,278	9,87963E-05
14	106,089	0,226932307	67	28,69	0,000102928
15	107,798	0,268979525	68	28,93	0,000105418
16	108,7916	0,296919902	69	31,405	0,000134839
17	109,3439	0,313687173	- 00	31,400	0,000,000
18	109,6202	0,313087173	_	Z (mains)	13,06055445
	· ·			_f z (min)	·
19	109,7676	0,327189333	t ₁₁	o ^z (min)	39,00529808
20	109,8597	0,330200356			
21	109,915	0,332021576			
22	109,9702	0,33384952			
23	110,0255	0,335690866			
24	110,0624	0,336925186			
25	110,0992	0,338160682			
26	110,1361	0,339404083			
27	110,1545	0,340025806			
28	110,1729	0,340648668			
29	110,1914	0,341276066			
30	110,1914	0,341276066			
31	110,1914	0,341276066			
32	110,1914	0,341276066			
33	110,2098	0,341901218			
34	110,2098	0,341901218			
35	110,2098	0,341901218			
36	110,2098	0,341901218			
37	110,2098	0,341901218			
38	110,2098	0,341901218			
39	110,2282	0,342527515			
40	110,2282	0,342527515			
41	110,2282	0,342527515			
42	110,2467	0,343158373			
43	110,2467	0,343158373			
44	110,2282	0,342527515			
45	110,2467	0,343158373			
46	110,2467	0,343158373			
47	110,2467	0,343158373			
48	110,2651	0,343786974			
49	110,2651	0,343786974			
50	109,123	0,306870149			
51	106,3645	0,3367747			
52	84,32171	0,026039019			
53	65,53115	0,028033019			
55	00,00110	0,004017328			

- Tratamientos a 115 °C

- 115 °C 3 minutos
- 115 °C 10 minutos
- 115 °C 20 minutos
- 115 °C 30 minutos

Tratamiento 115 °C/ 3 min		Esterilización C.botulinum	Continua	ción E	sterilización C.botulinun
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))	minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))
1	26,32377	8,13418E-05	54	28,021	9,62994E-05
2	28,87895	0,000104879	55	27,969	9,58078E-05
3	28,44985	0,000100497	56	27,815	9,43479E-05
4	27,96943	9,58078E-05	57 27,729		9,35466E-05
5	26,56362	8,33057E-05	58	26,204	8,03775E-05
6	28,84461	0,000104521	59	25,998	7,8751E-05
7	28,56998	0,000101705	60	25,468	7,47013E-05
8	28,27825	9,87963E-05	61	25,125	7,22007E-05
9	27,96943	9,58078E-05	62	25,005	7,13455E-05
10	27,74645	9,37063E-05	63	24,92	7,0741E-05
11	27,54065	9,18077E-05			
12	27,40348	9,05636E-05	t _{Tr} .	_{ef} z (min)	3,714029063
13	27,24917	8,91842E-05		5 ^z (min)	6,745661798
14	27,12917	8,81261E-05	ļ	,	-,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
15	27,09489	8,78261E-05			
16	27,09489	8,78261E-05			
17	23,94499	6,42035E-05			
18	23,6373	6,22684E-05			
19	59,62938	0,002233579			
20	59,82327	0,002277072			
21	58,64282	0,002024815			
22	58,57239	0,00201068			
23	60,68735	0,00248143			
24	63,60179	0,003315856			
25	69,45298	0,005933991			
26	77,40888	0,013092249			
27	84,48382	0,026462277			
28	89,73777	0,044625151			
29	93,38114	0,064115154			
30	95,78023	0,081394131			
31	98,05683	0,102078514			
32	101,0873	0,137987635			
33	104,4193	0,192207822			
34	107,7613	0,267999454			
35	110,431	0,349506875			
36	112,2205	0,417595624			
37	113,3289	0,466267333			
38	113,9575	0,496350355			
39	114,1424	0,505563111			
40	111,5007	0,388743434			
41	99,75362	0,120845312			
42	76,38899	0,011829286			
43	61,19905	0,002610992			
44	51,46284	0,000991368			
45	44,93594	0,000517959			
46	40,29859	0,000326571			
47	36,95787	0,000234245			
48	34,47148	0,000182922			
49	32,55844	0,000151227			
50	31,0956	0,00013075			
51	29,9438	0,000116597			
52	29,0163	0,000106322			
53	28,07236	9,67937E-05			

Tratamiento 115 °C/ 10 min		Esterilización C.botulinum		
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))		
1	57,6747	0,001838933		
2	58,46674	0,001989662		
3	57,74508	0,001851851		
4	57,99145	0,001897791		
5	59,18885	0,002137824		
6	61,76395	0,002761896		
7	66,75417	0,004536988		
8	73,51318	0,008886556		
9	80,54585	0,0178863		
10	86,68354	0,03293423		
11	91,34955	0,052384527		
12	94,5437	0,071974601		
13	96,99991	0,091892285		
14	100,1736	0,126000274		
15	103,7594	0,179997162		
16	107,3384	0,256960336		
17	110,2651	0,343786974		
18	112,2205	0,417595624		
19	113,3659	0,467986431		
20	114,0129	0,499092939		
21	114,4014	0,518756179		
22	114,6049	0,52936324		
23	114,7159	0,535240042		
24	114,7714	0,538202864		
25	114,8454	0,542178821		
26	114,8825	0,544183213		
27	114,9195	0,546189582		
28	114,9195	0,546189582		
29	112,2944	0,420676415		
30	103,4663	0,174825489		
31	80,5997	0,017982359		
32	63,30117	0,003218177		
33	50,04615	0,000861071		
34	43,61408	0,000454146		
35	42,34579	0,000400322		
36	40,12526	0,000320989		
37	33,83346	0,000171675		
38	29,42843	0,000110771		
39	28,75878	0,000103633		
40	27,93512	9,54814E-05		
41	27,5578	9,19644E-05		
42	27,1806	8,85781E-05		
43	26,88921	8,60477E-05		
44	26,64929	8,40186E-05		
45	26,46082	8,24583E-05		
46	26,30664	8,12034E-05		
47	26,78638	8,51721E-05		
**/	20,70030	0,51721E-00		
	A Z /!	7 504540070		
	t _{Tref} z (min)	7,504516678		
	t ₁₁₅ z (min)	13,6301926		

Tratamiento 115 °C/ 20 min		Esterilización C.botulinum	Continua	ción E	sterilización C.botulinun
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))	minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))
1	24,83434	7,01416E-05	54	38,688	0,000278221
2	27,04347	8,73781E-05	55	36,163	0,000216439
3	32,28295	0,00014714	56	32,352	0,000148151
4	32,43791	0,000149425	57	30,236	0,000120035
5	32,95458	0,000157305	58	28,948	0,000105598
6	63,65485	0,003333402	59	28,21	9,81241E-05
7	64,43332	0,003601761	60	27,541	9,18077E-05
8	63,60179	0,003315856	61	27,043	8,73781E-05
9	63,07134	0,003145445	62	26,598	8,35901E-05
10	62,66483	0,003020802	63	26,221	8,05145E-05
11	62,61182	0,003004916	64	25,981	7,8617E-05
12	65,70832	0,004088749			
13	71,76623	0,007469152	t _{Tr} ,	 ₂f ^z (min)	13,54397164
14	78,53719	0,014647157		5 ^z (min)	24,59944458
15	84,69999	0,027037405			
16	89,57492	0,04390815			
17	93,05438	0,062064861			
18	95,36183	0,078076377			
19	97,18207	0,093572392			
20	99,69884	0,120188662			
21	102,7337	0,162539516			
22	105,8503	0,221607938			
23	108,8284	0,298008699			
24	111,1317	0,374734382			
25	112,6268	0,43481718			
26	113,5507	0,476667984			
27	114,1424	0,505563111			
28	114,4569	0,521627755			
29	114,6419	0,531314969			
30	114,7529	0,537213439			
31	114,8084	0,540187184			
32	114,864	0,543182794			
33	114,8825	0,544183213			
34	114,901	0,545185475			
35	114,9195	0,546189582			
36	114,938	0,54719554			
37	114,938	0,54719554			
38	114,9565	0,548203349			
39	114,9565	0,548203349			
40	114,975	0,549213015			
41	114,975	0,549213015			
42	114,975	0,549213015			
43	114,975	0,549213015			
44	114,9935	0,550224541			
45	114,9935	0,550224541			
46	112,4975	0,42926095			
47	109,0493	0,304628869			
48	92,05656	0,056200918			
49	72,53242	0,008060612			
50	59,52364	0,002210211			
51	47,89818	0,000695431			
52	41,80762	0,000379457			
53	40,29859	0,000326571			

Tratamiento	115 °C/ 30 min	Esterilización C.botulinum	Continua		sterilización C.botulinun
minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))	minuto	T _i (°C)	L _{Ti} =10^((Ti - 121)/23,15))
1	26,83779	8,56087E-05	54	115,01	0,55123793
2	27,23203	8,90323E-05	55	115,01	0,55123793
3	29,13649	0,0001076	56	115,01	0,55123793
4	28,62147	0,000102227	57	112,31	0,421447013
5	39,89998	0,000313877	58	109,16	0,307995433
6	59,27694	0,002156637	59	84,592	0,026748282
7	63,86711	0,003404525	60	62,506	0,002973396
8	62,77087	0,003052831	61	51,55	0,001000035
9	61,76395	0,002761896	62	43,614	0,000454146
10	61,69332	0,002742561	63	39,242	0,000293984
11	62,13481	0,002742301	64	36,042	0,000233364
12	63,28349	0,002003077	65	33,575	0,000213032
13	65,54887	0,003212323	66	31,698	0,000187318
14		·			
15	69,18637	0,005778701	67	31,061	0,000130303
	74,29839	0,009608417	68	30,752	0,000126352
16	79,9357	0,016833102	69	28,501	0,000101013
17	85,54708	0,029414155	70	28,313	9,91341E-05
18	90,37134	0,047527802	71	26,975	8,67842E-05
19	93,83512	0,067076603	72	29,085	0,000107051
20	96,21698	0,085007879	73	28,107	9,71246E-05
21	98,84104	0,110359444	74	27,867	9,4832E-05
22	101,9834	0,15085114	75	27,609	9,24363E-05
23	105,4282	0,212496632	76	27,455	9,10282E-05
24	108,6627	0,293137429	77	27,352	9,01014E-05
25	111,1501	0,375420824	78	27,301	8,96416E-05
26	112,6822	0,437219763	79	28,862	0,0001047
27	113,6062	0,47930658	80	31,405	0,000134839
28	114,1424	0,505563111			
29	114,4754	0,522588474	t _{Tr}	_{ef} z (min)	16,44008968
30	114,6419	0,531314969		₅ z (min)	34,24956303
31		· ·	- 1	3 (,	34,24330303
	114,7159	0,535240042			
32	114,7529	0,537213439			
33	114,7714	0,538202864			
34	114,7899	0,539194111			
35	114,8084	0,540187184			
36	114,8269	0,541182086			
37	114,8454	0,542178821			
38	114,864	0,543182794			
39	114,8825	0,544183213			
40	114,8825	0,544183213			
41	114,901	0,545185475			
42	114,9195	0,546189582			
43	114,9195	0,546189582			
44	114,938	0,54719554			
45	114,9565	0,548203349			
46	114,9565	0,548203349			
47	114,975	0,549213015			
48	114,975	0,549213015			
49	114,975	0,549213015			
50	114,9935	0,550224541			
51	114,9935	0,550224541			
52	114,9935	0,550224541			
53	115,012	0,55123793			

GLOSARIO

14. GLOSARIO

a) Ensayos a temperatura constante

 t_{inc} tiempo de incubación t_g tiempo de generación t_{ai} tiempo de tratamiento T_{ai} temperatura de ensayo D_{Tai} tiempo de reducción decimal a la temperatura T_{ai} $t_{n_{real} \cdot D_{Tai}}$. tiempo de proceso referido a la temperatura de ensayo T_{ai} $t_{n_{real} \cdot D_{Tai}}$. tiempo de proceso referido a la temperatura de ensayo T_{ai}

b) Tratamientos de autoclavado