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Abstract

Identi�cation of periodic patterns in gene expression data is important for study-

ing the regulation mechanism of the circadian system. The information available is

often given only by one or two cycles. Consequently, the number of observations is

not enough to �t certain models, such as Fourier's models, properly. Some authors

have already developed procedures or algorithms among which the JTK CYCLE

algorithm is the most popular one.

We propose a new method to identify cyclic gene expressions based on euclidean

and circular order restricted inference. Validation of the method is made through

real data sets and simulations. Moreover, we compare the results obtained by the

method with other detecting methods developed in the literature.
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Chapter 1

Introduction

The study of biological rhythms is receiving a lot of attention in the Biological

literature in recent years. At the core of research on biological rhythms lies the

methodological problem of how to detect periodicities in measured data. This is

re�ected in the richness of the literature on this subject as well as in the wealth of

methods and algorithms devoted to this task. The main purpose of this work is the

development of new methodology and algorithms for the detection of periodic signals

based on order restricted statistical methods.

Night and day, or dark and light patterns impact on human health in many dif-

ferent ways. It is well documented in the literature that in the US people are having,

on average, less sleep during the night and this disruption or reduction in sleep is

associated with numerous health outcomes including obesity. Among teenagers this

may a�ect the production of their growth hormones and result in abnormal growth

patterns.

For these reasons, researchers are in studying the e�ect of sleep on the circadian

clock in human body during various stages of life. Important component of this

clock are the circadian genes which have periodic expression overtime with phases

suitably matching the night and day. It is important to recognize that the expression

of circadian clock genes is tissue speci�c. Thus there may be di�erences in the phases

as well as periods of these clock genes depending upon the tissue. There could be a

13



Chapter 1. Introduction 14

potential lag in peak expression, i.e. moment where the gene expression reaches its

maximum, of the same gene in two di�erent tissues depending upon its function.

Consequently, the identi�cation of circadian clock genes in various tissues, such

as heart, liver, etc, and the estimation of the lag in peak expression between tis-

sues, so that the sequence of events can be correctly understood, are problems of

considerable interest for biologists. Note that since circadian clock genes follow the

night and day cycle, the genes involved in circadian clock have a periodic expression.

Therefore, the problem of interest to a biologist 'reduces' to identifying genes that

have a periodic expression and to comparing the phase angles (and other parameters)

of circadian genes in two or more tissues.

Notice that these problems are not exclusive of circadian clock as similar ones also

appear in other biological areas as, for example, cell-cycle research, where the role of

all genes that express periodically in the cycle of cells is studied. The methodology

developed here will obviously be useful for a wide kind of problems in di�erent areas

of research.

In this work, we address the problem of identi�cation of periodic genes proposing

novelty approaches. This relevant biological problem will be tackled in a parallel way

within the Euclidean and the Circular spaces (i.e., this work involves dealing with

circular data). The biological problem will be translated by formulations of several

hypotheses testing problem and will be solved, in each of the spaces, using Order

Restricted Inference (from now on ORI) techniques. ORI is a speci�c statistical

methodology that allows us to incorporate a priori information in the model.

Due to the cyclic nature of the problems considered, one of the main features of

the data to be analyzed is that they, by using an appropriate transformation, can be

represented as points in the circle. Circular data have to be treated with care as the

most simple statistics as, for example, the circular mean have to be adapted to the

geometry of the space. In Chapter 2 we collect the basic concepts and de�nitions of

circular data that will be needed to understand the document. A full account can
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be found in, for example Mardia and Jupp (2000).

Other important aspect in this work is the order within the circadian gene ex-

pressions. To address this question we use techniques of ORI, see (Robertson et al.

(1988), Silvapulle and Sen (2005)). The order of the gene expressions is represented

by restrictions on the parameters of the models.

It might be said that the statistical methodology developed for the analysis of

gene expression in the cell cycle has leaded to a new �eld in Statistics, which may be

called, inference with constraints in circular models. Pioneering works in this �eld

are Rueda et al. (2009) or Fernández et al. (2012). The �rst one de�nes and proposes

an estimator for the circular isotonic regression (CIRE), and the second one deals

with an hypothesis testing problem to test a given circular order using a conditional

test. Some notes about these results appear in this work, see Section 2.2.1. Following

this line, the previous works were used in Barragán (2014) to determine the order of

activation of a set of genes in a species, and if this order changes with the evolution

of the species or not. Recently, Barragán et al. (2015) deals with the problem of

analysing gene expressions in two correlated oscillatory systems (peak expressions

of periodic genes from di�erent dose levels, species, organs,...). In Militino et al.

(2015), the aim is the development of statistical tools to check if the unimodality

pattern persists in some diseases like breast cancer, in di�erent regions of developed

countries using order restricted inference.

Identi�cation of periodic genes among several thousands of genes using micro-

array data is not a simple problem due to the large variability in the data and the high

number of data (several thousands of genes) to be processed. There are numerous ad-

hoc methods available in the literature that are not entirely satisfactory. The most

common ones are JTK Cycle algorithm (Hughes et al. (2010)) and RAIN, (Thaben

and Westermark (2014)). Both these two methods are non-parametric methods.

This work proposes new parametric statistical methodology based on circular data

and aimed to identify periodic genes within the circadian cycle.

The techniques developed in the previously mentioned works can also help to
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know, in the circadian cycle, about the biological clock if a tissue and of this bio-

logical clock (or order of activation of the genes) is conserved among tissues. These

moments of activations can be identi�ed as a part of a cyclic process, and as a conse-

quence it is possible to understand them as circular data, establishing a connection

between the euclidean and the circular data spaces.

However, as we have already mentioned, the circular data geometry does not

allow to employ the usual statistical methods or developments. In addition to this,

in many of the available data sets the number of available data is not high enough

to properly �t mathematical models such as Fourier's models.

Therefore, the aim of this work consists in developing a new parametric statistical

methodology and software to adapt the analysis of the circular data considering the

fact that the number of observations available to determine if a gene expression is

or not cyclic is low, using the previous methods and results obtained in constrained

statistical inference applied to circular data, (e.g. Rueda et al. (2009) or Fernández

et al. (2012)) as well as the software developed up to date Barragán et al. (2013).

The layout of this work is the following:

1. The main ORI de�nitions and results within the Circular space, and a brief

outline about one of the most employed algorithms in the literature to identify

periodic genes, the JTK algorithm, can be found in Chapter 2.

2. A brief introduction to explain the notation employed and the basic de�nitions

to formulate mathematically the problem of detecting cyclic genes is given in

Section 3.1 of Chapter 3.

3. Next, we formulate, in a parallel way, Euclidean and Circular models using

nested hypotheses testing problems, and we also design an algorithm to identify

di�erent periodic genes patterns for both spaces, see Section 3.2 of Chapter 3.

4. The last part of this work contains simulations and a real example to validate

new methodology proposed, see Chapter 4

5. Finally, in the Chapter 5, we expose the main conclusions and the future work.



Chapter 2

Background

The theoretical bases of the algorithm proposed in Chapter 3 to detect cyclic genes,

belong to the �elds of order restricted inference and circular data. The literature

related with both ORI and circular data is extremely widespread. In this brief re-

view we start by giving the basic concepts for circular data and see how the ORI

techniques have been incorporated so far for the analysis of these data, since ORI,

has mainly been developed in the Euclidean space, being the works of Rueda et al.

(2009) and Fernández et al. (2012) the �rst ones to incorporate constrains in the cir-

cular data analysis. Both researches arise to solve problems related to the analysis

of gene expressions in the cell cycle.

To understand the ORI methodology for circular data, we must �rst de�ne the

main statistics and distributions (see Section 2.1) as well as circular orders (see

Section 2.2) within the Circular space. Moreover, we need to study concepts such as

CIRE (see Section 2.2.1) which allow making restricted inference on the von Mises

model, (see Section 2.2.2). The last part of the Chapter describes one of the most

widespread methods of detecting cyclic genes in the literature, the JTK CYCLE

algorithm.

17
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2.1 Basics on Circular Data Analysis

This Subsection introduces the basic concepts needed to understand this work. Cir-

cular data is a complex �eld, the key references being Mardia and Jupp (2000) and

Fisher (1993). These are the basic concepts.

De�nition 2.1.1. Circular Data

A circular data is a point in the unit circle. In an equivalent way, it is a direction

vector in the plane. When an initial direction and an orientation are �xed, it can be

represented by the angle between the initial direction and the observed point.

We consider the counter clockwise direction, that is also the most widely used in

the literature. Circular data can be classi�ed with respect to its precedence: compass

data or clock data. In the last case, circular data depend on the time, where the cir-

cle represents the cycles which are going to be repeated again and again. Whatever

was the origin of the data the features and tools are the same in both analyses.

We continue describing the most relevant measures of location, concentration,

distance and association, let θ = (θ1, . . . , θn)
′
a vector of n observations in the circle.

2.1.1 Measures of Location and Concentration

De�nition 2.1.2. Circular or Directional Mean

θ = Ave(θ) =


arctan( S

C
) if S ≥ 0, C ≥ 0

π
2

if S > 0, C = 0

arctan( S
C

) + π if C < 0

arctan( S
C

) + 2π if S < 0, C ≥ 0

where,

S =
1

n

n∑
i=1

sin(θi), C =
1

n

n∑
i=1

cos(θi).

Note that if S = C = 0, then θ is not de�ned.
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Observation 2.1.1. The circular mean θ does not verify the Cauchy mean value

property, which is a key property in some results in the Euclidean space, see Example

2.1.1.

Example 2.1.1. Cauchy Mean Value Property

Suppose two birds are �ying east at angles θ1 = 0.52 radians (30
o

) and θ2 = 5.76

radians (330
o

), respectively. Then, the arithmetic mean is θ = π radians (i.e. 180
o

),

suggesting that the birds on the average are actually �ying westward, which refutes

common sense. Instead angular mean is 0 radians (i.e., 0
o

). Moreover, note that 0

radians does not lie between 0.52 and 5.76, and hence, the angular mean does not

satisfy the Cauchy mean value property.

De�nition 2.1.3. Mean Resultant Length, MRL

The mean resultant length, MRL, is the most common measure of concentration

for circular data, it is de�ned as:

R =
1

n

n∑
i=1

cos(θi − θ) =

√
S

2
+ C

2
.

It is a measure of the length of the mean direction de�ned before for θ.

Observation 2.1.2. Note that 0 ≤ R ≤ 1, therefore if θ1, . . . , θn are tightly clustered,

then R will be almost 1. On the other hand, if θ1, . . . , θn are widely dispersed then R

will be almost 0.

Observation 2.1.3. From the MRL, we can derive the de�nition of the resultant

length R, of the vector as R = nR, which can be understood as a dispersion measure

too.

Example 2.1.2. Circular Mean and MRL for roulette wheel

A roulette wheel was spun and the positions at which it stopped were measured.

The stopping positions in 9 trials were 0.75 (43
o

), 0.79 (45
o

), 0.91 (52
o

), 1.06 (61
o

),

1.31 (75
o

), 1.54 (88
o

), 1.54 (88
o

), 4.87 (279
o

), 6.23 (357
o

) radians. The circular

raw data plot in Figure 2.1 suggest that there is a preferred direction.
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Moreover, C = 0.447 and S = 0.553, so the mean direction θ = 0.89 radian (51
o

)

and R = 0.711. Figure 2.1 shows θ and R for this data set and indicates the preferred

direction of 51
o

.

Figure 2.1: The mean direction θ, and the mean resultant R, for the Example 2.1.2

2.1.2 Measures of Distance and Association

Let α = (α1, . . . , αn)
′
and β = (β1, . . . , βn)

′
two vectors of circular observations.

We de�ne the distance between two vectors, and between a vector and a set of

observations.

De�nition 2.1.4. Angular Distance between α and β

The angular distance between α and β is given by:

d(α,β) =
n∑
i=1

[1− cos(αi − βi)]

De�nition 2.1.5. Sum of Circular Errors, SCE

The sum of circular errors between a vector α and a vector of circular mean

θ = (θ1, . . . , θn), where θi is the circular mean of the vector (θi1, . . . , θic)
′
is de�ned
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by:

SCE(θ,α) =
n∑
i=1

c∑
j=1

[1− cos(θij − αi)]

=
n∑
i=1

Ri[1− cos(θi − αi)],

where Ri is the resultant length of the vector (θi1, . . . , θic)

2.2 Basics on Order Restricted Inference

An intrinsic feature of circular data is the fact that, the smallest number of elements

in a set of circular data to establish a circular association or order between them is

three, while in the Euclidean space two elements have an order among them.

To be able to de�ne an order in the circle is necessary to consider a third one

element, so that the initial point in the circle has not in�uence into the order. So

the circular order is de�ned at least for three elements, namely, θ1 ≤ θ2 ≤ θ3 ≤ θ1.

The notation ≤ for the circular order is inherited of circular data can be understood

as a cyclical process.

De�nition 2.2.1. Circular Order

We will say that a vector θ follows a circular order O where O = {o1, . . . , on} is
a permutation of {1, . . . , n} if θo1 precedes θo2 which precedes θo3 and so on with θon

preceding θo1. We will denote this precedence relation as θo1 ≤ · · · ≤ θon ≤ θo1 and

we will also write that θ ∈ CO. With this notation, CO = {θ ∈ [0, 2π)2n : θo1 ≤ · · · ≤
θon ≤ θo1} is said to be an order cone.

These orders are invariants with respect to rotations and they are independents

of initial direction choice, (see Mardia and Jupp (2000)).
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2.2.1 Circular Isotonic Regression Estimator. CIRE

The Circular Isotonic Regression Estimator, from now on, CIRE, is the natural ex-

tension of Isotonic Regression in the Euclidean space into the Circular space. An

outline about Isotonic Regression within the Euclidean space can be found in Ap-

pendix A. The CIRE and other relevant statistical results within the Circular space

were studied in Rueda et al. (2009). Let θ = (θ1, . . . , θn)
′
the CIRE of θ with respect

an order O can be de�ned as the closest vector to θ verifying the order O.

De�nition 2.2.2. Circular Isotonic Regression Estimator, CIRE

The Circular Isotonic Regression Estimator, CIRE, of θ with respect to CO is:

θ̃(O) = arg min
η∈CO

SCE(θ,η) (2.1)

Moreover, θ̃ determines a partition P = {1, . . . ,m} into sets of coordinates on

which θ̃j is constant. These sets are called level sets. Both this property and the

existence, (almost surely) uniqueness and others properties are proved in Rueda

et al. (2009). It is not possible to obtain the CIRE by any well-known algorithm for

constrained estimators in the Euclidean space, or by adapting them to the Circular

space. When it is clear which cone we are reference to we will drop the super-index

(O).

As it is shown in Appendix A and according to Rueda et al. (2009), θ̃(O) is

achieved through a speci�c algorithm for circular data based on the PAVA (Pool Ad-

jacent Violator Algorithm) proposed in Robertson and Wright (1980) which solves

the problem of isotonic regression for euclidean data with distinct order constrains.

In order to that, adjacent observations which violate the order constrains are aver-

aged in sets for which the restricted estimator takes the same value. These sets are

also called, level sets. See Appendix A for details.

The CIRE implementation is available both for SAS and for R code. A freely

downloadable SAS based user-friendly software can be obtained in http://www.

niehs.nih.gov/research/atniehs/labs/bb/staff/peddada/index.cfm.

http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/peddada/index.cfm
http://www.niehs.nih.gov/research/atniehs/labs/bb/staff/peddada/index.cfm
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The R package is included in the R-package isocir (isotonic inference for circular

data), Barragán et al. (2013).

2.2.2 Inferences on the von Mises Model. Conditional Test

In the same way that the Normal model is the most widespread within the Euclidean

space, the von Mises model plays the central role in the Circular space. The model

proposed in this work will assume, whenever was necessary, von Mises distribution.

Let θ = (θ1, . . . , θn)
′
be a circular random vector of von Mises distribution, we de-

note θi ∼ VM(φi, κ), i = 1, . . . , n where φi and κ are parameters of location and

dispersion, respectively. A brief outline about von Mises distribution can be found

in Appendix D.

The assumption of von Mises distribution is needed in most previous results

obtained in circular ORI, for instance in Rueda et al. (2009) where under the as-

sumption of von Mises distribution it was proved that if φ ∈ CO then, the CIRE

provides its restricted maximum likelihood estimator (RMLE).In Appendix B we

include a brief outline for RMLE on Normal models.

Moreover, to solve the hypotheses testing problems proposed in this work, we act

in the same way that in Fernández et al. (2012) where a conditional procedure is

used to test a �xed circular order. The use of conditional test is not new in ORI,

see for example Bartholomew (1961), or Iverson and A. (1987). Compared with the

standard LRT where weights depend on unknown parameters that are di�cult to

compute, the conditional test is computationally much simpler and it also bene�ts

from an increase in power in interesting alternatives.

This issue has been discussed within both the Euclidean space (Wollan and Dyk-

stra (1986), Robertson et al. (1988), Menéndez et al. (1991), or recently Militino et al.

(2015)) and within the Circular space (Fernández et al. (2012),Barragán (2014)). In

Appendix C we include the main guidelines to conduct simple conditional tests in

both spaces. In particular, one of the conditional test proposed in this work within

the Circular space is the �rst time appears in the literature.
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2.3 JTK Algorithm

Most available methods for periodicity detection can be traced back to Fourier meth-

ods in some form (Halberg et al. (1967), Straume (2004), Wichert et al. (2004), Wi-

jnen et al. (2005)). These methods generally assume an underlying rhythm in the

form of one or more sine waves and the general assumption that the noise variance

is both Gaussian distributed and independent of measurement magnitude. However

sometimes it is not even close to reality for biological data. For these cases the

literature o�ers non parametric statistical methods, being JTK CYCLE algorithm

the non parametric method which has had the largest impact and has been widely

adopted in the �eld, see Wu et al. (2014), Deckard et al. (2013), Li et al. (2015).

JTK CYCLE builds on the non parametric Jonckheere-Terpstra test (Jonckheere

(1954), Terpstra (1952)), which detects monotonous trends in data consisting of a

dependent variable (e.g., mRNA expression levels) and an independent variable (e.g.,

time). JTK CYCLE acts designing tests measurements in both rising and falling

parts of the underlying rhythm pattern against each other, i.e., by default it assumes

a perfectly symmetric wave form, where the falling part has the mirror-image shape

of the rising part. In practice, JTK CYCLE algorithm allows the user to choose a

set of periods , as well as, possible phases, in this way, the pvalues returned are false

discovery rate, FDR adjusted pvalues. The JTK CYCLE's weakness is that it is not

able to detect asymmetric shapes, for instance, the case of an initial increasing and

a subsequent sharper decrease in the dependent variable.



Chapter 3

Methodology

This Chapter contains some previous de�nitions and notation. We also describe the

models and methods developed to solve the problem of identifying cyclic signals.

3.1 Basic Concepts and Notation

Let T a �xed period, and let X = (X ′1, . . . ,X
′
c) be the vector of n× c expressions of

a gene, where c is the number of cycles of period T, n is the number of observations

per cycle and Xi = (X1i, . . . , Xni)
′ is the vector containing the n observations of the

gene expression in the cycle i. The sequence of times t1, ..., tn where the observations

are measured is called timepoint set . Thus, Xij denotes the ith observation of the

jth cycle of the gen, which is measured at instant ti.

In many practical situations, the researcher is interested in the detection of peri-

odic genes. For us, periodic genes will be those for which E(X1) = · · · = E(Xc) = µ

is a cyclic signal, (to be de�ned below).

The models and methods we propose in chapter 3.2 are designed to detect cyclic

signals, µ, and to distinguish between the following 4 di�erent patterns: Non cyclic

& Non periodic; Non cyclic & Periodic; Cyclic & Periodic; Cyclic & Periodic &

Constant. See Figure 3.1.

Giving a rigorous de�nition of cyclic signal, is a di�cult task. According to

25
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biological interest, we assume that a cyclic signal is a periodic signal with one local

maximum, called phase P, and one local minimum per cycle. A possible periodic

gene with an underlying cyclic signal is shown in Figure 3.2.

Figure 3.2: Periodic gene Elovl3 from Mouse Liver with a possible underlying cyclic
signal.

According to this, a cyclic signal, µ, can be mathematically de�ned as follows:

De�nition 3.1.1. Cyclic Signal (I)

µ cyclic signal ⇐⇒ ∃ φ = (φ1, . . . , φn) with µi = sin(φi) and φ ∈ CO where

CO = {φ ∈ [0, 2π)2n : φ1 ≤ · · · ≤ φn ≤ φ1} is a circular order, (see Subsection

2.2.1).

Taking into account this de�nition, a natural space to state the problem is the

Circular Space, (see Figure 3.3). Therefore, we assume that ∃ θ = (θ1, . . . , θn)′ a

vector of circular data, (see Section 2.1) such that X = sin(θ) and φ = E(θ) (at

least asymptotically).

De�nition 3.1.2. Cyclic Signal (II)

µ cyclic signal ⇐⇒ µ ∈ C =
⋃
L,U C

U
L , where L,U ∈ {1, . . . , n} and

CU
L = {µ ∈ Rn : µLj ≤ µL+1j ≤ · · · ≤ µUj ≥ µU+1j ≥ · · · ≥ µL−1j ≥ µLj}.
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Observation 3.1.1. Note that the previous de�nitions involve both euclidean and

circular parameters.

Proposition 3.1.1. The de�nitions (3.1.1) and (3.1.2) for a cyclic signal µ are

equivalent.

Proof:

• (3.1.1) ⇒ (3.1.2)

Given φ ∈ OC, de�ne µ = sin(φ) and L and U as the indexes such that

φL = argmini=1,...,n sin(φi) and U = argmaxi=1,...,n sin(φi). Since φ ∈ CO we

have that µ ∈ CLU ⊂ C.

• (3.1.2) ⇒ (3.1.1)

Consider the indexes L and U such that µ ∈ CLU , and denote

LU = {i ∈ {1, . . . , n} : i ∈ [min{L,U},max{L,U}]} .

Then, for i = 1, . . . , n, de�ne φi as

φi =

{
π
2

+ arcsin(µi) if i ∈ LU
3π
2
− arcsin(µi) otherwise

It is straightforward to check that φ ∈ CO.

In these terms, the goal of this work is identifying and distinguishing among

periodic patterns from genes expressions, i.e., a gene expression will be periodic if

the underlying function of this gene µ is a cyclic signal. This problem turns into

solving hypotheses testing problems within the Euclidean and the Circular spaces,

as we explain in the following Sections.

3.2 Models and Methods

The equivalence between (3.1.1) and (3.1.2) allows to consider in a parallel way

an Euclidean and a Circular model. The problem of identifying and distinguishing



Chapter 3. Methodology 29

Figure 3.3: Relation between the Euclidean and Circular spaces

between the four di�erent patterns cited before (see Figure 3.1) generates a nested

testing hypothesis problem on µ to be tested. To be more precise, for a cyclic signal

µ, we will test the following four nested hypotheses:

H0 : µ Constant

H1 : µ Cyclic & Periodic

H2 : µ Cyclic & Non periodic

H3 : µ Non cyclic & Non periodic

A general procedure in both spaces is to conduct the following testing problems

sequentially: H2 against H3 −H2, H1 against H2 −H1 and H0 against H1 −H0. In

this way, non periodic (therefore non cyclic) patterns are detected with the �rst test;

periodic but non cyclic patterns are detected by accepting H2 but not H1; cyclic

periodic patterns appear when H2 and H1 are not rejected but H0 is rejected against

H1−H0; and �nally, (periodic) constant patterns are concluded if none of the three

null hypotheses are rejected.

The method we present for solving the hypotheses testing problems H1 against

H2 −H1 and H0 against H1 −H0 is based on likelihood ratio test (LRT). However,

the problem of testing H2 against H3 − H2 which detects patterns such as (d) in
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Figure 3.1, is harder to derive than in the other ones. Although we have studied

some alternatives to the problem, it is only solved in a partial way. Therefore, this

task will be dealt in the future work, see 5.3.

A direct use of conditional test based on LRT is an intractable problem in both

spaces, therefore we propose a method to solve the problem following a 2-stage

algorithm in both spaces:

• In a �rst stage we estimate L and U as follows:

L̂ = arg min
i=1,...,n

X i.

Û = arg max
i=1,...,n

X i.,
(3.1)

where X i. =
∑2

j=1Xij

2
.

• In a second stage we consider the hypotheses testing problems under the

assumption that L and U are known. In both spaces, we have to consider the

three following steps:

1. In a �rst step we reformulate the hypotheses of the testing problem to

the estimations of L and U .

2. The second step is dedicated to the computation of the MLE of the

model's parameters.

3. In a third step the testing problems are solved using conditional test

based on LRT in order to get a pvalue.

Finally, we use a pvalue adjustment to take into account the multiple testing and

get the �nal results.

The �rst stage is direct and common in both spaces. The second stage needs

to be speci�ed in each space. Subsections 3.2.1 and 3.2.2 describe the model and

the three mentioned steps to consider the testing problems within the Euclidean

and the Circular spaces respectively. Throughout this Chapter, and without loss of

generality we assume c = 2.
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3.2.1 Euclidean Space Approach

From the �rst stage we assume that L and U are known, (see 3.1). Let us further

assume that Xij ∼ N(µij, σ
2) independent, where µij and σ2 are parameters of

location and dispersion respectively. The following algorithm describes the three

steps of the second stage to consider the testing problems within the Euclidean

space.

• First Step:

Under these assumptions, the hypothesis testing problem is written as follows:

HE
0 : µ1 = µ2 = µ∗

HE
1 : µ1 = µ2 ∈ CE

LU

HE
2 : µ1 = µ2

where µj = (µ1j, . . . , µnj)
′, µ∗ = µ · (1, . . . , 1) and CE

LU is the order cone

CE
LU = {µiL ≤ . . . µiU−1 ≤ µiU ≥ µiU+1 ≥ · · · ≥ µuL−1 ≥ µiL}. The order cone

CE
LU is usually named unimodality cone. In this way, the hypotheses testing

problem above involves order constraints.

• Second Step

The log-likelihood for a general model is:

l
(
(µ1,µ2), σ2

i ; (X1,X2)
)
∝ n log(2π)− n

2
log |Σ| − 1

2

n∑
i=1

ωi

2∑
j=1

(Xij − µij).

(3.2)

where ωi = 2
σ2
i
and Σ = diag(

σ2
1

2
,
σ2
2

2
).

From (3.2) we can derive the MLE of the parameters in the model. For

s = 0, 1, 2, we denote by µ̂s the MLE under HE
s for µ. Di�erentiating (3.2)

with respect to σ2 we obtain the MLE for parameter σ2. Let σ̂2
s denote the the

MLE under hypothesis s, with s = 0, 1, 2.
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Then, under HE
0 , H

E
1 and HE

2 , the MLEs of µ and σ2 can be written as follows:

MLE under HE
0 :

� According to Robertson et al. (1988), µ̂0 = µ̂·(1, . . . , 1), where µ̂ is written

as:

µ̂ =

∑n
i=1 ωi

∑2
j=1Xij∑n

i=1 ωi
. (3.3)

� According to Robertson et al. (1988), the estimator σ2 can be written as:

σ̂2
0 =

∑n
i=1

∑2
j=1(Xij − µ̂0)2

2n
, (3.4)

with µ̂0 = µ̂ · (1, . . . , 1), and µ̂ given in (3.3).

MLE under HE
1 :

� The fact that L and U are �xed, let us calculate the MLE of µ under HE
1

using isotonic regression. An outline of isotonic regression can be found

in Appendix A. Then, we can write:

µ̂1 = µ∗ (3.5)

where µ∗ is the isotonic regression of X = (X1, . . . , Xn)′, being X i = X i.

and with weight vector ω = (ω1, . . . , ωn)′ under the order which deter-

mines CE
LU .

� According to Robertson et al. (1988), the corresponding estimator of σ2

is:

σ̂2
1 =

∑n
i=1

∑2
j=1(Xij − µ̂1)2

2n
, (3.6)

with µ1 given in (3.5).

MLE under HE
2 :

� Under H2 the MLE of µ can be written as:

µ̂2 = X, (3.7)
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see Robertson et al. (1988).

� Under HE
2 , the expression to estimate σ2 is the most well-known:

σ̂2
2 =

∑n
i=1

∑2
j=1(Xij − µ̂2)2

2n
, (3.8)

with µ2 given in (3.7), (see Robertson et al. (1988)).

• Third Step:

We assume σ2 is known and the MLE of σ2 obtained in the second step as the

real value. The conditional tests are based on likelihood ratio test statistics

(LRT) that are de�ned below. We denote by LRTE12 and LRT
E
01 the likelihood

ratio test statistics for testing HE
1 against HE

2 −HE
1 and HE

0 against HE
1 −HE

0

respectively, they can be written as:

TE12 = LRTE12 = −2lHE
1

(
(µ1,µ2), σ2; (X1,X2)

)
+ 2lHE

2

(
(µ1,µ2), σ2; (X1,X2)

)
=

=
n∑
i=1

ωi(X i − µ̂1)2 −
n∑
i=1

ωi(X i − µ̂2)2

=
n∑
i=1

ωi(X i − µ∗)2,

(3.9)

where µ∗ = (µ∗1, . . . , µ
∗
n)′.

TE01 = LRTE01 = −2lHE
0

(
(µ1,µ2), σ2; (X1,X2)

)
+ 2lHE

1

(
(µ1,µ2), σ2; (X1,X2)

)
=

=
n∑
i=1

ωi(X i − µ̂0)2 −
n∑
i=1

ωi(X i − µ̂1)2

=
n∑
i=1

ωi(µ
∗ − µ̂)2 + 2

n∑
i=1

ωi(X i − µ∗)(µ∗ − µ̂).

(3.10)

Applying Theorem 1.3.6 of Robertson et al. (1988) the last term in (3.10) is
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seen to be zero. Hence the LRT under HE
0 is:

TE01 = LRTE01 =
n∑
i=1

ωi(µ
∗ − µ̂)2. (3.11)

where µ∗ = (µ∗1, . . . , µ
∗
n)′.

The conditional test is described in detail in Appendix C. Let us denote as

tE12 and tE01 the observed values of the statistics TE12 and TE01 respectively. Let

us further denote by mE the computing level sets of µ∗ under HE
1 . Then the

corresponding pvalues can be obtained as follows:

p12E = P [χ2
n−mE ≥ tE12] (3.12)

p01E = P [χ2
mE−1 ≥ tE01], (3.13)

where p12E and p01E denotes the pvalue of testing HE
1 against HE

2 −HE
1 and

HE
0 against HE

1 −HE
0 respectively within the Euclidean space.

3.2.2 Circular Space Approach

From the �rst stage we assume that L and U are known, (see 3.1). Let us further as-

sume that θij ∼ VM(φij, κ) independent, where φij and κ are parameters of location

and dispersion respectively.

To de�ne θj = (θ1j, . . . , θnj) we need a previous normalization of the data, i.e.

of X, into [−1, 1]. Next, as L and U are �xed from �rst stage, let us de�ne θj as

follows:

θj =

{
π
2

+ arcsin(Xj) if i ∈ LU
3π
2
− arcsin(Xj) otherwise

(3.14)

where LU = {i ∈ {1, . . . , n} : i ∈ [min{L,U},max{L,U}]} .

The following algorithm describes the three steps of the second stage to consider

the testing problems within the Circular space.
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• First Step:

Under these assumptions, the hypothesis testing problem is written as:

HC
0 : φ1 = φ2 = φ∗

HC
1 : φ1 = φ2 ∈ CLU

HC
2 : φ1 = φ2

where φ∗ = φ · (1, . . . , 1) if i ∈ LU or φ∗ = φ · (1, . . . , 1) + π in case i /∈ LU,
and CLU is the order cone CLU = {0 ≤ φLj ≤ · · · ≤ φUj ≤ π < φU+1 ≤
· · · ≤ φL−1 < 2π }. In this way, the hypothesis testing problem above involves

circular constraints, i.e., pre�xed circular orders.

• Second Step:

The log-likelihood for a general model is:

l ((φ1,φ2), κ; (θ1,θ2)) ∝
n∑
i=1

(
2 log 2π + κ

2∑
j=1

cos(θij − φij)− 2 log I0(κ)

)
.

(3.15)

For s = 0, 1, 2, we denote by φ̂s and by κ̂s the MLEs under Hs for φ and for

κ. respectively. The MLE of φ and κ are derived as follow:

MLE under HC
0 :

� Taking into account that the maximum of cosx occurs at x = 0, we obtain:

φ̂0 =

{
θ∗ if i ∈ LU
θ∗ + π otherwise

where θ∗ = Ave(θij) ∀i ∈ LU and for j = 1, 2.

� We have to solve the following equation:

dl

dκ
= R− 2nA(κ) = 0, (3.16)

where A(κ) = I1(κ)/I0(κ), being I0(κ) and I1(κ) the modi�ed Bessel



Chapter 3. Methodology 36

functions of the �rst kind and order 0 and 1 respectively. Then:

κ̂0 = A−1(R), (3.17)

note that R is the MRL of (θ′1,θ
′
2).

MLE under HC
1 :

� In Rueda et al. (2009) were proved that the CIRE of θ, is the maximum

likelihood estimator (MLE) of φ, when φ ∈ CO, see De�nition (2.2.2).

Then:

φ̂1 = θ̃(LU). (3.18)

� The equation to solve is:

dl

dκ
=

n∑
i=1

Ri cos(θi − φi)− 24
I1(κ)

I0(κ)
= 0, (3.19)

Thus, κ̂1 = A−1
(∑n

i=1Ri cos(θi−φi)
24

)
.

MLE under HC
2 :

� The log-likelihood of the model can be written as:

l
(

(φ
′

1,φ
′

2), κ; (θ
′

1,θ
′

2)
)
∝

n∑
i=1

(
2 log 2π + κRi cos(θi − φi)− 2 log I0(κ)

)
.

(3.20)

Then:

φ̂2 = θ = (θ1, . . . , θn)′, (3.21)

where θi = Ave(θi1, θi2).

� The estimator of κ under HC
2 is solution of the equation:

dl

dκ
=

n∑
i=1

Ri − 24
I1(κ)

I0(κ)
= 0. (3.22)

Thus, κ̂1 = A−1
(∑n

i=1Ri

24

)
.



Chapter 3. Methodology 37

• Third Step: We assume κ is known and the MLE of κ obtained in the second

step as the real value. The conditional tests are based on LRT that are de�ned

below. We denote by LRTC12 and LRTC01 the likelihood ratio test statistics for

testing HC
1 against HC

2 −HC
1 and HC

0 against HC
1 −HC

0 respectively. They can

be written as:

TC12 = LRTC12 = −2lHC
1

((φ1,φ2), κ; (θ1,θ2)) + 2lHC
2

((φ1,φ2), κ; (θ1,θ2)) =

= 2κ

(
n∑
i=1

Ri −
n∑
i=1

Ri cos(θi − θ̃i)

)

= 2κ

(
n∑
i=1

Ri[1− cos(θi − θ̃i)]

)
= 2κSCE(θ, θ̃)

(3.23)

TC01 = LRTC01 = −2lHC
0

((φ1,φ2), κ; (θ1,θ2)) + 2lHC
1

((φ1,φ2), κ; (θ1,θ2)) =

= 2κ

(
n∑
i=

Ri cos(θi − θ̃i)−R

)
(3.24)

where Ri is the resultant length of ith components of each cycle and R is the

resultant length of (θ′1,θ
′
2).Moreover, note that R is the MLE of (φ′1,φ

′
2) under

HC
0 .

The conditional test to conduct HC
1 against HC

2 −HC
1 is described in detail in

Appendix C. Let us denote as tC12 the observed values of the statistics TC12. Let

us further denote by mC the computing level sets of θ̃(LU) under HC
1 . Then,

the corresponding pvalue can be obtained as follows:

p12C = P [χ2
n−mC ≥ tC12] (3.25)

where p12C denotes the pvalue of testing HC
1 against HC

2 − HC
1 within the

Circular space.
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In a similar way, we also propose to use an α level conditional test to conduct

the testing problem HC
0 against HC

1 − HC
0 . We assume that asymptotically,

the distribution of TC01 is a χ
2 distribution when κ is known. Therefore, the α

level conditional test involved to solve HC
0 against HC

1 −HC
0 rejects HC

0 when

TC01 ≥ c(m), where c(m) is de�ned as de 1−α′ percentil of the χ2
m−1 such that:

α′ = P (χ2
m−1 ≥ c(m)) =

α

1− Pφ0(TC01 = 0)
(3.26)

where Pφ0(T
C
01 = 0) is the probability under H0 that TC01 = 0, φ0 verifying

φ0
1 = · · · = φ0

n, is assumed to be the least favourable con�guration, under the

hypothesis HC
1 for the LRT in regular testing problems and m is the number

of level sets of CIRE of φ under HC
1 , see Fernández et al. (2012). Thus, we

assume that the conditional test is asymptotically an α level test, and it allows

to obtain pvalues from a χ2
m−1 distribution.

Let us denote as tC01 the observed values of the statistics TC01. Then, the corre-

sponding pvalue can be obtained as follows:

p01C = P [χ2
mC−1 ≥ tC01] (3.27)

where p01C denotes the pvalue of testing HC
0 against HC

1 − HC
0 within the

Circular space.

3.3 False Discovery Correction

In this section we explain how we obtain the �nal values from which we decide if a

signal can be considered cyclic or not. Notice that the pvalues obtained from the

test described in previous section must not be directly used as, among other issues,

we are performing multiple testing.

In many practical situations, multiple hypotheses testing problems are usually

controled by FDR (False Discovery Rate) procedures, see Dudoit et al. (2003). Ac-
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curately estimating the rate of false discoveries is a well-recognized problem in any

high-throughput analysis, see MacArthur (2012).

FDR is one way of conceptualizing the rate of type I errors in null hypothesis test-

ing when conducting multiple comparisons. FDR controlling procedures are designed

to control the expected proportion of rejected null hypotheses that were incorrect

rejections, i.e. false discoveries. One of these procedures is the Benjamini�Hochberg

procedure, (see Hochberg and Tamhane (1987)), which controls the false discovery

rate at level of signi�cation α.

The procedure is easy, given a pvalue output and a level of signi�cation α, the

pvalues must be sorted increasingly p(1) ≤ . . . p(i) ≤ . . . p(n), and only will be con-

sidered the pvalues verifying p(i) < ( i
n
)α, see Hochberg and Benjamini (1990). The

pvalue adjustment is done in two steps:

1. First Step: In a similar way to JTK CYCLE, for each gene we de�ne the

following �nal pvalues for the test H1 against H2 −H1:

pp01E =

{
1 if p12E + p12C < 0.1

p01E otherwise
(3.28)

pp01C =

{
1 if p12E + p12C < 0.1

p01C otherwise
(3.29)

2. Second Step:

• Euclidean Space:

Let pp01E(1), . . . , pp01E(i), . . . , pp01E(n) the sorted pvalue output from

testing HE
0 against HE

1 −HE
0 , once considered (3.28). A gene correspond-

ing to the position (i) will be selected as cyclic with the FDR adjustment

procedure if pp01E(i) ≤ ( i
n
)α. Otherwise, the gene will be identifying as

non cyclic.

• Circular Space:
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Let pp01C(1), . . . , pp01C(i), . . . , pp01C(n) the sorted pvalue output from

testing HC
0 against HC

1 −HC
0 , once considered (3.29). A gene correspond-

ing to the position (i) will be selected as cyclic with the FDR adjustment

procedure if pp01C(i) ≤ ( i
n
)α. Otherwise, the gene will be identifying as

non cyclic.



Chapter 4

Numerical Studies

This Chapter presents the results of di�erent numerical studies to validate the new

methodology for detecting cyclic genes and to compare it with the JTK CYCLE

algorithm 2.3.

This Chapter is divided in three Sections. The �rst one shows the simulation

results for �xed cyclic and non cyclic patterns. In the second one, we present the

simulation results from a data base which has been generated imitating those that

appear in practical studies. Finally, in the third Section, we analyze a real data base

of 250 circadian genes.

4.1 Simulation Results

According to literature and behaviour of circadian genes, see Wu et al. (2014), the

simulation design has been carried out using observations from two cycles (48 hours,

1h/2days) with period 24 hours. The simulated data are generated from N48(µ, σ2I)

where µ follows eight di�erent patterns (as we see below, see Tables 4.1 and 4.2)

and σ2 is �xed to be 1. We have generated 100 repetitions for each scenario, i.e. for

each pattern.

Patterns used to simulate data were generated according to what it usual in the

literature, see Deckard et al. (2013). To simulate cyclic genes, we have considered

41
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six patterns, called: cosine, cosine2, cosinePeak, sineSquare, asymmetric and cosine-

PeakExtreme, see Table 4.1. And to simulate non cyclic genes the patters we have

considered are named: �at and nonCyclic, see Table 4.2. All patterns in Tables 4.1

and 4.2 have been generated for two cycles.

Cosine Cosine2 CosinePeak

SineSquare Asymmetric CosPeakExt

Table 4.1: Cyclic Patterns

Flat NonCyclic

Table 4.2: Non Cyclic Patterns

Table 4.3 contains summarizing statistics of pvalues for the testing problem H1 vs

H2−H1, i.e., we o�er summarizing statistics for p12E and p12C in the eight di�erent

scenarios (six from cyclic patterns and two from non cyclic patterns) simulated.
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Figure 4.1 and 4.2 show the p12E and p12C distributions for cyclic and non cyclic

patterns respectively.

Pattern Mean p12E Sd p12E Mean p12C Sd p12C

Cosine 0.743 0.245 0.601 0.274
Cosine2 0.605 0.296 0.484 0.293

Cosine Peak 0.648 0.265 0.500 0.277
Sine Square 0.680 0.247 0.527 0.261
Asymmetric 0.647 0.284 0.588 0.287

Cosine Peak Extreme 0.594 0.286 0.518 0.259

Flat 0.611 0.277 0.502 0.273
Non Cyclic 0.039 0.089 0.032 0.068

Table 4.3: Mean and sd of the pvalues from testing H1 vs H2 −H1 in each pattern

Figure 4.1: Pvalue distribution of cyclic patterns from testing H1 vs H2 −H1

From Table 4.3 and Figures 4.1 and 4.2 we deduce that according to the cyclic

signal de�nition given, in 3.1.1, only nonCyclic patterns present evidences against

H1.
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Figure 4.2: Pvalue distribution of non cyclic patterns from testing H1 vs H2 −H1

Table 4.4 contains summarizing statistics of pvalues for the testing problem H0

vs H1 − H0, i.e., we o�er summarizing statistics for p01E, p01C and pJTK in the

eight di�erent scenarios simulated. Figure 4.3 and 4.4 show distributions of the p01E

and p01C for cyclic and non cyclic patterns respectively. Finally, Figure 4.5 and 4.6

show for this same testing problem the pJTK, i.e. the pvalues for JTK CYCLE

distributions for cyclic and non cyclic patterns respectively.

Pattern Mean p01E Sd p01E Mean p01C Sd p01C Mean pJTK Sd pJTK

Cosine 3.5·10−4 1.9·10−3 1.8·10−3 2.8·10−3 5.6·10−6 1.9·10−5

Cosine2 3.7·10−3 1.6·10−2 6.6·10−3 1.7·10−2 4.4·10−3 1.7·10−2

Cosine Peak 2.6·10−4 1.1·10−3 1.6·10−3 3.1·10−3 4.1·10−3 2.6·10−2

Sine Square 5.8·10−3 1.9·10−2 1.1·10−2 2.8·10−2 2.2·10−2 1.0·10−1

Asymmetric 9.5·10−8 6.2·10−7 7.4·10−5 1.4·10−4 2.1·10−1 3.0·10−1

Cos Peak Ext 1.0·10−4 5.0·10−4 8.0·10−4 3.0·10−3 8.3·10−1 3.1·10−1

Flat 1.2·10−1 1.3·10−1 9.7·10−27 1.1·10−1 9.3·10−19 2.1·10−16
NonCyclic 1.6·10−6 8.7·10−6 2.3·10−4 4.7·10−4 8.9·10−5 2.5·10−4

Table 4.4: Mean and sd of the pvalues from testing H0 vs H1 −H0 in each pattern
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Figure 4.3: Pvalue distribution of cyclic patterns from testing H0 vs H1 −H0

Figure 4.4: Pvalue distribution of non cyclic patterns from testing H0 vs H1 −H0
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Figure 4.5: JTK Pvalue distribution of cyclic patterns from testing H0 vs H1 −H0

Figure 4.6: JTK Pvalue distribution of non cyclic patterns from testingH0 vsH1−H0
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Some important comments are that JTK CYCLE classi�es non cyclic but periodic

patterns as cyclic, while ORI approaches consider them as non cyclic in the testing

problem H1 vs H2 −H1. Moreover, note that asymmetric patterns, (asymmetric or

cosinePeakExtreme) are not detected as cyclic by JTK CYCLE algorithm while the

ORI approaches does detect them.

4.2 Simulation of 250 'arti�cial' genes

In order to imitate the behaviour of real data bases we have generated an arti�cial

data base containing a proportion of cyclic and non cyclic patterns close to those

appearing in real data bases.

We have generated 250 data (genes) from N48(µ, σ2I), where 120 times µ comes

from a cyclic pattern and 130 from a non cyclic pattern and σ2 is �xed to be 1. To

simulate the 120 cyclic genes we have generated 20 repetitions for each one of the

six cyclic patterns, see Table 4.1. The 130 non cyclic genes have been simulated

from 110 �at patterns and 20 nonCyclic patterns, see Table 4.2. The purpose of

this simulation is reproduce a real case, where non cyclic genes are larger than cyclic

genes. We must underline the novelty of the simulation we present, getting away

from the usual guidelines of simulations in this �eld.

We �x an error measure α = 0.05 or α = 0.01, each gene is de�ned as cyclic or

not for each approach using the FDR controlling procedure described in Section 3.3.

If the gene is classi�ed as cyclic the corresponding indicator variable will take value

1, otherwise it will be 0. The label of indicator variables depends on the method M

and on the level of signi�cation L as follows: SEL+M+L, where SEL (from selection)

is �xed, M is the method used:

M =


E if the Euclidean method is being used

C if the Circular method is being used

JTK if the JTK CYCLE method is being used

(4.1)
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and L the level of signi�cation chosen:

L =

{
01 if the alpha value is 0.01

05 if the alpha value is 0.05
(4.2)

For example, SELE01=1 means that the gene is detected as cyclic with Euclidean

ORI approach and α = 0.01. Note that we will also use SELE01 to make reference

to Euclidean approach with α = 0.01.

Tables 4.5 to 4.10 show the number of cyclic and non cyclic genes identi�ed by

the di�erent methods, for each α and for each pattern.

Indicator Cos Cos2 CosPeak SinSq Asym CosPExt Flat NonCyc Sum

SELE05=0 0 0 0 1 0 0 80 18 99

SELE05=1 20 20 20 19 20 20 30 2 151

Sum 20 20 20 20 20 20 110 20 250

Table 4.5: Number of cyclic and non cyclic patterns identi�ed with SELE05

Indicator Cos Cos2 CosPeak SinSq Asym CosPExt Flat NonCyc Sum

SELE01=0 0 1 0 3 0 0 102 18 124

SELE01=1 20 19 20 17 20 20 8 2 126

Sum 20 20 20 20 20 20 110 20 250

Table 4.6: Number of cyclic and non cyclic patterns identi�ed with SELE01

Indicator Cos Cos2 CosPeak SinSq Asym CosPExt Flat NonCyc Sum

SELC05=0 0 1 0 1 0 0 69 18 89

SELC05=1 20 19 20 19 20 20 41 2 161

Sum 20 20 20 20 20 20 110 20 250

Table 4.7: Number of cyclic and non cyclic patterns identi�ed with SELC05
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Indicator Cos Cos2 CosPeak SinSq Asym CosPExt Flat NonCyc Sum

SELC01=0 3 7 1 5 0 1 101 18 136

SELC01=1 17 13 19 15 20 19 9 2 114

Sum 20 20 20 20 20 20 110 20 250

Table 4.8: Number of cyclic and non cyclic patterns identi�ed with SELC01

Indicator Cos Cos2 CosPeak SinSq Asym CosPExt Flat NonCyc Sum

SELJTK05=0 0 1 1 2 14 20 110 0 148

SELJTK05=1 20 19 19 18 6 0 0 20 102

Sum 20 20 20 20 20 20 110 20 250

Table 4.9: Number of cyclic and non cyclic patterns identi�ed with SELJTK05

Indicator Cos Cos2 CosPeak SinSq Asym CosPExt Flat NonCyc Sum

SELJTK01=0 0 2 2 4 16 20 110 0 154

SELJTK01=1 20 18 18 16 4 0 0 20 96

Sum 20 20 20 20 20 20 110 20 250

Table 4.10: Number of cyclic and non cyclic patterns identi�ed with SELJTK01

From Tables 4.5 to 4.10 we can conclude:

• Both symmetric and asymmetric cyclic patterns are well detected as cyclic

genes using ORI approaches.

• JTK CYCLE does not work properly detecting asymmetric patterns such us

cosinepeakExtreme or asymetric. In addition to this, if the pattern is periodic

but non cyclic (nonCyclic) JTK CYCLE identi�es it as cyclic too.

• With respect to the error measures α, Euclidean approaches seem working

better for α = 0.01, and JTK work well for α = 0.05.
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For each method and α value, Table 4.11 contains two di�erent error rates (ER)

using two di�erent weights (ω1 and ω2); the proportion of absent events that yield

positive test outcomes, i.e. false positive rate (FPR); and the proportion of events

that are being tested for which yield negative test outcomes with the test, i.e the false

negative rate (FNR). To be more precise, the �rst column of Table 4.11 indicates the

method and error considered, the second one shows the error rates obtained using

equal weights for each gene. The third column shows the error rate that results of

using weights which are equal in each one of the eights patterns. The fourth and

�fth columns show the FPR and FNR respectively.

Method ER ω1=1/250 ER ω2=1/8 FPR FNR

SELE05 13.2 5.3 24.6 0.8

SELE01 5.6 4.7 7.7 3.3

SELC05 18 7.2 33.1 1.7

SELC01 11.2 12.8 8.5 14.2

SELJTK05 23.2 31.3 15.4 31.7

SELJTK01 25.6 32.5 15.4 36.7

Table 4.11: % of Weight Error rates, FPR and FNR for each method

An immediate future task will be repeating this simulation N times to obtain

mean error rates, see Section 5.3. Even so, according to di�erent simulations made,

the results seem to be quite stable with respect to what we show in Table 4.11.

The main conclusions from Table 4.11 are:

• SELE01 is the method with the smallest error rates. And it is the method

where the false positive and false negative rates are more similar, which is a

good property if we consider a ROC curve.

• Euclidean approaches seem to work better than Circular do (with both α's).Thus

way be due to the fact the data are generated under normal models.

• JTK CYCLE approach exhibits the largest error rates.
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• According to the literature, (see Sehgal (2004)) whatever was the tissue the

non cyclic genes number is higher than the cyclic ones. In consonance with

biologists, a possible weakness of the JTK CYCLE could be the fact that it

detects more cyclic genes than expected, which means a high false positive

rates for this approach. On the other hand, SELE01 and SELC01, have lower

FPRs.

In order to achieve lower FPRs we have de�ned a mix approach which is simply

de�ned as MIXTsel=SELJTK05*SELE01. Table 4.12 shows the number of cyclic

genes identi�ed in each pattern with MIXTsel, and Table 4.13 shows the error rates,

FPR and FNR for this method.

Indicator Cos Cos2 CosPeak SinSq Asym CosPExt Flat NonCyc Sum

MIXTsel=0 0 2 1 5 14 20 110 18 170

MIXTsel=1 20 18 19 15 6 0 0 2 80

Sum 20 20 20 20 20 20 110 20 250

Table 4.12: Number of cyclic and non cyclic patterns identi�ed with MIXTsel

Method ERω=1/250 ERω=1/8 FPR FNR

MIXTsel 17.6 27.5 0.15 35

Table 4.13: Weight Error rates, FPR and FNR for MIXTsel

From Table 4.12 non cyclic patterns are well detected by MIXTsel, although

asymmetric patterns are detected as non cyclic. From Table 4.13, MIXTsel's FPR

is 0.15% in the line with biologist recommendations.

Table 4.14 contains the simultaneous detection of cyclic genes with the two meth-

ods involved in MIXTsel.
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SELJTK05/SELE01 SELE01=0 SELE01=1 Sum

SELJTK05=0 102 46 148

SELJTK05=1 22 80 102

Sum 124 126 250

Table 4.14: Number of simultaneous cyclic genes detecting with SELJTK05 and
SELE01

From Table 4.14 we can conclude:

• 102 genes are not selected by any of the methods, all of them �at patterns.

• 80 genes are selecting using SELE01 and SELJTK05.

• Among theses 80 cyclic genes detected by both methods, we know that 82

are well detected by SELJTK05 with a false positive rate of 15.4%. Whereas

MIXTsel detect 78 genes are cyclic with a false positive rate of 0.15%.

Therefore, according to biologists recommendation, the method MIXTsel is good as

it gets a low false positive rate. MIXTsel is also in line with the fact that the number

of non cyclic patterns in tissues is larger than cyclic ones.

Observation 4.2.1. A note about FDR

According to the literature, FDR controlling procedures work when a set of pval-

ues are obtained from a given statistic test that is used repeatedly under the null

hypothesis. In those cases, the expected error rates must be of the same order than

the error measure α given, (see Hochberg and Benjamini (1990)). However, in this

work we have to take into account two issues that could explain why we obtain higher

rates than expected:

• The pvalues that we consider are P (TL,U01 ≥ tobs), where L,U are sample-

dependent. Then, these pvalues are obtained from di�erent statistic tests TL,U01 ,

i.e. the statistic depends on L and U, and the expected number of positive is

not easy to calculate, although we simulate from normal distributions with equal

means.
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• Moreover, the FDR that we are interested in is not exactly related with H0 be-

cause we consider nonCyclic patterns di�erent from the equality (�at patterns).

This explain the proposal of using 0.01 instead of 0.05 for the ORI approach and also

the proposal of using a mixture approach (MIXTSEL=SELE01*SELJTK05) which

has a FDR around 0.025.

4.3 Real Data Results

This Section shows the results obtained from the analysis of a real data base of 250

circadian genes with period 24 hours, from mouse liver. The observations were taken

in two cycles of 24 hours, i.e., 1hour/2days. This data base can be found in CircaDB

(http://circadb.hogeneschlab.org/query) an online data base of circa-

dian gene expression which have implemented more useful algorithms to detect cyclic

genes. In particular, this data base has been used to test JTK CYCLE algorithm,

(see Hughes et al. (2010)) and http://openwetware.org/wiki/HughesLab:

JTK_Cycle.

From results in Section 4.2 we have selected SELE01, SELJTK05 and MIXTsel

approaches to deal with this circadian gene data base. In Figure 4.7 we illustrate

the circadian cyclic genes detected by the three approaches.

Figure 4.7: Number of circadian cyclic genes detected with SELE01, MIXTsel and
SELJTK05

http://circadb.hogeneschlab.org/query
http://openwetware.org/wiki/HughesLab:JTK_Cycle
http://openwetware.org/wiki/HughesLab:JTK_Cycle
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Bellow we analyse particular examples of genes. The genes 8, 146 and 217 showed

in Table 4.15 are detected as cyclic by JTK CYCLE algorithm, while ORI approaches

do not classify them as cyclic. None of them seems to be cyclic, the �rst could be

cyclic but with other period. In the other two genes expressions the �rst and second

cycles look like di�erent.

GENE 8 GENE 146 GENE 127

Table 4.15: Pro�les of genes 8, 146 and 217 in circadian data base

The mix-up in ORI approaches appears for instance in genes 25, 98 and 199, see

Table 4.16. In all of them, the problem seems to be the same, they are not periodic

genes, i.e., �rst and second cycles are clearly di�erent, that should be eliminated

testing H2 against H3−H2, (this will be considered in a future research, see Chapter

5.3). In contrast to JTK CYCLE which detects some as cyclic, for instance gene 199

with pJTK equals to 0.066; and other ones as non cyclic, such us genes 25 and 98

with pJTKs equal to 1 and 0.134 respectively.

GENE 25 GENE 98 GENE 199

Table 4.16: Pro�les of genes 25, 98 and 199 in circadian data base

One of the most clear examples which shows the weakness of JTK to detect

periodic but non cyclic genes as cyclic, (nonCyclic patterns), occurs with gene 144,

(see Table 4.17) whose pJTK is 0.042, i.e., it is detected as cyclic. However, the
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Euclidean ORI methodology detects it as periodic but non cyclic in the hypothesis

testing problem H1 against H2 −H1.

GENE 144

Table 4.17: Pro�le of gene 144 in circadian data base

Finally, we assess the behaviour of methodology described by rank analysis. We

study the Spearman correlation between the pvalue outputs, (see Table 4.18), where

according to theoretical bases, Euclidean and Circular approaches are very correlated

being but not so much with JTK algorithm.

Pvalues p01E p01C pJTK05

p01E 1 0.913 0.565

p01C 0.913 1 0.494

pJTK05 0.565 0.494 1

Table 4.18: Spearman correlation coe�cients between pvalues from SELE01,
SELC01, SELJTK05

The Spearman coe�cients with the 61 circadian cyclic genes detected by MIXTsel

are shown in Table 4.19
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Pvalues p01E p01C pJTK05

p01E 1 0.796 0.396

p01C 0.796 1 0.373

pJTK05 0.396 0.373 1

Table 4.19: Spearman correlation coe�cients between pvalues from SELE01,
SELC01, SELJTK05 for the 61 circadian genes detected with MIXTsel

The correlation coe�cients decrease compared them with those on Table 4.18.

As a consequence, the rank of the 61 circadian genes obtained with SELE01 and

with SELJTK05 are signi�cantly di�erent. Table 4.21 shows these ranks.

Some interesting di�erences are remarked in bold in the ranking, (see Table 4.21).

Their corresponding gene pro�les are shown in Table 4.20. The gene in the �rst posi-

tion, whose probeset is 1415673_at, coincides for the two approaches. The probeset

1415705_at and 1415743_at with rank positions 5th and 8th in SELJTK05 respec-

tively, and 50th and 46th in SELE01 respectively, are apparently better positioned

using the ORI approaches. Finally, the gene expression with probeset 1415817_s_at

which in SELJTK05 ranking appears in 14th, SELE01 approach considers it as a more

relevant circadian gene expression. In fact, the pro�le of this last gene looks more

like cyclic than the two cited before. The ORI methodology for the 61 circadian gene

expressions selected as cyclic with MIXTsel approach describe a more consistent and

homogeneous ranking than the JTK CYCLE ranking does.

1415673_at 1415705_at 1415743_at 1415817_s_at

Table 4.20: Pro�les of genes 4, 148, 36 and 74 in circadian data base with probesets
1415673_at, 1415705_at, 1415743_at and 1415817_s_at respectively
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Gene Probeset JTK Rank SELE01 Rank 224 1415893$_$at 31 32

4 1415673_at 1 1 88 1415757_at 32 42

9 1415678_at 2 2 109 1415778$_$at 33 21

20 1415689_s_at 3 3 87 1415756_a_at 34 57

22 1415691_at 4 36 119 1415788_at 35 22

36 1415705_at 5 50 150 1415819_a_at 36 33

49 1415718_at 6 4 16 1415685_at 37 23

54 1415723_at 7 5 170 1415839_a_at 38 61

74 1415743_at 8 46 247 1415916_a_at 39 54

82 1415751_at 9 6 198 1415867_at 40 37

102 1415771$_$at 10 7 56 1415725_at 41 52

127 1415796_at 11 8 64 1415733_a_at 42 24

133 1415802_at 12 9 78 1415747_s_at 43 40

147 1415816_at 13 51 90 1415759_a_at 44 35

148 1415817_s_at 14 10 110 1415779_s_at 45 25

152 1415821_at 15 41 67 1415736_at 46 45

158 1415827_a_at 16 11 190 1415859_at 47 26

159 1415828_a_at 17 48 68 1415737_at 48 27

171 1415840_at 18 12 76 1415745_a_at 49 47

181 1415850_at 19 13 43 1415712_at 50 28

186 1415855_at 20 34 100 1415769_at 51 44

191 1415860_at 21 31 225 1415894_at 52 49

223 1415892_at 22 14 27 1415696_at 53 55

230 1415899_at 23 15 107 1415776_at 54 59

235 1415904_at 24 16 47 1415716_a_at 55 58

240 1415909_at 25 17 91 1415760_s_at 56 39

101 1415770_at 26 18 17 1415686_at 57 29

57 1415726_at 27 56 42 1415711_at 58 60

162 1415831_at 28 19 38 1415707_at 59 43

50 1415719_s_at 29 38 206 1415875_at 60 30

221 1415890_at 30 20 37 1415706_at 61 53

Table 4.21: Ranking sorted by JTK CYCLE rank according to the pvalues obtained.
The �rst column is the position of the gene in the data base, the second one the
probeset, and the third and fourth the rank in the pvalues from SELJTK05 and
SELE01.
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Observation 4.3.1. Computational Note

The simulation studies have been carried out under version 3.2.1 of R, using the

R-Packages 'Iso' and 'isocir'. Details of these packages can be found in http://

cran.r-project.org/web/packages/Iso/Iso.pdf and http://cran.r-project.

org/web/packages/isocir/isocir.pdf, respectively.

http://cran.r-project.org/web/packages/Iso/Iso.pdf
http://cran.r-project.org/web/packages/Iso/Iso.pdf
http://cran.r-project.org/web/packages/isocir/isocir.pdf
http://cran.r-project.org/web/packages/isocir/isocir.pdf


Chapter 5

Conclusions

This Chapter summarizes the most relevant conclusions of this work. Section 5.1 re-

capitulates the main methodological contributions. The conclusions from numerical

studies are included in Section 5.2. Finally, Section 5.3 describes an outline of the

future work than will be developed from the results obtained here.

5.1 Methodological Contributions

In this work we solve the problem of detecting cyclic patterns by designed a new

methodology. We start proposing a de�nition of cyclic signal which incorporates

order restrictions. This de�nition involves both Euclidean and Circular parameters

and let us establish a novel mathematical formulation of the model using nested

hypotheses testing problems in both spaces. It is assumed that observations in an

Euclidean space are available, but the inferences are performed in both Euclidean

and a latent Circular space.

The algorithm designed to solve hypotheses testing problems is based on, eu-

clidean and circular order restricted inference methodology in a two stage algorithm

common to both spaces. In the �rst stage we estimate two parameters needed to

rede�ne the hypothesis testing problem. In the second one, speci�c for each one of

the two spaces, the hypotheses testing problems are reformulated and are conducted

using conditional tests.

59
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In relation with the validation of the approaches, we propose a new simulation

study by generating an `arti�cial' data base which imitates the real case. Both cyclic

and non cyclic patterns similar to those of real gene expression pro�les are used as

underlying signals to simulate the data. Moreover, the selection of cyclic genes from

the simulated data base has been done using a procedure to control the FDR in a

similar way as the biologist suggest to do with real data sets.

Therefore, the methodological contribution can be summarized in four points:

• A new de�nition of cyclic signal using restrictions.

• Novel formulation of the problem.

• Design of an algorithm to solve the nested hypotheses testing problems.

• New design for the simulations which imitates real data base and controls cyclic

patterns detection using FDR.

Moreover, the new methodology supposes an advantage with respect to other

algorithms in literature to detect cyclic patters because it provides a general for-

mulation to the problem. On the one hand, we have developed the methodology

based on a general and non parametric de�nition of cyclic signal in contrast to other

approaches in the literature which depends on an speci�c underlying periodic pat-

tern (e.g. sinusoidal patterns). On the other hand, the nested hypotheses testing

problems provide new methodology with �exibility enough not only to detect cyclic

patters, but also to distinguish between them.

In addition to this, the rigour with we have formulated the model, designed the

algorithm and validated the results is a guarantee of the potential of the procedure, in

contrast with other approaches in literature whose methodological description turns

into a 'black box'.

As a consequence of these intrinsic features of the methodology developed the

range of applications is very broad as many periodic phenomena appear in biology

and other �elds. For instance, we �nd a direct application of new methodology to
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model Hemodynamic Response Functions, (see 5.3), that has an underlying cyclic

signal, or any kind of action potential with a similar response pro�le.

5.2 Numerical Studies Conclusions

In this Section we enumerate the main conclusions from numerical studies. However,

we also want to recall that other biological conclusions could be obtained if experts

carry out a complete analysis from the results in particular cases, such us in the

ranking of Table 4.21.

First, the simulation results provide some interesting conclusions about the fea-

tures of the JTK:

• The JTK CYCLE algorithm is not able to detect as cyclic asymmetric pat-

terns, (see Figure 4.5), in addition to this, periodic but non cyclic patterns are

considered as cyclic by JTK CYCLE algorithm, (see Figure 4.6).

• Flat patterns are well detected by JTK CYCLE algorithm. However, this

methodology is not able to distinguish among them, because most times their

pvalues are equal to 1, (see Figures 4.4 and 4.6).

• The error rates (ER) of JTK CYCLE are higher than any other ER for ORI

approaches, (see Table 4.11).

Moreover, related to the ORI methodology, the main points we can conclude from

simulation results are:

• Apart from cosine pattern, mean and sd pvalues from Euclidean approaches

for cyclic patterns are lower than obtained with JTK CYCLE algorithm, (see

Table 4.4).

• The testing problem H1 against H2−H1 let us identify periodic but non cyclic

patterns in contrast to JTK CYCLE algorithm which considers them as cyclic,

(see mean p12E or mean p12C for nonCyclic patterns in Table 4.3).
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• The distribution of pvalues obtained with ORI approaches for cyclic and non

cyclic patterns let us rank them to compare them or to validate the performance

of the new methodology, (see Figures 4.3 and 4.4).

• According to biologist recommendation, ORI approaches with α = 0.01 give

the lowest false positive rates (FPRs). Moreover, SELE01 is the method where

FPRs and FNR (i.e, false discovery rates) are more similar, (see Table 4.11).

• SELE01 and MIXTsel reduces to a half the false positive rate (FPR) obtained

with JTK CYCLE algorithm, (see Table 4.11).

In general, from the simulation studies we conclude that JTK CYCLE algorithm

presents failures in detection of asymmetric and periodic but non cyclic patterns.

Moreover, their FPRs look like higher than expected in a real case. Since di�erent

methods detect di�erent cyclic genes, a mixture of them seems to be appropriate,

being our proposal MIXTsel the approach which obtains closer results to the real

case with lower FPRs.

5.3 Future work

This work takes a further step as statistical inference on angular parameters when

they are ordered around a unit circle. However, there are several problems that

remain to be addressed and serve as topics for future research. The most relevant

are:

• Design of approaches for solving the hypothesis testing problem H2 against

H3 −H2.

• Analysis and validation of the models under the assumptions that κ and σ2

are unknown.

• Design of a procedure takes into account the uncertainty of unknowing L and

U . Our initial proposal consists on developing a complete procedure on the

EM algorithm.
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• Exploring of theoretical properties of the proposed inference procedures. In-

cluding the determination of standard errors and con�dence intervals to the

estimation procedures explained.

• Developing of statistic software to incorporate the new methodology to detect

cyclic patterns.

• Checking the performance of the new methodology in other scenarios, as the

case of large series from various periods, attenuated patterns in time, detection

of outliers,...

• Exploration the ability of new methodology with other real data sets and ap-

plications. For example, we �nd a direct application of new methodology to

model Hemodynamic Response Functions, that has an underlying cyclic signal,

or any kind of action potential with a similar response pro�le.
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Appendix A

Isotonic Regression

The concept of Isotonic Regression is the baseline within the ORI context. It tries

to look for the order closest vector to the observations under certain constraints. It

means restricting the least square problem.

In the framework of Euclidean space, we denote by X = (X1, ..., Xn)
′
the vector

of observed mean values from n populations with sizes (n1, ..., nn). We suppose that

X ∼ Nn(µ,Σ), where µ = (µ1, ..., µn. is the vector of means, and Σ the the matrix

of covariates with Σ = diag(
σ2
1

n1
, ..., σ

2
n

nn
). Let us further assume ω = (ω1, ..., ωn)

′
be a

weight vector associated with the order in the cone C. The isotonic regression of X

with weight vector ω is:

X∗ = arg min
Z∈C

n∑
i=1

ωi(Zi −Xi) = arg min
Z∈C

(X −Z)
′
W (X −Z), (A.1)

where W denote a positive de�ned matrix so that W = diag(ω1, ..., ωn), and ωi,

is a positive weight ∀ i = 1, ..., n.

If we consider the metric de�ned by the scalar product 〈u,v〉 = u
′
Wv, the

isotonic regression is unique and is determined by the orthogonal projection of X

on the cone C, (see Robertson et al. (1988)), it means:

X∗ = PW (X/C). (A.2)
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According to Robertson and Wright (1980) the isotonic regression is obtained as

the average of components, as a consequence of the Cauchy mean value property;

the mean of two values is bounded by them. Then, it exists a partition {(l)}ml=1

of the index {1, ..., n} such as X∗i = Av(G(l))∀i ∈ (l), where G(l) = {Xi}i∈(l) and

Av(G(l)) =
∑

i∈(l) ωiXi∑
i∈(l) ωi

. These ones are the equivalent in the Euclidean space to the

level sets de�ned in Rueda et al. (2009) in the Circular space, we call them level sets

of X∗ too.

The PAVA (pool adjacent violator algorithm) is the algorithm proposed in Robert-

son and Wright (1980) to solve the problem of isotonic regression in case that µ ∈ C,
it is based on averaging adjacent observations which violate the order constrains. The

Cauchy mean value property is essential to PAVA runs correctly. The complete al-

gorithm appears in Barragán (2014)

When the order constrains are not the simple order there are other algorithms

which work out the isotonic regression problem, Dykstra (1981), Lee (1983) or Parda-

los and Xue (1999).

In the context of Circular data, Rueda et al. (2009) establish the beses for Circular

isotonic regression. There is also proposed an algorithm based on PAVA to solve the

circular isotonic regression.



Appendix B

Restricted Maximum Likelihood

Estimator, RMLE

The great majority of works related to this �eld have developed methods for Normal

models, i.e. we assume that X ∼ Nn(µ,Σ), where X = (X1, . . . , Xn)′ is the vector

of observations, µ = (µ1, ..., µn)
′
is the vector of means and Σ the the matrix of

covariates, Σ = diag(
σ2
1

n1
, ..., σ

2
n

nn
). In order to simplify we consider Σ known and µ ∈ C,

with C order cone. Under these assumptions, the likelihood function is:

L(X;µ,Σ) =
1

(2π)n/2|Σ|
exp{(X − µ)

′
Σ−1(X − µ)} (B.1)

In this Appendix we show the restricted maximum likelihood estimator, (RMLE)

associated to the Normal model.

The RMLE for the parameter µ is exactly the isotonic regression for the order

represented by the cone C, i.e.:

µ̂ = X∗ = PΣ−1(X/C), (B.2)

where PΣ−1 denotes the corresponding orthogonal projection, (see AppendixA for

details). Moreover, in Chapter 1 of Robertson et al. (1988) is included a detailed

construction of the RMLE in exponential families.
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We also conclude from Robertson et al. (1988), properties such as RMLE is biased

and its mean squared error is less than the MLE one:

E[(X∗ − µ)
′
(X∗ − µ)] ≥ E[X − µ)

′
(X − µ)]. (B.3)

However this feature is not always true estimating parameter functions.

The �rst references with regard to the inference with constrains estimation are

Lee (1981), Lee (1988) and Kelly (1989). The same issue has been studied in later

works by Menéndez and Salvador (1991), Rueda et al. (1997a,b), Fernández (1995)

and Fernández et al. (1997, 1998, 1999, 2000).

Note that the RMLE is the analogous to the CIRE within the Circular space,

(see Rueda et al. (2009)), i.e. associated to von Mises models.



Appendix C

Conditional test

Conditional tests have been widely studied in the literature. Related to this work,

Bartholomew (1961) discussed a conditional likelihood ratio test to testing homo-

geneity of means versus linear order constrains between them for the isotonic normal

means problem. And Robertson and Wegman (1978) discussed the corresponding

conditional test for testing if the means satisfy a linear order versus there were no

restrictions under them. Both tests are the base to conduct hypotheses testing prob-

lems proposed in this work within the Euclidean space.

Suppose that X = (X1, . . . , Xn)
′ ∈ Rn denotes the vector of sample means of

a random sample from Nn(µ,Σ) where µ is the vector of populations means and

Σ the matrix of covariances Σ = diag(
σ2
1

n1
, . . .

σ2
1

nn
). We assume, we have independent

samples where the i -th sample is of size ni, with i = 1, . . . , n.

Under these assumptions, we propose consider a conditional test to settle the

following hypotheses test:

H0 : µ1 = · · · = µn

H1 : µ1 ≤ · · · ≤ µn

H2 : µ ∈ Rn

(C.1)

The likelihood ratio test constructed in Bartholomew (1961) rejects H0 for large
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values of the statistic:

LRT01 =
n∑
i=1

(X∗i −X i)
2ni, (C.2)

where X∗ = (X∗1 , . . . , X
∗
n) and X =

∑n
i=1 niXi∑n
i=1 ni

(1, . . . , 1) are the maximum likelihood

estimator of µ and under H1, and H0, respectively, see Robertson et al. (1988).

The distribution of LRT01 under H0 is given by:

P (LRT01 ≥ t) =
n∑

m=1

P0(m,n)P (χ2
m−1 ≥ t), (C.3)

where χ2
i denotes a chi-square random variable with i degrees of freedom and P0(m,n)

are de�ned to be the probabilities under H0 of obtaining m distinct values among

X∗. A distribution of this form is know as a Chi-Bar-Squared (mixture of χ2 dis-

tributions), and critical values are easily obtained if the coe�cients P0(m,n) are

known. They are easy to calculate if n1 = n2 = · · · = nn, but very di�cult for other

situations.

Bartholomew discussed a related procedure which largely avoids this di�culty.

The idea was to condition onm, the number of distinct values inX∗, and to compare

LRT01 to a critical value for a chi-square with degrees of freedom determined by m.

This is valid because under H0 the conditional distribution of LRT01 givenm is equal

to the restricted distribution, and is a chi-square with m−1 degrees of freedom (this

is implicit in the proof of Theorem 3.1 Barlow et al. (1972)). In order to obtain a

size α test, one must allow for the fact that LRT01 = 0 with probability P0(1, n), and

adjust the chi-square critical value accordingly, so the test rejects H0 if LRT01 > tm,

where tm satis�es:

P (χ2
m−1 ≥ tm) =

α

1− P0(1, n)
(C.4)

The likelihood ratio test of H1 versus H2 was constructed by Robertson and

Wegman (1978), it rejects H1 for large values of

LRT12 =
n∑
i=1

(Xi −X∗i )2ni. (C.5)
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The distribution of LRT12 for arbitrary µ ∈ H1 is intractable, but in Robertson

and Wegman (1978) is also shown that the least favourable con�guration (i.e., the

µ for which the probability of a type I error is maximized) is µ ∈ H0. Moreover,

the distribution of LRT12 under H0 is again a chi-bar-square, involving the same

P0(m,n) coe�cients:

P (LRT12 ≥ t) =
n∑

m=1

P0(m,n)P (χ2
n−m ≥ t). (C.6)

As with LRT01, the conditional distribution under H0 of LRT12 given m is a chi-

square. Hence, we can construct a conditional test of H1 versus H2 which rejects H1

if LRT12 > tm, where tm satis�es:

P (χ2
n−m > tm) =

α

1− P0(n, n)
. (C.7)

Here, the coe�cients P0(n, n) is "in a sense least favourable," the probability under

H0 that LRT12 = 0 (or that there are n distinct values in X∗), and it is proved in

Barlow et al. (1972) that this probability is smaller for µ ∈ H0 than for another

µ ∈ H1. Finally, it is shown in Bartholomew (1961) that both tests are asymptoti-

cally of level α.

The tests below, are simple cases where conditional likelihood ratio tests can be

conducted to solve hypothesis testing problem. However, conditional tests go beyond

and can be spread out to solve very general hypotheses testing problems, see Militino

et al. (2015).

In particular, conditional tests have also been studied within the Circular space,

see Fernández et al. (2012). This document proposes a conditional test within the

Circular space, based on the LRTC12 de�ned in (3.23), to conduct the analogous test

H1 against H2−H1 explained in this Appendix within the Circular space, it will be

one of the test we solve in this work, see (3.15)). This document also concludes that,

asymptotically the conditional test proposed to solve this testing problem is of level

α and that LRT12 under H1 follows χ
2
n−m distribution when the dispersion parameter
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κ is known, where m is the number of level sets of the maximum likelihood estimator

CIRE (see Rueda et al. (2009)), of the parameter involved in the hypothesis testing

problem under H1.



Appendix D

The von Mises distribution

From the point of view of the statistical inference, the most useful distribution on

the circle is the von Mises distribution which plays a similar role than Normal dis-

tribution on the Euclidean spaces.

A random variable θ has a von Mises distribution θ ∼ VM(φ, κ), with φ ∈ [0, 2π)

and κ ≥ 0, if the probability density function is:

g(θ;φ, κ) =
1

2πI0(κ)
eκ cos(θ−φ) x ∈ [0, 2π), (D.1)

where I0 denotes the modi�ed Bessel function of the �rst kind and order 0. The

modi�ed Bessel function of �rst kind and order q is given by:

Iq(κ) =
1

2π

∫ 2π

0

cos(qx)eκ cos(θ)dθ. (D.2)

The parameter φ is the mean direction and the parameter κ is known as the

concentration parameter. This distribution is unimodal and symmetric with respect

to the mean direction φ, as it is showed in the �gure D.1.

Maximum likelihood Estimation for von Mises distributions

Let θ1, . . . , θn a random sample from VM(φ, κ). The log-likelihood is:
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l(θ1, . . . , θn;φ, κ) = n log 2π + κ
n∑
i=1

cos(θi − φ)− n log I0(κ)

= n{log 2π + κR cos(θ − φ)− log I0(κ)}
(D.3)

Since the function cosx has its maximum at x = 0, the maximum likelihood

estimate φ̂ is:

φ̂ = θ. (D.4)

Di�erentiating D.3 with respect to κ and using the fact that I
′
0(κ) = I1(κ) gives:

∂l

∂κ
= n{R cos(θ − φ)− A(κ)} (D.5)

where A(κ) = I1(κ)/I0(κ). Then the maximum likelihood estimation κ̂ of κ is the

solution of :

A(κ) = κ̂, (D.6)

i.e.

κ̂ = A−1(R) (D.7)

Di�erent values of κ produce di�erent shapes in the distribution such as we can

see in the Figure D.1.

The von Mises distribution is related with other distributions; if κ = 0, the we

obtain the uniform distribution in the circle. When κ→∞, we conclude κ−1/2(θ −
φ) ∼ N(0, 1) (see pp.38 Mardia and Jupp (2000)).
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Figure D.1: Density of the von Mises distribution VM(0, κ), with κ = 0, 1/2, 1, 2, 4, 8.
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