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Abstract: 

The present work has the objective of measure the speeds of sound in a biogas mixture of 

CH4+N2+CO2+CO, in the pressure range p = [1,12] MPa and temperature range T = [273,325] K, by a 

spherical acoustical resonator. The results are fitted to the virial acoustic equation of state, obtaining the 

virial acoustic coefficients, 𝛽𝑎 y 𝛾𝑎, and they are extrapolated to null pressure, determining the adiabatic 

coefficient as perfect gas, 𝛾𝑝𝑔, and the isobaric and isochoric heat capacities as perfect gas, 𝐶𝑝
𝑝𝑔

 y 𝐶𝑉
𝑝𝑔

, 

respectively. The speeds of sound are acquired with a maximum relative uncertainty of 350𝑝𝑝𝑚 and they are 

compared with the results predicted by the reference equation of state for methane mixtures (natural gas-like 

mixtures), the EoS GERG-2008: relative deviations between experimental data and values estimated by this 

model were lower than 700 ppm at T=325K, below 400 ppm and within the uncertainty of measurement at 

T=300K, but appreciably higher at isotherm T=273K at the highest pressure range of this work.  

 

Keywords: 

Speed of sound, acoustic resonance, spherical resonator, virial acoustic coefficients, heat capacities as 

perfect gas, biogas. 

 

1. Introduction. 

Under the development framework of energy sources to replace conventional fossil fuels, aim to 

make them cheaper, to emit lower amounts of CO2 into the atmosphere and to supply the depletion 

of resources such as oil and coal at long-term, in the past decades natural gas-like mixtures, as 

biogas, have been arise as a possible alternative [1]. In order to continue contributing to its 

implementation, it is necessary to improve the thermodynamic models used for the calculation and 

design of the extraction, transportation, storage and distribution systems of biogas-like mixtures. 

Therefore, the motivation for this research focuses on discussing the scope of the accuracy of the 

standard equation of state, EoS GERG-2008, compared with measurements of the speed of sound 

through a biogas sample and with the thermodynamic properties (heat capacities) derived from 

these data; as well as provide new accurate experimental results so that, if the scientific community 

consider appropriate, it can be made new correlations to improve the model.  

It is chosen to study a quaternary CH4+N2+CO2+CO mixture synthesized in the laboratory, with the 

composition indicated in Table 1, instead of a gas sample obtained by natural a process of 

biodegradation of biomass with the goal to have a precise composition without impurities 
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unquantified to achieve the lowest possible measurement uncertainty. Works with others methane-

like mixtures, binary in this case, have been previously reported by other authors: [2], [3], [4]. 

The spherical resonator (operating at low resonance frequencies) has emerged as one of the best 

instruments to characterize the thermodynamic behavior of a fluid through the speed of sound. This 

technique was developed by Moldover, Mehl and Greespan during the eighties [5], [6] and 

continued by Edwing and Trusler in the nineties [7], [8], among others; and whose acoustic model 

is described in section 2. For example, in our spherical resonator, described in section 3, quality 

factors 𝑄 =
𝑓𝑁

2𝑔𝑁
= 𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑐𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦/ 𝑙𝑖𝑛𝑒 − 𝑤𝑖𝑑𝑡ℎ are obtained with values between 

1956,3 (mode (0,6) at p=4MPa, T=300K) and 14294,2 (mode (0,4) at p=13MPa, T=300K), 

typically one order of magnitude above resonators of other geometries, e.g. those of cylindrical 

cavity. And above other techniques such as interferometers because at low frequencies these have 

large boundary effects that difficult the calculations with sufficient accuracy, while at high 

frequencies, these lose resolution since the resonance modes are not individually resolved 

(overlapping problems). The higher the 𝑄, more sharp the resonance peaks will be, so best detection 

of the lines will be performed, resulting in greater accuracy of measurement. With this in our mind, 

the results obtained at three isotherms, 273K, 300K and 325K, and pressures range from 13MPa to 

1MPa, are discussed in section 4 and compared with the GERG-2008 model.    

 

2. Acoustical model. 

The development of the acoustic-physical techniques for the thermodynamic characterization of 

fluids is found completely illustrated in [9]. In the study of the speed of sound in a fluid by a 

spherical resonator, the starting point is given by the equation: 

𝑐 =
2𝜋𝑎 

𝜈𝑙𝑛
𝑓𝑙𝑛       (1) 

where a is the inner radius of the resonator cavity,  𝜈𝑙𝑛 is the zero of the spherical Bessel first 

derivate of order l (these values are tabulated in [10]) and 𝑓𝑙𝑛 is the resonance frequency of 

propagation mode l,n of the acoustic wave. To achieve this result, it is solved the wave equation: 

𝜕2Ψ

𝜕𝑡2
=

1

𝑐2
∇2Ψ       (2) 

Ψ(r, t) is the velocity potential. The fluid speed 𝑣 can be separated in two components: a 

longitudinal one, 𝑣𝑙, irrotational ∇ × 𝑣𝑙 = 0, that can be expressed in term of the velocity potential 

as 𝑣𝑙 = −∇Ψ(r, t) and a transversal one, 𝑣𝑟, that is rotational ∇ · 𝑣𝑟 = 0 . 𝑣𝑙 takes into account the 

propagation mode of the sound, while 𝑣𝑟 is independent of ∇𝑝𝑎 and is ignored in the interior of the 

fluid, but it is important in the interphase region between the wall and the fluid to satisfy the 

boundary conditions. Here 𝑝𝑎 indicates the perturbation to the thermodynamic equilibrium pressure 

𝑝 of the fluid by the presence of the acoustic wave (analogous for the acoustic contributions to the 

temperature 𝑇𝑎 and the density 𝜌𝑎). Meanwhile, the fluid is assumed at rest and 𝑣 is the acoustic 

magnitude itself. Looking for solutions of the harmonic waveform by simplicity, it is follow that: 

Ψ(r, t) = A · f(r, t)      (4) 
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where any wave function can be decomposed in an infinity series (or integral) of sines and cosines 

(of infinity frequency components: the fundamental one and all of its harmonics) by Fourier 

analysis. By the separation variables method 𝑓𝑁(𝑟, 𝑡) = 𝜙(𝑟) · 𝜒(𝑡) and, as the temporal 

dependence is imposed by the acoustic source 𝜒(𝑡) = 𝑒𝑗𝜔𝑁𝑡, being 𝜔𝑁 the angular frequency of the 

N-th component of the infinite set of natural frequencies (or normal modes) of the system. So the 

equation to be solved is (the Helmholtz equation): 

(∇2 + 𝑘2)𝜙𝑁(𝑟) = 0       (5) 

where 𝑘 = 𝜔 · 𝑐 is the propagation constant. If the spherical coordinates (𝑟, 𝜃, 𝜑) are taken and 

𝜙𝑁(𝑟) is separated like 𝜙𝑁(𝑟) = 𝑅𝑁(𝑟)𝑃𝑁(𝜃)𝑄𝑁(𝜑), the following equation system is obtained:  

1

𝑅

𝑑2𝑅

𝑑𝑟2
+

2

𝑟𝑅

𝑑𝑅

𝑑𝑟
+ 𝑘2 −

𝑙(𝑙−1)

𝑟2
= 0

𝑑2𝑃

𝑑𝜃2 +
𝑐𝑜𝑠𝜃

𝑠𝑖𝑛𝜃

𝑑𝑃

𝑑𝜃
+ [𝑙(𝑙 − 1) −

𝑚2

𝑠𝑖𝑛2𝜃
] 𝑃 = 0

𝑑2𝑄

𝑑𝜑2
+ 𝑚2𝑄 = 0

     (6) 

The solution of the angular components 𝑃𝑁(𝜃)𝑄𝑁(𝜑) are combined in the spherical harmonics: 

𝑃𝑁(𝜃)𝑄𝑁(𝜑) = 𝑌𝑙𝑚(𝜃, 𝜑)      (7) 

And the solution to the radial part is given by the spherical Bessel function of order l: 

𝑅𝑁(𝑟) = 𝑗𝑙(𝑘𝑁𝑟)       (8) 

The boundary condition imposed by the inner wall of the resonant cavity that must be accomplished 

by the wave function 𝜙𝑁(𝑟) confined in our geometry is: 

𝑣𝑛(𝑟𝑠) = 𝑝𝑎(𝑟𝑠)𝑦(𝑟𝑠, 𝜔)      (9) 

being n the normal to the surface S of the resonator and 𝑦(𝑟𝑠, 𝜔) =
𝑦0

𝜌𝑐
  the specific admittance on S. 

The relation between 𝑣𝑛 and 𝑝𝑎 is determined by the Navier-Stokes equation (linearized, on leading 

order approximation) for the longitudinal component of the fluid velocity as: 

𝜕𝑣𝑙

𝜕𝑡
= −

1

𝜌
∇𝑝𝑎 + 𝐷𝑣∇(∇ · 𝑣𝑙)      (10) 

When the frequency of the acoustic source (frequency of the forced acoustic oscillations) equals 

with the natural frequency of the cavity, a maximum in amplitude is obtained in the detector and a 

standing wave is formed, with a nodal surface on S, where ∇ · 𝑣𝑙 is vanished. If equation (9) is 

inserted in (10) and it is expressed in terms of 𝜙𝑁(𝑟), it is concluded that:  

𝜕

𝜕𝑛
𝜙𝑁(𝑟, 𝜔)|𝑟=𝑟𝑠

= −𝑖
𝜔

𝑐
𝜙𝑁(𝑟𝑠, 𝜔)𝑦(𝑟𝑠, 𝜔)     (11) 

where the admittance 𝑦(𝑟𝑠, 𝜔) takes into account all the effects of  energy dissipation processes. In 

the ideal case 𝑦(𝑟𝑠, 𝜔) = 0, so: 

𝑑

𝑑𝑟
𝜙𝑁(𝑟)|𝑟=𝑎 = 0 →

𝑑

𝑑𝑟
𝑗𝑙(𝑘𝑁𝑟)|𝑟=𝑎 = 0 → 𝑘𝑛𝑎 = 𝜈𝑙𝑛   (12) 
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that follows to the equation (1), with n=1,2,3.., l=0,1,2..n-1 and m=-l,…,+l. The measurements of 

speed of sound in a spherical resonator are taken studying preferably the radial symmetric modes, 

l=0, (the only no degenerated mode). In the real case, 𝑦(𝑟𝑠, 𝜔) ≠ 0, so a discrete set of complex 

values of the propagation constant (eigenvalues of the Helmholtz equation) are present in the form: 

𝑘𝑛 = 𝑓0𝑛 + 𝑖𝑔0𝑛 =
𝑐

2𝜋𝑎
(𝜈0𝑛 + 𝑖𝑦𝑠 + 𝑖𝑎𝛼)     (13) 

where 𝑅𝑒{𝑘𝑛} represents the resonance frequencies from which c is obtained and 𝐼𝑚{𝑘𝑛} reports 

the half-widths of the resonances peaks. 𝑦𝑠 is a complex magnitude, which imaginary component 

contributes to a shift Δ𝑓 of the resonance frequency 𝑓0𝑛, then: 

𝑐 =
2𝜋𝑎 

𝜈0𝑛
(𝑓𝑜𝑛 − Δ𝑓)       (14) 

being 𝑓𝑜𝑛 the experimental frequency. Strictly, such corrections depend on the corrected frequency 

itself, their behavior as corrector terms allows to approximate the dependence with the frequency to 

the experimental frequency 𝑓𝑜𝑛. The contributions implicated in 𝑦𝑠, following the steps detailed in 

[9] and [6], are:  

2.1 Thermal Boundary Layer Admittance, 𝑦𝑡ℎ.  

Consider the irreversible heat flows in the vicinity of the resonator walls due to the boundary 

conditions which imposes that the temperature and the heat flux are continuous in the interphase gas 

mixture - cavity (in fact, because the thermal conductivity and heat capacity of the shell are much 

greater than for the biogas, the conditions involve that the temperature is constant throughout the 

wall, without fluctuations). It causes a shift in the resonance frequency ∆𝑓𝑡ℎ and a contribution to 

the half-width 𝑔𝑡ℎ, as [11]: 

 
Δ𝑓𝑡ℎ

𝑓
=

−(𝛾−1)

2𝑎
𝛿𝑡ℎ

1

1−𝑙(𝑙−1)/𝜈𝑙𝑛
2 +

(𝛾−1)

𝑎
𝑙𝑡ℎ +

(𝛾−1)

2𝑎
𝛿𝑡ℎ,𝐴321

𝜅𝐺𝑎𝑠

𝜅𝐴321
   (15) 

  
𝑔𝑡ℎ

𝑓
=

(𝛾−1)

2𝑎

1

1−𝑙(𝑙−1)/𝜈𝑙𝑛
2 𝛿𝑡ℎ +

(𝛾−1)

2𝑎
𝛿𝑡ℎ,𝐴321

𝜅𝐺𝑎𝑠

𝜅𝐴321
            (16) 

being: 

 𝑙𝑡ℎ, the thermal accommodation length: 

𝑙𝑡ℎ =
𝜆

𝑝
(

𝜋𝑀𝑇

2𝑅
)

1/2 2−ℎ

ℎ

1

𝐶𝑣/𝑅+1/2
     (17) 

where h is the thermal accommodation coefficient which is determined in [12]. 

 

 𝛿𝑡ℎ, the thermal penetration length in the fluid, which characterized the thickness of the 

thermal boundary layer: 

      𝛿𝑡ℎ = (
𝜆

𝜋𝜌𝐶𝑝𝑓
)

1/2

      (18) 

 𝛿𝐴321, the thermal penetration length in the wall of the resonant cavity, which indicates the 

thickness of the thermal boundary layer in the shell (austenitic stainless steel A321): 

𝛿𝑡ℎ,𝐴321 = (
𝜆𝑤

𝜋𝜌𝑤𝐶𝑝,𝑤𝑓
)

1/2

     (19) 

 

Our research, only interested in the radial symmetric modes l=0, thus the term 
1

1−𝑛(𝑛−1)/𝜈𝑙𝑛
2  is 

always equal to the unity. Since the wavelength 𝜆 is much greater than the thermal penetration 

length at the frequencies of our work, the temperatures gradients are larger in the thermal boundary 

layer than those in the fluid bulk, so the irreversible flows of heat are greater too. The frequency 
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shift 𝑓0𝑛 were −0,2 𝐻𝑧 for the mode (0,2) and −0,4 𝐻𝑧 for the mode (0,6). Although it is 

generally expected to be the more important correction at low pressure measurements, it is the least 

of our corrections as seen below. 

 

2.2 Coupling of Fluid and Shell Motion Admittance, 𝑦𝑠ℎ.  

It takes into account the mechanical admittance of the cavity wall by interaction between the 

acoustic waves with the corresponding shell motion. Even if this term can be exactly solved for an 

isotropic spherical resonator, as the elastic behavior model of the resonator developed in [13] and 

[6], it has been decided to use the simplified results show at [9], assuming that the radiation losses 

are null, because the system is allocated in high vacuum. Under this approximation, this correction 

term is pure complex, i.e., only contributes with a frequency shift Δ𝑓𝑠ℎ: 

Δ𝑓𝑠ℎ = −𝑓𝜌𝑐2𝐶/[1 − (𝑓/𝑓𝑏𝑟)2]    (20) 

where: 

 

 𝐶, the static compliance of the cavity: 

𝐶 =
1−𝜎

2[(𝑏/𝑎)3−1]𝜌𝐴321𝑐𝐴321
2 (

(𝑏/𝑎)3

1−2𝜎
+

2

1+𝜎
)            (21) 

 

𝑓𝑏𝑟, the breathing frequency, it is the lower radial symmetric mechanical resonance of the 

shell: 

𝑓𝑏𝑟 =
𝑐𝐴321

2𝜋𝑎
(

2[(𝑏/𝑎)3−1]

[(𝑏/𝑎)−1][1+2(𝑏/𝑎)3]
)

1/2

     (22) 

being 𝜌𝐴321 the density of the steel,  𝜎 the Poisson’s ratio of the steel and 𝑐𝐴321 the sound speed 

through the steel wall. The elastic properties of the steel A321 have been approximated by those of 

the steel of grade A304, because more reliable data are found in the literature of the latter. The two 

grades are very similar (although A321 is stabilized with Ti) and it is supposed that their 

mechanical behavior is equal, in our work ranges. The density, Young’ moduli and Poisson’s ratio 

data are taken from [14], the heat capacity and the thermal conductivity from [15] and the thermal 

expansion coefficient from [16]. The frequency shift of 𝑓0𝑛 takes values from −1,5 𝐻𝑧 for the mode 

(0,2) and −15 𝐻𝑧 for the mode (0,6) at high pressures, to −0,1 𝐻𝑧 for the mode (0,2) and −1 𝐻𝑧 

for the mode (0,6) at the lower pressures. Definitely it is the main correction term on 𝑓0𝑛, being that 

our biogas studied mixture is relatively dense (especially if it is compared with the references gases 

employed for the calibration of the resonator, such as Argon or Helium: the biogas is one order of 

magnitude heavier than Ar and two more than He). 

 

2.3 Duct Admittance, 𝑦0. 

Corrector term due to the modification of the cavity surface admittance by the openings of the inlet 

biogas feed duct (𝑦0) is modeled by a cylindrical tube of radius 𝑏 = 0,5 𝑚𝑚 and length L=
41 𝑚𝑚, applying the Kirchhoff-Helmholtz theory for closed tubes finished in a rigid wall (𝑦𝐿 = 0), 

as is described in [9]: 

Δ𝑓0 + 𝑖𝑔0 =
𝑐

2𝜋𝑎

Δ𝑆

4𝜋𝑎2
𝑖𝑦𝑜     (23) 

where: 

𝑦0 = 𝑖𝑡𝑎𝑛(𝑘𝐾𝐻𝐿)       (24) 
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   𝑘𝐾𝐻 =
𝜔

𝑐
+ (1 − 𝑖)(

𝜔

2𝑐𝑏
[𝛿𝑠 + (𝛾 − 1)𝛿𝑡ℎ])    (25) 

and being ∆𝑆 the area of the opening, 𝛿𝑠 = (
2𝐷𝑠

𝜔
) 1/2 and 𝛿𝑡ℎ = (

2𝐷𝑡ℎ

𝜔
 )

1/2

, where 𝐷𝑠 = 𝜂/𝜌  and 

𝐷𝑡ℎ = 𝜅/𝜌𝐶𝑝 are the viscous (shear) and thermal diffusivities, respectively. See that it has been 

chosen a length tube (2 ducts in our experimental device: the inlet feed mentioned above and other 

blind tube with no function) similar to the radius resonator, with the objective of minimize the 

effect of this perturbation. The frequency shift is around −0,4 𝐻𝑧 for the mode (0,2) and −0,8 𝐻𝑧 

for the mode (0,6) to this contribution, increasing slightly when both frequency and temperature are 

increased and pressure is reduced, in the ranges of our work. 

 

2.4 Viscous Boundary Layer Admittance, 𝑦𝑠. 

The admittance component because of the viscous boundary layer is zero for the radial symmetric 

modes (n=0), since the acoustic wave is normal incident on the wall and in absence of tangential 

motion, there is no viscous shear damping. 

2.5 Dissipation in the Fluid.  

The contribution to the half-width of the peak of resonance caused by the classical viscothermal 

mechanisms of acoustical energy absorption in the fluid bulk is given by: 

𝑔𝑐𝑙 = (
𝑐

2𝜋
) (

𝜔2

2𝑐0
3) [

4𝐷𝑠

3
+ (𝛾 − 1)𝐷𝑡ℎ]     (26) 

As already stated, it has a minor effect than in the boundary layers, because temperature and 

velocity gradients are lower in the fluid bulk, with corresponding irreversible heat and momentum 

flows lower. Furthermore, this term is proportional to 𝜔2, versus the admittance component due to 

thermal boundary layer which increases only in proportion to 𝜔1/2, being even less important at 

low frequencies. 

2.6 Geometrical Imperfections. 

In addition to the non-zero surface shell admittance 𝑦𝑠, there exist corrections over the ideality of 

the cavity by imperfect geometry, in the sense of perturbations of the perfect shell sphericity. As it 

is shown in [17], on leading order the effect of a smooth spherical distortion do not produce a 

frequency shift of 𝑓0𝑛, for the radial modes, if it is not change on the volume. It is unnecessary to 

apply a superior order correction, thus accuracy of ppm in the measurement of the speeds of sound, 

which is within the measurement uncertainty, can be reached with geometrical shape distortions of 

about 10 𝜇𝑚, feasible with the mechanical tolerances of conventional machining. 

2.7 Virial Acoustic Equation. 

Then, for the thermodynamic research of fluid properties, the speed of sound is related with the 

thermodynamic state by: 

𝑐2 =
𝜕𝑝

𝜕𝜌
|𝑆      (27)    

expression valid only if it is not taken account any mechanism of dispersion, i.e., if 𝑐(𝑝, 𝑇) is 

frequently independent. Working at frequencies and densities sufficiently lower this is true, on first 

approximation: it is required that 𝜔𝜏𝑐 ≪ 1, where for gas mixtures the mean time between binary 

collisions, 𝜏𝑐, is close to the characteristic relaxation times of heat and momentum transfer, 
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𝜏𝑡ℎ = 𝐷𝑡ℎ/𝑐0
2 and 𝜏𝑠 = 𝐷𝑠/𝑐0

2, respectively. In our biogas sample 𝜏𝑡ℎ ≈ 2,5 · 10−10𝑠 and 𝜏𝑠 ≈ 3 ·
10−10𝑠 versus 𝜏 ≈ 1,8 · 10−4 − 4,8 · 10−5 𝑠, so the requirement is properly met. The equation (27) 

can be expressed in terms of variables (p, T) and (ρ, T): 

𝑐2 = [(
𝜕𝜌

𝜕𝑝
)

𝑇
−

𝑇

𝜌2𝐶𝑝
(

𝜕𝜌

𝜕𝑇
)

2

𝑝
]

−1

    (28) 

𝑐2 = [(
𝜕𝑝

𝜕𝜌
)

𝑇
−

𝑇

𝜌2𝐶𝑣
(

𝜕𝑝

𝜕𝑇
)

2

𝜌
]     (29) 

The measurements are fitted to the acoustic virial equation of state, explicit in pressure or in 

density: 

𝑐2 = 𝐴0 + 𝐴1𝑝 + 𝐴2𝑝2 + ⋯     (30) 

𝑐2 = 𝐴0(1 + 𝛽𝑎𝜌 + 𝛾𝑎𝜌2 + ⋯ )     (31)  

where the first acoustic parameter  provide important information in the limit of perfect gas, 𝑝 → 0: 

𝐴0 =
𝑅𝑇𝛾𝑝𝑔

𝑀
  →  

𝐶𝑝,𝑚
𝑝𝑔

𝑅
=

𝛾𝑝𝑔

𝛾𝑝𝑔−1
     (32) 

where the superscript “pg” indicates perfect gas, 𝑅 is the gas constant, 𝑀 is the mean molar mass, 𝑇 

is the thermodynamic temperature and 𝛾 is the adiabatic coefficient. As it is shown in [6], when 

proceeding to acoustic virial equation regression is necessary to choose those resonance modes 

which frequency far enough of mechanical resonances, the breathing modes of the shell, since it is 

avoided a high energy transfer from the acoustic wave through the cavity wall. If not the acoustical 

model developed is not valid. So the frequency limit for our resonator is 𝑓𝑏𝑟 ≈ 27500 𝐻𝑧, such that 

the research is constraint to the first five radial modes of the speed of sound in the biogas. 

 

3. Experimental equipment and process of measurement. 

 

3.1 Resonant Cavity. 

The spherical resonator used in this work is directly based on the designs developed by Trusler and 

Ewing [18] and employed recently in other research [19]. Built with the objective to perform the 

highest possible absolute accuracy speed of sound measurements, it consists of a spherical cavity 

formed by the union of two aligned hemispheres and fixed by electron beam welding, fabricated 

from austenitic stainless steel of grade 321 and manufactured at Imperial College, with nominal 

radius 𝑎 = 40𝑚𝑚 and nominal thickness 𝑏 − 𝑎 = 10𝑚𝑚.  

The determination of the cavity geometry, the average inner radius as function of the pressure and 

temperature required for the calculation of the speed of sounds, was made in a previous work [19] 

by means of calibration with argon, because there is well-known equation of state for this gas. Some 

authors have reported several problems with the junction of the hemispheres [20]: the welding do 

not fill all the thickness of the shell, just about 6𝑚𝑚 of the wall and the cavity has not been 

subjected to annealing or other later thermal treatment, which suggests to the authors that the union 

is causing a small additional geometric imperfection and irreversible changes in the mean radius 
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after following a temperature cycle. On the other hand, the machining and polishing of the steel 

block from the two hemispheres are obtained, produce a maximum imperfection on the geometry 

that affects in 2 parts in 10
4
 the inner radius 𝑎 [21] and, due to the reasons given previously, it is 

neglected. 

Typically, it is used stainless steel instead of aluminum or brass, because has a higher value of the 

characteristic acoustic admittance 𝜌𝑤𝑐𝑤 and reduce the correction term for coupling the fluid and 

shell motion, and the austenitic type because being nonmagnetic, needful to determine the radius by 

microwave resonance study. 

The employed shell comprises two openings: one for the inlet/outlet duct, drilled and sealed with an 

stainless steel O-ring in the upper boss, of radius 0,5𝑚𝑚 and length 41𝑚𝑚, and the other one is a 

blind tube in the lower boss, of the same dimensions that the former one. 

3.2 Transducers. 

Flush with the inner surface of the north shell hemisphere, it is disposed two equals transducers of 

wide bandwidth, source and detector, provided in an angle of 90° between them (this angle reduces 

the overlapping between the radial mode (0,2) and the very close degenerated mode (3,1), since the 

detector is located in a nodal plane respect to the latter mode) and they follow the design showed in 

[22]. 

They are capacitance transducers which consist of a solid polymeric dielectric (a polyamide circular 

sheet) of 12𝜇𝑚 thickness and 3𝑚𝑚 diameter, coated with a gold layer of 50𝑛𝑚 thickness on the 

side facing the interior of the shell. The whole creates a moving part, the diaphragm, that it is placed 

on a massive back electrode, joined by a spring to the transducer cover to keep it aligned inside the 

ceramic tube that adjust all the dispositive to the shell. The diaphragm is provided with a little 

perforation to allow the pass of the gas to the interior volume of the transducer, thereby decreases 

the rigidity and increases the sensitivity of the transducer, which is given by: 
𝑉

𝑝𝑎
= 𝐸0

〈𝜉〉

𝑝𝑎
, being 〈𝜉〉 

the mean amplitude of the diaphragm displacement. They are designed so that the mechanical 

resonance frequencies of the diaphragm are well above the acoustic ones of the cavity, so there are 

no overlapping problems, typically, they have a minimum mechanical resonance value around 

40 𝑘𝐻𝑧. 

The source transducer is driven by a pure alternate signal send out by the wave generator HP3225B, 

without bias voltage, 𝑉0 = 0, to avoid the direct electromagnetic coupling between the two 

transducers, “crosstalk” effect, and producing an acoustic pressure response at twice the frequency 

of the wave synthesizer. The net force on the diaphragm is given by: 𝐹 = − (
𝜀0Α

2
) (

𝑉0+𝑉1 cos(𝜔𝑡)

𝑑0+𝑑1/𝜀𝑟
)

2

→

𝐹 = − (
𝜀0Α

2
) (

𝑉1
2+𝑉1

2 cos(2𝜔𝑡)

2(𝑑0+𝑑1/𝜀𝑟)2 ), where 𝐴 is the diaphragm area, 𝜀𝑟 is the dielectric permittivity of the 

polymer, 𝑑1 is the thickness of the diaphragm and 𝑑0 is the separation between the back electrode 

and the diaphragm at 𝜔 = 0. It operates with rms voltage of 180𝑉 on the source, delivered by rise 

signal amplifier because the wave generator only contributes with 40𝑉, with a precision in the 

frequencies of 1 · 10−7𝑓, as indicated by the manufactured, but the synthesizer is plugged to a 

rubidium standard frequency, that improves the precision until 5 · 10−11𝑓.  

The transducer detector is fed with a bias voltage of 85𝑉 whose exit signal is supplied to an 

amplifier detector Lock-In SR850 DSP, after passing through a unity gain amplifier and high input 

impedance with the purpose of delete the effect of the capacitance connection cables (triaxial cable 

with active guard): the transducer capacitance 𝐶𝑇 is small enough (less than 100𝑝𝐹) such that a 
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little load capacitance 𝐶𝐿, like the connection cables, involves a high division of the output signal by 

(𝐶𝐿 + 𝐶𝑇)/𝐶𝐿. The Lock-In is referenced to the second harmonic of the driven source signal and 

measures the amplitude and shift phase of the detector signal, with amplitudes between 10𝜇𝑉 −
200𝜇𝑉, performed by acoustic pressure levels of 1𝑚𝑃𝑎 − 20𝑚𝑃𝑎, together with noise electronic 

levels of 50𝑛𝑉 rms. 

3.3 Measurement of Pressure and Temperature. 

The pressure measurement is performed with a piezoelectric quartz transducer, Digiquartz 43RK-

101, placed on the top of the biogas inlet tube, so the hydrostatic column correction is taken account 

by measuring the temperature of three thermocouples located each 20𝑐𝑚 of the filling gas duct 

(which has a 61𝑐𝑚 length between the equatorial plane of the resonant cavity and the top pressure 

transducer). It is calibrated from 1𝑀𝑃𝑎 to 20𝑀𝑃𝑎 in TermoCal labs, with national traceability. The 

overall estimated uncertainty in pressure is ±2 · 10−3𝑀𝑃𝑎 with a cover factor of k=2. 

The temperature measurement of the resonator is performed with two standard platinum resistance 

thermometer, SPRT Rousemont 162D of 25.5Ω with Inconel X-750 encapsulated in four wire 

configuration, placed on the north and south hemispheres (in copper blocks and covered by thermal 

grass) plugged to an ac bridge ASL F18, referenced to external resistance Tinsley 5685ª (of 25Ω 

nominal, thermostated at 36∘𝐶 and calibrated at INTA, Instituto Nacional de Técnica 

Aeroespacial).The two SPRT are calibrated in ITS-90 scale at TermoCal labs with national 

traceability. These measurements are not employed in the temperature control system because the 

long stabilization time of the ac bridge. The overall estimated uncertainty in temperature is ±2 ·
10−3𝐾 with a cover factor of k=2. 

3.4 Control System of the Thermal Stability. 

It is very important to control the thermal stability of the resonator before making each 

measurement. On one hand, the resonant cavity is suspended within an interior cylindrical stainless 

steel jacket, which is only linked by a copper block, as shown in Figure 1. Said jacket is 

communicated with the outer cylindrical vessel, stainless steel also, and this one is connected 

through the tube connections with the centrifugal vacuum pump Leybold Trivac B8B, helped by a 

turbomolecular pump Leybold SL300 in series with previous one, to reach pressures about 10−3𝑃𝑎 

and deleting convection in the two chambers. The exterior vessel is bolted to the cover of the top 

support tube and maintains the high vacuum through a joint of indium. On the other hand, between 

the jacket and the vessel, several aluminum layers over fiberglass with all possible wiring inside 

surrounds the jacket minimizing the radiation losses. The entire assembly is allocated in a Dewar, 

filled with ethanol and cooled by a thermal bath Julabo FP89 at −30°𝐶, trying to transmit heat 

exclusively by thermal conduction through the copper block on the top.  

The temperature is stablished using three resistors:  a band resistance of 10.6Ω in the copper block  

in order to heat the resonant shell, a wire resistance of 28.5Ω wound along the side of the jacket and 

three band resistances forming a triangle of 174Ω at the base of the jacket, in order to compensate 

the radiation losses indicated previously. And the temperature is controlled with three other probes: 

a SPRT Rosemount 162D Pt-25 attached by a cooper envelope to the copper block and two SPRT 

Hart 5686 Pt-25 stuck with thermal tape to the side and base of the jacket. The entire system is 

automated by three independent control loops implemented with PC Agilent VEE 7.0, which 

monitors the temperatures measured taken in the multimeter HP 3458A and the programmable 

power supplies HP E3632A plugged to the corresponding resistances.  



10 
 

Usually, the whole apparatus takes to stabilize a day after each pressure drop, carried out in ramps 

of about 10 MPa, and about five days after each new assignment of reference temperature, ran at 

around 25 𝐾 ramps. With this thermostated device, a thermal gradient between the two cavity 

hemispheres only of 1𝑚𝐾, with even lower drifts, is achieved during the measurement process. 

3.5 Resonance Measurement  System.  

It was implemented in two independent programs, under PC Agilent VEE 7.0 and adapted in the 

laboratory, taken as base the software developed at Imperial College for similar experimental 

device. It consists of a first program which goal is to sweep over wide frequency ranges and locate 

all the resonances peaks in that range, indicating the frequency 𝑓𝑁 and the half-width 𝑔𝑁 of the most 

significant. Thus, it can be quickly estimate the series of radial resonance modes if looking around 

the theoretically predicted frequencies. The second program performs the measurement of radial 

resonance mode with the highest accuracy, requiring from the frequency of the peak provided by 

the previous software. This measurement is done by tracking the amplitude 𝐴 and phase 𝜑 detected  

by the Lock-In amplifier, i.e, the signal in phase 𝑢 = 𝐴 cos 𝜑 and the signal in antiphase 𝑣 =
𝐴 sin 𝜑, at 11 points equally spaced in the interval [𝑓𝑁 − 𝑔𝑁 , 𝑓𝑁 + 𝑔𝑁], in a ramp up and down, 

waiting a few seconds between each point to ensure the stationary of the received signal at the 

Lock-In. A total of 11 frequencies and 44 voltages that fit a function of the form 𝑢 + 𝑖𝑣 =

∑
𝑖𝑓𝐴𝑁

(𝑓2−𝐹𝑁
2)𝑁 + 𝐵 + 𝐶(𝑓 − 𝑓0) with 𝐴𝑁 , 𝐵 𝑎𝑛𝑑 𝐶 complex constants and with 𝑁 = 1 for the radial 

symmetric modes, obtaining the complex frequency values 𝐹𝑁 = 𝑓𝑁 + 𝑖𝑔𝑁, with lower frequency 

deviations of 0.01 · 𝑓𝑁 %. 

3.6 Biogas Mixture. 

The biogas mixture sample was prepared at Reference Materials Laboratory of CEM (Centro 

Español de Metrología) by the gravimetric method to the technical procedure CEM-PT-0121, 

according to standard UNE-EN ISO 6142, with the compositions shown in Table 1. After the 

preparation, the mixture composition was verified, by comparison with MRP, following the 

technical procedure CEM-PT-0122. 

Table 1 Mixture compositions of biogas sample. 

Composition Concentration / 10
-2

 mol/mol Uncertainty / 10
-2

 mol/mol (k=2) 

CO 4,9899 0,0050 

CO2 35,1484 0,0023 

N2 10,0138 0,0040 

CH4 49,8478 0,0069 
 

3.7 Ranges of Operation. 

The resonator thermostated system it was designed to operate within the range from 123K to 523K, 

though our research is limited at three isotherms: 273K, 300K y 325K. The resonator is built to 

work until 20 MPa, but our measurements are focused from a maximum pressure of 12 MPa 

decreasing by steps of 1 MPa to a minimum around 1 MPa. Generally, the upper limit is imposed 

by the pressure in the sample biogas bottle, incremented by a manual piston cylinder system in 

some MPa, after several consecutive loads. 
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4. Results. 

The experimental results of the speed of sound are shown in Tables 2-4 together with the 

corresponding theoretical values determined using the equation of state (EoS) GERG-2008, now 

standard for biogas mixtures [23] - [24]. EoS GERG-2008, with the default settings of the reference 

fluid properties software NIST Refprop 9.1 [25], was used. The default values of the equation of 

state are not those of the originally model GERG published at [23] for the pure fluids, but a more 

complex and long version, slightly more accurate, as it is indicated by the help of the software.  

Not all radial symmetric modes have been used to calculate the average value of 𝑐(𝑝, 𝑇) in each 

state, but the relative excess half-widths of the resonance peaks 𝛥𝑔/𝑓𝑒𝑥𝑝 = (𝑔 − (𝑔𝑡ℎ + 𝑔𝑐𝑙 +

𝑔0))/𝑓𝑒𝑥𝑝, which should match with the contribution of vibrational relaxation 𝑔𝑟𝑒𝑙, are plotted 

versus the pressure in Figure -3. Thus, the Figure  shows that the mode (0,5) must be discarded from 

the calculations at Tnominal=273 K, because 𝛥𝑔/𝑓𝑒𝑥𝑝 is very high in the entire range of pressures and 

also the mode (0,6) should be removed from calculations, because 𝛥𝑔/𝑓𝑒𝑥𝑝 does not tend to vanish 

with decreasing pressure. For the same reasons, modes (0,5) and (0,6) are also excluded at 

Tnominal=300 K  and mode (0,6) at Tnominal=325 K, as shown in Figure 2 and 3. 

Table 2 Experimental speeds of sound with their corresponding expanded uncertainties (k=2) at Tnominal=273K and 

comparison with EoS GERG-2008. 

P / MPa T / K cexp / m·s
-1

 cGERG / m·s
-1

 (cexp - cGERG)/cexp / ppm 

11.586 272.969 313.325±0.054 314.423 3504.476 

10.161 272.971 305.003±0.014 305.705 2304.727 

9.127 272.966 301.896±0.017 302.440 1802.811 

8.187 272.967 300.953±0.013 301.403 1496.566 

7.155 272.960 301.593±0.042 301.962 1225.496 

6.118 272.959 303.617±0.021 303.914 979.922 

5.065 272.954 306.716±0.020 306.943 738.250 

4.055 272.962 310.407±0.021 310.567 514.551 

3.039 272.954 314.609±0.017 314.709 317.936 

2.015 272.957 319.208±0.034 319.257 151.724 

1.021 272.961 323.890±0.091 323.928 116.959 

 

Table 3 Experimental speeds of sound with their corresponding expanded uncertainties (k=2) at Tnominal=300K and 

comparison with EoS GERG-2008. 

P / MPa T /K cexp / m·s
-1

 cGERG / m·s
-1

 (cexp - cGERG)/cexp / ppm 

12.826 299.852 339.58±0.12 339.67 283.22 

12.074 299.846 335.910±0.086 335.979 205.577 

11.030 299.845 331.96±0.19 331.96 -19.86 

10.161 299.849 329.569±0.070 329.558 -32.783 

9.104 299.842 327.727±0.035 327.716 -32.987 

8.079 299.848 326.977±0.024 326.965 -36.887 

7.061 299.838 327.107±0.049 327.086 -63.261 

6.062 299.850 327.995±0.020 327.957 -114.187 

5.050 299.841 329.512±0.015 329.449 -190.200 

4.029 299.850 331.604±0.021 331.508 -287.234 

3.020 299.850 334.108±0.066 333.977 -392.215 

2.010 299.851 336.969±0.061 336.814 -459.100 

1.004 299.845 340.098±0.095 339.948 -441.680 
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Table 4 Experimental speeds of sound with their corresponding expanded uncertainties (k=2) at Tnominal=325K and 

comparison with EoS GERG-2008. 

P / MPa T /K cexp / m·s
-1

 cGERG / m·s
-1

 (cexp - cGERG)/cexp / ppm 

11.094 324.749 351.127±0.096 351.064 -181.904 

10.035 324.740 348.922±0.063 348.798 -353.741 

9.082 324.743 347.514±0.037 347.395 -342.726 

8.094 324.741 346.645±0.024 346.524 -350.873 

7.055 324.744 346.331±0.054 346.202 -372.327 

6.056 324.744 346.560±0.067 346.413 -423.518 

5.043 324.744 347.263±0.072 347.095 -485.167 

4.045 324.744 348.38±0.12 348.18 -568.87 

3.031 324.743 349.877±0.089 349.655 -636.170 

2.038 324.748 351.675±0.073 351.431 -695.807 

1.011 324.742 353.82±0.12 353.57 -716.91 

 

 

Figure 1  Relative excess half-width (Δg/fexp) of radial modes as function of pressure at Tnominal=273 K for modes:  

(0,2),  (0,3),  (0,4),  (0,5),  (0,6). 

 

Figure 2 Relative excess half-width (Δg/fexp) of radial modes as function of pressure at Tnominal=300 K for modes:  

(0,2),  (0,3),  (0,4),  (0,5),  (0,6). 
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Figure 3 Relative excess half-width (Δg/fexp) of radial modes as function of pressure at Tnominal=325 K for modes:  

(0,2),  (0,3),  (0,4),  (0,5),  (0,6). 

 

In Table 5 the fitting parameters of the square speed of sound to the acoustic virial equation 

(equation 30) are shown. The residual of the fitted speed of sound in comparison to the calculated 

values using EoS GERG-2008 were determined in order to choose the truncation orders of the 

pressure expansion. Comparing the standard deviation 𝜎 = √∑(𝑥 − 𝑥̅)2 /(𝑛 − 1) of the 𝑛 residuals 

𝑥 = (𝑐fitted  −  𝑐GERG)/𝑐fitted , it is concluded that third order acoustic model for isotherms 

Tnominal=273K and Tnominal=300K and second order for the isotherm Tnominal=325K are necessary; the 

inclusion of a new term is negligible as it is shown in Table 6 for the different fittings to acoustic 

virial equations. The Table 5 also contains the parameters expanded uncertainties for a cover factor 

k=2 calculated through Monte Carlo method, as indicated in [26]. 

 

Table 5 Fitting parameters of square speed of sound and their corresponding expanded uncertainties (k=2). 

Tnominal / K A0(T) / (m/s)
2
 A1(T) / (m/s)

2
·Pa

-1 
A2(T) / (m/s)

2
·Pa

-2
 A3(T) / (m/s)

2
·Pa

-3
 

273 107499±85 (-250,1±4,5)·10-5 (-170,2±7,1)·10-12 (272,7±3,5)·10-19 
300 117816±94 (-219,0±5,4)·10-5 (16,43±9,0)·10-12 (108,4±4,4)·10-19 
325 127439±77 (-219,7±2,7)·10-5 (162,8±2,1)·10-12 - 

 

Table 6 Standard deviations (σ) of the residuals of the different fittings to the acoustic virial equation. 

  σ [(cfitted - cGERG)/cfitted] / ppm 

Tnominal / K c
2
(p,T) = A2(T)·p

2 
+ 

A1(T)·p + A0(T) 

c
2
(p,T) = A3(T)·p

3
 

+ A2(T)·p
2
 + 

A1(T)·p + A0(T) 

c
2
(p,T) = A2(T)·p

2
 

+ A1(T)·p + A0(T) 

+ b(T)·p
-1

 

c
2
(p,T) = A4(T)·p

4
 + 

A3(T)·p
3
 + A2(T)·p

2
 + 

A1(T)·p + A0(T) 

273 4469,0 1163,9 2918,7 1038,7 

300 1964,9 250,6 1207,7 230,6 

325 580,5 168,5 356,7 168,9 

 

The thermodynamics properties derived from measurements of speed of sound in the limit to zero 

pressure, as prefect gas “pg”, are shown in Table 7 to 9 for biogas sample mixture: the adiabatic 
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coefficient 𝛾𝑝𝑔, the isochoric and isobaric heat capacities 𝐶𝑉
𝑝𝑔

 and 𝐶𝑝
𝑝𝑔

 and the acoustic virial 

coefficients 𝛽𝑎 and 𝛾𝑎. The results are compared with those reported by the software REFPROP 9.1 

(updated to the last version at June 10, 2014) using EoS GERG-2008 (standard for our fluid), AGA-

8 and Peng-Robinson (PR). If we focus at the properties determined from 𝐴0(𝑇), i.e., 𝛾𝑝𝑔, 𝐶𝑉
𝑝𝑔

 and 

𝐶𝑝
𝑝𝑔

, the correlation to a cubic acoustic virial equation is more satisfactory for 𝑇𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = 300𝐾 

than the cubic fitting for 𝑇𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = 273𝐾 or square fitting for 𝑇𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = 325𝐾, because we 

move from a relative deviation about 1% to a relative difference with the theoretical values  of 

0,1%, being within the measurement uncertainty in the latter case. For the second acoustic virial 

coefficient, relative deviations between the theoretical results calculated by any of the three 

equations of state no matter the isotherm and those measured are very similar and around 20%, i.e., 

two orders of magnitude above the measurement uncertainty but  in agreement with other works 

[19]. However, the third acoustic virial coefficient calculation, performed by software REFPROP 

9.1, fails to determine its value using EoS GERG-2008, which seems to be an error of the 

calculation algorithm and not a problem with the model. The theoretical estimation given by EoS 

AGA-8 or Peng-Robinson (PR) is several times the experimental data above itself when it is 

utilized the cubic correlation (𝑇𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = 273𝐾 and 𝑇𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = 300𝐾), but relatively close for the 

square fitting (𝑇𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = 325𝐾).  

Table 7 Thermodynamic derived properties from first acoustic virial coefficient (equation 31 and 32) at Tnominal=273K 

with their corresponding expanded uncertainties (k=2) and comparison with the different EoS.  

Tnominal=273K Zexp (Zexp- ZGERG)/Zexp % (Zexp-ZAGA)/Zexp % (Zexp- ZPR)/Zexp % 

γ
pg

 1.3105±0.0011 -0.64 - - 

Cv
pg

 / Jmol
-1

K
-1

 26.774±0.091 2.62 - - 

Cp
pg

 / Jmol
-1

K
-1

 35.09±0.12 2.00 - - 

βa / m
3
mol

-1
 (-528.0±9.5)·10

-7 -29.67 -35.62 -39.56 
γa / (m

3
mol

-1
)

2
 (-81.5±3.4)·10

-10 1.72 · 109 192.28 325.43 
 

Table 8 Thermodynamic derived properties from first acoustic virial coefficient (equation 31 and 32) at Tnominal=300K 

with their corresponding expanded uncertainties (k=2) and comparison with the different EoS. 

Tnominal=300K Zexp (Zexp- ZGERG)/Zexp % (Zexp- ZAGA)/Zexp % (Zexp- ZPR)/Zexp % 

γ
pg

 1.3075±0.0011 -0.06 - - 

Cv
pg

 / Jmol
-1

K
-1

 27.036±0.094 0.25 - - 

Cp
pg

 / Jmol
-1

K
-1

 35.35±0.13 0.19 - - 

βa / m
3
mol

-1
 (-46.3±1.1)·10

-6 -9.61 -15.10 -17.91 
γa / (m

3
mol

-1
)

2
 (8.7±4.8)·10

-10 −1.11 · 1010 -688.40 -1769.54 
 

Table 9 Thermodynamic derived properties from first acoustic virial coefficient (equation 31 and 32) at Tnominal=325K 

with their corresponding expanded uncertainties (k=2) and comparison with the different EoS. 

Tnominal=325K Zexp (Zexp- ZGERG)/Zexp % (Zexp- ZAGA)/Zexp % (Zexp- ZPR)/Zexp % 

γ
pg

 1.30590±0.00082 0.58 - - 

Cv
pg

 / Jmol
-1

K
-1

 27.180±0.073 -2.53 - - 

Cp
pg

 / Jmol
-1

K
-1

 35.495±0.098 -1.94 - - 

βa / m
3
mol

-1
 (-465.5±5.7)·10

-7 19.03 14.69 13.30 
γa / (m

3
mol

-1
)

2
 (93.1±1.2)·10

-10 −7.48 · 108 31.46 -56.24 
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In Figure , the relative deviations of measures 𝑐(𝑝, 𝑇) with respect to the theoretical calculations by 

EoS GERG-2008 are shown. The biggest differences are obtained at high pressure (𝑃 = 12𝑀𝑃𝑎) 

and low temperature (𝑇 = 273𝐾), where the results of model GERG-2008  overestimate in an order 

of magnitude of 103𝑝𝑝𝑚 the research data; then they are slightly reduced until to become cancelled 

at intermediate pressure and temperature (𝑃 = 6 𝑀𝑃𝑎 𝑎𝑛𝑑 𝑇 = 300𝐾) being within the 

measurement uncertainty; and they are increased again at high temperature (𝑇 = 325𝐾) and low 

pressure (𝑃 = 1 𝑀𝑃𝑎), where in this case the model GERG-2008 underestimates about 102𝑝𝑝𝑚 

our measurements. 

Firstly, the orders of magnitude of the deviations from the EoS GERG-2008 are within expected: 

when the relative differences of this study are compared with those obtained in similar mixtures 

(binary mixtures of CH4+N2 at related compositions) from reliable works [3], the average relative 

deviations are around 102𝑝𝑝𝑚, in a wide range of pressures and temperatures (with the exceptions 

and trends that will be described below). Exactly, the research in [3] obtained an average deviation 

∆𝑎𝑣𝑒𝑟𝑎𝑔𝑒= 600𝑝𝑝𝑚 at the sample {(1-x)·CH4+x·N2} with 𝑥 = 0,5422, parallel to that stablished 

for the mixture CH4+N2+CO+CO2 (Table 1) reported in these lines: ∆𝑎𝑣𝑒𝑟𝑎𝑔𝑒= 200𝑝𝑝𝑚.  

In addition, this behavior of the speed of sound is analogous to that described in [27] for the density 

in a similar mixture (synthetic coal methane mine mixtures, CMM): it is reported that the density 

computed by EoS GERG-2008 also overestimate the experimental data, performed with a single 

Juncker densimeter with magnetic suspension. The relative deviation takes a maximum at the 

inferior temperatures (~250𝐾) and the superior pressures (~12𝑀𝑃𝑎), decreases passing through 

zero at the middle pressure and temperature range and increases again, underestimating the 

measurements at higher temperature (~375𝐾) and lower pressure (~1𝑀𝑃𝑎), just like in our work. 

However, in [27] measurements at various pressures above those of our experiment were 

performed, showing how the behavior was reversed: the relative differences between EoS GERG-

2008 and experimental data took a new trend decreasing for the lowest isotherms (250𝐾) and 

increasing for the highest temperatures (375𝐾) for the pressure range from 12𝑀𝑃𝑎 up to 20𝑀𝑃𝑎. 

We suppose that speed of sound at  higher pressures than those of this research follows the same 

trend as shown in [27] for the density, since both thermodynamic properties, related by equations 

(28 or 29), were taken as fundamental source of experimental data to model correlations of EoS 

GERG-2008 [24]. 

 

Figure 4 Relative deviations Δc = (cGERG-2008-cexp)/cexp as function of pressure at Tnominal=273 K (), Tnominal=300 K (), 

Tnominal=325 K (). 
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5. Conclusions. 

The speed of sound through a quaternary synthetized biogas-like mixture of CH4+N2+CO2+CO has 

been measured with uncertainties better than 0.12 𝑚 · 𝑠−1 (< 350 · 10−6 · 𝑐), within the order of 

magnitude of other works: [2], [3] or [19]. These experimental data have been fitted to the acoustic 

virial equation, with three parameters, 𝐴0, 𝐴1 and 𝐴2 at the isotherm Tnominal=325K and with four 

parameters, 𝐴0, 𝐴1, 𝐴2 and 𝐴4, at the isotherms Tnominal=273K and Tnominal=300K, obtaining relative 

uncertainties between 0.1 𝑎𝑛𝑑 6 %.  

Then some important thermodynamic properties have been derived and compared with the 

calculations from the current reference equation of state for our mixture, GERG-2008 using 

RefProp 9.1: the adiabatic coefficient 𝛾𝑝𝑔 which deviates less than 0.6 %, the isochoric heat 

capacity as perfect gas Cv
pg

 which differs less than 2.5 % and the isobaric heat capacity as perfect 

gas Cp
pg

 which disagree less than 2 %. Second and third acoustic virial coefficients are discussed 

according the calculations using EoS AGA-8 and EoS Peng-Robinson, in addition to EoS GERG-

2008, obtaining disparate results that do not adequately represent the experimental data in any 

condition. 

The speed of sound behavior is closer to that modeled by EoS GERG-2008 at intermediate 

temperature and pressure (𝑃 = ~6 𝑀𝑃𝑎 𝑎𝑛𝑑 𝑇 = 300𝐾), but smoothly tends to disagree either at 

low temperature and high pressure (𝑃 = 12𝑀𝑃𝑎 and 𝑇 = 273𝐾) or at the reverse state, high 

temperature and low pressure (𝑃 = 1 𝑀𝑃𝑎 and 𝑇 = 325𝐾), with deviations up to 103𝑝𝑝𝑚. This is 

the same trend as described in the work [27] for the density of a similar mixture and it is expected 

that this difference begins to decrease with increasing pressure above our upper limit at 12MPa, like 

in [27]. Although, the measurements are within the limits of uncertainty claimed by the EoS GERG-

2008, which is up to 0.1 % [24], this research is intended to describe how well the model works, as 

well as provide accurate experimental data to improve it. 
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