

Universidad de Valladolid

Facultad de Ciencias

TRABAJO FIN DE GRADO

Grado en Química

Estudio espectroscópico de moléculas de interés en el medio interestelar: espectro de milimétricas de la *N*-Metilhidroxilamina.

Autor: Beatriz de Íscar de Rojas

Tutor: José Luis Alonso

ESTUDIO ESPECTROSCÓPICO DE MOLÉCULAS DE INTERÉS EN EL MEDIO INTERESTELAR: ESPECTRO DE MILIMÉTRICAS DE LA N- METILHIDROXILAMINA

GRUPO DE ESPECTROSCOPÍA MOLECULAR FACULTAD DE CIENCIAS- UNIVERSIDAD DE VALLADOLID

VALLADOLID

Universidad deValladolid

2015

<u>ÍNDICE</u>

1.	TERMINOLOGÍA	6
2.	ABSTRACT / RESUMEN	8
3.	INTRODUCCIÓN	10
3.1	Introducción al medio interestelar	10
3.2	Motivación del estudio de la <i>N</i> -metilhidroxilamina en el ISM	13
4.	OBJETIVOS Y PLAN DE TRABAJO	18
5.	FUNDAMENTOS TEÓRICOS	20
6.	PARTE EXPERIMENTAL	26
6.1	Espectrómetro de milimétricas	26
6.2	Síntesis de N-metilhidroxilamina	27
6.3	Procedimiento	28
7.	ANÁLISIS DEL ESPECTRO Y RESULTADOS	30
8.	CONCLUSIONES	34
9.	REFERENCIAS	36
10.	ANEXOS	38
10.1	Tabla de frecuencias	38
10.2	Listado de tablas	47
10.3	Listado de figuras	47

1. TERMINOLOGÍA

AABS: Assignment and Analysis of Broadband Spectra ALMA: Atacama Large Millimeter/submillimeter Array AMC: amplifier multiplier chains COMs: complex organic molecules DBU: 1,8-diazabiciclo[5.4.0]undec-7-eno IRAM: Institut de Radioastronomie Millimétrique **ISM:** interestelar medium (medio interestelar) J: número cuántico J *K*: número cuántico *K* **MW:** microondas **MMW:** milimétricas NRAO: National Radio Astronomy Observatory *p.f.*: Punto de fusión PROSPE: Programs for ROtational SPEctroscopy **QOD:** Quasi-Optical-Detector *rms:* root-mean-square

2. ABSTRACT / RESUMEN

Abstract

N-methylhydroxylamine has been considered a relevant species in the interstellar medium due to its composition. In order to facilitate its detection in the ISM, we have measured the millimeter wave spectrum from 170 to 360 GHz. More than 300 rotational transitions in the vibrational ground state have been assigned and measured. Analysis of the measured transitions provided very precise values of the spectroscopic constants necessary for the astrophysical search of *N*-methylhydroxylamine in the ISM.

Resumen

La *N*-metilhidroxilamina se ha considerado una molécula relevante para su identificación en el ISM debido a su composición. Con el fin de facilitar su detección, se ha medido el espectro de milimétricas en un rango de 170 a 360 GHz. En este trabajo se presenta el análisis del espectro de rotación puro de la *N*-metilhidroxilamina en el estado fundamental de vibración, que consta de más de 300 transiciones que se han asignado, a partir del cual se han obtenido valores muy precisos de las constantes espectroscópicas. Lo que permite predecir el espectro de la molécula y compararlo con los datos obtenidos con radiotelescopios. Esto facilita la posterior búsqueda de la *N*-metilhidroxilamina en varias regiones del ISM.

3. INTRODUCCIÓN

3.1 Introducción al medio interestelar

El estudio de la composición química del Universo es reciente en la historia de la astronomía. A principios del siglo XIX los astrónomos empezaron a hacer medidas que revelaban cuanta distancia había hasta estrellas lejanas. Newton observó luz del sol dispersada por un prisma y Fraunhofer, posteriormente, catalogó las longitudes de onda de cada línea oscura que observó (conocidas como líneas de Fraunhofer) obteniendo así el primer espectro que resolvía transiciones discretas (Figura 1). Llevó a cabo un experimento usando luz de una estrella cercana, Betelgeuse, y encontró que el patrón de líneas oscuras que había observado cambiaba significativamente. Fraunhofer concluyó que la mayoría de las características estaban de alguna manera relacionadas con la composición del objeto que estaba observando. De hecho, algunas de las líneas eran debidas a la atmósfera terrestre [1].

Figura 1. Espectro Solar de Fraunhofer.

A mediados del siglo XIX, Kirchoff y Bunsen se basaron en los estudios de Fraunhofer y estudiaron el color de la luz emitida por las llamas (al quemar metal) coincidiendo en algunos casos la longitud de onda con las líneas de Fraunhofer. Estos experimentos demostraron que las líneas de Fraunhofer eran una consecuencia directa de la composición atómica del Sol.

William Herschel fue el primero que sugirió que los "fluidos brillantes" que constituían las nebulosas, podrían estar formados por elementos comunes en la Tierra, en particular en la atmósfera. A mediados del siglo XIX, Huggins observó el espectro de ocho nebulosas

planetarias y las comparó con el espectro de átomos comunes en la atmósfera terrestre como oxígeno, hidrógeno y nitrógeno, logrando identificar una de las líneas observadas.

Estos conocimientos adquirieron mayor relevancia al comenzar el siglo XX gracias a la mecánica cuántica, la cual siempre ha estado estrechamente relacionada con la espectroscopía. También el desarrollo de la astrofísica está estrechamente relacionado, y a través del estudio de los espectros hemos podido conocer la riqueza del Universo a nuestro alrededor. A principios del siglo XX, la espectroscopía óptica era una ciencia floreciente y se estudiaban con detalle los espectros de las estrellas y las nebulosas. Entre 1937 y 1941 se detectaron las líneas ópticas de tres moléculas diatómicas, CH [2, 3], CN [4] y CH⁺ [5, 6]. En ese momento, la imagen del Universo era la siguiente: el espacio entre las estrellas (medio interestelar) no estaba vacío, sino que contenía partículas de polvo, algunos átomos y unas pocas moléculas especialmente sencillas.

El desarrollo de la radioastronomía hacia 1950 fue decisiva para el conocimiento de la química interestelar. En 1963, Weinreb y sus colaboradores detectaron el espectro de OH [7]. Cinco años después, un grupo de la Universidad de California dirigido por Charles Townes construyó su propio receptor y radiotelescopio, y detectó agua (H₂O) [8] y amoníaco (NH₃) [9]. La detección de estas moléculas precipitó la búsqueda incesante de nuevos compuestos y una avalancha de descubrimientos.

Gran parte de la información sobre los objetos astronómicos externos al sistema solar (estrellas, planetas, galaxias) proviene del estudio de la radiación electromagnética. La radiación llega a la Tierra en función a su longitud de onda y es detectada con radiotelescopios. Una vez detectadas las frecuencias en el medio interestelar, la identificación de especies concretas requiere una comparación directa de las frecuencias características de emisión o absorción de las líneas observadas en el ISM con las medidas espectroscópicas de especies conocidas en un experimento controlado en el laboratorio. A partir de los estudios experimentales se obtendrán parámetros, como son las constantes de rotación, con los que se podrán interpretar los espectros [10, 11, 12].

En los últimos 30 años, el avance en los instrumentos utilizados ha permitido nuevas vías de investigación y, como consecuencia, más de 190 moléculas se han detectado en el ISM. La lista de las moléculas detectadas en el ISM hasta el momento se encuentra en la página actualizada que mantiene el NRAO [13].

Algunos de los observatorios internacionales más importantes relacionados actualmente con la radioastronomía son:

- IRAM: Instituto de Radioastronomía Milimétrica [14]

Es un instituto de investigación hispano-franco-alemán especializado en radioastronomía milimétrica (Figura 2). Con sede en Grenoble (Francia), que dispone de dos observatorios, situados en Pico de Veleta (Granada, España) y en Plateau de Bure (Francia).

Figura 2. Telescopio IRAM de 30m situado en el pico Veleta.

- ALMA: Gran Interferómetro de ondas milimétricas de Atacama [15]

Fruto de una colaboración entre muchos países europeos, EEUU y Canadá, ALMA es un conjunto de 64 antenas de alta precisión que se encuentra a 5.000 m de altura en la llanura de Chajnantor, en el desierto de Atacama (Chile), como se muestra en la Figura 3.

Figura 3. Antenas ALMA.

3.2 Motivación del estudio de la *N*-metilhidroxilamina en el ISM

La detección de moléculas es importante para poder estudiar las reacciones químicas que las producen y determinar la riqueza química del medio interestelar. En las nubes moleculares se van a formar nuevas estrellas, y por tanto nuevos planetas, gracias a los granos de polvo que crecen a partir de moléculas. Éstas se condensan sobre esos granos formando agregados, los cuales una vez formados van a constituir núcleos de condensación para el resto de especies. Va a tener gran importancia el estudio de los complejos orgánicos moleculares (COMs) debido a su relación con la química de la vida.

Una de las técnicas más importantes para estudiar las regiones de formación de estrellas y determinar moléculas interestelares es la astronomía de milimétricas y submilimétricas, que analiza el espectro de rotación de la molécula en fase gas obteniendo gran cantidad de información sobre estas especies. Estos estudios se llevan a cabo por distintos observatorios que trabajan en este campo (IRAM, ALMA, NRAO...) los cuales han conseguido detectar miles de líneas en los espectros conforme se han mejorado los instrumentos y la sensibilidad de los telescopios. Por ejemplo, ALMA proporciona la posibilidad de estudiar zonas de nubes moleculares que han sido inaccesibles gracias a su resolución angular y sensibilidad, permitiendo el estudio de la composición del gas cercano a las estrellas en formación además del estudio detallado de la distribución espacial y de las regiones de formación de COMs. Una de las regiones más estudiadas es Orion KL, que es la nube molecular más próxima a La Tierra (≈414 pc). Su complejidad química resulta de la interacción de las estrellas recién formadas con su entorno se puede observar en la Figura 4, donde se muestra una parte de 80 GHz del espectro obtenido a través del telescopio IRAM 30m [16]. En el registro completo desde 80 hasta 280 GHz los astrofísicos observaron más de 15000 líneas, de las cuales más de 8000 no estaban identificadas. Posteriormente, 4000 líneas aproximadamente se han identificado como señales correspondientes a especies isotópicas y estados excitados de vibración de moléculas abundantes como etilcianuro (CH₃CH₂CN) [17] o vinilcianuro (CH₂CHCN) [18]. Sin embargo, gran cantidad de líneas continúa sin identificarse como se puede observar en el fragmento de 1 GHz del espectro, Figura 4 (e), donde dichas líneas están etiquetadas con "U". Para conocer las reacciones químicas que ocurren en Orion KL hay que identificar esas líneas, por eso se continúa con la búsqueda de posibles moléculas. GEM ha llevado a cabo varios estudios y, en algunos casos, la detección de moléculas interestelares como pueden ser etilcianuro (CH₃CH₂CN), etilmercaptano (CH₃CH₂SH) [19], metilvinileter (CH₃OCH=CH₂) [20], fenol (C₆H₅OH) [21], propenal (CH₂CHCHO) [22], vinilacetato (CH₃C=OOCH=CH₂) [23], vinilcianuro (CH₂CHCN). En este trabajo se va a estudiar una molécula sencilla, *N*-metilhidroxilamina (CH₃NHOH), que es un isómero de metoxiamina (CH₃ONH₂) o aminometanol (NH₂CH₂OH), moléculas posiblemente abundantes en regiones de formación de estrellas [24]. Por eso la *N*-metilhidroxilamina es una potencial candidata para llevar a cabo su búsqueda en el ISM. Su posible formación se puede proponer a través de las siguientes reacciones

$$NH + CH_3 \rightarrow CH_3NH$$
 (1)
 $CH_3NH + OH \rightarrow CH_3NHOH$ (2)

donde NH, CH₃ y OH son radicales que se producen después de la fotodisociación de las moléculas NH₃, CH₃OH y H₂O, respectivamente, presentes en los hielos que cubren los granos de polvo. El calentamiento de esos granos durante la formación de nuevas estrellas da lugar a las reacciones entre esos radicales y, como consecuencia, la formación de nuevas moléculas como la *N*-metilhidroxilamina. Si la temperatura continúa aumentando, las moléculas se evaporan y se pueden estudiar usando la técnica de astronomía en el rango de milimétricas.

Figura 4. (a) Fragmento del espectro de 200 a 280 GHz de Orion KL obtenido con el telescopio IRAM 30m. (b) y (c) son ampliaciones del fragmento anterior. (d) Sección de 1 GHz del espectro con la asignación de las moléculas detectadas. (e) Ampliación de la sección *d*, donde se pueden ver las líneas aún desconocidas, etiquetadas como "U". Este espectro se puede encontrar en Tercero et. Al. [16].

El espectro de la *N*-metilhidroxilamina ha sido estudiado en la región de microondas de 18 a 39 GHz por Sung y Harmony [25]. Sin embargo, esos datos no son suficientes para buscar la molécula en el rango de milimétricas debido a la imprecisión de las frecuencias predichas. Por lo que son necesarios nuevos datos para poder llevar a cabo una identificación de la *N*-metilhidroxilamina. Se ha llevado a cabo el estudio del espectro de milimétricas de la *N*-metilhidroxilamina en el laboratorio en la región que corresponde con la ventana de observación en el ISM.

4. OBJETIVOS Y PLAN DE TRABAJO

Objetivo

El objetivo de este trabajo es llevar a cabo el estudio espectroscópico de milimétricas de la *N*-metilhidroxilamina, molécula que tiene relevancia en el medio interestelar. El fin del estudio es obtener constantes espectroscópicas de gran precisión que permitan predecir el espectro de esta molécula y compararlo con los datos obtenidos con los radiotelescopios, permitiendo la posterior identificación de la *N*-metilhidroxilamina en el ISM.

Plan de Trabajo

El plan de trabajo que se ha seguido ha sido la búsqueda bibliográfica, familiarización con las técnicas de milimétricas y con el ISM y el posterior estudio experimental de la molécula elegida. Este estudio experimental consta de una síntesis previa de la muestra y del estudio del espectro obtenido, realizando la asignación de transiciones observadas, el ajuste y la predicción de éstas. Finalmente se ha procedido a la realización de la memoria.

5. FUNDAMENTOS TEÓRICOS

El espectro electromagnético tiene diferentes regiones en las que la radiación posee distintos valores energéticos. Esto se debe a que en función de la zona en que se absorba energía, habrá distintos tipos de transiciones: las transiciones de vibración corresponden a la zona de infrarrojo (IR), las electrónicas al visible (VIS) o ultravioleta (UV) y las de rotación corresponden a la zona de microondas (MW), como se observa en la Figura 5.

Figura 5. Regiones del espectro electromagnético.

La zona de MW se puede dividir en distintas regiones: centimétricas, milimétricas y submilimétricas (Figura 6).

Figura 6. Regiones de microondas.

En este trabajo se va a estudiar el espectro de rotación de la N-metilhidroxilamina en la región de milimétricas. La molécula se va a estudiar en fase gas para que pueda rotar con total libertad, teniendo el origen del sistema de ejes principales situado en el centro de masas (Figura 7).

Figura 7. N-metilhidroxilamina en ejes principales.

Las moléculas se pueden clasificar atendiendo a los valores de los momentos de inercia, en el caso de la *N*-metilhidroxilamina se trata de un trompo asimétrico, el cual contiene un eje de simetría C_n siendo n<2, con los tres momentos de inercia distintos, $I_A \neq I_B \neq I_C$ [26, 27]. Los cálculos cuantitativos de las energías correspondientes a la rotación de este tipo de molécula requieren un análisis cuántico del sistema. De forma que el Hamiltoniano que va a describir la rotación de una molécula asimétrica rígida es

$$H = \frac{J_a^2}{2I_A} + \frac{J_b^2}{2I_B} + \frac{J_c^2}{2I_C}$$
(3)

donde $A = \frac{\hbar_a^2}{2I_A}$, $B = \frac{\hbar_b^2}{2I_B}$ y $C = \frac{\hbar_c^2}{2I_C}$ son las constantes de rotación. La información obtenida mediante las constantes de rotación es útil debido a que a través del momento de inercia se pueden conocer propiedades estructurales de la molécula. En el trompo asimétrico se tiene que cumplir $I_A \leq I_B \leq I_C$, lo que implica $A \geq B \geq C$. Los términos J_a , J_b y J_c en la ecuación (3) son los operadores de las componentes del momento angular en los ejes principales. La medida de la asimetría del trompo asimétrico se puede describir en términos del parámetro κ ,

$$\kappa = \frac{2B - A - C}{A - C} \qquad (4)$$

Sus valores se encuentran entre $\kappa = -1$ y $\kappa = +1$, donde estos corresponden con los trompos simétricos prolate (A > B = C) y oblate (A = B > C), respectivamente. La mayor asimetría se alcanza cuando $\kappa = 0$. Con el fin de etiquetar los niveles de energía de un trompo asimétrico se utiliza un diagrama de correlación (Figura 8) que relaciona los trompos prolate y oblate.

Figura 8. Diagrama de correlación entre trompos prolate y oblate utilizando el etiquetado para trompos asimétricos.

Los niveles de energía se etiquetan utilizando los números cuánticos *J*, K_a y K_c , donde *J* se refiere al operador del momento angular total, de forma que $J^2 = J_a^2 + J_b^2 + J_c^2$, y K_a y K_c son los números cuánticos correspondientes a la proyección del momento angular total en el eje *a* y eje *c*, respectivamente, siendo la suma de éstos igual a *J* o *J*+1.

La molécula no es completamente rígida ya que durante la rotación se produce una fuerza de distorsión centrífuga que se incrementa a medida que la energía de rotación es mayor. Esta fuerza modifica la distancia interatómica y los ángulos de enlace. Por eso se propone el modelo semirrígido que tiene en cuenta los efectos de la distorsión centrífuga. Para los trompos asimétricos se usa el Hamiltoniano semirrígido de rotación de Watson [28]. En concreto, en este estudio se ha utilizado un Hamiltoniano de sexto orden:

$$H_{rot} = AJ_a^2 + BJ_b^2 + CJ_c^2 - \Delta_J J^4 - \Delta_{JK} J^2 J_a^2 - \Delta_K J_a^4 - \frac{1}{2} \left[\delta_J J^2 + \delta_K J_a^2, J_+^2 + J_-^2 \right]_+ + \Phi_J J^6 + \Phi_{JK} J^4 J_a^2 + \Phi_{KJ} J^2 J_a^4 + \Phi_K J_a^6 + \frac{1}{2} \left[\phi_J J^4 + \phi_{JK} J^2 J_a^2 + \phi_K J_a^4, J_+^2 + J_-^2 \right]_+$$
(5)

donde Δ_J , Δ_{JK} , Δ_K , δ_J , δ_K son constantes de distorsión centrífuga cuárticas, y Φ_J , Φ_{JK} , Φ_{KJ} , Φ_K , ϕ_J , ϕ_{JK} , ϕ_K son constantes de distorsión centrífuga séxticas. También aparece el término J_{\pm} que corresponde con $J_{\pm} = J_b \pm i J_c$. Los términos que se encuentran entre los corchetes en la ecuación corresponden con un anticonmutador, de forma que $[A, B]_+ = AB + BA$.

Para que se pueda observar el espectro de rotación la molécula tiene que presentar un momento dipolar permanente. En el caso de los trompos asimétricos pueden darse tres componentes de momento dipolar distintos en los ejes principales, μ_a , μ_b y μ_c (Figura 9 (a)). Según las componentes no nulas del momento dipolar se pueden observar en los espectros varios tipos de transición:

- Transiciones de tipo *a*: si $\mu_a \neq 0$. Estas transiciones van a obedecer unas reglas de selección

ΔK_a	0, (±2, ±4)	Par
ΔK_c	$\pm 1(\pm 3, \pm 5)$	Impar

- Transiciones de tipo *b*: si $\mu_b \neq 0$

ΔK_a	$\pm 1(\pm 3, \pm 5)$	Impar
ΔK_c	$\pm 1(\pm 3, \pm 5)$	Impar

- Transiciones de tipo c: si $\mu_c \neq 0$

	ΔK_a	$\pm 1(\pm 3, \pm 5)$	Impar
ĺ	ΔK_c	0, (±2, ±4)	Par

Estas transiciones se muestran gráficamente en la Figura 9 (b). Para moléculas con poca simetría, los tres tipos se pueden dar a la vez.

Figura 9. (a) Componentes del momento dipolar en los ejes principales de la molécula. (b) Transiciones de tipo *a*, de tipo *b* y de tipo *c*.

Para los trompos asimétricos las reglas de selección para el número cuántico J son $\Delta J = 0, \pm 1$. Así se pueden definir las distintas ramas presentes en el espectro, de forma que $\Delta J = +1$ implica ramas R, $\Delta J = 0$ implica ramas Q y $\Delta J = -1$ implica ramas P.

6. PARTE EXPERIMENTAL

6.1 Espectrómetro de milimétricas

Se va a utilizar el espectrómetro de milimétricas de la Uva que abarca desde 50 hasta 1080 GHz (Figura 10). La información detallada sobre el instrumental utilizado en este espectrómetro se puede encontrar en Daly et. al. [20].

El esquema del espectrómetro se encuentra en la Figura 11, y cuenta con una celda de vidrio (Pyrex) donde se encuentra la muestra y a través de la cual pasa la radiación. El camino óptico es de 3.6 m. La fuente de microondas (1) es un generador de señal de frecuencia modulada (Agilent E8257D) que trabaja desde 250 kHz hasta 20 GHz, conectado a un patrón de Rubidio (2). Se han usado espejos parabólicos metálicos (Edmund Optics, Inc) como elementos ópticos de enfoque (4). Se ha utilizado inicialmente un sextuplicador activo AMC WR9.0 de VDI (con una potencia media de 25 mW) para producir una entrada de frecuencia adecuada para multiplicadores activos y pasivos adicionales (VDI, Inc) conectados por una guía de ondas a su salida. Los dobladores activos WR4.3 y WR2.2 están conectados a un sesgo de 12V implementado directamente en el WR9.0, mientras que los triplicadores pasivos WR2.8, WR1.5, y WR1.0 no requieren sesgo. Usando combinaciones de estos multiplicadores, las frecuencias de 170 a 240 GHz (WR4.3), de 240 a 360 GHz (WR2.8), de 340 a 480 GHz (WR4.3 y WR2.2), de 510 a 720 GHz (WR4.3 y WR1.5), y de 720 a 1080 GHz (WR2.8 y WR1.0) se alcanzan con frecuencias promedio de 3 mW, 0.9 mW, 0.2 mW. 50 µW y 9 µW, respectivamente. Como elemento de detección (5) se usa un Quasi-Optical-Detector (QOD) de VDI, Inc. La señal detectada de la fuente de frecuencia modulada se amplifica (6) y envía a un amplificador lock-in (SR510, Stanford Research Systems, Inc.) donde se aplica una detección 2f, siendo f la frecuencia de modulación, para incrementar la sensibilidad de las medidas (7). El detector, preamplificador y amplificador lock-in trabajan con modulación FM (10.2 kHz). La profundidad de modulación se ajusta en función de la anchura de la señal. La señal analógica detectada se convierte en digital (A/D) y se guarda en el ordenador (8). Las tareas de control de los instrumentos y la visualización del espectro se hacen por medio de las correspondientes conexiones GPIB y el programa LabView.

Figura 10. Espectrómetro utilizado en el experimento. En la imagen se observa la combinación de un amplificador-multiplicador AMC WR9.0 y de multiplicadores adicionales.

Figura 11. Esquema del espectrómetro de milimétricas de la UVa.

6.2 Síntesis de N-metilhidroxilamina

La *N*-metilhidroxilamina se ha generado llevando a cabo la reacción del líquido 1,8diazabiciclo[5.4.0]undec-7-eno "DBU" (Sigma Aldrich) añadido en exceso (1.5 equiv.) sobre el sólido *N*-Metilhidroxilamina hidrocloruro (Sigma Aldrich) según la reacción (6).

La reacción se ha realizado en una línea de vacío (con una presión de aproximadamente 0.3 mbar). El producto de reacción es un sólido blanco, *N*-metilhidroxilamina (p.f. 38.5 °C), que ha sido atrapado en un tubo en forma de U, enfriado con nitrógeno líquido (Figura 12). Una vez ha finalizado la reacción, el tubo en forma de U se conecta directamente al espectrómetro. La muestra se usa sin ninguna purificación.

Figura 12. Esquema de la línea de vacío utilizada para llevar a cabo la síntesis de la muestra.

6.3 Procedimiento.

Una vez introducida la muestra en el espectrómetro y ajustadas las condiciones experimentales, como la presión cuyo valor es de aproximadamente 20µbar, se inicia el experimento y se empiezan a recoger señales. El espectro de rotación se ha grabado en secciones de 1 GHz en ambas direcciones a temperatura ambiente. Se han alcanzado frecuencias de 170 a 240 GHz y 240 a 360 GHz, usando dos combinaciones distintas de multiplicadores que se encuentran descritas en el apartado 6.1. Posteriormente se han conectado los dos tramos de espectro para obtener un espectro continuo desde 170 hasta 360 GHz. La precisión de la frecuencia se ha estimado en 50 kHz.

7. ANÁLISIS DEL ESPECTRO Y RESULTADOS

La *N*-metilhidroxilamina es un trompo asimétrico prolate, con el parámetro de asimetría $\kappa = -0.917$ y cuyas propiedades están descritas por el grupo puntual C₁. La geometría de la molécula se muestra en la Figura 7.

Los componentes del momento dipolar en el eje *a* y el eje *b*, μ_a y μ_b , de la *N*-metilhidroxilamina no son nulas, $|\mu_a|=1.611D$ y $|\mu_b|=0.366$ D, mientras que la componente en el eje c, μ_c , tiene un valor próximo a cero. Esta diferencia existente entre los valores del momento dipolar indica que en el espectro van a ser más intensas las transiciones de tipo *a* que las de tipo *b*, ya que la intensidad está relacionada proporcionalmente con el cuadrado del valor del momento dipolar.

La primera predicción del espectro se ha llevado a cabo a partir de las constantes obtenidas por Sung y Harmony [25]. A partir de los datos de menor frecuencia se han realizado las asignaciones de las transiciones del estado fundamental de rotación. En primer lugar se han buscado las transiciones de tipo *a* para la rama *R* que dan lugar a las líneas más intensas. Estas transiciones son fáciles de localizar en el espectro de rotación ya que existen agrupaciones que se sitúan aproximadamente en frecuencias dadas por (B + C)(J'' + 1). Las agrupaciones próximas están separadas con un valor correspondiente a B + C, como se muestra en la Figura 13 (a). Cada agrupación corresponde a una determinada transición $J' \leftarrow J'' (\Delta J = +1)$ compuesta por varias transiciones $K'_a \leftarrow K''_a$ individuales ($\Delta K = 0$). La anchura de cada agrupación es cercana al valor dado por (B - C)(J'' + 1). En la Figura 13 (b) se puede observar parte de la agrupación para $J' \leftarrow J'' = 12 \leftarrow 11$. Una vez asignadas las series de transiciones de tipo *a* para la rama *R*, se asignan las series de transiciones de tipo *b* para la rama *Q*.

Una vez asignados los nuevos datos, estos se incorporan a las transiciones de baja frecuencia para obtener un conjunto de datos global formado por un total de 315 transiciones que involucran los números cuánticos $J'' y K_a''$ hasta valores de 30 y 9 respectivamente. Para el análisis de estas transiciones se ha utilizado el Hamiltoniano para trompos asimétricos en *A*reducción de Watson en representación I^r (ecuación 5). El conjunto de datos obtenido permite la determinación de las constantes de rotación, las constantes cuárticas y una constante séxtica de distorsión centrífuga. Estas constantes espectroscópicas resultantes del ajuste final se recogen en la Tabla 1 y la lista completa de las transiciones de rotación se recoge en la Tabla 2 que se encuentra en los ANEXOS en el apartado 10.1. La visualización, el procesamiento y las asignaciones del espectro de rotación se han llevado a cabo usando los programas SVIEW y ASPC incluidos en el paquete AABS. Mientras que la predicción y el ajuste del espectro se han llevado a cabo con el paquete de H.M.Pickett, que incluye los programas SPCAT y SPFIT. La información sobre estos programas se encuentra en la página web del PROSPE [29].

Constante	Unidad	Valor
А	MHz	38930.7438 (16)
В	MHz	9939.61297 (39)
С	MHz	8690.69826 (35)
Δ_{J}	kHz	9.96221 (47)
$\Delta_{\rm JK}$	kHz	-30.8370 (26)
Δ_{K}	kHz	378.590 (31)
δյ	kHz	1.95948 (25)
δк	kHz	4.727 (14)
$\Phi_{\rm KJ}$	Hz	-2.303 (12)
J'' _{max}		30
K''_{max}		9
Nº líneas		315
$\sigma_{\rm fit}{}^a$	kHz	30

Tabla 1. Constantes espectroscópicas de la *N*-metilhidroxilamina (*A*-reduction, *I*^r-representation) para el estado fundamental. *Los números entre paréntesis son la incertidumbre existente en los últimos dígitos decimales. ^a Desviación rms del ajuste.

Figura 13. En la parte superior (*a*) se muestra el espectro completo de la molécula, que abarca desde 170 GHz hasta 360 GHz. En la parte inferior (*b*) se puede observar una ampliación del espectro en la que observamos transiciones con J''=11 pertenecientes al estado fundamental. Otras líneas presentes en el espectro posiblemente pertenezcan a estados excitados.

El conjunto de constantes obtenido en este trabajo (Tabla 1) se puede usar para predecir el espectro de rotación sintético en las condiciones presentes en las nubes moleculares. El espectro predicho de *N*-metilhidroxilamina en la temperatura de 150 K (temperatura típica en una de las regiones de Orion KL) se muestra en la Figura 14. Se observa que los datos obtenidos en el laboratorio se pueden usar para la comparación directa con los datos obtenidos con IRAM 30m

32

y ALMA, ya que el rango medido en el laboratorio cubre parte del rango de frecuencias de ambos instrumentos. A partir de datos directos, los resultados de este trabajo permiten predecir con bastante precisión el espectro en un rango más extenso que el estudiado. Estos datos facilitan significativamente la búsqueda futura de la *N*-metilhidroxilamina en el ISM. Con ese fin, los datos obtenidos se van a enviar al equipo de investigación de astrofísica molecular liderado por J. Cernicharo (Madrid) para que puedan realizar la búsqueda de la *N*-metilhidroxilamina en el ISM.

Figura 14. Espectro de rotación predicho de *N*-metilhidroxilamina en la temperatura de 150 K.

8. CONCLUSIONES

- I. El espectro de alta resolución de la *N*-metilhidroxilamina se ha estudiado desde 170 GHz hasta 360 GHz.
- II. Más de 300 transiciones del estado fundamental han sido asignadas.
- III. El conjunto de constantes espectroscópicas obtenidas reproduce el espectro de rotación de la *N*-metilhidroxilamina con gran precisión experimental.
- IV. La alta precisión de las constantes espectroscópicas obtenidas permite la predicción del espectro sintético de la molécula en varias regiones del ISM.
- V. Los datos obtenidos se van a enviar al equipo de investigación de astrofísica molecular para llevar a cabo la búsqueda de la molécula en el ISM.

9. REFERENCIAS

- [1] J. Tennyson, Astronomical Spectroscopy (2005).
- [2] T. Jr. Dunham, W.S. Adams, American Astronomical Society 9 (1937) 5.
- [3] T. Jr. Dunham, W.S. Adams, American Astronomical Society 49 (1937) 26.
- [4] P. Swings, L. Rosenfeld, The Astrophysical Journal 86 (1937) 86.
- [5] A. McKellar, Astronomical Society of the Pacific 52 (1941) 187.
- [6] A. McKellar, Astronomical Society of the Pacific 52 (1941) 312.
- [7] S. Weinreb, A.H. Barret, M.L. Meeks, J.C. Henry, *Nature* 200 (1963) 829.
- [8] A.C. Cheung, D.M. Rank, C.H. Townes, D.D. Thornton, W.J. Welch, *Nature* 221 (1969) 626-628.
- [9] A.C. Cheung, D.M. Rank, C.H. Townes, D.D. Thornton, W.J. Welch, *Physical Review Letters* 21 (1968) 1701.
- [10] Instituto Geográfico Gobierno de España, http://www.fomento.gob.es/mfom/lang_castellano/direcciones_generales/instituto_geo grafico/astronomia/investigacion/astronomia/astroquimica.htm (2015).
- [11] Sociedad Española de Astronomía, *www.sea-astronomia.es*.
- [12] J. Cernicharo, Moléculas en el medio interestelar y Circunestelar: procesos químicos (1999).
- [13] NRAO, *http://www.cv.nrao.edu/~awootten/allmols.html* (2015).
- [14] IRAM, *http://www.iram-institute.org/* (2015).
- [15] ALMA, http://www.eso.org/sci/facilities/alma.html (2015).
- [16] B. Tercero, J. Cernicharo, J.R. Pardo, J.R. Goicoechea, *A&A*, 517 (2010) A96.
- [17] A.M. Daly, C. Bermúdez, A. López, B. Tercero, J. C. Pearson, N. Marcelino,J.L. Alonso, J. Cernicharo, *The Astrophysical Journal* 768 (2013) 81.
- [18] A. López, B. Tercero, Z. Kisiel, A.M. Daly, C. Bermúdez, H. Calcutt, N. Marcelino, S. Viti, B.J. Drouin, I.R. Medvedev, C.F. Neese, L.Pszczółkowski, J.L. Alonso, J.Cernicharo, A&A 572 (2014) A44.
- [19] L. Kolesniková, B. Tercero, J. Cernicharo, J.L. Alonso, A.M. Daly, B.P. Gordon,
 S.T. Shipman, *The Astrophysical Journal Letters* 784 (2014) L7.
- [20] A.M. Daly, L. Kolesniková, S.Mata, J.L. Alonso, *Journal of Molecular Spectroscopy* 306 (2014) 11-18.
- [21] L. Kolesniková, A.M. Daly, J.L. Alonso, B. Tercero, J. Cernicharo, Journal of Molecular Spectroscopy 289 (2013) 13-20.

- [22] A.M. Daly, C. Bermúdez, L. Kolesniková, J.L. Alonso, *The Astrophysical Journal Supplement Series* 218 (2015) 30.
- [23] L. Kolesniková, I. Peña, J.L. Alonso, J. Cernicharo, B. Tercero, I. Kleiner A&A 577 (2015) A91.
- [24] R.T. Garrod, S.L.W. Weaver, E. Herbst, The Astrophysical Journal 682 (2008) 283-302
- [25] E. Sung, M.D. Harmony, Journal of Molecular Spectroscopy 74(1979) 228-241.
- [26] P. F. Bernath, Spectra of Atoms and Molecules (2005).
- [27] J.M. Hollas, Modern Spectroscopy (2004).
- [28] W.Gordy and R.L. Cook, Microwave Molecular Spectroscopy (1970)
- [29] PROSPE, http://www.ifpan.edu.pl/~kisiel/prospe.htm (2015)

10. ANEXOS

10.1 Tabla de frecuencias

Tabla 2. Conjunto de frecuencias obtenidas para cada transición medida. Esta tabla incluye toda la información obtenida en el ajuste sobre la transición, como pueden ser los números cuánticos, frecuencia, tipo de transición y reglas de selección para K_a y K_c .

							Frecuencia		Rlends		
			Tra	nsicion	es		observada	o-c (MHz)	Dienus.	Tipo trans	Reglas
							(MHz)		0-0	uuns.	selec.
	J'	Ka'	Kc'	J"	Ka"	Kc"					
1	11	5	6	11	4	7	265632.2976	-0.0038	0.0178	bQ	1,-1
2	12	5	7	12	4	8	265311.2886	-0.0249	0.0178		
3	13	5	8	13	4	9	264880.7598	-0.0270	0.0131		
4	14	5	9	14	4	10	264309.1576	-0.0118	0.0131		
5	15	5	10	15	4	11	263556.4789	-0.0407	0.0249		
6	16	5	11	16	4	12	262573.0215	-0.0079	0.0249		
7	17	5	12	17	4	13	261297.9915	0.0233	-0.0093		
8	18	5	13	18	4	14	259659.6013	0.0241	-0.0093		
9	19	5	14	19	4	15	257576.6815	0.0235	0.0441		
									0.0441		
10	11	6	5	11	5	6	325131.3323	0.0223	-0.0285	bQ	1,-1
11	12	6	6	12	5	7	324989.0004	0.0280	-0.0285		
12	13	6	7	13	5	8	324805.2500	0.0202	0.0153		
13	14	6	8	14	5	9	324571.9703	-0.0159	0.0153		
14	15	6	9	15	5	10	324279.7380	-0.0203	-0.0005		
15	16	6	10	16	5	11	323917.2714	0.0126	-0.0005		
16	17	6	11	17	5	12	323470.8606	0.0203	0.0669		
17	18	6	12	18	5	13	322923.8233	0.0465	0.0669		
18	19	6	13	19	5	14	322255.3749	0.0123	-0.0084		
19	20	6	14	20	5	15	321439.8593	0.0290	-0.0084		
20	21	6	15	21	5	16	320445.1629	0.0523	-0.0213		
21	22	6	16	22	5	17	319231.5665	0.0593	-0.0213		
22	23	6	17	23	5	18	317750.4485	0.0144	-0.0033		
23	24	6	18	24	5	19	315943.5216	0.0520	-0.0033		
24	25	6	19	25	5	20	313742.1678	0.0375	0.0265		
25	26	6	20	26	5	21	311068.9402	0.0045	0.0265		
26	27	6	21	27	5	22	307840.4668	-0.0149	0.0169		
27	28	6	22	28	5	23	303973.1791	-0.0932	0.0169		
									-0.0116		
28	15	4	12	15	3	13	207418.4549	-0.0034	-0.0116	bQ	1,-1
29	16	4	13	16	3	14	208155.0264	0.0775	-0.0034		
	1										

30	17	4	14	17	3	15	209225.1549	0.0486	-0.0034	
31	18	4	15	18	3	16	210691.6018	0.0252	0.0047	
32	19	4	16	19	3	17	212615.0040	0.0147	0.0047	
33	20	4	17	20	3	18	215051.8952	0.0606	0.0452	
34	21	4	18	21	3	19	218052.5986	0.0517	0.0452	
									-0.0460	
35	11	5	7	11	4	8	265711.8478	-0.0441	-0.0460	bQ
36	12	5	8	12	4	9	265468.8473	-0.0596	0.0287	
37	13	5	9	13	4	10	265174.8844	-0.0408	0.0287	
38	14	5	10	14	4	11	264831.1265	-0.0252	0.0440	
39	15	5	11	15	4	12	264443.0622	-0.0295	0.0440	
40	16	5	12	16	4	13	264021.6013	0.0050	0.0475	
41	17	5	13	17	4	14	263583.8115	0.0020	0.0475	
42	18	5	14	18	4	15	263153.8957	-0.0213	0.0281	
43	19	5	15	19	4	16	262763.5738	-0.0180	0.0281	
44	20	5	16	20	4	17	262452.0411	-0.0151	0.0138	
45	21	5	17	21	4	18	262265.6787	-0.0272	0.0138	
46	22	5	18	22	4	19	262257.2647	-0.0145	0.0312	
47	23	5	19	23	4	20	262484.5917	-0.0073	0.0312	
48	24	5	20	24	4	21	263008.9268	-0.0259	0.0050	
49	25	5	21	25	4	22	263893.1690	-0.0380	0.0050	
50	26	5	22	26	4	23	265199.7512	-0.0187	0.0304	
51	27	5	23	27	4	24	266988.4965	-0.0247	0.0304	
52	28	5	24	28	4	25	269314.8056	-0.0175	0.0507	
53	29	5	25	29	4	26	272227.7191	0.0120	0.0507	
54	30	5	26	30	4	27	275768.3562	0.0402	-0.0018	
									-0.0018	
55	11	6	6	11	5	7	325132.8072	0.0070	0.0029	bQ
56	12	6	7	12	5	8	324992.6042	0.0337	0.0029	
57	13	6	8	13	5	9	324813.2689	-0.0023	-0.0034	
58	14	6	9	14	5	10	324588.8374	0.0061	-0.0034	
59	15	6	10	15	5	11	324313.1283	-0.0190	0.0487	
60	16	6	11	16	5	12	323980.3310	-0.0166	0.0487	
61	17	6	12	17	5	13	323585.1344	-0.0110	0.0247	
62	18	6	13	18	5	14	323123.3344	0.0342	0.0247	
63	19	6	14	19	5	15	322592.1946	0.0079	0.0526	
64	20	6	15	20	5	16	321991.5073	0.0313	0.0526	
65	21	6	16	21	5	17	321323.9274	0.0197	0.0089	
66	22	6	17	22	5	18	320596.1480	0.0234	0.0089	
67	23	6	18	23	5	19	319819.5378	0.0139	0.0464	
	•									

1,-1

1,-1

68	24	6	19	24	5	20	319011.0831	0.0243	0.0464		
69	25	6	20	25	5	21	318193.9126	-0.0055	-0.0109		
70	26	6	21	26	5	22	317397.9654	-0.0381	-0.0109		
71	27	6	22	27	5	23	316660.1199	-0.0081	0.0214		
72	28	6	23	28	5	24	316023.8024	-0.0748	0.0214		
73	29	6	24	29	5	25	315539.0332	-0.0588	-0.0170		
74	30	6	25	30	5	26	315260.8797	-0.0884	-0.0170		
									-0.0103		
75	11	0	11	10	1	10	189622.1782	0.0233	-0.0103	bR	-1,1
76	12	0	12	11	1	11	208747.6470	-0.0063	0.0312		
77	13	0	13	12	1	12	227533.0428	-0.0086	0.0312		
78	14	0	14	13	1	13	246018.9533	-0.0149	0.0478		
79	15	0	15	14	1	14	264251.9556	0.0193	0.0478		
80	16	0	16	15	1	15	282277.9416	-0.0054	0.0700		
81	17	0	17	16	1	16	300138.7207	0.0115	0.0700		
82	18	0	18	17	1	17	317870.0118	0.0441	0.0069		
83	19	0	19	18	1	18	335501.2151	0.0530	0.0069		
84	20	0	20	19	1	19	353055.8650	0.0314	-0.0013		
									-0.0013		
85	16	1	15	15	2	14	269517.2215	0.0530	0.0001	bR	-1,1
									0.0001		
86	17	1	16	16	2	15	291754.9492	-0.0057	-0.0037	bR	-1,1
87	18	1	17	17	2	16	313378.7489	-0.0496	-0.0037		
88	19	1	18	18	2	17	334375.8372	-0.0150	-0.0650		
89	20	1	19	19	2	18	354768.5148	-0.0136	-0.0650		
									-0.0347		
90	10	0	10	9	0	9	180916.0373	-0.0080	-0.0347	aR	0,1
91	11	0	11	10	0	10	198225.0941	-0.0062			
92	12	0	12	11	0	11	215485.2440	-0.0330			
93	13	0	13	12	0	12	232726.0709	-0.0321			
94	14	0	14	13	0	13	249967.0046	-0.0073			
95	15	0	15	14	0	14	267218.6268	0.0043			
96	16	0	16	15	0	15	284485.2084	0.0043			
97	17	0	17	16	0	16	301767.1175	0.0083			
98	18	0	18	17	0	17	319062.6511	0.0171			
99	9	1	8	8	1	7	171937.2573	-0.0248		aR	0,1
100	10	1	9	9	1	8	190612.9906	0.0317			
101	11	1	10	10	1	9	209128.7487	0.0434			
102	12	1	11	11	1	10	227461.9042	-0.0293			
1											

103	13	1	12	12	1	11	245594.1082	-0.0070		
104	14	1	13	13	1	12	263514.6843	-0.0303		
105	15	1	14	14	1	13	281225.0814	-0.0521		
106	16	1	15	15	1	14	298741.1643	-0.0191		
107	17	1	16	16	1	15	316092.5768	0.0161		
108	18	1	17	17	1	16	333318.7331	-0.0293		
109	19	1	18	18	1	17	350462.5434	0.0038		
110	9	2	7	8	2	6	171053.9588	-0.0315	aR	0,1
111	10	2	8	9	2	7	190603.9135	0.0146		
112	11	2	9	10	2	8	210164.8458	0.0090		
113	12	2	10	11	2	9	229688.3520	0.0042		
114	13	2	11	12	2	10	249133.0755	-0.0369		
115	14	2	12	13	2	11	268466.1666	-0.0540		
116	15	2	13	14	2	12	287661.6557	-0.0108		
117	18	2	16	17	2	15	344215.4099	-0.0594		
118	10	3	7	9	3	6	187465.9584	0.0088	aR	0,1
119	11	3	8	10	3	7	206548.0142	0.0323		
120	12	3	9	11	3	8	225752.2711	-0.0022		
121	13	3	10	12	3	9	245091.5638	-0.0191		
122	14	3	11	13	3	10	264570.4504	-0.0019		
123	15	3	12	14	3	11	284181.1584	-0.0020		
124	16	3	13	15	3	12	303901.0585	-0.0595		
125	17	3	14	16	3	13	323693.1702	-0.0588		
126	18	3	15	17	3	14	343509.7074	-0.0697		
127	10	4	6	9	4	5	186789.2788	0.0068	aR	0,1
128	11	4	7	10	4	6	205571.0088	-0.0005		
129	12	4	8	11	4	7	224387.9524	-0.0053		
130	13	4	9	12	4	8	243247.3055	0.0164		
131	14	4	10	13	4	9	262157.8441	-0.0062		
132	15	4	11	14	4	10	281130.3521	-0.0255		
133	16	4	12	15	4	11	300177.5438	-0.0028		
134	17	4	13	16	4	12	319313.6886	-0.0247		
135	18	4	14	17	4	13	338554.1566	-0.0011		
136	19	4	15	18	4	14	357913.5563	-0.0541		
137	10	5	5	9	5	4	186618.4249	-0.1708	aR	

138	10	5	6	9	5	5	186618.4249	0.2063	aR
139	11	5	6	10	5	5	205334.8117	-0.0298	
140	12	5	7	11	5	6	224067.0002	0.0304	
141	13	5	8	12	5	7	242816.7818	0.0193	
142	14	5	9	13	5	8	261586.2382	0.0052	
143	15	5	10	14	5	9	280377.7255	-0.0023	
144	16	5	11	15	5	10	299194.0730	0.0166	
145	17	5	12	16	5	11	318038.6106	-0.0415	
146	18	5	13	17	5	12	336915.7641	-0.0026	
147	19	5	14	18	5	13	355830.6827	-0.0085	
148	12	6	6	11	6	5	223924.6290	-0.0031	aR
149	12	6	7	11	6	6	223924.6290	0.0292	a D
150	14	6	8	13	6	7	261352.9162	-0.0732	ик
151	14	6	9	13	6	8	261352.9162	0.1231	
152	15	6	9	14	6	8	280085.2734	-0.2265	
153	15	6	10	14	6	9	280085.2734	0.2078	
154	16	6	10	15	6	9	298831.5973	0.0405	
155	17	6	11	16	6	10	317592.2432	0.0095	
156	19	6	13	18	6	12	355162.2364	-0.0406	
157	12	7	5	11	7	4	223846.2469	0.0439	aR
158	12	7	6	11	7	5	223846.2469	0.0442	aR
159	13	7	6	12	7	5	242531.3958	-0.0290	
160	13	7	7	12	7	6	242531.3958	-0.0280	
161	14	7	7	13	7	6	261224.1745	0.0139	
162	14	7	8	13	7	7	261224.1745	0.0166	
163	15	7	8	14	7	7	279924.9877	-0.0040	
164	15	7	9	14	7	8	279924.9877	0.0030	
165	16	7	9	15	7	8	298634.5648	0.0582	
166	16	7	10	15	7	9	298634.5648	0.0754	
167	18	7	11	17	7	10	336081.9383	-0.0510	
168	18	7	12	17	7	11	336081.9383	0.0342	
169	19	7	12	18	7	11	354821.0867	-0.1096	
170	19	7	13	18	7	12	354821.0867	0.0670	
171	13	8	5	12	8	4	242471.7394	-0.0033	aR

172	13	8	6	12	8	5	242471.7394	-0.0033	aR
173	14	8	6	13	8	5	261147.5816	0.0265	
174	14	8	7	13	8	6	261147.5816	0.0265	
175	15	8	7	14	8	6	279828.7202	0.0168	
176	15	8	8	14	8	7	279828.7202	0.0169	
177	16	8	8	15	8	7	298515.5521	-0.0116	
178	16	8	9	15	8	8	298515.5521	-0.0114	
179	17	8	9	16	8	8	317208.5102	-0.0037	
180	17	8	10	16	8	9	317208.5102	-0.0031	
181	18	8	10	17	8	9	335907.9382	0.0039	
182	18	8	11	17	8	10	335907.9382	0.0053	
183	19	8	11	18	8	10	354614.2518	0.0435	
184	19	8	12	18	8	11	354614.2518	0.0469	
185	13	9	4	12	9	3	242436.5281	-0.0459	aR
186	13	9	5	12	9	4	242436.5281	-0.0459	aR
187	14	9	5	13	9	4	261101.3492	0.0287	
188	14	9	6	13	9	5	261101.3492	0.0287	
189	15	9	6	14	9	5	279769.5872	0.0439	
190	15	9	7	14	9	6	279769.5872	0.0439	
191	16	9	7	15	9	6	298441.5296	0.0474	
192	16	9	8	15	9	7	298441.5296	0.0474	
193	17	9	8	16	9	7	317117.4048	0.0280	
194	17	9	9	16	9	8	317117.4048	0.0280	
195	18	9	9	17	9	8	335797.4799	0.0138	
196	18	9	10	17	9	9	335797.4799	0.0138	
197	19	9	10	18	9	9	354482.0210	0.0311	
198	19	9	11	18	9	10	354482.0210	0.0312	
199	14	10	4	13	10	3	261074.3257	0.0049	aR
200	14	10	5	13	10	4	261074.3257	0.0049	aR
201	15	10	5	14	10	4	279733.8150	0.0303	
202	15	10	6	14	10	5	279733.8150	0.0303	
203	16	10	6	15	10	5	298395.6039	0.0506	
204	16	10	7	15	10	6	298395.6039	0.0506	
205	17	10	7	16	10	6	317059.7692	-0.0018	
206	17	10	8	16	10	7	317059.7692	-0.0018	
207	18	10	8	17	10	7	335726.5843	0.0029	

208	18	10	9	17	10	8	335726.5843	0.0029	
209	19	10	9	18	10	8	354396.1233	-0.0033	
210	19	10	10	18	10	9	354396.1233	-0.0033	
211	15	11	4	14	11	3	279713.8343	0.0487	aR
212	15	11	5	14	11	4	279713.8343	0.0487	aR
213	16	11	5	15	11	4	298368.5168	0.0247	
214	16	11	6	15	11	5	298368.5168	0.0247	
215	17	11	6	16	11	5	317024.5949	0.0526	
216	17	11	7	16	11	6	317024.5949	0.0526	
217	18	11	7	17	11	6	335682.0196	0.0088	
218	18	11	8	17	11	7	335682.0196	0.0088	
219	19	11	8	18	11	7	354341.0169	0.0464	
220	19	11	9	18	11	8	354341.0169	0.0464	
221	17	12	5	16	12	4	317005.0591	-0.0109	aR
222	17	12	6	16	12	5	317005.0591	-0.0109	aR
223	18	12	6	17	12	5	335655.9102	0.0213	
224	18	12	7	17	12	6	335655.9102	0.0213	
225	19	12	7	18	12	6	354307.2428	-0.0169	
226	19	12	8	18	12	7	354307.2428	-0.0169	
227	17	13	4	16	13	3	316997.2010	-0.0102	aR
228	17	13	5	16	13	4	316997.2010	-0.0102	aR
229	18	13	5	17	13	4	335643.3294	0.0311	
230	18	13	6	17	13	5	335643.3294	0.0311	
231	19	13	6	18	13	5	354289.2575	0.0477	
232	19	13	7	18	13	6	354289.2575	0.0477	
233	17	14	3	16	14	2	316998.3285	0.0699	aR
234	17	14	4	16	14	3	316998.3285	0.0699	aR
235	18	14	4	17	14	3	335641.0342	0.0069	
236	18	14	5	17	14	4	335641.0342	0.0069	
237	19	14	5	18	14	4	354283.0442	-0.0013	
238	19	14	6	18	14	5	354283.0442	-0.0013	

239	18	15	3	17	15	2	335646.9009	0.0001	aR	
240	18	15	4	17	15	3	335646.9009	0.0001	aR	
241	19	15	4	18	15	3	354286.2084	-0.0036		
242	19	15	5	18	15	4	354286.2084	-0.0036		
243	18	16	2	17	16	1	335659.3327	-0.0650	aR	
244	18	16	3	17	16	2	335659.3327	-0.0650	aR	
245	19	16	3	18	16	2	354296.8899	-0.0347		
246	19	16	4	18	16	3	354296.8899	-0.0347		
247	10	1	10	9	1	9	178734.0402	-0.0177	aR	0,1
248	11	1	11	10	1	10	196359.7829	0.0042		
249	12	1	12	11	1	11	213940.6831	-0.0218		
250	13	1	13	12	1	12	231481.1224	0.0272		
251	14	1	14	13	1	13	248985.6225	-0.0319		
252	15	1	15	14	1	14	266459.2066	0.0133		
253	16	1	16	15	1	15	283906.3575	0.0103		
254	17	1	17	16	1	16	301331.3878	0.0124		
255	18	1	18	17	1	17	318738.0241	-0.0130		
256	19	1	19	18	1	18	336129.5738	0.0361		
257	20	1	20	19	1	19	353508.5853	0.0585		
258	10	2	9	9	2	8	185278.3516	-0.0006	aR	0,1
259	11	2	10	10	2	9	203552.6589	0.0185		
260	12	2	11	11	2	10	221758.9468	0.0222		
261	13	2	12	12	2	11	239893.8836	0.0119		
262	14	2	13	13	2	12	257955.2254	-0.0352		
263	15	2	14	14	2	13	275942.1230	0.0097		
264	16	2	15	15	2	14	293854.7611	-0.0128		
265	17	2	16	16	2	15	311694.8612	-0.0578		
266	18	2	17	17	2	16	329465.4730	-0.0128		
267	19	2	18	18	2	17	347170.5042	-0.0204		
268	10	3	8	9	3	7	186871.9482	0.0028	aR	0,1
269	11	3	9	10	3	8	205600.8632	0.0039		
270	12	3	10	11	3	9	224316.0016	0.0209		
271	14	3	12	13	3	11	261666.9716	-0.0164		
272	15	3	13	14	3	12	280283.5343	-0.0206		

273	16	3	14	15	3	13	298848.3970	-0.0570		
274	17	3	15	16	3	14	317353.2474	-0.0133		
275	18	3	16	17	3	15	335790.5236	-0.0131		
276	19	3	17	18	3	16	354154.0300	0.0155		
277	10	4	7	9	4	6	186767.6217	0.0176	aR	0,1
278	11	4	8	10	4	7	205527.9399	0.0071		
279	12	4	9	11	4	8	224307.8203	0.0058		
280	13	4	10	12	4	9	243106.2355	0.0177		
281	14	4	11	13	4	10	261920.9979	-0.0086		
282	15	4	12	14	4	11	280748.7867	-0.0226		
283	16	4	13	15	4	12	299584.9412	-0.0033		
284	17	4	14	16	4	13	318423.4073	-0.0109		
285	18	4	15	17	4	14	337256.9679	-0.0390		
286	19	4	16	18	4	15	356077.4009	-0.0261		
287	11	5	7	10	5	6	205333.9150	0.0134		
288	13	5	9	12	5	8	242812.2287	-0.0072		
289	14	5	10	13	5	9	261577.2540	0.0208		
290	15	5	11	14	5	10	280360.7455	-0.0038		
291	16	5	12	15	5	11	299163.4195	-0.0294		
292	17	5	13	16	5	12	317985.6012	-0.0303		
293	18	5	14	17	5	13	336827.1115	-0.0030		
294	19	5	15	18	5	14	355687.0931	-0.0087		
295	16	6	11	15	6	10	298830.6609	0.0117		
296	17	6	12	16	6	11	317590.4477	0.0183		
297	18	6	13	17	6	12	336365.2500	-0.0191		
298	19	6	14	18	6	13	355155.9490	-0.0393		
299	7	4	3	6	3	4	337683.2922	0.0006	bR	1,-1
300	8	4	4	7	3	5	356309.8294	0.0358		
301	12	1	12	11	0	11	220678.3003	-0.0284	bR	1,1
302	13	1	13	12	0	12	236674.1226	-0.0241		
303	14	1	14	13	0	13	252933.6674	-0.0307		
304	15	1	15	14	0	14	269425.8877	0.0082		
305	16	1	16	15	0	15	286113.6025	-0.0016		
306	17	1	17	16	0	16	302959.7804	0.0049		
307	18	1	18	17	0	17	319930.7495	0.0460		
308	19	1	19	18	0	18	336997.6504	0.0433		
309	20	1	20	19	0	19	354136.9324	0.0300		

310	18	2	17	17	1	16	349405.4365	-0.0133	bR	1,1
311	6	3	4	5	2	3	259010.2586	0.0471	bR	1,1
312 313	7 10	3 3	5 8	6 9	2 2	4 7	276756.8071 326370.3916	-0.0031 0.0045	bR	1,1
314	7	4	4	6	3	3	337615.9112	0.0292	bR	1,1
315	8	4	5	7	3	4	356140.7144	-0.0536		

10.2 Listado de tablas

Tabla 1. Constantes espectroscópicas de la N-metilhidroxilamina (A-reduction, I ^r -representation) para el e	stado
fundamental. *Los números entre paréntesis son la incertidumbre existente en los últimos dígitos decimale	ès.
^a Desviación rms del ajuste.	31
Tabla 2. Conjunto de frecuencias obtenidas para cada transición medida. Esta tabla incluye toda la inform	ación
obtenida en el ajuste sobre la transición, como pueden ser los números cuánticos, frecuencia, tipo de transi	ción y
reglas de selección para K _a y K _c	38

10.3 Listado de figuras

Figura 1. Espectro Solar de Fraunhofer.	10
Figura 2. Telescopio IRAM de 30m situado en el pico Veleta.	12
Figura 3. Antenas ALMA.	12
Figura 4. (a) Fragmento del espectro de 200 a 280 GHz de Orion KL obtenido con el telescopio IRAM 30m.	(b)
y (c) son ampliaciones del fragmento anterior. (d) Sección de 1 GHz del espectro con la asignación de las	
moléculas detectadas. (e) Ampliación de la sección d, donde se pueden ver las líneas aún desconocidas,	
etiquetadas como "U". Este espectro se puede encontrar en Tercero et. Al. [16].	15
Figura 5. Regiones del espectro electromagnético.	20
Figura 6. Regiones de microondas.	20
Figura 7. <i>N</i> -metilhidroxilamina en ejes principales.	21
Figura 8. Diagrama de correlación entre trompos prolate y oblate utilizando el etiquetado para trompos	
asimétricos.	22
Figura 9. (a) Componentes del momento dipolar en los ejes principales de la molécula. (b) Transiciones de ti	ро
<i>a</i> , de tipo <i>b</i> y de tipo <i>c</i>	23

Figura 10. Espectrómetro utilizado en el experimento. En la imagen se observa la combinación de un	
amplificador-multiplicador AMC WR9.0 y de multiplicadores adicionales.	27
Figura 11. Esquema del espectrómetro de milimétricas de la UVa.	27
Figura 12. Esquema de la línea de vacío utilizada para llevar a cabo la síntesis de la muestra.	28
Figura 13. En la parte superior (a) se muestra el espectro completo de la molécula, que abarca desde 170 GHz	2
hasta 360 GHz. En la parte inferior (b) se puede observar una ampliación del espectro en la que observamos	
transiciones con $J''=11$ pertenecientes al estado fundamental. Otras líneas presentes en el espectro posiblement	te
pertenezcan a estados excitados.	32
Figura 14. Espectro de rotación predicho de <i>N</i> -metilhidroxilamina en la temperatura de 150 K.	33