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Abstract

Purpose: Compressed sensing methods with motion estimation and compensation techniques

have been proposed for the reconstruction of accelerated dynamic MRI. However, artifacts that

naturally arise in compressed sensing reconstruction procedures hinder the estimation of motion

from reconstructed images, especially at high acceleration factors. This work introduces a robust

groupwise non-rigid motion estimation technique applied to the compressed sensing reconstruction

of dynamic cardiac cine MRI sequences.

Theory and Methods: A spatio-temporal regularized, groupwise, non-rigid registration method

based on a B-splines deformation model and a least squares metric is used to estimate and to

compensate the movement of the heart in breath-hold cine acquisitions and to obtain a quasi-static

sequence with highly sparse representation in temporally transformed domains.

Results: Short axis in vivo datasets are used for validation, both original multi-coil as well as

DICOM data. Fully sampled data were retrospectively undersampled with various acceleration

factors and reconstructions were compared with the two well-known methods k-t FOCUSS and

MASTeR. The proposed method achieves higher signal to error ratio and structure similarity index

for medium to high acceleration factors.

Conclusions: Reconstruction methods based on groupwise registration show higher quality recon-

structions for cardiac cine images than the pairwise counterparts tested.

Introduction

Breath-hold (BH) cardiac cine MRI has become the gold standard for myocardial function imaging

(1). In patients with diminished BH capacity this approach results in substantially compromised

image quality (2). A respiratory-navigated, free-breathing examination can be performed as an

alternative that, however, can result in unpredictably long acquisition times. Shortening the needed

acquisition time can enable some of these patients to get a regular BH scan and, generally speaking:

1) improves patient comfort and reduces stress, 2) significantly reduces exam duration and the

associated economical costs. Therefore, the development of faster acquisition methods is of great

importance.

Reduced-data imaging methods take advantage of redundancy in the images to recover the

whole image from only a fraction of the k-space data, shortening acquisition time consequently.

In classical approaches, such as k-t BLAST/SENSE (3) and k-t GRAPPA (4), data are acquired
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following a regular pattern and the spatio-temporal correlation is exploited to recover the original

image. More recently, compressive sensing (CS) theory (5, 6) has been successfully applied to MRI

reconstruction (1, 7–12) showing that when an image has an sparse representaton in certain domain

it can be recovered from a small number of incoherent measurements.

In cardiac cine imaging intensity variations are mainly due to the movement of cardiac struc-

tures. Moving regions of the image lead to abrupt intensity changes through time that reduces the

sparsity of the signal in the transformed temporal domain (13–17). As stated in (14), if the motion

of elements in an image can be described with fewer parameters than the intensity changes derived

from that motion, the sparsity is expected to increase by using motion modelling. In Figure 1 this

approach is illustrated.

When applied to dynamic MRI reconstruction, motion estimation (ME) and motion compen-

sation (MC) techniques lack the true dynamic image to estimate the motion information from. A

common approach is to perform the ME step from an initial reconstruction of the images themselves

that, however, will be affected by the artifacts introduced by the undersampling pattern that the

initial reconstruction could not correct, what hinders the estimation of the true motion information.

This effect becomes more relevant as the acceleration factor increases.

In k-t FOCUSS with ME/MC (15, 16) a high quality reference frame is used to perform ME

by means of a block matching algorithm applied independently to each frame. The reference frame

may not be available and the final reconstruction result depends heavily on its quality (17). In

MASTeR (17), motion is estimated sequentially between each pair of consecutive frames. In both

approaches only two frames of the sequence are available for the ME algorithm at each execution,

therefore the ME algorithm cannot benefit from the additional information present in the rest of

the frames making it more sensitive to artifacts in the sequence.

In this paper, and borrowing some ideas proposed in (18), the shortcomings of ME referred to

above have been alleviated by adopting a groupwise (GW) approach in which the whole-sequence

is registered at once to compensate for the naturally induced motion of the heart. This results

in a pseudo-static sequence which, in combination with a spatio-temporal sparsifying transform,

turns out to be highly sparse. We hypothesize that, given the more available information, our ME

algorithm will be more robust than pairwise (PW) approaches. We call this method groupwise

CS (GW-CS). Figure 1c and Supporting Video 1 illustrate the application of the GW ME/MC

method. Departing from an initial reconstruction, refined reconstructed images and estimated

motion information are obtained iteratively. This scheme can be easily adapted to other imaging
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modalities by selecting proper ME metrics and sparsifying transforms.

Theory

CS reconstruction of undersampled dynamic MRI with ME

The CS reconstruction of undersampled MRI data is generally formulated as a constrained opti-

mization problem given by

minimize
m

‖Φm‖`1 s.t. ‖y −Em‖2`2 < ε [1]

where Φ is the sparsifying transform, m and y are the dynamic MRI image to be reconstructed and

the undersampled k-t data, respectively, defined as single column vectors. The encoding operator

E performs a frame-by-frame undersampled spatial Fourier transform. In multicoil acquisitions, E

includes the multiplication by coil sensitivities as described in (19). The threshold ε denotes the

noise level in the acquisition. The constrained optimization problem in Eq. [1] can be converted

into an unconstrained problem using a Lagrangian multiplier as follows:

minimize
m

1

2
‖ y −Em ‖2`2 +λ ‖ Φm ‖`1 [2]

where the parameter λ establishes a trade off between data consistency and the sparsity of the

solution. In CS with ME/MC, the operator Φ is modified to account for the specific motion

information that is present in the dynamic image at hand. In k-t FOCUSS with ME/MC (15)

the unknown image m is decomposed into a predicted, mpred, and a residual image, ∆m, which is

assumed to be sparse:

m = mpred + ∆m [3]

To further increase the sparsity of the residual signal, the FT is applied along the temporal

dimension of ∆m, denoted by the Ft operator. The optimization problem in Eq. [2] becomes

minimize
m

1

2
‖ y −Em ‖2`2 +λ‖Ft∆m‖`1 [4]

The predicted signal mpred is obtained by applying a block matching algorithm between each

frame of m and a reference frame mref . Since neither mref nor the true dynamic image are available

for ME, a previous reconstruction step is performed with the original k-t FOCUSS algorithm

without ME/MC (20).
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On the other side, the MASTeR procedure does not rely on a reference frame, but motion is

estimated sequentially between each pair of consecutive frames to define a set of operators that

predict each frame mi out of its leading and trailing frames:

mi = Fi−1mi−1 + fi

mi = Bi+1mi+1 + bi

[5]

where Fi−1 and Bi+1 denote the forward and backward MC operators. Residuals fi and bi are

assumed to be sparse and are used as sparsity term in Eq. [2]:

minimize
m

1

2
‖ y −Em ‖2`2 + ‖ Mm ‖`1 [6]

where Mm = [α fT
i |β bT

i ]T is the weighted column-wise concatenation of both backward and

forward residual terms given by Eq. [5]. For the initialization, Eq. [2] is solved using 2-D dual-tree

complex-wavelet transform —DT-CWT— (21) as spatial sparsifying transform. A method also

based on CWT is used for estimating inter-frame motion (22).

As explained in the introduction, ME methods described above suffer some shortcomings derived

from the limited information available to the pair-wise ME algorithms. In GW-CS, we propose to

jointly estimate and compensate the motion in the whole dynamic image domain. Under this

approach, the optimization problem in Eq. [2] becomes

minimize
m

1

2
‖ y −Em ‖2`2 +λ ‖ ΦTΘm ‖`1 . [7]

where Φ is a freely chosen spatio-temporal sparsifying transform and TΘ is a groupwise MC op-

erator that will be introduced below. We should point out that in the MASTeR case the sparse

representation based on the registration residuals is determined by the ME scheme itself, for which

an additional transformation may not be clearly beneficial in terms of increasing sparsity. The

proposed ME algorithm is detailed in the next section.

Temporal groupwise registration for ME/MC

To introduce the registration method it is convenient to redefine the dynamic MRI sequence m as

a set of spatially continuous images m = {m1(x),m2(x), . . . ,mN (x)}, with 1 ≤ n ≤ N a temporal

index and mn(x) defined over the space x ∈ X ⊂ E2. The registration procedure consists in finding

a set of spatial transformations T = {Tn : x′n = Tn(x)) ∈ X} such that the cost function given by

H(T ;m) =

∫
X
V (m1(T1(x)), . . . ,mN (TN (x)))dx [8]
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is minimized (18). The solution is constrained to those sets of transformations with the average

deformation of each position equal to the identity transformation (23):

1

N

N∑
n=1

Tn(x) = x [9]

In Eq. [8], the integrand V (m1(T1(x)), . . . ,mN (TN (x))) = V (x) is the similarity metric used to

measure the point by point similarity between the set of images. In cardiac cine MRI, the intensity

change of the image along time is mainly due to the movement of the heart, so a least squares

metric based on the variance of the intensity (VI) along time may suffice (24):

V (x) =
1

N

N∑
n=1

(
mn(Tn(x))− 1

N

N∑
k=1

mk(Tk(x))

)2

. [10]

There is also a need for an adequate deformation model. The proposed algorithm employs a

2D free form deformation (FFD) model based on B-splines (25), which has been widely used in

practice. The FFDs are based on a parametric model that deforms an object by manipulating an

underlying mesh of M control points Θ = {θk,n}, with 1 ≤ k ≤M, 1 ≤ n ≤ N , uniformly spaced in

X . Then the set of deformations T is parametrized by Θ, a fact that we denote by T = TΘ.

To constrain the estimated deformation to be smooth, in concordance with the expected defor-

mation of anatomical structures (25), a penalty regularization term is introduced in Eq. [8] given

by:

C(TΘ) =
1

|X |N

N∑
n=1

∫
X
α

(∣∣∣∣∂2Tn(x)

∂x2

∣∣∣∣2 +

∣∣∣∣∂2Tn(x)

∂y2

∣∣∣∣2 + 2

∣∣∣∣∂2Tn(x)

∂x∂y

∣∣∣∣2
)

+ β

∣∣∣∣∂2Tn(x)

∂n2

∣∣∣∣2 dx [11]

where (x, y)T = x. We add a temporal regularization term in order to favor smoothness in the

temporal trajectory based on temporal derivatives approximated by finite differences. Given the

quasi-periodic motion of the heart the last frame in the sequence is considered to be followed by

the first one. α and β parameters used to weight the spatial and temporal regularization terms,

respectively. The resulting regularized non-rigid GW registration is then formulated as

minimize
Θ

H(TΘ;m) + C(TΘ) [12]

and the groupwise MC operator TΘ in Eq. [7] is defined as the discretized version of TΘ.

Reconstruction algorithm

Since at the very beginning of the algorithm we do not have any data from which motion information

can be estimated, we have resorted to the common approach (14, 15, 17) of making use of a regular
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CS reconstruction prior step; then an iterative procedure consisting in a ME/MC step followed by

a MC-CS reconstruction step, is adopted. In our implementation a predefined number of iterations

has been set; it is very simple to use some alternative convergence criterion instead. A pseudocode

description of the algorithm follows:

Groupwise registration based CS reconstruction of Undersampled Dynamic MRI.

input:

y: undersampled k-t data

E: encoding operator

Φ: sparsifying transform

λ, λs/t: sparsity regularization parameters

α, β: ME/MC regularization parameters

initialization:

k ← 0

% Solve regular CS reconstruction problem in Eq. [2]:

m0 ← arg min
m

‖y −Em‖2`2 + λ‖Φm‖`1

while k < max. number of iterations do

% Temporal registration: Solve Eq. [12]

Θk+1 ← arg min
Θ

H(TΘ; mk) + C(TΘ)

% MC-CS reconstruction: Solve Eq. [15] (as opposed to [7], see Implementation

section) with estimated motion parameters.

minimize
m

1

2
‖ y −Em ‖2`2 +λ‖

[
(ΦtTΘ)T | λs/tΦ

T
s

]T
m ‖`1 .

k ← k + 1

end

output: mk

Methods

In this section the procedures followed to implement and to validate the proposed algorithm are

described. First, our hypothesis on the superiority of the GW approach vs. the PW counterpart

is tested. Details of the method implementation and parameter selection are also provided. The
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quality of the reconstructions have been tested both with quantitative metrics and the subjective

judgment of expert clinicians.

Groupwise and pairwise registration comparison

In order to validate the hypothesis that the proposed GW registration algorithm performs better

than an equivalent PW approach, the following experiment was carried out:

1. A SSD registration metric equivalent to the PW version of the metric in Eq. [10] was defined

as

V (x) =
1

N

N∑
n=1

(mn(Tn(x))−mref (x))2 . [13]

where mref denotes the frame selected as a reference. We choose a diastolic frame, where

lower cardiac motion is present.

2. The ME algorithm was applied to an initial regular CS reconstruction of a sequence from

a healthy volunteer, for undersampling factors of the k-space data (r) ranging from one

(no undersampling) to 16. The deformation fields obtained for the GW and PW metrics

are denoted as T r
GW (x) and T r

PW (x), respectively. We define the registration error (RE)

committed due to the presence of undersampling artifacts as —for the GW metric—:

REGW (r) =

∫
X
‖T 1

GW (x)− T r
GW (x)‖2dx. [14]

The definition for the PW method is analogous. The behavior of RE(r) denotes how fast

the registration degrades due to the increasing presence of undersampling artifacts.

Algorithm implementation

The GW-CS reconstruction was performed in MATLAB (MathWorks, Natick, MA). The optimiza-

tion problems in Eqs. [2] and [7] related to the reconstruction steps have been solved using the

NESTA algorithm (26). For the initialization of the algorithm, spatial DT-CWT of each frame was

used as sparsifying transform Φ, in order to get the same initial reconstruction than MASTeR. A

nonlinear conjugate gradient algorithm with backtracking line search (27) has been used to solve

the registration problem in Eq. [12]. Additional fixed control points were placed outside the image

domain in order to guarantee that the spatial transformation is properly defined inside the domain.

In the following reconstruction steps, the sparsifying transform Φ in Eq. [7] may comprise both

spatial and temporal dimensions transforms. However, we should make some considerations: given
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the discrete nature of the reconstructed images, the application of the MC operator involves an

interpolation step that implies unavoidable errors. As we could verify, the interpolation process

may distort the reconstruction result, as illustrated in Figure 2. Since the MC operator introduces

a spatial low pass filtering as a side effect, high spatial frequency components in the reconstructed

image are not present in the image used in the `1 regularization term in Eq. [7]. Furthermore,

since only only a small fraction of the high frequency coefficients is acquired, data mismatch in

high frequency components is not properly penalized by the data fidelity term.

To overcome this limitation, we split the spatio-temporal sparsifying transform in Eq. [7] into

a temporal transform applied to the motion compensated sequence and a spatial transform applied

to the original sequence without MC. That is, we actually solve the optimization problem given by

minimize
m

1

2
‖ y −Em ‖2`2 +λ‖

[
(ΦtTΘ)T | λs/tΦ

T
s

]T
m ‖`1 . [15]

where λs/t weights the spatial sparsity vs. temporal sparsity.

Undersampled data was also reconstructed using k-t FOCUSS with ME/MC and MASTeR. To

this end, the code available at at http://users.ece.gatech.edu/∼sasif/dynamicMRI from the authors

of (17) with minor adaptations was used. For the k-t FOCUSS reconstruction, a set of diastole

cardiac phase frames from each dataset was manually selected and its temporal average used as a

reference frame to obtain the predicted signal mpred in Eq. [3]. The number of ME-reconstruction

iterations of MASTeR and GW-CS was set to four.

Data acquisition

Three different datasets have been employed, two with healthy volunteers and one with patients

diagnosed with hypertrophic cardiomyopathy (HCM). In all the cases a regular, fully sampled,

multislice 2D BH cardiac cine MRI study was acquired. The fully sampled data was retrospectively

undersampled using a Gaussian variable-density random undersampling pattern along the phase

encoding direction. Eight central lines of the k-space were always selected and sensitivity maps

were obtained from separate scans. All the scans were performed in accordance with the Research

Ethics Board of our institutions and each subject provided informed consent. Each of the datasets

are described at continuation.

Multi-Coil data of healthy volunteers

One healthy volunteer was scanned on a 1.5T Philips scanner (Philips Healthcare, The Nether-
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lands) with a 32-element cardiac coil employing a b-SSFP sequence. Relevant scan parameters

include: TR/TE/flip angle = 2.8ms/1.39ms/60◦, FOV = 320 × 320mm2, spatial resolution = 2 ×

2 mm2, slice thickness = 8mm with no gap between slices. 16 cardiac phases were reconstructed.

A short axis MRI scan made available by the authors of (17) was also used for reconstruction of

multi-coil data. The dataset was acquired using a General Electric 1.5T TwinSpeed scanner with

a 5-element cardiac coil and a FIESTA/FastCARD cine steady-state free precession sequence, with

following parameters: TE/TR/flip angle = 2.0ms/4.1ms/45◦, FOV = 350 × 350 mm2, 224 × 256

matrix reconstruction and 16 temporal frames.

Single-Coil data of healthy volunteers and HCM patients

Three healthy volunteers were scanned on a 3T Philips scanner with a 32-element cardiac coil.

Other relevant scan parameters include: b-SSFP sequence, TR/TE/flip angle = 3.3ms/1.57ms/45◦,

FOV = 320×320mm2, 30 cardiac phases, and slice thickness = 8 mm. Three patients diagnosed with

HCM were scanned with a 16-element antenna and the same parameters, excluding: TR/TE/flip

angle = 6ms/3ms/25◦ and FOV = 425 × 425 mm2. Since no raw data were available, reconstructed

DICOM sequences were converted back into k-t space and considered as single coil acquisitions.

Quantitative metrics comparison

Two quantitative error metrics were used for comparison of the reconstructions. Firstly, the signal-

to-error ratio (SER), defined as

SER(dB) = 20 log10

‖m‖`2
‖m− m̂‖`2

,

where m denotes the fully sampled image and m̂ the image reconstructed from the undersampled

data. Second, the structural similarity index —SSIM— (28) was also used as a quantitative metric

that better represents image quality.

Subjective image quality review from clinicians

For a set of three healthy volunteers and three patients affected by HCM the reconstructions

obtained with k-t FOCUSS, MASTeR and the proposed method for acceleration factors 4, 6 and

8 were blindly reviewed and rated by three experts1. For each dataset and acceleration factor,

the reconstructions obtained with each method were simultaneously presented on the screen sorted

1Namely, the two cardiologists Dr. A. Revilla, and Dr. T. Sevilla and the radiologist Dr. J. Calabia, all of them

from the Hospital Cĺınico Universitario of Valladolid, Spain
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randomly to the experts, who were asked to rate them attending to their general quality. The

results were collected via a web form. Each expert rated two controls and two cases, so each

individual has been rated by two experts.

Parameter selection

To select those registration parameters α and β that make the registration algorithm most robust

against the undersampling artifacts without compromising the estimation of the true cardiac mo-

tion, the ME algorithm was applied to an initial CS reconstruction of a healthy volunteer sequence

undersampled by a factor of 6. α and β were chosen to minimize the residual motion —measured as

the temporal TV of the resulting sequence— when the motion fields thus obtained were applied to

the original, fully sampled image. The optimal values of α and β did not show significant variation

for other acceleration factors considered. Moreover, the final reconstruction results have shown to

be robust to the choice of α and β in a wide range of values for all the datasets used since the heart

dimensions and the field of views do not differ considerably in all the datasets used.

The reconstruction parameters λ and λs/t and their equivalent counterparts in the compared

methods (see (20) and (17)) were fitted to get the highest SER in the reconstruction of the 1.5T

(5 coils) dataset, one of the 3T datasets (DICOM data) and the 32-coil dataset. An example of

the sensitivity of both SER and SSIM (see Results section) is shown in the Supporting Figure 1

for the latter dataset. Notice that the axis are in logarithmic scale. These parameters have been

used for the experiments described below with the only exception of the subjective judgment on the

three HCM patients; in that experiment, since the acquisition signal to noise ratio was considerably

smaller —a different cardiac antenna was used—, the SER did not turn out to be a satisfactory

metric; on these data, the parameters for the subjective judgment experiment have been set, for

the three methods, by maximizing the visual judgment of a different observer than the experts on

a single patient.

Final reconstructions were obtained for an acceleration factor of 4 with three different sparse

transforms applied in the initialization of the algorithm, namely, temporal FFT, temporal TV

and spatial DT-CWT. Results are fairly similar for the three reconstruction procedures since no

structural differences are appraised; some subtle high frequency artifacts are present with TV and

DT-CWT, but all of them fall outside the cardiac area. Since we mean to compare our algorithm

with MASTeR, we have chosen DT-CWT for initialization.
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Results

Groupwise and pairwise methods comparison

Figure 3 shows on top the RE values defined for the GW case in Equation 14 for different values of

the acceleration factor. We also show the corresponding RE values for the PW case. The figure on

the bottom shows the total variation of the residual image obtained after registration. Both cases

(GW and PW) are shown.

Figure 4 illustrates the effect of a corrupted ME in a MASTeR reconstruction of a retrospectively

10-fold undersampled short axis cardiac cine sequence. As remarked in Figure 4b, in the final

reconstruction false motion is introduced in the original sequence. In Figure 4c temporal evolution

of a single pixel is plotted. The reconstructed pixel intensity fluctuates along time, an effect that is

perceived by a human observer as a spatial vibration when observing the dynamic sequence. The

temporal TV values in Figure 4d illustrates the false motion introduced (in Supporting Video 2

the effect is clearly appreciable). For comparison, in the sequence reconstructed with GW-CS with

spatial TV sparsification the effect is not present.

Figure 5 and Supporting Video 3 show the reconstruction results of k-t FOCUSS, MASTeR, and

the proposed GW-CS with two spatial sparsifying transforms, TV and CWT, at a high acceleration

factor of 12, for the 1.5T dataset. Supporting Video 4 shows the same results for one of the acquired

3T short axis datasets. Results indicate that GW-CS with TV or CWT provides lower error than

the rest of the methods. The temporal evolution of a slice is also represented. In Figure 6 the

proposed algorithm is applied to the dataset from a patient with abnormal cardiac motion. A

similar performance of the algorithm can be observed as the temporal behaviour of the cardiac

structures is preserved; this is illustrated in the last row of the figure for a vertical line taken at

the center of the image, and can be more clearly appreciated in the Supporting Video 5.

Quantitative metrics results

In order to evaluate the performance of the different methods along the cardiac cycle, Figure 7

shows quantitative quality measures calculated for each reconstructed frame of the same dataset

as before in terms of the SER and the SSIM introduced in the previous section, where the fully

sampled image is used as reference. In Figure 8 the performance of the compared methods for

different acceleration factors is analyzed. SER and SSIM index are calculated over a ROI around

the heart and plotted vs. the acceleration factor. Figure 9 shows the reconstruction of a SA slice
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from the 32-multicoil 1.5T equipment in the different time instants of the cardiac cycle; the figure

also shows plots of the resulting SER and SSIM. In the Supporting Video 6, results for acceleration

factors of 1, 2, 4, 8, 12 are available.

Subjective qualification results

The reviews reported by the clinicians are summarized in table 1. The values in the table indicate

the number of times the reconstruction obtained with each method was selected as the best one for

each acceleration factor.

Discussion

As illustrated in Figures 4 and 5, GW-CS gets better results than k-t FOCUSS or MASTeR.

Less noisy images and smoother interior cavities are recovered while preserving sharp edges at the

myocardium wall and small structures. GW-CS with CWT spatial sparsification preserves fine

texture details in the image better than TV. Most significant differences can be appreciated in

the temporal evolution of a single slice for each reconstruction. With k-t FOCUSS, fine motion

details are lost, as can be observed in the interior wall of the myocardium at mid-diastole phase,

indicated by arrows in the figure. With MASTeR, the temporal evolution gets noticeably corrupted

by an erratic motion that can be most clearly observed in the right ventricle wall. The erratic

motion becomes evident when observing the dynamic reconstructions as a video sequence (see

Supporting Video 2). A key aspect of cardiac cine MRI for clinical application is the information

it provides about myocardium dynamics, so images corrupted by erratic motion may be an issue.

This statement seems to be further supported by the subjective judgements of the experts shown

in Table 1. When applied to cases of abnormal cardiac motion —an HCM patient— the algorithm

has shown to perform in a similar way than in the healthy volunteers case (see Figure 6).

From the quantitative evaluation plotted in Figure 7, we can determine that GW-CS obtains

better scores than k-t FOCUSS or MASTeR along the vast majority of cycles in the cardiac cycle,

both in phases with faster motion of the heart (systole) as well as in slower phases. SER differences

in the ROI are within the range of 1–2 dB. During the diastole phase, k-t FOCUS results get

close to MASTeR and GW-CS. These are the frames used as reference for the k-t FOCUSS ME

step, with small heart motion. Results over the whole image show wider differences, of about 3dB,

between GW-CS with CWT and MASTeR. In this case, the difference may be due to the erratic
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motion introduced by the MASTeR ME method. Results over the whole image also indicate that

GW-CS with CWT spatial transform gets better results than spatial TV in the static areas outside

the ROI.

Results obtained by GW-CS with CWT or TV for the reconstruction of the 1.5T dataset,

illustrated in Figure 8, are very close to those obtained by MASTeR. Indeed, for low acceleration

factors our method gets slightly worse quantitative metrics than MASTeR. However, in the 3T data

experiments, GW-CS outperforms the others for acceleration factors equal or higher than 6. The

difference in the results can be explained by two aspects: firstly, the fully sampled 1.5T dataset

has an appreciable noise level; during the CS reconstructions part of the noise is washed out by our

spatio-temporal sparsity terms. In these situation, the noise removal effect degrades the calculated

SER value. 3T data have higher apparent SNR, so this effect is not so relevant. Secondly, the 1.5T

data consists of 16 reconstructed cardiac phases, vs. the 30 available in the 3T data. Therefore,

much more information is available to the GW-ME method than in the 1.5T dataset. The MASTeR

ME method cannot take advantage of the more information available since motion is only estimated

between pairs of adjacent frames. Finally, for 32 coil data (recall Figure 9) if the plots in this figure

are compared with those in Figure 8 one can appraise a similar behavior. Therefore, conclusions

from 32-elements seem parallel to those previously described.

All in all, in these reconstructions still some high frequency artifacts are appraised, which con-

stitutes a current limitation of our method. Nevertheless, the reviews reported by the clinicians

(Table 1) indicate that the proposed method outperforms the other other two in terms of subjec-

tive perception as well; these differences, in addition, seem to have an increasing trend with the

acceleration factor in accordance with the quantitative results obtained in the previous comparison.

In the experimental section we have pursued to compare the performance of the different

ME/MC procedures; consequently, all experimental conditions have remained the same, i.e., same

undersampling patterns, initialization reconstructions, optimization method and sparsifying trans-

forms have been used. Therefore, we understand that the main source of improvement in our results

are due to the superior ME/MC scheme. The B-spline deformation model used is able to accurately

describe the motion of the heart and enables us to easily introduce the regularization term in Eq.

[11] that makes it more robust against artifacts in the image. As can be seen in the results section,

the quantitative differences between MASTeR and GW-CS increase with the reduction factor. This

indicates that the GW approach is able to maintain accurate motion estimation even from highly

undersampled data. This statement is supported by means of Figure 3; the figure shows that both
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in terms of RE and in terms of TV of the residual image after registration, the GW approach

shows a better performance than the PW counterpart and the parameter RE seems to highlight

differences between the two paradigms as the acceleration factor increases.

We would like to point out the effect of ME errors in the reconstructed signal. Fine motion

details that the motion model was not able to incorporate were lost in the reconstructed signal.

Therefore, to have a robust and versatile motion model is a key aspect in ME/MC based recon-

struction methods; Figure 6 shows that our method is able to track abnormal motion as well.

In our experiments, the reconstruction parameters used with the volunteers data were set using

only one of the three 3T available acquisitions. However, as previously stated, due to the lower SNR

in the patients acquisitions these parameters had to be modified. This indicates, as the compressed

sensing theory establishes (5, 6), that λ and λs/t optimal values strongly depend on the SNR of

the acquisitions. This is a common limitation in several CS based reconstruction algorithms that

should be addressed. In any case, the parameters were set using only one patient, and they carried

over satisfactorily to the other two. On the contrary, the registration parameters α and β have

been fitted only once for all the experiments. Although their optimal values could change for image

modalities with very different contrast or spatio-temporal resolution, these circumstances can be

known beforehand. This suggest that in real practice a calibration procedure can be designed.

The GW registration method proposed is more computationally demanding than their PW

counterparts, since an optimization problem of higher dimensionality is addressed. However, in our

experiments, the computational cost associated to the registration procedure is much lower than

the cost of the reconstruction step. Therefore, the relative increase in computational cost due to

the registration step has not a considerable effect in the overall algorithm cost.

Conclusions

In this paper we have presented a new CS reconstruction algorithm (GW-CS) based on a regu-

larized, temporal, groupwise registration method. In the proposed algorithm, the whole sequence

information is available to the ME method at each registration step instead of just a reference and

current frame —as in k-t FOCUSS— or pairs of adjacent frames —as in MASTeR—. This makes

the registration method robust to the incoherent aliasing that appears in highly undersampled data

enabling robust estimation of the motion information in the dynamic sequence and achieving fur-

ther acceleration factors for the same image quality after reconstruction. The non-rigid nature of
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the B-spline deformation model employed has shown capable of describing the motion of the heart

and to recover finer motion details than the block matching method used in k-t FOCUSS.

We understand that our ME/MC scheme is quite flexible: first, the ME method can be easily

extended to other image modalities by proper election of the similarity metric. Second, the quasi-

static sequence obtained after MC can be highly sparsified by any appropriate transform which may

depend on the image modality. Third, the scheme seems compatible with other acquisition strategies

rather than Cartesian trajectories (9). Finally, given the high acceleration factors achieved, the

proposed approach could be naturally extended to real-time imaging of the heart or other moving

parts of the body (29). These possibilities will be explored in future work.

Acknowledgments

The authors would like to thank Claudia Prieto and Muhammad Usman collaboration in the

acquisition of the 1.5T raw data at King’s College London. This work was partially supported

by the Junta de Castilla y León under grant VA136U13, Instituto de Salud Carlos III PI11-01492,

Ministerio de Economı́a y Competitividad under grant TEC2013-44194-P and by the University of

Valladolid and Banco Santander FPI-UVa Fellowship Program.

References

1. Feng L, Srichai MB, Lim RP, Harrison A, King W, Adluru G, Dibella EV, Sodickson DK,

Otazo R, Kim D. Highly accelerated real-time cardiac cine MRI using k–t SPARSE-SENSE.

Magn Reson Med 2013;70:64–74.

2. Chandarana H, Block TK, Rosenkrantz AB, Lim RP, Kim D, Mossa DJ, Babb JS, Kiefer

B, Lee VS. Free-breathing radial 3d fat-suppressed t1-weighted gradient echo sequence: a

viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration.

Investigative Radiology 2011;46:648–653.

3. Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: Dynamic MRI with high

frame rate exploiting spatiotemporal correlations. Magn Reson Med 2003;50:1031–1042.

4. Huang F, Akao J, Vijayakumar S, Duensing GR, Limkeman M. k-t GRAPPA: A k-space

implementation for dynamic MRI with high reduction factor. Magn Reson Med 2005;54:1172–

1184.

16



5. Candès E, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from

highly incomplete frequency information. IEEE Trans Inf Theory 2006;52:489–509.

6. Donoho D. Compressed sensing. IEEE Trans Inf Theory 2006;52:1289–1306.

7. Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid

MR imaging. Magn Reson Med 2007;58:1182–1195.

8. Otazo R, Kim D, Axel L, Sodickson DK. Combination of compressed sensing and parallel

imaging for highly accelerated first-pass cardiac perfusion MRI. Magn Reson Med 2010;64:767–

776.

9. Usman M, Atkinson D, Odille F, Kolbitsch C, Vaillant G, Schaeffter T, Batchelor PG, Prieto

C. Motion corrected compressed sensing for free-breathing dynamic cardiac mri. Magn Reson

Med 2013;70:504–516.

10. Chen X, Salerno M, Yang Y, Epstein FH. Motion-compensated compressed sensing for dynamic

contrast-enhanced MRI using regional spatiotemporal sparsity and region tracking: block low-

rank sparsity with motion-guidance (BLOSM). Magn Reson Med 2014;72:1028–1038.

11. Lingala S, DiBella E, Jacob M. Deformation corrected compressed sensing (DC-CS): A novel

framework for accelerated dynamic MRI. IEEE Trans Med Imag 2015;34:72–85.

12. Yoon H, Kim KS, Kim D, Bresler Y, Ye JC. Motion adaptive patch-based low-rank approach

for compressed sensing cardiac cine MRI. IEEE Trans Med Imag 2014;33:2069–2085.

13. Irarrazaval P, Boubertakh R, Razavi R, Hill D. Dynamic three-dimensional undersampled data

reconstruction employing temporal registration. Magn Reson Med 2005;54:1207–1215.

14. Prieto C, Batchelor PG, Hill D, Hajnal JV, Guarini M, Irarrazaval P. Reconstruction of

undersampled dynamic images by modeling the motion of object elements. Magn Reson Med

2007;57:939–949.

15. Jung H, Sung K, Nayak KS, Kim EY, Ye JC. k-t FOCUSS: A general compressed sensing

framework for high resolution dynamic MRI. Magn Reson Med 2009;61:103–116.

16. Jung H, Ye JC. Motion estimated and compensated compressed sensing dynamic magnetic

resonance imaging: What we can learn from video compression techniques. Int J Imag Syst

Tech 2010;20:81–98.

17



17. Asif MS, Hamilton L, Brummer M, Romberg J. Motion-adaptive spatio-temporal regularization

for accelerated dynamic MRI. Magn Reson Med 2013;70:800–812.

18. Cordero-Grande L, Merino-Caviedes S, Aja-Fernández S, Alberola-López C. Groupwise elas-
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Figures captions

Figure 1: (a) Selected frames from cine MRI sequence with estimated material point trajectory

along time (continuous line) vs. fixed spatial position (dashed line). (b) Pixel intensity variation

along time and along estimated motion trajectory. (c) Temporal evolution of a single slice in original

sequence (left) and after compensate the estimated motion. Temporal TV (d) and temporal log-FT

(e) of the original and motion compensated sequences. In (d), a noticeable reduction in the TV

values can be observed. In (e), the Fourier coefficients get more concentrated around the DC and

low frequency components, i.e., the MC procedure contributes to obtain a sparser representation

in the x-f space.

Figure 2: Effect of the interpolation in the reconstructed signals. (a) from left to right: detail

of the original sequence to be reconstructed with estimated motion deformation superposed for

better visualization, same region after MC, motion compensated reconstructed sequence and final

reconstructed sequence with spatial sparsity constrain applied to the motion compensated sequence.

In the last case, the high frequency artifact present in the reconstructed signal has been removed

by the deformation/interpolation operator. (b) from left to right: original fully sampled k-space

data, undersampled data, k-space data of the reconstructed sequence after MC and k-space data

of the final reconstructed sequence.

Figure 3: (top) Residual temporal Total Variation of the image after registration and (bottom)

Registration Error (see Eq. 14) both for GW and PW approaches as a function of the acceleration

factor.

Figure 4: Effect of the corrupted ME on a short axis 10-fold undersampled cardiac cine sequence.

(a) First frame of the original sequence. (b) Temporal evolution of the intensity profile at the

location indicated in (a) by the dashed line. (c) Plot of intensity value along time of the pixel

indicated by the arrow in (b), from the fully sampled and reconstructed sequences. (d) Temporal

TV of original and final reconstructions.

Figure 5: Short axis CINE reconstructions with the fully sampled data and k-t FOCUSS, MASTeR

and the proposed GW-CS with TV and CWT as spatial sparsifying transforms with retrospective

12-fold undersampling. Single frame (top) and temporal evolution at the location indicated by

dashed line (bottom). Middle row shows the absolute error of each image. Arrows in the bottom

row indicate regions where fine motion detail has been lost in k-t FOCUSS.
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Figure 6: Reconstructions of the data from a patient with a diagnosed HCM for different values

of the subsampling factor. As it can be observed, the most relevant information, is preserved in

the final sequence. The last row in the figure represents the intensity profile of a vertical line taken

at the center of the image. The intensity variation highlights that motion is preserved.

Figure 7: Quantitative quality measures for each frame on a 12-fold accelerated reconstruction of

each dataset used. SER and SSIM index calculated over a ROI containing the heart and over the

whole image. First column corresponds to the 1.5T data ad the remaining three columns to the 3T

data.

Figure 8: SER and SSIM index calculated over a ROI around the heart for the four reconstructed

sequences. First columnn corresponds to 1.5T data and the remaining three columns to the 3T

data.

Figure 9: (left) Reconstruction of 32-coil acquisitions for different values of the acceleration factor;

three instants of the cardiac cycle are shown from top to bottom; (right) SER and SSIM (in the

whole image —blue— and within a ROI around the myocardium —green— as function of the

acceleration factor for the images shown.
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Supporting material

Supporting Figure 1: Reconstruction parameters selection. One of the multicoil datasets has

been reconstructed for a fixed acceleration factor of 6 with several possible values of the parameters

λt and λs/t. The final parameters are chosen so that the quality metrics SER and SSIM get maximun

values. The optimal values of the parameters could vary for different signals and acceleration factors;

however, no significant differences have been observed. Therefore, λt and λs/t remained the same

in the rest of the experiments.

Video 1: Video showing the effect of the groupwise motion compensation operator. The fully

sampled 1.5T sequence is played on the left half of the video and the motion compensated one on

the right half. The whole sequence is displayed followed by a zoom of a ROI around the heart. The

estimated spatial deformation is superposed for visualization.

Video 2: Video showing the effect of corrupted motion estimation on the final reconstruction.

A fully sampled acquired 3T sequence is played on the left part. In the center and right parts a

MASTeR and a GW-CS with TV reconstructions of the 10-fold undersampled sequence is shown.

MASTeR reconstruction presents a motion artifact due to error induced by non-coherent aliasing

during motion estimation.

Video 3: Video showing the reconstructions of the 1.5T dataset with a 12-fold acceleration factor.

From left to right: fully sampled sequence, k-t FOCUSS with ME/MC, MASTeR, GW-CS with

TV and GW-CS with CWT are shown.

Video 4: Video showing the reconstructions of one of the 3T acquired datasets with a 12-

fold acceleration factor. From left to right: fully sampled sequence, k-t FOCUSS with ME/MC,

MASTeR, GW-CS with TV and GW-CS with CWT are shown.

Video 5: Video showing the reconstructions of a sequence with abnormal cardiac motion. From

left to right: fully sampled sequence and acceleration factors of 2, 4 and 8.

Video 6: Video showing the reconstructions of a 32-coil, healthy volunteer dataset. From left to

right, fully sampled sequence and acceleration factors of 2, 4, 8 and 12. In the last two cases, high

frequency artifacts and loss of quality become relevant.
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Table 1: Clinial experts qualification results. The values indicate the number of times that each

reconstruction was in first place in the reported qualifications

Accel. factor GW-CS MASTeR k-t FOCUSS

Healthy volunteers 4 4 1 1

6 5 0 1

8 6 0 0

HCM patients 4 4 1 1

6 5 0 1

8 4 0 2
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Figure 1: (a) Selected frames from cine MRI sequence with estimated material point trajectory

along time (continuous line) vs. fixed spatial position (dashed line). (b) Pixel intensity variation

along time and along estimated motion trajectory. Lower and smoother intensity transitions are

present in the second case. (c) Temporal evolution of a single slice in original sequence (left)

and after compensate the estimated motion. Temporal TV (d) and temporal log-FT (e) of the

original and motion compensated sequences. In (d), a noticeable reduction in the TV values can be

observed. In (e), the Fourier coefficients get more concentrated around the DC and low frequency

components, i.e., the MC procedure contributes to obtain a sparser representation in the x-f space.
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(a)

(b)

Figure 2: Effect of the interpolation in the reconstructed signals. (a) from left to right: detail

of the original sequence to be reconstructed with estimated motion deformation superposed for

better visualization, same region after MC, reconstructed sequence with spatial sparsity constrain

applied to the motion compensated sequence and reconstructed image after MC. In the last case,

the high frequency artifact present in the reconstructed signal has been removed by the deforma-

tion/interpolation operator. (b) from left to right: original fully sampled k-space data, undersam-

pled data, k-space data of the reconstructed sequence and k-space data of the MC reconstructed

sequence.
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Figure 3: (top) Residual temporal Total Variation of the image after registration and (bottom)

Registration Error (see Eq. 14) both for GW and PW approaches as a function of the acceleration

factor.
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Figure 4: Effect of the corrupted ME on a short axis 10-fold undersampled cardiac cine sequence.

(a) First frame of the original sequence. (b) Temporal evolution of the intensity profile at the

location indicated in (a) by the dashed line. (c) Plot of intensity value along time of the pixel

indicated by the arrow in (b), from the fully sampled and reconstructed sequences. (d) Temporal

TV of original and final reconstructions.
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Figure 5: Short axis CINE reconstructions with the fully sampled data and k-t FOCUSS, MASTeR

and the proposed GW-CS with TV and CWT as spatial sparsifying transforms with retrospective

12-fold undersampling. Single frame (top) and temporal evolution at the location indicated by

dashed line (bottom). Middle row shows the absolute error of each image. Arrows in the bottom

row indicate regions where fine motion detail has been lost in k-t FOCUSS.
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Figure 6: Reconstructions of the data from a patient with a diagnosed HCM for different values of

the subsampling factor. As it can be observed, the most relevant information, is preserved in the

final sequence. The last row in the figure represents the intensity profile of a vertical line taken at

the center of the image. The intensity variation highlights that motion is preserved.
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Figure 7: Quantitative quality measures for each frame on a 12-fold accelerated reconstruction of

each dataset used. SER and SSIM index calculated over a ROI containing the heart and over the

whole image. First column corresponds to the 1.5T data ad the remaining three columns to the 3T

data.
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Figure 8: SER (top row) and SSIM index (bottom row) calculated over a ROI around the heart

for the four reconstructed sequences. First columnn corresponds to 1.5T data and the remaining

three columns to the 3T data.
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Figure 9: (left) Reconstruction of 32-coil acquisitions for different values of the acceleration factor;

three instants of the cardiac cycle are shown from top to bottom; (right) SER and SSIM (in the

whole image —blue— and within a ROI around the myocardium —green— as function of the

acceleration factor for the images shown.
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