Universidad De Valladolid

E.T.S. DE INGENIERIA INFORMATICA

Grado en Informatica

Aplicacion movil Android para la gestion de peticiones de libros

Alumno: Vincent Risack

Tutor: Dr. Quiliano Isaac Moro Sancho

Abstract in English

This bachelor thesis is about an Android application for managing book purchase
requests. It will cover everything from the Design and coding to the implementation and
usage of the application. The Usage of the application will be explained through a user
manual. The code will be explained in the general description of the product. The user
requirements are also explained in this book. There’s also an explanation for the
minimum required specifications of the mobile phone and an installation manual. There

will be added illustrations to show and explain the design and some of the used code.

Keywords

Android, Mobile book purchase request, managing, scan barcode, ISBN

Citation

Vincent Risack: Aplicaciéon movil Android para la gestion de peticiones de libros,
Bachelor Thesis, Valladolid, E.T.S. De Ingenieria Informatica, 2015

Announcement

“This final project was an exam. The discovered errors during the presentation are not
included.”

Dedication

[would like to thank the professors in Vives Ostend for giving me the opportunity to
finish my studies with an Erasmus+ program. More precisely would I like to thank my
internal promoter Cordemans Tom, and supervising professor Vanhee Luc. [would also
like to thank my parents for allowing me this amazing experience. Also would I like to
thank my girlfriend. It would not have been possible for me to finish my studies (and

this final project) without their constant motivation and support.

Also would I like to thank my Spanish Supervisors Dr. Quiliano Isaac Moro Sancho and
Javier Bastida Ibafiez for their help choosing the project and their expertise on the
subject. Whenever [had a problem I was always welcome to ask them for help to find a
solution. This final project was a perfect way to get to know a whole new working
culture. This will be a great asset on the job market later. I have also met some friends

here, who I will cherish for the rest of my life. This was a “once in a lifetime” experience.

© Vincent Risack

This work was created as a thesis at the University of Valladolid, Departamento de
Informdtica. Copyright and law protect this work, its use without authorisation by the
author is illegal, except in cases defined by law.

Table of content

1
2

INTRODUCTION ..ot s s s s s s s enes 3
GENERAL DESCRIPTION OF THE PROJECTcconmmmmmmmmmmsmssssssssssssssssssssssssssssas 7
2.1 OBJECTIVES wovurivesiessessssssssesssssssssssssessassssasssssessssesssssssssssssessasessasssssssssnessssssssesssses emessesssssessessssassssssssessmsssnssanes 7
D O B O 4 =T e B (0T I L DO O O OO 7
2.1.2 Implement barcode SCAN APPLICALION wu..vvrevrvvsverserssssisssisssssisssssssssissans 7
2.1.3 Make connection using an API (Application Programming INterface) ..., 7
2.1.4 Retrieve the DOOK INfOTTNALION. ... ersserssesissssissssssssessssessssssassssssessssssessssesasssansess 7
2.1.5 Have the possibility for entering book data MANUAILY............coeeoveomeeroreeroreerseserssserossersserineens 8
2.1.6 Create a preview to check the retrieved iNfOrMALION........ccwecoreonserossersesrsssessssesossessseseseens 8
2.1.7 Make connection between the application AN the SETVElcmriosimesisssssisssssssssesn 8
2.1.8 Create a link to the Google BOOKS DAtADASE...........ccoweeeoreeroreerseerisisrisssersserssesissssissssssssesssesassssaseess 8
2.1.9 REQUESE A DOOK....cositrvsrssrssitssirssssisssisssisssssssssssssssissanssssssssmssssssassssssssssssans 8
2.1.10 Create the possibility to cancel a reqUested DOOKcovwrosrinseississssinssisseississsssssssssssssess 8
2.1.11 Oblige the USer t0 SElECt A DOOK USEccoreeomeerreerreerisssrissserssserssesissssissssisesessssessssesassssassssasssesns 8
2.1.12 Make sure the application respects the android CONference ... cvoreeroneernssenns 9
2.2 IMETHODOLOGY .uvutueuesssreresessssssesessssssssesassssssssssssssssessssssssssssssssssesssssssssssssssssssssssssssasssssssssssssssssassssessasssssesassass 9
2.2.1 Connecting to the database: [0GiN CONEIOL ... eeerseeroreerssirisssrissserssesssesssssisssssssesssesassssassess 9
2.2.2 Connecting to GOOGle BOOKS DALADASEcoeeerreeeerseerssersssrissseisssesssesissssissssssssssssessssesassssanns 10
2.2.3 Connection to the database: storing bOOK iNfOrMALION.........c.owevreroneeronserisseressserssserssesissssenns 11
2.2.4 Connection to the database: cancelling DOOK r@QUESE..........vevreoneeroneerinsrssseressersserinserenns 12
GENERAL DESCRIPTION OF THE PRODUCTccosusmsmsmsmsmsmsmss 13
3.1 PROGRAMMING LANGUAGES AND TOOLS ..cctvireresrsiiressssssesessss st sssssssssssssssssssssssssesssssssssssases 13
RO O S V7 T2 L4 o) (s R Y VU2 | Lo O O SOOI 13
31,2 XAIMPDP orvrrevevsreeissrsssissssssisssssssssssssssissssssssssssssssasssssssssssssasssssssssssssssassssssassssssassssssanssasssssssssnssssssssassssssanssns 13
3.1.3 JAVA (ANATOIA) ccuretrrirrorsrssrssisssesssssisssssssssssssssssssassssssesssssssssassansssssessses 13
T T o o N 13
I T L A1 13
3.2 FLOWCHART FROM COMPLETE APPLICATION ..covieiuitiereesssnsresesssssssessssssssessssssssssesssssssssssssssssssssessssssssessanes 14
3.3 EXPLANATION OF THE LAYOUT ootitvtcisirenessssesenesss st se s sssessss st sesssssssssssssssssssssssssssssesssssssssssaes 16
3.3.1 LOGIN ACLIVILY.retiiriririresscossensersssisssissesssesssssasssassesssesssesssssasssassesssessssssssssssssssesssessssssssssssesssesssssasssassesssessnes 16
3.3.2 Main activity (liDrATY SCANNEY) wvrvverseromssisssissesssessssssssisssssssssssssmssssssssssssssssmssassssssssssssssssssssassssssssanes 19
3.4 EXPLANATION OF THE CODE ..cvtusirtreesssssesesssssssessssssssssssssssssessssssssssessssssssesssssssssssssssssssssssssssassssesssssssssssases 24
R Y 1107 | 1 24
3.4.2 Main activity (liDFATY SCANNECY) wvrvversiromssisssississsessssssssisssssssssssssmssssssssssssssssmsssssssssssssssssssssssassssssssanes 29
3.4.3 JSON PATSOI ccuraverererirsrssirsrssssssssssssssssssisssassssssassssssassssssasssasssssssssnssssssssassssssanssns 42
USER AND SYSTEM REQUIREMENTS......ccommmmmmsssssssssssssssssssssssssssaes 44
41 USER REQUIREMENTSvusivusiessssesessssssssesssessasessassssssssssssssssssessssessassssanssssssansessssssesssassssssssssseessessssassssassses 45
O O B oY | 1 W 11 [11 (o T R O OO 45
4.1.2 INEEITNEE COMMECTION coorvercrrireirsseersensscrssssssissesssesssssasssassssssenssesssssssssassesssesssssassssssesssesssssssssassssssenssesasssens 45
4.2 SYSTEM REQUIREMENTS ..ucvureeuessnsseseessssssssssssessssessssssssessesessanessesssssesssssssssssssesssessasessssssnsssassssassssssssssessanens 45
4.2.1 Minimum requUired SPECIfICALIONS......ccuweoreeroseerseerisisessssesssesissesisssessssessssesassssasssssssssssssesassssassssnses 46
4.2.2 RecoOmMMENded SPECIfICALIONSccouerererrereeerseernserisessisesessssesassesassssissssssssessssesassssasssssssssssssesssssasssssssses 46
4.2.3 SOIVOI F@QUITCIMENES.cvuversrererssrisssssisssassssssssssssssssssssssssssssssssssassssssasssns 47
o 0110 0 . 49
5.1 FEBRUARY ..ouoitttimimusisissssssssssssssss s sssssssbsss bbb bbb bbb 49
5.2 MARCH coutittsisisisss s sss s ss s sss bbb bbb R SRR R AR 49
5.3 N o PPN 50
5.4 MAY eSS 51

6

10
11
12

SOFTWARE TESTS PERFORMED.......cccioiiiimisisses 53
6.1 TEST OF THE BOOK RETRIEVAL..ccetuissesesssssssresessssssssessssssssssssssssssssesssssssssssssssssssessasssssssssssssessesssssssssssnssssnses 53
6.2 TEST OF THE CONNECTION AND TRANSMISSION OF DATA TO THE SERVERccoovverersirsrrerensssssesesssssnens 54

USER MANUAL ...cotititstsesesssasssssssassssssssssssssssssssssssnssssssssssssssnsns 55
7.1 OPEN THE APPLICATION LAUNCHER AND SELECT THE LIBRARY SCANNER APP....c.cccervensrrersrrenssressrens 55
7.2 LOGIN USING THE CREDENTIALS GIVEN TO YOU BY THE SYSTEM ADMINISTRATOR ..cccccovrrerererrerererenns 55

7.2.1 LOGIN SEIVET NOL fOUN c.coueverererererreeserseerisessis i essssesassssassssasssessssessssssassssasssssssssssssssanssssssssssssssanseses 55

7.2.2 CRANGE LNE 10G [N STV c..eertrerererereeseriseerisessisessssssessssesassssassssassssssssessssssasssssssssssssssssssssnssssssssssssssanseses 56

7.2.3 Logging in with username, password 0r BOth DlANKeoreecrmreeseeronecrsesrsssresssersssenen 56

7.24 Logging in With WIONG CTEACNEIAIS........cceererereersserssirisserisssessssesissesissssisssssssessssessssssassssssssessnseses 57
7.3 MAIN APPLICATION PAGE ..utreeustsissseesssssesessss s sssssssssss s st st sssssssessss s sesssssssssssssssssssssssssssssssessssssssensaes 58

7.3.1 Retrieve ook iNfOrMAtiON ONIINE c......ceeeeeereererreerssersserisserisssessssesissesissssassssssssessssesasssssssssssssesanseses 58

7.3.2 Enter the dat@ MANUAILYcovwronseissessirisssisssississsessssssssisssssssssssssmsssssssssssssssssssssssssesssssssssssssansssssesnes 60

7.3.3 SN AAEA 0 AALADASE..cou.ceerererererreeserseerresris s esssesssssis s ssessssessssssas s s sssssessssssassssasessssssssanseses 61

7.3.4 LiNK t0 tNe fOUNT DOOK .coueeerretrreesrerstrs s evsserasse s s ssessssessssssas s s s ssssassssasssassssssssssanseses 62

7.3.5 Clear the retrieved or manually entered dEtAIlS.........oriomiisesmssimssissessessssssmssssssssessnes 63

7.3.6 Cancel one of the bOOK(S) YOUVE FEQUESEEU.........c.ceereerererrirersssirssersssrisesesssesssesissssassssssssesanseses 63
7.4 CLOSING THE APPLICATION w.utestiestressssesssressssessssessssessssessssesssesssssssssssssssessssesssssssssssssesssssesssessssessssessssessssens 64

INSTALLATION MANUAL....coitiiiimsmmmsmsmssssmsses 65
8.1 DOWNLOAD THE LIBRARYSCANNER.APK TO YOUR COMPUTER....ccceivensrrensrresrressssessssessssessssessssessssesssnens 65
8.2 TRANSFER THE LIBRARYSCANNER.APK TO YOUR MOBILE PHONEccocvuserereressesessesessesessesessesessesesseseans 65

8.2.1 WINAOWS COMPULET cuvvrrersrtssirssssisssissssssesssassssssssssssssssssssassssssesssesssssens 65

B.2.2 MOAC COMPULET wvvrtrrssrssrisssrssesssssisssissssssesssansssssessssssnssens 65
8.3 ENABLE INSTALLATION FROM UNKNOWN SOURCEScoeouuiireresussnsressssssssessssssssssessssssssssssssssssssessssssssessases 66

8.3.1 Android 5.0 (Lollypop) GNd NEWET VEI'SIONS....cuwreuseesssssessmsssssimsssssessssssssssssssssssssssmssassssssessssssssans 66

8.3.2 Android 4.X versions (Ice Cream Sandwich, Jelly Bean and Kit KQt)c.ccrouronseissersussens 67
8.4 LOCATE THE INSTALLATION PACKAGE ON THE PHONE AND EXECUTE IT ..ccouimrensrsrresesssssssesesssssseseseanns 67

L0010 00 1101 (0] . 69

LIST OF FIGURES ... s s s s s s sttt 71

LIST OF TABLES.....coicciismmssnsss s s s s s s s st ss st s ss s st s ss s 73

122027 15 (0100 37. & | 73

1 Introduction

Since touchscreen mobile phones or, as we call them, smartphones were invented there have
been multiple operating systems that have been developed as well. Nowadays we have three
big mobile operating systems: the global market leader Google’s Android OS holding a
76.6% market share, Apple’s IOS holding a 19.7% market share and Windows Phone with
2.8%. The other mobile operating systems are negligible. This final project will be about the
Android OS.

Worldwide Smartphone OS market share
(Q4 2014)

B Google Android OS
[Apple 10S

[wWindows Phone
M Biackberry OS

[others

Fig. 1: Graph from the market share (1)

Since the beginning of the development of Android it has been used to create applications to
help users make their lives easier. Because of the constant improvement of the hardware
(there are already cell phones with quad core processors and up to 4 gigabytes of RAM,
bigger screens with up to 4K ultra high definition screens, improved touch screen digitizers
with multi touch for up to 10 fingers...) from the cell phones, these applications have as well
become more powerful and a lot faster. Even the most processor consuming tasks, which on
the first Android based smartphones would have taken up to a minute will now be performed

in the blink of an eye.

Imagine you’re in a bookstore, or the library of another university you’re visiting, or even the
house of a colleague or friend. You’re browsing through the book collection and all of a
sudden you find a book that your university or company does not have. A book that could be
very useful either for the other professors, the students or colleagues. Wouldn’t it be easier to
just be able to scan the barcode and with the barcode send all the details from the book
directly to the person responsible for ordering the books? Mobile Internet or Wi-Fi are
available almost everywhere and it saves a lot of time (considering you don’t have to write all
the details down and later type those in an e-mail). This final project will be a great example

of how modern technology makes even simple tasks easier and also faster.

I was asked to create a mobile application to manage these book purchase requests made by
professors in the university. The application I have developed has the purpose of making life
easier for the professors using it. With this application they can, whenever they see a book
they’re interested in, scan the ISBN (International Standard Book Number) code. The details
from the book are then downloaded into their cell phone. If the book can’t be found online
they can manually edit it. Afterwards they can send it to a database where the University can

decide whether or not the book can and will be bought. This saves a lot of valuable time.

For the creation of this application I had to incorporate my knowledge of Android, PHP and
MySQL. It was very interesting to see the progress these coding languages have made over
the past few years. They have all become more powerful and faster. In the future this kind of

applications will be even faster to create and to execute.

The application was designed for Android 4.4 (Kit Kat) but will work on any Android
compatible Cell phone From Android 4.0 (Ice Cream Sandwich) and upwards to Android
5.1.2 (Lollypop). It has been tested on devices running Android 4.4.4 (An updated version of
Kit Kat) and Android 5.0.2 (An updated version of Lollypop). This application has also been
tested on Cyanogenmod CM11S (based on Android 4.4) and Cyanogenmod CM12S (based
on Android 5.0). These are custom ROM’s based on Google’s Android mobile system.
Because of the support starting from Android 4.0 till 5.1, this application can be used on
93.2% of the smartphones.

[Lotiipop (5.4%)

[Kitkat (41.4%)

[Jelly Bean (40.7%)

[ice Cream Sanawich (5.7%)
[Gingerbread (6.4%)

[Froyo (0.4%)

Fig. 2: Graph from the Android version spread as of 04/2015 (2)

The database was written in MySQL and provided to me by Dr. Quiliano Isaac Moro Sancho.
During the creation of this final project it was executed on a local virtual server for which the
application XAMPP version 5.6.8 was used which incorporates an Apache Server and
MySQL. The MySQL database will be managed using MyPHPAdmin that is also
incorporated into XAMPP. The PHP version was also version 5.6.8. All the connections have
been made to this local server for the ease and also the speed of working on a local network.
The application can be edited to connect to an external server while running. This function is

to be explained later in this final project.

2 General description of the project

The purpose of this project was to create a bachelor thesis. [had 4 months to complete
the project. The project was mainly coded in Android (a java based language) but I have
also used PHP and MySQL. The PHP code was used for the server side. It was used to
make the connection from the server to the database and make it able to be altered. The

MySQL code was used for the actual altering of the tables.

2.1 OBIJECTIVES

During this part of the chapter [will explain the objectives of the application I had to

create. [will also explain the ways [have decided to fulfil these objectives.

2.1.1 Createalogin

Since this application will be used for making book purchase requests, I had to
implement some security measures. For this | decided to create a log in system. Because
of this system it would be impossible for users who aren’t allowed to make book
requests to do so. It was also for this reason that I decided not to create a register user

function.

2.1.2 Implement barcode scan application
First of all I had to find a way to create an application that could scan a barcode. After
doing some research | have decided to use the intent method to implement an existing

barcode scanner into the project.

2.1.3 Make connection using an API (Application Programming Interface)

The application had to be able to retrieve book information automatically. For this [had
to be able to make a connection to the Internet. I decided to use the Google Books API
since this was well documented. The database from Google Books is also one of the most

diversified ones. This was also a great asset for using this API.

2.1.4 Retrieve the book information
For the automatic book information retrieving I had to find a way to retrieve all this
information from the Google books database. This was very good documented in the

Google Books API documentation.

2.1.5 Have the possibility for entering book data manually

The Google Books database is very large but, of course, it is impossible to have all the
books in the world in one database. If the book was not encountered in the database, the
user must also have the possibility to enter all the book information necessary for

making the request to the server to purchase the book manually.

2.1.6 Create a preview to check the retrieved information

After the book information has been retrieved from the Google Books Database the user
must first be able to check the data. If he would encounter an error he must have the
ability to make changes to this data before it being sent to the database. The preview

will be shown in the main screen of the application.

2.1.7 Make connection between the application and the server

The application has to be able to connect to the server where the database is stored.
Without this connection the application would be rather useless since its main objective
would be lost. The application sends all the data to a PHP script using the http POST
transfer protocol. This connection will be used for both sending the data retrieved from

the book and also for sending the cancel requests.

2.1.8 Create a link to the Google Books Database

The book was found in the Google Books Database and the information shown in the
preview is not detailed enough for the user. He can now open the link to the book page
in the Google Books database. With this link he can view more details about the book

and also locations and information on where to buy it.

2.1.9 Request a book
When the user has checked the retrieved or manually entered information he must be
able to make the book request. This will send the details to the server. After doing this,

the appropriate person can progress the request.

2.1.10 Create the possibility to cancel a requested book
The user must, of course, also be able to cancel a book he has requested. The database
had a built in status code for cancelled books. The cancel button will change the status of

a book, ordered by the proper user, to "cancelled”.

2.1.11 Oblige the user to select a book use
The user must choose the reason for the book request. Will he be using the book for
research or for teaching? Without the selection of the reason, the book may not be

stored in the database.

2.1.12 Make sure the application respects the android conference
Control the code with the code inspector to make sure no infractions against the

Android conference have been made.

2.2 Methodology

In this part of the chapter I will elaborate more on the ways to connect the application to
both the Google Books database and the server. [will be using diagrams to substantiate

this explanation.

2.2.1 Connecting to the database: login control
The application makes a connection to the specified URL. When the login button is
pressed a connection is established and the username and password are sent to the

server. The server uses the checklogin.php file to perform the necessary actions.

<?7php
mysql_connect("localhost", "root", "") (json_encode("cannot connect"));
mysql_select_db("books") (json_encode("cannot select DB"));

$username-$_POST['username'];
$password-$_POST['password'];

$query = " personal username '$username’ clave="'$password'";
$sqll-mysql_query($query);
$row = mysql_fetch_array($sqll);
(lempty($row)) {
$response["success"] 1;
$response["message"] = "You have been sucessfully logged in";
(json_encode($response));

{
$response["success"] = 0;
$response["message"] "invalid username or password ";
(json_encode($response));
}

}

mysql_close();

(e

Fig. 3: Screenshot from checklogin.php

During the first two lines of code the PHP script is connecting to the MySQL server. If it
cannot connect a message will be encoded telling the user (“cannot connect”). If the
connection is successful the script will try and select the table “books”. If this is not
possible a message will appear “cannot select DB”. The 2 variables username and
password are created and the values received from the application through http post are
stored.

The PHP script will now perform a query to the table personal to retrieve al the

information from the row where the field username equals the value stored in the

variable username and the field clave equals the value stored in the variable password.
This information is stored in the variable sql1.

The information from sqll is now being grouped in the variable row. This variable is
now checked. If it is not empty it means the username and password have been
encountered. The PHP script sends this back in a json-encoded message.

However if the row is empty it means the username and password combination has not
been detected. The PHP script will send a json-encoded message back to the application

informing it that the username or password is invalid.

Login check

Application Server Database

Credentials through POST ’

credential check through PHPscn‘pt}

‘ Response encoded in Json

|‘ Encoded response through POST

Application Server Database

Table 1: Sequence diagram for login.

2.2.2 Connecting to Google Books Database

The application also has to be able to connect to the Google Books Database in order to
be able to retrieve the book information. The application uses an http GET method since
the details of the request does not have to be confidential. The connection and retrieving

of the details happen as shown in the following sequence diagram.

10

Google Books connection

Application Google Books

Send ISBN query string using GET»
‘ Status code
Get entity }
l‘ Send Response

Application Google Books

Table 2: Sequence diagram from the connection and retrieving of book details

2.2.3 Connection to the database: storing book information

The connection to the database for sending the book details is the same as for checking
the login credentials. The only difference is that there are more parameters being sent
and that they are being handled by another PHP script named addtodatabase.php. The
server will also send a response to whether the storing of the details was successful or

not.
<?php

mysql_connect("localhost", "root", "") ("cannot connect");
mysql_select_db("books") ("cannot select DB");

$author-$_POST['auth
$title-$_POST['title'];
$year-$_POST['year'];
$isbn-$_POST['isbn'];
$usrnme-$_POST['usrnme'];
$docencia-$_POST['docencia'l;

$query = " libros_total autor 'sauthor' titulo='stitle’ anno="'$year' estado='10"'";
$sql-mysql_query($query);
$row = mysql_fetch_array($sql);
(empty($row)) {
mysql_query (" libros_total (id, pet_id, personal_id, fecha_pet, docencia, autor, titulo, anno,
editorial_id, isbn, precio, entidad_pago_id, proveedor_id, fecha_ped, fecha_lleg, libro_id, localizado,
signatura, incidencias, estado, username) (DEFAULT, q , NOW(), 'sdocencia', '$author’','stitle’,
'$year’, , '$isbn', q] q q q q ; ; , '10', 'Susrnme')");
$response["message"] - 1;

}

$response["message"] = 0;

(json_encode($response));
mysql_close();
el

Fig. 4: Screenshot from the addtodatabase.php script

The working of this script starts the same as the checklogin.php script. The difference is
that the database will search the table libros_total for the book. It will search for a row
where the author, title and year are the same as the ones provided by the application. It
will also check if the user hasn’t requested the book already (Status code 10). If this is
the case the script will send back a message “0” which will then be interpreted by the
application. If the script doesn’t encounter the book in the table it will add the book
details into it and send back a message “1”.

11

2.2.4 Connection to the database: cancelling book request

This connection happens the same way as the one to the database for Storing book
information and the login control. A different PHP script will once again handle the data
received by the server. The script handling the cancel request can be seen in the

screenshot underneath.

<?php
mysql_connect("localhost", "root", "") ("cannot connect");
mysql_select_db("books") ("cannot select DB");

$author-$_POST['author'];
$title-$_POST['title'];
$usrnme-$_POST['usrnme'];

$query = " libros_total autor 'sauthor' titulo='$title’ username="'$usrnme' estado-'10'";
$sql2-mysql_query($query);
$row = mysql_fetch_array($sql2);

(empty($row)) {
$response["message"] - 0;

{

$response["message"] = 1;
mysql_query (" libros_total estado="'999' autor = '$author' titulo="'stitle’ username="$usrnme' estado='10'");

}

(json_encode($response));
mysql_close();
>

Fig. 5: Screenshot from the cancelorder.php script

This script will perform a query in the table libros_total to search for the book provided
by the application. It uses the title, author and username provided by the application. It
will also check if the state is still “10”. This state means the request has been sent but the
book has not been ordered yet. If the book is encountered and the status is “10” the
status of the book is updated to “999”. The script will than send a message “1” to the
application. If the book is not encountered the script will send a message “0” to the

application.

12

3 General description of the product

The application will be described here. I will first explain the tools and programming
languages used for this application. Then I will use a flowchart to explain the basic
operations of the application. After the flowchart and explication I will explain the code
used to create this application. I will start with the XML or layout file and then go to the

android code.

3.1 Programming languages and Tools

I will start explaining the tools I've used and will then explain the programming

languages.

3.1.1 Android Studio

The Android application was created using Android studio. This is an IDE (Integrated
Development Environment) based on the intelli] platform. This application is the official
android development tool. It can be downloaded from the android developers website.

You will also need the SDK (android Software Developer Kit).

3.1.2 Xampp
This was the tool I used for creating the server. It is a basic webserver with MySQL

integration. This server runs the PHP scripts and the database.

3.1.3 Java (android)
The code used for creating android programs is Java. Java is a code that doesn’t compile
to native processor code but is ran on a virtual machine. On android this virtual machine

is called Dalvik. Since android 5.0 there’s a new virtual machine integrated in the
android system called ART (Android RunTime).

3.14 PHP

PHP or Hypertext Pre-processor is a scripting language. For this project [have included
the SQL injections into the PHP script files. These files are stored on the server and
executed when there’s data sent to them. It will make the server connect to the database

and table and perform the actions.

3.1.5 MySQL
MySQL or My Structured Query Language is the most used open source relational
database management system. In the application the server uses a MySQL Database for

storing the books.

13

3.2 Flowchart from complete application

Log in

Username
and password in
database

Notification

Yes

Library scanner
main activity

S —

Scan a book and
search on Google
Books

Manually enter
data

Book Cancelled

encountered? notification

Clear button

Notification Yes

Book
encountered
through
barcodescan?

Library scanner
main activity with Cancel book
preview

Book
encountered
and username
correct?

Send
data
Yes 3
 J
) Send book to | send > Database —No
Link to google database data
books

Book
encountered
and not yet
ordered?

Place book in

database

Table 3: Flowchart from the complete application

As you can see from the flowchart, the application boots to the login screen. It is
impossible to utilise the application without being logged in. For the log in the
application connects to the database in which the log in credentials are stored. If it
encounter the login credentials provided it will open the library scanner main activity. If
the credentials provided are not encountered the user will get a notification and the
application will not open the main activity.

14

In the main activity you can choose one out of two options. You can choose to scan the
ISBN barcode from the book or you can enter the required data manually. When chosen
to scan the ISBN, the application sends the data to Google Books. If the book is not
encountered in the database the application will give a notification and you will have to
enter the data manually. If the application did encounter the book on Google Books You

will return to the main activity but with a preview from the book.

On this main activity with preview you have some more options. If some of the data is
incorrect you are able to alter it before sending it to the database. If the book was
scanned and the information was found in the Google Books database you will now also
see a link button named “Web”. After clicking this button a web view will open with a

link to the page of the book on Google Books.

When chosen to send the book to the database or to cancel the book the same action
happens. The details that are filled into the application are sent to the database.
Depending on which button you pressed the database will search if it already
encounters the book. If you have clicked the “send to database” button and the book is
not encountered in the database with a status code of “10” the book will be added.
However if the book is encountered in the database with a status code “10” the
application will give the user a notification and return to the main activity screen with
preview. If you pressed the “cancel button”, the application will search the database for
the title and author provided by the application and the username of the person logged
in. This is to make sure you cannot cancel a book request from another user. If these
parameters are encountered in one row, the status from the book will be updated to
“999” which is the status code for “cancelled”. If the parameters are not encountered in

one row the application will give a notification that the user hasn’t requested the book.

There’s also a clear button available. By clicking on this button all the entered data will
be erased. You will basically return to the main activity screen like it was when you have
just logged in. This is the basic principle of the application explained through a
flowchart. You can exit the application at any time by pressing the home button or the
back button.

15

3.3 Explanation of the Layout

During this part of the chapter I will explain the layout of both the main activity and the
login. [will do this using screenshots and the XML files. [will begin explaining the login
and then the main activity

3.3.1 Login activity

<?xml version="1.0" encoding="utf-8"7>

<Relativelayout xmlns:android="http://schemas.android.com/apk/res/android"
android:orientation="vertical"
android:layout_width="match_parent"
android:layout_height="wrap_content">

<Button
android:id="@+id/login"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignStart="@+id/password"
android:layout_alignEnd="@+id/password"
android:layout_alignLeft="@+id/password"
android:layout_alignRight="@+id/password"
android:layout_below="@+id/password"
android:text="@string/Login" />

<EditText
android:id="@+id/username"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignStart="@+id/password"
android:layout_alignLeft="@+id/password"
android:ems="10"
android: focusable="true"
android:inputType="textVisiblePassword"
android:hint="Enter username"
android:imeOptions="actionNext" />

<EditText
android:id="@+id/password"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_below="@+id/username"
android:layout_centerHorizontal="true"
android:ems="10"
android:hint="Enter Password"
android:imeOptions="actionDone"
android:inputType="textPassword" />

16

<EditText
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:id="@+id/ipAddress"
android:hint="@string/ipaddr"
android: text="@string/IpAddress"
android:layout_marginTop="214dp"
android:layout_alignParentTop="true"
android:layout_centerHorizontal="true"
android:imeOptions="actionDone"
android:inputType="textVisiblePassword" />

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android: text="Change Server IP"
android:id="@+id/changelp"
android:layout_below="@+id/ipAddress"
android:layout_centerHorizontal="true" />

</Relativelayout>

Fig. 6: Screenshot from the login.xml file

As you can see from the XML file, the login screen is build up in a relative layout. I have
only declared the vertical orientation (using android:orientation="vertical”) since I have

forced the application to only work in the vertical orientation in the android manifest.

In the relative lay out there are two buttons and three edit Text fields. The edit Text
fields are used as inputs for the login activity. The buttons are used to confirm the login
or to change the IP address. The Password edit Text is aligned in the center of the
screen. (android:layout_centerHorizontal="true”) and the username edit Text is aligned
with the one for the password. This makes sure that even on smaller screens the login
and username input will stay central. The edit Text also have a declared input type. For
the username I chose text visible password. This is so that people using a non standard
application as a keyboard (for example swiftkey) don’t get the autocorrect and library. It
is not best practise to have the autocorrect on while entering a username or password.
For the password input | have chosen the input type text password. This makes sure that
when you enter the password it is not visible. I also integrated ime options (Input
Method Editor) to change the enter button. (10) While entering the username clicking

the enter button will make you go to the password input. While entering the password,

17

clicking the enter button will make the keyboard disappear since the input of credentials
will be done.

nn

[have been using hints (android:hint="") to inform the user what to enter where. When
the fields are empty the hint appears in the input field. The IP address field is filled out
on the boot of the application with the [P address integrated in the application. This can

easily be changed in the code.

The buttons are not hardcoded. This means the values are not integrated in the code of
the XML but in a separate file holding all the strings. This is conforming the android

convention. Below you can see a screenshot of the lay out as displayed on a smartphone.

iy & 4 57% 22:35

Fnter username

Enter Password

LOGIN

192.168.0.101

CHANGE SERVER IP

Fig. 7: Screenshot from the layout on mobile phone

18

3.3.2 Main activity (library scanner)

<ScrollView xmlns:android="http://schemas.android.com/apk/res/android"
xmlns:tools="http://schemas.android.com/tools"
android:layout_width="fill_parent"
android:layout_height="fill_parent">

<Relativelayout
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:padding="10dp">

<Button
android:id="@+id/scan_button"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_centerHorizontal="true"
android:padding="10dp"
android:background="#ff333333"
android:textColor="#ffcccccc"
android:text="Scan a Book" />

<LinearLayout
android:layout_width="match_parent"
android:layout_height="match_parent"
android:orientation="vertical"
android:layout_below="@id/scan_button"
android: focusableInTouchMode="true"
android:id="@+id/linearLayout">

<ImageView
android:id="@+id/thumb"
android:layout_width="60dp"
android:layout_height="80dp"
android:contentDescription="Book thumbnail"™ />

<EditText
android:id="@+id/bookTitle"
style="7android:attr/textViewStyle"
android:background="@null"
android: textColor="@null"

android: layout_width="match_parent"
android:layout_height="wrap_content"
android:textIsSelectable="true"

android: textStyle="bold"
android:inputType="textVisiblePassword | textCapWords"
android:imeOptions="actionNext"
android:hint="@string/title" />

Fig. 8: Screenshot from the first part of the XML file

19

In this part of the XML layout file I have declared the following components. I started
with a scroll view inside which I have put all the following components. This was
necessary if the text retrieved was very large, or for mobile phones with smaller screens
than the ones the application was tested on. Without this scroll view a part of the
retrieved details would be unable to read. It could also be impossible to reach the

buttons at the bottom of the page.

In the scroll view | have integrated a relative view that fills up the entire scroll view with
a 10 dp (Density-independent Pixels) padding on every side. Inside this relative view I
first added the scan button. This button will be used for starting the integrated barcode
scanner. The button is aligned in the center of the screen horizontally and the colours

are darker than the other buttons.

In this relative view I also integrated a vertical linear layout. This is coded to have the
same width as the parent, which is the relative view. Inside of the linear layout there’s
an image view and an edit text declared. The image view will be used for displaying the
book cover. It has a fixed width and height of 60dp * 80 dp. The edit text has been
altered to look like a text View. The reason I did this was to make it able to edit the
retrieved information if something would be wrong. It has no background colour nor
text colour this means it will use the standard ones from the theme. Its height is
controlled by the content and the width is the same as the parent. The text is selectable
otherwise it would be impossible to alter, and is written in bold. This is to make a clear
difference between the title and the author. The input type will make sure the
autocorrect option does not open and that the text is written in camel case (every word
starts with a capital letter). The enter button has been replaced with a “go to next input”
option.
<EditText

android:id="@+id/bookAuthor"

style="7android:attr/textViewStyle"

android:background="@null"

android:textColor="@null"

android:layout_width="match_parent"

android:layout_height="wrap_content"

android: textIsSelectable="true"

android:inputType="textVisiblePassword | textCapWords"

android:imeOptions="actionNext"
android:hint="@string/Authors" />

20

<EditText
android:id="@+id/book_date"
style="7android:attr/textViewStyle"
android:background="@null"
android:textColor="@null"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:textIsSelectable="true"
android:inputType="numberDecimal"
android:maxLength="4"
android:imeOptions="actionNext"
android:hint="@string/Date" />

<TextView
android:id="@+id/bookDescription"
android:layout_width="match_parent"
android:layout_height="wrap_content"
android:textColor="#ff000000"

android:textIsSelectable="false" />

<LinearLayout
android:id="@+id/starLayout"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:orientation="horizontal">

<TextView

android:id="@+id/bookRatingCount"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:textColor="#ff2d6994"
android:textIsSelectable="true"
android:textStyle="italic" />

</LinearlLayout>

Fig. 9: Screenshot form the second part of the XML file

After the previous lines of code this text will explain the part of the XML file above. The
edit Text for the Author(s) of the book is declared the same way as the one for the title.
The big difference is that the text is not written in bold. The enter button has also been

replaced with the “go to next input” option.

The next edit Text declared is the one for the publication year. It uses the same style as
the title and author edit Text. The input has been changed to number decimal. This is to
make sure only numbers are entered. The text is selectable to make it possible to alter

the text if the one retrieved would be incorrect. The maximum number of decimals

21

entered is 4. This is because only the year is important to the application. The enter

button has also been replaced with the “go to next input” option.

The text View is used to display the description from the book. I have not changed this to
an edit Text because it is used for giving extra information that will not be used by the
application. The text colour is slightly lighter than the rest of the texts. It is not selectable
because the application will not use it. The height is adjusted by its content because you

can never know how long a description will be. The width is the same as his parent.

Inside of this linear layout there’s another linear layout but this one is declared
horizontal. The width and height of this layout are declared by its content. This linear lay
out will be used to show the stars from the rating. Inside of it there’s a text View. It is

inside this text view that the stars will be displayed.

<LinearLayout
android:layout_width="match_parent"
android:layout_height="fill_parent"
android:orientation="horizontal">

<Button
android:id="@+id/SendDataButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android: text="Send Data"
tools:ignore="ButtonStyle"
android:layout_weight="1" />

<Button
android:id="@+id/linkButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android: text="@string/link"
tools:ignore="ButtonStyle"

android:layout_weight="1" />

<Button
android:id="@+id/ClearButton"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android: text="clear"
tools:ignore="ButtonStyle"
android:layout_weight="1" />
</LinearlLayout>
</LinearlLayout>

22

<Button
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:text="Cancel Order"
android:id="@+id/CancelButton"
android:layout_below="@+id/linearLayout"
android:layout_alignParentLeft="true"
android:layout_alignParentStart="true"
android:layout_alignRight="@+id/linearLayout"
android:layout_alignEnd="@+id/linearLayout" />
</Relativelayout>
</ScrollView>

Fig. 10: Screenshot from the third part of the XML

In this last part of the XML the linear layout for the buttons is declared. The orientation
of this linear layout is horizontal. The width is matching the parent and the height is to
fill the parent. There are 3 buttons declared inside of this linear layout. The link button
is hidden until the book has been encountered in the Google Books database. Each
button will have a width equal to 1/2 of the width from the row when there are only two
buttons visible or 1/3 of the width from the row when the three buttons are visible. This
is because of the android:layout_weight="1" parameter. The buttons all have the same
width and height. The text is soft coded on them. Both of the linear layouts are now

closed.

The last button is placed inside of the original relative layout. It uses the complete width
of his parent and places the text in the center of the button. This is the cancel button. It is

placed underneath the linear layout. After this button the relative layout is closed and

i & 4 40% 02:16
Library Scanner

SCAN A BOOK

the scroll view as well.

Title
Author(s)
Year

SEND DATA CLEAR

CANCEL ORDER

Fig. 11: Screenshot from the main activity implementing the XML

23

3.4 Explanation of the code
During this part of the chapter [will be explaining the code used for making the whole
application work. The covered parts will be: Login, main activity (library scanner) and

Jsonparser. The code will be divided in smaller parts, which will then be explained.

3.4.1 Login

import android.app.Activity;
import android.app.ProgressDialog;
import android.content.Intent;
import android.os.AsyncTask;
import android.os.Bundle;

import android.view.View;

import android.widget.Button;
import android.widget.EditText;
import android.widget.Toast;

import org.apache.http.NameValuePair;

import org.apache.http.message.BasicNameValuePair;
import org.json.JSONException;

import org.json.JSONObject;

import java.util.ArraylList;
import java.util.List;

import static android.widget.Toast.LENGTH_SHORT;
import static android.widget.Toast.makeText;

Fig. 12: Screenshot from the imports used by the login

The code above shows which parts of the android library are imported and thus used in
this part of the application. You can see some of the very standard imports, like
android.widget.button, edit Text and toast. But also the import that will be used for
performing tasks in the background. This is the Asynctask import. The intent import
makes sure we can start another activity from this one. The apache imports are used to
make a connection to the database to check the login credentials. This will be explained

later in this part of the chapter.

24

public class Login extends Activity implements View.OnClickListener {
private EditText username, password, ipAddress;
private Button loginButton, ipChangeButton;
private ProgressDialog progressDialog;
private final JSONParser jsonParsing = new JSONParser();
private String loginUrl = "http://192.168.0.101/library/checklogin.php";
private static final String Success = "success";
private static final String Message = "message";

Fig. 13: Screenshot from the declaration of the variables used by the login

In this part of the code the variables are declared that will be used globally. We can see 3
edit text fields, two buttons one progress dialog, one Jsonparser class and three strings.
The login class will implement the on click listener. It is easier and more readable to
declare the on click listener here. It simplifies the code. The last four lines of code will
not be viewable for the end user.
@0verride
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R. layout. login);
username = (EditText) findViewById(R.id.username);
password = (EditText) findViewById(R.id.password);
ipAddress = (EditText) findViewById(R.id.ipAddress);
loginButton = (Button) findViewById(R.id.login);
ipChangeButton = (Button) findViewById(R.id.changelIp);

loginButton.setOnClickListener(this);
ipChangeButton.setOnClickListener(this);

}

Fig. 14: Screenshot from the declarations and click listeners

Here I will explain the on create method. The saved instance state is used to save the
state from the application if it has to be rebuilt. This is useful if the application changes
orientation. Because I've forced the application to only display vertical this bundle will
always be null. The super method is to call the constructor from the parent class and the

set content view is used to link the XML file to the code.
The find view by id is used to declare the buttons, edit texts... in the code above it links
the buttons from the XML to the names of the variables in front. For example: the edit

text field in the XML file named username will be linked to the username variable.

The set on click listener is used to declare that there will be an event that will happen

after being clicked. The “this” keyword is a reference to the current object.

25

@0verride
public void onClick(View v) {

if (v == loginButton) {
if (username.getText().toString().equals("") && password.getText().toString().equals("")) {
makeText(Login.this, "Fill in Username and Password!", LENGTH_SHORT).show();
}

if (username.getText().toString().equals("") & !password.getText().toString().equals("")) {
makeText(Login.this, "Fill in Username!", LENGTH_SHORT).show();

}

if (password.getText().toString().equals("") && !username.getText().toString().equals("")) {
makeText(Login.this, "Fill in Password!", LENGTH_SHORT).show();

}

if (!username.getText().toString().equals("") && !password.getText().toString().equals("")) {
new TrylLogin().execute();
}

}

if (v == ipChangeButton) {
loginUrl = "http://" + ipAddress.getText().toString() + "/library/checklogin.php";
Toast toast = makeText(getApplicationContext(), "Server IP changed to: " + loginUrl, LENGTH_SHORT);
toast.show();

}
}

Fig. 15: Screenshot from the code used by the login button and the IP change button

After a button has been clicked this part of the code will search for the id of the button
that was clicked. If it was the login button, the code from the first “IF” sequence will be
executed. If the clicked id equals the IP Change button the code behind the second major

“IF” sequence will be executed.

When the login button is pressed this code will convert the text entered in the username
and password text fields to a string object. It will then check if neither of these objects is
null. If one or both of the string objects is null a warning message (toast) will appear. Id
both the strings are not null it will execute the try login class. This class will be explained

here beneath.

When the IP change button is pressed the variable LoginUrl will be changed to the new
value stored in the IP address text field. It will automatically add “http://” + the content
of the IP address text field + “/library/checklogin.php”. There will also be a notification
displayed at the bottom of the screen telling you that the server IP address has been
changed to the variable LoginUrl.

private class TrylLogin extends AsyncTask<String, String, String> {

@0verride

protected void onPreExecute() {
super.onPreExecute();
progressDialog = new ProgressDialog(Login.this);
progressDialog.setMessage("”Log in in progress!");
progressDialog.setIndeterminate(false);
progressDialog.setCancelable(true);
progressDialog.setCanceledOnTouchOutside(false);
progressDialog.show();

}

Fig. 16: Screenshot from the code before execution of the try login class

26

The class Try Login implements the Asynctask. This is to make sure activities can be
executed in the background. This part of the code will be executed before starting the in
background process. This code will create a progress dialog named progress Dialog. This
dialog will be available in the login activity. The message to be displayed is set to “log in
in progress!). The progress dialog is also indeterminate. This means that it is impossible
to calculate the progress it has already executed. Because of this it will not show a
progress bar. The progress dialog is cancellable. This means you can dismiss it by
pressing the back button once. The cancel on touch outside is set to false so that the
progress dialog is not dismissed when the user clicks next to it. The progress dialog is

now being showed. The user can now see it on his screen.
@0verride
protected String doInBackground(String... args) {
int success;
String username = Login.this.username.getText().toString();
String password = Login.this.password.getText().toString();
try {
List<NameValuePair> parameters = new ArraylList<>();
parameters.add{new BasicNameValuePair("username", username));
parameters.add(new BasicNameValuePair("password", password));
JSONObject json = jsonParsing.makeHttpRequest{loginUrl, parameters);
if (json !'= null) {
success = json.getInt(Success);
if (success == 1) {
Intent ii = new Intent(Login.this, MainActivity.class);
ii.putExtra("url", loginUrl);
ii.putExtra("usrnme", username);
startActivity(ii);
finish();
return json.getString(Message);
} else {
return json.getString(Message);
}

}
}
catch (JSONException e) {
e.printStackTrace();
}

return null;

}

Fig. 17: Screenshot from the code executed in the background by the try login class

The code above is the Do in background method. Here is where the actual execution of
the main code from the Try Login class is being executed. It will first retrieve the two
variables username and password. Then it will add them to an array list of
namevaluepairs named parameters. The name value pair is a special combination
between key and value. The two variables username and password will be added to the
array list parameters. The keys are username and password (the first part of the name

value pair) and the values are the variables stored in username and password. The class

27

will then create a json object. This json object will be equal to the result from the code
that has been sent to the makehttprequest part of the jsonParsing Class. This will be

explained later in the code.

If the json object returned is not null then the code can continue. The integer success
equals the integer retrieved from the json object. If this integer equals “1” then the Main
activity will be started through an intent. First the intent has to be created and linked
between the login activity and the main activity. With the help of the “add extra”
parameters the username and LoginUrl are being transferred from this to the following
activity. The code will also return the json.getstring object this will be used in the next
part of the code. If the code is impossible to execute a Jsonexception will be caught. The

error log will then show the stacktrace.

protected void onPostExecute(String message) {
progressDialog.dismiss();
if (message == null) {
makeText{Login.this, "server not found!", LENGTH_SHORT).show();
}
if (message != null) {
makeText(Login. this, message, LENGTH_SHORT).show();
}

}

Fig. 18: Screenshot from the code executed after the try login class

In the last part of the login activity the progress dialog will be dismissed. The user can
now no longer see the dialog. If the message object received from the do in background
method is null, it means the server has not been encountered. The application will give a

notification to the user that the server is not found.

If the message is not null than the application will show the message received. This

message will be “logged in successfully!”. This is the end of the login activity.

28

3.4.2 Main activity (library scanner)
package be.vives.vincent. libraryscanner;

import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import
import

import
import

import
import
import
import
import
import
import
import
import
import
import

import
import
import
import
import
import
import
import

android.app.AlertDialog;
android.app.ProgressDialog;
android.content.DialogInterface;
android.content.Intent;
android.graphics.Bitmap;
android.graphics.BitmapFactory;
android.net.Uri;

android.os.AsyncTask;

android.os.Bundle;
android.support.v7.app.AppCompatActivity;
android.view.View;
android.view.WindowManager;

android.view. inputmethod. InputMethodManager;
android.widget.Button;
android.widget.EditText;
android.widget.ImageView;
android.widget.LinearLayout;
android.widget.TextView;
android.widget.Toast;

com.google.zxing. integration.android.IntentIntegrator;
com.google.zxing. integration.android.IntentResult;

org.apache.http.HttpEntity;
org.apache.http.HttpResponse;
org.apache.http.NameValuePair;
org.apache.http.StatusLine;
org.apache.http.client.HttpClient;
org.apache.http.client.methods.HttpGet;
org.apache.http.impl.client.DefaultHttpClient;
org.apache.http.message.BasicNameValuePair;
org.json.JSONArray;

org.json.JSONException;
org.json.JSONObject;

java. io.BufferedInputStream;
java. io.BufferedReader;
java.io.InputStream;
java.io.InputStreamReader;
java.net.URL;
java.net.URLConnection;
java.util.ArraylList;
java.util.List;

Fig. 19: Screenshot from the imports of main activity

29

The code displayed before is used to import the different parts of the android library
that will be used. There are a lot of standard imports like the buttons, texts... and some
more specified ones like the buffered input stream. There are also custom ones like the
ZXing integration. These have to be imported to be able to use the ZXing barcode scan

functionalities.

public class MainActivity extends AppCompatActivity {
private Button SendButton;
private Button LinkButton;
private EditText authorText, titleText, dateText;
private ImageView coverView;
private ImageView[] starViews;
private final JSONParser jsonParser = new JSONParser();
private LinearLayout starLayout;
private ProgressDialog progressDialog, progressDialog2, progressDialog3;
private String scanContent, booktype, loginUrl, username;
private static final String Message = "message";
private TextView rating, descriptionText;

Fig. 20: Screenshot from the declaration of variables. And Jsonparser class

This is the declaration of the variables used in the main activity. Also the Jsonparser
class is declared. This class is used for sending the data to the database and retrieving it.
This code will be explained more in the appropriate subchapter. As you can see there are
two buttons declared globally, three edit Texts, an image view for showing the cover,
and an array of image views for showing the rating. There are also three progress
dialogs, four strings and two text views. The main activity will use the App compat
Activity. This is a way to have the same exact theming throughout the complete

application.

@0verride

protected void onCreate(Bundle savedInstanceState) {
loginUrl = getIntent().getStringExtra("url™);
username = getIntent().getStringExtra("usrnme");
super.onCreate(savedInstanceState);
setContentView(R. layout.activity main);
this.getWindow().setSoftInputMode(WindowManager.LayoutParams.SOFT_INPUT_STATE_ALWAYS_HIDDEN);
Button scanButton = (Button) findViewById(R.id.scan_button);
Button cancelButton = (Button) findViewById(R.id.CancelButton);
Button clearButton = (Button) findViewById(R.id.ClearButton);
SendButton = (Button) findViewById(R.id.SendDataButton);

Fig. 21: Screenshot from the on create method
The on create method is very similar to the one used in the login activity. First we will
retrieve the values received through the intent. These values will be stored in the
variables LoginUrl and username. The layout is linked to the activity_main.xml file. And
the keyboard is hidden on the start of the activity. The scan, cancel and clear button are
now being linked to the buttons declared in the layout. These three buttons are declared

locally. The send button is also linked to the right button declared in the layout.

30

SendButton.setOnClickListener((v) - {

if (lauthorText.getText().toString().equals("") &% !titleText.getText().toString().equals("")
&& !dateText.getText().toString().equals("")) {
final AlertDialog.Builder menuPopup = new AlertDialog.Builder(MainActivity.this);
final String[] options = {"Teaching", "Research"};
menuPopup.setTitle("Book usage");
menuPopup.setItems(options, (dialog, item) - {
switch (item) {
case 0:
booktype = "0";
new SendToDatabase().execute();
break;
case 1:
booktype = "1";
new SendToDatabase().execute();
break;
}
3
AlertDialog menuDrop = menuPopup.create();
menuDrop.show() ;

}

Fig. 22: Screenshot from the on click listener first part: empty input protector

When the send button is clicked the code will transform the data inputted into the title,
author and publication year fields to a string. This string is then compared to make sure
it isn’t empty. If the strings aren’t empty the following code will be executed. On
execution of the code there will be a pop up created in the form of an alert dialog. Here
the user will have to choose between 2 options: “teaching” or “research”. As long as this
hasn’t been selected the application will not continue. After selecting one of the options
the details are now sent to the Send To Database class. This class will be explained later

on.

if (authorText.getText().toString().equals("") & titleText.getText().toString().equals("")
&% dateText.getText().toString().equals("")) {
Toast toast = Toast.makeText(getApplicationContext(), "Add the title, the author(s) and the publication year!",
Toast.LENGTH_SHORT) ;
toast.show();

if (authorText.getText().toString().equals("") & !titleText.getText().toString().equals("")
&% !dateText.getText().toString().equals("")) {
Toast toast = Toast.makeText(getApplicationContext(), "Add the author(s)!", Toast.LENGTH_SHORT);
toast.show();

if (lauthorText.getText().toString().equals("") & titleText.getText().toString().equals("")
&% !dateText.getText().toString().equals("")) {
Toast toast = Toast.makeText(getApplicationContext(), "Add the title!", Toast.LENGTH_SHORT);
toast.show();

if (lauthorText.getText().toString().equals("") & !titleText.getText().toString().equals("")
&& dateText.getText().toString().equals("")) {
Toast toast = Toast.makeText(getApplicationContext(), "Add the publication year!", Toast.LENGTH_SHORT);
toast.show();

if (authorText.getText().toString().equals("") && titleText.getText().toString().equals("")
&& !dateText.getText().toString().equals("")) {
Toast toast = Toast.makeText(getApplicationContext(), "Add the author(s) and title!", Toast.LENGTH_SHORT);
toast.show();

if (authorText.getText().toString().equals("") && !titleText.getText().toString().equals("")
&& dateText.getText().toString().equals("")) {
Toast toast = Toast.makeText(getApplicationContext(), "Add the author(s) and publication year", Toast.LENGTH_SHORT);
toast.show();

if (lauthorText.getText().toString().equals("") && titleText.getText().toString().equals("")
&& dateText.getText().toString().equals("")) {

Toast toast = Toast.makeText(getApplicationContext(), "Add the title and publication year", Toast.LENGTH_SHORT);
toast.show();

Fig. 23: Screenshot from the click listener second part: warning messages.

31

The code before is the second part of the on click listener. This is the code I used for the
protection of the code. Since the code is not being executed if one or more of the input
fields are empty | had to implement a way to warn the user that he needs to fill in the
fields. As you can see from the code there are seven different cases. Each case is a
different combination of one or more input fields being empty. The user will see a
message at the bottom of the screen in the form of a toast explaining which fields need

to be filled in for the application to able to send the data to the database.

authorText = (EditText) findViewById(R.id.bookAuthor);
authorText.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {
InputMethodManager imm = (InputMethodManager) getSystemService(INPUT_METHOD_SERVICE);
imm.showSoftInput(authorText, InputMethodManager.SHOW IMPLICIT);
getWindow().setSoftInputMode(WindowManager.LayoutParams.SOFT_INPUT STATE_VISIBLE);
}
};
titleText = (EditText) findViewById(R.id.bookTitle);
titleText.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {
InputMethodManager imm = (InputMethodManager) getSystemService(INPUT_METHOD_SERVICE);
imm.showSoftInput(titleText, InputMethodManager.SHOW IMPLICIT);
getWindow().setSoftInputMode(WindowManager.LayoutParams.SOFT_INPUT_STATE_VISIBLE);
}
s
descriptionText = (TextView) findViewById(R.id.bookDescription);
dateText = (EditText) findViewById(R.id.book_date);
dateText.setOnClickListener(new View.OnClickListener() {
public void onClick(View v) {
InputMethodManager imm = (InputMethodManager) getSystemService(INPUT_METHOD_SERVICE);
imm.showSoftInput(dateText, InputMethodManager.SHOW IMPLICIT);
getWindow().setSoftInputMode(WindowManager.LayoutParams.SOFT_INPUT_STATE_VISIBLE);
}
s

Fig. 24: Screenshot from the method to utilise keyboard in the edit texts

The code above is used for making sure the keyboard will open when one of the edit text
fields are selected. After clicking on the edit text field the keyboard will pop up. Because
of the different lay outs I had to implement this code. The original pop up from the

keyboard on the selection of an edit text was not being executed anymore.

starLayout = (LinearLayout) findViewById(R.id.starlLayout);
rating = (TextView) findViewById(R.id.bookRatingCount);
coverView = (ImageView) findViewById(R.id.thumb);
starViews = new ImageView[5];
for (int s = @; s < starViews.length; s++) {

starViews[s] = new ImageView(this);
}

Fig. 25: Screenshot from the code creating the layout for the ratings

Here will I edit the linear layout named star layout. With this code there will be an image
view created to show the cover, this is named the cover view and an array of image
views for displaying the stars after the rating will be retrieved from the Google Books

database.

32

LinkButton = (Button) findViewById(R.id.linkButton);
LinkButton.setVisibility(View.GONE);
LinkButton.setOnClickListener{new View.OnClickListener() {
@0verride
public void onClick(View v) {
if (v.getId() == R.id.linkButton) {
String tag = (String) v.getTag();
Intent webView = new Intent{Intent.ACTION_VIEW);
webView.setData(Uri.parse(tag));
startActivity(webView);

}
);
Fig. 26: Screenshot from the code for the web view linking Google Books (11)

The link button is declared locally and linked to the link button declared in the XML file.
This button is hidden (since it will only appear after the book has been found in the
Google Books database) and the on click listener is declared. When the button is clicked,
the code will retrieve the URL through the v.getTag() command. Then an intent will
open a new action view (new screen) with in this screen a web view. The web view will
receive the URL through the setdatauri.parse(tag). Because of this the webview will be

opened to the right page immediately

scanButton.setOnClickListener({(v) - {
IntentIntegrator integrator = new IntentIntegrator(MainActivity.this);
integrator.addExtra("SCAN_WIDTH", 640);
integrator.addExtra("“SCAN_HEIGHT", 480);
integrator.addExtra("PROMPT_MESSAGE", "Scan the ISBN!");
integrator.initiateScan(IntentIntegrator.PRODUCT_CODE_TYPES);

}
);
Fig. 27: Screenshot from the code starting the barcode scanner

When the scan button is clicked the following code will be executed. A new intent
integrator named integrator will be created in the main activity. There will be extra
details sent to the scanner. The scan width, height and a message will be passed. Then
using the initiate scan command, the barcode scanner will start and show a square from
480*640 dp. The message scan the ISBN will also be displayed.

clearButton.setOnClickListener(new View.OnClickListener() {

@0verride

public void onClick(View v) {
titleText.setText("");
authorText.setText("");
dateText.setText("");
starLayout. removeAllViews();
rating.setText("");
coverView.setImageBitmap(null);
descriptionText.setText("");
LinkButton.setVisibility(View.GONE);

);

Fig. 28: Screenshot from the code from the clear button

33

«n

When the clear button is clicked the code will empty all the edit text’s contents to “” or
an empty string. This will make sure that the status of the main activity will be exactly
the same as when the main activity was first started after the log in. The reason I did this
is to make sure you can scan multiple books one after another without having to close
the application and log in again. This code helps with the comfort from the user.

cancelButton.setOnClickListener{new View.OnClickListener() {
public void onClick(View v) {

if (lauthorText.getText().toString().equals("") &% !titleText.getText().toString().equals("")) {
new CancelBookOrder().execute();

}

if (authorText.getText().toString().equals("") &% titleText.getText().toString().equals("")) {
Toast toast = Toast.makeText(getApplicationContext(), "Add the title and the author(s)!", Toast.LENGTH_SHORT);
toast.show();

}

if (authorText.getText().toString().equals("") &% !titleText.getText().toString().equals("")) {
Toast toast = Toast.makeText(getApplicationContext(), "Add the author(s)!", Toast.LENGTH_SHORT);
toast.show();

}

if (!authorText.getText().toString().equals("") & titleText.getText().toString().equals("")) {
Toast toast = Toast.makeText(getApplicationContext(), "Add the title!", Toast.LENGTH_SHORT);
toast.show();

}
}
);
}
Fig. 29: Screenshot from the cancel button

When clicking the cancel button the code above is executed. The code will check if the
title and author input are filled in. It does this by retrieving the input, converting it to a
string object and comparing this string to an empty string. There are four cases in total.
Three of them are for the different cases of one or more inputs being empty. The user
will then receive a notification at the bottom of his screen asking him to fill out the
necessary field(s). If all the necessary fields are filled in, the application will execute the

cancel book order class. This class will be explained later on.

public void onActivityResult(int requestCode, int resultCode, Intent intent) {
IntentResult scanResult = IntentIntegrator.parseActivityResult(requestCode, resultCode, intent);
if (scanResult != null) {
scanContent = scanResult.getContents();
String scanFormat = scanResult.getFormatName();
SendButton.setTag(scanContent);
if (scanContent != null &% scanFormat != null & scanFormat.equalsIgnoreCase("EAN_13")) {
String bookSearchString = "https://www.googleapis.com/books/vl/volumes?" + "g=isbn:" +
scanContent + "&key=AIzaSyC3VNzsy81GkmvcvdP2AyKWktovsMNGSMg";
new GetBookDetails().execute(bookSearchString);
} else {
if (scanContent != null) {
Toast toast = Toast.makeText(getApplicationContext(), "This is not an ISBN code", Toast.LENGTH_SHORT);
toast.show();

}

if (scanContent == null) {
Toast toast = Toast.makeText(getApplicationContext(), "No ISBN data received", Toast.LENGTH_SHORT);
toast.show();

}
Fig. 30: Screenshot from the onActivity class (12)

The on activity result is the code that will be executed after the Scanner sends back the
code he has scanned. This class will first check if the result he received is not null. If the

scan result is not null, the code will retrieve the content. The local string scanformat will

34

retrieve the format from the scanned barcode. The ISBN code is a 13 number long ean
code. The code is unique for each book. If the scan content is not null and the scan
format is not null either, the code will check if the scan format is an EAN 13 format. If
this is the case, the local string booksearchstring gets its value. This is the link to the
Google Books API + the query for an ISBN code + the scanned content + the key. This key
needs to be retrieved from the developer of the application. Without this key it is
impossible to implement the search in the database. The get book details class is now
executed and will receive the booksearchstring. If the scan format is not correct the user
will receive a notification at the bottom of his screen telling him that the received
barcode was not an ISBN. If the scan content was null however the user will receive a
notification telling him that there was no ISBN data received.

private class GetBookDetails extends AsyncTask<String, Void, String> {

@0verride

protected void onPreExecute() {
super.onPreExecute();
progressDialog = new ProgressDialog(MainActivity.this);
progressDialog. setMessage("Searching book!");
progressDialog.setIndeterminate(false);
progressDialog.setCancelable(true);
progressDialog.setCanceledOnTouchOutside(false);
progressDialog.show();

}

Fig. 31: Screenshot from the get book details class. Before executing

The on pre execute from the get book details class is performing the same as the pre
execute from the login screen. It will create a progress dialog that is not determinable,
cannot be cancelled by touching outside of it. The message displayed on it is “searching
book!”.

@0verride
protected String doInBackground(String... bookURLs) {
StringBuilder bookDetailBuilder = new StringBuilder();
for (String bookURL : bookURLs) {
HttpClient bookClient = new DefaultHttpClient();
try {
HttpGet bookDetail = new HttpGet({bookURL);
HttpResponse responseDetail = bookClient.execute(bookDetail);
StatusLine bookSearchStatus = responseDetail.getStatusLine();

if (bookSearchStatus.getStatusCode() == 200) {
HttpEntity bookEntity = responseDetail.getEntity();
InputStream bookContent = bookEntity.getContent();
InputStreamReader bookInput = new InputStreamReader({bookContent);
BufferedReader bookReader = new BufferedReader{bookInput);
String lineln;
while ((lineIn = bookReader.readLine()) != null) {
bookDetailBuilder.append{lineln);
}

35

}

catch (Exception e) {
e.printStackTrace();

}

}

return bookDetailBuilder.toString();

lig.32:Screenshotﬁ1nntheinbackgroundlnethodofgetbookdetaﬂs(IS)

The do in background is again where the majority of the code is performed. This is to
make sure the heavy and long code is not being executed in the main thread. It uses a
local stringbuilder. This is considered a string object but the length can be changed on
the fly. The bookUrl is the booksearchstring received from the on activity class. The
application will create a new http client. There’s also a get method declared named
bookdetail. It will integrate the google books URL. This part of the code will search in the
Google Books database. This is executed from the httpresponse “responseDetail”. From
this response detail we will find the status code by using “getStatusLine and save this in
a statusline variable. If this booksearchstatus.getStatusCode() equals 200 the details
from the book will be retrieved. Here for I will use an httpEntity, an inputstream reader
and a buffered reader. The inputstream book content is created by
responseDetail.getEntity().getContent(). The inputstreamreader bookinput consists of
the inputstreamreader from “bookcontent”. I have then created a buffered reader named
bookReader. This buffered reader will help with adding the details to the stringbuilder.
A local string Lineln will be used for the comparison of the bookReader. As long as the
Lineln that is equal to the bookreader.readline() is not null the line will be added to the
string builder. The book details are now all added to the stringBuilder. The stringbuilder
will now be returned as a string object. This way the post execute will be able to use it.

protected void onPostExecute(String result) {

progressDialog.dismiss();

try {
JSONObject resultObject = new JSONObject(result);
JSONArray bookArray = resultObject.getJSONArray("items");
JSONObject bookObject = bookArray.getJSONObject(@);
JSONObject volumeObject = bookObject.getJSONObject("volumeInfo");
try {

titleText.setText("" + volumeObject.getString("title"));

}

catch (JSONException jse) {
titleText.setText("");
jse.printStackTrace();

StringBuilder authorBuild
try {
JSONArray authorArray = volumeObject.get]JSONArray("authors");
for (int a = 0; a < authorArray.length(); a++) {
if (a > @) authorBuild.append(", ");
authorBuild.append({authorArray.getString(a));

new StringBuilder("");

36

authorText.setText("" + authorBuild.toString());
}
catch (JSONException jse) {

authorText.setText("");

jse.printStackTrace();

}
try {

dateText.setText("" + volumeObject.getString("publishedDate"));
}

catch (JSONException jse) {
dateText.setText("");
jse.printStackTrace();

}

try {
descriptionText.setText("" + volumeObject.getString("description™));
}

catch (JSONException jse) {
descriptionText.setText("");
jse.printStackTrace();
}
try {
double decNumberStars = Double.parseDouble(volumeObject.getString(“averageRating"));
int numberStars = (int) decNumberStars;
starLayout.setTag(numberStars);
starLayout. removeAllViews();
for (int s = @; s < numberStars; s++) {
starViews [s].setImageResource(R.drawable.star);
starLayout.addView(starViews[s]);
}
}
catch (JSONException jse) {
starLayout. removeAllViews();
jse.printStackTrace();

}

try {
LinkButton.setTag(volumeObject.getString("infolLink"));
LinkButton.setVisibility(View. VISIBLE);

}

catch (JSONException jse) {
LinkButton.setVisibility(View.GONE);
jse.printStackTrace();

try {
JSONObject imageInfo = volumeObject.getJSONObject("imageLinks");
new GetBookCover().execute(imageInfo.getString("smallThumbnail™));
}
catch (JSONException jse) {
coverView.setImageBitmap(null);
jse.printStackTrace();

37

catch (Exception e) {
e.printStackTrace();
Toast toast = Toast.makeText(getApplicationContext(),
"Book not found! Add the info!", Toast.LENGTH_SHORT);
toast.show();
titleText.setText("");
authorText.setText("");
dateText.setText("");
starLayout. removeAllViews();
rating.setText("");
coverView.setImageBitmap(null);

;g3&SaemmhmﬁnmﬂwpoaemxmeMﬂwcabmmdumwcm$(pn

In this class the book details will be added to the appropriate fields. First the progress
dialog is dismissed. The first code being executed is the json object “resultobject” with in
here the string received from the in background. Resultobject.get]SONArray(“items”)
.2et]SONObject(0).get]SONObject(“volumelnfo”). All of the retrieved code is then stored
in the JsonObject “VolumeObject”. The code will now try to retrieve all the right strings,
arrays and JsonObject using the Try catch code displayed above. For the title it is a string
that is retrieved. For the author(s) however it is an array since there can be more than
one author. Since the length is not known beforehand I decided to also implement a
stringbuilder for this. The publication year and description are also strings retrieved
from the object. Now we have arrived at the average rating count. Here is where the
stars will be retrieved and displayed. First I will retrieve the string with in this the
average rating and parse this to a double. This double then gets converted to an integer,
since [have not included half stars. Then we reach a FOR sequence. This sequence will
set the image resource to the star. This star will then be added to the correct starview.
The link button will receive a tag containing the link to the Google Books API. The button
will also become visible. The link for the book cover is also provided but will be
retrieved through another Asynctask. The "Get Book Cover" class. This class will be

explained next.

38

private class GetBookCover extends AsyncTask<String, Void, String> {
private Bitmap coverImage;

protected String doInBackground(String... thumbURLs) {

try {
URL coverURL = new URL{thumbURLs[@]);
URLConnection coverConnection = coverURL.openConnection();
coverConnection.connect();
InputStream coverInputStream = coverConnection.getInputStream();
BufferedInputStream coverBuffer = new BufferedInputStream{coverInputStream);
coverImage = BitmapFactory.decodeStream(coverBuffer);
coverBuffer.close();
coverInputStream.close();

} catch (Exception e) {
e.printStackTrace();

}

return "";

}

protected void onPostExecute(String result) { coverView.setImageBitmap(coverImage); }

}

Fig. 34: Screenshot from the Get book cover class (15)

The code above is utilised to retrieve the book cover form the URL provided by the post
execute from the get book details class. The cover is retrieved through the inputstream
as a bitmap. This bitmap has to be decoded from the coverbuffer. The streams are then
closed. After the execution of the do in background task, the coverview will be set by the

setlmageBitmap. Next | will explain the send data to database class.

private class SendToDatabase extends AsyncTask<String, Void, String> {

@0verride

protected void onPreExecute() {
super.onPreExecute();
progressDialog2 = new ProgressDialog(MainActivity.this);
progressDialog2.setMessage("Uploading Book!");
progressDialog2.setIndeterminate(false);
progressDialog2.setCancelable(true);
progressDialog2.setCanceledOnTouchOQutside(false);
progressDialog2.show();

}

Fig. 35: Screenshot from the pre execute Send to database class

The pre execute is the same as the previous classes. It will implement a progress dialog
with the text “uploading book!”. The rest of the attributes of the progress dialog are the
same as the previous dialogs. It is only cancellable by pressing the back button, there’s

no progress bar and touching outside of the dialog does not cancel it.

39

@0verride
protected String doInBackground(String... args) {

String authorData = "" + authorText.getText().toString();

String titleData = "" + titleText.getText().toString();

String yearData = "" + dateText.getText().toString().split("\\-")[0];

String isbn = "" + scanContent;

loginUrl = "http://" + loginUrl.split("/")[2] + "/library/addtodatabase.php";
try {

List<NameValuePair> parameters = new ArrayList<>();
parameters.add(new BasicNameValuePair("author", authorData));
parameters.add(new BasicNameValuePair("title", titleData));
parameters.add(new BasicNameValuePair("year", yearData));
parameters.add(new BasicNameValuePair("isbn", isbn));
parameters.add{new BasicNameValuePair("usrnme", username));
parameters.add(new BasicNameValuePair("docencia", booktype));

JSONObject json = jsonParser.makeHttpRequest(loginUrl, parameters);
return json.getString(Message);

}

catch (JSONException e) {
e.printStackTrace();

}

return null;

}

Fig. 36: Screenshot from the Do in background method from the send to database class

This method will retrieve the text inputted into the title, author and publication year
inputs and convert them to strings. The LoginUrl will extract just the IP address of the
server and add the right phpscript. A new array list will be created to store the name
value pairs. This is the same way as implemented in the login activity. This array list will
be sent to the make http request method from the Jsonparser class. It will retrieve a json
object from this class. It will retrieve the string “message” attached to the json object.

This will be returned to be used in the post execute method.

protected void onPostExecute(String Message) {
if (Message.equals("1")) {
progressDialog2.dismiss();
Toast toast = Toast.makeText(getApplicationContext(), "Data uploaded to server!", Toast.LENGTH_SHORT);
toast.show();
}
if (Message.equals("8")) {
progressDialog2.dismiss();
Toast toast = Toast.makeText(getApplicationContext(), "Book already in Database!", Toast.LENGTH_SHORT);
toast.show();
}
Y
}

Fig. 37: Screenshot from the post execute send data to database class

During the post execute the received string “message” will be checked. If this message
equals “1” then a notification will appear at the bottom of the screen telling the user that
the data has been uploaded to the server successfully. If the message equals “0” the user
will receive a notification at the bottom of the screen that the book is already in the

database.

40

private class CancelBookOrder extends AsyncTask<String, Void, String> {

@0verride

protected void onPreExecute() {
super.onPreExecute();
progressDialog3 = new ProgressDialog(MainActivity.this);
progressDialog3.setMessage("Searching and cancelling book!");
progressDialog3.setIndeterminate(false);
progressDialog3.setCancelable(true);
progressDialog3.setCanceledOnTouchQutside(false);
progressDialog3.show();

}

Fig. 38: Screenshot from the pre execute from the cancel book order class

This pre execute is the same as the pre execute from the Send to database class. Therefor

[will not explain this part.

@0verride

protected String doInBackground(String... args) {
String authorData = "" + authorText.getText().toString();
String titleData = "" + titleText.getText().toString();

loginUrl = "http://" + loginUrl.split("/")[2] + "/library/cancelorder.php";

try {
List<NameValuePair> parameters = new ArrayList<>();
parameters.add{new BasicNameValuePair("author", authorData));
parameters.add(new BasicNameValuePair("title", titleData));
parameters.add(new BasicNameValuePair("usrnme", username));

JSONObject json = jsonParser.makeHttpRequest(loginUrl, parameters);

return json.getString(Message);

}

catch (JSONException e) {
e.printStackTrace();

}

return null;
}

Fig. 39: Screenshot from the background code from cancel book order

The do in background performs the same task as the one from the send to database class

therefor I will not explain this part.

protected void onPostExecute(String Message) {
if (Message.equals("1")) {
progressDialog3.dismiss();

Toast toast = Toast.makeText(getApplicationContext(), "Book request has been cancelled", Toast.LENGTH_SHORT);

toast.show();

}
if (Message.equals("e")) {
progressDialog3.dismiss();

Toast toast = Toast.makeText(getApplicationContext(), "This book hasn't been requested by your account”,

Toast.LENGTH_SHORT) ;
toast.show();
}
}
}

}
Fig. 40: Screenshot from the post execution from the cancel book order class

In the post execute the message will also be checked. If it equals “1” the user will receive

a notification that the book request has been successfully cancelled. If the message

equals “1” the user will receive a notification that he did not request the book.

41

3.4.3 Json parser

import

import
import
import
import
import
import
import
import

import
import
import
import
import

android.util.log;

org.apache.http.HttpEntity;
org.apache.http.HttpResponse;
org.apache.http.NameValuePair;
org.apache.http.client.entity.UrlEncodedFormEntity;
org.apache.http.client.methods.HttpPost;
org.apache.http.impl.client.DefaultHttpClient;
org.json.JSONException;

org.json.JSONObject;

java. io.BufferedReader;
java.io.I0Exception;

java. io.InputStream;

java. io.InputStreamReader;
java.util.List;

Fig. 41: Screenshot from the imports used by the Json Parser class

The imports used by the Json parser are declared in this part. Since the json parser is
used to connect to the server and send data to the database it will implement a lot of
apache imports. These imports are the ones used for making the connection and
maintaining it. The last part of the imports are used for retrieving the information from

the database and sending the responses back to the appropriate activities that have

called this class.

public JSONObject makeHttpRequest(String url, List<NameValuePair> parameters) {

try {

}

DefaultHttpClient ConnectionClient = new DefaultHttpClient();
HttpPost post = new HttpPost{url);

post.setEntity(new UrlEncodedFormEntity(parameters));
HttpResponse ConnectionResponse = ConnectionClient.execute(post);
HttpEntity ConnectionEntity = ConnectionResponse.getEntity();

is = ConnectionEntity.getContent();

catch (IOException e) {
e.printStackTrace();

BufferedReader bufferedReader = new BufferedReader(new InputStreamReader(is, "iso-8859-1"), 8);

StringBuilder stringBuilder = new StringBuilder();
String stringHelper = null;
while ((stringHelper = bufferedReader.readLine()) != null) {

stringBuilder.append(stringHelper).append("\n");

is.close();
json = stringBuilder.toString();

}

try {
}

}

42

catch (JSONException e) {
e.printStackTrace();
}

return jsonObject;

}

catch (Exception e) {
e.printStackTrace();

}
try {

jsonObject = new JSONObject(json);
}

Fig. 42 : Screenshot from the code used to send added parameters to the database(16)

The json parser class is used to make a connection to the database using the http post
protocol. This is to encode the details sent. A user capturing the details would not be
able to retrieve the details. The json parser class receives the Url and the array list from
the activity calling it. The http Entity is again achieved by a series of actions. First it will
be set by encoding the parameters and this will be sent to the database. The response
will be handled the following way: Connectionclient.execute(post).getEntity(). An
inputstream will then be used to capture the response. It will get the content from the

connection entity.

After having the inputstream a buffered reader will read this inputstream. For this a
string named string helper and a stringbuilder named stringbuilder will help it. The
action will be almost the same as when recovering the book details. The stringhelper
will be equal to the bufferedReader.readLine(). As long as this isn’t null the stringbuilder
will append the string read into the stringhelper. When the stringhelper is finally null,
the inputstream will close and the json object will receive the value of the stringbuilder

converted to a string. This will be sent back to the activity calling the json parser class.

43

44

4 User and system requirements

During this chapter [will explain the necessary factors for both users and smartphones
to be able to use the Library scanner application. I will first cover the requirements for

users and then for the smartphones.

4.1 User requirements

The application was designed to be used in a professional way (by a company,
university, high school...). This also means that the company or school has to have a
database of all the users they want using the application. In this database they have to
manually enter the users. It would be illogical to create a way to register users from the
application, since only employees or authorized persons can make the book requests.

The protection is hereby improved.

4.1.1 Login credentials

The server manager will add the employees who are approved to use the application
into the “personal” table. Here they will be assigned a username and password along
with additional information that can be provided. The user will need the username and
password for logging in to the server. Without these credentials he will not be able to

initialise the application.

4.1.2 Internet connection

To use the application the user needs to be able to connect to the Internet. This can be
done either by mobile data connection or a Wi-Fi connection. Because of this the
application can be used almost everywhere in the world. The mobile data connections
have significantly improved over the last decade and nowadays you can connect almost

everywhere to a (free) Wi-Fi network.

4.2 System requirements

The following requirements are mandatory for a good experience of the application. If
these requirements are not met the application might feel a bit slow and tasks will take
very long to complete. The application has also been tested on devices running close to

the minimum specifications.

45

4.2.1 Minimum required specifications
Keep in mind that these are the absolute minimum requirements for having a pleasant

experience with the application.

The minimum processor speed should be at least 1 GHz. Most of the smartphones that
have been produced since 2013 will have at least a Dual core 1 GHz processor. This has

become the base for a smooth Android experience.

The minimum graphics processing unit should be an Adreno 200 integrated GPU. This
GPU will be able to render the application. The unit is clocked at 200 MHz

The minimum RAM requirement is 512MB. Since the introduction of the HTC Desire
back in February 2010, 512MB of RAM was only for the top-notch phones. Since 2013
512MB has become the Android based smartphone’s base.

The smartphone needs to be able to connect to a mobile data or Wi-Fi network. A 3G
connection or higher is recommended for mobile data. For Wi-Fi the connection speed
needs to be at least 54Mbit/sec. This is a G connection. All smartphones since 2013

include a chip that is capable of connecting to B/G/N networks.

The smartphone needs to have a camera. The minimum resolution of this camera needs
to be 3 Megapixel. This will make sure the barcode is easily focussed. The better the

quality of the camera, the faster the application will detect the barcode.

The smartphone needs to run Android 4.0 (Ice Cream Sandwich) or a custom Rom that is
based on Android 4.0 or higher. This can be, for example, Cyanogenmod CM9. This
Custom Rom is based on the Android 4.0.4 Base.

4.2.2 Recommended specifications
The following specifications are the ones from the phone that was used to test the
application. This was a high-end phone so there was no lag on the application

whatsoever.

The recommended processor is a quad core processor clocked at 2.5GHz type

snapdragon.

46

The recommended GPU is an Adreno 330 clocked at 578MHz.

The recommended RAM is 3GB.

The recommended mobile data connection speed is 4G (LTE).

The recommended camera resolution is 13 Megapixel.

The recommended android version for this application is Android 5.0 (Lollypop). The
smartphone used for testing was running Cyanogenmod CM12, which is a custom Rom
based on Android 5.0.1.

These are the specifications from the smartphone used for testing. With these
specifications there were no speed issues, rendering issues... Therefor I recommend
these specifications for the application usage. The application has been extensively

tested with these specifications.

The application has also been tested on a lower-end smart phone. It worked well with

only a little lag from time to time, mainly when opening a new intent.

4.2.3 Server requirements
The server does not have any specified hardware requirements. As long as you can run a

web server capable of implementing a MySQL database.

Naam Type Collatie Attributen Leeg Standaardwaarde Extra
1id > int(11) Nee Geen AUTO_INCREMENT
2 username char(20) utf8_general_ci Ja NULL
3 fecha_pet datetime Ja NULL
4 docencia int(1) Ja NULL
5 autor varchar(100) utf8_general_ci Ja NULL
6 titulo varchar(100) utf8_general_ci Ja NULL
7 anno int(11) Ja NULL
8 isbn varchar(50) utf8_general_ci Ja NULL
9 estado int(11) Ja NULL

Fig. 43: Screenshot from the fields of the libros_total table

In the picture above you can see the fields necessary in the libros_total table. In the
following screenshot you will see the fields necessary in the personel table.

47

Naam Type Collatie Attributen Leeg Standaardwaarde Extra

11D int(11) Ja NULL
2 Alias varchar(30) utf8_general_ci Ja NULL
3 username char(20) utf8_general_ci Ja NULL
4 clave varchar(50) utf8_general_ci Ja NULL
5 Nombre varchar(50) utf8_general_ci Ja NULL
6 Apellidos varchar(50) utf8_general_ci Ja NULL
7 ip varchar(50) utf8_general_ci Ja NULL
8 hostname varchar(50) utf8_general_ci Ja NULL
9 CuentaActiva bit(1) Ja NULL
10 Campus varchar(255) utf8_general_ci Ja NULL

Fig. 44.: Screenshot from the fields in the personel table

48

5 Planning

For the execution of this final project and the writing of the thesis | had a timespan of
four months. I started working on the project in February and had to present my work
the 27t of May. During these four months I had to prepare and do research, develop the

application and prepare the defence.

5.1 February

During this month I have been mainly busy with research. I was looking through online
websites to refresh my base of android programming. I started by trying some basic
programs again before starting with this project. I started creating a basic design

featuring just the scan button and 3 input fields.

Afterwards | was trying to create a barcode scanner but an article caught my eye
(XZing). (3) It was a way to implement an existing barcode scanner into the application.
After reading this article I tried implementing it into my application. By the end of the
month | was able to scan an ISBN barcode and retrieve the barcode itself to the

application.

5.2 March

[started off March by trying to make the application connect with the Google Books
database. I found a lot of documentation on the Google Books API page. (4) After finding
the way to connect to the Google Books API I had to alter the application to retrieve the

information from the Json string received.

I had some trouble to find the proper way to display the received information before
giving the user the possibility to send it to the database. When [got more comfortable
using the Google books API I also integrated a link button that opened a web view with a
link to the Google Books page of the book.

By the end of the month I was also asked to implement a log in for the users. I started
working on this in a separate project to try it out. (5) I tried to create a login system that
was both simple and fast. Finally I managed to get the log in to work in the separate
project. After completing this it was now time for placing the log in into the application.
After integrating the log in [was confronted with multiple system errors. It took some

time to sort through all these errors and resolve them.

49

5.3 April
After resolving all the errors that occurred with the integration of the log in screen I was

now able to begin working on the connection from the application to the database.

First I had to create a local server. I tried placing the database on a webserver but
quickly abandoned the idea after having problems with three online servers. Every time
I tried uploading the database it stopped after a certain number of records, which
caused the database to be incomplete. Because of this it was also impossible to use this

solutions.

[installed Xampp 5.6.8 on my laptop and configured it to hold a static IP address. Now
that [had the server running and had the ability to manage the database using the
integrated PHPMyAdmin [was able to start working on the PHP scripts. | had already
written the checklogin.php script while working on the login. Based on this file I started
writing the addtodatabase.php script. The connecting code was exactly the same so this

saved me some time. (6)

After creating and testing this script I started working on a script to cancel the books.
First I implemented the cancel button into the application. It connects to the server the
same way the send data button does. It also provides the variables the same way. |
decided that for the storage and cancelling of books it would be advantageous to also be

able to search for the user posting it.

I had to find a way to pass data from one intent to another.(7) Because of this
documentation that was very easy to integrate into the application. I made sure the
username is getting added as an extra from the login activity to the library scanner. The

username is then getting stored in a variable.

After a meeting with the responsible professor I was asked to implement a way to
change the server address without having to rebuild the whole application. [added this
on the mean screen in the form of another input with a button to confirm the change. He
also asked me to implement a way to oblige the user to select the reason he is going to
use the book after clicking the send data button. | decided to implement an alert dialog.

(8)This dialog gave the user 2 options to choose from but the obligation to select one.
After implementing this I started resolving some of the errors and warnings I was

getting. I let the code inspector from android studio run through my code to find errors

against the android convention. [got a warning that [had put a time consuming task in

50

the main thread and this could cause problems. I then searched for a way to be able to

perform the tasks in the background.(9)

The implementation of the asyncactivity was rather fast. Unfortunately I encountered
more errors. It took me a while to resolve these but by the end of the month [was ready
with the implementation of this activity. I made an asyncactivity for retrieving the book

details, sending the data, logging in and cancelling the book.

5.4 May

In May I continued the work from the past months. [decided to add in a progress dialog
when the Asyncactivities are working. I first encountered problems with the dismiss
time from the dialog. It kept on running. | added in the on post execute method. After

placing the dismiss inside of this method it worked like a charm.

During this month I also started writing this thesis and preparing my defence. I started
creating the PowerPoint with which [will be doing my defence and writing the text I will
use on my defence. [also started preparing for possible questions asked to me during

my defence.

51

- 0 SiSaLp Bup
] 00} Bugsa)
Iy o U520

B Upieasay

] %6 Pefoid eud o

%96 Jafouq [euld
14 8l W G k4 0z €l 9 0€ X4 o 6 [4 ¥4 o 6
g0z few 510z Jdy SL0Z ‘el S10Z 924 djojdwo) % - paubissy sjdoaq

52

6 Software tests performed

To test the application I created, I had to set up a server. I decided to use Xampp version
5.6.8. On this server there was a database manager included. [used the MyPHPAdmin to
manage the database. | uploaded the database that was provided to me and placed the
php scripts in the appropriate place. [gave the computer a fixed IP address, that way [

was sure where the application had to connect to.

6.1 Test of the book retrieval

First I tested the book detail retrieval. For this test I didn’t need the server running. The
only thing needed was an Internet connection. After implementing the login into the
code the server had to be running as well for the test. I tested this with five different
books by scanning the ISBN code and looking of the book was found in the Google Books
database. From the five different books, the application was able to retrieve the details
from four. This is an 80% success rate. The book that was not found was a translation.
When [searched the book manually I noticed that the ISBN code was different from the

one on the book cover itself.
i & 4 55% 00:07
Library Scanner

SCAN A BOOK

Hollywood entre Sodoma y Babilonia

Rafael Dalmau

2005

El libro que nos descubre los escandalos mas
sonados de la industria cinematografica. Detras de un
mundo aparentemente perfecto construido por
guinistas, productores, directores, actores y
periodistas, se esconden sorprendentes historias de
corrupcion, drogas y sexo, asi como crimenes
espeluznantes...

SEND DATA WEB CLEAR

CANCEL ORDER

Fig. 45: Example of retrieved book information

53

6.2 Test of the connection and transmission of data to the server

Like I said I used the PHPMyAdmin for the management of the database. I uploaded the
details from two of the scanned books and added one manually. Then I also tested the
cancel method. Below is a screenshot from the server with data that has been added and

later cancelled.

Ll 7 Server: localhost » @ Database: books » [Tabel: libros_total

[Z] Verkennen 4 Structuur [] SQL 4 Zoeken ¥t Invoegen [Exporteren [=} Importeren = Rechten ” Handelingen

<—T—» id username fecha_pet docencia autor titulo anno isbn estado
: para abogados
) & Wijzigen % Kopiéren @ Verwijderen 3740 NULL 2014-07-01 12:05:01 1 Abraham Operating NULL 978- 999
Silberschatz, Systems 1118129388
Greg Gagne, Concepts, 9°
Peter B. ed.
Galvin.
| ¢ Wijzigen %t Kopiéren @ Verwijderen 3741 NULL 2014-09-05 11:05:04 1 Boris Hadoop. 2013 9788441535916 999
Lublinsky, Soluciones Big
Kevin T. Data
Smith,
Alexey
Yakubovich
) & Wijzigen % Kopiéren @ Verwijderen 3750 vincent 2015-05-03 00:26:27 0 John Boyne Boy in the 2007 9788498380798 10
striped
pajamas
&~ Wijzigen 3c Kopiéren @ Verwijderen 3751 vincent 2015-05-03 00:26:42 1 Rafael Hollywood 2005 9788496222458 10
. Dalmau entre Sodoma
y Babilonia
) & Wijzigen F: Kopiéren @ Verwijderen 3752 vincent 2015-05-03 00:26:58 1 Someone Self Added 2015 9788496222458 10
Book

Fig. 46: Screenshot from the database with 3 books entered (2 automatic one manually)

Ll 7] Server: localhost » @ Database: books » [Tabel: libros_total

[Z] Verkennen =4 Structuur [SQL 4 Zoeken ¥t Invoegen [Exporteren =[S} Importeren =7 Rechten = J” Handelingen ®

el id username fecha_pet docencia autor titulo anno isbn estado |
) « Wijzigen ¥¢ Kopiéren @ Verwijderen 3739 NULL 2014-06-30 09:51:33 0 Isabel Casas Gestion NULL 9788490535646 999
Dominguez documental
para abogados
) & Wizigen %¢ Kopiéren @ Verwijderen 3740 NULL 2014-07-01 12:05:01 1 Abraham Operating NULL 978- 999
Silberschatz, Systems 1118129388
Greg Gagne, Concepts, 9°
Peter B. ed.
Galvin.
| Wijzigen ¥c Kopiéren @ Verwijderen 3741 NULL 2014-09-05 11:05:04 1 Boris Hadoop. 2013 9788441535916 999
Lublinsky, Soluciones Big
Kevin T. Data
Smith,
Alexey
Yakubovich
M & Wizigen %¢ Kopiéren @ Verwijderen 3750 vincent 2015-05-03 00:26:27 0 John Boyne Boy in the 2007 9788498380798 10
striped
pajamas
&~ Wijzigen Fc Kopiéren @ Verwijderen 3751 vincent 2015-05-03 00:26:42 1 Rafael Hollywood 2005 9788496222458 999
- Dalmau entre Sodoma
y Babilonia
) & Wijzigen 3 Kopiéren @ Verwijderen 3752 vincent 2015-05-03 00:26:58 1 Someone Self Added 2015 9788496222458 10
Book

Fig. 47: Screenshot of the server with the middle book cancelled. (done by rescanning the book and sending
cancel request)

The tests above show that the application works. After scanning a book I have also
tested the link button. For an illustration of this test you can look in the user manual.

54

7 User manual
During this chapter I will give detailed instructions on how to use the application and all

of its functions. During each step I will explain all the different possibilities of the

application.

7.1 Open the application launcher and select the Library Scanner app

On the smartphone select the application launcher. Search for the library scanner
application and click on it. The application will now open and show the login screen.

Here you can see three input fields: “username”, “password” and “IP address”. You can

also see two buttons: “Log in” and “Change server [P”.

7.2 Login using the credentials given to you by the system administrator

On the login screen enter the right username (given by the system administrator) and
matching password. Click on the login button. The application will then try and make a
connection with the server declared at the bottom of the page. There are multiple

protections build into this app.

7.2.1 Login server not found

After pressing the login button the application will try and make a connection with the
server declared at the bottom. However when this server is not encountered or a
connection cannot be made a warning message will appear at the bottom of the app. The

warning message will tell you that the server has not been found.

o i o 4 90% 17:46

test

LOGIN

192.168.0.101

CHANGE SERVER IP

server not found!

Fig. 48: Screenshot server not found

55

7.2.2 Change the log in server

When the login server cannot be found, you have to edit the server [P address in the app.
In the input field at the middle of the screen you can see an IP address. Change this IP
address to the server’s IP address. Then click on the change server IP button to change
it. After clicking the button a notification will appear telling you that the server’s IP has
been changed. The input field will make the app use the following [P address:
“http://”+the text you've entered+“/library/checklogin.php”.

i o 4 91% 17:57

Enter username

Enter Password

LOGIN

192.168.0.105)

CHANGE SERVER IP

Server IP changed to: http://

192.168.0.105/library/checklogin.php

Fig. 49: Screenshot changing IP address

7.2.3 Logging in with username, password or both blank

When trying to login with one or both of the inputs empty a warning message will
appear at the bottom of the app. This message will tell you to fill in or the username
field, the password field or both. After filling in the missing credential(s) you can log in

normally.

56

o 49%1746 & ¥ @ @ 0o .d49%17:46 ' & @ P 10 & 4 90% 17:47

Enter username test Enter username
Enter Password Enter Password
LOGIN LOGIN LOGIN
192.168.0.101 192.168.0.101 192.168.0.101
CHANGE SERVER IP CHANGE SERVER IP CHANGE SERVER IP

Fill in Username! Fill in Password! Fill in Username and Password!

Fig. 50, Fig. 51 and Fig. 52: Screenshots from the Username and Password protection

7.2.4 Logging in with wrong credentials

The application will check the inputted username and password with the usernames and
matching passwords in the database. When you’ve entered the wrong credentials a
message will appear at the bottom of the app. This warning message will tell you the
username or password is invalid. After correcting the credentials, the log in will proceed

normally.
o i € 4 98% 18:54
vincent

LOGIN

192.168.0.105

CHANGE SERVER IP

invalid username or password

Fig. 53: Screenshot invalid Username or Password

57

After logging in with the right credentials the application will now show the main page.

® i o 4 91% 17:57

Library Scanner

SCAN A BOOK

Title
Author(s)
Year

SEND DATA CLEAR

CANCEL ORDER

You have been sucessfully logged in

Fig. 54: Screenshot successful log in

7.3 Main application page

Here you can see 3 input fields: “Title”, “Author(s)” and “Year”. There are also four
buttons visible: “Scan Book”, “Send Data”, “Clear” and “Cancel Order” and one hidden
button: “link”.

7.3.1 Retrieve book information online

After pressing the scan button the application searches for the application “Barcode
Scanner” by ZXing. If this application is encountered on the phone the barcode scanner
will launch. If the application is not encountered the library scanner application will
open a dialog to inform you the barcode scanner has to be downloaded. From this dialog
you will be linked to the Google Play Store page of the Barcode Scanner app. On this page
click install. After installation of the barcode scanner application you can return to the
book app using the recent app functionality of the smartphone. This can be done by long
pressing (2 seconds) the menu button. The recent applications will pop up. Select the

library scanner from this list and click the scan book button again.

58

i o 4 91% 17:58

Install Barcode Scanner?

This application requires Barcode
Scanner. Would you like to install it?

NO YES

Fig. 55: Screenshot install dialog when application is not found

After the launch of the barcode scanner search for the ISBN code on the book. This
barcode can usually be found on the back of the book. Hold the barcode in the
designated square of the barcode scanner and wait for the camera to focus. After
focussing the application will make a sound and show in the bottom it had encountered
the barcode.

',', I Barcode Scanner (© GESCHIEDENIS

Boek gevonden : 9788498380798

Fig. 56: Screenshot barcode scanner

59

After encountering the barcode you will be redirected to the main page of the library
scanner application. Wait for some seconds while the application searches on Google
books for the information. There are 2 possible outcomes. You receive a message at the
bottom of the application mentioning: “Book not found! Please add the information!” or
the book information will be displayed. You will be able to see a thumbnail picture of the
book cover, the title, the author(s), the publication year, the book description and the
rating of the book (when available). If the book is found online the hidden button “link”

will also become visible.

N a® i o 4 91% 18:00

Library Scanner

rayas

Boy in the striped pajamas

John Boyne

2007

Estimado lector, estimada lectora: Aunque el uso
habitual de un texto como éste es describir las
caracteristicas de la obra, por una vez nos tomaremos
la libertad de hacer una excepcion a la norma
establecida. No sélo porque el libro que tienes en tus
manos es muy dificil de definir, sino porque estamos
convencidos de que explicar su contenido estropearia
la experiencia de la lectura. Creemos que es
importante empezar esta novela sin saber de qué
trata. No obstante, si decides embarcarte en la
aventura, debes saber que acompafiaras a Bruno, un
nifio de nueve afios, cuando se muda con su familia a
una casa junto a una cerca. Cercas como ésa existen
en muchos sitios del mundo, sélo deseamos que no te
encuentres nunca con una. Por Ultimo, cabe aclarar
que este libro no es sélo para adultos; también lo
pueden leer, y seria recomendable que lo hicieran,
nifios a partir de los trece afios de edad. El editor

SEND DATA WEB CLEAR

CANCEL ORDER

Fig. 57: Screenshot retrieved book details

7.3.2 Enter the data manually

When the book information can’t be found online you have to enter it manually. Enter
the book title, author and publication year in the corresponding fields. The book title
and author fields automatically write in camel case. For sending the book request to the
database all three fields must be filled in. For sending a book cancel request only title

and author need to be filled in.

60

iy & 4 99% 19:01

Library Scanner

SCAN A BOOK

This Is A Tes{
Author(s)
Year

SEND DATA CLEAR

CANCEL ORDER

q wlile rl|ity

a sid f g h

® 2 xcvbnm®€=

»

Fig. 58: Screenshot from data being entered manually

7.3.3 Send data to database

When the send data button is pressed the application will check if the title, author(s)
and publication year inputs are filled in.

If all fields are empty the application will show a warning message at the bottom of the
screen mentioning: “Add the title, the author(s) and the publication year!”.

If the title and author fields are empty the application will show a warning message at
the bottom of the screen mentioning: “Add the title and the author(s)!”.

If the author and publication year fields are empty the application will show a warning
message at the bottom of the screen mentioning: “Add the author(s) and the publication
year!”.

If the title and publication year fields are empty the application will show a warning
message at the bottom of the screen mentioning: “Add the title and the publication
year!”.

If the title field is empty the application will show a warning message at the bottom of
the screen mentioning: “Add the title!”.

If the author field is empty the application will show a warning message at the bottom of
the screen mentioning: “Add the author(s)!”.

If the publication year field is empty the application will show a warning message at the

bottom of the screen mentioning: “Add the publication year!”.

61

If all fields are filled in correctly the application will open a dialog screen asking you the
purpose of the book. After selecting the purpose the application will contact the server
and send the book details to it. The book details are now stored inside the server. The

responsible person can now execute the book request.

0 o 4 91% 18:08 | & & 0 o 4 91% 18:08

Library Scanner

|

rayas
| _TPu |
Boy in the striped pajamas
John Boyne
2007
Estimado lector, estimada lectora: Aunque el uso
habitual de un texto como éste es describir las
caracteristicas de la obra, por una vez nos tomaremos
la libertad de hacer una excepcién a la norma
establecida. No sélo porque el libro que tienes en tus
manos es muy dificil de definir, sino porque estamos
convencidos de que explicar su contenido estropearia
la experiencia de la lectura. Creemos que es
importante empezar esta novela sin saber de qué
trata. No obstante, si decides embarcarte en la
aventura, debes saber que acompafiaras a Bruno, un
nifio de nueve afios, cuando se muda con su familia a
una casa junto a una cerca. Cercas como ésa existen
en muchos sitios del mundo, sélo deseamos que no te
encuentres nunca con una. Por ultimo, cabe aclarar
que este libro no es sélo para adultos; también lo
pueden leer, y seria recomendable que lo hicieran,
nifios a partir de los trece afios de edad. El editor

Data uploaded to server!
SEND DA LEAR

CANCEL ORDER

Book usage

Teaching

Research

Fig. 59: Screenshot dialog screen with options

Fig. 60: Screenshot Data uploaded to server

7.3.4 Link to the found book

After clicking on the link button a new screen will be opened. This is a web view that will
directly link to the book’s page on Google Books. On this page you can find some extra
details. The page shows extra details about the author(s), the page count... and in the left
corner links to online and physical stores where you can purchase the book. By clicking

one of the links on the left you can find the price and availability of the book.

62

(O~ O o 4 91% 18:10

books.google.es

Wat mensen zeggen - Een

" recensie schrijven

We hebben geen recensies gevonden
op de gebruikelijke plaatsen.

Over de auteur (2007)

Acclaimed Irish novelist John Boyne
was born in Dublin, Ireland on April
30, 1971. He studied English
Literature at Trinity College, Dublin
and Creative Writing at the University
of East Anglia. He has written dozens
of short stories and many novels,
including the New York Times
bestseller The Boy in the Striped
Pyjamas. An award-winning film
adaptation of this work was released
in 2008.

Bibliografische gegevens

Fig. 61: Screenshot link to book through webview

7.3.5 Clear the retrieved or manually entered details

If you want to clear all the information that is shown on the screen (including the cover
thumbnail, the title, the author(s), the publication year, the rating) press the clear
button. It will reset all the input fields back to their original state. The ratings will also be

removed and the link button will go back to its invisible state.

7.3.6 Cancel one of the book(s) you’ve requested

If you want to cancel one (of the) book(s) you have requested, this can be done fairly
easily. If you have the book nearby you can scan in the ISBN barcode again and retrieve
the book details. After the book details have been retrieved again simply click the cancel
order button. If you don’t have the book nearby you have to fill in the title and the
author(s).

There is a protection when clicking the cancel button. After clicking the cancel button
the application first checks if the correct fields are filled in.

If the title field is empty the application will show a warning message at the bottom of
the screen mentioning: “Add the title!”.

If the author field is empty the application will show a warning message at the bottom of
the screen mentioning: “Add the author(s)!”.

If all the fields are correctly filled in, the application makes a connection with the server
and searches for the book and checks if the user who is asking to cancel it has requested

the book. If the book is encountered and the username is from the person who wants to

63

cancel it, the table is altered and the status is changed to “cancelled” (status 999). You
get a notification that the book request has been successfully cancelled. If the book is not
encountered or the username is not from the person who is trying to cancel it, you will
get a notification at the bottom of the screen saying the book hasn’t been requested by

this account.

i o 4 91% 18:11 i o 4 91% 18:11

Puw®

Library Scanner

con el
pijama

Boy in the striped pajamas

John Boyne

2007

Estimado lector, estimada lectora: Aunque el uso
habitual de un texto como éste es describir las
caracteristicas de la obra, por una vez nos tomaremos
la libertad de hacer una excepcioén a la norma
establecida. No sélo porque el libro que tienes en tus
manos es muy dificil de definir, sino porque estamos
convencidos de que explicar su contenido estropearia
la experiencia de la lectura. Creemos que es
importante empezar esta novela sin saber de qué
trata. No obstante, si decides embarcarte en la
aventura, debes saber que acompafiaras a Bruno, un
nifio de nueve afios, cuando se muda con su familia a
una casa junto a una cerca. Cercas como ésa existen
en muchos sitios del mundo, sélo deseamos que no te
encuentres nunca con una. Por Ultimo, cabe aclarar
que este libro no es sélo para adultos; también lo
pueden leer, y seria recomendable que lo hicieran,
nifios a partir de los trece afios de edad. El editor

[33. Book request has been cancelled {3

CANCEL ORDER

Puw®

Library Scanner

con el
pijama

Boy in the striped pajamas

John Boyne

2007

Estimado lector, estimada lectora: Aunque el uso
habitual de un texto como éste es describir las
caracteristicas de la obra, por una vez nos tomaremos
la libertad de hacer una excepcién a la norma
establecida. No sélo porque el libro que tienes en tus
manos es muy dificil de definir, sino porque estamos
convencidos de que explicar su contenido estropearia
la experiencia de la lectura. Creemos que es
importante empezar esta novela sin saber de qué
trata. No obstante, si decides embarcarte en la
aventura, debes saber que acompafiaras a Bruno, un
nifio de nueve afios, cuando se muda con su familia a
una casa junto a una cerca. Cercas como ésa existen
en muchos sitios del mundo, sélo deseamos que no te
encuentres nunca con una. Por Ultimo, cabe aclarar
que este libro no es sélo para adultos; también lo
pueden leer, y seria recomendable que lo hicieran,
nifios a partir de los trece afios de edad. El editor

This book hasn't been requested by your
account

CANCEL ORDER

Fig. 62: Screenshot book request cancelled successfully

Fig. 63: Screenshot book not found or not the right user to cancel

7.4 Closing the application

When you're finished with the application you can simply close it by pressing on the
back button until you are back in the application launcher. The other possibility is to
press on the home button to go back to your home screen. When you start the

application again you will now have to log in again.

64

8 Installation manual
In this chapter [will explain how to install the application on the smartphone. It will be

in a step-by-step form. This progress is very easy since the smartphone does most of the
work. When the application is downloaded directly to the smartphone from the Internet

you may go directly to step 8.3.

8.1 Download the LibraryScanner.apk to your computer
To download the libraryscanner.apk you need to be able to access the private server on
which it is stored. You can also have the libraryscanner.apk sent to you by someone who

already downloaded it.

8.2 Transfer the LibraryScanner.apk to your mobile phone

This step will be split for a Windows and a Mac computer. First connect the mobile
phone through USB.

8.2.1 Windows computer

On a windows computer this can be done by first locating the LibraryScanner.apk
package on the computer. Afterwards you can simply drag the installation package to
the mobile phone, which will be used as an external memory stick. Make sure you have

placed it somewhere that is easily locatable on the smartphone’s internal memory.

8.2.2 Mac computer

On a mac running OSX this progress is a little bit different. First you will have to
download an application called “Android file transfer”. This can be downloaded from the
official Android website from google. After downloading and installing this application
connect your phone to the mac. Drag the installation package to the internal memory of

the phone and place it somewhere you can find it easily

65

[JoX] & A0001)
<D b
aam v Laatst bijgewerkt Grootte
> Navigon - -
» 9 Music
» [Movitaxi
» W Movies - -

] miniclipld.txt 17/03/15 21:17 24 bytes

» [Wmedia - -

LybraryScanner.apk 28/04/15 20:37 29MB
> [GOSMS -- -

» [Foursquare

» [7 Download - -

& ddmsrec.mp4 28/04/15 18:45 46.7 MB

» [DCIM -- -

> [Mcomp

» [Wcom.facebook.orca

» 1 ApplifierVideoCache

» [7] Android

> [HAlarms - B

.profig.os 26/03/15 22:32 36 bytes

» [1.mmsyscache
> [19.goproduct
» [1.eCtcQjbuidgnvtFnvnréyepTp1M=

1 of 38 selected, 26.36 GB available

Fig. 64: Android File Transfer

8.3 Enable installation from unknown sources

This step will be split up for Android 5.0 and newer versions and Android 4.X versions.

8.3.1 Android 5.0 (Lollypop) and newer versions
Go to the settings menu from the smartphone. This can be done either by dragging down
on the notification bar twice (on Android 5.0 Lollypop and newer versions) then pushing

the gear wheel.

99% &b

2049 15°C - Overwegend bewolkt
Tuesday 28 April Valladolid

S —
) 4

€s0_no_es_un_wifi Bluetooth

4 S

Lycamobile Aeroplane mode Auto-rotate

0 ©

Flashlight High accuracy Gebalanceerd

LTE :i:

Hotspot LTE AudioFX

Fig. 65: Selection from the settings menu on Android 5.0.2

66

8.3.2 Android 4.X versions (lce Cream Sandwich, Jelly Bean and Kit Kat)
On the older versions of android this function was not yet implemented. To go to the
settings simply open up your application launcher and find the application named

settings.

Now that we have entered the settings menu search for the “security” tab. Under device
administration you should see the option “unknown sources - Allow installation of apps
from sources other than the Google Play Store”. Activate this option either by checking

the checkbox or by toggling the switch.

] v @ 4 99% 20:48 X i @ 4 99% 20:48

Settings Q | ¢« Security Q

Themes

Device administrators
View or deactivate device administrators

Notification manager

Unknown sources

Allow installation of apps from sources
other than the Play Store

Lock screen

Buttons

Storage type

Gestures Hardware-backed

Trusted credentials
Battery Display trusted CA certificates

Install from storage
Security Install certificates from storage

Fig. 66: Location of the security tab on Android 5.0.2

Fig. 67: Unknown sources switch on Android 5.0.2

8.4 Locate the installation package on the phone and execute it

Using a file explorer locate the installation package (LibraryScanner.apk) on the internal
memory of the mobile phone. This is an application standard in Cyanogenmod, however
when running a stock Android version you will have to download one from the Google
Play Store (for example file explorer) in order to be able to search for the application.
There are a lot of applications for exploring the internal memory. Choose the application

that suits you best.

67

i o 4 99%

]

UnityAdsVideoCache

D . 23/04/1513:08 drwxrwx—

. updatezip

o 10/02/1516:26 drwxrwx—
viber

D . 22/12/1422:04 drwxrwx—
WhatsApp

D . 8/02/1500:11 drwxrwx—
zedge

D . 26/11/1401:37 drwxrwx—
zonewalker-acar

D . 28/04/1520:37 drwxrwx—

ddmsrec.mp4

O = 28/04/1518:45 -rw-rw— 46MB
LybraryScanner.apk

D w 28/04/1520:37 -rw-rw— 2MB
miniclipld.txt

D 17/03/1521:17 -rw-rw— 248

Fig. 68: File explorer on android 5.0.2

After locating the installation package on the phone click on it. This will open an
installation dialog asking you to accept the permissions used by this application. Click on

accept and wait for the application to be installed.

0 v 4 s . 0 © 4 2110

% Library Scanner (% Library Scanner (% Library Scanner

Wilt u deze app installeren? Deze krijgt

toegang tot: Installeren... +/ App geinstalleerd.

PRIVACY
gﬁ foto's en video's maken
APPARAATTOEGANG

1, volledige netwerktoegang

ANNULEREN INSTALLEREN GEREED OPENEN
Fig. 69: Permission screen before installation
Fig. 70: Installation

Fig. 71: Installation completed

The application is now installed on your smartphone and ready to use.

68

9 Conclusion

This application can become a very handy tool for the people using it. It can save

valuable time and therefor also money.

The application itself has completed the objectives that were asked. It implements a log
in system so that only authorised users can use it. It implements the barcode scanner,
which is a huge time saving factor. The data can be entered manually as well. This comes
in handy when the book that the user wants to request is not found in the Google Books

database.

There are a couple of expansions that could be possible. I did not include these in the
final project since I didn’t have the time to get them fully working. For example the
cancel button could link to a list retrieved from the database showing the current
requested books by the user. There could be a way for the user to enter the ISBN code

manually or even implement a way to search on the book title.

I found it very interesting to work on this application since [had to use my basic
knowledge from the Android coding language and improve it by doing online research.
The Android language is very well documented online. Also the use of PHP and MySQL
was interesting. | learned how to combine all three of these languages to perform some

more complicated tasks.

Another adaptation that can be done is placing the database on a (paid) webserver that
can support such a large database. This will greatly improve the functionality. Also the
creation of a webpage for the person in charge of managing the book purchase requests.
These are all possible improvements that can be added to this project. I am sure this

application can become useful in a productive environment.

69

70

10 List of figures

Fig. 1: Graph from the market Share (1) ... sessessesssessesssssssessesases 3
Fig. 2: Graph from the Android version spread as 0of 04/2015 (2) ..coorermeenrereemeeneesseessesseennes 5
Fig. 3: Screenshot from checKlogin.php e 9
Fig. 4: Screenshot from the addtodatabase.php SCTIPt....oereeneneenreseeesseesesses e 11
Fig. 5: Screenshot from the cancelorder.php SCript..... e 12
Fig. 6: Screenshot from the 10gIn. XMl file ... 17
Fig. 7: Screenshot from the layout on mobile phone........nc s 18
Fig. 8: Screenshot from the first part of the XML file ... seeeesseeseeseesseenes 19
Fig. 9: Screenshot form the second part of the XML file ..o 21
Fig. 10: Screenshot from the third part of the XML ... 23
Fig. 11: Screenshot from the main activity implementing the XML......c.coonneneenreeneeneennes 23
Fig. 12: Screenshot from the imports used by the 10Gin ... 24
Fig. 13: Screenshot from the declaration of the variables used by the login........ccccoeeneenuc. 25
Fig. 14: Screenshot from the declarations and click liSteners.......coeneneerneenseneenseeseeseenees 25
Fig. 15: Screenshot from the code used by the login button and the I[P change button....26
Fig. 16: Screenshot from the code before execution of the try login class......c.coereneerreenn 26
Fig. 17: Screenshot from the code executed in the background by the try login class......27
Fig. 18: Screenshot from the code executed after the try login class.......ccoreoneenreereeneennes 28
Fig. 19: Screenshot from the imports of Main aCtiVILY ... seeseeseesseeees 29
Fig. 20: Screenshot from the declaration of variables. And jsonparser class ... 30
Fig. 21: Screenshot from the on create Method.......oceereenrereereeneeseee s 30
Fig. 22: Screenshot from the on click listener first part: empty input protector................ 31
Fig. 23: Screenshot from the click listener second part: warning messages.ccccoveereenees 31
Fig. 24: Screenshot from the method to utilise keyboard in the edit texts........ccorreerreenes 32
Fig. 25: Screenshot from the code creating the layout for the ratings........c.counreeneenreereesneennes 32
Fig. 26: Screenshot from the code for the web view linking Google Books (11)cccccuueuee. 33
Fig. 27: Screenshot from the code starting the barcode scanner.........oneonenreeseesseenees 33
Fig. 28: Screenshot from the code from the clear button ... 33
Fig. 29: Screenshot from the cancel DULLON ... seesessensnenees 34
Fig. 30: Screenshot from the onACtiVItY Class (12) .oereermereeseereesseesesseesesseessessesseessessesssesees 34
Fig. 31: Screenshot from the get book details class. Before executing.........cooeoneenreereereennes 35
Fig. 32: Screenshot from the in background method of get book details (13).....cccccruurreennes 36
Fig. 33: Screenshot from the post execute of the Get book details class (14) ...cccoureerreenees 38
Fig. 34: Screenshot from the Get book cOVer class (15) . reeererseesesseessessessesssesseesseeees 39
Fig. 35: Screenshot from the pre execute Send to database class.....c.ouenereensereenseeseesseennes 39
Fig. 36: Screenshot from the Do in background method from the send to database class
.. 40
Fig. 37: Screenshot from the post execute send data to database class.......ccuomenreereereennes 40
Fig. 38: Screenshot from the pre execute from the cancel book order classcccoueereennes 41
Fig. 39: Screenshot from the background code from cancel book order........cccconvenrereereennes 41
Fig. 40: Screenshot from the post execution from the cancel book order class........cccc..... 41
Fig. 41: Screenshot from the imports used by the Json Parser class.......coeonenreneesneennes 42
Fig. 42 : Screenshot from the code used to send added parameters to the database(16)43
Fig. 43: Screenshot from the fields of the libros_total table........conneeinenseneenreeseeeeenes 47
Fig. 44.: Screenshot from the fields in the personel table.........cnenrenseeneessereeeeees 48
Fig. 45: Example of retrieved booK infOrmationcneneenseneenseseesesseessessesseessesseesseenees 53

71

Fig. 46: Screenshot from the database with 3 books entered (2 automatic one manually)
.. 54
Fig. 47: Screenshot of the server with the middle book cancelled. (done by rescanning
the book and sending CanCel TEQUESL)oereeeerreeneeseeseeseessessesseessessessesssesseesssssessssssessenas 54
Fig. 48: Screenshot Server NOt fOUNM ... sessssssenssesaees 55
Fig. 49: Screenshot changing [P addressceeeeneenesneeneseeseessesseesessesssesssessessessessssssssssssnees 56
Fig. 50, Fig. 51 and Fig. 52: Screenshots from the Username and Password protection..57
Fig. 53: Screenshot invalid Username or PASSWOrdoeeneneensesseesesseessenssesseessesseesseenees 57
Fig. 54: Screenshot suCCESSTUL IOZ N ..o seseeaes 58
Fig. 55: Screenshot install dialog when application is not found........ccconeonenseneenreeseesseenees 59
Fig. 56: Screenshot barcode SCANMNET ... see s sessssssssssssaees 59
Fig. 57: Screenshot retrieved bOOK details ... sessesseessessessseenees 60
Fig. 58: Screenshot from data being entered manually ... 61
Fig. 59: Screenshot dialog screen with OPtionsS ... 62
Fig. 60: Screenshot Data uploaded tO SEIVETereerereeneeneeseeseesseesesseessessesssessessesssessesssssnees 62
Fig. 61: Screenshot link to book through Webview......... s 63
Fig. 62: Screenshot book request cancelled successfully ... 64
Fig. 63: Screenshot book not found or not the right user to cancel.......coooneonenreneerneenees 64
Fig. 64: ANAroid File TTanSer ... sessessesssesssssssssessssssessesssesssssesssessessssases 66
Fig. 65: Selection from the settings menu on Android 5.0.2enenreneeneenseneesseeseeseenees 66
Fig. 66: Location of the security tab on Android 5.0.2 ... seeseeseesseenees 67
Fig. 67: Unknown sources switch on Android 5.0.2neneeneeesesseessessesseesesseesssenees 67
Fig. 68: File explorer on android 5.0.2...... e seeseesesseessesssssessssssessesssessesssssssssssssssnes 68
Fig. 69: Permission screen before installation.......coceenenneneeseenseseeseseeseeseesessesseesesseesseees 68
3 F e LT 0o 1y = 1 (0) o VPPN 68
Fig. 71: Installation COMPLELEAcceeereererreerreeeereesesseessesees e sessessssssessssssessesssesssessessssssesssssaes 68

72

11 List of tables

Table 1: Sequence diagram fOr lOZIN. ... ssessessseseens 10
Table 2: Sequence diagram from the connection and retrieving of book details................. 11
Table 3: Flowchart from the complete application. ... 14

12 Bibliography

(1)International Data Corporation. (sd). Smartphone OS Market Share. Opgeroepen op 04
30, 2015, van Website of IDC: http://www.idc.com/prodserv/smartphone-os-market-
share.jsp

Wikipedia. (sd). Android Operating System. Opgeroepen op 04 30, 2015, van Wikipedia:
http://en.wikipedia.org/wiki/Android_%Z28operating_system%29

XZing. (sd). integrate ZXing reader to android application. Opgeroepen op 04 2915, 30,
van github: https://github.com/zxing/zxing/wiki/Scanning-Via-Intent

(4)Google Books API. (sd) information for connecting to Google Books. Last checked on

04 30, 2015, from Google: http://developers.google.com/books/docs/v1/
getting_started

(5)Android Log in. (sd) Create Login screen. Last checked on 04 30,2015, from
androidhive: http://www.androidhive.info/2012/01/android-login-and-registration-
with-php-mysql-and-sqlite/

(6)PHP add to database. (sd). Add data to database using php. Last checked on 04 30,
2015, from stackoverflow http://stackoverflow.com/questions/4910415/android-
sending-data-to-be-stored-in-mysql

(7)Send data as an extra. (sd) add data as an extra. Last checked on 04 30,2015, from
stackoverflow: http://stackoverflow.com/questions/6707900/pass-a-string-from-one-
activity-to-another-activity-in-android

(8)Add alertdialog and progressdialog. (sd) add the alertdialog and progressdialog. Last
checked on 04 30, 2015, from cssinnovations:
http://cssinnovations.blogspot.com.es/2012 /07 /selection-list-in-alert-dialog-box.html
(9)Perform a thread in the background. (sd) perform thread in background. Last checked
on 04 30,2015, from androidsearch: https://androidresearch.wordpress.com/2012/
03/17 /understanding-asynctask-once-and-forever/

(10) Create a input method. (sd) Creating an input method for enter button. Last checked
on 04 30,2015 from Google: http://developer.android.com/guide/topics/text/creating-
input-method.html

(11) Webview. (sd) how to implement the web view. Last checked on 04 30, 2015 from
Google android developer: http://developer.android.com/reference/android/
webkit/WebView.html

73

(12)on action result. (sd) how to retrieve a result to activity Last checked on 04 30, 2015
from Google android Developer: http://developer.android.com/training/basics/
intents/result.html

(13) implement HTTPget and post.(sd) how to implement http post and get. Last checked
on 04 30, 2015 from Google android Developer: http://developer.android.com/
reference/org/apache/http/client/methods/HttpGet.html

(14) json object information. (sd) information on using json object. Last checked on 04
30, 2015 from Google android Developer: http://developer.android.com/reference/
org/json/JSONObject.html

(15) Bitmap usage. (sd) information of using the bitmap for coverthumbnail retreivement.
Last checked on 04 30, 2015 from Google android Developer: http://developer.android.
com/reference/android/graphics/Bitmap.html

(16) Usage of the Json parser.(sd) How to use the jsonparser in android. Last checked on
04 30, 2015 from Google android Developer: http://stackoverflow.com/questions/
9605913 /how-to-parse-json-in-android

74

