
UNIVERSIDAD DE VALLADOLID

ESCUELA TÉCNICA SUPERIOR

INGENIEROS DETELECOMUNICACIÓN

TRABAJO FIN DE MASTER

MASTER UNIVERSITARIO EN INVESTIGACIÓN

EN TECNOLOGÍAS DE LA INFORMACIÓN Y LAS COMUNICACIONES

Scalable RDF compression
with MapReduce and HDT

Autor:

D. José Miguel Giménez García

Tutores:

Dr. D. Pablo de la Fuente
Dr. D. Miguel A. Martínez-Prieto

Dr. D. Javier D. Fernández

Valladolid, 11 de septiembre de 2015

TÍTULO : Scalable RDF compression
with MapReduce and HDT

AUTOR: D. José Miguel Giménez García
TUTORES: Dr. D. Pablo de la Fuente

Dr. D. Miguel A. Martínez-Prieto
Dr. D. Javier D. Fernández

DEPARTAMENTO: Departamento de Informática

Tribunal

PRESIDENTE: Dr. D. Carlos Alonso González
VOCAL: Dr. D. Mercedes Martínez
SECRETARIO: Dr. D. Arturo González Escribano
FECHA: 11 de septiembre de 2015
CALIFICACIÓN :

Resumen del TFM

El uso de RDF para publicar datos semánticos se ha incrementado de forma notable en los últimos años.
Hoy los datasets son tan grandes y están tan interconectadosque su procesamiento presenta problemas de
escalabilidad. HDT es una representación compacta de RDF que pretende minimizar el consumo de espacio
a la vez que proporciona capacidades de consulta. No obstante, la generación de HDT a partir de formatos
en texto de RDF es una tarea costosa en tiempo y recursos. Estetrabajo estudia el uso de MapReduce, un
framework para el procesamiento distribuido de grandes cantidades de datos, para la tarea de creación de
estructuras HDT a partir de RDF, y analiza las mejoras obtenidas tanto en recursos como en tiempo frente a
la creación de dichas estructuras en un proceso mono-nodo.

Palabras clave

Big Data, HDT, MapReduce, RDF, Web Semántica.

Abstract

The usage of RDF to expose semantic data has increased dramatically over the recent years. Nowadays,
RDF datasets are so big and interconnected their managementhave significant scalability problems. HDT
is a compact representation of RDF data aiming to minimize space consumption while providing retrieval
features. Nonetheless, HDT generation from RDF traditional formats is expensive in terms of resources and
processing time. This work introduces the usage of MapReduce, a framework for distributed processing
of large data quantities, to serialize huge RDF into HDT, andanalyzes the improvements in both time and
resources against the prior mono-node processes.

Keywords

Big Data, HDT, MapReduce, RDF, Semantic Web

Agradecimientos

Me gustaría expresar mi agradecimiento a varias personas, sin las cualeseste trabajo no hubiera
sido posible, o hubiera sido muy diferente.

En primer lugar a mis tutores, Javier D. Fernández, Miguel A. Martínez-Prieto, y Pablo de la
Fuente, por su ayuda e infinita pacienca durante la realización del trabajo.

A Javier I. Ramos, por su apoyo constante con el cluster Hadoop, en especial cuando hubo
problemas que hacían que el sistema de virtualización fallase.

A Jurgen Umbrich, por prestar el servidor en el que se realizaron las pruebas mono-nodo de
hdt-lib.

A Mercedes Martínez y Diego Llanos. Trabajos realizados en sus asignaturas sirvieron de
inspiración para lo que más tarde se convirtió en parte de esta memoria.

A mí familia, que como siempre han estado dándome su apoyo, estuvieran o no de acuerdo con
mis decisiones.

A mis amigos, que siempre me han dado ánimos para continuar.

iii

iv

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 2
1.3 Methodology . 4
1.4 Structure . 4

2 Background 5
2.1 Semantic Web . 5

2.1.1 Foundations of the Semantic Web . 5
2.1.2 Scalability Challenges . 16

2.2 HDT . 17
2.2.1 Structure . 17
2.2.2 Building HDT . 18
2.2.3 Performance . 19
2.2.4 Scalability Issues . 19

2.3 MapReduce .19
2.3.1 Distributed FileSystems . 20
2.3.2 MapReduce . 23
2.3.3 Challenges and Main Lines of Research 26

3 State of the Art 31
3.1 SPARQL Query Resolution .31

3.1.1 Native solutions . 33
3.1.2 Hybrid Solutions . 37
3.1.3 Analysis of Results . 40

3.2 Reasonig .42
3.3 RDF Compression . 45
3.4 Discussion .46

4 HDT-MR 49
4.1 System Design . 49

4.1.1 Process 1: Dictionary Encoding . 49
4.1.2 Process 2: Triples Encoding . 52

4.2 Implementation and configuration details . 54
4.2.1 Job 1.1: Roles Detection . 55
4.2.2 Job 1.2: RDF Terms Sectioning . 55
4.2.3 Local sub-process 1.3: HDT Dictionary Encoding 56
4.2.4 Job 2.1: ID-triples serialization . 57

v

vi CONTENTS

4.2.5 Job 2.2: ID-triples Sorting . 57
4.2.6 Local sub-process 2.3: HDT Triples Encoding 57

5 Experiments and Results 61

6 Conclusions and Future Work 67
6.1 Conclussions .67
6.2 Future Work .67
6.3 Contributions and Publications .68

A HDT-MR parameters 79

B HDT-MR configuration files 83
B.1 Dictionary Encoding .83
B.2 Triples Encoding .85

List of Figures

1.1 Goals overview . 3

2.1 Semantic Web Architecture . 6
2.2 An RDF graph example . 8
2.3 An RDFS graph example . 9
2.4 A SPARQL query example . 13
2.5 RDFS inference rules .. . 15
2.6 OWL Horst inference rules .. . 15
2.7 LOD Cloud (as of August 2014) .. . 16
2.8 HDT Dictionary and Triples configuration for an RDF graph 18
2.9 Distributed File System Architecture (HDFS) .. 21
2.10 Distributed File System Write Dataflow . 22
2.11 Map and Reduce input and output 23
2.12 MapReduce Architecture Overview 24
2.13 Complete MapReduce Dataflow .. 25
2.14 Map, Combine and Reduce inputs and outputs 25

3.1 Example of different hop partitions .. . 39
3.2 RDFS rules ordering .. 43
3.3 Compression and decompression algorithms .. 47

4.1 HDT-MR workflow. 49
4.2 Example of Dictionary Encoding: roles detection (Job 1.1). 50
4.3 Example of Dictionary Encoding: RDF terms sectioning (Job 1.2). 52
4.4 Example of Triples Encoding: ID-triples Serialization (Job 2.1). 53
4.5 Example of Triples Encoding: ID-triples Sorting (Job 2.2) 54
4.6 Class Diagram: Job 1.1: Roles Detection .55
4.7 Class Diagram: Job 1.2: RDF Terms Sectioning56
4.8 Class Diagram: Job 2.1: ID-triples serialization 57
4.9 Class Diagram: Local sub-process 2.3: HDT Triples Encoding 59

5.1 Serialization times: Real-World Datasets . 63
5.2 Serialization times: LUBM (1) . 63
5.3 Serialization times: LUBM (2) . 64
5.4 Serialization times: LUBM vs SP2B . 64

vii

viii LIST OF FIGURES

List of Tables

3.1 MapReduce-based solutions addressing SPARQL resolution 32

4.1 Cluster configuration. .. 54

5.1 Experimental setup configuration. .. . 61
5.2 Statistical dataset description .. 62
5.3 Statistical dataset description of SP2B and LUBM 64

ix

x LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

Since the end of the last century, the volume of data generated and stored across information
systems has been growing at a dramatic rate. The estimated amount of data of the digital universe
was 281 exabytes (281 billion gigabytes) in 2006 [42], and reached 1.8 zettabytes (1.8 trillion
gigabytes) in 2011 [41], multiplying its volume by six in five years. In addition, most of these
data, ranging from health records to twitter feeds, is not stored in structured format [9].

The so calledData Delugeaffects a myriad of fields. In scientific research, large amounts
of data are collected from simulations, experimental results, and even observation devices such
as telescopes: The Murchison Widefield Array (MWA) —a radio telescopebased in Western
Australia’s Mid West— is currently generating 400 megabytes of data per second (33 terabytes
per day) [17]. Internet companies like Google, Facebook or Yahoo! have stored data measured in
exabytes [111]. Public administrations have released millions of datasets to thepublic under the
Open Government flag [55].

However, management ofBig Datapresents some challenges. The more important among them
are related to what are commonly known as“the three V’s of Big Data”:

• Variety: As said before, Big Data are generated by a multitude of sources. The structure of
all this data is heterogeneous, and in many cases data are not even structured at all. Because
of this, extracting information and establishing relations among data is difficult.

• Volume:Probably the most straightforward challenge, the sheer amount of data is aproblem
by itself. Storage, transmission or querying of information cannot be addressed by classical
IT technologies.

• Velocity: Data are generated at an increasingly rapid rate. Processing the information
quickly enough is an added issue when dealing with Big Data.

TheSemantic Web[7] is a solution that attempts to deal with the challenge ofVariety. In short,
it is a proposal with the initial purpose of transforming the current web into aWeb of Data, where
semantic content is exposed and interlinked instead of plain documents. To allow a standardized
way to represent semantic data, the Resource Description Framework (RDF) [4] is introduced by
the W3C. RDF represents data in a labeled directed graph structure, enabling heterogeneous data
to be linked in a uniform way, while endowing links with semantic meaning.

The Semantic Web has provided means for publication, exchange and consumption of Big
Semantic Data. Since its inception, RDF usage has grown exponentially, with datasets spanning
hundreds of millions triples. Nonetheless, managing those quantities of data is still a challenge.

1

2 CHAPTER 1. INTRODUCTION

While different approaches have been proposed, such as column-oriented databases [109],Velocity
andVolumeare still unresolved challenges.

To address theVelocity issues that the Semantic Web struggles with, it is necessary a way to
transmit and query RDF in an efficient way. HDT is a storage proposal for RDF storage based
on succinct data structures [36] to confront scalability problems in the publication, exchange and
consumption cycle of Semantic Data. HDT is currently a W3C Member Submission1

RDF storage, transmission and querying requirements are alleviated by HDT. However, this
comes with a price. Current methods of serializing RDF into HDT need to process the whole RDF
dataset, demanding high amounts of memory in order to manage intermediate data structures.
That is, scalability issues are moved from RDF consumption to HDT generation. Volumeis then
an issue that RDF serialization into HDT has still to face.

In this scenario,MapReduceemerges as a candidate for this process. In short, MapReduce is
a framework for distributed processing of large amounts of data over commodity hardware. It is
based on two main operations:Map, which gathers information items in the form of pairs key-
value, andReduce, which groups values with the same key. Originally developed by Google and
made public in 2004 [27], its usage took off since then and it is currently widely used by many
institutions and companies, such as Yahoo! [108], Facebook [117] or Twitter [75].

1.2 Goals

The main goal for this work is toaddress the scalability issues of HDT serialization using the
MapReduce framework, reducing hardware requirements to generatean HDT serialization from
massive datasets or mashups. In order to achieve this objective some intermediate or secondary
goals are introduced. Those goals are sketched, along with a context overview, in Figure 1.1. They
are also described below.

• Perform a study of existing MapReduce based solutions to RDF scalability issues.

• Devise a MapReduce based solution to HDT serialization scalability issues. This solution
has to address the generation of the two serialized components of HDT, each one presenting
a different challenge:

– Dictionary serialization.Every triple term must be identified, segregated into sections
according to its role, and assigned a unique and ascending numerical IDs. Here the
challenge is to segregate and sort the terms, considering that terms which are subjects
and objects simultaneously belong to a different section than terms that are just subjects
or objects. This process is currently being done using temporal in-memory structures,
and constitutes the main bottleneck of HDT serialization.

– Triples serialization.Every triple term must be substituted by its ID. Then, each triple
must be identified and sorted by subject, predicate and object. While here there are
no hardware requirements that make the task unrealizable, speed can be improved by
paralleling the operation.

• Develop an evaluation system for HDT generation scalability. This system will have to
be applied to the devised solution and provide an unbiased assessment of itsscalability,
comparing it with previous mono-node versions.

1http://www.w3.org/Submission/2011/03

http://www.w3.org/Submission/2011/03

1.2. GOALS 3

Figure 1.1: Goals overview

4 CHAPTER 1. INTRODUCTION

1.3 Methodology

This work proposes a novel approach to deal with HDT serialization, which is in itself a solution
to deal with RDF scalability issues. This is a multidisciplinary work on the fields of Semantic
Web, compression techniques, and parallel computation, so a preliminary study of all fields is very
important. This allows to fully understand the subject and to take a grasp of useful techniques,
possible issues, and solutions on applying the MapReduce model to deal withRDF and HDT
structures. This is visible in the used methodology, which comprises the following steps:

1. Perform a state-of-the-art of Semantic Web, HDT and MapReduce, describing its main
characteristics, strengths, weaknesses and current challenges andlines of research.

2. Analyze current MapReduce-based solutions on the Semantic Web regarding scalability
issues.

3. Propose and develop a solution to HDT scalability issues. This solution will be based on the
MapReduce computational model.

4. Evaluate the solution against the previous mono-node serialization algorithm, providing a
fair assessment of the applicability of the devised solution.

1.4 Structure

The current chapter provides an overview of the problem this work addresses, its goals and
methodology. The rest of this document is organized as follows:

• Chapter 2 describes the background regarding the Semantic Web, HDT and MapReduce.

• Chapter 3 reviews the most relevant MapReduce solutions to a variety of RDF scalability
issues, not only including compression, but also query resolution and inference issues.

• Chapter 4 describes the proposed solution to generate HDT serialization.The evaluation
method for this solution is also defined.

• Chapter 5 demonstrates the experiments and their results with real-world andsynthetic
datasets.

• Chapter 6 gives some conclusions about the work done and delineates some possible
improvements and future lines of work.

Chapter 2

Background

This chapter explores the background needed to understand the addressed problem. This back-
ground includes the foundations and challenges of the Semantic Web and a description of the
MapReduce framework, on which HDT-MR is based upon.

2.1 Semantic Web

This section describes the basics of the Semantic Web: its principles, foundations, and standards.
It also comments its current challenges and open fields of research.

2.1.1 Foundations of the Semantic Web

The foundations of the Semantic Web are based on the current World Wide Web. In the WWW the
information is published and consumed by a multitude of different actors. Information is published
as documents, interconnected by links, and can be viewed as a whole as a directed graph. In this
graph, each document is a edge, while each link is a vertex. Then, information is presented in
natural language [7], and meaning is inferred by people who read web pages and the labels of
hyperlinks [98]. In the current web there are huge quantities of data, but utilization is limited due
to inherent problems [24]:

• Information overload:Information on the web grows rapidly and without organization, so
it is difficult to extract useful information from it.

• Stovepipe Systems:Many information system components are built to work only with
another components of the same system. Information from these components isnot readable
by external systems.

• Poor Content Aggregation:The Web is full of disparate content which is difficult to
aggregate. Scraping is the common solution.

The Semantic Web was first proposed by Tim Berners-Lee [7] in 2001. It expands the concept
of organizing information as a directed graph, but instead of linking documents, it linkssemantic
data. The links have also semantic labels, in order to describe the relation betweenthe two entities.
Its goal is to make data discoverable and consumable not only by people, but also by automatic
agents [98]. It is based on the following foundations [7, 98]:

• Resources:A resource is intended to represent any idea that can be referred to, whether it is
actual data, just a concept, or a reference to a real or fictitious object.

5

6 CHAPTER 2. BACKGROUND

• Standardized addressing:All resources on the Web are referred to by URIs [8]. The most
familiar URIs are those that address resources that can be addressedand retrieved; these are
called URLs, for Uniform Resource Locators.

• Small set of commands:The HTTP protocol [38] (the protocol used to send messages back
and forth over the Web) uses a small set of commands. These commands areuniversally
understood.

• Scalability and large networks:The Web has to operate over a very large network with
an enormous number of web sites and to continue to work as the network’s size increases.
It accomplishes this thanks to two main design features. First, the Web is decentralized.
Second, each transaction on the Web contains all the information needed to handle the
request.

• Openness, completeness, and consistency:The Web is open, meaning that web sites and web
resources can be added freely and without central controls. The Webis incomplete, meaning
there can be no guarantee that every link will work or that all possible information will be
available. It can be inconsistent: Anyone can say anything on a web page, so different web
pages can easily contradict each other.

Figure 2.1: Semantic Web Architecture

Semantic Web architecture is usually represented as a layered stack composed of enabling
formats and technologies, which can be seen in Figure 2.1. Those elements are briefly outlined
below [98] [2]:

2.1. SEMANTIC WEB 7

• XML —Extensible Markup Language[14]: Language framework that lets write structured
Web documents with a user-defined vocabulary. Since 1998, it has beenused to define nearly
all new languages that are used to interchange data over the Web.

• XML Schema[34, 114, 11]: A language used to define the structure of specific XML
languages.

• RDF —Resource Description Framework[74]: A flexible language capable of describing
information and meta data. The RDF data model does not rely on XML, but RDFhas an
XML-based syntax. RDF is covered in section 2.1.1.1

• RDF Schema[15]: A framework that provides a means to specify basic vocabularies for
specific RDF application languages to use. It provides modeling primitives for organizing
Web objects into hierarchies. Key primitives are classes and properties, subclass and sub-
property relationships, and domain and range restrictions. RDF Schema is covered in
2.1.1.2.

• Ontology–Languages: Expand RDF Schema to allow definition of vocabularies and estab-
lish the usage of words and terms in the context of a specific vocabulary. RDF Schema is a
framework for constructing ontologies and is used by many more advancedontology frame-
works. OWL [50] is an ontology language designed for the Semantic Web. Section 2.1.1.3
discusses OWL.

• Logic and Proof: Logical reasoning is used to establish the consistency and correctnessof
datasets and to infer conclusions that aren’t explicitly stated but are required by or consistent
with a known set of data. Proofs trace or explain the steps of logical reasoning. Section
2.1.1.5 covers some issues relating to logic in the Semantic Web.

• Trust: A mean of providing authentication of identity and evidence of the trustworthiness of
data, services, and agents.

2.1.1.1 RDF

RDF is a data model to describe resources, where a resource can be anything in principle. It
proposes a date model based on making statements about the resources. Each statement has then
the structure of a triple with the following components [24]:

• Subject:The resource that is being described by the ensuing predicate and object. A subject
can be either an IRI or a blank node.

• Predicate:The relation between the subject and the object. A predicate is an IRI.

• Object: Either a resource or value referred to by the predicate. An object can be an IRI, a
blank node, or a literal.

An IRI (International Resource Identifier) [30] refers unequivocally to a single resource. IRIs
are a generalization of an URIs that can contain characters from the Universal Character Set. RDF
has rules about how to construct an URI from an IRI so that they can beused conveniently on the
Word Wide Web [98]. Blank nodes are local identifiers that are often used to group collections of
resources, while a literal is a text string, commonly used for names or descriptions.

Triples are interconnected in a directed labeled graph, whit subjects and objects as vertices, and
properties as edges. An example of RDF and its graph-based representation in shown in Figure
2.2. Formally, RDF is described as follows:

8 CHAPTER 2. BACKGROUND

Definition 1 (RDF triple) A tuple(s, p, o) ∈ (I ∪B)× I ×(I ∪B ∪L) is called an RDF triple, in
which “s” is the subject, “p” the predicate and “o” the object.I (RDF IRI references), B (Blank
nodes), andL (RDF literals) are infinite, mutually disjoint sets.

Definition 2 (RDF graph) An RDF graphG is a set of RDF triples. As stated,(s, p, o) can be

represented as a directed edge-labeled graphs
p
Ð→ o.

RDF Graph

ex:S1 foaf:age 25 .

ex:S2 foaf:age 25 .

ex:S1 ex:study ex:C1 .

ex:S2 ex:study ex:C1 .

ex:C1 ex:hasProfessor ex:P1 .

ex:S1

ex:hasProfessor

ex:S2

25 ex:C1 ex:P1

Figure 2.2: An RDF graph example

RDF is more redundant than other ways of storing information —as regular databases—
because is schema-less. So, it needs to store property specifications each time they are used. This
requires RDF to carry data that might otherwise be redundant [98]. Butthis trade-off between
regularity and flexibility lets RDF do some operations that would be impossible in a conventional
database, such as [98]:

• Combine the data with other datasets that do not follow the same data model.

• Add more data that does not fit the table structures.

• Exchange data with any other application that knows how to handle RDF. Itcan be done
over the Web, by email, or any other way by which you can exchange a datafile.

• Use an RDF processor that can do logical reasoning to discover unstated relationships in the
data.

• Use someone else’s ontology to learn more about the relationships betweenthe properties
and resources in data.

• Add statements about publications and references that have been defined somewhere else on
the Web. All that needs to be done is to refer to the published identifiers (URIs).

• Do all these things using well-defined standards, so that a wide range ofsoftware can process
the data.

RDF was originally built over XML. RDF/XML is sometimes non-intuitive, as it carries a
translation of a list of statements into a hierarchical XML [24]. Because of that, other notations
have emerged over time. Notation 3 (N3) and N-triples are the most common non-XML formats.
A statement is written in ordinary text in the order<subject> <predicate> <object>.
N-triples is a line-oriented subset of N3. It was developed to express thedesired results of test cases
and to be transmittable over the Internet in a MIME format. For simple cases, there is virtually no
difference between N-triples and N3 [98].

2.1. SEMANTIC WEB 9

2.1.1.2 RDF Schema

RDF Schema (or RDFS in short) defines classes and properties, using theRDF data model. Those
elements allow to describe vocabularies (i.e. basic ontologies) to structure RDF resources and
impose restrictions on what can be stated in an RDF dataset. A continuation of the RDF graph
running example with some RDFS statements added is shown on Figure 2.3 The mainelements of
RDFS are outlined below [2].

RDF Graph

ex:Student rdf:type rdfs:Class .

ex:Professor rdf:type rdfs:Class .

ex:Class rdf:type rdfs:Class .

ex:S1 rdf:type ex:Student

ex:S2 rdf:type ex:Student

ex:P1 rdf:type ex:Professor

ex:C1 rdf:type ex:Class

ex:S1 foaf:age 25 .

ex:S2 foaf:age 25 .

ex:S1 ex:study ex:C1 .

ex:S2 ex:study ex:C1 .

ex:C1 ex:hasProfessor ex:P1 .

ex:hasProfessor

ex:S2

25 ex:C1 ex:P1

ex:S1

ex:Professorex:Classex:Student

rdfs:Class

rdf:type
rdf:type

rdf:type

rdf:type rdf:type
rdf:type

rdf:type

Figure 2.3: An RDFS graph example

Core Classes of RDFS:

• rdfs:Resource, the class of all resources.

• rdfs:Class: An element that defines a group of related things that share a set of
properties [24]. It is the superclass of all classes.

• rdfs:Literal, the class of all literals (strings). At present, literals form the only data
type of RDF/RDFS.

• rdf:Property, the class of all properties.

• rdf:Statement, the class of all reified statements.

Core Properties for Defining Relationships:

• rdf:type, which relates a resource to its class. The resource is declared to be an instance
of that class.

• rdfs:subClassOf, which relates a class to one of its superclasses; all instances of a
class are instances of its superclass. An element that specifies that a class is a specialization
of an existing class. This follows the same model as biological inheritance, where a child
class can inherit the properties of a parent class. The idea of specialization is that a subclass
adds some unique characteristics to a general concept.

• rdfs:subPropertyOf, which relates a property to one of its superproperties.

10 CHAPTER 2. BACKGROUND

Core Properties for Restricting Properties:

• rdfs:domain, which specifies the domain of a property P, that is, the class of those
resources that may appear as subjects in a triple with predicate P. If the domain is not
specified, then any resource can be the subject.

• rdfs:range, which specifies the range of a property P, that is, the class of those resources
that may appear as values in a triple with predicate P.

RDFS also includes utility properties to establish generic relations between resources or
provide information to human readers, such asrdfs:seeAlso, rdfs:isDefinedBy,
rdfs:comment, andrdfs:label [2]

2.1.1.3 Ontologies and OWL

An ontology defines the common words and concepts (i.e. the meaning) used to describe and
represent an area of knowledge [24]. An ontology language allows to model the vocabulary and
meaning of domains of interest: the objects in domains; the relationships among those objects; the
properties, functions, and processes involving those objects; and constraints on and rules about
those things [24]. While RDF Schema provides some tools to do so, they are limitedto a subclass
hierarchy and a property hierarchy, with domain and range definitions ofthese properties [2]. The
following requirement should be followed by a complete ontology language [2]:

• A well-defined syntax:A necessary condition for machine-processing of information

• A formal semantics:Describes the meaning of knowledge precisely. Precisely here means
that the semantics does not refer to subjective intuitions, nor is it open to different interpre-
tations.

• Efficient reasoning support:Allows to check the consistency of the ontology and the
knowledge, check for unintended relationships between classes, and automatically classify
instances in classes

• Sufficient expressive power:Needed to represent ontological knowledge.

• Convenience of expression.

In detail, RDFS lacks expressive power to model an ontology because:

• Local scope of properties:rdfs:range defines the range of a property, say eats, for all classes.
Thus in RDF Schema we cannot declare range restrictions that apply to someclasses only.

• Disjointness of classes:Sometimes we wish to say that classes are disjoint. For example,
male and female are disjoint. But in RDF Schema we can only state subclass relationships,
e.g., female is a subclass of person.

• Boolean combinations of classes:Sometimes we wish to build new classes by combining
other classes using union, intersection, and complement. For example, we maywish to
define the class person to be the disjoint union of the classes male and female.RDF Schema
does not allow such definitions.

• Cardinality restrictions: Sometimes we wish to place restrictions on how many distinct
values a property may or must take. For example, we would like to say that a person has
exactly two parents, or that a course is taught by at least one lecturer. Again, such restrictions
are impossible to express in RDF Schema.

2.1. SEMANTIC WEB 11

• Special characteristics of properties:Sometimes it is useful to say that a property is
transitive (like “greater than”), unique (like “is mother of”), or the inverse of another
property (like “eats” and “is eaten by”).

In order to achieve the expressive power that RDFS lacks the W3C developed OWL, an
extension of RDF to describe ontologies. In OWL2, there are 3 OWL profiles, based on different
description logics, with some trade-off between expressive power and efficiency of reasoning [92]:

• OWL2-EL:Tailored for applications that need to create ontologies with very large number
of classes and/or properties (as in large science ontologies). It is the profile with more
expressive power, allowing classes to be defined with complex descriptions.

• OWL2-QL:Aimed at applications that use very large volumes of instance data, and where
query answering is the most important reasoning task. Its goal is to allow reasoning to be
translated into queries on a database. In order for reasoning to be translated into a query, its
expressivity is restricted.

• OWL2-RL: Designed for applications that want to describe rules in ontologies. It is
essentially a rules language for implementing logic in the form of rulesif-then.

The main elements of OWL are described below [2].

Class Elements allow to declare and define classes with relation to another classes.

• owl:Class: Defines a class.

• owl:disjointWith: To say that a class is disjoint with the specified class.

• owl:equivalentClass: To indicate that a class is equivalent with the specified class.

Property Elements allow to declare and define properties with relation to another properties.

• owl:DatatypeProperty: Defines a data type property (a property that relates objects
with data type values).

• owl:ObjectProperty: Defines a object property (a property that relates objects with
objects).

• owl:equivalentProperty: To indicate a equivalent class, with the same range and
domain.

• owl:inverseOf: To say a property is inverse of the specified property (i.e. uses its range
as domain, and its domain as range).

Property Restrictions allow to place property restrictions on defined classes.

• owl:Restriction: Specifies property restrictions on any class. Property restriction
must be located betweenowl:Restriction tags inside a class.

• owl:onProperty: Indicates the property that will be affected by the restriction.

• owl:allValuesFrom: Specifies the class of possible values that the property can take
as range.

12 CHAPTER 2. BACKGROUND

• owl:hasValue: Specifies a fixed value that the property will have.

• owl:someValuesFrom: Makes mandatory to have at least one property with a value
from the specified class. If the class has more than one of these properties, the rest are not
restricted in this way.

• owl:minCardinality: Specifies the minimum cartinality of the property.

• owl:maxCardinality: Specifies the maximum cartinality of the property.

Special Properties allow to define directly some attributes of property elements.

• owl:TransitiveProperty defines a transitive property, such as “has better grade
than”, “is taller than”, or “is ancestor of”.

• owl:SymmetricProperty defines a symmetric property, such as “has same grade as”
or “is sibling of”.

• owl:FunctionalProperty defines a property that has at most one value for each
object, such as “age”, “height”, or “directSupervisor”.

• owl:InverseFunctionalProperty defines a property for which two different ob-
jects cannot have the same value, for example, the property “isTheSocialSecurityNumber-
for” (a social security number is assigned to one person only).

Boolean Combinations allow to specify boolean combinations of classes.

• owl:complementOf: Specifies that the class is disjoint with the specified class. It has
the same effect asowl:disjointWith.

• owl:unionOf: Specifies that the class is equal to the union of specified classes.

• owl:intersectionOf: Specifies that the class is equal to the intersection of specified
classes.

Enumerations allow to define a class by listing all its elements.

• owl:oneOf: Is used to list all elements that comprise a class.

Versioning information gives information that has no formal model-theoretic semantics but can
be exploited by human readers and programs alike for the purposes of ontology management.

• owl:priorVersion: Indicate earlier versions of current ontology.

• owl:versionInfo: Contains a string giving information about the current ontology
version.

• owl:backwardCompatibleWith: Identifies prior versions of the current ontology that
are compatible with.

• owl:incompatibleWith: Identifies prior versions of the current ontology that are not
compatible with.

2.1. SEMANTIC WEB 13

Instances of OWL classes are declared as in RDF. OWL does not assumethat instances with
different name or ID are not the same instance (i.e. does not adopt theunique-names assumption).
In order to ensure that resources are considered different from each other, this elements must be
used:

• owl:differentFrom: Identifies the resource as different from the specified resource.

• owl:AllDifferent: Allows to specify a collection. All elements of the collection are
considered different from each other.

2.1.1.4 SPARQL

Previous sections described how data are stored. As with traditional databases, it is necessary a
way to inquire about the information contained in a dataset. SPAQRQL is the query language for
the Semantic Web proposed by the W3C. SPARQL syntax is based on Turtle [5].

SPARQL is essentially a declarative language based on graph-pattern matching with a SQL-
like syntax. Graph patterns are built on top ofTriple Patterns(TPs),i.e., triples in which each of
the subject, predicate and object may be a variable. These TPs are grouped withinBasic Graph
Patterns(BGPs), leading to query subgraphs in which TP variables must be bounded. Thus, graph
patterns commonly join TPs, although other constructions, such as alternative (union) and optional
patterns, can be specified in a query [30]. An SPARQL query example is presented on Figure 2.4.
We can formally define TPs and BGPs as follows:

Definition 3 (SPARQL triple pattern) A tuple from(I ∪ L ∪ V) × (I ∪ V) × (I ∪ L ∪ V) is a
triple pattern.

Note that blank nodes act as non-distinguished variables in graph patterns [100].

Definition 4 (SPARQL Basic Graph pattern (BGP)) A SPARQL Basic Graph Pattern (BGP) is
defined as a set of triple patterns. SPARQL FILTERs can restrict a BGP.If B1 is a BGP andR is
a SPARQLbuilt-in condition, then(B1 FILTER R) is also a BGP.

TP1

TP2

TP3

TP

TP5

SP QL Q

S

 rdf:type ex:student .

rdf:type ex:degree .

ex:study .

ex:hasProfessor .

rdf:type ex:professor

ex:student ex:de ree

ex: ofessor

rdf:type

rdf:type

rdf:type

ex:study

ex:hasProfessor

Figure 2.4: A SPARQL query example

Query resolution performance mainly depends on two factors:

1. Triples retrieval,which depends on how triples are organized and indexed.

2. Join of Triplesof different TPs, determined by optimization strategies and algorithms for
join resolution [32].

14 CHAPTER 2. BACKGROUND

Both concerns are typically addressed within RDF storage systems (RDF stores), which are
usually built on top of relational systems or carefully designed from scratch to fit particular RDF
peculiarities.

SPARQL allows to enquire information with four different statements:

• SELECT:Used to extract values.

• CONTRUCT:Used to extract information as RDF text.

• ASK:Used to obtainyes/noquestions.

• DESCRIBE:Used to extract arbitrary “useful” information.

A WHEREblock is added (mandatory except in the case of DESCRIBE) where graph patterns
to be matched are included.

2.1.1.5 Reasoning

RDF allows for inference of new knowledge not previously stated on the original data by using
entailment rules. An entailment rule can be seen as a left-to-right rules: If the original data comply
with the left side, the conclusion is added to the graph. ter Horst [113] describes entailment rules
for RDFS and a subset of OWL (which serve as a basis for OWL2 RL definition), which can be
seen in Figures 2.5 and 2.6, respectively.

There are two main approaches to perform inference: The first one consist of applying the
rules at query time. In that case, the information related to the query is derived usingbackward-
chainingreasoning. The second approach computes what is called theGraph Closure, applying
all the entailment rules usingforward-chainingreasoning, deriving and storing all the implicit
information. Both approaches have advantages and disadvantages. The main advantage of the
reasoning at query time is that it doesn’t require neither expensive precomputation nor space
consumption. Thus, it is more suitable to datasets with dynamic information. However, the
computations needed to perform the reasoning at query time are usually too expensive to be used
in interactive applications. The computation of the Graph Closure, on the other hand, have the
advantage of not needing any additional computation at query time. While this approach is suited
for interactive applications, it is not efficient when only a small portion of the derivation is useful
at query time.

2.1.1.6 Linked Data

Linked Open Data1 is a movement that advocates the publication of data under open licenses,
promoting reuse of data for free. The project’s original and ongoing goal is to leverage the
WWW infrastructure to publish and consume RDF data, achieving ubiquitous and seamless data
integration over the WWW infrastructure [35]. This is accomplished by identifying existing
datasets that are available under open licenses, converting them to RDF according to the Linked
Data principles, and publishing them on the Web [12].

In 2006, Berners-Lee [6] enumerated the four principles the Web of Linked Data should follow
in order to make possible for different datasets to be published on the current WWW infrastructure
and connected together:

1. Use URIs as names for things.This allows any entity to be unambiguously referenced.

1http://linkeddata.org/

2.1. SEMANTIC WEB 15

1: s p o (if o is a literal) ⇒ _:n rdf:type rdfs:Literal
2: p rdfs:domain x & s p o ⇒ s rdf:type x
3: p rdfs:range x & s p o ⇒ o rdf:type x
4a: s p o ⇒ s rdf:type rdfs:Resource
4b: s p o ⇒ o rdf:type rdfs:Resource
5: p rdfs:subPropertyOf q & q rdfs:subPropertyOf r ⇒ p rdfs:subPropertyOf r
6: p rdf:type rdf:Property ⇒ p rdfs:subPropertyOf p
7: s p o & p rdfs:subPropertyOf q ⇒ s q o
8: s rdf:type rdfs:Class ⇒ s rdfs:subClassOf rdfs:Resource
9: s rdf:type x & x rdfs:subClassOf y ⇒ s rdf:type y
10: s rdf:type rdfs:Class ⇒ s rdfs:subClassOf s
11: x rdfs:subClassOf y & y rdfs:subClassof z ⇒ x rdfs:subClassOf z
12: p rdf:type rdfs:ContainerMembershipProperty ⇒ p rdfs:subPropertyOf rdfs:member
13: o rdf:type rdfs:Datatype ⇒ o rdfs:subClassOf rdfs:Literal

Figure 2.5: RDFS inference rules [113]

1: p rdf:type owl:FunctionalProperty, u p v , u p w ⇒ v owl:sameAs w
2: p rdf:type owl:InverseFunctionalProperty, v p u, w p u ⇒ v owl:sameAs w
3: p rdf:type owl:SymmetricProperty, v p u ⇒ u p v
4: p rdf:type owl:TransitiveProperty, u p w, w p v ⇒ u p v
5a: u p v ⇒ u owl:sameAs u
5b: u p v ⇒ v owl:sameAs v
6: v owl:sameAs w ⇒ w owl:sameAs v
7: v owl:sameAs w, w owl:sameAs u ⇒ v owl:sameAs u
8a: p owl:inverseOf q, v p w ⇒ w q v
8b: p owl:inverseOf q, v q w ⇒ w p v
9: v rdf:type owl:Class, v owl:sameAs w ⇒ v rdfs:subClassOf w
10: p rdf:type owl:Property, p owl:sameAs q ⇒ p rdfs:subPropertyOf q
11: u p v, u owl:sameAs x, v owl:sameAs y ⇒ x p y
12a: v owl:equivalentClass w ⇒ v rdfs:subClassOf w
12b: v owl:equivalentClass w ⇒ w rdfs:subClassOf v
12c: v rdfs:subClassOf w, w rdfs:subClassOf v ⇒ v rdfs:equivalentClass w
13a: v owl:equivalentProperty w ⇒ v rdfs:subPropertyOf w
13b: v owl:equivalentProperty w ⇒ w rdfs:subPropertyOf v
13c: v rdfs:subPropertyOf w, w rdfs:subPropertyOf v ⇒ v rdfs:equivalentProperty w
14a: v owl:hasValue w, v owl:onProperty p, u p v ⇒ u rdf:type v
14b: v owl:hasValue w, v owl:onProperty p, u rdf:type v ⇒ u p v
15: v owl:someValuesFrom w, v owl:onProperty p, u p x, x rdf:type w⇒ u rdf:type v
16: v owl:allValuesFrom u, v owl:onProperty p, w rdf:type v, w p x ⇒ x rdf:type u

Figure 2.6: OWL Horst inference rules [113]

16 CHAPTER 2. BACKGROUND

2. Use HTTP URIs so that people can look up those names.So each entity can be referenced
on the WWW.

3. When someone looks up a URI, provide useful information, using the standards (RDF,
SPARQL).In this way, information can be discovered when following the referencedURI.

4. Include links to other URIs, so that they can discover more things.This last rule is necessary
to really connect the data into a web.

Statistics show that LOD datasets have increased both in number and in size in recent years [33].
According to LODStats2 there are more than 89 billion triples on August 2015. Main contributors
to the Web of Linked Data currently include the British Broadcasting Corporation (BBC), The US
Library of Congress, and the German National Library of Economics. A visual representation of
the LOD Cloud as in August 2014 can be seen in Figure 2.7

Figure 2.7: LOD Cloud (as of August 2014) [23]

2.1.2 Scalability Challenges

The Semantic Web is a novel technology that allows to represent semantic datain a flexible way,
but it is still a novel technology and currently faces some technological challenges that hinder the
construction of scalable applications.

In the first place, efficient RDF storage is a current line of research.Standard representations
of RDF store the data in plain text. While this reduces the complexity of data serialization
and processing, it impacts the final size of RDF datasets. In addition, due toRDF schema-less
structure, information about the schema of the data must be included in each dataset, adding a
non-trivial amount of space. This is not only relevant because of storage requirements, but also
when considering data consumption. This leads to the second issue that the Semantic Web faces:

2http://stats.lod2.eu/

http://stats.lod2.eu/

2.2. HDT 17

Large volumes of RDF data are not easily queried. RDF stores usually builton top of relational
systems or carefully designed from scratch to fit particular RDF peculiarities [25]. However, RDF
stores typically lack of scalability when large volumes of RDF data must be managed [35].

Large-scale reasoning and inference is also a current challenge. RDFS and, specially, OWL
rules (see section 2.1.1.5) are complex and frequently generate new triplesthat are impacted by
the same or other rules. This makes online reasoning too much computationally expensive to be
performed. The approach adopted by most solutions that support reasoning is the materialization
of the inferred triples in a batch process. In fact , there is currently no alternative to materialization
that scales to relatively complex logics and very large data sizes [118]. However, materialization is
not a good solution when the data are dynamic. Nonetheless, even generating the closure of large
datasets is not a trivial task, and doing it efficiently is another line of research [118].

2.2 HDT

HDT [36] is a binary serialization format optimized for RDF storage and transmission. Besides,
HDT files can be mapped to a configuration of succinct data structures which allows the inner
triples to be searched and browsed efficiently. HDT is aW3C Member Submission3. The following
sections describe its structure and its current mono-node serialization process.

2.2.1 Structure

HDT encodes RDF into three components carefully described to address RDF peculiarities within
a Publication-Interchange-Consumptionworkflow. TheHeader(H) holds the dataset metadata,
including relevant information for discovering and parsing, hence serving as an entry point for
consumption. TheDictionary (D) is a catalogue that encodes all the different terms used in the
dataset and maps each of them to a unique identifier: ID. TheTriples (T) component encodes the
RDF graph as a graph of IDs,i.e. representing tuples of three IDs. Thus,Dictionary andTriples
address the main goal of RDF compactness. Figure 2.8 shows how theDictionary andTriples
components are configured for a simple RDF graph. Each component is detailed below.

Dictionary. This component organizes the different terms in the graph according to their role
in the dataset. Thus, four sections are considered: the sectionSO manages those terms playing
both as subject and object, and maps them to the range[1, |SO|], being|SO| the number
of different terms acting as subject and object. SectionsS andO comprise terms that exclusively
play subject and object roles respectively. Both sections are mapped from |SO|+1, ranging up
to |SO|+|S| and|SO|+|O| respectively, where|S| and|O| are the number of exclusive
subjects and objects. Finally, sectionP organizes all predicate terms, which are mapped to the
range[1, |P|]. It is worth noting that no ambiguity is possible once we know the role played
by the corresponding ID. Each section of theDictionary is independently encoded to grasp its
particular features. This allows important space savings to be achieved byconsidering that this
sort of string dictionaries are highly compressible [86].

Triples. This component encodes the structure of the RDF graph after ID substitution. That is,
RDF triples are encoded as groups of three IDs (ID-triples hereinafter): (ids idp ido), where
ids, idp, andido are respectively the IDs of the corresponding subject, predicate, andobject
terms in theDictionary. TheTriplescomponent organizes all triples into a forest of trees, one per
different subject: the subject is the root; the middle level comprises the ordered list of predicates

3http://www.w3.org/Submission/HDT

http://www.w3.org/Submission/HDT

18 CHAPTER 2. BACKGROUND

Figure 2.8: HDT Dictionary and Triples configuration for an RDF graph

reachable from the corresponding subject; and the leaves list the objectIDs related to each (subject,
predicate) pair. Thisunderlying representation(illustrated in Figure 2.8) is effectively encoded
following the BitmapTriplesapproach [36]. In brief, it comprisestwo sequences: Sp andSo,
concatenating respectively all predicate IDs in the middle level and all object IDs in the leaves;
andtwo bitsequences: Bp andBo, which are respectively aligned withSp andSo, using a 1-bit to
mark the end of each list.

2.2.2 Building HDT

In this section we proceed to summarize how HDT is currently built4. Remind that this process is
the main scalability bottleneck addressed by our current proposal.

To date, HDT serialization can be seen as a three-stage process:

• Classifying RDF terms. This first stage performs a triple-by-triple parsing (from the input
dataset file) to classify each RDF term into the correspondingDictionary section. To do
so, it keeps a temporal data structure, consisting of three hash tables storing subject-to-ID,
predicate-to-ID, and object-to-ID mappings. For each parsed triple, its subject, predicate,
and object are searched in the appropriate hash, obtaining the associated ID if present. Terms
not found are inserted and assigned an auto-incremental ID. These IDs are used to obtain
the temporal ID-triples(ids idp ido) representation of each parsed triple, storing all them
in a temporary ID-triples array. At the end of the file parsing, subject andobject hashes are
processed to identify terms playing both roles. These are deleted from theiroriginal hash
tables and inserted into a fourth hash comprising terms in the SO section.

• Building HDT Dictionary. Each dictionary section is now sorted lexicographically, because
prefix-based encoding is a well-suited choice for compressing string dictionaries [85].
Finally, an auxiliary array coordinates the previous temporal ID and the definitive ID after
theDictionarysorting.

4HDT implementations are available athttp://www.rdfhdt.org/development/

2.3. MAPREDUCE 19

• Building HDT Triples. This final stage scans the temporary array storing ID-triples. For
each triple, its three IDs are replaced by their definitive IDs in the newly createdDictionary.
Once updated, ID-triples are sorted by subject, predicate and object IDs to obtain the
BitmapTriplesstreams. In practice, it is a straightforward task which scans the array to
sequentially extract the predicates and objects into theSp andSo sequences, and denoting
list endings with 1-bits in the bitsequences.

2.2.3 Performance

HDT provides effective RDF decomposition, simple compression notions andbasic indexed
access in a compact serialization format which provides efficient accessto the data. The Triples
component is specifically encoded using a succinct data structure that enables indexed access to
any triple in the dataset. It provides good performance both in terms of compression rate and
query response time. WithPlain-HDT Space savings of 12-16% are reported with real-world
datasets5, although compression up to 7% is reached [36]. WithHDT-Compresscompression
rates are improved to 2-4%, outperforming results of universal compressors by at least 20%
[36]. Fernández et al. [36] comparePlain-HDT performance with state-of-the-art solutions such
as RDF-3X and MonetDB. Tests are performed on the Dbpedia dataset withreal-world queries.
HDT outperforms both of them in all patterns except(?S,P,O), where RDF-3X obtains the best
results, and(?S,P,?O), where HDT obtains the worst results.

2.2.4 Scalability Issues

HDT serialization process, described in section 2.2.2, makes use of several in-memory data
structures: four hash tables to storeterm-to-IDmappings during the first stage, an auxiliary array
during the second stage fortemporary ID to definitive IDmappings, and an additional array to
storeID-triples in the third phase. This is in addition to the actualBitmapserialization, which
must be wholly built in-memory before writing to disk.

2.3 MapReduce

MapReduce is a standard framework and programming model for the distributed processing of
large amounts of data. Its main goal is to provide efficient parallelization while abstracting the
complexities of distributed processing, such as data distribution, load balancing and fault tolerance
[27]. MapReduce is not schema-dependent, so it can process unstructured and semi-structured
data, although at the price of parsing every item [77]. A MapReduce job iscomprised of two main
phases:Map andReduce. The Map phase reads pairs key-value and’maps’ relevant information,
generating another intermediate pairs key-value. The Reduce phase takes all the values associated
with the same key and’reduces’them into a smaller set of values [27].

MapReduce was originally developed by Google and published in 2004 [27]. Since then, it
has been adopted by many companies that deal with Big Data. Examples of institutions actively
contributing to the MapReduce ecosystem include:

• Googleoriginally developed MapReduce [27] and many other related technologies: GFS
[45] — an underlying file system to be used with MapReduce —, BigTable [20] — a
distributed column-oriented database — , and Sawzall [99] — a procedural programming
language for analysis of large datasets in MapReduce clusters.

5Geonames, Dbtune, Uniprot and Dbpedia

20 CHAPTER 2. BACKGROUND

• Apachedeveloped Hadoop [10], a popular free implementation of MapReduce. Hadoop
is continually under development and includes many other subprojects like HBase — a
distributed columnar database inspired in BigTable — or Pig [95] — a procedural data
language on top of Hadoop.

• Yahoo! has contributed to 80% of the core of Hadoop. In 2010 Hadoop clusters at Yahoo!
spanned 25.000 servers, and stored 25 petabytes of application data, with the largest cluster
being 3500 servers [108].

• Facebookdevised Hive, an open-source data warehousing solution built on top ofHadoop
[115]. In 2010 Facebook’s data warehouse that stored more than 15PB of data and loaded
more than 60TB of new data every day [117].

• Microsoft created in 2008 their own approach to MapReduce: Cosmos, and SCOPE,a
declarative language on top of Cosmos [19]. In recent years, Microsoft has abandoned
its own technologies and has integrated Hadoop into their Cloud computing systems6

Although MapReduce is not dependent on filesystem architecture, its operation is based on
distributed data across many nodes, in order to process chunks of data inthe same node it is
stored. Google File System (GFS) [45] and Hadoop Distributed File System (HDFS) are the main
examples of those file systems. Google MapReduce and Hadoop are commonlydeployed on top
of them [27, 10].

2.3.1 Distributed FileSystems

To fully understand the MapReduce operation, it is needed to have some knowledge about the
underlying distributed filesystem it operates on, which are portrayed in thissection.

Distributed file systems serving data to MapReduce are designed to store anddeliver large
amounts of data on clusters of commodity hardware. They are designed to achieve scalability
(i.e. scaling computation capacity by simply adding commodity servers) and high aggregate
performance, while dealing with fault tolerance. To accomplish these goals these filesystems make
use of physical architecture awareness, data replication and placement,constant monitoring, and
instant recovery techniques [45, 13, 108].

Those filesystems are based on the premise of storing large quantities of data, which needs
to be accessed sequentially by batch processes. Hence, some design principles are the basis of
distributed filesystems [45].

• Data are stored on very large files: When working with high volume data sets, each one
comprising GB or TB, and millions of objects, it is hard to manage billions of files. As a
result, the file system stores the data as large files from hundreds of megabytes to terabytes.

• High sustained bandwidth is more important than low latency: To data-intensive applications
a high rate of data transfer is more important that response time for each petition

• Data processing follows a “write once, read many times” pattern, with streaming file access:
Once written, data are mostly accessed for data process, and is read often sequentially.
Modification of files, whenever it happens, is usually by appending data.Random data
modification is almost non-existent.

For these reasons, distributed filesystes are not suitable for all kinds ofapplications. Some
operations are not efficient, such as the following [10]:

6http://azure.microsoft.com/en-us/documentation/services/hdinsight/

http://azure.microsoft.com/en-us/documentation/services/hdinsight/

2.3. MAPREDUCE 21

• Low latency data access: Distributed file system are designed to deliver high-throughput
data-access. This is done at the expense of latency.

• Lots of small files: The complete namespace needs to be stored in-memory on asingle
node, which makes the storage of huge number of files unfeasible. This is inaddition to
under-usage of hard drives due to the block size used to store the files.

• Arbitrary file modifications: Modifications block files to the rest of the clients and require
high usage of net bandwidth. Also, random modifications that do not affect end of files are
not efficient.

2.3.1.1 Architecture

The architecture of distributed file systems are master/slave in nature. One master (Namenode in
HDFS) contains metadata and file placement. Many slaves (chunkservers inGFS, datanodes in
HDFS) store files data. Depending on the implementation, there can be “secondary masters” that
maintain backups of the master or help with some operations. The general architecture is shown
on Figure 2.9.

Figure 2.9: Distributed File System Architecture

Files are broken down in blocks and stored across the slaves. Block sizeis configurable, but
is usually of at least 64 MB, and 128 MB are usually the norm nowadays [124]. This large size
minimizes the cost of hard drive seeks, and reduces interaction with the master and metadata stored
on it [45]. Some studies suggest that even larger sizes improve significantly the performance
[77, 66]. Each block is replicated over a number of slaves. Thereplication factoris 3 by default,
but is configurable. It is possible to configure different replication factor to specific files, if they
are expected to be accessed more or less frequently than the average [45, 108]. If at any time
replication of any block falls under its replication factor, it is copied to other nodes from active
sources until it reaches the replication factor again.

The master maintains information about file and block namespaces, file-to-block mapping, and
the location of each block. Metadata and file-to-block mapping are stored persistently in master
hard drives, but the location of blocks is requested to the slaves at cluster startup. Not storing block
location simplifies the architecture and avoids dealing with problems of synchronization between
master and slaves. It also simplifies fault recovery, since this operation does not need to change
form a normal startup [45].

22 CHAPTER 2. BACKGROUND

Slaves and master communicate byheartbeats: Messages sent by each slave to the master
periodically (3 seconds by default in Hadoop). If the master does not receive heartbeat from a slave
in a specific timeframe (by default during 10 minutes in Hadoop) it is considered out of service
and not used anymore. Heartbeats also carry information about total storage capacity, fraction of
storage in use, and the number of data transfers currently in progress.These statistics are used
for the master’s space allocation and load balancing decisions. The master sends maintenance
commands to slaves in reply to heartbeats [108]

When a client needs to access a file, it send a petition to the master with file identification
and offset. The master looks for the corresponding block and sends theclient the list of slaves that
store the block. The block isleasedto the client for a specified period of time (60 seconds in GFS),
although the client can request extensions. The client chooses a slave (typically the nearest one)
and all the I/O operations are made through it. That avoids burdening the master with unnecessary
data transfer. It is also possible for the client to ask for more than one block in a single request
[45, 124, 108].

Multiple clients can read the same file with no additional features, but writings needs to deal
with multiple clients trying to modify the same file. Different implementations take distinct
approaches. HDFS only allows one client to write in the same file at a time [13, 108], GFS on
the other allows multiple clients to append information to the same file. Data are storedin a
temporary location in the nodes and is added to the file in the same order as the clients close the
file [45].

In a write operation, slaves containing the block are sorted in a serial pipeline by proximity to
the client, and one of them is chosen as the primary. The client writes data to theclosest slave, and
data are transferred through the pipeline. Receiving slaves send acknowledgment to the previous
one. When all data has been transferred, primary client closes the file and wait for acknowledgment
from other slaves. This acknowledgment contains a checksum that is validated. Master and client
are informed of the end of the process and its final state [45, 108]. A writeoperation diagram is
shown in Figure 2.10.

Figure 2.10: Distributed File System Write Dataflow

In the case of file creation, slaves are chosen according to areplica placementpolicy. This
policy tries to achieve a compromise between transfer speed and fault tolerance. In HDFS, the
default policy is to store the first replica in the same rack as the client, the second replica in another
rack and the third replica in the same rack as the second one. If replication factor is greater than 3,
following replicas are stored in random nodes over the cluster with this restrictions: No more than
one replica is written on the same node, and no more than two replicas are writtenon the same
rack [108].

Deletion follows a similar pattern as write operations, but blocks are not deleted immediately.
Instead, a lazy garbage collection mechanism is implemented. Block references are marked in

2.3. MAPREDUCE 23

master and slave nodes; if not used during a specified time (3 days by default) they will by deleted
by a background process [45, 13].

Load balancing must be taken into account when considering replica placement. GFS ponders
current disk utilization rate of each node at write time [45]. HDFS, in contrast, does not consider
it at write time in order to avoid placing new data into the same nodes. New data arefrequently
more accessed than older one, and placing most of it in a reduced number of slaves could affect
performance. HDFS solution consist in running a load balancer as a background process; if a node
exceeds a threshold, some of its block are moved to another slave in the cluster [124].

System metadata is stored in the namespace, which is stored by the in memory at runtime.
It is periodically stored into disk as a checkpoint, but in order to make it efficiently, the master
maintains a write-ahead commit log for changes to the namespace (journal on HDFS). The last
checkpoint and the log are merged periodically to make changes persistent[45, 124].

Hadoop implements two other kind of nodes, which help the master in its duties. The
Checkpoint Node reads checkpoint and journal, merges them into a singlecheckpoint, and returns
it to the master. The Backup Node contains all metadata except block locations, reads the journal
and creates its own checkpoints. If the master fails it can replace it [108].

GFS allows making snapshots by file or directory. When a snapshot is requested, the master
revokes all leases, duplicates all the metadata referring to affected data,and points it to the same
original blocks. When a client wants to modify a file, affected block are duplicated before any
modification occurs [45]. HDFS only allows one snapshot and it can only be made at startup. A
static checkpoint is written and slaves are notified to make local snapshots. When a slave needs to
modify blocks, it makes a local copy before [108].

2.3.2 MapReduce

MapReduce is designed to abstract the complexities of distributed data process to designers. It
aims to perform distributed computations over a high number of computers, dealing with issues
like parallelization, data distribution, load balancing, fault tolerance and scalability in a transparent
way [27].

In order to achieve these goals, MapReduce works with the principle of“moving algorithm to
data”. That is, executing data process in the same nodes data are stored, rather than moving data
over the machines that make the computations [27].

MapReduce model is based on two main operations, carried out in order:Map andReduce.
These operations work with pairs key-value. Mappers input pairs and produces intermediate key-
value pairs. An intermediate step groups all values with the same key, and Reducers read all
grouped values with the same key and processes them, producing a smaller set of values [27]. A
schema ofMap andReduce operations can be seen in Figure 2.11

map: (k1, v1) → list(k2, v2)
reduce: (k2, list(v2)) → list(v2)

Figure 2.11: Map and Reduce input and output

MapReduce works over data with no schema. This has the advantage of not being schema-
dependent, so it can work over unstructured or semi-structured data (like Google’s Protocol
Buffers, XML, JSON or Apache’s Thrift). On the other hand, it needsto parse every item read,
which impacts efficiency [77].

24 CHAPTER 2. BACKGROUND

MapReduce is I/O intensive, as it needs to write all intermediate data to disk betweenMap
andReduce Phases. I/O is the main bottleneck in MapReduce performance. This also impacts
in energy efficiency of MapReduce clusters. Many of current research lines try to deal with this
problem [77].

2.3.2.1 Architecture

MapReduce clusters have a master/slave architecture. One master (Jobtracker in Hadoop) initial-
izes the process, schedules tasks and keeps bookkeeping information.Many slaves (workers in
Google MapReduce, Tasktrackers in Hadoop) executeMap andReduce tasks [27]. A diagram of
MapReduce architecture can be seen in Figure 2.12.

Figure 2.12: MapReduce Architecture Overview

As stated before, a MapReduce job includes two main phases:Map andReduce, but more
intermediate phases are needed in order to manage data. Below are presented all phases a
MapReduce job, and is visually represented in Figure 2.13.

• Map: Reads input data and produces intermediate key/value pairs.

• Sort: Map output is sorted by key.

• Combine (optional): Processes Map output in order to extract only meaningful data, its
purpose is to minimize data transferred between Map and Reduce. If aCombinefunction is
used, its usage is similar to Reduce, as seen in Figure 2.14.

• Shuffle: Data flows between Map and Reduce task. Data received by a Reduce task
contains the same key.

• Merge: Data from different Map tasks is merged on the Reduce node.

• Reduce: Reads pairs key-value and produces a list of values. Each Reduce task works with
only one key.

At the beginning of a MapReduce job, input data are divided into inputsplits. Each split is
assigned to aMap task. When possible, Map tasks are performed in the same nodes data are
stored, in order to avoid data transfer between nodes [27, 80]. Note that the same principle is

2.3. MAPREDUCE 25

Figure 2.13: Complete MapReduce Dataflow

map: (k1, v1) → list(k2, v2)
combine:(k2, list(v2)) → list(k3, v3)
reduce: (k3, list(v3)) → list(k3, v3)

Figure 2.14: Map, Combine and Reduce inputs and outputs

not possible withReduce task, as they need data generated by multiple Map tasks, each one ran
in different nodes, so data transfer is unavoidable [124]. While both input and output are read
from and written to distributed filesystems, this is not the case with intermediate values. They are
temporary and replication would create unnecessary bandwidth usage [124].

When dividing input data into splits, it is important to take into account splits size.Smaller
splits benefit load balancing, specially in heterogeneous environments, because they can be
scheduled in different amount to each node. Bigger splits, by contrast, reduce the necessary
overhead of scheduling and bookkeeping tasks [66]. The overheadis not only of processing
time, but also of memory usage of the master node. This puts ade factolower limit in split
size. In addition, using split sizes bigger than block size of underlying distributed system is not
recommended, as it could impact in data locality: If a split is bigger than a block,the probabilities
of needing data transfer to retrieve part of the split are increased [27,124].

MapReduce assigns nodes to different jobs using a scheduler. Usageof a FIFO scheduler is
common in mono-user environments. In a FIFO scheduler all cluster nodes are used to process
a MapReduce Job. When nodes are freed from a job, they can be usedto process another job.
This is the default scheduler in Hadoop, but in environments where more than one job is needed
to run concurrently it is possible to use different schedulers. Hadoop allows to select a Fair
Scheduler, that assign equal resources to each job, or a Capacity Scheduler, that uses a more
complex scheduling with multiple queues, each of which is guaranteed to possess a certain capacity
of the cluster [124, 77].

Slave nodes periodically send heartbeats messages to the master with information about their
state and progress of the tasks they are running. Master node uses thatinformation to schedule new
tasks, and to identify faulty or straggling nodes (nodes that shows slower-than-expected progress)
[27]. If a node does not send a heartbeat during a specified time, or if the heartbeat informs about
a failed task, the master marks it as faulty, and no more tasks will be assigned toit. Every task
previously assigned, even completed tasks, are rescheduled to be processed by another nodes.
If a task is retried for a specified number of times (four by default in Hadoop), it will not be
rescheduled. Usually the whole MapReduce job is stopped when that happens, although it is
possible to establish a number of “allowed failures” for a job [27, 124]. Ifa node shows a slower-
than-expected progress, its current task will be scheduled to be processed by another node. When
the task ends in one of the nodes, the other one will be discarded. This is known asspeculative
task scheduling. Hadoop compares node progress with average progress in the clusterto detect
straggling nodes [124].

26 CHAPTER 2. BACKGROUND

2.3.3 Challenges and Main Lines of Research

MapReduce is a young technology, with many challenges ahead and open lines of research. The
most relevant are presented in this section.

2.3.3.1 Efficiency and Energy Issues

MapReduce is becoming a widespread solution for large-scale data analysis [78, 73]. With an
architecture based in replication and constant data traffic and I/O operations, energy consumption
is high [78]. This causes an energy waste that must be considered. Somestudies that deal with this
problem are:

• Covering Set: Keeps only a small fraction of the nodes powered up during periods of low
usage. It can save between 9% and 50% of energy consumption [78].

• All-In Strategy: Uses all the nodes in the cluster to run a workload and thenpowers down
the entire cluster. Presents lower effectiveness that Covering Set onlywhen time needed to
transition a node to and from a low power state is a relatively large fraction ofthe overall
workload time. In all other cases the benefits of All-In Strategy are significant [73].

• Green HDFS: Proposes data-classification-driven data placement that allows scale-down by
guaranteeing substantially long periods (several days) of idleness in a subset of servers in the
datacenter. Simulation results show that GreenHDFS is capable of achieving26% savings
[68].

2.3.3.2 Complex Execution Paths

MapReduce reads a single input and produces a single output in a fixed execution path. Many
execution plans require more complex path. There are solutions that implementthe possibility to
construct dataflow graphs with different possible paths [77]:

• Dryad: Execution engine that uses MapReduce but allows more general execution plans.
A Dryad application combines computational “vertices” with communication “channels” to
form a dataflow graph. Dryad runs the application by executing the vertices of this graph on
a set of available computers, communicating as appropriate through files, TCP pipes, and
shared-memory FIFOs [63]

• Clustera: Designed for extensibility, it enables the system to be easily extended to handle
a wide variety of job types ranging from computationally-intensive, long-running jobs with
minimal I/O requirements to complex SQL queries over massive relational tables.Another
unique feature of Clustera is the way in which the system architecture exploitsmodern
software building blocks including application servers and relational database systems in
order to carry out important performance, scalability, portability and usability benefits. [28]

• Nephele/PACT: Centered around a programming model of so called Parallelization Con-
tracts (PACTs) and the scalable parallel execution engine Nephele. The system as a whole
is designed to be as generic as (and compatible to) MapReduce systems, whileovercoming
several of their major weaknesses: 1) The functionsMap andReduce alone are not suffi-
cient to express many data processing tasks both naturally and efficiently.2) MapReduce
ties a program to a single fixed execution strategy, which is robust but highly suboptimal
for many tasks. 3) MapReduce makes no assumptions about the behavior of the functions.
[122, 3]

2.3. MAPREDUCE 27

2.3.3.3 Declarative Languages

Developers working with MapReduce must code their ownMap andReduce procedures. If
optimization is required, they could need to code Sort, Combine or Merge operations. Declarative
languages have been developed to abstract queries from program logic. This allows query
independence, reuse and optimization. Proposals of declarative languages include:

• Pig: Offers SQL-style high-level data manipulation constructs, which canbe assembled
in an explicit data flow and interleaved with custom Map- and Reduce-style functions or
executables. Pig programs are compiled into sequences of Map-Reduce jobs, and executed
in the Hadoop MapReduce environment. [95, 43].

• HiveQL: Queries are expressed in a SQL-like style, and are compiled intoMapReduce
jobs that are executed using Hadoop. In addition, HiveQL enables users to plug in custom
MapReduce scripts into queries. [115, 116].

• SCOPE: Designed for ease of use with no explicit parallelism, while being amenable to
efficient parallel execution on large clusters. SCOPE borrows several features from SQL.
Data are modeled as sets of rows composed of typed columns. The select statement is
retained with inner joins, outer joins, and aggregation allowed. Users can easily define
their own functions and implement their own versions of operators: extractors (parsing
and constructing rows from a file), processors (row-wise processing), reducers (group-wise
processing), and combiners (combining rows from two inputs). SCOPE supports nesting of
expressions but also allows a computation to be specified as a series of steps [19].

• DryadLINQ: A DryadLINQ program is a sequential program composed of LINQ expres-
sions performing arbitrary side-effect-free operations on datasets, and can be written and
debugged using standard .NET development tools. The DryadLINQ system automatically
and transparently translates the data-parallel portions of the program intoa distributed exe-
cution plan which is passed to the Dryad execution platform [62].

2.3.3.4 Progress Estimation

Hadoop speculative task scheduling compares node progress with the average. This approach can
present problems when applied over heterogeneous hardware, in which progress rate can vary from
one node to another [77]. Solutions to deal with this issue include:

• Longest Approximate Time to End (LATE): Proposes estimating task finalization through
individual progress rate. Improves Hadoop response times by a factorof 2 in heterogeneous
cluster environments [128].

• Parallax: Targets environments where queries consist of a sequentialpaths of MapReduce
jobs and is fully implemented in Pig. It handles varying processing speeds and degrees of
parallelism during query execution [91]

• ParaTimer: Estimates the progress of queries that translate into directed acyclic graphs of
MapReduce jobs, where jobs on different paths can execute concurrently. The essential
techniques involve identifying the critical path for the entire query and producing multiple
time estimates for different assumptions about future dynamic conditions. [90]

• KAMD: Uses an estimate of the time required to process a single record for each phase of
each job and an estimate of the number of records that remain to be processed [89]

28 CHAPTER 2. BACKGROUND

2.3.3.5 Multi-user Task Scheduling

In many multi-user production environments, MapReduce jobs often perform similar tasks.
MapReduce schedulers don’t take this into account, causing duplicate work.

MRShare is a solution for environments where different jobs often perform similar work, and
there are many opportunities for sharing. It transforms a batch of queries into a new batch that will
be executed more efficiently, by merging jobs into groups and evaluating each group as a single
query [70].

2.3.3.6 Global State Information

MapReduce does not store global state information. Complex algorithms that use state information
are hard to implement in MapReduce, and require lots of I/O usage and complex computations.
There are some advances that include state information in a MapReduce job execution:

• HaLoop: Haloop extends MapReduce with programming support for iterative applications,
it also dramatically improves their efficiency by making the task scheduler loop-aware and
by adding various caching mechanisms. Compared with Hadoop, on average, HaLoop
reduces query runtimes by 1.85 [16]

• Twister: Programming model and the architecture of an enhanced MapReduce runtime that
supports iterative MapReduce computations efficiently [31]

• Pregel: Implements a programming model motivated by the Bulk Synchronous Paral-
lel(BSP) model. In this model, each node has each own input and transfersonly some
messages which are required for next iteration to other nodes [84, 77]

2.3.3.7 Multiple Inputs

MapReduce is originally designed to read a single input and generate a single output. Algorithms
that require multiple inputs or outputs are not well supported. Here are presented some solutions
to deal with this issue:

• Map-Reduce-Merge: Adds to Map-Reduce a Merge phase that can efficiently merge data
already partitioned and sorted (or hashed) byMap andReduce modules. This model can
express relational algebra operators as well as implement several join algorithms [127].

• Map-Join-Reduce: Proposes a filtering-join-aggregation programmingmodel, a natural
extension of MapReduce’s filtering-aggregation programming model. It alsopresents a
data processing strategy which performs filtering-join-aggregation tasksin two successive
MapReduce jobs. The first job applies filtering logic to all the datasets in parallel, joins
the qualified tuples, and pushes the join results to the reducers for partial aggregation. The
second job combines all partial aggregation results and produces the final answer. The
advantage is that it joins multiple datasets in one go and thus avoids frequent checkpointing
and shuffling of intermediate results, a major performance bottleneck in most of the current
MapReduce based systems. [64]

• Tuple MapReduce: Allows to bridge the gap between the low-level constructs provided by
MapReduce and higher-level needs required by programmers, such as compound records,
sorting or joins. It also presents Pangool as an opensource framework implementing Tuple
MapReduce [37]

2.3. MAPREDUCE 29

2.3.3.8 Blocking Operators

Map andReduce functions are blocking operations in that all tasks should be completed to move
forward to the next stage or job. The reason is that MapReduce relies onexternal merge sort for
grouping intermediate results. Merge phase is I/O intensive. This propertycauses performance
degradation and makes it difficult to support online processing [65, 79].

• Incremental MapReduce: Combines MapReduce abstraction with a wide-scale distributed
stream processor. Incremental MapReduce operators avoid data re-processing, and the
stream processor manages the placement and physical data flow of the operators across
the wide area [83].

• MapReduce Online: Proposes a modified MapReduce architecture that allows data to be
pipelined between operators. This extends the MapReduce programing model beyond batch
processing, and can reduce completion times and improve system utilization forbatch jobs
as well. It also supports online aggregation, which allows users to see “early returns” from
a job as it is being computed, and continuous queries, which enable MapReduce programs
to be written for applications such as event monitoring and stream processing. [22]

• Intermediate Hash tables: Proposes a new data analysis platform that employs hash tech-
niques to enable fast in-memory processing, and a frequent key basedtechnique to extend
such processing to workloads that require a large key-state space. Itimproves the progress
of map tasks, allows theReduce progress to keep up with theMap progress, with up to
3 orders of magnitude reduction of internal data spills, and enables resultsto be returned
continuously during the job. [79]

2.3.3.9 Distributed Databases

MapReduce default framework operates over data files replicated in a distributed file system.
These data are schema-free and index-free, so parsing each elementis a requirement. If semi-
structured data are used, it can be used to check data integrity, but data size may grow as data
contains schema information in itself [77]. There are some approaches of distributed databases
that try to make data access more efficient:

• HadoopDB: Hybrid solution of parallel DBMS and Hadoop approachesto data analysis.
The ability of HadoopDB to directly incorporate Hadoop and open source DBMS software
(without code modification) makes HadoopDB particularly flexible and extensible for
performing data analysis at the large scales expected of future workloads [1].

• SQL/MapReduce: Hybrid framework that enables to execute user-defined functions in SQL
queries across multiple nodes in MapReduce-style [40, 77]

• BigTable: Column-based database. A Bigtable is a sparse, distributed, persistent multidi-
mensional sorted map. The map is indexed by a row key, column key, and a timestamp; each
value in the map is an uninterpreted array of bytes. [20]

• Hadoop++: Changes the internal layout of a split — a large horizontal partition of the data
— and/or feeds Hadoop with appropriate user-defined functions. It also proposes new index
and join techniques: Trojan Index and Trojan Join, to improve runtimes of MapReduce jobs
[29].

• Dremel: Combines multi-level execution trees and columnar data layout [87]

30 CHAPTER 2. BACKGROUND

• Teradata’s Hadoop and PDBMS integration: Present three efforts towards tight integration of
Hadoop and Teradata EDW. DirectLoad approach provides fast parallel loading of Hadoop
data to Teradata EDW. TeradataInputFormat approach allows MapReduceprograms efficient
and direct parallel access to Teradata EDW data without external steps of exporting and
loading data from Teradata EDW to Hadoop. SQL users can directly access and join Hadoop
data with Teradata EDW data from SQL queries via user defined table functions. [126]

• HBase: Hadoop’s columnar database that extends the Bigtable model with secondary
indexes and filters that reduce data transferred over the network [44]

• RCFile (Record Columnar File): Stores row groups with column-wise data compression to
provide efficient storage space utilization. RCFile is read-optimized by avoiding unneces-
sary column reads during table scans [54].

• Llama: A hybrid data management system which combines the features of row-wise and
column-wise database systems. In Llama, columns are formed into correlation groups to
provide the basis for the vertical partitioning of tables. It possess a join algorithm to facilitate
fast join processing and exploits the map-side join to maximize the parallelism and reduce
the shuffling cost [81].

2.3.3.10 Intra-node parallelism

In some studies, MapReduce model is used in intra-node parallelism, such asmulti-core environ-
ments [101, 66] or GPU computations [18, 53]. There are also specific studies regarding Cell
architectures [26]. In those cases, a core substitutes the role of a node, and data are transferred
through shared memory. Fault tolerance features are usually discarded[77].

Chapter 3

State of the Art

This chapter describes the current State of the Art on MapReduce-based applications to scalability
issues of the Semantic Web (see section 2.1.2).

1. SPARQL Query Resolution:The majority of the works deal with efficient querying of RDF
graphs. Section 3.1 classifies, analyzes, and compares the most prominent solutions.

2. RDFS and OWL inference:MapReduce-based solutions to RDF and OWL reasoning focus
on computing a graph closure using forward-chaining entailment. That is, materializing all
triples which can be inferred from the original dataset using RDFS and/orOWL rules. This
solutions are described in section 3.2.

3. RDF Compression:Urbani et al. [121] deal with RDF compression using MapReduce,
proposing an algorithm based on dictionary encoding. Their work is portrayed in section
3.3.

3.1 SPARQL Query Resolution

Different MapReduce-based solutions have been proposed for SPARQL resolution on a large scale.
Thus, we propose a specific classification which allows us to review these solutions in a coherent
way. To do this, we divide the technique according to the complexity that their nodes must assume
within the MapReduce cluster. We consider two main families that we refer to asnative and
hybrid solutions.

Native solutions. This first family considers all solutions relying exclusively on the MapReduce
framework. That is, queries are resolved with a series of MapReduce jobs on low complexity
nodes, typically disregarding the help of specific semantic technology in each node of the
cluster. Thus, the overall SPARQL resolution performance mainly depends on (a) physical tuning
decisions, and (b) processing strategies which reduce the number of required jobs. As for (a), we
consider two main decisions to optimize the physical aspects:

• Data storageis one the main bottlenecks on the MapReduce framework. Note that data
are persistently read from disk and stored again to communicateMap andReduce stages.
Thus, how the data are organized for storage purposes in HDFS is one of the considerations
addressed by the existing solutions.

• Data indexingis an immediate improvement for reducing the aforementioned I/O costs. For
this purpose, some approaches use a NoSQL database (in general, HBase) on top of HDFS.

31

32 CHAPTER 3. STATE OF THE ART

Solution Type Purpose Solution Reason Papers

Native
solutions

Simplify automated
processing

Single line notations Each triple is stored in
a separate line

[59],
[60],
[61],
[93]

Reduce storage
requirements

Substitution of com-
mon prefixes by IDs

Data size reduction [59],
[60],
[61]Division of data in sev-

eral files by predicate
and object type

Only files with corre-
sponding TPs will be
read

Improve data
processing speed

Storage of all triples
with the same subject
in a single line

Improve reading speed
of queries with large
number of results

[104]

Map-side joins Reduce data shuf-
fled and transferred
between tasks

[48],
[106]

NoSQL solutions Provide indexed access
to triples

[112],
[97],
[106]

Reduce number of
MapReduce jobs

Greedy algorithm Optimize Star Queries [59],
[60],
[93]Multiple Selection al-

gorithm
Optimize Path Queries

Early elimination
heuristic

Prioritize jobs that
completely eliminate
variables

[61]

Clique-based heuristic Resolve queries with
map-side joins

[48]

Hybrid
solutions

Allow parallel sub-
graph processing

Graph Partitioning Each node receives a
significant subgraph

[58],
[76]

Parallel subgraph pro-
cessing

Each node resolves
subgraph joins

Table 3.1: Classification of MapReduce-based solutions addressing SPARQL resolution.

These approaches leverage database indexes to improve RDF retrievalwithin individual
nodes, therefore improving TP resolution within theMap stage. These random access
capabilities allow more complexMap andReduce stages to be implemented in practice.

Regardless of this physical tuning, all approaches carry out specificstrategies for reducing the
number of MapReduce jobs required for general SPARQL resolution. Both physical decisions and
these processing strategies are reviewed in Section 3.1.1 within the corresponding approaches.

Hybrid solutions. This second family, in contrast to native solutions, deploys MapReduce
clusters on more complex nodes, typically installing mono-node state-of-the-art RDF stores. This
decision allows each node to partially resolve SPARQL queries on its stored subgraph, so that
MapReduce jobs are only required when individual node results must bejoined. In this scenario,
triples distributionis an important decision to minimize (or even avoid) the number of MapReduce
jobs required for query resolution.

Table 3.1 summarizes the most relevant solutions, in the state of the art, according to the above
classification. The corresponding papers are reviewed in the next two sections.

In addition to the reviewed papers, it is worth noting that there exist some other proposals

3.1. SPARQL QUERY RESOLUTION 33

[110, 103, 105, 69] which are deployed on top of additional frameworks running over Hadoop,
such as Pig [95] or Hive [115, 116]. These solutions use high-level languages over Hadoop to hide
Map andReduce task complexities from developers. However, we do not look at them in detail
because their main contributions are related to higher level details, while their internal MapReduce
configurations respond to the same principles discussed below.

3.1.1 Native solutions

This section reviews the most relevant techniques within the native solutions.Attending to the
previous classification, we analyze solutions running on native HDFS storage (Section 3.1.1.1),
and NoSQL-based proposals (Section 3.1.1.2).

3.1.1.1 HDFS-based Storage

Before going into detail, it is worth noting that all these solutions usesingle line notationsfor
serializing RDF data in plain files stored in HDFS. Some solutions use straight N-Triples format
[49] for storage purposes [93], while others preprocess data and transform them to their own
formats. This simple decision simplifies RDF processing, because triples can be individually
parsed line-by-line. In contrast, formats like RDF/XML [4] force the wholedataset to be read in
order to extract a triple [59, 60, 93, 102, 58].

RDF storage issuesare addressed by Rohloff and Schantz [104], Husain et al. [59, 60,61]
and Goasdoué and Kaoudi [48] in order to reduce space requirementsand data reading on each
job. Rohloff and Schantz [104] transform data from N3 into a plain text representation in which
triples with the same subject are stored in a single line. Although it is usually not an effective
approach for query processing (in which a potentially small number of triples must be inspected),
it is adequate in the MapReduce context because large triple sets must be scanned to answer less-
selective queries [104].

Another immediate approach is based on commonRDF prefix substitution [59]. In this case,
all occurrences of RDF terms (within different triples) are replaced by short IDs which reference
them in a dictionary structure. It enables spatial savings, but also parsing time because the amount
of read data is substantially reduced.

Husain et al. [60] focus on storage requirements and I/O costs bydividing data into several
files. This decision allows data to be read in a more efficient way, avoiding the reading of the
whole dataset in its entirety. This optimization comprises two sequential steps:

1. A predicate-based partitioning is firstly performed. Thus, triples with the same predicate are
stored as pairs(subject,object) within the same file.

2. Then, these files are further divided intopredicate-typechunks in order to store together
resources of the same type (e.g.ex:student or ex:degree in the example in Figure 2.2).
This partitioning is performed in two steps:

(a) Explicit type informationis firstly used for partitioning. That is,(subject,object)
pairs, from therdf:type predicate file, are divided again into smaller files. Each file
stores all subjects of a given type, enabling resources of the same type tobe stored
together.

(b) Implicit type informationis then applied. Thus, each predicate file is divided into as
many files as different object types it contains. This division materializes thepredicate-
typesplit. Note that this is done with the information generated in the previous step.
Thus, each chunk contains all the(subject,object) pairs for the same predicate and
type.

34 CHAPTER 3. STATE OF THE ART

General query resolution performs on an iterative algorithm which looks for the files required
for resolving each TP in the query. According to the TP features, the algorithm proceeds as
follows:

• If both predicate and object are variables (but the type has been previously identified), the
algorithm must process allpredicate-typefiles for the retrieved type.

• If both predicate and object are variables (but the type has not been identified), or if only the
predicate is variable, then all files must be processed. Thus, the algorithmstops because no
savings can be obtained.

• If the predicate is bounded, but the object is variable (but the type has been previously
identified), the algorithm only processes thepredicate-typefile for the given predicate and
the retrieved type.

• If the predicate is bounded, but the object is variable (but the type has not been identified),
all predicate-typefiles must be processed.

For instance, when making split selection for the query of Figure 2.4, the selected chunks would
be:

• TP1: type fileex:student.

• TP2: type fileex:degree.

• TP3: predicate-type fileex:study-ex:degree.

• TP4: predicate-type fileex:hasProfessor-ex: professor.

• TP5: type fileex:professor.

Goasdoué and Kaoudi [48] focus their attention on another MapReduceissue: the job perfor-
mance greatly depends on the amounts of intermediate data shuffled and transmitted fromMap to
Reduce tasks. Their goal is to partition and place data so that most of the joins can be resolved in
the Map phase. Their solution replaces the HDFS replication mechanism by a personalized one,
where each triple is also replicated three times, but in three different types of partition: subject
partitions, property (predicate) partitions, and object partitions. For a given resource, the subject,
property, and object partitions of this resource are placed in the same node. In addition, subject
and object partitions are grouped within a node by their property values. The propertyrdf:type
is highly skewed, hence its partition is broken down into smaller partitions to avoid performance
issues. In fact, property values in RDF are highly skewed in general [71], which can cause property
partitions to differ greatly in size. This issue is addressed by defining a threshold: when creating
a property partition, if the number of triples reaches the threshold, anotherpartition is created for
the same property. It is important to note that this replication method improves the performance,
but at the cost of fault-tolerance: HDFS standard replication policy ensures that each item of the
data is stored in three different nodes, but with this personalized method, this is not necessarily
true.

Husain et al. [59] and Myung et al. [93] focus onreducing the number of MapReduce jobs
required to resolve a query. Both approaches use algorithms to select variables in the optimal way.
Their operational foundations are as a follows. In a first step, all TPs are analyzed. If they do
not share any variable, no joins are required and the query is completed ina single job. Note that
while a cross product would be required in this case, this issue is not addressed by these works.
Otherwise, there are TPs with more than one variable. In this case, variables must be ordered and
two main algorithms are considered:

3.1. SPARQL QUERY RESOLUTION 35

• Thegreedy algorithmpromotes variables participating in the highest number of joins.

• Themultiple selection algorithmpromotes variables which are not involved in the same TP
because these can be resolved in a single job.

Both algorithms can be combined for variable ordering. Whereas Myung etal. [93] make an
explicit differentiation between the algorithms, Husain et al. [59] implement a single algorithm
which effectively integrates them. These algorithms are simple, report quickperformance, and
lead to good results. However, they are not always optimal. In a later work, Husain et al. [60]
obtain each possible job combination and select the one reporting the lowest estimate cost. This
solution, however, is reported as computationally expensive.

Husain et al. [61] revisit their previous work and developBestplan, a more complex solution for
TPs selection. In this solution, jobs are weighted according to their estimated cost. The problem
is then defined as a search algorithm in a weighted graph, where each vertex represents a state
of TPs involved in the query, and edges represent a job to make the transition from one state to
another. The goal is to find the shortest weighted path between the initial statev0, where each TP
is unresolved, to the final statevgoal, where every TP is resolved. However, it is possible (in the
worst case) that the complexity of the problem were exponential in the number of joining variables.
Only if the number of variables is small enough, is it a feasible solution for generating the graph
and finding the shortest path.

For higher numbers of joining variables, theRelaxed-Bestplanalgorithm is used. It assumes
uniform cost for all jobs;i.e., the problem is to find the minimum number of jobs. This concern
can also be infeasible, but it is possible to implement a greedy algorithm that finds an upper bound
on the maximum number of jobs that performs better than the greedy algorithm defined in [59].
This algorithm is based on anearly elimination heuristic. That is, jobs thatcompletely eliminate
variables are selected first, wherecomplete eliminationmeans that this variable is resolved in every
TP it appears.

On the other hand, Goasdoué and Kaoudi [48] represent the query as a query graphwhere
nodes are TPs, and edges model join variables between them (these are labeled with the name of
the join variables). Then, the conceptclique subgraphis proposed from the well-known concept of
clique in Graph Theory; a clique subgraphGv is the subset of all nodes which are adjacent to the
edge labeled with the variablev (i.e.: triples that share variablev). Using this definition, possible
queries are divided into the following groups:

• 1-clique query:where the query graph contains a single clique subgraph. These queries can
be resolved in theMap stage of a single job, because the join can be computed locally at
each node.

• Central-clique query:where the query graph contains a single clique subgraph that overlaps
with all other clique subgraphs. These queries can be resolved in a singlecomplete job.
The query can be decomposed into 1-clique queries that can be resolvedin theMap phase
of a MapReduce job, and then the results of these joins can be joined in the variable of the
common clique on theReduce stage.

• General query: This is neither 1-clique nor central-clique query. These queries require
more than one job to be resolved. A greedy algorithm, referred to asCliqueSquare, is used
to select join variables. This algorithm decomposes queries into clique subgraphs, evaluates
joins on the common variables of each clique, and finally collapses them. All this processing
is implemented in a MapReduce job. As cliques are collapsed, each node in the query graph
represents a set of TPs.

36 CHAPTER 3. STATE OF THE ART

3.1.1.2 NoSQL Solutions

In order to improve RDF retrieval in each node, some approaches use theNoSQL distributed
databaseHBase[112, 97, 106] on top of HDFS. These solutions perform triples replication, in
diverse tables, and use some indexing strategies to speed up query performance for TPs with
distinct unbound variables. The main drawback of these approaches is that each triple is now
stored many times, one for each different table, and this spatial overheadis added to the HDFS
replication itself (with a default replication factor of three).

Sun and Jin [112] propose a sextuple indexing similar to the one of Hexastore [123] or RDF3X
[94]. It consists of six indexes:S_PO, P_SO, O_SP, PS_O, SO_P, and PO_S, which cover
all combinations for unbound variables. Thus, all TPs are resolved with one access to the
corresponding index.

Papailiou et al. [97] reduce the number of tables to three, correspondingto indexesSP_O,
OS_P, andPO_S. TPs with only one bound resource are resolved with a range query[<resource>,

increment(<resource>)]. To further improve query performance, all indexes store only the 8-
byte MD5Hashes of{s,p,o} values; a table containing the reverse MD5Hash to values is kept
and used during object retrieval.

Schätzle and Przyjaciel-Zablocki [106] reduce the number of tables even more, using only two,
corresponding to indexesS_POandO_PS. TheHBase Filter APIis used for TPs which bound
(subject and object) or (object and predicate). In turn, predicate bounded TPs can be
resolved using theHBase Filter APIon any of the two tables.

Although these solutions rely on HBase for triple retrieving, join operations are still performed
via Map and Reduce operations. Sun and Jin [112] use similar algorithms to that described
previously for [59, 93]. Papailiou et al. [97], on the contrary, develop a complex join strategy
where joins are performed differently depending on BGP characteristics. The different join
strategies are:

• The map phase join is the base case and follows the general steps described in section
2.3.2. That is, the mappers read the triples and emit(key, value)pairs in which i) thekeys
correspond to the join variable bindings, and ii) thevaluescorrespond to the bindings for
all other variables included in the TPs of the join (if exist) calculated in previous jobs. In
turn, the reducers merge, for each key, the corresponding list of values in order to perform
the join. Although this strategy is namedmap phase join, the actual join is performed in the
Reduce phase (the name only refers to when data are extracted from HBase).

• Thereduce phase joinis used when one of the TPs retrieves a very small number of input
data compared to the rest. In this case, theMap stage is the same as in theMap phase join,
but only this TP is used as input. It is in theReduce stage where, for each mapped binding,
data are retrieved if they match other TPs.

• Thepartial input join is similar toReduce phase join, but allows an arbitrary number of TPs
to be selected for extracting their results in theMap stage. These selection use information
gathered during the bulk data loading to HBase.

• Instead of launching a MapReduce job, thecentralized join performs the join operation in
a single node. This is only an efficient choice when the input data size is small,and the
initialization overhead of a MapReduce job is a major factor in query performance.

Furthermore, Schätzle and Przyjaciel-Zablocki [106] develop a join strategy namedMap-Side
Index Nested Loop Join(MAPSIN join). This strategy performs the join in theMap stage instead of
theReduce one. It firstly performs a distributed table scan for the first TP, and retrieves all local

3.1. SPARQL QUERY RESOLUTION 37

results from each machine. For each possible variable binding combination,theMap function is
invoked for retrieving compatible bindings with the second TP. The computed multiset of solutions
is stored in HDFS. This approach highly reduces the network bandwidth usage, as only compatible
data for the second TP needs to be transferred to the nodes which run theMap tasks. Note that,
when the join is materialized in theReduce stage, all possible bindings are transferred from
Map to Reduce tasks. Joins involving three or more TPs are computed successively. Foreach
additional TP, aMap stage is performed after joining the previous TPs. In this case, theMap
function is invoked for each solution obtained in the previous joins. Finally, inthe case of multi-
way joins, compatible bindings for all TPs are retrieved from HBase in a singleMap stage. Finally,
for queries involving a high selective TP (retrieving few results), theMap function is invoked in
one machine for avoiding the MapReduce initialization.

3.1.2 Hybrid Solutions

The approaches reviewed in the previous section strictly rely on the MapReduce framework for
resolving SPARQL queries. Some other techniques introduce specific semantic technology in
each node of the cluster. In general, this class of solutions deploy an RDFstore in each cluster
machine and distribute the whole dataset among all nodes. The motivation behind this idea is to
manage a significant RDF subgraph in each node in order to minimize inter-node communication
costs. In fact, when join resolution can be isolated within a single node, the complete query is
resolved in parallel without using MapReduce. These queries are defined asParallelizable Without
Communication(PWOC) by Huang et al. [58]. In this case, the final results are just the addition of
each node output (note that a cross product would be required in this case, but this is not considered
in the original paper). If a query is not PWOC, it is decomposed in parallelizable queries and their
result is finally merged with MapReduce.

A straightforward, but smart, data distribution performs hashing by subject, object or subject-
object (resources which can appear as subject or object in a triple) [76]. This hash-based
partitioning is also used in multiple distributed RDF Stores such as YARS2 [52], Virtuoso Cluster
[32], Clustered TDB [96], or CumulusRDF [72]. In the current scenario, hash-partitioning
enables TPs sharing a variable resource to be resolved without inter-node communication. This
result is especially interesting for star-shaped query resolution, but more complex queries require
intermediate results to be combined and this degrades the overall performance [58]. Edge-based
partitioning is another effective means of graph distribution. In this case, triples which share
subject and object are stored in the same node. However, triples describing the same subject can
be stored in different nodes, hindering star-shaped query resolution[58]. Finally, Huang et al.
[58] and Lee and Liu [76] perform a vertex-based partitioning. By considering that each triple
models a graph edge, this approach distributes subsets of closer edges inthe same machines. This
partitioning involves the following three steps:

1. The whole graph is vertex-based partitioned in disjoint subsets. This class of partitioning is
well-known in Graph Theory, so standard solutions such as theMetis partitioner[67], can
be applied.

2. Then, triples are assigned to partitions.

3. Partitions are finally expanded through controlled triple replication.

It is worth noting thatrdf:type generates undesirable connections: every resource is at two
hops of any other resource of the same type. These connections make thegraph more complex
and reduce the quality of graph partitioning significantly. Huang et al. [58]remove triples with

38 CHAPTER 3. STATE OF THE ART

predicaterdf:type (along with triples with similar semantics) before partitioning. Highly-
connected vertices are also removed because they can damage quality in a similar way. In this case,
a threshold is chosen and those vertices with more connections are removedbefore partitioning.

Huang et al. [58] create partitions including triples with the same subject. In turn, Lee and Liu
[76] obtain partitions for three different kinds of groups:

• Subject-based triple groups, comprising those triples with the same subject.

• Object-based triple groups, comprising those triples with the same object.

• Subject-object-based triple groups, comprising those triples with the same subjector object.

The overall query performance could be improved if triples replication is allowed. It enables
larger subgraphs to be managed and queried, yielding configurable space-time tradeoffs [58]. On
the one hand, storage requirements increase because some triples may be stored in many machines.
On the other hand, query performance improves because more queries can be locally resolved.
Note that the performance gap between completely parallel resolved queries and those requiring
at least one join is highly significant. Huang et al. [58] introduce two particular definitions to
determine the best triple replication choice:

• Directed n-hop guarantee:ann-hop guaranteepartition comprises all vertices which act as
objects in triples whose subject is in an(n-1)-hop guaranteepartition. The1-hop guarantee
partitions corresponds to the partition created by the vertex partitioning method previously
described.

• Undirected n-hop guarantee:this is similar to the previous one, but it includes each vertex
linked to a vertex in the(n-1)-hop guaranteepartition (i.e. vertices which are subject of a
triple having its object on the(n-1)-hop guarantee).

Lee and Liu [76] propose comparable definitions:

• k-hop forward direction-based expansionis similar to directed n-hop guarantee. It adds
triples with the subject acting as the object of a triple in the partition.

• k-hop reverse direction-based expansionadds triples with an object which appears as the
subject of a triple in the partition.

• k-hop bidirection-based expansionis similar toundirected n-hop guarantee. Thus, it adds
triples with a resource playing any resource role for a triple in the partition.

Example. We illustrate these definitions using the RDF excerpt shown in Figure 2.2. Letus
suppose that triples are partitioned by subject, and each one is assigned toa different partition.
In this case, the1-hop guaranteeor any type of1-hop expansionwould simply obtain the initial
partitions without adding any additional triples. This is shown in Figure 3.1(a).

The 2-hop partitions are obtained by including triples “related” to those in the corresponding
1-hop partition. How this relationship is materialized depends on the type of partition. Directed
2-hop guaranteeand 2-hop forward direction-based expansionadd triples whose subject is
object in any triple within the 1-hop partition. In the current example, the triple(ex:C1,

ex:hasProfessor, ex:P1) is added to partitions 1 and 2, but the partition 3 is unchanged because
there are no more triples with their subject included in the 1-hop partition. The resulting partitions
are shown in Figure 3.1(b).

3.1. SPARQL QUERY RESOLUTION 39

The 2-hop reverse direction-based expansion, illustrated in Figure 3.1(c), add triples whose
object is a subject in any triple within the 1-hop partition. For the current example, partitions 1
and 2 remain unchanged whereas the partition 3 adds(ex:S1, ex:study, ex:C1) and(ex:S2,
ex:study, ex:C1).

The undirected 2-hop guaranteeand 2-hop bidirection-based expansionadd triples whose
subject or object appear, as subject or object, in any triple within the 1-hop partition. In our current
example,(ex:C1, ex:hasProfessor, ex:P1) is added to partitions 1 and 2 because their subject
(ex:C1) is already in the partition. In turn,(ex:S1, ex:study, ex:C1) and(ex:S2, ex:study,

ex:C1) are added to the partition 3 because their object (ex:C1) is also in the partition. The
resulting partitions are illustrated in Figure 3.1(d).

The subsequent 3 and 4-hop partitions are obtained following the same decisions. It can
be tested that, in this example, bothundirected 4-hop guaranteeand 4-hop bidirection-based
expansioninclude the whole graph. 2

Figure 3.1: Example of different hop partitions

This n-hop review leads to an interesting result: in fully connected graphs,bothundirected k-
hop guaranteeandk-hop bidirection-based expansionpartitions will eventually include the whole
graph ifn/k is sufficiently increased. However, this is not true for directed guarantees/expansions,
as some resources can be connected by the direction which is not considered [58].

To determine if a query is completely resolved in parallel, centrality measures are used.
Huang et al. [58] use the concept ofDistance of Farthest Edge(DoFE). The vertex of a query
graph with the smallest DoFE will be considered as thecore. If the DoFE of the core vertex
is less than or equal to the n-hop guarantee, then the query is PWOC. It is worth noting that if
directed n-hop guarantee is used, the distance must be measured considering the query as a directed
graph; if undirected n-hop guarantee is used, the query can be considered as an undirected graph.
Lee and Liu [76] propose similar definitions with the name ofcenter vertexandradius. Radius can
be calculated asforward radius(when using forward direction-based expansion),reverse radius
(when using reverse direction-based expansion), orbidirectional radius(when using bidirectional-
based expansion). In these cases, the query graph must be considered as directed, inversely
directed, and undirected.

If triples replication is used, it is possible that more than one partition could resolve a query.
This could lead to duplicate results when resolving PWOC queries. Huang etal. [58] address
this issue in the following way: when a partition is created, additional triples with the form
(v,<isOwned>,"Yes") are added, wherev corresponds to core vertexes of the partition (i.e. not

40 CHAPTER 3. STATE OF THE ART

added as an n-hop guarantee). When resolving a query in parallel, an additional TP with the form
(core,<isOwned>,"Yes") is added to the query.

3.1.3 Analysis of Results

This section summarizes the experimental results provided by the authors of the most prominent
techniques described in the previous sections. It is worth mentioning that any performance
comparison would be unfair, as the solutions are tested under different configurations and most
of them do not compare to each other. These variations include differentnode configurations and
cluster compositions; the version of Hadoop used in the experiments and alsoits configuration; and
the datasets size. Nevertheless, all of them use the well-known Lehigh University Benchmark[51]
(LUBM), obtaining datasets from LUBM(100) to LUBM(30K). This benchmark allows synthetic
data, of arbitrary size, to be generated from a university ontology. It also provides a set of
14 queries varying in complexity. Thus, we aim to analyze how solutions facetwo correlated
dimensions: i)dataset sizeand ii) resolution performanceat incremental query complexity.

3.1.3.1 Native solutions on HDFS

As stated, native solutions running on HDFS make use exclusively of MapReduce infrastructure
for SPARQL resolution. On the one hand, RDF is stored using different file configurations
within HDFS. On the other hand, SPARQL queries are resolved with successive jobs across the
nodes. It is worth noting that all techniques analyzed in this section use multi-way joins for query
optimization.

The initial work by Husain et al. [59] proposes a promising specific optimization on the basis
of organizing triples in files by certain properties. They perform, though,a reduced evaluation
with a cluster of 10 nodes, aimed at testing the feasibility and scalability of the proposal. They
report runtime for six queries from LUBM on incremental dataset sizes. The solution scales up to
1,100 million triples and shows sublinear resolution timew.r.t. the number of triples. However, no
comparisons are made against any other proposal, so its impact within the stateof the art cannot
be quantified. Their next solution [60] fills this gap and evaluates the approach (again on a cluster
of 10 nodes) against mono-node stores: BigOWLIM1 and Jena2 (in-memory and the SDB model
on disk). The latest solution by Husain et al. [61] compare their approachagainst the mono-node
RDF3X [94]. In this latter comparison, larger datasets are tested, rangingfrom LUBM(10K), with
1.1 billion triples, to LUBM (30K), with 3.3 billion triples. In addition to LUBM, a subset of
the SP2Bench Performance Benchmark [107] is also used as evaluation queries. These last works
reach similar conclusions. As expected, the Jena in-memory model is the fastest choice for simple
queries, but it performs poorly at complex ones. Moreover, it runs out of memory on a large scale
(more than 100 million triples). Jena SDB works with huge sizes, but it is one order of magnitude
slower than HadoopRDF. In general, BigOWLIM is slightly slower in most dataset sizes, and
slightly faster in the 1 billion dataset (mostly because of its optimizations and triple pre-fetch).
A detailed review shows that BigOWLIM outperforms the MapReduce proposal in simple queries
(such as Q12), whereas it is clearly slower in the complex ones (e.g.Q2 or Q9). They also evaluate
the impact of the number of reducers, showing no significant improvement inthe performance with
more than 4 reducers. RDF3X performs better for queries with high selectivity and bound objects
(e.g.Q1), but HadoopRDF outperforms RDF3X for queries with unbound objects, low selectivity,
or joins on large amounts of data. Moreover, RDF3X simply cannot executethe two queries with
unbound objects (Q2 and Q9) with the LUBM(30K) dataset.

1http://www.ontotext.com/owlim/editions
2http://jena.apache.org/

3.1. SPARQL QUERY RESOLUTION 41

Goasdoué and Kaoudi [48] compare their solution with respect to HadoopRDF [61]. Datasets
LUBM(10K) and LUBM(20K) are used in the tests. All the queries correspond to 1-clique or
central-clique queries, and thus they can be resolved in a single MapReduce job. This allows
CliqueSquare to outperforms HadoopRDF in each query by a factor from28 to 59.

Myung et al. [93] focus their evaluation on testing their scalability with LUBM atincremental
sizes. However, the maximum size is only LUBM(100),i.e. synthetic-generated triples from 100
universities. In contrast, Husain et al. [59] start their evaluation from 1,000 universities. Therefore,
the very limited experimentation framework prevents the extraction of important conclusions.
Nonetheless, they also verify the sublinear performance growth of the proposal (w.r.t. the input)
and the significant improvement using multi-way joins versus two-way joins.

3.1.3.2 Native solutions on NoSQL

As explained before, this class of solutions replaces the plain HDFS storage by a NoSQL database
in order to improve the overall data retrieval performance. The following results support this
assumption, showing interesting improvements for query resolution.

Sun and Jin [112] make an evaluation using LUBM [51] datasets from 20 to 100 universities.
Although no comparisons are made with respect to any other solutions, their results report better
performance for growing dataset sizes. This result is due to the impact ofMapReduce initialization
decreases for larger datasets.

Papailiou et al. [97] compare themselves with the mono-node RDF3X and with theMapReduce-
based solution HadoopRDF [61]. The experiments comprise a variable number of nodes for the
clusters and a single machine for RDF3X. This machine deploys an identical configuration to that
used for the nodes in the clusters. LUBM datasets are generated for 10,000 and 20,000 universities,
comprising 1.3 and 2.7 billion triples respectively. Their solution shows the best performance for
large and non-selective queries (Q2 and Q9), and outperforms HadoopRDF by far for centralized
joins. Nonetheless, it is slightly slower than RDF3X for this case. Regardingscalability, execution
times are almost linearw.r.t. the input when the number of nodes does not vary within the node,
and decreases almost linearly when more nodes are added to the cluster.

Schätzle and Przyjaciel-Zablocki [106] perform an evaluation of their MAPSIN join technique
over a cluster with 10 nodes. They also use the SP2Bench in addition to LUBM. For LUBM,
datasets from 1,000 to 3,000 universities are generated; for SP2Bench, datasets from 200 million
to 1 billion triples are generated. Their results are compared against PigSPARQL [105], another
work from some of the same authors that uses Pig to query RDF datasets. Both approaches scale
linearly, but MAPSIN on HBase enable an efficient way of Map-Side join because it reduces the
necessary data shuffle phase. This allows join times to be reduced from1.4 to28 times with respect
to the compared technique.

3.1.3.3 Hybrid solutions

The hybrid solutions aim to minimize the number of MapReduce jobs, resolving queries in local
nodes and restricting the communication and coordination between nodes justfor complex queries
(cross-joins between nodes). This is only effective on the basis of a previous smart subgraph
partitioning.

Huang et al. [58] establish a fixed dataset of 2,000 universities (around 270 million triples) for
their evaluation, and do not compare incremental sizes. They perform ona cluster of 20 nodes, and
their proposal is built with the RDF3X [94] triple store working in each single node. First, they
compare the performance of RDF3X on a single node against the SHARD [104] native solution,
showing that this latter is clearly slower because most joins require a costly complete redistribution

42 CHAPTER 3. STATE OF THE ART

of data (stored in plain files). In contrast, subject-subject joins can be efficiently resolved thanks
to the hash partitioning. Next, the performance of Huang et al.’s solution is evaluated against
RDF3X on a single node. Once again, the simplest queries (Q1, Q3, Q4, etc.) run faster on a
single machine, whereas the hybrid MapReduce solution dramatically improvesthe performance
of complex queries (Q2, Q6, Q9, Q13 and Q14), ranging from 5 to 500 timesfaster. The large
improvement is achieved for large clusters, because chunks are small enough to fit into main
memory. In addition, they verify that the 1-hop guarantee is sufficient formost queries, except
those with a larger diameter (Q2, Q8 and Q9), in which the 2-hop guarantee achieves the best
performance and, in general, supports most SPARQL queries (given the small diameter of the path
queries).

Finally, Lee and Liu [76] yield to a very similar approach. They also install RDF3X in each
single node (20 nodes in the cluster), but their performance is only compared against a single-node
configuration. In contrast, they perform on incremental sizes (up to 1 billion triples) and study
different benchmarks besides LUBM. They also conclude that a 2-hopguarantee is sufficient for
all queries (it leads to similar results to even a 4-hop guarantee) and, in each case, this subgraph
partitioning is more efficient than the hash-based data distribution used, forinstance, in SHARD
[104]. The single-node configuration does not scale on most datasets,whereas the scalability of
the MapReduce system is assured once the resolution time increases only slightly at incremental
dataset sizes.

3.2 Reasonig

MapReduce-based reasoning solutions are based on generating the closure of the graph using
forward-chaining materialization. That is, using the available data and the rules of either RDFS or
OWL (see Figures 2.5 and 2.6) to derive new triples. Note that in all works OWL Horst is used.
Hence, at query time there is no need of additional operations.

In a naive algorithm to compute aRDFS graph closure, all triples inferred by the rules are
derived by MapReduce jobs. The issues of this solution are the focus ofUrbani et al. [120]. They
distinguish three main problems:

1. Load balancing:In essence, a MapReduce job joins and sends to the same reducer triples
matching each inference rule. Those groups are consistently larger thanothers, which leads
to load balancing issues.

2. Duplicated triples:Any given rule may derive the same triple using different input triples.
Also, different rules may derive the same triple. This leads to duplicated output. In
experimental results, the ratio of unique derived triples to duplicates is shown to be at least
1:50.

3. Recursive derivation:Derived triples can be also be used to generate new triples. Then, it is
needed to chain more jobs and iterate until no more new triples are derived. The performance
of the whole process greatly depend on the number of jobs needed to compute the closure.

To deal with those issues, they propose the following solutions:

1. Loading schema triples in memory:All the RDFS rules include at least one schema triple
(i.e., a triple which has an RDFS term). Given that schema triples are usually a small
subset of a RDF dataset, they can be loaded in-memory on each node. With this approach,
every node can receive any triple and apply the corresponding rules.Then, perfect load
balancing can be achieved.

3.2. REASONIG 43

2. Data grouping: For any given rule, triples are grouped by the terms that are also used
in the derived triple. Those terms are used askey in the MapReduce job. Since the key
is used to partition the data, all triples that produce some new triple will be sent tothe
same reducer. It is then trivial to output that triple only once in the reducer. While this
does not eliminate duplicate triples (because triples derived from different rules can still be
duplicated), it greatly reduces the amount.

3. Ordering the application of the RDFS rules:After analyzing rules and their data dependen-
cies (that is, which rule may be triggered by other rule), they devise an efficient rule ordering
to minimize the number of required MapReduce jobs. The whole process is performed using
four MapReduce jobs (three of which actually apply the rules and anotherone before the last
job to remove duplicates), shown in Figure 3.2. Observe that rules 12 and 13 can produce
triples that hypothetically may be used in previous jobs. In order to affect rule 5, there must
be either a superproperty ofrdfs:member or a subproperty ofp. In order to affect rule 7
there must be some resources connected byp. The first case of rule 5 is ignored, following
the advice against “ontology hijacking” from [57]. The other two cases,while theoretically
possible, never appear in their experimental evaluation.

Figure 3.2: RDFS rules ordering [120]

OWL reasoning turns out to be more complex. Urbani et al. [119] identify new challenges
introduced by OWL rules that prevent the usage of their previous solution. Those challenges are:

• Joins between multiple instance triples:While in RDFS all rules involve at most one
instance triple, in OWL a number of rules contain two antecedents that can be matched
by instance triples. Thus, the solution of loading schema triples on every node no longer
works.

44 CHAPTER 3. STATE OF THE ART

• Exponential number of derivations:Rules involvingowl:sameAs derive an exponential
number of triples, which becomes a performance bottleneck. For example, rule 11 derives
2x × n triples for a given term, wherex is the number of synonyms of the term, andn the
number of triples where the term appears.

• Multiple joins per rule: Some rules require more than one join between two antecedents,
which makes impossible to derive them in a single MapReduce job.

• Unknown number of iterations:While in RDFS it is possible to identify an execution order
with no loops to minimize the execution to a known number of MapReduce jobs, this isnot
possible in the case of OWL.

They propose three optimizations to perform the OWL closure of a graph. Those optimizations
are described below.

• Limiting duplicateson rule 4. In this rule the inferred is likely to be used as antecedent
again, inducing a chain of terms connected by a transitive relationship. Thus, this rule must
be applied iteratively. This can lead to a great number of duplicates because the same triples
are inferred again in every iteration. To avoid this issue they define thedistancebetween
two terms in the chain as the number of hops necessary to reach the second from the first
one. Then, on iterationn only triples with distance greater or equal to2n−2. This strategy
completely eliminates duplicates if no chains intersect; if they do intersect, duplicates are
still generated, but in a much lesser degree.

• Building a synonyms tableto avoid materialization ofowl:sameAs derivations.

• In-memory redundant join executionfor multiple joins (rules 15 and 16). For those rules the
schema triples are loaded in memory on each node. Then, they perform the join between
schema and the two other triples of the rules. This means that more joins than necessary will
be performed, but as these joins are done with an in-memory data structure do not introduce
a significant overhead in the process.

This job is extended by Liu et al. [82] to compute the closure of a graph usingfuzzy logic
where each triple is annotated with a fuzzy degreen ∈ (1, n], using fuzzy OWL as entailment rule
set. The key notion in fuzzy OWL semantics is called theBest Degree Bound (BDB)of a triple.
The BDB of an derived triple is the largest fuzzy degree that can be derived by applying fuzzy
OWL entailment rules, or 0 if no such fuzzy triple can be derived. The goal is, then, derive all
possible triples and their BDBs. They focus their work in the following topics:

1. Duplicates with different fuzzy degrees:On each derivation step, the same triple with
different fuzzy degree may be derived. Thus, an additional step mustbe included to ensure
that only triples with maximal fuzzy degree are kept to the following job.

2. Shortest path calculation:In standard OWL inference, rules 4, 10 and 12 are essentially
used to compute the transitive closure of an RDF graph. In fuzzy OWL, thedataset can
be considered as a weighted graph, with the fuzzy degree as the weight. Thus, calculating
the transitive closure is a variation of the all-pairs shortest path calculation problem. They
implement an solution based on the Floyd-Warshall algorithm [39], maintaining an in-
memory matrix that is iteratively updated on each step.

3.3. RDF COMPRESSION 45

3. sameAs rule: On the one hand, traditional solutions to deal with the semantics of
owl:sameAs cannot be used with fuzzy OWL withoud missing information. On the other
hand, computing the closure by materializing the triples can be a performance bottleneck, as
shown by Urbani et al. Urbani and Kotoulas. However, in practice, they verify thatsameAs
triples with a fuzzy degree lower than 1 are relatively few. Hence, they use the same solution
as Urbani et al. Urbani and Kotoulas for certainsameAs triples, and materialize derived
triples by vaguesameAs triples.

Chen et al. [21] focus their work on reasoning over big biological knowledge networks with
user-supplied rulesets. Specifically, they deal with efficiently derivationof property chains, which
are common within the domain. While a naive algorithm with no improvements needsn−1 jobs to
compute the chain, wheren is the number of triples in the chain (i.e. one job for each derivation),
they reduce the number of jobs tologn. This is accomplished by adding a third join condition to
perform a derivation: In a chain of property triples, the properties aregiven ascending IDs:P0,
P1, P2, and so on. Then, a triple whose property ID is an odd numberPk, this triple only performs
joins with triples with property IDPk−1. The input is divided into⌈N/2⌉ groups, whereN is the
length of the longest property chain, and they perform joins between the triples from the same
group in a job. The derived triples will be the new input graph for the nextiteration.

Example. To illustrate the process, consider the following chain of property triples:{(S0, P0,O0),
(O0, P1,O1), (O1, P2,O2), (O2, P3,O3)}. The triples are divided into two groups:G1 consisting
on the first two triples, andG2 including the last two. A first job computes the joins on each
group, giving the following results:{(S0, P0⊗P1,O1), (O1, P2⊗P3,O3)}. Those triples are then
grouped into a single group and another job generates the final output{(S0, P0⊗P1⊗P2⊗P3,O3)}.
The process is completed with two jobs, instead of the 3 needed jobs (one foreach derivation of
two consecutive tripes) of a naive algorithm. 2

3.3 RDF Compression

To the best of our knowledge, there is only one MapReduce-based solution to compress RDF
datasets to date. Urbani et al. [121] perform dictionary encoding. They analyze the main
challenges derived from the MapReduce framework:

1. Data skewness:RDF data has a high skew. This means that some reducers may receive
groups of very different sizes. Given that the overall MapReduce processing time depends
on the slowest task (i.e. the task which receives the larger input), it impacts the performance.

2. Data domain: In RDF dictionary encoding, the goal is to encode the different terms of a
triple. However, the input is given in triples, not ir terms. They argue that aMapReduce
algorithm would need to run three jobs, one for each role of the triples.

3. Global IDs: A MapReduce process by default has no means to manage global information.
In order to assign the same ID to each term, a synchronized access to a global dictionary
has to be implemented. This operation would need high network traffic, thus introducing a
major bottleneck.

In their approach, they tackle those problems as follows:

46 CHAPTER 3. STATE OF THE ART

1. Preprocess popular IDs:A first job randomly samples the input and identifies the most
popular terms. Those terms are encoded with a numerical ID. When the job finishes, a
dictionary is created for those terms. This dictionary will be distributed among the nodes of
the cluster on the next job. Then, when aMap task reads a popular term, it will assign the
ID retrieved in the dictionary and will send it to a random reducer. Thus, the impact of data
skewness of popular terms is canceled.

2. Split triples into terms:A second job deconstructs triples and compress each term with a
numerical ID. The purpose of this job is to avoid running a different job for each role of the
triples. A third job reads the output and reconstructs the statements

3. Partitioned IDs:In the second job, the range of IDs is partitioned among the reducers of the
job. When a reducer receives a non-popular term it is encoded using aID within its partition.

Thus, the entire process is comprised of three MapReduce jobs: The first job identifies and
encodes the most popular terms using random sampling. The second job loads the popular terms
on every node, which store them in a in-memory cache. Then, it reads andsplits the triples into
terms, and encodes those terms. The codification can be given by the cache in the case of popular
terms or assigned by the reducer in other case. This job stores also the dictionary with the ID of
each term. The third job reads the the output of the second job and substitutesthe terms by their
IDs on the triples. A diagram of the process is shown in Figure 3.3(a).

The decompression process is straightforward process formed by four jobs. The firs job,
analogous to the compression process, identifies the popular terms. The second job joins those
terms with the dictionary to decode the popular terms. The third job reads the compressed data, the
dictionary, and the decoded terms from the previous job, and performs thedecoding of the terms.
The fourth and final job is also analogous to the encoding process and performs the reconstruction
of the triples. The whole process is shown on Figure 3.3(b).

3.4 Discussion

MapReduce is designed to process data in distributed scenarios under theassumption of no inter-
communication betweenMap andReduce tasks during their execution. However, RDF data
are interweaved because of its graph nature, and triple relationships arespatially arbitrary. For
these reasons, multiple MapReduce jobs are usually necessary when dealing with semantic data.
Moreover, a plain data storage and organization overloads the processing, and expensive costs
must be paid whenever a new job starts. Thus, efficient SPARQL resolution on MapReduce-based
solutions is mainly based on optimizing RDF data management and minimizing the number of
MapReduce jobs required for query resolution.

We review the most relevant proposals on MapReduce-based solutions todeal with different
tasks on semantic data throughout the chapter. For SPARQL query resolution, we establish
a categorization in two different groups: (i) native solutions and (ii) hybrid solutions. Native
solutions resolve SPARQL queries using MapReduce tasks exclusively,whereas hybrid solutions
perform subgraph resolution in each node, and resort to MapReduceto join the results of each
subgraph. In native solutions, the main contributions relate to reducing the number of jobs needed
to perform joins, and to data organization. Data can be stored in HDFS, where data must be
organized in files, or in another solution such as HBase, where triples canbe indexed for faster
access. In hybrid solutions, the main contributions are related to how data is partitioned in order
to obtain optimal subgraphs. For RDFS and OWL inference, reducing the number of jobs is
also the primary focus, addressed by grouping and ordering the application of entailment rules.

3.4. DISCUSSION 47

Figure 3.3: Compression and decompression algorithms [121]

48 CHAPTER 3. STATE OF THE ART

Dealing with global information is a major achievement on RDF compression, whileoptimizing
load balancing is an important factor in the majority of the solutions.

Although many of the prominent solutions cannot be directly compared, given their different
configurations, a detailed analysis of their results draws significant conclusions: (i) MapReduce-
based solutions scale almost linearly with respect to incremental data sizes, (ii) SPARQL querying
solutions perform worse than classical mono-node solutions with simple queries or small datasets,
but (iii) they outperform these solutions when the query complexity or the dataset size increases.

The state-of-the-art approaches also evidence that data must be preprocessed (i) to obtain easily
readable notation, (ii) to enable partial reads to be done, and (iii) to reducestorage requirements. In
addition, two of the reviewed papers also organize data in such a way that the process can capitalize
on data locality and perform joins onMap tasks [106, 48]. It highly reduces data shuffling and
improves performance. Although this preprocessing step could be computationally expensive,
it is a once-only task which improves performance dramatically. In this scenario, binary RDF
serialization formats such as RDF/HDT [36] could enhance the overall space/time tradeoffs. Note
that these approaches can manage RDF in compressed space, enabling TP resolution at high levels
of the memory hierarchy.

Apparently, the more complex the solutions, the better the performance results, but this comes
at an important cost. On the one hand, they incur serious storage overheads because of data
redundancy: NoSQL solutions can require up to 6 times the space of nativesolutions, whereas
hybrid solutions report up to 4.5 times just for 2-hop partitions. On the other hand, the simpler
native solutions are easier to implement in vanilla MapReduce clusters, which make deployment
in shared infrastructures or in third party services (such as AWS Elastic MapReduce3) an almost
straightforward operation. As complexity grows, solutions are harder to implement.

While these works showcase relevant contributions for dealing with RDF scalability issues
using MapReduce, the absence of communication between tasks continues topresent an important
challenge when joins are involved. This can be seen as a general MapReduce issue that motivates
different researches. Some proposals add an additional phase to the MapReduce cycle. For
instance, Map-Reduce-Merge [127] adds an additional function at theend of the MapReduce
cycle in order to support relational algebra primitives without sacrificing itsexisting generality and
simplicity. In turn, Map-Join-Reduce [64] introduces afiltering-join-aggregationprogramming
model which is an extension of the MapReduce programming model. Tuple MapReduce [37],
though, takes a different approach and proposes a theoretical modelthat extends MapReduce
to improve parallel data processing tasks using compound-records, optional in-reduce ordering,
or intersource datatype joins. In addition, there are specific proposals for providing support to
iterative programs like Twister [31] or HaLoop [16]. This aims to improve datalocality for those
tasks accessing to the same data (even in different jobs), while providing some kind of caching of
invariant data. Thus, it is expected that all these general-purpose proposals will feedback specific
applications, and semantic web applications on MapReduce will be benefited with advances from
these lines of research.

3http://aws.amazon.com/elasticmapreduce

http://aws.amazon.com/elasticmapreduce

Chapter 4

HDT-MR

This chapter describes HDT-MR, a MapReduce-based scalable solutionto serialize RDF in plain
text into HDT. As seen in section 2.2.4, current implementations of HDT librariesface scalability
issues when serializing huge datasets. This may hinder the adoption and evolution of HDT
technologies to deal with the growing data of the semantic web. HDT-MR aims to make possible
serialization of large datasets in a scalable way using the MapReduce framework.

4.1 System Design

This section describes the high-level HDT-MR system design. Figure 4.1 illustrates the HDT-
MR workflow, consisting in two stages:(1) Dictionary Encoding(top) and(2) Triples Encoding
(bottom), described in the following subsections. The whole process assumes the original RDF
dataset is encoded in N-Triples format (one statement per line).

Figure 4.1: HDT-MR workflow.

4.1.1 Process 1: Dictionary Encoding

This first process builds the HDTDictionary from the original N-Triples dataset. It can be seen
as a three-task process of (i) identifying the role of each term in the dataset, (ii) obtaining the
aforementioned sections (SO, S, O, andP) in lexicographic order, and (iii) effectively encoding
theDictionarycomponent.

We design HDT-MR to perform these three tasks as two distributed MapReduce jobs and a
subsequent local process (performed by themasternode), as shown in Figure 4.1. The first job
performs the role identification, while the second is needed to perform a global sort. Finally,

49

50 CHAPTER 4. HDT-MR

the mastereffectively encodes theDictionary component. All these sub-processes are further
described below.

4.1.1.1 Job 1.1: Roles Detection.

This job parses the input N-Triples file to detect all roles played by RDF termsin the dataset. First,
mappers perform a triple-by-triple parsing and output (key,value) pairsof the form(RDF term,

role), in which role isS (subject),P (predicate) orO (object), according to the term position in
the triple. It is illustrated in Figure 4.2, with two processing nodes performing on the RDF used in
Figure 2.8. For instance,(ex:P1,S), (ex:worksFor,P), and(ex:D1,O) are the pairs obtained
for the triple(ex:P1, ex:worksFor, ex:D1).

These pairs are partitioned and sorted among the reducers, which groupthe different roles
played by a term. Note that RDF terms including rolesS andO, result in pairs(RDF term, SO).
Thus, this job outputs a number of lexicographically ordered lists(RDF term, roles); there will
be as many lists as reducers on the cluster. Algorithm 1 shows the pseudo-code of these jobs.

Finally, it is important to mention that acombinerfunction is used at the output of eachMap.
This function is executed on each node node before theMap transmits its output to the reducers.
In our case, if a mapper emits more than one pair(RDF term, role) for a term, all those pairs
are grouped into a single one comprising a list of all roles. It allows the bandwidth usage to be
decreased by grouping pairs with the same key before transferring themto the reducer.

Figure 4.2: Example of Dictionary Encoding: roles detection (Job 1.1).

4.1.1.2 Job 1.2: RDF Terms Sectioning.

The previous job outputs several lists of pairs(RDF term, roles), one perReduce of previous
phase, each of them sorted lexicographically. However, the construction of each HDTDictionary
section requires a unique sorted list. Note that a simple concatenation of the output lists would not

4.1. SYSTEM DESIGN 51

Algorithm 1 Dictionary Encoding: roles detection (Job 1.1)
function MAP(key,value) ▷ key: line number (discarded) ▷ value: triple

emit(value.subject,”S”)
emit(value.predicate,”P”)
emit(value.object,”O”)

end function
function COMBINE/REDUCE(key,values) ▷ key: RDF term ▷ value: roles (S, P, and/or O)

for role in valuesdo
if role contains "S"then isSubject← true

else ifrole contains "P"then isPredicate← true

else ifrole contains "O"then isObject← true

end if
end for
roles← ””

if isSubjectthen append(roles,”S”)
else if isPredicatethen append(roles,”P”)
else if isObjectthen append(roles,”O”)
end if
emit(key, roles)

end function

fulfill this requirement, because the resulting list would not maintain a global order. The reason
behind this behavior is that, although the input of each reducer is sorted before processing, the
particular input transmitted to each reducer is autonomously decided by the framework in the
process calledpartitioning. By default, Hadoophashesthe key and assigns it to a given reducer,
promoting to obtain partitions of similar sizes. Thus, this distribution does not respect a global
order of the input. While this behavior may be changed to assign the reducers a globally sorted
input, this is not straightforward.

A naïve approach would be to use a single reducer, but this would result extremely inefficient:
the whole data had to be processed by a single machine, losing most of the benefits of distributed
computing that MapReduce provides. Another approach is to manually create partition groups.
For instance, we could send terms beginning with the letters froma to c to the first reducer, terms
beginning with the letters fromd to f to the second reducer, and so on. However, partitions must be
chosen with care, or they could be the root of performance issues: if partitions are of very different
size, the job time will be dominated by the slowest reducer (that is, the reducerthat receives the
largest input). This fact is specially significant for RDF processing because of its skewed features.

HDT-MR relies on the simple but efficient solution of sampling input data to obtainpartitions
of similar size. To do so, we make use of theTotalOrderPartitionerof Hadoop. It is important to
note that this partitioning cannot be performed while processing a job, but needs to be completed
prior of a job execution. Note also that the input domain of the reducers needs to be different from
the input domain of the job to identify and group the RDF terms (that is, the job receives triples,
while the reducers receive individual terms and roles).

All these reasons conforms the main motivation to include this second MapReduce job to
globally sort the output of the first job. This job takes as input the lists of(RDF term, roles)

obtained in the precedent job, and uses role values to sort each term in its corresponding list. In
this case, identity mappers deliver directly their input (with no processing) tothe reducers, which
send RDF terms to different outputs depending on their role. Figure 4.3 illustrates this job. As
only the term is needed, a pair(RDF term, null) is emitted for each RDF term (nullsare omitted
on the outputs). We obtain as many role-based lists as reducers in the cluster, but these are finally
concatenated to obtain four sorted files, one perDictionary section.The pseudo-code for this job
is described in Algorithm 2.

52 CHAPTER 4. HDT-MR

Figure 4.3: Example of Dictionary Encoding: RDF terms sectioning (Job 1.2).

Algorithm 2 Dictionary Encoding: RDF terms sectioning (Job 1.2)
function REDUCE(key,value) ▷ key: RDF term ▷ value: roles (S, P, and/or O)

for resource in valuesdo
if resource contains "S"then isSubject← true

else ifresource contains "P"then isPredicate← true

else ifresource contains "O"then isObject← true

end if
end for
output← ””

if isSubject & isObjectthen emit_to_SO(key,null)
else ifisSubject then emit_to_S(key,null)
else ifisPredicate then emit_to_P (key,null)
else ifisObject then emit_to_O(key,null)
end if

end function

4.1.1.3 Local sub-process 1.3: HDT Dictionary Encoding

This final stage performs locally in themasternode, encoding dictionaries for the four sections
obtained from the MapReduce jobs. It means that each section is read line-per-line, and each term
is differentially encoded to obtain a Front-Coding dictionary [85], providing term-ID mappings. It
is a simple process with no scalability issues.

4.1.2 Process 2: Triples Encoding

This second process parses the original N-Triples dataset to obtain, in this case, the HDTTriples
component. The main tasks for suchTriplesencoding are (i) replacing RDF terms by their ID in
theDictionary, and (ii) getting the ID-triples encoding sorted by subject, predicate and object IDs.
As in the previous process, HDT-MR accomplishes these tasks by two MapReduce jobs and a final
local process (see the global overview in Figure 4.1), further described below.

4.1.2.1 Job 2.1: ID-triples serialization

This first job replaces each term by its ID. To do so, HDT-MR first transmitsand loads the –
already compressed and functional–Dictionary (encoded in the previous stage) in all nodes of the

4.1. SYSTEM DESIGN 53

Algorithm 3 Triples Encoding: ID-triples serialization (Job 2.1)
function MAP(key,value) ▷ key: line number (discarded) ▷ value: triple

emit({dictionary.id(value.subject, dictionary.id(value.predicate), dictionary.id(value.object)}, null)
end function

cluster. Then, mappers parse N-Triples and replace each term by its ID intheDictionary. Identity
reducers simply sort incoming data and output a list of pairs(ID-triple, null). We can see this
process in action in Figure 4.4, where the terms of each triple are replaced by the IDs given in the
previous example (note thatnulls are omitted on the outputs). The output of this job is a set of
lexicographically ordered lists of ID-Triples; there will be as many lists as reducers on the cluster.
The pseudo-code of this job is illustrated in Algorithm 3 .

Figure 4.4: Example of Triples Encoding: ID-triples Serialization (Job 2.1).

4.1.2.2 Job 2.2: ID-triples Sorting

Similarly to the first process, Triples Encoding requires of a second job to sort the outputs. Based
on the same premises, HDT-MR makes use of HadoopTotalOrderPartitionerto sample the output
data from the first job, creating partitions of a similar size as input for the second job. Then, this job
reads the ID-triples representation generated and sorts it by subject, predicate and object ID. This
is a very simple job that uses identity mappers and reducers. As in the previous job, ID-triples are
contained in the key and the value is set tonull. In fact, all the logic is performed by the framework
in the partitioning phase betweenMap andReduce, generating similar size partitions of globally
sorted data. Figure 4.5 continues with the running example and shows the actions performed by
this job after receiving the output of the previous job (note again thatnulls are omitted on the
outputs).

4.1.2.3 Local sub-process 2.3: HDT Triples Encoding

This final stage encodes the ID-triples list (generated by the previous job) as HDTBitmapTriples
[36]. It is performed locally in themasternode as in the original HDT construction. That is,
it sequentially reads the sorted ID-triples to build the sequencesSp and So, and the aligned
bitsequencesBp andBo, with no scalability issues.

54 CHAPTER 4. HDT-MR

Figure 4.5: Example of Triples Encoding: ID-triples Sorting (Job 2.2)

4.2 Implementation and configuration details

We have developed a proof-of-conceptHDT-MR prototype (under the Hadoop framework: version
1.2.1) which uses the existing HDT-Java library1 (RC-2). This section describes technical details
of the implementation and configuration of both the prototype and the Hadoop cluster.

HDT-MR is deployed on a virtualized Hadoop cluster consisting on a potentmasterand 10
slavenodes running on a more memory-limited configuration. This infrastructure tries to simulate
a computational cluster in which further nodes may be plugged to process huge RDF datasets. See
table 4.1

MACHINE CONFIGURATION

Master Intel Xeon X5675 @ 3.07 GHz (4 cores), 48GB RAM. Ubuntu 12.04.2
Slaves Intel Xeon X5675 @ 3.07 GHz (4 cores), 8GB RAM. Debian 7.7

Table 4.1: Cluster configuration.

The underlying physical system is comprised by 10 computation nodes divided into two Intel
Modular Server chassis. Storage is conducted on a pool of 12 disks ona RAID 10 plus two
replacement disks, connected through Serial Attached SCSI. It is important to note that the
virtualization scheme for the cluster has not been stable over time, so development and evaluation
had to accommodate.

It is worth noting thatHDT-MR useslzo to compress the datasets before storing them in
HDFS. This format allows for compressed data to be split among the tasks, and provides storage
and reading speed improvements [88]. In order to be splitted the compressed files need to be
indexed after storing the data in HDFS. This is performed using theHadoop-LZOlibrary2 version
0.4.17.

HDT-MR operation is managed by theHDTBuilderDriver class, which runs the desired
jobs or local processes in order. Note that every job and local process reads its input from, and
writes its output to, HDFS. This makes possible to launch a sub-set of HDT-MR operations,
store intermediate outputs, and continue the process in the future. HDT-MR parameters are
read from a configuration file, but can be overridden by command line options, using the

1http://code.google.com/p/hdt-java/
2https://github.com/twitter/hadoop-lzo

https://github.com/twitter/hadoop-lzo

4.2. IMPLEMENTATION AND CONFIGURATION DETAILS 55

HDTBuilderConfiguration class with the help ofJCommanderlibrary3 version1.30.
A complete description of HDT-MR parameters can be seen on appendix A, and the current
configuration files (used on the evaluation tests) are available on appendixB.

4.2.1 Job 1.1: Roles Detection

This job is charged with the function of parsing the triples and identify the rolesassociated
with each term. It makes use of theDictionarySamplerMapper class for the Mapper
andDictionarySamplerReducer class for both the Combiner and the Reducer. This job
writes to HDFS a series of compressedSequenceFiles with terms and their associated roles.
A SequenceFile is a Hadooop file format consisting of binary key-value pairs designed for
MapReduce I/O operations. [124]. A simplified class diagram for this job can be seen in Figure
4.6

Figure 4.6: Class Diagram: Job 1.1: Roles Detection

4.2.2 Job 1.2: RDF Terms Sectioning

This job divides the terms into the future sections of the HDT Dictionary and counts the number of
terms in each section. It uses identity Mappers (a default implemantation of a Mapper in Hadoop,
which outputs its input without any processing) and theDictionaryReducer class for the
Reducers. This class simply reads terms and a list of roles and reads the listsequentially. To
assign each term to its section, it maintains a list of flags (one for each different section) . When
each role is read, the corresponding flag is set totrue. Finally, after traversing the list or roles,
the term is outputted to the corresponding path for each flag set totrue. The class makes use of a
MultipleOutputs object to write to different HDFS paths. In addition, this job maintains
a globalcounter for each section. Each time that a term is written to a section, its value is
incremented by one. When the job finishes, the values of the counters are written to HDFS.

3http://jcommander.org

http://jcommander.org

56 CHAPTER 4. HDT-MR

In order to perform the data sampling using theTotalOrderPartitioner, Hadoop provides
three different sampling methods through the classInputSampler. All of them sample a
SequenceFile stored in HDFS.

• IntervalSampler: Sampless splits at regular intervals. It accepts as parameters the
frequency with which records will be sampled and the maximum number of splits tobe
sampled.

• RandomSampler: Samples from random points in the input. It has the following
parameters: The probability with which a key will be chosen, the total number of samples
to obtain from all selected splits, and the maximum number of splits to examine.

• SplitSampler: Samples the firstn records fromssplits. Its parameters are the following:
The total number of samples to obtain, and the maximum number of splits to examine.

HDT-MR uses theIntervalSampler, which gave better results in initial tests. The
frequency used is0.000001, while no maximum number of splits is set, meaning that all splits
are sampled.

A simplified class diagram for this job can be seen in Figure 4.7

Figure 4.7: Class Diagram: Job 1.2: RDF Terms Sectioning

4.2.3 Local sub-process 1.3: HDT Dictionary Encoding

The final process reads the sorted files on each path sequentially and builds a Dictionary section for
each one. Each section is encoded inPlain Front-Coding[85], which is based on theFront-Coding
technique [125]. This technique achieves compression in lexicographically sorted dictionaries by
differentially encoding a string (a term in our case) with respect the previous one. Each string is
encoded using an integer indicating the number of characters that match the previous string plus
the rest of the string. To avoid performance issues due to backtracking an excessive number of
terms the dictionary is divided into blocks. Each block is encoding separately, explicitly storing
the first string.

A TransientDictionarySection object is created for each section, with a default block
size of 16 terms. It is worth noting that in java arrays are limited to230 entries, due to using a
signed integer as index. For this reason, a more complex structure is needed to store the IDs. We
use a two-dimensional array, where the internal arrays store up to 200,000 blocks. In order to
optimize compression, the number of terms of the section (stored in HDFS by the first job) is read

4.2. IMPLEMENTATION AND CONFIGURATION DETAILS 57

and used to determine the number ob bits needed to encode the term ID. When the four sections
have been created they are written to HDFS.

4.2.4 Job 2.1: ID-triples serialization

The first job of the second process translates the triples of the dataset to ID-triples. This is
performed using theTriplesSPOMapper class. This class loads the dictionary and parses
the input triples one by one, replacing each term by its corresponding ID.The triples are stored in
TripleSPOWritable outputted. This job also maintains a global counter for the triples. Each
time that a triple is read by a Mapper, its value is incremented by one. When the jobfinishes, the
value of the counter is written to HDFS. This job uses identity Reducers. Thatis, reducers that
output the ID-triples in the same order they read them.

In order to group the triples and send them to the Reducers, it has been necessary to implement
theTripleSPOComparator class. This class is used by the Hadoop framework to compare
ID-triples terms, in the orderS-P-O to determine if they are equal, and sort order if not. This
order is also used by the Reducers to read their input by order.

A simplified class diagram for this job can be seen in Figure 4.8

Figure 4.8: Class Diagram: Job 2.1: ID-triples serialization

4.2.5 Job 2.2: ID-triples Sorting

This job reads the ID-triples written by the previous job and sorts them globallyusing identity
Mappers and Reducers. To sample the data this job also uses theIntervalSampler with a
frequency of0.000001. The classTripleSPOComparator is used by theTotalOrderParti-
tioner to group and sort the ID-triples.

4.2.6 Local sub-process 2.3: HDT Triples Encoding

The final local sub-process compresses the triples using BitmapTriples encoding [36]. Remember
that this encoding is comprised by two sequences of predicate and object IDs: Sp andSo, and two
aligned bitsequences,Bp andBo, using a 1-bit tomark the end of each list.

The classTransientBitMapTriples creates twoTransientSequenceLog64 ob-
jects to store the sequences, and twoTransientBitmap375 objects to store the bitsequences.
Each time it reads an ID-triple it performs the following steps:

58 CHAPTER 4. HDT-MR

1. The subject ID is compared with the subject ID of the previous triple. In case the new
ID increases, both the predicate and object ID are stored in their respective sequences, and
true is appended to each bitsequence, meaning that the subject has changed for the current
triple.

2. In the case of the subject ID not increasing, the predicates ID are compared. If the new
ID increases, both the predicate and object ID are stored in their respective sequences. The
predicate bitsequence is appended afalse, meaning that the triple is related to the same
subject as the previous one, andtrue is appended to the objects bitsequence, representing
the change of predicate.

3. If predicate IDs are equal only the object ID is stored in its sequence,and afalse appended
to the objects bitsequence, meaning that it relates to the same predicate. Note that no
comparison is needed; if the ID-triples are lexicographically sorted, an ID-triple which does
not fulfill the previous conditions will necessarily increase only the objectID.

Initial experiments showed that storing the data in memory for this process wasthe main bot-
tleneck for HDT-MR, causing the process to fail. To avoid memory limitations, theTransient
SequenceLog64 and TransientBitmap375 write their content to HDFS each time a
threshold is reached (currently220 items). When all ID-triples are processed, the sequences and
bitsequences are appended in the appropriate orderBp-Bo-Sp-So.

A simplified class diagram for this job can be seen in Figure 4.8

4.2. IMPLEMENTATION AND CONFIGURATION DETAILS 59

Figure 4.9: Class Diagram: Local sub-process 2.3: HDT Triples Encoding

60 CHAPTER 4. HDT-MR

Chapter 5

Experiments and Results

This chapter evaluates the performance of HDT-MR, the proposed MapReduce-based HDT
construction. We compare it to the traditional single-node approach to evaluate scalability. It
is worth noting that HDT-MR serialization times provided in this chapter are higher than number
reported in [47]. The reason is that the network and disk bandwidths have been limited to improve
stability issues on the underlying physical system.

The experimental setup is designed as follows. We use the HDT-MR configuration stated
on section 4.2 using a potentmasterand 10slavenodes running on a more memory-limited
configuration. For the single-node tests we use a powerful computationalconfiguration. For a
fair comparison, the amount of main memory in the single node is the same as the totalmemory
available for the full cluster of Hadoop. Table 5.1 summarizes configurationsinformation.

MACHINE CONFIGURATION

Single
Intel Xeon E5-2650v2 @ 2.60GHz (32 cores), 128GB RAM. Debian7.8

Node
Master Intel Xeon X5675 @ 3.07 GHz (4 cores), 48GB RAM. Ubuntu 12.04.2
Slaves Intel Xeon X5675 @ 3.07 GHz (4 cores), 8GB RAM. Debian 7.7

Table 5.1: Experimental setup configuration.

Regardingdatasets, we consider a varied configuration ofdatasetscomprising real-world and
synthetic ones. All of them are statistically described in Table 5.2. Among the real-world ones,
we choose them based on their volume and variety, but also attending to their previous uses for
benchmarking.Ike1 comprises weather measurements from the Ike hurricane;LinkedGeoData2 is
a large geo-spatial dataset derived fromOpen Street Map; and DBPedia 3.83 is the well-known
knowledge base extracted from Wikipedia. We also consider the combinationof these real-world
datasets in differentmashupscomprising data from the three data sources. On the other hand,
we use the LUBM [51] data generator to obtain synthetic datasets. We build “small datasets”
from 1,000 (0.13 billion triples) to 8,000 universities (1.07 billion triples). From the latter, we
build datasets of incremental size (4,000 universities:0.55 billion triples) up to 72,000 universities
(9.59 billion triples). Data have been preprocessed in order to be stored in N-Triples notation and
delete duplicates. This preprocessing also sorts the triples lexicographically.

First, we evaluate the performance for real-world datasets. Figure 5.1 compares serialization
times for the datasets and the different mashups. As can be seen, HDT-Java reports an excellent
performance on real-world datasets. This is an expected result because HDT-Java runs the whole
process in main-memory while HDT-MR relies on I/O operations. However, HDT-Java crashes

1http://wiki.knoesis.org/index.php/LinkedSensorData
2http://linkedgeodata.org/Datasets, as for 2013-07-01
3http://wiki.dbpedia.org/Downloads38

61

62 CHAPTER 5. EXPERIMENTS AND RESULTS

Size (GB)
DATASET TRIPLES |SO| |S| |O| |P| NT NT+lzo HDT Dict. HDT+gz
LinkedGeoData 0.27BN 41.5M 10.4M 80.3M 18.3K 38.5 4.4 6.4 5.1 1.9
DBPedia 0.43BN 22.0M 2.8M 86.9M 58.3K 61.6 8.6 6.4 4.8 2.7
Ike 0.51BN 114.5M 0 145.1K 10 100.3 4.9 4.8 1.3 0.6
LGD+DBP 0.70BN 63.5M 13.2M 167.0M 76.6K 100.1 13.0 12.6 9.8 3.7
LGD+Ike 0.79BN 156.0M 10.4M 80.4M 18.3K 138.8 9.3 10.37 6.4 1.7
DBP+Ike 0.95BN 136.5M 27.8M 87.0M 58.3K 161.8 13.5 10.45 6.1 3.0
LGD+DbP+Ike 1.22BN 178.0M 13.2M 167.2M 76.6K 200.3 18.0 17.1 11.2 4.6

LUBM-1000 0.13BN 5.0M 16.7M 11.2M 18 18.0 1.3 0.7 0.3 0.2
LUBM-2000 0.27BN 10.0M 33.5M 22.3M 18 36.2 2.7 1.5 0.6 0.5
LUBM-3000 0.40BN 14.9M 50.2M 33.5M 18 54.4 4.0 2.3 0.8 0.8
LUBM-4000 0.53BN 19.9M 67.0M 44.7M 18 72.7 5.3 3.1 1.1 1.0
LUBM-5000 0.67BN 24.9M 83.7M 55.8M 18 90.9 6.6 3.9 1.4 1.3
LUBM-6000 0.80BN 29.9M 100.5M 67.0M 18 109.1 8.0 4.7 1.6 1.6
LUBM-7000 0.93BN 34.9M 117.2M 78.2M 18 127.3 9.3 5.5 1.9 1.9
LUBM-8000 1.07BN 39.8M 134.0M 89.3M 18 145.5 10.6 6.3 2.2 2.2
LUBM-12000 1.60BN 59.8M 200.9M 133.9M 18 218.8 15.9 9.6 3.3 2.9
LUBM-16000 2.14BN 79.7M 267.8M 178.6M 18 292.4 21.2 12.8 4.4 3.8
LUBM-20000 2.67BN 99.6M 334.8M 223.2M 18 366.0 26.6 16.3 5.5 5.5
LUBM-24000 3.20BN 119.5M 401.7M 267.8M 18 439.6 31.9 19.6 6.6 6.6
LUBM-28000 3.74BN 139.5M 468.7M 312.4M 18 513.2 37.2 22.9 7.7 7.7
LUBM-32000 4.27BN 159.4M 535.7M 357.1M 18 586.8 42.5 26.1 8.8 8.8
LUBM-36000 4.81BN 179.3M 602.7M 401.8M 18 660.5 47.8 30.0 10.0 9.4
LUBM-40000 5.32BN 198.4M 666.7M 444.5M 18 730.9 52.9 33.2 11.1 10.4
LUBM-44000 5.85BN 218.3M 733.7M 489.2M 18 804.6 58.2 36.7 12.2 12.2
LUBM-48000 6.38BN 238.3M 800.7M 533.8M 18 877.8 63.6 40.3 13.3 13.3
LUBM-52000 6.92BN 258.2M 934.6M 578.4M 18 951.5 68.9 43.6 14.4 14.4
LUBM-56000 7.45BN 278.1M 1,001.6M 623.1M 18 1,024.5 74.2 47.3 15.5 15.5
LUBM-60000 7.99BN 298.0M 1,068.5M 667.8M 18 1,097.6 79.5 50.7 16.7 16.1
LUBM-64000 8.52BN 318.0M 1,135.5M 712.4M 18 1,170.8 84.8 53.9 17.8 17.1
LUBM-68000 9.05BN 337.9M 1,202.4M 757.0M 18 1,244.4 90.2 57.6 18.9 18.9
LUBM-72000 9.59BN 357.8M 1269.4M 801.7M 18 1,318.0 95.5 61.3 20.0 20.0

Table 5.2: Statistical dataset description

63

for themashupsbecause the 128 GB of available RAM are insufficient to process such scale in the
single node.

0

5000

10000

15000

20000

25000

30000

�����

H��-

J���

H��-

MR

H��-

J���

H��-

MR

H��-

J���

H��-

MR

H��-

J���

H��-

MR

H��-

J���

H��-

MR

H��-

J���

H��-

MR

H��-

J���

H��-

MR

D��ED	
 	IE L	NIEDGE�D
T
 D�PED	

	IE

D��ED	

L	NIEDGE�D
T

	IE

L	NIEDGE�D
T

D�PED	

	IE

�
�K����O�ATA

S
e

r�
�
��
�
�
��
�
�
��
t

e

��

e

c
�
�
�
�)

D����ina��i T��ples Lo�al

Figure 5.1: Serialization times: Real-World Datasets

Second, we perform the evaluation for the LUBM datasets: HDT-Java is again the best choice
for the smallest datasets, but the difference decreases with the dataset size. Figure 5.2 compares
serialization times for HDT-Java and HDT-MR. HDT-Java fails to process datasets fromLUBM-
8000(1.07 billion triples) because of memory requirements. This is the target scenario for HDT-
MR, which scales to theLUBM-72000without issues. Serialization times for HDT-MR can be
seen in Figure 5.3. As can be seen in both figures, serialization times increase linearly with the
dataset size, and triples encoding remains the most expensive stage.

�

2���

4���

6���

8���

1����

12���

14���

-J
a

v
a

H
D

T
-M

R

H
D

T
-J

a
v

a

H
D

T
-M

R

H
D

T
-J

a
v

a

H
D

T
-M

R

H
D

T
-J

a
v

a

H
D

T
-M

R

H
D

T
-J

a
v

a

H
D

T
-M

R

H
D

T
-J

a
v

a

H
D

T
-M

R

H
D

T
-J

a
v

a

H
D

T
-M

R

LUBM

1000

LUBM

2000

LUBM

3000

LUBM

4000

LUBM

5000

LUBM

6000

LUBM

7000

S
e

ri
a

li
za

ti
o

n
 t

im
e

 (
se

co
n

d
s)

Dictionary Triples Local

Figure 5.2: Serialization times: LUBM (1)

In addition, we have also performed tests against the synthetic datasets obtained using SP2B
[107]. Those datasets are generated directly in N-Triples, so no preprocessing is necessary. This
evaluation has shown a fundamental behavior of HDT-MR regarding dataorder.Map tasks need
to cache different parts of the dictionary too frequently, with a high impact on performance. To
show behavior we compare SP2B against LUBM. We use LUMB datasets from 1,000 to 5,000
universities, and we generate SP2B datasets with a corresponding number of triples. The statistical
description of the datasets are shown in Table 5.3. Figure 5.4 shows serialization times for those
datasets.

64 CHAPTER 5. EXPERIMENTS AND RESULTS

0

20000

40000

!""""

#""""

1"""""

12""""

14""""

LUBM

#000

LUBM

12000

LUBM

1!"""

LUBM

20000

LUBM

24000

LUBM

2#"""

$UBM

32000

LUBM

3!"""

LUBM

40000

LUBM

44000

LUBM

4#"""

LUBM

52000

LUBM

5!"""

$UBM

!""""

$UBM

!4"""

LUBM

!#"""

LUBM

72000

S
e

ri
a

li
za

ti
o

n
 t

im
e

 (
se

co
n

d
s)

Dictionary Triples

Figure 5.3: Serialization times: LUBM (2)

Size (GB)
DATASET TRIPLES |SO| |S| |O| |P| NT NT+lzo HDT Dict. HDT+gz
LUBM-1000 133.6M 5.0M 16.7M 11.2M 18 18.0 1.3 0.7 0.3 0.2
SP2B-134 133.6M 13.9M 10.1M 5.0M 87 13.9 2.6 2.3 1.8 0.8

LUBM-2000 267.0M 10.0M 33.5M 22.3M 18 36.2 2.7 1.5 0.6 0.5
SP2B-267 267.0M 29.6M 19.6M 10.0M 87 27.6 5.2 4.5 3.4 1.6

LUBM-3000 400.5M 14.9M 50.2M 33.5M 18 54.4 4.0 2.3 0.8 0.8
SP2B-401 400.5M 46.0M 29.0M 15.0 87 41.2 7.7 6.7 5.0 2.4

LUBM-4000 534.2M 19.9M 67.0M 44.7M 18 72.7 5.3 3.1 1.1 1.0
SP2B-534 534.2M 62.3M 38.4M 20.0 87 54.8 10.3 8.9 6.6 3.1

LUBM-5000 667.6M 24.9M 83.7M 55.8M 18 90.9 6.6 3.9 1.4 1.3
SP2B-668 667.6M 78.5M 47.8M 25.0M 87 68.5 12.8 11.1 8.2 4.0

Table 5.3: Statistical dataset description of SP2B and LUBM

0

50000

100000

150000

200000

250000

300000

350000

LUBM S%&B LUBM S%2B LUBM S%&B LUBM S%2B LUBM S%&B

LUBM

1000

LUBM

2000

LUBM

3000

LUBM

4000

LUBM

5000

S
e

ri
a

li
za

ti
o

n
 t

im
e

 (
se

co
n

d
s)

Dictionary Triples

Figure 5.4: Serialization times: LUBM vs SP2B

65

While RDF compression numbers are not the main purpose of this work, they are worth to
mention. On the one hand, previous literature does not report HDT serialization results for such
large datasets. HDT always reports smaller sizes than the original datasetscompressed withlzo,
with the exception of the mashup ofLinkedGeoDataandDBPedia. For instance, HDT serializes
LUBM-40000using 19.7 GB less thanNT+lzo. The difference increases when compressed with
gzip. For LUBM-40000, HDT+gz uses 42.5 GB less thanNT+lzo. In practice, it means that
HDT+gz uses 5 times less space thanNT+lzo. These numbers are summarized in tables 5.2 and
5.3. Finally, it is worth remembering that HDT-MR obtains the same HDT serialization than a
mono-node solution, hence achieving the same compression ratio and enabling the same query
functionality.

66 CHAPTER 5. EXPERIMENTS AND RESULTS

Chapter 6

Conclusions and Future Work

6.1 Conclussions

HDT is currently gaining traction, positioning itself as a baseline for RDF compression. Latest
practical applications exploit the HDT built-in indexes for RDF retrieval with no prior decompres-
sion, making HDT evolve to a self-contained RDF store. However, HDT achievements are at the
price of moving scalability issues from consumer to publishers. Serializing RDF into HDT is not
a simple task, given that the whole dataset must be exhaustively processed in memory to obtain
the Dictionary and Triples components. Current HDT implementations demand not negligible
amounts of memory, so the HDT serialization lacks of scalability for huge datasets (i.e. those hav-
ing hundreds of millions or billions of triples). Although these datasets are currently uncommon,
semantic publication efforts on emerging data-intensive areas (such as biology or astronomy) or in-
tegrating several sources into heterogeneous mashups (as RDF excelsat linking data from diverse
datasets) are starting to face this challenge.

This work improves the HDT workflow by introducing MapReduce as the computation model
for large HDT serialization. MapReduce is a framework for the distributed processing of large
amounts of data, and it can be considered asde factostandard for Big Data processing. Our
MapReduce-based approach, HDT-MR, reduces scalability issues arising to HDT generation,
enabling larger datasets to be serialized for end-user consumption.

We have performed evaluations against the previous mono-node solution,scaling up to more
than 1 TB of data (20 times larger than the largest dataset serialized by the original HDT). Results
show that HDT-MR is able to scale up to more than 9 billion triples, while the mono-node solution
fails to process datasets larger than 1 billion triples. Thus, HDT-MR greatly reduces hardware
requirements for processing Big Semantic Data.

Nonetheless, evaluations have also identified a dependence of data sorting. Triples Encoding
process of HDT-MR does not scale linearly when processing unsorteddata data. This issue needs
to be addressed in future work.

As part of the work, we also review MapReduce and its applications to Semantic Web
scalability issues, drawing conclussions about its appropriateness, current challenges, and different
approaches to deal with them. A comprehensive discussion and conclusions about the state of the
art can be found in section 3.4.

6.2 Future Work

While HDT-MR is a contribution to improve serialization of large datasets, there isstill more
work to be done. Firstly, more experimentation is needed to perform a fine-grained assessment

67

68 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

of the possible bottlenecks and limitations. Secondly, some improvements of HDT-MR are worth
exploring. The more immediate are the following:

• The dependence on data sorting needs to be addressed. This can be solved by moving the
replacing of terms by ID from theMap phase to theReduce phase. The reducers receive
the data sorted by the framework, removing the necessity to cache different parts of the
dictionary frequently.

• The current version of HDT libraries serialize the dictionary usingPlain Front-Coding.
While this compression technique achieves goods results in terms of triples retrieval, the
compression rate can be improved. This is specially true when dealing with datasets with
high proportion of literals. HDT++ [56] is a recent implementation of HDT that can be
integrated into HDT-MR to improve its performance.

• HDT-MR distributes the complete dictionary among each node of the cluster. Asmart
distribution of data among nodes, instead of relying in vanilla Hadoop mechanisms would
allow to partition the dictionary in smaller chunks, highly improving its performance.

• Each one of the two processes of HDT-MR include an step where data sampling is
performed. We have chosen one of the Hadoop default sampling techniques, which gave as
the better results in preliminary tests. However, more work be done on this topic, including
more experimentation or the development of a custom sampling method.

Additional future work include exploring the recent evolution in MapReduce and related
technologies and how to apply them to enhance HDT-MR, such as upgrading to Hadoop 2.0 or
explore a migration to Apache Spark. Hadoop 2.0 is the most recent versionof Hadoop and
includes many performance improvements. Spark1 is also a distributed computing framework, but
instead of relying on disk-based operations it is based on in-memory data processing.

6.3 Contributions and Publications

The review of the on MapReduce-based solutions on scalability issues is a contribution of this
work. Specifically, the state of the art of SPARQL query resolution using MapReduce on section
3.1 have been published on theOpen Journal of Semantic Webon the following article:

José M. Giménez-García, Javier D. Fernández, and Miguel A. Martínez-Prieto. Mapreduce-based
solutions for scalable sparql querying.Open Journal of Semantic Web (OJSW), 1(1):1–18, 2014.
ISSN 2199-336X

HDT-MR and its evaluation, discussed in chapters 4 and 5 is the main contribution of this work.
The content of those chapters has served as the basis for the following publication on theExtended
Semantic Web Conference:

José M. Giménez-García, Javier D. Fernández, and Miguel A. Martínez-Prieto. HDT-MR: A scalable
solution for rdf compression with HDT and mapreduce. In Fabien Gandon, Marta Sabou, Harald
Sack, Claudia d’Amato, Philippe Cudré-Mauroux, and Antoine Zimmermann, editors,The Semantic
Web. Latest Advances and New Domains, volume 9088 ofLecture Notes in Computer Science,
pages 253–268. Springer International Publishing, 2015. ISBN 978-3-319-18817-1. doi: 10.1007/
978-3-319-18818-8_16

1http://spark.apache.org

http://spark.apache.org

Bibliography

[1] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, Alexander Rasin, and Avi
Silberschatz. Hadoopdb: An architectural hybrid of mapreduce and DBMS technologies
for analytical workloads.PVLDB, 2(1):922–933, 2009.

[2] Grigoris Antoniou and Frank Van Harmelen.A Semantic Web Primer, Second Edition. 2008.
ISBN 0262012103.

[3] D Battré, S Ewen, F Hueske, O Kao, V Markl, and D Warneke. Nephele / PACTs :
A Programming Model and Execution Framework for Web-Scale Analytical Processing
Categories and Subject Descriptors. InProc. 1st ACM Symp. Cloud Comput., pages 119–
130. ACM, 2010. ISBN 9781450300360.

[4] Dave Beckett, editor.RDF/XML Syntax Specification (Revised). W3C Recommendation,
2004.

[5] David Beckett and Tim Berners-Lee.Turtle-terse RDF triple language. W3C Team
Submission, 2008.

[6] Tim Berners-Lee. Design issues: Linked data, 2006.

[7] Tim Berners-Lee, James Hendler, Ora Lassila, and By Tim Berners-lee. The Semantic Web.
Sci. Am., 284(5):34–43, 2001. ISSN 00368733. doi: 10.1038/scientificamerican0501-34.

[8] Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform resource identifier (uri):
Generic syntax. Technical report, 2004.

[9] E Bertino, P Bernstein, D Agrawal, S Davidson, U Dayal, M Franklin, JGehrke, L Haas,
A Halevy, J Han, and Others. Challenges and Opportunities with Big Data. 2011.

[10] A Bialecki, M Cafarella, D Cutting, and O O’MALLEY. Hadoop: a frame-
work for running applications on large clusters built of commodity hardware. Wiki
http//lucene.apache.org/hadoop, 11, 2005.

[11] Paul Biron, Ashok Malhotra, World Wide Web Consortium, et al. Xml schema part 2:
Datatypes.World Wide Web Consortium Recommendation REC-xmlschema-2-20041028,
2004.

[12] Christian Bizer. The emerging web of linked data.IEEE Intelligent Systems, 24(5):87–92,
2009. doi: 10.1109/MIS.2009.102.

[13] D Borthakur, Portability Across, and Heterogeneous Hardware.The Hadoop distributed file
system: Architecture and design.Hadoop Proj. Website, 11:21, 2007.

69

70 BIBLIOGRAPHY

[14] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maler,and François Yergeau.
Extensible markup language (xml).World Wide Web Consortium Recommendation REC-
xml-19980210. http://www. w3. org/TR/1998/REC-xml-19980210, 16, 1998.

[15] Dan Brickley and Ramanathan V Guha.RDF Schema 1.1. W3C Recommendation, 2014.

[16] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. Ernst. Haloop: Efficient
iterative data processing on large clusters.PVLDB, 3(1):285–296, 2010.

[17] Michelle Butler, Richard Mount, and Mike Hildreth. Snowmass 2013 Computing Frontier
Storage and Data Management.arXiv Prepr. arXiv1311.4580, 2013.

[18] Bryan Catanzaro, Narayanan Sundaram, Kurt Keutzer, and Cory Hall. A MapReduce
Framework for Programming Graphics Processors. InWork. Softw. Tools MultiCore Syst.,
2008.

[19] Ronnie Chaiken, Bob Jenkins, Per-Åke Larson, Bill Ramsey, Darren Shakib, Simon
Weaver, and Jingren Zhou. SCOPE: easy and efficient parallel processing of massive data
sets.PVLDB, 1(2):1265–1276, 2008.

[20] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. Bigtable: A distributed
storage system for structured data.ACM Trans. Comput. Syst., 26(2):4, 2008. ISSN
07342071. doi: 10.1145/1365815.1365816.

[21] Huajun Chen, Xi Chen, Peiqin Gu, Zhaohui Wu, and Tong Yu. Owlreasoning framework
over big biological knowledge network.BioMed research international, 2014. doi:
10.1155/2014/272915.

[22] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M Hellerstein, Khaled Elmeleegy, and
Russell Sears. MapReduce Online. InProc. 7th USENIX Conf. Networked Syst. Des.
Implement., page 21, 2010.

[23] Richard Cyganiak and Anja Jentzsch. Linking open data cloud diagram, 2014. URL
http://lod-cloud.net. [Online; accessed: August-2015].

[24] Michael C. Daconta, Leo Obrst, and Kevin T. Smith.The Semantic Web: a guide to the
future of XML, Web services, and knowledge management. Wiley, 2003. ISBN 0471432571.

[25] C David, C Olivier, and B Guillaume. A survey of RDF storage approaches. ARIMA
Journal., 15:11–35, 2012.

[26] Marc de Kruijf and Karthikeyan Sankaralingam. Mapreduce for thecell broadband engine
architecture.IBM Journal of Research and Development, 53(5):10–11, 2009.

[27] Jeffrey Dean and Sanjay Ghemawat. MapReduce : Simplified Data Processing on Large
Clusters.Commun. ACM, 51(1):107–113, 2008. ISSN 00010782. doi: 10.1145/1327452.
1327492.

[28] David J. DeWitt, Erik Paulson, Eric Robinson, Jeffrey F. Naughton, Joshua Royalty, Srinath
Shankar, and Andrew Krioukov. Clustera: an integrated computation anddata management
system.PVLDB, 1(1):28–41, 2008.

http://lod-cloud.net

BIBLIOGRAPHY 71

[29] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz Kargin, Vinay Setty, and
Jörg Schad. Hadoop ++ : Making a Yellow Elephant Run Like a Cheetah (Without It Even
Noticing). PVLDB, 3(1):515–529, 2010.

[30] M Durst and M Suignard. Rfc 3987, internationalized resource identifiers (iris), 2005.

[31] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne, Seung-Hee Bae, Judy Qiu,
and Geoffrey Fox. Twister: a runtime for iterative MapReduce. InProceedings of the
19th ACM International Symposium on High Performance Distributed Computing, pages
810–818. ACM, 2010.

[32] Orri Erling and Ivan Mikhailov. Towards web scale RDF.Proc. 4th Int. Work. Scalable
Semant. Web Knowl. Base Syst., 2008.

[33] Ivan Ermilov, Michael Martin, Jens Lehmann, and Sören Auer. Linked open data statistics:
Collection and exploitation. In Pavel Klinov and Dmitry Mouromtsev, editors,Knowledge
Engineering and the Semantic Web, volume 394 ofCommunications in Computer and
Information Science, pages 242–249. Springer Berlin Heidelberg, 2013. ISBN 978-3-642-
41359-9. doi: 10.1007/978-3-642-41360-5_19.

[34] David C Fallside and Priscilla Walmsley.XML schema part 0: primer second edition,
volume 16. W3C recommendation, 2004.

[35] Javier D Fernández, Mario Arias, Miguel A Martínez-prieto, Claudio Gutiérrez, Javier D
Fern, Claudio Guti, and Miguel A Mart. Management of Big Semantic Data.Big Data
Computing, pages 131–167, 2013.

[36] Javier D. Fernández, Miguel A. Martínez-Prieto, Claudio Gutiérrez, Axel Polleres, and
Mario Arias. Binary rdf representation for publication and exchange (hdt). Web Semantics:
Science, Services and Agents on the World Wide Web, 19:22–41, 2013. ISSN 1570-8268.

[37] Pedro Ferrera, Ivan de Prado, Eric Palacios, Jose Luis Fernandez-Marquez, Giovanna Di
Marzo Serugendo, and G Di Marzo. Tuple MapReduce: Beyond Classic MapReduce.
In 12th IEEE International Conference on Data Mining, pages 260–269. IEEE, Ieee,
December 2012. ISBN 978-1-4673-4649-8. doi: 10.1109/ICDM.2012.141.

[38] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter, Paul Leach, and
Tim Berners-Lee. Hypertext transfer protocol–http/1.1. Technical report, 1999.

[39] Robert W Floyd. Algorithm 97: Shortest path.Communications of the ACM, 5(6):345,
1962.

[40] Eric Friedman, Peter Pawlowski, and John Cieslewicz. SQL/MapReduce: A practical ap-
proach to self-describing, polymorphic, and parallelizable user-defined functions.PVLDB,
2(2):1402–1413, 2009.

[41] J Gantz and D Reinsel. Extracting value from chaos.White Pap. IDC, 2011.

[42] J F Gantz and C Chute. The diverse and exploding digital universe: An updated forecast of
worldwide information growth through 2011. IDC, 2008.

[43] Alan F Gates, Olga Natkovich, Shubham Chopra, Pradeep Kamath, Shravan M Narayana-
murthy, Christopher Olston, Benjamin Reed, Santhosh Srinivasan, and Utkarsh Srivastava.
Building a high-level dataflow system on top of MapReduce: the Pig experience. PVLDB,
2(2):1414–1425, 2009.

72 BIBLIOGRAPHY

[44] Lars George.HBase - The Definitive Guide: Random Access to Your Planet-Size Data.
O’Reilly, 2011. ISBN 978-1-449-39610-7.

[45] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In
Proceedings of the 19th ACM Symposium on Operating Systems Principles, pages 29–43,
2003. doi: 10.1145/945445.945450.

[46] José M. Giménez-García, Javier D. Fernández, and Miguel A. Martínez-Prieto. Mapreduce-
based solutions for scalable sparql querying.Open Journal of Semantic Web (OJSW), 1(1):
1–18, 2014. ISSN 2199-336X.

[47] José M. Giménez-García, Javier D. Fernández, and Miguel A. Martínez-Prieto. HDT-MR:
A scalable solution for rdf compression with HDT and mapreduce. In FabienGandon,
Marta Sabou, Harald Sack, Claudia d’Amato, Philippe Cudré-Mauroux, and Antoine
Zimmermann, editors,The Semantic Web. Latest Advances and New Domains, volume 9088
of Lecture Notes in Computer Science, pages 253–268. Springer International Publishing,
2015. ISBN 978-3-319-18817-1. doi: 10.1007/978-3-319-18818-8_16.

[48] F Goasdoué and Z Kaoudi. CliqueSquare: efficient Hadoop-based RDF query processing.
Journées de Bases de Données Avancées, pages 1–28, 2013.

[49] Jan Grant and Dave Beckett, editors.RDF Test Cases. W3C Recommendation, 2004.

[50] W3C Owl Working Group.OWL 2 Web Ontology Language Document Overview. W3C
Recommendation, 2009.

[51] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL knowledge
base systems.Web Semant. Sci. Serv. Agents World Wide Web, 3(2):158–182, 2005.

[52] Andreas Harth, Jürgen Umbrich, Aidan Hogan, and Stefan Decker. YARS2: A fed-
erated repository for querying graph structured data from the web. InThe Semantic
Web, 6th International Semantic Web Conference., pages 211–224, 2007. doi: 10.1007/
978-3-540-76298-0_16.

[53] Bingsheng He, W Fang, Qiong Luo, Naga K Govindaraju, and Tuyong Wang. Mars:
a MapReduce framework on graphics processors. In17th International Conference on
Parallel Architecture and Compilation Techniques, pages 260–269. ACM, 2008. ISBN
9781605582825.

[54] Yongqiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, Xiaodong Zhang, and
Zhiwei Xu. Rcfile: A fast and space-efficient data placement structurein MapReduce-
based warehouse systems. InProceedings of the 27th International Conference on Data
Engineering, pages 1199–1208. IEEE, IEEE, April 2011. ISBN 978-1-4244-8959-6. doi:
10.1109/ICDE.2011.5767933.

[55] Jim Hendler. Broad data: Exploring the emerging web of data.Big Data, 1(1):18–20, 2013.

[56] Antonio Hernández-Illera, Miguel A. Martínez-Prieto, and JavierD. Fernández. Serializing
rdf in compressed space. InData Compression Conference (DCC), pages 363–372, 2015.

[57] Aidan Hogan, Andreas Harth, and Axel Polleres. Scalable authoritative owl reasoning for
the web.IGI Global, 5(2):49–90, 2009.

BIBLIOGRAPHY 73

[58] Jiewen Huang, D J Abadi, Kun Ren, and Daniel J Abadi. Scalable SPARQL Querying of
Large RDF Graphs.PVLDB, 4(11):1123–1134, 2011.

[59] MF F Husain, Pankil Doshi, Latifur Khan, and B Thuraisingham. Storage and retrieval of
large RDF graph using Hadoop and MapReduce. pages 680–686, 2009. ISBN 978-3-642-
10664-4. doi: 10.1007/978-3-642-10665-1.

[60] MF F Husain, Latifur Khan, M Kantarcioglu, and Bhavani Thuraisingham. Data intensive
query processing for large RDF graphs using cloud computing tools. pages 1–10. Ieee, July
2010. ISBN 978-1-4244-8207-8. doi: 10.1109/CLOUD.2010.36.

[61] Mohammad Husain, James McGlothlin, Mohammad M. Masud, Latifur Khan,and Bha-
vani M. Thuraisingham. Heuristics-Based Query Processing for Large RDF Graphs Using
Cloud Computing. IEEE Trans. Knowl. Data Eng., 23(9):1312–1327, September 2011.
ISSN 1041-4347. doi: 10.1109/TKDE.2011.103.

[62] M Isard and Y Yu. Distributed data-parallel computing using a high-level programming
language. InProceedings of the ACM SIGMOD International Conference on Management
of Data, pages 987–994. ACM, 2009. ISBN 9781605585512.

[63] Michael Isard, Andrew Birrell, Dennis Fetterly, M Budiu, and Y Yu.Dryad: distributed
data-parallel programs from sequential building blocks. volume 41, pages 59–72. ACM,
2007. ISBN 9781595936363.

[64] David Jiang, Anthony K. H. Tung, and Gang Chen. Map-join-reduce: Toward scalable and
efficient data analysis on large clusters.IEEE Trans. Knowl. Data Eng., 23(9):1299–1311,
September 2011. ISSN 1041-4347. doi: 10.1109/TKDE.2010.248.

[65] Dawei Jiang, B C Ooi, L Shi, and S Wu. The performance of MapReduce: An in-depth
study.PVLDB, 3(1-2):472–483, 2010.

[66] W Jiang, Vignesh T Ravi, and Gagan Agrawal. A MapReduce systemwith an alternate API
for multi-core environments. InProc. 2010 10th IEEE/ACM Int. Conf. Clust. Cloud Grid
Comput., pages 84–93. IEEE Computer Society, Ieee, May 2010. ISBN 978-1-4244-6987-
1. doi: 10.1109/CCGRID.2010.10.

[67] G Karypis and V Kumar. Metis-unstructured graph partitioning and sparse matrix ordering
system, version 2.0. 1995.

[68] R T Kaushik and M Bhandarkar. GreenHDFS: Towards an Energy-Conserving Storage-
Efficient, Hybrid Hadoop Compute Cluster. InProc. USENIX Annu. Tech. Conf., 2010.

[69] Hyeongsik Kim, Padmashree Ravindra, and Kemafor Anyanwu. Optimizing RDF(S)
Queries on Cloud Platforms. In22nd International World Wide Web Conference, pages
261–264, 2013. ISBN 9781450320382.

[70] George Kollios, Nick Koudas, T Nykiel, M Potamias, and C Mishra. MRShare: Sharing
across multiple queries in MapReduce.PVLDB, 3(1-2):494–505, 2010.

[71] S Kotoulas, E Oren, and F Van Harmelen. Mind the Data Skew: Distributed Inferencing
by Speeddating in Elastic Regions. InProceedings of the 19th International Conference on
World Wide Web, pages 531–540, 2010. ISBN 978-1-60558-799-8.

74 BIBLIOGRAPHY

[72] G Ladwig and Andreas Harth. CumulusRDF: Linked data management on nested key-value
stores.7th Int. Work. Scalable Semant. Web Knowl. Base Syst. (SSWS 2011), pages 30–42,
2011.

[73] W Lang and J M Patel. Energy management for MapReduce clusters.PVLDB, 3(1-2):
129–139, 2010.

[74] Ora Lassila and Ralph R Swick.Resource description framework (RDF) model and syntax
specification. W3C Recommendation, 1999.

[75] George Lee, Jimmy Lin, Chuang Liu, Andrew Lorek, and Dmitriy Ryaboy. The unified
logging infrastructure for data analytics at Twitter.PVLDB, 5(12):1771–1780, 2012.

[76] Kisung Lee and L Liu. Scaling Queries over Big RDF Graphs with Semantic Hash
Partitioning.PVLDB, 6(14):1894–1905, 2013.

[77] Kyong-ha H K.-h. Lee, Y.-j. Yoon-joon J Lee, H Choi, Y D Chung, and B Moon. Parallel
Data Processing with MapReduce: a Survey.ACM SIGMOD Record, 40(4):11–20, 2012.

[78] J Leverich and C Kozyrakis. On the energy (in) efficiency of Hadoop clusters.ACM SIGOPS
Oper. Syst. Rev., 44(1):61–65, 2010.

[79] Boduo Li, Edward Mazur, Yanlei Diao, Andrew McGregor, and Prashant Shenoy. A
platform for scalable one-pass analytics using MapReduce. InProceedings of the ACM
SIGMOD International Conference on Management of Data, pages 985–996, New York,
New York, USA, 2011. ACM, ACM Press. ISBN 9781450306614. doi:10.1145/1989323.
1989426.

[80] Jimmy Lin and Chris Dyer. Data-intensive text processing with MapReduce. Synth.
Lect. Hum. Lang. Technol., 3(1):1–177, January 2010. ISSN 1947-4040. doi: 10.2200/
S00274ED1V01Y201006HLT007.

[81] Yuting Lin, Chun Chen, D Agrawal, B C Ooi, and S Wu. Llama: leveraging columnar
storage for scalable join processing in the MapReduce framework. InProceedings of the
ACM SIGMOD International Conference on Management of Data, pages 961–972. ACM,
2011. ISBN 9781450306614.

[82] Chang Liu, Guilin Qi, Haofen Wang, and Yong Yu. Large scale fuzzy pd* reasoning
using mapreduce. InThe Semantic Web - ISWC 2011 - 10th International Semantic Web
Conference, pages 405–420. Springer, 2011. ISBN 978-3-642-25072-9.

[83] Dionysios Logothetis and Kenneth Yocum. Ad-hoc data processing inthe cloud.PVLDB,
1(2):1472–1475, 2008.

[84] G Malewicz, M H Austern, A J C Bik, J C Dehnert, I Horn, N Leiser, and G Czajkowski.
Pregel: a system for large-scale graph processing. InProceedings of the ACM SIGMOD
International Conference on Management of Data, pages 135–146. ACM, 2010. ISBN
978-1-4503-0032-2.

[85] M. A. Martínez-Prieto, N. Brisaboa, R. Cánovas, F. Claude, andG. Navarro. Practical
compressed string dictionaries. 2015. To appear.

[86] M.A. Martínez-Prieto, J.D. Fernández, and R. Cánovas. Querying RDF dictionaries in
compressed space.SIGAPP Appl. Comput. Rev., 12(2):64–77, 2012.

BIBLIOGRAPHY 75

[87] S Melnik, A Gubarev, J J Long, G Romer, S Shivakumar, M Tolton, and T Vassilakis.
Dremel: interactive analysis of web-scale datasets.Commun. ACM, 54(6):114–123, 2011.

[88] N. Mirajkar, S. Bhujbal, and A. Deshmukh. Perform wordcount Map-Reduce Job in Single
Node Apache Hadoop cluster and compress data using Lempel-Ziv-Oberhumer (LZO)
algorithm.CoRR, abs/1307.1517, 2013. arXiv:1307.1517.

[89] K Morton and A Friesen. KAMD: A Progress Estimator for MapReduce Pipelines. Tech-
nical report, Computer Science and Engineering Department, University of Washington,
2010.

[90] K Morton, M Balazinska, and D Grossman. ParaTimer: a progress indicator for MapReduce
DAGs. InProceedings of the ACM SIGMOD International Conference on Management of
Data, pages 507–518. ACM, 2010. ISBN 978-1-4503-0032-2.

[91] Kristi Morton, Abram Friesen, Magdalena Balazinska, and Dan Grossman. Estimating the
progress of MapReduce pipelines. InProceedings of the 26th International Conference
on Data Engineering, pages 681–684. IEEE, IEEE, 2010. ISBN 978-1-4244-5445-7.doi:
10.1109/ICDE.2010.5447919.

[92] Boris Motik, Bernardo Cuenca Grau, Ian Horrocks, Zhe Wu, Achille Fokoue, and Carsten
Lutz. OWL 2 Web Ontology Language: Profiles, volume 27. W3C recommendation, 2009.

[93] Jaeseok Myung, Jongheum Yeon, and Sang-Goo Lee. SPARQLbasic graph pattern
processing with iterative MapReduce.Proc. 2010 Work. Massive Data Anal. Cloud - MDAC
’10, pages 1–6, 2010. doi: 10.1145/1779599.1779605.

[94] T Neumann and G Weikum. The RDF-3X Engine for Scalable Management of RDF data.
VLDB J., 19(1):91–113, 2010. ISSN 1066-8888.

[95] Christopher Olston, Benjamin Reed, U Srivastava, Ravi Kumar, andAndrew Tomkins. Pig
latin: a not-so-foreign language for data processing. InProceedings of the ACM SIGMOD
International Conference on Management of Data, pages 1099–1110. ACM, 2008. ISBN
9781605581026.

[96] Alisdair Owens, Andy Seaborne, and Nick Gibbins. Clustered TDB:a clustered triple store
for Jena. 2008.

[97] Nikolaos Papailiou, Ioannis Konstantinou, Dimitrios Tsoumakos, and Nectarios Koziris.
H2RDF: Adaptive Query Processing on RDF Data in the Cloud. pages 397–400, 2012.
ISBN 9781450312301.

[98] Thomas B Passin.Explorer’s guide to the semantic web. Manning Greenwich, 2004. ISBN
1932394206.

[99] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting the data:
Parallel analysis with Sawzall.Scientific Programming, 13(4):277–298, 2005.

[100] E Prud’hommeaux and A Seaborne.SPARQL Query Language for RDF. W3C Recommen-
dation, 2008.

[101] C Ranger, R Raghuraman, A Penmetsa, G Bradski, and C Kozyrakis. Evaluating MapRe-
duce for multi-core and multiprocessor systems. In13st International Conference on High-
Performance Computer Architecture, pages 13–24. IEEE, 2007. ISBN 1-4244-0804-0.

76 BIBLIOGRAPHY

[102] Padmashree Ravindra, Vikas V. Deshpande, and Kemafor Anyanwu. Towards scalable RDF
graph analytics on MapReduce.Proc. 2010 Work. Massive Data Anal. Cloud - MDAC ’10,
pages 1–6, 2010. doi: 10.1145/1779599.1779604.

[103] Padmashree Ravindra, Hyeongsik Kim, and Kemafor Anyanwu. AnIntermediate Algebra
for Optimizing RDF Graph Pattern Matching on MapReduce. pages 46–61, 2011. ISBN
978-3-642-21063-1.

[104] Kurt Rohloff and RE E Richard E Schantz. High-performance, massively scalable dis-
tributed systems using the MapReduce software framework: The SHARD triple-store. In
SPLASH Workshop on Programming Support Innovations for EmergingDistributed Appli-
cations, page 4, 2010. ISBN 9781450305440.

[105] Alexander Schätzle. PigSPARQL: mapping SPARQL to Pig Latin. InProceedings of the
International Workshop on Semantic Web Information Management, page 4, 2011. ISBN
9781450306515.

[106] Alexander Schätzle and M Przyjaciel-Zablocki. Cascading Map-Side Joins over HBase for
Scalable Join Processing.CoRR, 2012.

[107] Michael Schmidt, Thomas Hornung, Georg Lausen, and ChristophPinkel. Sp2bench:
a sparql performance benchmark. InData Engineering, 2009. ICDE’09. IEEE 25th
International Conference on, pages 222–233. IEEE, 2009.

[108] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The Hadoop
distributed file system. InIEEE 26th Symposium on Mass Storage Systems and Technolo-
gies, pages 1–10. IEEE, Ieee, May 2010. ISBN 978-1-4244-7152-2.doi: 10.1109/MSST.
2010.5496972.

[109] Lefteris Sidirourgos, Romulo Goncalves, Martin Kersten, Niels Nes, and Stefan Manegold.
Column-store support for RDF data management: not all swans are white.PVLDB, 1(2):
1553–1563, 2008.

[110] Radhika Sridhar, Padmashree Ravindra, and Kemafor Anyanwu. RAPID: Enabling scalable
ad-hoc analytics on the semantic web. InThe Semantic Web - ISWC 2009, 8th International
Semantic Web Conference, pages 703–718, 2009. ISBN 978-3-642-04929-3.

[111] Theoretical Statistics and Physical Sciences.MASSIVE DATA. 2013. ISBN
9780309287784.

[112] Jianling Sun and Qiang Jin. Scalable RDF Store Based on HBase andMapReduce.Proc.
3rd Int. Conf. Adv. Comput. Theory Eng., pages 633–636, 2010.

[113] Herman J. ter Horst. Completeness, decidability and complexity of entailment for RDF
Schema and a semantic extension involving the OWL vocabulary.Web Semant. Sci.
Serv. Agents World Wide Web, 3(2-3):79–115, October 2005. ISSN 15708268. doi:
10.1016/j.websem.2005.06.001.

[114] Henry S Thompson, David Beech, M Maloney, et al. Xml schema part 1: Structures second
edition, 2004.

[115] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh
Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: a warehousing solution
over a MapReduce framework.PVLDB, 2(2):1626–1629, 2009.

BIBLIOGRAPHY 77

[116] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Ning Zhang,
Suresh Antony, Hao Liu, and Raghotham Murthy. Hive-a petabyte scaledata warehouse
using Hadoop. InProceedings of the 26th International Conference on Data Engineering,
pages 996–1005. IEEE, Ieee, 2010. ISBN 978-1-4244-5445-7.doi: 10.1109/ICDE.2010.
5447738.

[117] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit Jain, Joydeep Sen
Sarma, Raghotham Murthy, and Hao Liu. Data warehousing and analytics infrastructure at
facebook. InProceedings of the ACM SIGMOD International Conference on Management
of Data, pages 1013–1020, New York, New York, USA, 2010. ACM, ACM Press. ISBN
978-1-4503-0032-2. doi: 10.1145/1807167.1807278.

[118] Jacopo Urbani and Frank Van Harmelen. QueryPIE: Backward reasoning for OWL Horst
over very large knowledge bases. InThe Semantic Web - ISWC 2011 - 10th International
Semantic Web Conference, pages 730–745, 2011. ISBN 978-3-642-25072-9.

[119] Jacopo Urbani and Spyros Kotoulas. OWL reasoning with WebPIE: calculating the closure
of 100 billion triples. InThe Semantic Web: Research and Applications, 7th Extended
Semantic Web Conference, pages 213–227, 2010. ISBN 978-3-642-13485-2.

[120] Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and F Van Harmelen. Scalable distributed
reasoning using MapReduce. InThe Semantic Web - ISWC 2009, 8th International
Semantic Web Conference, volume 48 ofLecture Notes in Computer Science, pages 623–
638. Springer, 2009. ISBN 978-3-642-04929-3.

[121] Jacopo Urbani, Jason Maassen, and Henri Bal. Massive Semantic Web data compression
with MapReduce. InProceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, pages 795–802, New York, New York, USA, 2010.
ACM Press. ISBN 978-1-60558-942-8. doi: 10.1145/1851476.1851591.

[122] D Warneke and O Kao. Nephele: efficient parallel data processing in the cloud. In
Proceedings of the 2nd Workshop on Many-Task Computing on Grids and Supercomputers,
page 8. ACM, 2009.

[123] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore: Sextuple Indexing
for Semantic Web Data Management.PVLDB, 1(1):1008–1019, 2008. ISSN 2150-8097.

[124] Tom White.Hadoop: The Definitive Guide. Definitive Guide Series. O’Reilly, 2012. ISBN
978-1-449-31152-0.

[125] Ian H Witten, Alistair Moffat, and Timothy C Bell.Managing gigabytes: compressing and
indexing documents and images. Morgan Kaufmann, 1999.

[126] Yu Xu, Pekka Kostamaa, and Like Gao. Integrating Hadoop and parallel DBMs. In
Proceedings of the ACM SIGMOD International Conference on Management of Data, pages
969–974, New York, New York, USA, 2010. ACM, ACM Press. ISBN 978-1-4503-0032-2.
doi: 10.1145/1807167.1807272.

[127] H.-c. Hung-chih Yang, Ali Dasdan, R.-l. Ruey-lung L Hsiao, andD Stott Parker. Map-
reduce-merge: simplified relational data processing on large clusters. InProceedings of
the ACM SIGMOD International Conference on Management of Data, pages 1029–1040.
ACM, 2007. ISBN 978-1-59593-686-8.

78 BIBLIOGRAPHY

[128] M Zaharia, A Konwinski, A D Joseph, R Katz, and I Stoica. Improving MapReduce
performance in heterogeneous environments. In8th USENIX Symposium on Operating
Systems Design and Implementation, pages 29–42, 2008. ISBN 978-1-931971-65-2.

Appendix A

HDT-MR parameters

HDT-MR behavior can be controlled by configuration file or command line options. The configu-
ration file used by default isHDTMRBuilder.xml, but other file can be used by using the options
-c, --conf. The following are the possible parameters that can be included in a configuration
file.

• global.bucket: Amazon Web Services bucket.If bucket is specified, HDT-MR will
useAmazon S3storage service for input and output. It can be overridden using the options
-a, --awsbucket.

• global.path.base: Root directory for the process.If a value is specified, it will be
used as the root directory in HDFS. Other directories will be located in the base directory.
It can be overridden using the options-b, --basedir.

• global.path.input: Path to input files. Relative to basedir.If a directory is specified,
it is used as input path for HDT-MR. The default value isinput. It can be overridden using
the options-i, --input.

• hdt.build: Whether to build HDT or not.Boolean parameter. Is set to true HDT is built.
The default value istrue. It can be overridden using the options-bh, --buildhdt.

• hdt.dictionary.build: Whether to build HDT dictionary or not.Boolean parameter.
Is set to true the dictionary is built. The default value istrue. It can be overridden using
the options-bd, --builddictionary.

• hdt.dictionary.file: Name of hdt dictionary file.If a value is specified, it is used
for the HDT dictionary file name. The default value isdictionary.hdt. It can be
overridden using the options-fd, --filedictionary.

• hdt.file: Name of hdt file. If a value is specified, it is used for the HDT file
name. The default value isoutput.hdt. It can be overridden using the options
-fh, --namehdtfile.

• hdt-lib.baseUri: Base URI.If a URI is specified, it is used for the triples of the
Header. The default values ishttp://rdfhdt.org/HDTMR. It can be overridden using
the options-bu, --baseURI.

• hdt-lib.configFile: Conversion config file.If a file is specified, it is forwarded
to hdt-lib to be used as configuration file. It can be overridden using the options
-hc, --hdtconf.

79

80 APPENDIX A. HDT-MR PARAMETERS

• hdtl-lib.options: HDT Conversion options (override those of config file).If options
are specified, they are forwarded tohdt-lib to be used as options. It can be overridden
using the options-o, --options.

• hdt-lib.quiet: Do not show progress of the conversion.Boolean paramenter. If used,
the progress conversion of triples byhdt-java is not shown. The default value isfalse.
It can be overridden using the options-q, --quiet.

• job.dictionary.name: Name of dictionary job.If a value is identified, it is used for
the name of the dictionary job. The default value isDictionaryJob. It can be overridden
using the options-nd, --namedictionaryjob.

• job.dictionary.path.output: Path to dictionary job output files. Relative to
basedir. If a directory is specified, it is used as output path for the dictionary job and/or
input path for the triples job. The default value isdictionary. It can be overridden using
the options-od, --outputdictionary.

• job.dictionary.path.output.delete: Delete dictionary job output path be-
fore running job. Boolean parameter. Is set to true, the dictionary job output direc-
tory is deleted before running the dictionary job. A job fails if its output directory
already exists. The default value isfalse. It can be overridden using the options
-dd, --deleteoutputdictionary.

• job.dictionary.path.sample: Path to dictionary job sample files. Relative to
basedir. If a directory is specified, it is used as output path for the dictionary sampling
job and/or input path for the dictionary job. The default value isdictionary_samples
It can be overridden using the options-sd, --samplesdictionary.

• job.dictionary.path.sample.delete: Delete dictionary job sample path before
running job.Boolean parameter. Is set to true, the dictionary sampling job output directory
is deleted before running the dictionary sampling job. A job fails if its output directory
already exists. The default value isfalse. It can be overridden using the options
-dsd, --deletesampledictionary.

• job.dictionary.reducers: Number of reducers for dictionary job.If a value is
specified, it is used for the number of reducers in the dictionary job. The default value is1.
It can be overridden using the options-Rd, --reducersdictionary

• job.dictionary.run: Whether to run dictionary job or not.Boolean parameter. If set
to true, the dictionary job is launched. The default value istrue. It can be overridden
using the options-rd, --rundictionary.

• job.dictionary.sample.probability: Probability of using each element for
sampling in dictionary job. If a value is specified, it is used as frequency by the
InputSampler. The default value is0.001. It can be overridden using the options
-p, --sampleprobability.

• job.dictionary.sample.reducers: Number of reducers for dictionary input sam-
pling job. If a value is specified, it is used for the number of reducers in the dic-
tionary sampling job. The default value is1. It can be overridden using the options
-Rds, --reducersdictionarysampling.

81

• job.dictionary.sample.run: Whether to run dictionary input sampling job or not.
Boolean parameter. If set totrue, the dictionary sampling job is launched. The default
value istrue. It can be overridden with-rds, --rundictionarysampling.

• job.triples.name: Name of triples job.If a value is identified, it is used for the name
of the dictionary job. The default value isTriplesJob. It can be overridden using the
options-nt, --nametriplesjob.

• job.triples.path.output: Path to triples job output files. Relative to basedir.If
a directory is specified, it is used as output path for the triples job. The default value is
triples. It can be overridden using the options-ot, --outputtriples.

• job.triples.path.output.delete: Delete triples job output path before running
job. Boolean parameter. Is set to true, the triples job output directory is deleted before
running the triples job. A job fails if its output directory already exists. The default value is
false. It can be overridden using the options-dt, --deleteoutputtriples.

• job.triples.path.sample: Path to triples job sample files. Relative to basedir.If a
directory is specified, it is used as output path for the triples sampling job and/or input path
for the triples job. The default value istriples_samples It can be overridden using the
options-st, --samplestriples

• job.triples.path.sample.delete: Delete triples job sample path before run-
ning job. Boolean parameter. Is set to true, the triples sampling job output directory
is deleted before running the triples sampling job. A job fails if its output directory
already exists. The default value isfalse. It can be overridden using the options
-dst, --deletesampletriples.

• job.triples.reducers: Number of reducers for triples job.If a value is specified,
it is used for the number of reducers in the triples job. The default value is1. It can be
overridden using the options-Rt, --reducerstriples.

• job.triples.run: Whether to run triples job or not.Boolean parameter. If set to
true, the triples job is launched. The default value istrue. It can be overridden using the
options-rt, --runtriples.

• job.triples.sample.probability: Probability of using each element for sam-
pling in triples job. If a value is specified, it is used as frequency by theInputSampler.
The default value is0.001. It can be overridden with-p, --sampleprobability.

• job.triples.sample.reducers: Number of reducers for triples input sampling job.
If a value is specified, it is used for the number of reducers in the triples sampling job. The
default value is1. It can be overridden with-Rts, --reducerstriplessampling.

• job.triples.sample.run: Whether to run triples input sampling job or not.Boolean
parameter. If set totrue, the triples sampling job is launched. The default value istrue.
It can be overridden using the options-rts, --runtriplessampling.

82 APPENDIX A. HDT-MR PARAMETERS

Appendix B

HDT-MR configuration files

The following is the content of the configuration files used to perform the evaluation of LUBM
datasets on chapter 5.

B.1 Dictionary Encoding

< c o n f i g u r a t i o n >

< p r o p e r t y >
<name> job . d i c t i o n a r y . run < / name>
< va lue > t r u e < / va l ue >

< / p r o p e r t y >

< p r o p e r t y >
<name> job . d i c t i o n a r y . sample . run < / name>
< va lue > t r u e < / va l ue >

< / p r o p e r t y >

< p r o p e r t y >
<name> job . d i c t i o n a r y . sample . r e d u c e r s < / name>
< va lue >10< / va l ue >

< / p r o p e r t y >

< p r o p e r t y >
<name> hd t . d i c t i o n a r y . b u i l d < / name>
< va lue > t r u e < / va l ue >

< / p r o p e r t y >

< p r o p e r t y >
<name> job . t r i p l e s . run < / name>
< va lue > f a l s e < / va l ue >

< / p r o p e r t y >

< p r o p e r t y >

83

84 APPENDIX B. HDT-MR CONFIGURATION FILES

<name> job . t r i p l e s . sample . run < / name>
< va lue > f a l s e < / va l ue >

< / p r o p e r t y >

< p r o p e r t y >
<name> hd t . b u i l d < / name>
< va lue > f a l s e < / va l ue >

< / p r o p e r t y >

< p r o p e r t y >
<name> g l o b a l . pa th . base < / name>
< va lue > . < / va l ue >
< d e s c r i p t i o n >Root d i r e c t o r y < / d e s c r i p t i o n >

< / p r o p e r t y >

< p r o p e r t y >
<name> g l o b a l . pa th . i n p u t < / name>
< va lue >lubm< / va lue >
< d e s c r i p t i o n > i n p u t pa th < / d e s c r i p t i o n >

< / p r o p e r t y >

< p r o p e r t y >
<name> job . d i c t i o n a r y . pa th . o u t p u t < / name>
< va lue > d i c t i o n a r y < / va l ue >
< d e s c r i p t i o n >

D i c t i o n a r y o u t p u t pa th / T r i p l e s i n p u t pa th
< / d e s c r i p t i o n >

< / p r o p e r t y >

< p r o p e r t y >
<name> job . d i c t i o n a r y . pa th . o u t p u t . d e l e t e < / name>
< va lue > t r u e < / va l ue >
< d e s c r i p t i o n >

Whether t o d e l e t e d i c t i o n a r y o u t p u t pa th
< / d e s c r i p t i o n >

< / p r o p e r t y >

< p r o p e r t y >
<name> job . d i c t i o n a r y . pa th . sample< / name>
< va lue > d i c t i o n a r y _ s a m p l e < / va l ue >
< d e s c r i p t i o n > D i c t i o n a r y samples pa th < / d e s c r i p t i o n >

< / p r o p e r t y >

< p r o p e r t y >
<name> job . d i c t i o n a r y . pa th . sample . d e l e t e < / name>
< va lue > t r u e < / va l ue >
< d e s c r i p t i o n >

Whether t o d e l e t e d i c t i o n a r y samples pa th

B.2. TRIPLES ENCODING 85

< / d e s c r i p t i o n >
< / p r o p e r t y >

< p r o p e r t y >
<name> job . d i c t i o n a r y . r e d u c e r s < / name>
< va lue >10< / va l ue >
< d e s c r i p t i o n >Number o f r e d u c e r s used by j o b s < / d e s c r i p t i on >

< / p r o p e r t y >

< p r o p e r t y >
<name> job . d i c t i o n a r y . sample . p r o b a b i l i t y < / name>
< va lue >0.000001 < / va l ue >
< d e s c r i p t i o n >Sampler P r o b a b i l i t y < / d e s c r i p t i o n >

< / p r o p e r t y >

< / c o n f i g u r a t i o n >

B.2 Triples Encoding

< c o n f i g u r a t i o n >

< p r o p e r t y >
<name> job . d i c t i o n a r y . run < / name>
< va lue > f a l s e < / va l ue >

< / p r o p e r t y >

< p r o p e r t y >
<name> job . d i c t i o n a r y . sample . run < / name>
< va lue > f a l s e < / va l ue >

< / p r o p e r t y >

< p r o p e r t y >
<name> hd t . d i c t i o n a r y . b u i l d < / name>
< va lue > f a l s e < / va l ue >

< / p r o p e r t y >

< p r o p e r t y >
<name> job . t r i p l e s . run < / name>
< va lue > t r u e < / va l ue >

< / p r o p e r t y >

< p r o p e r t y >
<name> job . t r i p l e s . sample . run < / name>
< va lue > t r u e < / va l ue >

< / p r o p e r t y >

86 APPENDIX B. HDT-MR CONFIGURATION FILES

< p r o p e r t y >
<name> hd t . b u i l d < / name>
< va lue > t r u e < / va l ue >

< / p r o p e r t y >

< p r o p e r t y >
<name> g l o b a l . pa th . base < / name>
< va lue > . < / va l ue >
< d e s c r i p t i o n >Root d i r e c t o r y < / d e s c r i p t i o n >

< / p r o p e r t y >

< p r o p e r t y >
<name> g l o b a l . pa th . i n p u t < / name>
< va lue >lubm< / va lue >
< d e s c r i p t i o n > i n p u t pa th < / d e s c r i p t i o n >

< / p r o p e r t y >

< p r o p e r t y >
<name> job . d i c t i o n a r y . pa th . o u t p u t < / name>
< va lue > d i c t i o n a r y < / va l ue >
< d e s c r i p t i o n >

D i c t i o n a r y o u t p u t pa th / T r i p l e s i n p u t pa th
< / d e s c r i p t i o n >

< / p r o p e r t y >

< p r o p e r t y >
<name> job . t r i p l e s . pa th . o u t p u t . d e l e t e < / name>
< va lue > t r u e < / va l ue >
< d e s c r i p t i o n >

Whether t o d e l e t e t r i p l e s o u t p u t pa th
< / d e s c r i p t i o n >

< / p r o p e r t y >

< p r o p e r t y >
<name> job . t r i p l e s . pa th . sample< / name>
< va lue > t r i p l e s _ s a m p l e < / va l ue >
< d e s c r i p t i o n > T r i p l s samples pa th < / d e s c r i p t i o n >

< / p r o p e r t y >

< p r o p e r t y >
<name> job . t r i p l e s . pa th . sample . d e l e t e < / name>
< va lue > t r u e < / va l ue >
< d e s c r i p t i o n >

Whether t o d e l e t e t r i p l s samples pa th
< / d e s c r i p t i o n >

< / p r o p e r t y >

< p r o p e r t y >

B.2. TRIPLES ENCODING 87

<name> job . t r i p l e s . r e d u c e r s < / name>
< va lue >10< / va l ue >
< d e s c r i p t i o n >Number o f r e d u c e r s used by j o b s < / d e s c r i p t i on >

< / p r o p e r t y >

< p r o p e r t y >
<name> job . t r i p l e s . sample . p r o b a b i l i t y < / name>
< va lue >0.000001 < / va l ue >
< d e s c r i p t i o n >Sampler P r o b a b i l i t y < / d e s c r i p t i o n >

< / p r o p e r t y >

< / c o n f i g u r a t i o n >

	Introduction
	Motivation
	Goals
	Methodology
	Structure

	Background
	Semantic Web
	Foundations of the Semantic Web
	Scalability Challenges

	HDT
	Structure
	Building HDT
	Performance
	Scalability Issues

	MapReduce
	Distributed FileSystems
	MapReduce
	Challenges and Main Lines of Research

	State of the Art
	SPARQL Query Resolution
	Native solutions
	Hybrid Solutions
	Analysis of Results

	Reasonig
	RDF Compression
	Discussion

	HDT-MR
	System Design
	Process 1: Dictionary Encoding
	Process 2: Triples Encoding

	Implementation and configuration details
	Job 1.1: Roles Detection
	Job 1.2: RDF Terms Sectioning
	Local sub-process 1.3: HDT Dictionary Encoding
	Job 2.1: ID-triples serialization
	Job 2.2: ID-triples Sorting
	Local sub-process 2.3: HDT Triples Encoding

	Experiments and Results
	Conclusions and Future Work
	Conclussions
	Future Work
	Contributions and Publications

	HDT-MR parameters
	HDT-MR configuration files
	Dictionary Encoding
	Triples Encoding

