UNIVERSIDAD DE VALLADOLID

ESCUELA TECNICA SUPERIOR

INGENIEROS DETELECOMUNICACION

TRABAJO FIN DE MASTER

MASTERUNIVERSITARIO EN INVESTIGACION

EN TECNOLOGIAS DE LAINFORMACION Y LAS COMUNICACIONES

Scalable RDF compression
with MapReduce and HDT

Autor:
D. José Miguel Giménez Garcia
Tutores:

Dr. D. Pablo de la Fuente
Dr. D. Miguel A. Martinez-Prieto
Dr. D. Javier D. Fernandez

Valladolid, 11 de septiembre de 2015

TiTULO: Scalable RDF compression
with MapReduce and HDT

AUTOR: D. José Miguel Giménez Garcia
TUTORES Dr. D. Pablo de la Fuente
Dr. D. Miguel A. Martinez-Prieto
Dr. D. Javier D. Fernandez
DeparTamMeENTO. Departamento de Informatica

Tribunal

PRESIDENTE Dr. D. Carlos Alonso Gonzalez
VOCAL: Dr. D. Mercedes Martinez
SECRETARIC! Dr. D. Arturo Gonzalez Escribano

FECHA: 11 de septiembre de 2015

CALIFICACION:

Resumen del TFM

El uso de RDF para publicar datos semanticos se ha incredwetiésforma notable en los Ultimos afios.
Hoy los datasets son tan grandes y estan tan interconecfad@si procesamiento presenta problemas de
escalabilidad. HDT es una representacién compacta de R®prgtende minimizar el consumo de espacio
a la vez que proporciona capacidades de consulta. No obskamgieneracion de HDT a partir de formatos
en texto de RDF es una tarea costosa en tiempo y recursostratsi estudia el uso de MapReduce, un
framework para el procesamiento distribuido de grandedzates de datos, para la tarea de creacion de
estructuras HDT a partir de RDF, y analiza las mejoras oiéasrtianto en recursos como en tiempo frente a
la creacion de dichas estructuras en un proceso mono-nodo.

Palabras clave
Big Data, HDT, MapReduce, RDF, Web Semantica.

Abstract

The usage of RDF to expose semantic data has increased thaipatver the recent years. Nowadays,
RDF datasets are so big and interconnected their managémensignificant scalability problems. HDT
is a compact representation of RDF data aiming to minimizesgonsumption while providing retrieval
features. Nonetheless, HDT generation from RDF tradititorenats is expensive in terms of resources and
processing time. This work introduces the usage of MapRedadramework for distributed processing
of large data quantities, to serialize huge RDF into HDT, andlyzes the improvements in both time and
resources against the prior mono-node processes.

Keywords
Big Data, HDT, MapReduce, RDF, Semantic Web

Agradecimientos

Me gustaria expresar mi agradecimiento a varias personas, sin las estaléabajo no hubiera
sido posible, o hubiera sido muy diferente.

En primer lugar a mis tutores, Javier D. Fernandez, Miguel A. MartinezeRy Pablo de la
Fuente, por su ayuda e infinita pacienca durante la realizacién del trabajo

A Javier |. Ramos, por su apoyo constante con el cluster Hadoop pegiaiscuando hubo
problemas que hacian que el sistema de virtualizacion fallase.

A Jurgen Umbrich, por prestar el servidor en el que se realizarorrlebas mono-nodo de
hdt-1ib.

A Mercedes Martinez y Diego Llanos. Trabajos realizados en sus asigassirvieron de
inspiracion para lo que mas tarde se convirtié en parte de esta memoria.

A mi familia, que como siempre han estado dandome su apoyo, estuvierar @ogeitdo con
mis decisiones.

A mis amigos, que siempre me han dado animos para continuar.

Contents

[1__Introduction 1
L1 MOGVALION « « « o o e e e e e e 1
12 Goals . . . o oot 2
(1.3 Methodology oottt e 4
L4 Structule oo 4
[2__Background 5
21 SemanticWeb 5
2.1.1 _Foundations of the Semantic\Web 5
2.1.2 Scalability Challenges 16

D2 HDT . .o, 17
221 Structuleo 17

% 18
1=, 19

ili S e e e 19

2.3 MapRedUGE o o vt 19

2.3.1 _Distributed FileSystemMs o oo o 20
232 MapRedUEE 23
2.3.3 _Challenges and Main Lines of Reselrch 6 2

13 State of the Art 31

3.1 SPARQL Query ResolUtion v v v oo 31
[B.1.1 Native SOIULOMS .+« « v o v e e e e e e e 33
13.1.2 Hybrid SOIUtIONS . « « « v o v o e e e e e 37
3.1.3 AnalysisofResults 40

B2 Reasonlg« oot 42

N 5 4

3.4 DISCUSSIAN « © « o v o o e e e e 46

4 HDT-MR| 49

4.1 SystemDESIGN i i 9 4
14.1.1 _Process 1: Dictionary Encoding 9 4
41,2 Process 2: TriplesEncoding 2 5

l4.2 Implementation and confi i ails . .. 4 5

: ON . ot e e e e e 55

4.2.2 Job1.2: RDETerms Sectioming 55
- : ' ing . 56

4.2.4 Job 2.1: ID-triples serialization 57

vi CONTENTS

List of Figures

6
8
9
1
2
Map and Reduce inputand output 23
MapReduce Architecture Overviewt 24
omplete MapReduce Dataflow 25
4 Map, Combine and Reduce inputs and outputs 25
4.4 Examole ofTrmIes Encodlng IDtrmIes Serialization (Job 1) -
ples Sorting (Job2.2) 54
QI3 . tion 55
4 ass Diagram: Job . RDF Terms Sectigning 56
4.8 ass Diagram: Job . ID-triples serialization 57
4.9 ass Diagram: Local sub-proce . HD iples Encoding 59
5.1 Serialization times: Real-World Datasets 3 6
erialization times: LUBM (1) i 63
erialization time BM (P) . . 64
/ erialization time BM PPB . . 64

Vii

viii LIST OF FIGURES

List of Tables

LIST OF TABLES

Chapter 1

Introduction

1.1 Motivation

Since the end of the last century, the volume of data generated and stwosd aformation
systems has been growing at a dramatic rate. The estimated amount of d&tdigftdi universe
was 281 exabytes (281 billion gigabytes) in 2006 [42], and reachedett&ytes (1.8 trillion
gigabytes) in 2011/ [41], multiplying its volume by six in five years. In additionstaf these
data, ranging from health records to twitter feeds, is not stored in steattarmat|[9].

The so calledData Delugeaffects a myriad of fields. In scientific research, large amounts
of data are collected from simulations, experimental results, and evervatise devices such
as telescopes: The Murchison Widefield Array (MWA) —a radio telesdmgmed in Western
Australia’s Mid West— is currently generating 400 megabytes of data pendg@3 terabytes
per day)[[1F]. Internet companies like Google, Facebook or Yahawet Btored data measured in
exabytes|[111]. Public administrations have released millions of datasetspalthe under the
Open Government flag [55].

However, management Big Datapresents some challenges. The more important among them
are related to what are commonly known‘te three V’s of Big Data’

 Variety: As said before, Big Data are generated by a multitude of sources. Tlotusérof
all this data is heterogeneous, and in many cases data are not everratrattll. Because
of this, extracting information and establishing relations among data is difficult.

» Volume:Probably the most straightforward challenge, the sheer amount of dgtedibklam
by itself. Storage, transmission or querying of information cannot beeaddd by classical
IT technologies.

» Velocity: Data are generated at an increasingly rapid rate. Processing the itifarma
quickly enough is an added issue when dealing with Big Data.

The Semantic We[¥] is a solution that attempts to deal with the challeng¥aniety. In short,
it is a proposal with the initial purpose of transforming the current web inéeh of Datawhere
semantic content is exposed and interlinked instead of plain documents. Woeadiandardized
way to represent semantic data, the Resource Description FramewoF§ [#Ds introduced by
the W3C. RDF represents data in a labeled directed graph structurdingrtedierogeneous data
to be linked in a uniform way, while endowing links with semantic meaning.

The Semantic Web has provided means for publication, exchange andngotien of Big
Semantic DataSince its inception, RDF usage has grown exponentially, with datasetsisgan
hundreds of millions triples. Nonetheless, managing those quantities of daéithdaschallenge.

1

2 CHAPTER 1. INTRODUCTION

While different approaches have been proposed, such as coliemteardatabases [109f¢locity
andVolumeare still unresolved challenges.

To address th&elocityissues that the Semantic Web struggles with, it is necessary a way to
transmit and query RDF in an efficient way. HDT is a storage proposdREf- storage based
on succinct data structures [36] to confront scalability problems in thégatilon, exchange and
consumption cycle of Semantic Data. HDT is currently a W3C Member Subnflssion

RDF storage, transmission and querying requirements are alleviated byH{tiwEver, this
comes with a price. Current methods of serializing RDF into HDT need to psdbe whole RDF
dataset, demanding high amounts of memory in order to manage intermediate dletiarest
That is, scalability issues are moved from RDF consumption to HDT generatmuameis then
an issue that RDF serialization into HDT has still to face.

In this scenarioMapReducemerges as a candidate for this process. In short, MapReduce is
a framework for distributed processing of large amounts of data over cditynt@ardware. It is
based on two main operationshp, which gathers information items in the form of pairs key-
value, andReduce, which groups values with the same key. Originally developed by Google and
made public in 2004 [27], its usage took off since then and it is currentlylywigged by many
institutions and companies, such as Yahoao! [108], Facehook [11 }itteT [75].

1.2 Goals

The main goal for this work is taddress the scalability issues of HDT serialization using the
MapReduce framework, reducing hardware requirements to genaratdDT serialization from
massive datasets or mashups order to achieve this objective some intermediate or secondary
goals are introduced. Those goals are sketched, along with a congexteav, in Figuré 1.11. They

are also described below.

» Perform a study of existing MapReduce based solutions to RDF scalahslityss

» Devise a MapReduce based solution to HDT serialization scalability issues.sdlution
has to address the generation of the two serialized components of HDiloeapresenting
a different challenge:

— Dictionary serialization.Every triple term must be identified, segregated into sections
according to its role, and assigned a unique and ascending numericaHiDs the
challenge is to segregate and sort the terms, considering that terms wglbggcts
and objects simultaneously belong to a different section than terms thattaeljjects
or objects. This process is currently being done using temporal in-mermacyses,
and constitutes the main bottleneck of HDT serialization.

— Triples serialization Every triple term must be substituted by its ID. Then, each triple
must be identified and sorted by subject, predicate and object. While heecattee
no hardware requirements that make the task unrealizable, speed carrtecinpy
paralleling the operation.

» Develop an evaluation system for HDT generation scalability. This syst#nhave to
be applied to the devised solution and provide an unbiased assessmensaziatsility,
comparing it with previous mono-node versions.

*htt p: // www. w3. or g/ Subni ssi on/ 2011/ 03

http://www.w3.org/Submission/2011/03

1.2. GOALS

CONTEXT

Big Data: Large quantities of unstructured data. It presents challenges to be processed and shared
systematically.

Data sharing and Scalability data
automatic processing processing
\ 4 Y
Semantic Web: Extension of current web. Its MapReduce: Framework and programming
aim is to provide data a semantic meaning, model for distributed processing of large
making it readable by computers and humans quantities of data.
alike. Data is stored in RDF in plain text

format, which originates scalability issues in
the publication, exchange and consumption
cycle.

Scalable storage

Y

HDT: Compact serialization format to
scalably store data in RDF format.

Scalability issues to be generated from
original plain text format

Y
Goal: Solve or reduce scalability issues on HDT generation using a MapReduce based solution.

B

PARTIAL GOALS: / \
v

Study of existing Introduce a MapReduce Develop an evaluation
MapReduce based solutions based solution to HDT system for HDT generation
to RDF scalability issues. generation scalability issues. scalability.

\ /
CONTRIBUTIONS:

Y

State of the Art of MapReduce based MapReduce based solution to HDT
solutions to RDF scalability issues. generation scalability issues.

Figure 1.1: Goals overview

4 CHAPTER 1. INTRODUCTION
1.3 Methodology

This work proposes a novel approach to deal with HDT serialization,wikii itself a solution
to deal with RDF scalability issues. This is a multidisciplinary work on the fieldsewmh&htic
Web, compression techniques, and parallel computation, so a prelimindyyastall fields is very
important. This allows to fully understand the subject and to take a graspefl dschnigques,
possible issues, and solutions on applying the MapReduce model to deaRidhand HDT
structures. This is visible in the used methodology, which comprises the fofjcstéps:

1. Perform a state-of-the-art of Semantic Web, HDT and MapRedwsgriing its main
characteristics, strengths, weaknesses and current challengésesraf research.

2. Analyze current MapReduce-based solutions on the Semantic Weldliregy scalability
issues.

3. Propose and develop a solution to HDT scalability issues. This solutioneniihbed on the
MapReduce computational model.

4. Evaluate the solution against the previous mono-node serialization aigpptbviding a
fair assessment of the applicability of the devised solution.

1.4 Structure

The current chapter provides an overview of the problem this workeadds, its goals and
methodology. The rest of this document is organized as follows:

» Chaptef 2 describes the background regarding the Semantic Web, iDWapReduce.

« Chaptef B reviews the most relevant MapReduce solutions to a varietiplefsRalability
issues, not only including compression, but also query resolution asckimde issues.

» Chaptei’#4 describes the proposed solution to generate HDT serializati@nevaluation
method for this solution is also defined.

» Chapter b demonstrates the experiments and their results with real-worldyatitetic
datasets.

e Chapter 6 gives some conclusions about the work done and delineates mossible
improvements and future lines of work.

Chapter 2

Background

This chapter explores the background needed to understand thessattigroblem. This back-
ground includes the foundations and challenges of the Semantic Web agsti@pdon of the
MapReduce framework, on which HDT-MR is based upon.

2.1 Semantic Web

This section describes the basics of the Semantic Web: its principles, tmmsjand standards.
It also comments its current challenges and open fields of research.

2.1.1 Foundations of the Semantic Web

The foundations of the Semantic Web are based on the current World Védelithe WWW the
information is published and consumed by a multitude of different actorstrivation is published
as documents, interconnected by links, and can be viewed as a wholérastaddgraph. In this
graph, each document is a edge, while each link is a vertex. Then, irtforma presented in
natural language [7], and meaning is inferred by people who read agéspand the labels of
hyperlinks [98]. In the current web there are huge quantities of datajthization is limited due
to inherent problems [24]:

« Information overload:Information on the web grows rapidly and without organization, so
it is difficult to extract useful information from it.

« Stovepipe Systemdvlany information system components are built to work only with
another components of the same system. Information from these compomatteiadable
by external systems.

» Poor Content Aggregation:The Web is full of disparate content which is difficult to
aggregate. Scraping is the common solution.

The Semantic Web was first proposed by Tim Berners-Lee [7] in 2@@&kphands the concept
of organizing information as a directed graph, but instead of linking dootsné linkssemantic
data The links have also semantic labels, in order to describe the relation betves®vo entities.
Its goal is to make data discoverable and consumable not only by peoplkesblby automatic
agents|[98]. It is based on the following foundatians [7, 98]:

« ResourcesA resource is intended to represent any idea that can be referretdthev it is
actual data, just a concept, or a reference to a real or fictitious object.

5

6 CHAPTER 2. BACKGROUND

» Standardized addressinggll resources on the Web are referred to by URIs [8]. The most
familiar URIs are those that address resources that can be addaegskerdrieved; these are
called URLs, for Uniform Resource Locators.

» Small set of command3he HTTP protocol8] (the protocol used to send messages back
and forth over the Web) uses a small set of commands. These commandsvarsally
understood.

 Scalability and large networksThe Web has to operate over a very large network with
an enormous number of web sites and to continue to work as the netwokkmesirases.
It accomplishes this thanks to two main design features. First, the Web istddizeal.
Second, each transaction on the Web contains all the information needeadt® the
request.

» Openness, completeness, and consisteflog:Web is open, meaning that web sites and web
resources can be added freely and without central controls. ThésWetmmplete, meaning
there can be no guarantee that every link will work or that all possiblerirdton will be
available. It can be inconsistent: Anyone can say anything on a weh pagéferent web
pages can easily contradict each other.

Trust

Proof
Unifying Logic
Ontology Rules Interchange
(RIF)

Language (OWL)

< TTO®mAN@ O ~T< 0

XML + XML Schema

Figure 2.1: Semantic Web Architecture

Semantic Web architecture is usually represented as a layered stack edngfcnabling
formats and technologies, which can be seen in Figuie 2.1. Those elemebiiefly outlined
below @] ﬂ]:

2.1. SEMANTIC WEB 7

« XML —Extensible Markup Languad#4]: Language framework that lets write structured
Web documents with a user-defined vocabulary. Since 1998, it hasibedio define nearly
all new languages that are used to interchange data over the Web.

« XML Schemd34, (114, 11]: A language used to define the structure of specific XML
languages.

 RDF —Resource Description Framewdid]: A flexible language capable of describing
information and meta data. The RDF data model does not rely on XML, but iRI3Fan
XML-based syntax. RDF is covered in section 2.1.1.1

* RDF Schemdl15]: A framework that provides a means to specify basic vocabulaoies f
specific RDF application languages to use. It provides modeling primitivesré@nizing
Web objects into hierarchies. Key primitives are classes and propenladass and sub-
property relationships, and domain and range restrictions. RDF Schenwwased in
2112

« Ontology—-LanguagesExpand RDF Schema to allow definition of vocabularies and estab-
lish the usage of words and terms in the context of a specific vocabulBfy.3Rhema is a
framework for constructing ontologies and is used by many more advamtelbgy frame-
works. OWL [50] is an ontology language designed for the Semantic Wattio®[2.1.1.B
discusses OWL.

 Logic and Proof Logical reasoning is used to establish the consistency and correcfness
datasets and to infer conclusions that aren’t explicitly stated but argeddpy or consistent
with a known set of data. Proofs trace or explain the steps of logicabmeas Section
[2.1.1.% covers some issues relating to logic in the Semantic Web.

» Trust A mean of providing authentication of identity and evidence of the trustwasiof
data, services, and agents.

2.1.1.1 RDF

RDF is a data model to describe resources, where a resource caithim@iin principle. It
proposes a date model based on making statements about the resoaotestaiement has then
the structure of a triple with the following components|[24]:

» Subject:The resource that is being described by the ensuing predicate antl dbgabject
can be either an IRI or a blank node.

 Predicate:The relation between the subject and the object. A predicate is an IRI.

» Object: Either a resource or value referred to by the predicate. An objecteam bRI, a
blank node, or a literal.

An IRI (International Resource Identifier) [30] refers unequivocally tingle resource. IRIs
are a generalization of an URIs that can contain characters from tlvengai Character Set. RDF
has rules about how to construct an URI from an IRI so that they carsé@ conveniently on the
Word Wide Web|[98]. Blank nodes are local identifiers that are ofted tsgroup collections of
resources, while a literal is a text string, commonly used for names orijlscs.

Triples are interconnected in a directed labeled graph, whit subjectdfertoas vertices, and
properties as edges. An example of RDF and its graph-based rejatemeim shown in Figure
[2.2. Formally, RDF is described as follows:

8 CHAPTER 2. BACKGROUND

Definition 1 (RDF triple) Atuple(s,p,0) e (IuB)xIx(IuBuUlL)is called an RDF triple, in
which “s” is the subject, p” the predicate and 0" the object. I (RDF IRI references B (Blank
node$, and L (RDF literalg are infinite, mutually disjoint sets.

Definition 2 (RDF graph) An RDF graphG is a set of RDF triples. As stateds, p,0) can be
represented as a directed edge-labeled grapﬁa o.

RDF Graph

ex:S1 foaf:age 25.

ex:S2 foaf:age 25.

ex:S1 ex:study ex:C1 .

ex:S2 ex:study ex:C1 .

ex:C1 ex:hasProfessor ex:P1 .

ex:hasProfessor

Figure 2.2: An RDF graph example

RDF is more redundant than other ways of storing information —as regal@bdses—
because is schema-less. So, it needs to store property specificatibrisreathey are used. This
requires RDF to carry data that might otherwise be redundant [98].tHButrade-off between
regularity and flexibility lets RDF do some operations that would be impossible amaeational
database, such as [98]:

Combine the data with other datasets that do not follow the same data model.
« Add more data that does not fit the table structures.

« Exchange data with any other application that knows how to handle RREnlbe done
over the Web, by email, or any other way by which you can exchange dildata

» Use an RDF processor that can do logical reasoning to discovetechsédationships in the
data.

« Use someone else’s ontology to learn more about the relationships betveeproperties
and resources in data.

» Add statements about publications and references that have beasddsfinewhere else on
the Web. All that needs to be done is to refer to the published identifierssjURI

» Do all these things using well-defined standards, so that a wide rasgéwhre can process
the data.

RDF was originally built over XML. RDF/XML is sometimes non-intuitive, as it as a
translation of a list of statements into a hierarchical XML [24]. Becauseaif tither notations
have emerged over time. Notation 3 (N3) and N-triples are the most commoXMbrfermats.

A statement is written in ordinary text in the ordesubj ect > <pr edi cat e> <obj ect >.
N-triples is a line-oriented subset of N3. It was developed to expresietieed results of test cases
and to be transmittable over the Internet in a MIME format. For simple cases,ighartually no
difference between N-triples and N3 [98].

2.1. SEMANTIC WEB 9
2.1.1.2 RDF Schema

RDF Schema (or RDFS in short) defines classes and properties, usiRpEdata model. Those
elements allow to describe vocabularies (i.e. basic ontologies) to structuferéddurces and
impose restrictions on what can be stated in an RDF dataset. A continuatiom RDR graph
running example with some RDFS statements added is shown on Eigure 2.3 Thelenaémts of
RDFS are outlined below[2].

RDF Graph

ex:Student rdf:type rdfs:Class .
ex:Professor rdf:type rdfs:Class .
ex:Class rdf:type rdfs:Class .

ex:S1 rdf:type ex:Student
ex:S2 rdf:type ex:Student
ex:P1 rdf:type ex:Professor
ex:C1 rdf:type ex:Class

ex:S1 foaf:age 25.

ex:S2 foaf:age 25 .

ex:S1 ex:study ex:C1.

ex:S2 ex:study ex:C1.

ex:C1 ex:hasProfessor ex:P1 .

Figure 2.3: An RDFS graph example

Core Classes of RDFS:
e rdf s: Resour ce, the class of all resources.

e rdfs: O ass: An element that defines a group of related things that share a set of
properties|[24]. It is the superclass of all classes.

rdfs: Literal, the class of all literals (strings). At present, literals form the only data
type of RDF/RDFS.

e rdf: Property, the class of all properties.

r df : St at enent , the class of all reified statements.

Core Properties for Defining Relationships:

e rdf : t ype, which relates a resource to its class. The resource is declared to tsaarce
of that class.

« rdf s: subd assO, which relates a class to one of its superclasses; all instances of a
class are instances of its superclass. An element that specifies that s dapecialization
of an existing class. This follows the same model as biological inheritancerevehchild
class can inherit the properties of a parent class. The idea of spetitalizathat a subclass
adds some unique characteristics to a general concept.

e rdf s: subPropert yO, which relates a property to one of its superproperties.

10

CHAPTER 2. BACKGROUND

Core Properties for Restricting Properties:

r df s: donai n, which specifies the domain of a property P, that is, the class of those
resources that may appear as subjects in a triple with predicate P. If thendimmeot
specified, then any resource can be the subject.

r df s: r ange, which specifies the range of a property P, that is, the class of thameces
that may appear as values in a triple with predicate P.

RDFS also includes utility properties to establish generic relations betweenrces or
provide information to human readers, such radf s: seeAl so, rdfs:i sDefi nedBy,
rdf s: conment , andr df s: | abel [2]

2.1.1.3 Ontologies and OWL

An ontology defines the common words and concepés the meaning) used to describe and
represent an area of knowledgel[24]. An ontology language allows t@Intioel vocabulary and
meaning of domains of interest: the objects in domains; the relationships amasegthjects; the
properties, functions, and processes involving those objects; arsdraioins on and rules about
those things [24]. While RDF Schema provides some tools to do so, they are limaesiibclass
hierarchy and a property hierarchy, with domain and range definitiotiesé properties|[2]. The
following requirement should be followed by a complete ontology languélge [2

A well-defined syntaxA necessary condition for machine-processing of information

A formal semanticsDescribes the meaning of knowledge precisely. Precisely here means
that the semantics does not refer to subjective intuitions, nor is it open ¢odtiffinterpre-
tations.

Efficient reasoning supportAllows to check the consistency of the ontology and the
knowledge, check for unintended relationships between classesutordaically classify
instances in classes

Sufficient expressive powedxeeded to represent ontological knowledge.

Convenience of expression.

In detail, RDFS lacks expressive power to model an ontology because:

Local scope of propertiesdfs:range defines the range of a property, say eats, for all classes
Thus in RDF Schema we cannot declare range restrictions that apply tactasees only.

Disjointness of classesSometimes we wish to say that classes are disjoint. For example,
male and female are disjoint. But in RDF Schema we can only state subclasssdgis)
e.g., female is a subclass of person.

Boolean combinations of classeSometimes we wish to build new classes by combining
other classes using union, intersection, and complement. For example, weistato
define the class person to be the disjoint union of the classes male and fBD&I&chema
does not allow such definitions.

Cardinality restrictions: Sometimes we wish to place restrictions on how many distinct
values a property may or must take. For example, we would like to say thasanpleas
exactly two parents, or that a course is taught by at least one lect@gain Auch restrictions
are impossible to express in RDF Schema.

2.1. SEMANTIC WEB 11

» Special characteristics of propertiesSometimes it is useful to say that a property is
transitive (like “greater than”), unique (like “is mother of”), or the inversf another
property (like “eats” and “is eaten by").

In order to achieve the expressive power that RDFS lacks the W3Qogexk OWL, an
extension of RDF to describe ontologies. In OWL2, there are 3 OWL psofilased on different
description logics, with some trade-off between expressive powerfaciércy of reasoning [92]:

» OWL2-EL:Tailored for applications that need to create ontologies with very large numbe
of classes and/or properties (as in large science ontologies). It is difiee pwith more
expressive power, allowing classes to be defined with complex descaption

« OWL2-QL:Aimed at applications that use very large volumes of instance data, ané wher
guery answering is the most important reasoning task. Its goal is to all@enizsy to be
translated into queries on a database. In order for reasoning to blateariato a query, its
expressivity is restricted.

* OWL2-RL: Designed for applications that want to describe rules in ontologies. It is
essentially a rules language for implementing logic in the form of rifféeen

The main elements of OWL are described below [2].

Class Elements allow to declare and define classes with relation to another classes.
« ow : d ass: Defines a class.
» oW : di sj oi nt Wt h: To say that a class is disjoint with the specified class.

« oW : equi val ent d ass: To indicate that a class is equivalent with the specified class.

Property Elements allow to declare and define properties with relation to another properties.

« ow : Dat at ypePr opert y: Defines a data type property (a property that relates objects
with data type values).

« ow : Qbj ect Property: Defines a object property (a property that relates objects with
objects).

» oW : equi val ent Property: To indicate a equivalent class, with the same range and
domain.

« oW :i nverseO : To say a property is inverse of the specified propdréy (ses its range
as domain, and its domain as range).

Property Restrictions allow to place property restrictions on defined classes.

e oW : Restriction: Specifies property restrictions on any class. Property restriction
must be located betwe@w : Restri cti on tags inside a class.

» oW : onPr operty: Indicates the property that will be affected by the restriction.

« oW : al | Val uesFr om Specifies the class of possible values that the property can take
as range.

12 CHAPTER 2. BACKGROUND

ow : hasVal ue: Specifies a fixed value that the property will have.

« oW : soneVal uesFr om Makes mandatory to have at least one property with a value
from the specified class. If the class has more than one of these preptrdgest are not
restricted in this way.

« oW : m nCar di nal i t y: Specifies the minimum cartinality of the property.

ow : maxCar di nal i t y: Specifies the maximum cartinality of the property.

Special Properties allow to define directly some attributes of property elements.

« oW : TransitiveProperty defines a transitive property, such as “has better grade

than”, “is taller than”, or “is ancestor of”.

« oW : Synmret ri cProperty defines a symmetric property, such as “has same grade as”
or “is sibling of”.

« oW : Functi onal Property defines a property that has at most one value for each
object, such as “age”, “height”, or “directSupervisor”.

« oW : I nverseFuncti onal Property defines a property for which two different ob-
jects cannot have the same value, for example, the property “isThe SsmiatgNumber-
for” (a social security number is assigned to one person only).

Boolean Combinations allow to specify boolean combinations of classes.

« oW : conpl enent O : Specifies that the class is disjoint with the specified class. It has
the same effect aswl : di sj oi nt Wt h.

« oW : uni onCOF : Specifies that the class is equal to the union of specified classes.

« oW :intersectionO: Specifies that the class is equal to the intersection of specified
classes.

Enumerations allow to define a class by listing all its elements.

« oW : oneOF : Is used to list all elements that comprise a class.

Versioning information gives information that has no formal model-theoretic semantics but can
be exploited by human readers and programs alike for the purposetotdgynmanagement.

* oW : pri or Ver si on: Indicate earlier versions of current ontology.

« oW : versionl nfo: Contains a string giving information about the current ontology
version.

« oW : backwar dConpat i bl eW t h: Identifies prior versions of the current ontology that
are compatible with.

« oW :i nconpati bl eWt h: Identifies prior versions of the current ontology that are not
compatible with.

2.1. SEMANTIC WEB 13

Instances of OWL classes are declared as in RDF. OWL does not adisafmestances with
different name or ID are not the same instariee (loes not adopt thenique-names assumptjon
In order to ensure that resources are considered different famm @her, this elements must be
used:

« ow : di f f er ent Fr om Identifies the resource as different from the specified resource.

« oW : Al Different: Allows to specify a collection. All elements of the collection are
considered different from each other.

2.1.1.4 SPARQL

Previous sections described how data are stored. As with traditionaledatlit is necessary a
way to inquire about the information contained in a dataset. SPAQRQL is thg iquguage for
the Semantic Web proposed by the W3C. SPARQL syntax is based on Tlrtle [5

SPARQL is essentially a declarative language based on graph-pattetningatéth a SQL-
like syntax. Graph patterns are built on topToiple Patterns(TPs),i.e., triples in which each of
the subject, predicate and object may be a variable. These TPs aregwwiibin Basic Graph
Patterns(BGPs), leading to query subgraphs in which TP variables must be bduiitius, graph
patterns commonly join TPs, although other constructions, such as alterfuation) and optional
patterns, can be specified in a query [30]. An SPARQL query examplesepted on Figufe 2.4.
We can formally define TPs and BGPs as follows:

Definition 3 (SPARQL triple pattern) A tuple from(/uLuV)x (IuV)x(IuLuV)isa
triple pattern.

Note that blank nodes act as non-distinguished variables in graph sdt&fj.

Definition 4 (SPARQL Basic Graph pattern (BGP)) A SPARQL Basic Graph Pattern (BGP) is
defined as a set of triple patterns. SPARQL FILTERSs can restrict a BGR.is a BGP andR is
a SPARQLbuilt-in condition, then(B; FI LTER R) is also a BGP.

SPARQL Query

SELECT ?X

WHERE { |
?X rdf:type ex:student. | TP1
?Y rdf:type ex:degree. | TP2
?X ex:study ?Y . TP3
?Y ex:hasProfessor ?Z. | TP4

?Z rdf:type ex:professor } TP5

Figure 2.4: A SPARQL query example
Query resolution performance mainly depends on two factors:

1. Triples retrieval,which depends on how triples are organized and indexed.

2. Join of Triplesof different TPs, determined by optimization strategies and algorithms for
join resolution [32].

14 CHAPTER 2. BACKGROUND

Both concerns are typically addressed within RDF storage systems (RBd#S)stavhich are
usually built on top of relational systems or carefully designed from detatdit particular RDF
peculiarities.

SPARQL allows to enquire information with four different statements:

SELECT:Used to extract values.

CONTRUCTUsed to extract information as RDF text.

ASK:Used to obtairyes/noquestions.

DESCRIBEUsed to extract arbitrary “useful” information.

A WHEREDIlock is added (mandatory except in the case of DESCRIBE) wheré giaferns
to be matched are included.

2.1.1.5 Reasoning

RDF allows for inference of new knowledge not previously stated on tiggnal data by using
entailment rules. An entailment rule can be seen as a left-to-right ruleg dirthinal data comply
with the left side, the conclusion is added to the graph. ter Horst [118}itbes entailment rules
for RDFS and a subset of OWL (which serve as a basis for OWL2 Rinitiefi), which can be
seen in Figurels 2.5 and 2.6, respectively.

There are two main approaches to perform inference: The first amgst®f applying the
rules at query time. In that case, the information related to the query idarsingbackward-
chainingreasoning. The second approach computes what is calle@rtgh Closure applying
all the entailment rules usinfprward-chainingreasoning, deriving and storing all the implicit
information. Both approaches have advantages and disadvantagesnalin advantage of the
reasoning at query time is that it doesn't require neither expensieomgutation nor space
consumption. Thus, it is more suitable to datasets with dynamic information. Howine
computations needed to perform the reasoning at query time are usuallypiasé/e to be used
in interactive applications. The computation of the Graph Closure, on the loéimel, have the
advantage of not needing any additional computation at query time. Whilepihieach is suited
for interactive applications, it is not efficient when only a small portion efdirivation is useful
at query time.

2.1.1.6 Linked Data

Linked Open Dathis a movement that advocates the publication of data under open licenses,
promoting reuse of data for free. The project’s original and ongoing @oto leverage the
WWW infrastructure to publish and consume RDF data, achieving ubiquittdis@amless data
integration over the WWW infrastructure [35]. This is accomplished by idgngf existing
datasets that are available under open licenses, converting them to R@#iag to the Linked
Data principles, and publishing them on the Web [12].

In 2006/ Berners-Lee [6] enumerated the four principles the Web d&&dmata should follow
in order to make possible for different datasets to be published on trenecdWW infrastructure
and connected together:

1. Use URIs as names for thingBhis allows any entity to be unambiguously referenced.

http://linkeddata.org/

2.1. SEMANTIC WEB

15

1:spo(ifois aliteral)

2: p rdfs:domain x &spo
3: p rdfs:range x &spo
4a:spo
4b:spo

5: p rdfs:subPropertyOf q & q rdfs:subPropertyOf r
6: p rdf:type rdf:Property

7:spo & p rdfs:subPropertyOf q
8: s rdf:itype rdfs:Class

9: s rdf:type x & x rdfs:subClassOf y
10: s rdf:itype rdfs:Class

11: x rdfs:subClassOf y & y rdfs:subClassof z

12: p rdf:type rdfs:ContainerMembershipProperty
13: o rdf:type rdfs:Datatype

= _:nrdf:type rdfs:Literal

= s rdf:type x

= 0 rdf:itype x

= s rdf:type rdfs:Resource

= 0 rdf:type rdfs:Resource

= p rdfs:subPropertyOf r

= p rdfs:subPropertyOf p

=SQqo

= s rdfs:subClassOf rdfs:Resource
= srdf:itypey

= s rdfs:subClassOf s

= X rdfs:subClassOf z

= p rdfs:subPropertyOf rdfs:member
= 0 rdfs:subClassOf rdfs:Literal

Figure 2.5: RDFS inference rules [113]

1: p rdf:type owl:FunctionalProperty, up v, up w

2: p rdf:type owl:InverseFunctionalProperty, vp u,wp u
3: p rdf:type owl:SymmetricProperty, v p u

4: p rdf:type owl:TransitiveProperty, u pw, w p v
Sa:upv

5b:upv

6: v owl:sameAs w

7: v owl:sameAs w, w owl:sameAs u

8a: p owl:inverseOf g, vpw

8b: p owl:inverseOf g, vgqw

9: v rdf:type owl:Class, v owl:sameAs w

10: p rdf:type owl:Property, p owl:sameAs q

11: u p v, u owl:sameAs X, v owl:sameAs y

12a: v owl:equivalentClass w

12b: v owl:equivalentClass w

12c: v rdfs:subClassOf w, w rdfs:subClassOf v

13a: v owl:equivalentProperty w

13b: v owl:equivalentProperty w

13c: v rdfs:subPropertyOf w, w rdfs:subPropertyOf v
14a: v owl:hasValue w, v owl:onProperty p, u p v
14b: v owl:hasValue w, v owl:onProperty p, u rdf:itype v

= v owl:sameAs w

= v owl:sameAs w
=upv

=upv

= u owl:sameAs u

= v owl:sameAs v

= W owl:sameAs v

= v owl:sameAs u
=>wqV

=>WpV

= Vv rdfs:subClassOf w

= p rdfs:subPropertyOf q
=Xpy

= Vv rdfs:subClassOf w

= w rdfs:subClassOf v

= Vv rdfs:equivalentClass w
= v rdfs:subPropertyOf w
= w rdfs:subPropertyOf v
= Vv rdfs:equivalentProperty w
= u rdf:type v

=upvVv

15: v owl:someValuesFrom w, v owl:onProperty p, u p X, x rdf:type=w u rdf:type v
16: v owl:allValuesFrom u, v owl:onProperty p, w rdf:type v, w p x = X rdf:itype u

Figure 2.6: OWL Horst inference rules [113]

16 CHAPTER 2. BACKGROUND

2. Use HTTP URIs so that people can look up those narBeseach entity can be referenced
on the WWW.

3. When someone looks up a URI, provide useful information, using theastEn@RDF,
SPARQL)In this way, information can be discovered when following the referehted

4. Include links to other URIs, so that they can discover more thilgs last rule is necessary
to really connect the data into a web.

Statistics show that LOD datasets have increased both in number and in gicenihyears [33].
According to LODStafthere are more than 89 billion triples on August 2015. Main contributors
to the Web of Linked Data currently include the British Broadcasting Corpar§88C), The US
Library of Congress, and the German National Library of EconomicsisAal representation of
the LOD Cloud as in August 2014 can be seen in Figurke 2.7

ccccc

AAAAA

Social Networking

Crawilable Linked Datasets as of April 2014

Figure 2.7: LOD Cloud (as of August 2014) [23]

2.1.2 Scalability Challenges

The Semantic Web is a novel technology that allows to represent semantia ddtaxible way,
but it is still a novel technology and currently faces some technologicdlestges that hinder the
construction of scalable applications.

In the first place, efficient RDF storage is a current line of resed®témdard representations
of RDF store the data in plain text. While this reduces the complexity of data satiaitiz
and processing, it impacts the final size of RDF datasets. In addition, deRBFoschema-less
structure, information about the schema of the data must be included in atedet] adding a
non-trivial amount of space. This is not only relevant because oageorequirements, but also
when considering data consumption. This leads to the second issue thahthetis Web faces:

*http://stats.lod2. eul

http://stats.lod2.eu/

2.2. HDT 17

Large volumes of RDF data are not easily queried. RDF stores usuallyobuittp of relational
systems or carefully designed from scratch to fit particular RDF pecul®[#E. However, RDF
stores typically lack of scalability when large volumes of RDF data must be redrjag].

Large-scale reasoning and inference is also a current challengeS Rbd, specially, OWL
rules (see sectidn 2.1.1.5) are complex and frequently generate new tiglese impacted by
the same or other rules. This makes online reasoning too much computatioredhysese to be
performed. The approach adopted by most solutions that supposhiegss the materialization
of the inferred triples in a batch process. In fact, there is currentlytaonative to materialization
that scales to relatively complex logics and very large data sizes [118]evéw, materialization is
not a good solution when the data are dynamic. Nonetheless, eventgengra closure of large
datasets is not a trivial task, and doing it efficiently is another line of reed418].

2.2 HDT

HDT [3€] is a binary serialization format optimized for RDF storage and trassion. Besides,
HDT files can be mapped to a configuration of succinct data structure$vahaws the inner
triples to be searched and browsed efficiently. HDTV82C Member SubmissfriThe following
sections describe its structure and its current mono-node serializatioesgro

2.2.1 Structure

HDT encodes RDF into three components carefully described to addidsg&culiarities within

a Publication-Interchange-Consumptiavorkflow. TheHeader(H) holds the dataset metadata,
including relevant information for discovering and parsing, henceirsgras an entry point for
consumption. Thd®ictionary (D) is a catalogue that encodes all the different terms used in the
dataset and maps each of them to a unique identifier: ID.TTipées (T) component encodes the
RDF graph as a graph of IDse. representing tuples of three IDs. ThiBictionary andTriples
address the main goal of RDF compactness. Figurde 2.8 shows hdidtienary and Triples
components are configured for a simple RDF graph. Each componethiedédelow.

Dictionary. This component organizes the different terms in the graph accordingitadbe

in the dataset. Thus, four sections are considered: the se¥fiananages those terms playing
both as subject and object, and maps them to the rhdge | SQ], being| SQ the number

of different terms acting as subject and object. Sect®asdO comprise terms that exclusively
play subject and object roles respectively. Both sections are mapped 80 +1, ranging up

to| SQ +| S| and| SO +| O respectively, wher¢ S| and| O are the number of exclusive
subjects and objects. Finally, sectiBrorganizes all predicate terms, which are mapped to the
range[1, | P|] . Itis worth noting that no ambiguity is possible once we know the role played
by the corresponding ID. Each section of thétionary is independently encoded to grasp its
particular features. This allows important space savings to be achieveaonisidering that this
sort of string dictionaries are highly compressible [86].

Triples. This component encodes the structure of the RDF graph after ID substitdimat is,
RDF triples are encoded as groups of three IDs (ID-triples hereijafted, i d, id,), where

ids, idy, andid, are respectively the IDs of the corresponding subject, predicateplhjedt
terms in theDictionary. TheTriplescomponent organizes all triples into a forest of trees, one per
different subject: the subject is the root; the middle level comprises theeatdist of predicates

htt p: // wwwy. w3. or g/ Subni ssi on/ HDT

http://www.w3.org/Submission/HDT

18 CHAPTER 2. BACKGROUND

“Computer Science”®en

“Informatica” @es ‘

(1) Dictionary (2} Triples
creation creation
”;\\String

gubjecta: @ @ @

B 10101
Predicates:
s[21212 |

1 exDl 50 } }
Underlyling repressntation

2 ecPl
3 exxp2

z “Computer 5 cien ce' @ en

3 | “Informatica” @es ¢ P
4lss | @ o o < A —F———
{Bo 011111
1 exmworksFor f
Objects:
3 \foafmame ° 231414
chtlonary Bltmap Trlplns

Figure 2.8: HDT Dictionary and Triples configuration for an RDF graph

reachable from the corresponding subject; and the leaves list the tibjaedated to each (subject,
predicate) pair. Thisinderlying representatiofillustrated in Figuré 218) is effectively encoded
following the BitmapTriplesapproach|[36]. In brief, it comprisasvo sequencesSp and So,
concatenating respectively all predicate IDs in the middle level and all blijscin the leaves;
andtwo bitsequence®p andBo, which are respectively aligned wip andSo, using a 1-bit to
mark the end of each list.

2.2.2 Building HDT

In this section we proceed to summarize how HDT is currentlyﬁ)dﬂ'emind that this process is
the main scalability bottleneck addressed by our current proposal.
To date, HDT serialization can be seen as a three-stage process:

« Classifying RDF terms. This first stage performs a triple-by-triple parsing (from the input
dataset file) to classify each RDF term into the correspondiltjonary section. To do
so, it keeps a temporal data structure, consisting of three hash tableg staject-to-ID,
predicate-to-1D, and object-to-ID mappings. For each parsed tripleylifed, predicate,
and object are searched in the appropriate hash, obtaining the as$tiRidigresent. Terms
not found are inserted and assigned an auto-incremental ID. Thesar¢Dused to obtain
the temporal ID-triplesi d. i d, id,) representation of each parsed triple, storing all them
in a temporary ID-triples array. At the end of the file parsing, subjectodmjelct hashes are
processed to identify terms playing both roles. These are deleted fronothgiral hash
tables and inserted into a fourth hash comprising terms in the SO section.

» Building HDT Dictionary. Each dictionary section is now sorted lexicographically, because
prefix-based encoding is a well-suited choice for compressing string mkctas [85].
Finally, an auxiliary array coordinates the previous temporal ID and tfiritle ID after
theDictionary sorting.

“HDT implementations are availabletatt p: / / www. r df hdt . or g/ devel opnent /

2.3. MAPREDUCE 19

» Building HDT Triples. This final stage scans the temporary array storing ID-triples. For
each triple, its three IDs are replaced by their definitive IDs in the newbtedBictionary.
Once updated, ID-triples are sorted by subject, predicate and objsctol@btain the
BitmapTriplesstreams. In practice, it is a straightforward task which scans the array to
sequentially extract the predicates and objects intSthandSo sequences, and denoting
list endings with 1-bits in the bitsequences.

2.2.3 Performance

HDT provides effective RDF decomposition, simple compression notionsbasi indexed
access in a compact serialization format which provides efficient atedse data. The Triples
component is specifically encoded using a succinct data structure #itaesrindexed access to
any triple in the dataset. It provides good performance both in terms of essipn rate and
query response time. WitRlain-HDT Space savings of 12-16% are reported with real-world
datasef} although compression up to 7% is reached [36]. VWART-Compressompression
rates are improved to 2-4%, outperforming results of universal commedy at least 20%
[3€]. [Fernandez et al. [36] compaktain-HDT performance with state-of-the-art solutions such
as RDF-3X and MonetDB. Tests are performed on the Dbpedia datasetealtivorld queries.
HDT outperforms both of them in all patterns excéfts, P, O) , where RDF-3X obtains the best
results, and ?S, P, ?0) , where HDT obtains the worst results.

2.2.4 Scalability Issues

HDT serialization process, described in secfion 2.2.2, makes use ofak@avenemory data
structures: four hash tables to stoeem-to-ID mappings during the first stage, an auxiliary array
during the second stage feemporary ID to definitive IDmappings, and an additional array to
storelD-triples in the third phase. This is in addition to the act@dimap serialization, which
must be wholly built in-memory before writing to disk.

2.3 MapReduce

MapReduce is a standard framework and programming model for the disttipuocessing of
large amounts of data. Its main goal is to provide efficient parallelization wha&acting the
complexities of distributed processing, such as data distribution, load bajearad fault tolerance
[27]. MapReduce is not schema-dependent, so it can processatostdiand semi-structured
data, although at the price of parsing every item [77]. A MapReduce jotmniprised of two main
phasesMap andReduce. The Map phase reads pairs key-value andps’ relevant information,
generating another intermediate pairs key-value. The Reduce phasalldke values associated
with the same key andeduces’them into a smaller set of values [27].

MapReduce was originally developed by Google and published in 2004 Eiice then, it
has been adopted by many companies that deal with Big Data. Examples otimrstitactively
contributing to the MapReduce ecosystem include:

» Googleoriginally developed MapReduce [27] and many other related technoloGIES
[45] — an underlying file system to be used with MapReduce —, BigTablg {20a
distributed column-oriented database — , and Sawzall [99] — a prodeghagramming
language for analysis of large datasets in MapReduce clusters.

®Geonames, Dbtune, Uniprot and Dbpedia

20 CHAPTER 2. BACKGROUND

» Apachedeveloped Hadoop [10], a popular free implementation of MapReducelodia
is continually under development and includes many other subprojects lilesdHB- a
distributed columnar database inspired in BigTable — or Pig [95] — a proatdata
language on top of Hadoop.

 Yahoo! has contributed to 80% of the core of Hadoop. In 2010 Hadoop cludtétzhao!
spanned 25.000 servers, and stored 25 petabytes of application iflatdenargest cluster
being 3500 servers [108].

» Facebookdevised Hive, an open-source data warehousing solution built on tblpadop
[115]. In 2010 Facebook’s data warehouse that stored more the® dbéhata and loaded
more than 60TB of new data every day [117].

» Microsoft created in 2008 their own approach to MapReduce: Cosmos, and SGOPE,
declarative language on top of Cosmos [19]. In recent years, Mifirbsis abandoned
its own technologies and has integrated Hadoop into their Cloud computing&ste

Although MapReduce is not dependent on filesystem architecture, itatmpeis based on
distributed data across many nodes, in order to process chunks of dii&a same node it is
stored. Google File System (GFS) [45] and Hadoop Distributed File Sy$i®#®$) are the main
examples of those file systems. Google MapReduce and Hadoop are contepldyed on top
of them [27]/ 10].

2.3.1 Distributed FileSystems

To fully understand the MapReduce operation, it is needed to have soomdekye about the
underlying distributed filesystem it operates on, which are portrayed isdiison.

Distributed file systems serving data to MapReduce are designed to stodelaret large
amounts of data on clusters of commodity hardware. They are designetiieweascalability
(i.e. scaling computation capacity by simply adding commodity servers) and higkegajgr
performance, while dealing with fault tolerance. To accomplish these gaeais filesystems make
use of physical architecture awareness, data replication and placemesiiant monitoring, and
instant recovery techniques [45]) 13, 108].

Those filesystems are based on the premise of storing large quantities ofvlatha needs
to be accessed sequentially by batch processes. Hence, some dasigiggrare the basis of
distributed filesystems [45].

» Data are stored on very large files: When working with high volume data sath one
comprising GB or TB, and millions of objects, it is hard to manage billions of files.aA
result, the file system stores the data as large files from hundreds of yregtbterabytes.

 High sustained bandwidth is more important than low latency: To data-inteagplications
a high rate of data transfer is more important that response time for eachrpetitio

» Data processing follows a “write once, read many times” pattern, with streditéraccess:
Once written, data are mostly accessed for data process, and is readedigentially.
Modification of files, whenever it happens, is usually by appending dBtndom data
modification is almost non-existent.

For these reasons, distributed filesystes are not suitable for all kinggptitations. Some
operations are not efficient, such as the following [10]:

®http://azure. m crosoft.conf en- us/ docunment at i on/ servi ces/ hdi nsi ght/

http://azure.microsoft.com/en-us/documentation/services/hdinsight/

2.3. MAPREDUCE 21

» Low latency data access: Distributed file system are designed to deigrethroughput
data-access. This is done at the expense of latency.

» Lots of small files: The complete namespace needs to be stored in-memorgioglea
node, which makes the storage of huge number of files unfeasible. Thisaddition to
under-usage of hard drives due to the block size used to store the files.

* Arbitrary file modifications: Modifications block files to the rest of the cliemd &equire
high usage of net bandwidth. Also, random modifications that do nattadfed of files are
not efficient.

2.3.1.1 Architecture

The architecture of distributed file systems are master/slave in nature. Oter (iNemenode in
HDFS) contains metadata and file placement. Many slaves (chunksen@FSindatanodes in
HDFS) store files data. Depending on the implementation, there can be tegganasters” that
maintain backups of the master or help with some operations. The gendrisddetuwre is shown
on Figurd 2.D.

Secondary Master
Master g~ — —] .-..............................: Client :

m‘ Metadata : :

Slave Slave Slave Slave

Figure 2.9: Distributed File System Architecture

Files are broken down in blocks and stored across the slaves. Blocis siaafigurable, but
is usually of at least 64 MB, and 128 MB are usually the norm nowad&#] [IThis large size
minimizes the cost of hard drive seeks, and reduces interaction with thermadtmetadata stored
on it [45]. Some studies suggest that even larger sizes improve sigtifithae performance
[77,166]. Each block is replicated over a number of slaves. f€plcation factoris 3 by default,
but is configurable. It is possible to configure different replicationdiato specific files, if they
are expected to be accessed more or less frequently than the avetad@4#t If at any time
replication of any block falls under its replication factor, it is copied to otletes from active
sources until it reaches the replication factor again.

The master maintains information about file and block namespaces, file-torblgaping, and
the location of each block. Metadata and file-to-block mapping are storsiigatly in master
hard drives, but the location of blocks is requested to the slaves atrdtestieip. Not storing block
location simplifies the architecture and avoids dealing with problems of symichatmn between
master and slaves. It also simplifies fault recovery, since this operatesrdi need to change
form a normal startup [45].

22 CHAPTER 2. BACKGROUND

Slaves and master communicate lyartbeats Messages sent by each slave to the master
periodically (3 seconds by default in Hadoop). If the master does neiveheartbeat from a slave
in a specific timeframe (by default during 10 minutes in Hadoop) it is consideué of service
and not used anymore. Heartbeats also carry information about totadstoapacity, fraction of
storage in use, and the number of data transfers currently in prograsse statistics are used
for the master’s space allocation and load balancing decisions. The mastis maintenance
commands to slaves in reply to heartbeats|[108]

When a client needs to access a file, it send a petition to the master with file icgeiutific
and offset. The master looks for the corresponding block and sendBahtthe list of slaves that
store the block. The block Isasedo the client for a specified period of time (60 seconds in GFS),
although the client can request extensions. The client chooses atsiaiealy the nearest one)
and all the 1/O operations are made through it. That avoids burdening therméih unnecessary
data transfer. It is also possible for the client to ask for more than oné biae single request
[45,1124)108].

Multiple clients can read the same file with no additional features, but writingdsnt® deal
with multiple clients trying to modify the same file. Different implementations take distinct
approaches. HDFS only allows one client to write in the same file at a time [£3, G&S on
the other allows multiple clients to append information to the same file. Data are stosed
temporary location in the nodes and is added to the file in the same order as e dlse the
file [45].

In a write operation, slaves containing the block are sorted in a serial m®liproximity to
the client, and one of them is chosen as the primary. The client writes datadio$est slave, and
data are transferred through the pipeline. Receiving slaves sendvaekiyment to the previous
one. When all data has been transferred, primary client closes thedilesdgirfor acknowledgment
from other slaves. This acknowledgment contains a checksum that iateslidViaster and client
are informed of the end of the process and its final state [45, 108]. A opieation diagram is
shown in Figuré Z2.10.

. Start Write Operation
Client 'o.iiiiiiiiviisiviviiiiiis Master
Slave locations v
.- l e . " e .
' ; Notify
I , . ot
L | i ACK Non_nf- - * Notify el
) !
Y Data Data
Slave I Slave] Slave
ACK ACK

Figure 2.10: Distributed File System Write Dataflow

In the case of file creation, slaves are chosen accordingrépleca placemenpolicy. This
policy tries to achieve a compromise between transfer speed and faulntderin HDFS, the
default policy is to store the first replica in the same rack as the client, thadegplica in another
rack and the third replica in the same rack as the second one. If replicatimn is greater than 3,
following replicas are stored in random nodes over the cluster with thisatésts: No more than
one replica is written on the same node, and no more than two replicas are writthe same
rack [108].

Deletion follows a similar pattern as write operations, but blocks are not deleraediately.
Instead, a lazy garbage collection mechanism is implemented. Block refsrane marked in

2.3. MAPREDUCE 23

master and slave nodes; if not used during a specified time (3 days hytpidfay will by deleted
by a background process [45, 13].

Load balancing must be taken into account when considering replicanpdateGFS ponders
current disk utilization rate of each node at write time [45]. HDFS, in coptdaes not consider
it at write time in order to avoid placing new data into the same nodes. New dat@quently
more accessed than older one, and placing most of it in a reduced nufrdi@ves could affect
performance. HDFS solution consist in running a load balancer as gtoactd process; if a node
exceeds a threshold, some of its block are moved to another slave in the [124fe

System metadata is stored in the namespace, which is stored by the in memantiraé.ru
It is periodically stored into disk as a checkpoint, but in order to make itieffity, the master
maintains a write-ahead commit log for changes to the namespace (journ@®©8)HThe last
checkpoint and the log are merged periodically to make changes perfisiebp4].

Hadoop implements two other kind of nodes, which help the master in its duties. The
Checkpoint Node reads checkpoint and journal, merges them into a shmgkpoint, and returns
it to the master. The Backup Node contains all metadata except block logagads the journal
and creates its own checkpoints. If the master fails it can replace It [108].

GFS allows making snapshots by file or directory. When a snapshot iesteqgl) the master
revokes all leases, duplicates all the metadata referring to affectedaddtapints it to the same
original blocks. When a client wants to modify a file, affected block ardicated before any
modification occurs [45]. HDFS only allows one snapshot and it can anipade at startup. A
static checkpoint is written and slaves are notified to make local snapshbén &\slave needs to
modify blocks, it makes a local copy before [108].

2.3.2 MapReduce

MapReduce is designed to abstract the complexities of distributed datesprmcdesigners. It
aims to perform distributed computations over a high number of computedmgledth issues
like parallelization, data distribution, load balancing, fault tolerance andlsitity in a transparent
way [27].

In order to achieve these goals, MapReduce works with the princigla@fing algorithm to
data”. That is, executing data process in the same nodes data are storedthathmoving data
over the machines that make the computations [27].

MapReduce model is based on two main operations, carried out in dvdprandReduce.
These operations work with pairs key-value. Mappers input pairs eodlpes intermediate key-
value pairs. An intermediate step groups all values with the same key, anttd&tsdead all
grouped values with the same key and processes them, producing a setadievaues|[27]. A
schema ofvlp andReduce operations can be seen in Figlre 2.11

map: (k1,v1) > list(k2,v2)
reduce: (k2,list(v2)) — list(v2)

Figure 2.11: Map and Reduce input and output

MapReduce works over data with no schema. This has the advantagé lofing schema-
dependent, so it can work over unstructured or semi-structured dataGlidogle’s Protocol
Buffers, XML, JSON or Apache’s Thrift). On the other hand, it netmparse every item read,
which impacts efficiency [77].

24 CHAPTER 2. BACKGROUND

MapReduce is I/O intensive, as it needs to write all intermediate data to disledeliap
andReduce Phases. I/O is the main bottleneck in MapReduce performance. This alsasmpac
in energy efficiency of MapReduce clusters. Many of current rebelines try to deal with this
problem [77].

2.3.2.1 Architecture

MapReduce clusters have a master/slave architecture. One mastercimtitidHdadoop) initial-
izes the process, schedules tasks and keeps bookkeeping inforntdtog. slaves (workers in
Google MapReduce, Tasktrackers in Hadoop) exelghteandReduce tasks|[27]. A diagram of
MapReduce architecture can be seen in Figure 2.12.

Master

ER

N
Assign Map task .-t

e "+, Assign Reduce task
Split ~ > T ig
': V _.' ._- .“ _..
Split === > Slave EWRLE %
=~ o ’ S
M N2
Split o e Pt A
~ - ¢ A Intermediate data S
g W Slave N S "W Slave i
Split = G A L
plit ""-,,__“ SI ’
Y
Split L= ave

Figure 2.12: MapReduce Architecture Overview

As stated before, a MapReduce job includes two main phad#égs:andReduce, but more
intermediate phases are needed in order to manage data. Below arequtesémphases a
MapReduce job, and is visually represented in Figure|2.13.

» Map: Reads input data and produces intermediate key/value pairs.
» Sort: Map output is sorted by key.

» Combi ne (optional): Processes Map output in order to extract only meaningtal ita
purpose is to minimize data transferred between Map and Reduc€olfndinefunction is
used, its usage is similar to Reduce, as seen in Figuré 2.14.

« Shuf fl e: Data flows between Map and Reduce task. Data received by a Redilice ta
contains the same key.

» Mer ge: Data from different Map tasks is merged on the Reduce node.

* Reduce: Reads pairs key-value and produces a list of values. Each Redlcedeks with
only one key.

At the beginning of a MapReduce job, input data are divided into isplits Each split is
assigned to ahp task. When possible, Map tasks are performed in the same nodes data are
stored, in order to avoid data transfer between nodes [27, 80]. Ndt¢h#haame principle is

2.3. MAPREDUCE 25

Reduc: utput
(o [- e
==

uffle

Figure 2.13: Complete MapReduce Dataflow

map: (k1,v1) - list(k2,v2)
combine: (k2,list(v2)) — list(k3,v3)
reduce: (k3,list(v3)) — list(k3,v3)

Figure 2.14: Map, Combine and Reduce inputs and outputs

not possible wittReduce task, as they need data generated by multiple Map tasks, each one ran
in different nodes, so data transfer is unavoidable![124]. While bothtiapd output are read
from and written to distributed filesystems, this is not the case with intermediatesvalbey are
temporary and replication would create unnecessary bandwidth uszge [1

When dividing input data into splits, it is important to take into account splits skrealler
splits benefit load balancing, specially in heterogeneous environmerdaudee they can be
scheduled in different amount to each node. Bigger splits, by contediice the necessary
overhead of scheduling and bookkeeping tasks [66]. The overiseadt only of processing
time, but also of memory usage of the master node. This puaks actolower limit in split
size. In addition, using split sizes bigger than block size of underlyingildiséd system is not
recommended, as it could impact in data locality: If a splitis bigger than a kileelgrobabilities
of needing data transfer to retrieve part of the split are increased 227,

MapReduce assigns nodes to different jobs using a scheduler. OsagelFO scheduler is
common in mono-user environments. In a FIFO scheduler all cluster noglesead to process
a MapReduce Job. When nodes are freed from a job, they can beaipeacess another job.
This is the default scheduler in Hadoop, but in environments where maneoti@job is needed
to run concurrently it is possible to use different schedulers. Haddowsato select a Fair
Scheduler, that assign equal resources to each job, or a CapacéguBah that uses a more
complex scheduling with multiple queues, each of which is guaranteed tosg@ssertain capacity
of the clusteri[124, 77].

Slave nodes periodically send heartbeats messages to the master with inforbatit their
state and progress of the tasks they are running. Master node udagatmation to schedule new
tasks, and to identify faulty or straggling nodes (nodes that shows stbaerexpected progress)
[27]. If a node does not send a heartbeat during a specified time, @ lifethrtbeat informs about
a failed task, the master marks it as faulty, and no more tasks will be assigiiedEie@ry task
previously assigned, even completed tasks, are rescheduled to lesgeddy another nodes.
If a task is retried for a specified number of times (four by default in Hadlob will not be
rescheduled. Usually the whole MapReduce job is stopped when thaertgpalthough it is
possible to establish a number of “allowed failures” for a job [27| 1244 ibde shows a slower-
than-expected progress, its current task will be scheduled to besgeatby another node. When
the task ends in one of the nodes, the other one will be discarded. Thisvis\kasspeculative
task scheduling Hadoop compares node progress with average progress in the ttudetect
straggling nodes [124].

26 CHAPTER 2. BACKGROUND
2.3.3 Challenges and Main Lines of Research

MapReduce is a young technology, with many challenges ahead and opsfiresearch. The
most relevant are presented in this section.

2.3.3.1 Efficiency and Energy Issues

MapReduce is becoming a widespread solution for large-scale dataiad@®ys73]. With an
architecture based in replication and constant data traffic and 1/0 opesagioergy consumption
is high [78]. This causes an energy waste that must be considered.sBaires that deal with this
problem are:

« Covering Set: Keeps only a small fraction of the nodes powered upglpgriods of low
usage. It can save between 9% and 50% of energy consumption [78].

* All-In Strategy: Uses all the nodes in the cluster to run a workload andgberrs down
the entire cluster. Presents lower effectiveness that Covering Setvbely time needed to
transition a node to and from a low power state is a relatively large fractidimeobverall
workload time. In all other cases the benefits of All-In Strategy are signifiga)].

« Green HDFS: Proposes data-classification-driven data placeméatltves scale-down by
guaranteeing substantially long periods (several days) of idlenessbsatof servers in the
datacenter. Simulation results show that GreenHDFS is capable of ach#8#thgavings
[68].

2.3.3.2 Complex Execution Paths

MapReduce reads a single input and produces a single output in a figedtien path. Many
execution plans require more complex path. There are solutions that impléragussibility to
construct dataflow graphs with different possible paths [77]:

» Dryad: Execution engine that uses MapReduce but allows more dgexeution plans.
A Dryad application combines computational “vertices” with communication “nbégi to
form a dataflow graph. Dryad runs the application by executing the vewitéhis graph on
a set of available computers, communicating as appropriate through fil&spip€s, and
shared-memory FIFOs [63]

 Clustera: Designed for extensibility, it enables the system to be easilydextén handle
a wide variety of job types ranging from computationally-intensive, longiimg jobs with
minimal 1/O requirements to complex SQL queries over massive relational tafnesher
unique feature of Clustera is the way in which the system architecture exploiern
software building blocks including application servers and relational databystems in
order to carry out important performance, scalability, portability andilisalbenefits. [28]

* Nephele/PACT: Centered around a programming model of so called Maegiten Con-
tracts (PACTs) and the scalable parallel execution engine Nephele.y$tegrsas a whole
is designed to be as generic as (and compatible to) MapReduce systemswshileming
several of their major weaknesses: 1) The functiglap andReduce alone are not suffi-
cient to express many data processing tasks both naturally and effici2htiyapReduce
ties a program to a single fixed execution strategy, which is robust butytsgboptimal
for many tasks. 3) MapReduce makes no assumptions about the belfatierfunctions.
[122,3]

2.3. MAPREDUCE 27
2.3.3.3 Declarative Languages

Developers working with MapReduce must code their dMap and Reduce procedures. If
optimization is required, they could need to code Sort, Combine or Mergatiupes. Declarative
languages have been developed to abstract queries from progrém |dbis allows query
independence, reuse and optimization. Proposals of declarative ¢pgginalude:

» Pig: Offers SQL-style high-level data manipulation constructs, whichlmaassembled
in an explicit data flow and interleaved with custom Map- and Reduce-stytdifms or
executables. Pig programs are compiled into sequences of Map-Rebscarnd executed
in the Hadoop MapReduce environment.| [95, 43].

» HiveQL: Queries are expressed in a SQL-like style, and are compiledMatmReduce
jobs that are executed using Hadoop. In addition, HiveQL enables tespfug in custom
MapReduce scripts into queries. [115,/116].

» SCOPE: Designed for ease of use with no explicit parallelism, while beingainie to
efficient parallel execution on large clusters. SCOPE borrows defeatares from SQL.
Data are modeled as sets of rows composed of typed columns. The sefectestiis
retained with inner joins, outer joins, and aggregation allowed. Users asily @efine
their own functions and implement their own versions of operators: extea@arsing
and constructing rows from a file), processors (row-wise procggsieducers (group-wise
processing), and combiners (combining rows from two inputs). SCOPJosts nesting of
expressions but also allows a computation to be specified as a seriessdfl§tep

e DryadLINQ: A DryadLINQ program is a sequential program comjgosELINQ expres-
sions performing arbitrary side-effect-free operations on datasedscan be written and
debugged using standard .NET development tools. The DryadLINQns\sitomatically
and transparently translates the data-parallel portions of the prograim digtributed exe-
cution plan which is passed to the Dryad execution platform [62].

2.3.3.4 Progress Estimation

Hadoop speculative task scheduling compares node progress withettag@v This approach can
present problems when applied over heterogeneous hardware, inpvbgress rate can vary from
one node to another [[77]. Solutions to deal with this issue include:

» Longest Approximate Time to End (LATE): Proposes estimating task finalizatimugh
individual progress rate. Improves Hadoop response times by a t@an heterogeneous
cluster environments [128].

 Parallax: Targets environments where queries consist of a sequaattial of MapReduce
jobs and is fully implemented in Pig. It handles varying processing speelldegyrees of
parallelism during query execution [91]

» ParaTimer: Estimates the progress of queries that translate into diregtdit gcaphs of
MapReduce jobs, where jobs on different paths can execute cendyrr The essential
techniques involve identifying the critical path for the entire query andymiogy multiple
time estimates for different assumptions about future dynamic conditloris. [90

« KAMD: Uses an estimate of the time required to process a single recoréadbrghase of
each job and an estimate of the number of records that remain to be pabf&¥se

28 CHAPTER 2. BACKGROUND

2.3.3.5 Multi-user Task Scheduling

In many multi-user production environments, MapReduce jobs often perfmilar tasks.
MapReduce schedulers don't take this into account, causing duplicate wo

MRShare is a solution for environments where different jobs often paréamilar work, and
there are many opportunities for sharing. It transforms a batch of guatea new batch that will
be executed more efficiently, by merging jobs into groups and evaluatitggeaap as a single

query [70].

2.3.3.6 Global State Information

MapReduce does not store global state information. Complex algorithmssthatate information
are hard to implement in MapReduce, and require lots of I/O usage and coogpigutations.
There are some advances that include state information in a MapReducemitien:

» HalLoop: Haloop extends MapReduce with programming support fotiiterapplications,
it also dramatically improves their efficiency by making the task schedulerde@re and
by adding various caching mechanisms. Compared with Hadoop, on ayd#adioop
reduces query runtimes by 1.85][16]

» Twister: Programming model and the architecture of an enhanced Map&eahtime that
supports iterative MapReduce computations efficiently [31]

« Pregel: Implements a programming model motivated by the Bulk Synchronaad- P
lel(BSP) model. In this model, each node has each own input and tramsfigrsome
messages which are required for next iteration to other nodes [84, 77]

2.3.3.7 Multiple Inputs

MapReduce is originally designed to read a single input and generatel@ @irigut. Algorithms
that require multiple inputs or outputs are not well supported. Here asemtied some solutions
to deal with this issue:

» Map-Reduce-Merge: Adds to Map-Reduce a Merge phase thatfficiergly merge data
already partitioned and sorted (or hashedMayp andReduce modules. This model can
express relational algebra operators as well as implement several joiittaigs [127].

* Map-Join-Reduce: Proposes a filtering-join-aggregation programmiogdel, a natural
extension of MapReduce’s filtering-aggregation programming model. It @ssents a
data processing strategy which performs filtering-join-aggregation tagk# successive
MapReduce jobs. The first job applies filtering logic to all the datasets irlgajains
the qualified tuples, and pushes the join results to the reducers for pgdigigation. The
second job combines all partial aggregation results and produces thariswer. The
advantage is that it joins multiple datasets in one go and thus avoids fredugekpointing
and shuffling of intermediate results, a major performance bottleneck in bt current
MapReduce based systems.| [64]

* Tuple MapReduce: Allows to bridge the gap between the low-level cartstprovided by
MapReduce and higher-level needs required by programmers, sudngound records,
sorting or joins. It also presents Pangool as an opensource frakangementing Tuple
MapReduce [37]

2.3. MAPREDUCE 29

2.3.3.8 Blocking Operators

Map andReduce functions are blocking operations in that all tasks should be completed to move

forward to the next stage or job. The reason is that MapReduce reliestermal merge sort for
grouping intermediate results. Merge phase is I/O intensive. This propauses performance
degradation and makes it difficult to support online processing [65, 79]

* Incremental MapReduce: Combines MapReduce abstraction with a wédie-distributed
stream processor. Incremental MapReduce operators avoid dptacessing, and the
stream processor manages the placement and physical data flow ofettatoop across
the wide area [83].

* MapReduce Online: Proposes a modified MapReduce architecturelltves data to be
pipelined between operators. This extends the MapReduce programired lmeydnd batch
processing, and can reduce completion times and improve system utilizatioatéorjobs
as well. It also supports online aggregation, which allows users to sdg feturns” from
ajob as it is being computed, and continuous queries, which enable Map&ptbgrams
to be written for applications such as event monitoring and stream proge{2i

 Intermediate Hash tables: Proposes a new data analysis platform thaysrmakh tech-
nigues to enable fast in-memory processing, and a frequent key teedque to extend
such processing to workloads that require a large key-state spacgrélves the progress
of map tasks, allows thReduce progress to keep up with tHéap progress, with up to
3 orders of magnitude reduction of internal data spills, and enables résiiésreturned
continuously during the job.[79]

2.3.3.9 Distributed Databases

MapReduce default framework operates over data files replicated intrébulied file system.

These data are schema-free and index-free, so parsing each elsraeejuirement. If semi-
structured data are used, it can be used to check data integrity, buiztataa/ grow as data
contains schema information in itself [77]. There are some approachestabuted databases
that try to make data access more efficient:

» HadoopDB: Hybrid solution of parallel DBMS and Hadoop approadbedata analysis.
The ability of HadoopDB to directly incorporate Hadoop and open souM ® software
(without code modification) makes HadoopDB particularly flexible and ekténdor
performing data analysis at the large scales expected of future wosKlbad

* SQL/MapReduce: Hybrid framework that enables to execute useredifiinctions in SQL
gueries across multiple nodes in MapReduce-style [40, 77]

» BigTable: Column-based database. A Bigtable is a sparse, distributesistpet multidi-
mensional sorted map. The map is indexed by a row key, column key, and sainpegach
value in the map is an uninterpreted array of bytes. [20]

« Hadoop++: Changes the internal layout of a split — a large horizoatdition of the data
— and/or feeds Hadoop with appropriate user-defined functions.olpatgposes new index
and join techniques: Trojan Index and Trojan Join, to improve runtimes pRéduce jobs
[29].

» Dremel: Combines multi-level execution trees and columnar data layout [87]

30

CHAPTER 2. BACKGROUND

Teradata’s Hadoop and PDBMS integration: Present three efforésdewight integration of
Hadoop and Teradata EDW. DirectLoad approach provides fadtgddoading of Hadoop
data to Teradata EDW. TeradatalnputFormat approach allows MapRegehgrams efficient
and direct parallel access to Teradata EDW data without external stepgarting and
loading data from Teradata EDW to Hadoop. SQL users can directlysaandgoin Hadoop
data with Teradata EDW data from SQL queries via user defined table foac{it?6]

HBase: Hadoop’s columnar database that extends the Bigtable model exitmdzary
indexes and filters that reduce data transferred over the network [44]

RCFile (Record Columnar File): Stores row groups with column-wise datgpoession to
provide efficient storage space utilization. RCFile is read-optimized by enpichneces-
sary column reads during table scans [54].

Llama: A hybrid data management system which combines the features efismmand
column-wise database systems. In Llama, columns are formed into correlabigpsgo
provide the basis for the vertical partitioning of tables. It possess a jaimitdg to facilitate
fast join processing and exploits the map-side join to maximize the parallelisnednde
the shuffling cost [E1].

2.3.3.10 Intra-node parallelism

In some studies, MapReduce model is used in intra-node parallelism, soalitasore environ-
ments [101} 66] or GPU computations [18) 53]. There are also specifieestuegarding Cell
architectures [26]. In those cases, a core substitutes the role of aamutleata are transferred
through shared memory. Fault tolerance features are usually disq@itjed

Chapter 3

State of the Art

This chapter describes the current State of the Art on MapRedueelbaplications to scalability
issues of the Semantic Web (see sediion 2.1.2).

1. SPARQL Query Resolutioifthe majority of the works deal with efficient querying of RDF
graphs. Section 3.1 classifies, analyzes, and compares the most priogoinéons.

2. RDFS and OWL inferencéMlapReduce-based solutions to RDF and OWL reasoning focus
on computing a graph closure using forward-chaining entailment. That teyial&ing all
triples which can be inferred from the original dataset using RDFS a@Ad rules. This
solutions are described in secton]3.2.

3. RDF Compression:Urbani et al. [[121] deal with RDF compression using MapReduce,
proposing an algorithm based on dictionary encoding. Their work isgy@tr in section

B3.

3.1 SPARQL Query Resolution

Different MapReduce-based solutions have been proposed faR PAesolution on a large scale.
Thus, we propose a specific classification which allows us to review tloasBoss in a coherent
way. To do this, we divide the technique according to the complexity that tbd@symust assume
within the MapReduce cluster. We consider two main families that we refer tmiage and
hybrid solutions.

Native solutions. This first family considers all solutions relying exclusively on the MapRedu
framework. That is, queries are resolved with a series of MapRedbsegje low complexity
nodes, typically disregarding the help of specific semantic technology ih pade of the
cluster. Thus, the overall SPARQL resolution performance mainly dep@mda) physical tuning
decisions, and (b) processing strategies which reduce the numbeguakecgtjobs. As for (a), we
consider two main decisions to optimize the physical aspects:

» Data storageis one the main bottlenecks on the MapReduce framework. Note that data
are persistently read from disk and stored again to communidgieandReduce stages.
Thus, how the data are organized for storage purposes in HDFS ig treannsiderations
addressed by the existing solutions.

« Data indexings an immediate improvement for reducing the aforementioned I/O costs. For
this purpose, some approaches use a NoSQL database (in generss) ldBaop of HDFS.

31

32 CHAPTER 3. STATE OF THE ART

Solution Type | Purpose Solution Reason Papers
Simplify automated Single line notations | Each triple is stored in [59],
processing a separate line [60Q],

[61],

Native [5<]

: Substitution of com-| Data size reduction [59],
solutions Reduce storage

mon prefixes by IDs [60Q],
Division of data in sev-| Only files with corre-| [61]
eral files by predicate sponding TPs will be
and object type read

Storage of all triples Improve reading speed [104]
with the same subject of queries with large
in a single line number of results
Map-side joins Reduce data shuf- [48],
fled and transferred [106]
between tasks

requirements

Improve data
processing speed

NoSQL solutions Provide indexed access[112],
to triples [97],
[106)]
Greedy algorithm Optimize Star Queries| [59],
: : — __| [60],
Reduce number of Multiple Selection al-| Optimize Path Queries| o]
MapReduce jobs gorithm =
Early elimination| Prioritize jobs that| [61]
heuristic completely eliminate
variables

Cligue-based heuristic| Resolve queries with [48]
map-side joins

Hybrid Allow parallel sub-| Graph Partitioning Each node receives a[58],

solutions graph processing significant subgraph [76]
Parallel subgraph pror Each node resolves
cessing subgraph joins

Table 3.1: Classification of MapReduce-based solutions addressing@Presolution.

These approaches leverage database indexes to improve RDF raiiignvalindividual
nodes, therefore improving TP resolution within thep stage. These random access
capabilities allow more compleMap andReduce stages to be implemented in practice.

Regardless of this physical tuning, all approaches carry out spstiiiegies for reducing the
number of MapReduce jobs required for general SPARQL resolutioth ghysical decisions and
these processing strategies are reviewed in Selctiod 3.1.1 within the comd@spapproaches.

Hybrid solutions. This second family, in contrast to native solutions, deploys MapReduce
clusters on more complex nodes, typically installing mono-node state-oftiRi>& stores. This
decision allows each node to partially resolve SPARQL queries on its stalegtaph, so that
MapReduce jobs are only required when individual node results myetras. In this scenario,
triples distributionis an important decision to minimize (or even avoid) the number of MapReduce
jobs required for query resolution.

Table[3.1 summarizes the most relevant solutions, in the state of the art,ingdorthe above
classification. The corresponding papers are reviewed in the nexettiorss.

In addition to the reviewed papers, it is worth noting that there exist some pthposals

3.1. SPARQL QUERY RESOLUTION 33

[110,/103, 105, 69] which are deployed on top of additional framewsoukining over Hadoop,
such as Pig [95] or Hive [115, 116]. These solutions use high-lemgliages over Hadoop to hide
Map andReduce task complexities from developers. However, we do not look at them irl deta
because their main contributions are related to higher level details, while ttegirahMapReduce
configurations respond to the same principles discussed below.

3.1.1 Native solutions

This section reviews the most relevant techniques within the native solutittending to the
previous classification, we analyze solutions running on native HDF&geqiSection 3.1.7.1),
and NoSQL-based proposals (Secfion 3.1.1.2).

3.1.1.1 HDFS-based Storage

Before going into detall, it is worth noting that all these solutions sisgle line notationsfor
serializing RDF data in plain files stored in HDFS. Some solutions use straighiphs format
[4€] for storage purposes [93], while others preprocess data andftrm them to their own
formats. This simple decision simplifies RDF processing, because triplesecardividually
parsed line-by-line. In contrast, formats like RDF/XML. [4] force the whaég¢aset to be read in
order to extract a triple [59, 60,193, 102, 58].

RDF storage issuesare addressed hy Rohloff and Schantz [104], Husainlet al.l [596130,
and| Goasdoué and Kaoudi [48] in order to reduce space requireamhidata reading on each
job. [Rohloff and Schantz [104] transform data from N3 into a plain teptasentation in which
triples with the same subject are stored in a single line. Although it is usuallymeffective
approach for query processing (in which a potentially small number of ¢riplgst be inspected),
it is adequate in the MapReduce context because large triple sets muanbedt¢o answer less-
selective queries [104].

Another immediate approach is based on comRD prefix substitution [59]. In this case,
all occurrences of RDF terms (within different triples) are replacednoytdDs which reference
them in a dictionary structure. It enables spatial savings, but also gdisia because the amount
of read data is substantially reduced.

Husain et al.|[60] focus on storage requirements and 1/O costhiviging data into several
files. This decision allows data to be read in a more efficient way, avoiding tlténgeaf the
whole dataset in its entirety. This optimization comprises two sequential steps:

1. A predicate-based partitioning is firstly performed. Thus, triples withdheespredicate are
stored as pairésubj ect, obj ect) within the same file.

2. Then, these files are further divided imicedicate-typechunks in order to store together
resources of the same type (eex. st udent oOr ex: degr ee in the example in Figure_2.2).
This partitioning is performed in two steps:

(a) Explicit type informatioris firstly used for partitioning. That ig,subj ect, obj ect)
pairs, from the df : t ype predicate file, are divided again into smaller files. Each file
stores all subjects of a given type, enabling resources of the same tiyeestored
together.

(b) Implicit type informationis then applied. Thus, each predicate file is divided into as
many files as different object types it contains. This division materializgartukcate-
typesplit. Note that this is done with the information generated in the previous step.
Thus, each chunk contains all theubj ect, obj ect) pairs for the same predicate and

type.

34 CHAPTER 3. STATE OF THE ART

General query resolution performs on an iterative algorithm which loakthéofiles required
for resolving each TP in the query. According to the TP features, theitigoproceeds as
follows:

« If both predicate and object are variables (but the type has beepsévidentified), the
algorithm must process giredicate-typdiles for the retrieved type.

« If both predicate and object are variables (but the type has not bestified), or if only the
predicate is variable, then all files must be processed. Thus, the algatitpsbecause no
savings can be obtained.

« If the predicate is bounded, but the object is variable (but the type &as previously
identified), the algorithm only processes tredicate-typdile for the given predicate and
the retrieved type.

« If the predicate is bounded, but the object is variable (but the typedtdseen identified),
all predicate-typdiles must be processed.

For instance, when making split selection for the query of Figuie 2.4, teeted chunks would
be:

e TP1: type fileex: st udent .

» TP2: type fileex: degr ee.

» TP3: predicate-type filex: st udy- ex: degr ee.

» TP4: predicate-type filex: hasProf essor-ex: prof essor.

* TP5: type fileex: prof essor.

Goasdoué and Kaoudi [48] focus their attention on another MapRessee: the job perfor-
mance greatly depends on the amounts of intermediate data shuffled andatbethffomMap to
Reduce tasks. Their goal is to partition and place data so that most of the joins casdieed in
the Map phase. Their solution replaces the HDFS replication mechanismdrg@nplized one,
where each triple is also replicated three times, but in three different tygesrtition: subject
partitions, property (predicate) partitions, and object partitions. Fovengiesource, the subject,
property, and object partitions of this resource are placed in the sanee hodddition, subject
and object partitions are grouped within a node by their property vallespioperty df : t ype
is highly skewed, hence its partition is broken down into smaller partitions to awsfdrmance
issues. In fact, property values in RDF are highly skewed in genefhiWhich can cause property
partitions to differ greatly in size. This issue is addressed by defining shiblid: when creating
a property partition, if the number of triples reaches the threshold, angdhttion is created for
the same property. It is important to note that this replication method improve®tfwmance,
but at the cost of fault-tolerance: HDFS standard replication policyreaghat each item of the
data is stored in three different nodes, but with this personalized metheds thot necessarily
true.

Husain et al.[[59] and Myung et al. [93] focus ee#ducing the number of MapReduce jobs
required to resolve a query. Both approaches use algorithms to sefietieain the optimal way.
Their operational foundations are as a follows. In a first step, all T@swalyzed. If they do
not share any variable, no joins are required and the query is completegirigle job. Note that
while a cross product would be required in this case, this issue is hodswit by these works.
Otherwise, there are TPs with more than one variable. In this case, varmabkt be ordered and
two main algorithms are considered:

3.1. SPARQL QUERY RESOLUTION 35

» Thegreedy algorithnpromotes variables participating in the highest number of joins.

» Themultiple selection algorithrpromotes variables which are not involved in the same TP
because these can be resolved in a single job.

Both algorithms can be combined for variable ordering. Whereas Myualj [3] make an
explicit differentiation between the algorithms, Husain etlall [59] implement glesialgorithm
which effectively integrates them. These algorithms are simple, report geidkrmance, and
lead to good results. However, they are not always optimal. In a later, whrkain et al.|[60]
obtain each possible job combination and select the one reporting the Istiesite cost. This
solution, however, is reported as computationally expensive.

Husain et al.[[61] revisit their previous work and deveRgstplan a more complex solution for
TPs selection. In this solution, jobs are weighted according to their estimasedTde problem
is then defined as a search algorithm in a weighted graph, where edek represents a state
of TPs involved in the query, and edges represent a job to make the trarfeitin one state to
another. The goal is to find the shortest weighted path between the initialgtatbere each TP
is unresolved, to the final statg,,;, where every TP is resolved. However, it is possible (in the
worst case) that the complexity of the problem were exponential in the mohjoéning variables.
Only if the number of variables is small enough, is it a feasible solution foergimg the graph
and finding the shortest path.

For higher numbers of joining variables, tRelaxed-Bestplaalgorithm is used. It assumes
uniform cost for all jobsj.e., the problem is to find the minimum number of jobs. This concern
can also be infeasible, but it is possible to implement a greedy algorithm tlatinupper bound
on the maximum number of jobs that performs better than the greedy algoritimedien [59].
This algorithm is based on aarly elimination heuristic That is, jobs thatompletely eliminate
variables are selected first, whea@mplete eliminatiomeans that this variable is resolved in every
TP it appears.

On the other hand, Goasdoué and Kaoudi [48] represent the qaeag@ery graphwhere
nodes are TPs, and edges model join variables between them (thedeeted iaith the name of
the join variables). Then, the concefijue subgraplis proposed from the well-known concept of
cliguein Graph Theory; a clique subgragh, is the subset of all nodes which are adjacent to the
edge labeled with the variable(i.e.: triples that share variable). Using this definition, possible
queries are divided into the following groups:

« 1-clique query:where the query graph contains a single clique subgraph. Thesegjcanie
be resolved in thé/ap stage of a single job, because the join can be computed locally at
each node.

» Central-clique querywhere the query graph contains a single clique subgraph that overlaps
with all other clique subgraphs. These queries can be resolved in a smmlgete job.
The query can be decomposed into 1-clique queries that can be regobtedvap phase
of a MapReduce job, and then the results of these joins can be joined inrtalel@af the
common clique on th&educe stage.

» General query This is neither 1-cligue nor central-clique query. These queries requir
more than one job to be resolved. A greedy algorithm, referred @liggeSquareis used
to select join variables. This algorithm decomposes queries into clique glisgevaluates
joins on the common variables of each clique, and finally collapses them. Allrfisgsing
is implemented in a MapReduce job. As cliques are collapsed, each node iretlysggaph
represents a set of TPs.

36 CHAPTER 3. STATE OF THE ART
3.1.1.2 NoSQL Solutions

In order to improve RDF retrieval in each node, some approaches ud¢o®@L distributed
databasédiBase[112,/97, 106] on top of HDFS. These solutions perform triples replinaiio
diverse tables, and use some indexing strategies to speed up quammaerde for TPs with
distinct unbound variables. The main drawback of these approacheatisabh triple is now
stored many times, one for each different table, and this spatial oveib@aded to the HDFS
replication itself (with a default replication factor of three).

Sun and Jin[112] propose a sextuple indexing similar to the one of Hegd$&#] or RDF3X
[94]. It consists of six indexesS PO, P_SO, O_SP, PS_0O, SQaRd PO_S which cover
all combinations for unbound variables. Thus, all TPs are resolved withaxcess to the
corresponding index.

Papailiou et al.| [S7] reduce the number of tables to three, correspotalimglexesSP_O,
OS_RandPO_S TPs with only one bound resource are resolved with a range (aeggour ce>,

i ncrenent (<resour ce>)]. To further improve query performance, all indexes store only the 8-
byte MD5Hashes of s, p, 0} values; a table containing the reverse MD5Hash to values is kept
and used during object retrieval.

Schatzle and Przyjaciel-Zablocki [106] reduce the number of tablesraeee, using only two,
corresponding to indexeés POandO_PS The HBase Filter APlis used for TPs which bound
(subj ect and object) Or (object and predicate). In turn, predicate bounded TPs can be
resolved using thelBase Filter APlon any of the two tables.

Although these solutions rely on HBase for triple retrieving, join operatiomstl performed
via Map and Reduce operations.| Sun and Jin [112] use similar algorithms to that described
previously for [59/ 93].| Papailiou etal. [97], on the contrary, depedocomplex join strategy
where joins are performed differently depending on BGP characterisfidse different join
strategies are:

» The map phase joinis the base case and follows the general steps described in section
[2.3.2. That is, the mappers read the triples and ékeit, value)pairs in which i) thekeys
correspond to the join variable bindings, and ii) treduescorrespond to the bindings for
all other variables included in the TPs of the join (if exist) calculated in prevjobs. In
turn, the reducers merge, for each key, the corresponding list ofsvahuorder to perform
the join. Although this strategy is namathp phase jointhe actual join is performed in the
Reduce phase (the name only refers to when data are extracted from HBase).

» Thereduce phase joinis used when one of the TPs retrieves a very small number of input
data compared to the rest. In this case,Nap stage is the same as in th&ap phase join
but only this TP is used as input. Itis in tReduce stage where, for each mapped binding,
data are retrieved if they match other TPs.

» Thepartial input join is similar toReduce phase jojibut allows an arbitrary number of TPs
to be selected for extracting their results in W stage. These selection use information
gathered during the bulk data loading to HBase.

« Instead of launching a MapReduce job, tentralized join performs the join operation in
a single node. This is only an efficient choice when the input data size is smédltthe
initialization overhead of a MapReduce job is a major factor in query perfocma

Furthermore, Schéatzle and Przyjaciel-Zablocki [106] develop a joiteglyanamedviap-Side
Index Nested Loop JoitMAPSIN join. This strategy performs the join in tivap stage instead of
theReduce one. ltfirstly performs a distributed table scan for the first TP, and vefiall local

3.1. SPARQL QUERY RESOLUTION 37

results from each machine. For each possible variable binding combinigvikp function is
invoked for retrieving compatible bindings with the second TP. The computétdsatwf solutions
is stored in HDFS. This approach highly reduces the network bandwidtieuas only compatible
data for the second TP needs to be transferred to the nodes which rivaghasks. Note that,
when the join is materialized in thReduce stage, all possible bindings are transferred from
Map to Reduce tasks. Joins involving three or more TPs are computed successivelgaElor
additional TP, avhp stage is performed after joining the previous TPs. In this caselviipe
function is invoked for each solution obtained in the previous joins. Finallfhencase of multi-
way joins, compatible bindings for all TPs are retrieved from HBase in desiip stage. Finally,
for queries involving a high selective TP (retrieving few results),Mae function is invoked in
one machine for avoiding the MapReduce initialization.

3.1.2 Hybrid Solutions

The approaches reviewed in the previous section strictly rely on the MijaRdramework for
resolving SPARQL queries. Some other techniques introduce specifimgertechnology in
each node of the cluster. In general, this class of solutions deploy ansRié-in each cluster
machine and distribute the whole dataset among all nodes. The motivatiom lleilsitdea is to
manage a significant RDF subgraph in each node in order to minimize intereoogmunication
costs. In fact, when join resolution can be isolated within a single node, thelete query is
resolved in parallel without using MapReduce. These queries aredef@arallelizable Without
CommunicatiofPWOC) by Huang et al. [58]. In this case, the final results are justdtitian of
each node output (note that a cross product would be required in gidshnat this is not considered
in the original paper). If a query is not PWOC, it is decomposed in paralagizqueries and their
result is finally merged with MapReduce.

A straightforward, but smart, data distribution performs hashing by sylgbject or subject-
object (resources which can appear as subject or object in a trig¢) [This hash-based
partitioning is also used in multiple distributed RDF Stores such as YARS?2 [f2]i0¢o Cluster
[32], Clustered TDB|[96], or CumulusRDF _[72]. In the current sg@mahash-partitioning
enables TPs sharing a variable resource to be resolved without imtereaomunication. This
result is especially interesting for star-shaped query resolution, b aoonplex queries require
intermediate results to be combined and this degrades the overall perferjgéhc Edge-based
partitioning is another effective means of graph distribution. In this cagsegrwhich share
subject and object are stored in the same node. However, triples degdhib same subject can
be stored in different nodes, hindering star-shaped query resoli@#dn Finally, |[Huang et al.
[58] and|Lee and Liul[76] perform a vertex-based partitioning. Bysodering that each triple
models a graph edge, this approach distributes subsets of closer ettiesame machines. This
partitioning involves the following three steps:

1. The whole graph is vertex-based partitioned in disjoint subsets. Tlsis afgartitioning is
well-known in Graph Theory, so standard solutions such adMiis partitioner[67], can
be applied.

2. Then, triples are assigned to partitions.

3. Partitions are finally expanded through controlled triple replication.

It is worth noting that df : t ype generates undesirable connections: every resource is at two
hops of any other resource of the same type. These connections mak@phemore complex
and reduce the quality of graph partitioning significantly. Huang et al. {&8Jove triples with

38 CHAPTER 3. STATE OF THE ART

predicater df : t ype (along with triples with similar semantics) before partitioning. Highly-

connected vertices are also removed because they can damage qualiityilarargy. In this case,

a threshold is chosen and those vertices with more connections are rebedueslpartitioning.
Huang et al. [58] create partitions including triples with the same subject. rifiltee and Liu

[7€] obtain partitions for three different kinds of groups:

» Subject-based triple groupsomprising those triples with the same subject.
» Object-based triple groupgomprising those triples with the same object.
» Subject-object-based triple groygomprising those triples with the same subjaobbject.

The overall query performance could be improved if triples replication isvallb It enables
larger subgraphs to be managed and queried, yielding configuralule-8pee tradeoffs [58]. On
the one hand, storage requirements increase because some triples toagdia snany machines.
On the other hand, query performance improves because more quemi&® docally resolved.
Note that the performance gap between completely parallel resolved gjaedehose requiring
at least one join is highly significant. _Huang et al.|[58] introduce two pdeaticdefinitions to
determine the best triple replication choice:

 Directed n-hop guaranteeann-hop guarante@artition comprises all vertices which act as
objects in triples whose subject is in @m1)-hop guaranteeartition. Thel-hop guarantee
partitions corresponds to the partition created by the vertex partitioning metboidysly
described.

« Undirected n-hop guaranteehis is similar to the previous one, but it includes each vertex
linked to a vertex in th€n-1)-hop guarantegartition (.e. vertices which are subject of a
triple having its object on thén-1)-hop guarantee

Lee and Liul[78] propose comparable definitions:

» k-hop forward direction-based expansiansimilar todirected n-hop guaranteelt adds
triples with the subject acting as the object of a triple in the partition.

» k-hop reverse direction-based expansamtds triples with an object which appears as the
subject of a triple in the patrtition.

* k-hop bidirection-based expansigsimilar toundirected n-hop guaranted hus, it adds
triples with a resource playing any resource role for a triple in the partition.

Example. We illustrate these definitions using the RDF excerpt shown in Figute 2.2ud et
suppose that triples are partitioned by subject, and each one is assigaetifferent partition.
In this case, thd-hop guarante®r any type ofl-hop expansiomvould simply obtain the initial
partitions without adding any additional triples. This is shown in Figurke 3.1(a)

The 2-hop partitions are obtained by including triples “related” to those indhesponding
1-hop partition. How this relationship is materialized depends on the type ftitigrar Directed
2-hop guaranteeand 2-hop forward direction-based expansi@ud triples whose subject is
object in any triple within the 1-hop partition. In the current example, the trjpbe Ci,
ex: hasProf essor, ex: P1) isadded to partitions 1 and 2, but the partition 3 is unchanged because
there are no more triples with their subject included in the 1-hop partition. 8hdting partitions
are shown in Figure 3.1(b).

3.1. SPARQL QUERY RESOLUTION 39

The 2-hop reverse direction-based expansidlustrated in Figuré_3]1(c), add triples whose
object is a subject in any triple within the 1-hop partition. For the curreningi, partitions 1
and 2 remain unchanged whereas the partition 3 @ettss1, ex: study, ex: Cl) and(ex: S2,
ex: study, ex:Cl).

The undirected 2-hop guaranteand 2-hop bidirection-based expansi@ud triples whose
subject or object appear, as subject or object, in any triple within thgJpauition. In our current
example(ex: Cl, ex: hasProfessor, ex:Pl) isadded to partitions 1 and 2 because their subject
(ex: c1) is already in the partition. Inturex: S1, ex:study, ex:Cl) and(ex: S2, ex:study,
ex: Cl) are added to the partition 3 because their object €1) is also in the partition. The
resulting partitions are illustrated in Figure13.1(d).

The subsequent 3 and 4-hop partitions are obtained following the saristodsec It can
be tested that, in this example, bathdirected 4-hop guaranteand 4-hop bidirection-based
expansionnclude the whole graph. O

(a) (b) (c) (d)
Undirected -hop
2-hop reverse direction- guarantee / 2-hop
based expansion bidirection-based
expansion

Directed 2-hop guarantea f
2-hop forward direction-
based expansion

1-hop guarantee f 1-hop
expansion

ex:51 foafiage 25 .
ex:S1 existudy ex:Cl .
ex:Cl ex:hasPrefessor exiPl.

ex:§l foafiage 25 .
ex:5l existudy ex:Cl .
ex:Cl ex:hasProfessor ex:Pl .

ex:$l foafiage 25 .
ex:$l existucy exiClL .

ex:51 foaf:age 25 .

Partition 1 e8] existudy ex:Cl.

ex:52 foafiage 25 .
ex:52 existudy ex:Cl .
ex:Cl ex:hasPrefessor exiPl.

ex:52 foafiage 25 .
ex:52 existucly ex:CL .
ex:Cl ex:hasProfessor ex:Pl .

ax:52 foaf:age 25 .
ex:$2 existucy exiClL .

ax:52 foafrage 25 .
ex:52 existudy ex:Cl .

Partition 2

iti :C1 ex:hasProf P1. :C1 ex:hasProf Pl .
Partition 2 | .01 exhasProfesser ex:P1 ‘ ‘ ex:C1 ex:hasProfessor ex:Pl . EKi.L ENAsH o essor ex ExitL Enastroressor ex
ex:51 existudy ex:Cl . ex:51 existuly ex:CL .
ex:52 existudy ex:Cl. ex:52 existudy ex:Cl .

Figure 3.1: Example of different hop partitions

This n-hop review leads to an interesting result: in fully connected gréguits undirected k-
hop guaranteandk-hop bidirection-based expansipartitions will eventually include the whole
graph ifn/k is sufficiently increased. However, this is not true for directed guagafegpansions,
as some resources can be connected by the direction which is not cedsfeka).

To determine if a query is completely resolved in parallel, centrality measuecsisad.
Huang et al.|[58] use the concept Dfstance of Farthest EdgéDoFE). The vertex of a query
graph with the smallest DoFE will be considered as ¢bea If the DoFE of the core vertex
is less than or equal to the n-hop guarantee, then the query is PWOC. dttis moting that if
directed n-hop guarantee is used, the distance must be measuredogsequery as a directed
graph; if undirected n-hop guarantee is used, the query can be eoebigs an undirected graph.
Lee and Liul[76] propose similar definitions with the namee®fiter vertexandradius Radius can
be calculated aforward radius(when using forward direction-based expansigayerse radius
(when using reverse direction-based expansioridirectional radius(when using bidirectional-
based expansion). In these cases, the query graph must be cedsidedirected, inversely
directed, and undirected.

If triples replication is used, it is possible that more than one partition coutdves query.
This could lead to duplicate results when resolving PWOC queries. Huaig|68] address
this issue in the following way: when a partition is created, additional triples wighfdinm
(v, <i sOamned>, "Yes") are added, where corresponds to core vertexes of the partitioe. (not

40 CHAPTER 3. STATE OF THE ART

added as an n-hop guarantee). When resolving a query in parallelddioaal TP with the form
(core, <i sOaned>, "Yes") is added to the query.

3.1.3 Analysis of Results

This section summarizes the experimental results provided by the authoesrobsgt prominent
techniques described in the previous sections. It is worth mentioning tapenformance

comparison would be unfair, as the solutions are tested under diffesafigarations and most
of them do not compare to each other. These variations include diffeoelet configurations and
cluster compositions; the version of Hadoop used in the experiments antbaisofiguration; and

the datasets size. Nevertheless, all of them use the well-known Lehighrsity Benchmark[51]

(LUBM), obtaining datasets from LUBM(100) to LUBM(30K). This bemohrk allows synthetic
data, of arbitrary size, to be generated from a university ontology.Istt provides a set of
14 queries varying in complexity. Thus, we aim to analyze how solutionstf@oecorrelated

dimensions: idataset sizeand ii) resolution performanceat incremental query complexity.

3.1.3.1 Native solutions on HDFS

As stated, native solutions running on HDFS make use exclusively of Ei@ydée infrastructure
for SPARQL resolution. On the one hand, RDF is stored using differémtctinfigurations

within HDFS. On the other hand, SPARQL queries are resolved with ssigegsbs across the
nodes. It is worth noting that all techniques analyzed in this section use myliiews for query

optimization.

The initial work by Husain et all [59] proposes a promising specific optiminaiiothe basis
of organizing triples in files by certain properties. They perform, thoagteduced evaluation
with a cluster of 10 nodes, aimed at testing the feasibility and scalability of thpopah They
report runtime for six queries from LUBM on incremental dataset sizhs.sblution scales up to
1,100 million triples and shows sublinear resolution timg.t. the number of triples. However, no
comparisons are made against any other proposal, so its impact within thefdtaeart cannot
be quantified. Their next solution [60] fills this gap and evaluates the appr@gain on a cluster
of 10 nodes) against mono-node stores: BigOWLhd Jen&(in-memory and the SDB model
on disk). The latest solution by Husain et al.[[61] compare their appragaimst the mono-node
RDF3X [94]. In this latter comparison, larger datasets are tested, rafigmg-UBM(10K), with
1.1 billion triples, to LUBM (30K), with 3.3 billion triples. In addition to LUBM, a suftsof
the SPBench Performance Benchmark [107] is also used as evaluation quEnEse last works
reach similar conclusions. As expected, the Jena in-memory model is thet fastece for simple
gueries, but it performs poorly at complex ones. Moreover, it run®bonemory on a large scale
(more than 100 million triples). Jena SDB works with huge sizes, but it is aher of magnitude
slower than HadoopRDF. In general, BigOWLIM is slightly slower in most skttsizes, and
slightly faster in the 1 billion dataset (mostly because of its optimizations and tripiefoh).
A detailed review shows that BigOWLIM outperforms the MapReduce makia simple queries
(such as Q12), whereas it is clearly slower in the complex angs@2 or Q9). They also evaluate
the impact of the number of reducers, showing no significant improvem#ére performance with
more than 4 reducers. RDF3X performs better for queries with high setgetnd bound objects
(e.g.Q1), but HadoopRDF outperforms RDF3X for queries with unboundatbjéow selectivity,
or joins on large amounts of data. Moreover, RDF3X simply cannot exdloetisvo queries with
unbound objects (Q2 and Q9) with the LUBM(30K) dataset.

http:/www.ontotext.com/owlim/editions
2http:/ljena.apache.org/

3.1. SPARQL QUERY RESOLUTION 41

Goasdoué and Kaoudi [48] compare their solution with respect to H&RIDB[j61]. Datasets
LUBM(10K) and LUBM(20K) are used in the tests. All the queries cquoesl to 1-clique or
central-cliqgue queries, and thus they can be resolved in a single Map&@uu This allows
CligueSquare to outperforms HadoopRDF in each query by a factorZtm 59.

Myung et al. [93] focus their evaluation on testing their scalability with LUBNhatemental
sizes. However, the maximum size is only LUBM(10i03, synthetic-generated triples from 100
universities. In contrast, Husain et al.[59] start their evaluation fr@@Quniversities. Therefore,
the very limited experimentation framework prevents the extraction of importamtigsions.
Nonetheless, they also verify the sublinear performance growth of tpogal (v.r.t. the input)
and the significant improvement using multi-way joins versus two-way joins.

3.1.3.2 Native solutions on NoSQL

As explained before, this class of solutions replaces the plain HDFS stbyaayNoSQL database
in order to improve the overall data retrieval performance. The followasylis support this
assumption, showing interesting improvements for query resolution.

Sun and Jin[[112] make an evaluation using LUEM [51] datasets from 20Qautiversities.
Although no comparisons are made with respect to any other solutions, gkeltsrreport better
performance for growing dataset sizes. This result is due to the impBliat@iReduce initialization
decreases for larger datasets.

Papailiou et al/[97] compare themselves with the mono-node RDF3X and withethBeduce-
based solution HadoopRDE [61]. The experiments comprise a variableemwhhodes for the
clusters and a single machine for RDF3X. This machine deploys an idertitfgration to that
used for the nodes in the clusters. LUBM datasets are generated fo0EM6 20,000 universities,
comprising 1.3 and 2.7 billion triples respectively. Their solution shows thiegeetormance for
large and non-selective queries (Q2 and Q9), and outperforms HR@F® by far for centralized
joins. Nonetheless, it is slightly slower than RDF3X for this case. Regastialgbility, execution
times are almost linear.r.t. the input when the number of nodes does not vary within the node,
and decreases almost linearly when more nodes are added to the cluster.

Schatzle and Przyjaciel-Zablocki [106] perform an evaluation of théiP&IN join technique
over a cluster with 10 nodes. They also use théBaRch in addition to LUBM. For LUBM,
datasets from 1,000 to 3,000 universities are generated; fBeBleh, datasets from 200 million
to 1 billion triples are generated. Their results are compared against FR§APJL05], another
work from some of the same authors that uses Pig to query RDF datasétsafpwoaches scale
linearly, but MAPSIN on HBase enable an efficient way of Map-Side j@oause it reduces the
necessary data shuffle phase. This allows join times to be reduced f#oo28 times with respect
to the compared technique.

3.1.3.3 Hybrid solutions

The hybrid solutions aim to minimize the number of MapReduce jobs, resolviegegun local
nodes and restricting the communication and coordination between nodfs p@nplex queries
(cross-joins between nodes). This is only effective on the basis ofdgus smart subgraph
partitioning.

Huang et al.|[58] establish a fixed dataset of 2,000 universities (et million triples) for
their evaluation, and do not compare incremental sizes. They perfoaxlaster of 20 nodes, and
their proposal is built with the RDF3X [94] triple store working in each singlden First, they
compare the performance of RDF3X on a single node against the SHAB) hative solution,
showing that this latter is clearly slower because most joins require a costlylet redistribution

42 CHAPTER 3. STATE OF THE ART

of data (stored in plain files). In contrast, subject-subject joins canfiogeetly resolved thanks
to the hash partitioning. Next, the performance_of Huanglet al.’s solutionailsiaed against
RDF3X on a single node. Once again, the simplest queries (Q1, Q3, Q¥ retcfaster on a
single machine, whereas the hybrid MapReduce solution dramatically imptegerformance
of complex queries (Q2, Q6, Q9, Q13 and Q14), ranging from 5 to 500 tiaster. The large
improvement is achieved for large clusters, because chunks are smafiteto fit into main

memory. In addition, they verify that the 1-hop guarantee is sufficientiost queries, except
those with a larger diameter (Q2, Q8 and Q9), in which the 2-hop guaracdieeves the best
performance and, in general, supports most SPARQL queries (gieeamthll diameter of the path
queries).

Finally, lLee and Liu\[76] yield to a very similar approach. They also instalFRR in each
single node (20 nodes in the cluster), but their performance is only cethpgainst a single-node
configuration. In contrast, they perform on incremental sizes (up to 1tbilfiples) and study
different benchmarks besides LUBM. They also conclude that a Z3hapantee is sufficient for
all queries (it leads to similar results to even a 4-hop guarantee) and,hircase, this subgraph
partitioning is more efficient than the hash-based data distribution useidsfance, in SHARD
[104]. The single-node configuration does not scale on most datagetsgas the scalability of
the MapReduce system is assured once the resolution time increases drily alighcremental
dataset sizes.

3.2 Reasonig

MapReduce-based reasoning solutions are based on generating shee ad the graph using
forward-chaining materialization. That is, using the available data and b afieither RDFS or
OWL (see FigureE 2|5 and 2.6) to derive new triples. Note that in all wokk& ®lorst is used.
Hence, at query time there is no need of additional operations.

In a naive algorithm to compute RDFS graph closure all triples inferred by the rules are
derived by MapReduce jobs. The issues of this solution are the fodubahi et al.[[120]. They
distinguish three main problems:

1. Load balancing:In essence, a MapReduce job joins and sends to the same reducer triples

matching each inference rule. Those groups are consistently largesttiens, which leads
to load balancing issues.

2. Duplicated triples:Any given rule may derive the same triple using different input triples.
Also, different rules may derive the same triple. This leads to duplicatedubutn
experimental results, the ratio of unique derived triples to duplicates isrstohbe at least
1:50.

3. Recursive derivationDerived triples can be also be used to generate new triples. Then, itis
needed to chain more jobs and iterate until no more new triples are derivegefformance
of the whole process greatly depend on the number of jobs heeded to teotin@losure.

To deal with those issues, they propose the following solutions:

1. Loading schema triples in memorgll the RDFS rules include at least one schema triple

(i . e., atriple which has an RDFS term). Given that schema triples are usually a small

subset of a RDF dataset, they can be loaded in-memory on each node. i¢/d@pghoach,
every node can receive any triple and apply the corresponding riilesn, perfect load
balancing can be achieved.

3.2. REASONIG 43

2. Data grouping: For any given rule, triples are grouped by the terms that are also used
in the derived triple. Those terms are usedkagin the MapReduce job. Since the key
is used to partition the data, all triples that produce some new triple will be seheto
same reducer. It is then trivial to output that triple only once in the redudérile this
does not eliminate duplicate triples (because triples derived from diffewkas can still be
duplicated), it greatly reduces the amount.

3. Ordering the application of the RDFS ruleéfter analyzing rules and their data dependen-

cies (thatis, which rule may be triggered by other rule), they devise aieeffrule ordering

to minimize the number of required MapReduce jobs. The whole process$asrped using
four MapReduce jobs (three of which actually apply the rules and anotiggefore the last
job to remove duplicates), shown in Figlire]3.2. Observe that rules 123odrnlproduce
triples that hypothetically may be used in previous jobs. In order to afféety; there must
be either a superproperty ofif s: menber or a subproperty gb. In order to affect rule 7
there must be some resources connectepl Bhe first case of rule 5 is ignored, following
the advice against “ontology hijacking” from [57]. The other two casdsle theoretically
possible, never appear in their experimental evaluation.

Rule 12

(type
ContainerMember)

Rule 13
(type Datatype)

Ve

Rule 9
(subclass inheritance)

(A S,

JOB 4

Rule 11
(subclass. transitivityo
Rule 2 Rule 3
JOB 2 (property domain) (property range)

-------- B

Rule 7
(subprop. inheritance)

N1/

Rule 5
(subprop. transitivity)

JOB 1

Figure 3.2: RDFS rules ordering [120]

OWL reasoning turns out to be more complex. Urbani et al. [119] identify new challenges
introduced by OWL rules that prevent the usage of their previous solufloose challenges are:

« Joins between multiple instance triple$Vhile in RDFS all rules involve at most one
instance triple, in OWL a number of rules contain two antecedents that can tceeda
by instance triples. Thus, the solution of loading schema triples on every modbnger
works.

44 CHAPTER 3. STATE OF THE ART

» Exponential number of derivation®ules involvingow : saneAs derive an exponential
number of triples, which becomes a performance bottleneck. For examjae,Ir derives
2% x n triples for a given term, where is the number of synonyms of the term, amdhe
number of triples where the term appears.

« Multiple joins per rule: Some rules require more than one join between two antecedents,
which makes impossible to derive them in a single MapReduce job.

« Unknown number of iterationdVhile in RDFS it is possible to identify an execution order
with no loops to minimize the execution to a known number of MapReduce jobs, tiis is
possible in the case of OWL.

They propose three optimizations to perform the OWL closure of a grapbseloptimizations
are described below.

* Limiting duplicateson rule 4. In this rule the inferred is likely to be used as antecedent

again, inducing a chain of terms connected by a transitive relationshis, s rule must

be applied iteratively. This can lead to a great number of duplicates het@isame triples
are inferred again in every iteration. To avoid this issue they defindittiancebetween

two terms in the chain as the number of hops necessary to reach the semuontid first
one. Then, on iteration only triples with distance greater or equalX® 2. This strategy
completely eliminates duplicates if no chains intersect; if they do intersect, digsliase

still generated, but in a much lesser degree.

* Building a synonyms tabke avoid materialization odw : saneAs derivations.

 In-memory redundant join executiéor multiple joins (rules 15 and 16). For those rules the
schema triples are loaded in memory on each node. Then, they perfornirtheioveen
schema and the two other triples of the rules. This means that more joins tresagowill
be performed, but as these joins are done with an in-memory data structnog idtroduce
a significant overhead in the process.

This job is extended by Liu et al. [B2] to compute the closure of a graph dsimy logic
where each triple is annotated with a fuzzy degree(1, n], using fuzzy OWL as entailment rule
set. The key notion in fuzzy OWL semantics is called Best Degree Bound (BDBX a triple.
The BDB of an derived triple is the largest fuzzy degree that can beedeby applying fuzzy
OWL entailment rules, or 0 if no such fuzzy triple can be derived. The igoghen, derive all
possible triples and their BDBs. They focus their work in the following topics:

1. Duplicates with different fuzzy degree®©n each derivation step, the same triple with
different fuzzy degree may be derived. Thus, an additional step Ineusicluded to ensure
that only triples with maximal fuzzy degree are kept to the following job.

2. Shortest path calculationln standard OWL inference, rules 4, 10 and 12 are essentially
used to compute the transitive closure of an RDF graph. In fuzzy OWLdalkeset can
be considered as a weighted graph, with the fuzzy degree as the welgld, calculating
the transitive closure is a variation of the all-pairs shortest path calculatiiriepn. They
implement an solution based on the Floyd-Warshall algorithm [39], maintaininm-a
memory matrix that is iteratively updated on each step.

3.3. RDF COMPRESSION 45

3. sameAs rule: On the one hand, traditional solutions to deal with the semantics of
ow : saneAs cannot be used with fuzzy OWL withoud missing information. On the other
hand, computing the closure by materializing the triples can be a performattienbck, as
shown by Urbani et al. Urbani and Kotoulas. However, in practice, ¥eefy thatsaneAs
triples with a fuzzy degree lower than 1 are relatively few. Hence, theyhessame solution
as| Urbani et al. Urbani and Kotoulas for certaianeAs triples, and materialize derived
triples by vaguesaneAs triples.

Chen et al.|[21] focus their work on reasoning over big biological Kedge networks with
user-supplied rulesets. Specifically, they deal with efficiently derivatipmoperty chains, which
are common within the domain. While a naive algorithm with no improvements meetfbs to
compute the chain, whereis the number of triples in the chain (i.e. one job for each derivation),
they reduce the number of jobsligg n. This is accomplished by adding a third join condition to
perform a derivation: In a chain of property triples, the propertiegyawen ascending IDsP,
Py, P, and so on. Then, a triple whose property ID is an odd numihethis triple only performs
joins with triples with property IDP;._;. The input is divided intd N /2] groups, wheréV is the
length of the longest property chain, and they perform joins betweenigiestfrom the same
group in a job. The derived triples will be the new input graph for the iterdtion.

Example. Toillustrate the process, consider the following chain of property trigleSs, Po, Oo),
(0o, P1,01),(01, P5,02),(02, P3,03)}. The triples are divided into two group&:l consisting

on the first two triples, and-2 including the last two. A first job computes the joins on each
group, giving the following results(.Sy, Py ® P1,01), (01, Po® P3,03)}. Those triples are then
grouped into a single group and another job generates the final dtutP,® Pi® Po® P, 03) }.
The process is completed with two jobs, instead of the 3 needed jobs (ceadloderivation of
two consecutive tripes) of a naive algorithm. O

3.3 RDF Compression

To the best of our knowledge, there is only one MapReduce-basetiosota compress RDF
datasets to date. Urbanietal. [121] perform dictionary encoding. y Bmalyze the main
challenges derived from the MapReduce framework:

1. Data skewnessRDF data has a high skew. This means that some reducers may receive
groups of very different sizes. Given that the overall MapReduoegssing time depends
on the slowest task (i.e. the task which receives the larger input), it impagietformance.

2. Data domain:In RDF dictionary encoding, the goal is to encode the different terms of a
triple. However, the input is given in triples, not ir terms. They argue tHdbpReduce
algorithm would need to run three jobs, one for each role of the triples.

3. Global IDs: A MapReduce process by default has no means to manage global infarmatio
In order to assign the same ID to each term, a synchronized access tcahdjtionary
has to be implemented. This operation would need high network traffic, thosluting a
major bottleneck.

In their approach, they tackle those problems as follows:

46 CHAPTER 3. STATE OF THE ART

1. Preprocess popular IDsA first job randomly samples the input and identifies the most
popular terms. Those terms are encoded with a numerical ID. When the jshefin a
dictionary is created for those terms. This dictionary will be distributed amangadtes of
the cluster on the next job. Then, wheiMap task reads a popular term, it will assign the
ID retrieved in the dictionary and will send it to a random reducer. Thesintipact of data
skewness of popular terms is canceled.

2. Split triples into terms:A second job deconstructs triples and compress each term with a
numerical ID. The purpose of this job is to avoid running a different jolefxh role of the
triples. A third job reads the output and reconstructs the statements

3. Partitioned IDs:In the second job, the range of IDs is partitioned among the reducers of the
job. When a reducer receives a hon-popular term it is encoded uHingighin its partition.

Thus, the entire process is comprised of three MapReduce jobs: Thmplirslentifies and
encodes the most popular terms using random sampling. The second jelilegmbpular terms
on every node, which store them in a in-memory cache. Then, it readspiitlthe triples into
terms, and encodes those terms. The codification can be given by tleeicdlb case of popular
terms or assigned by the reducer in other case. This job stores also theatigtigth the ID of
each term. The third job reads the the output of the second job and subgtieitesms by their
IDs on the triples. A diagram of the process is shown in Figure 3.3(a).

The decompression process is straightforward process formed byolost The firs job,
analogous to the compression process, identifies the popular terms. ¢idmel geb joins those
terms with the dictionary to decode the popular terms. The third job reads theessed data, the
dictionary, and the decoded terms from the previous job, and perfornuetioeling of the terms.
The fourth and final job is also analogous to the encoding process diodrps the reconstruction
of the triples. The whole process is shown on Fiduré 3.3(b).

3.4 Discussion

MapReduce is designed to process data in distributed scenarios undsstimeption of no inter-
communication betweeNap and Reduce tasks during their execution. However, RDF data
are interweaved because of its graph nature, and triple relationshiggpatially arbitrary. For
these reasons, multiple MapReduce jobs are usually necessary wihieq gétn semantic data.
Moreover, a plain data storage and organization overloads the pircgeasd expensive costs
must be paid whenever a new job starts. Thus, efficient SPARQL resohridMapReduce-based
solutions is mainly based on optimizing RDF data management and minimizing the nufnber o
MapReduce jobs required for query resolution.

We review the most relevant proposals on MapReduce-based solutidesltwvith different
tasks on semantic data throughout the chapter. For SPARQL query tiesplwe establish
a categorization in two different groups: (i) native solutions and (ii) tdylplutions. Native
solutions resolve SPARQL queries using MapReduce tasks exclusitedyeas hybrid solutions
perform subgraph resolution in each node, and resort to MapRedyo the results of each
subgraph. In native solutions, the main contributions relate to reducingithber of jobs needed
to perform joins, and to data organization. Data can be stored in HDFSewla¢a must be
organized in files, or in another solution such as HBase, where triplebecardexed for faster
access. In hybrid solutions, the main contributions are related to how dadaitioped in order
to obtain optimal subgraphs. For RDFS and OWL inference, reducing uhber of jobs is
also the primary focus, addressed by grouping and ordering the ajpilicd entailment rules.

3.4. DISCUSSION

<http://z> <http://m><http://n> DICTIO
INPUT NARY
<http://a> <http://b> <http://c>

JL JL JL

Job 1: identify }
popular terms

Il

POPULAR 1 http://pop1

TERMS 2 http//pop?2

W

1L

\/

{ Job 2: deconstruct statements

4L

INPUT

<1> <12> <99>
TR DICTIONARY
<10> <22> <6>

Job 1: identify
popular terms

AL
Il

POPULAR 1
TERMS 2

oV

Job 2: join with }
dictionary

JOINED
TERMS

<http://zzz>
<http://aaa>

.-

4L

DECONSTRUCT 1
STATEMENTS 2

123,3
oA

DICTIO
NARY

L1

[Job 3: reconstruct statements

gt

OUTPUT

<111> <1><222>

<331> <123> <89>

Job 3: join with input data

-

DECONSTRUCT
STATEMENTS

http://a
http://b

1233
11,1

-

Job 4: reconstruct statements

-

OUTPUT

<http:/fa> <http://b><http:/lc>

;Htlp:ﬁz'; <hllp-:lffx> <http:/if>

(a) Compression algorithm

(b) Decompression algorithm

Figure 3.3: Compression and decompression algorit [121]

47

48 CHAPTER 3. STATE OF THE ART

Dealing with global information is a major achievement on RDF compression, wpilmizing
load balancing is an important factor in the majority of the solutions.

Although many of the prominent solutions cannot be directly comparedn ginegr different
configurations, a detailed analysis of their results draws significantusions: (i) MapReduce-
based solutions scale almost linearly with respect to incremental data 8)28BARQL querying
solutions perform worse than classical mono-node solutions with simplegquersmall datasets,
but (iii) they outperform these solutions when the query complexity or theseliasize increases.

The state-of-the-art approaches also evidence that data must begassed (i) to obtain easily
readable notation, (ii) to enable partial reads to be done, and (iii) to retin@ge requirements. In
addition, two of the reviewed papers also organize data in such a wayehatitess can capitalize
on data locality and perform joins dvlp tasks [106, 48]. It highly reduces data shuffling and
improves performance. Although this preprocessing step could be caiopatly expensive,
it is a once-only task which improves performance dramatically. In this siceri@nary RDF
serialization formats such as RDF/HDT [36] could enhance the overalefpae tradeoffs. Note
that these approaches can manage RDF in compressed space, eralésgllition at high levels
of the memory hierarchy.

Apparently, the more complex the solutions, the better the performance résiilitsis comes
at an important cost. On the one hand, they incur serious storage adsrbecause of data
redundancy: NoSQL solutions can require up to 6 times the space of sativiions, whereas
hybrid solutions report up to 4.5 times just for 2-hop partitions. On the othed hthe simpler
native solutions are easier to implement in vanilla MapReduce clusters, whiah dealoyment
in shared infrastructures or in third party services (such as AWS Elaapﬂ‘ddudi) an almost
straightforward operation. As complexity grows, solutions are harder tteimgnt.

While these works showcase relevant contributions for dealing with RRRsitity issues
using MapReduce, the absence of communication between tasks contipueseiot an important
challenge when joins are involved. This can be seen as a general BliaggRissue that motivates
different researches. Some proposals add an additional phase toaghiRedluce cycle. For
instance, Map-Reduce-Merge [127] adds an additional function aéndeof the MapReduce
cycle in order to support relational algebra primitives without sacrificingiisting generality and
simplicity. In turn, Map-Join-Reduce [64] introducediléering-join-aggregationprogramming
model which is an extension of the MapReduce programming model. Tuple &tapR [37],
though, takes a different approach and proposes a theoretical nadedxtends MapReduce
to improve parallel data processing tasks using compound-recordshalpitiereduce ordering,
or intersource datatype joins. In addition, there are specific propasajgdviding support to
iterative programs like Twister [31] or HaLoop [16]. This aims to improve diadality for those
tasks accessing to the same data (even in different jobs), while provigling kkind of caching of
invariant data. Thus, it is expected that all these general-purpopesais will feedback specific
applications, and semantic web applications on MapReduce will be benefiteddvances from
these lines of research.

*htt p: // aws. amazon. conl el asti cmapr educe

http://aws.amazon.com/elasticmapreduce

Chapter 4

HDT-MR

This chapter describes HDT-MR, a MapReduce-based scalable sdiugenialize RDF in plain
text into HDT. As seen in sectidn 2.2.4, current implementations of HDT libréaimsscalability
issues when serializing huge datasets. This may hinder the adoption dotdoevef HDT
technologies to deal with the growing data of the semantic web. HDT-MR aims te pussible
serialization of large datasets in a scalable way using the MapReduce foaknew

4.1 System Design

This section describes the high-level HDT-MR system design. Figufe 4strdbes the HDT-
MR workflow, consisting in two stageg1) Dictionary Encodingtop) and(2) Triples Encoding
(bottom), described in the following subsections. The whole processnassiine original RDF
dataset is encoded in N-Triples format (one statement per line).

Prosess 1: Dicionary Encoding

Job 1: Read triples, identify i Job 2: Read resources with
RDF in n-triples format ol for each resouroe, and Mastar: Gt |+ esaociated mies andstore |t e Senerats HDT dictionary
sigre data cn SequencaFiles partitions: e them in separate files. R [

Process 2: Triples Encoding

Job 1: Read triples, get ID

from rcilnT dicﬁ;::.ry. andF . mﬂf;:‘e Job 2 Sont Triplas of IDs. Master: Generate HDT HDT riples
stare data on uenceries

Figure 4.1: HDT-MR workflow.

4.1.1 Process 1: Dictionary Encoding

This first process builds the HDDictionary from the original N-Triples dataset. It can be seen
as a three-task process of (i) identifying the role of each term in the datasebtaining the
aforementioned sectionSQ, S, O, andP) in lexicographic order, and (iii) effectively encoding
the Dictionary component.

We design HDT-MR to perform these three tasks as two distributed Mamiegdbs and a
subsequent local process (performed byriesternode), as shown in Figute 4.1. The first job
performs the role identification, while the second is needed to perform algdoiot. Finally,

49

50 CHAPTER 4. HDT-MR

the mastereffectively encodes th®ictionary component. All these sub-processes are further
described below.

4.1.1.1 Job 1.1: Roles Detection.

This job parses the input N-Triples file to detect all roles played by RDF terthe dataset. First,
mappers perform a triple-by-triple parsing and output (key,value) pditise form(RDF term

rol e), in which role isS (subject),P (predicate) 0O (object), according to the term position in
the triple. Itis illustrated in Figure 4.2, with two processing nodes performmine RDF used in
Figure[Z.8. For instanceex: P1, S), (ex: wor ksFor, P), and(ex: D1, O) are the pairs obtained
for the triple(ex: P1, ex:worksFor, ex:Dl).

These pairs are partitioned and sorted among the reducers, which thulifferent roles
played by a term. Note that RDF terms including rateandO, result in pair§{ RDOF term SO).
Thus, this job outputs a number of lexicographically ordered (iBt& term rol es) ; there will
be as many lists as reducers on the cluster. Algorithm 1 shows the psede@fchese jobs.

Finally, it is important to mention that @mbinerfunction is used at the output of eabhp.
This function is executed on each node node beforévyetransmits its output to the reducers.
In our case, if a mapper emits more than one pBIF term role) for a term, all those pairs
are grouped into a single one comprising a list of all roles. It allows theialtid usage to be
decreased by grouping pairs with the same key before transferringtthtéya reducer.

MAP 1 REDUCE 1
Node 1 |
ex:P1, = o
foaf:age, P *2y
RDF Graph | 45,0 ex:P1, S
ex:P1foaf:age 45. | U"PL’B |
| exiP2, 5 foaf:age, ¥ |
ex:P2foaf:age45. 15> foaf:age, P | output
=0 45,0
ex:P1 ex:worksFor ex:D1 . | ex:PL
; ex:Pl, 5 ex:P2, 3
e d ex:worksFor, P foaf:age, £
ex:D1, O “Computer
E R e 2 SR R TR ag, Science”@en, O
MAP 2 5 OMmpLter “Informatica”"@es, O
Node 2 j | | Sekence @en ex:D1, 50
kel :SGF | ex:worksFor,
ex:worksFor,)
RDF Graph /1 T foaf:name, T
ex:P2 ex:worksFor ex:D1. REDUCE 2
ex:D1, 5]
i | ex:D1 foaf:name “Computer Science” @en .+>»| foaf:name, P “Computer Science*@en, 0 |
! “Camputer Scienc “Informatica”@es, O |
| ex:D1 foaf:name “Informatica” @en . | ex:D1, 50
; \ ex:D1, 5 ex:worksFor, P
input 2 foafiname, B fﬂﬂfﬂ'ﬁmﬂ, 5]

“Informtica” @es,

Figure 4.2: Example of Dictionary Encoding: roles detection (Job 1.1).

4.1.1.2 Job 1.2: RDF Terms Sectioning.

The previous job outputs several lists of pgiRDF term rol es), one perReduce of previous
phase, each of them sorted lexicographically. However, the constmafteach HDTDictionary
section requires a unique sorted list. Note that a simple concatenation oftphe kgts would not

4.1. SYSTEM DESIGN 51

Algorithm 1 Dictionary Encoding: roles detection (Job 1.1)

function mAP(key,value) > key: line number (discarded) > value: triple
emit(value.subject,” S”)
emit(value.predicate,” P”)
emit(value.object,” O")
end function
function coMmBINE/REDUCHKkey,values) > key: RDF term > value: roles (S, P, and/or O)
for role in valuesdo
if role contains "Sthen isSubject « true
else ifrole contains "Pthen is Predicate « true
else ifrole contains "O'then isObject « true
end if
end for
roles <
if isSubjecthen append(roles,” S”)
else ifisPredicateéhen append(roles,” P”)
else ifisObjectthen append(roles,” O”)
end if
emit(key,roles)
end function

)

fulfill this requirement, because the resulting list would not maintain a gloleroThe reason
behind this behavior is that, although the input of each reducer is sorfecklgrocessing, the
particular input transmitted to each reducer is autonomously decided byatmewviork in the
process calleghartitioning. By default, Hadoofphasheghe key and assigns it to a given reducer,
promoting to obtain partitions of similar sizes. Thus, this distribution does npeces global
order of the input. While this behavior may be changed to assign the redaggobally sorted
input, this is not straightforward.

A naive approach would be to use a single reducer, but this would restdiresly inefficient:

the whole data had to be processed by a single machine, losing most of #iisbeidistributed
computing that MapReduce provides. Another approach is to manuallie gragition groups.

For instance, we could send terms beginning with the letters &tmt to the first reducer, terms
beginning with the letters fromtof to the second reducer, and so on. However, partitions must be
chosen with care, or they could be the root of performance issuestitiquzs are of very different
size, the job time will be dominated by the slowest reducer (that is, the rethatareceives the
largest input). This fact is specially significant for RDF processin@bse of its skewed features.

HDT-MR relies on the simple but efficient solution of sampling input data to olptaititions
of similar size. To do so, we make use of ffitalOrderPartitionerof Hadoop. It is important to
note that this partitioning cannot be performed while processing a job gealsrto be completed
prior of a job execution. Note also that the input domain of the reducedsrnede different from
the input domain of the job to identify and group the RDF terms (that is, the j@vetriples,
while the reducers receive individual terms and roles).

All these reasons conforms the main motivation to include this second Map&gadlo to
globally sort the output of the first job. This job takes as input the listsRoF term rol es)
obtained in the precedent job, and uses role values to sort each termanrésponding list. In
this case, identity mappers deliver directly their input (with no processinigpetoeducers, which
send RDF terms to different outputs depending on their role. Flgute 4.3 dtastthis job. As
only the term is needed, a paRDF term nul |') is emitted for each RDF ternmglis are omitted
on the outputs). We obtain as many role-based lists as reducers in the, dustbese are finally
concatenated to obtain four sorted files, one[Pietionary section.The pseudo-code for this job
is described in Algorithrl2.

52 CHAPTER 4. HDT-MR

MAP 1 H “Computer

Node 1 45,0 H Science” @en
/:‘ i R - REDUCE 1
|
P1,3 i
o /1 ex:P1, 3 | “Informatica” @es m‘,ma
exP1, & L eS| 2 “Informatica’@es, 0
ex:P2, 5 | | ‘54 o
foaf:age, —iJ foaf:age, P i 455 ex:D1, 50
“Computer Science”@en, 0 | . b =
input 1 \ Science”r@en, o | .E.?(:'?l.. output 2
1 ex:P1 “Computer
MAP 2 i 3 il
poded] i = "Inh:nr::icg‘eées
/ “Informdtica”@es, D: - REDUCE 2 i
“Informética”@es, 0 | 4 exD1 50 il 5 : output 3
ex:D1, 50 l ‘ ex:Pl, S
ex:worksFor, P E ex:worksfor, B |! ex:worksFor I u!Pz',_S foaf:age
foaf:name, I | | P ‘ex:worksFor, P ex:worksFor
\1 fi 2 } foaf:age, P foaf:name
; ! foaf:age foaf:name, & outputd
input 2 i I—g—p KRR MAR TG

i foaf:name
[E

Figure 4.3: Example of Dictionary Encoding: RDF terms sectioning (Job 1.2).

Algorithm 2 Dictionary Encoding: RDF terms sectioning (Job 1.2)

function REDUCHKey,value) > key: RDF term > value: roles (S, P, and/or O)
for resource in valuedo
if resource contains "Shen isSubject « true
else ifresource contains "Rhen is Predicate < true
else ifresource contains "Ghen isObject « true
end if
end for
output «
if isSubject & isObjecthen emit_to_SO(key, null)
else ifisSubject then emit_to_S(key, null)
else ifis Predicate then emit_to_P(key, null)
else ifisObject then emit_to_O(key, null)
end if
end function

999

4.1.1.3 Local sub-process 1.3: HDT Dictionary Encoding

This final stage performs locally in theasternode, encoding dictionaries for the four sections
obtained from the MapReduce jobs. It means that each section is requklitiee, and each term
is differentially encoded to obtain a Front-Coding dictionary [85], proddarm-I1D mappings. It

is a simple process with no scalability issues.

4.1.2 Process 2: Triples Encoding

This second process parses the original N-Triples dataset to obtaiis tate, the HDTriples
component. The main tasks for suttiples encoding are (i) replacing RDF terms by their ID in
theDictionary, and (ii) getting the ID-triples encoding sorted by subject, predicate gedtdbs.
As in the previous process, HDT-MR accomplishes these tasks by two &R jobs and a final
local process (see the global overview in Fiduré 4.1), further desthiBlow.

4.1.2.1 Job 2.1: ID-triples serialization

This first job replaces each term by its ID. To do so, HDT-MR first transenig loads the —
already compressed and function8lietionary (encoded in the previous stage) in all nodes of the

4.1. SYSTEM DESIGN 53

Algorithm 3 Triples Encoding: ID-triples serialization (Job 2.1)

function mAP(key,value) > key: line number (discarded) > value: triple
emit({dictionary.id(value.subject, dictionary.id(value.predicate), dictionary.id(value.object) }, null)
end function

cluster. Then, mappers parse N-Triples and replace each term by itsHBDnctionary. Identity
reducers simply sort incoming data and output a list of gairstri pl e, null). We can see this
process in action in Figute 4.4, where the terms of each triple are replgdbd tDs given in the
previous example (note thaulls are omitted on the outputs). The output of this job is a set of
lexicographically ordered lists of ID-Triples; there will be as many lists dacers on the cluster.
The pseudo-code of this job is illustrated in Algorithin 3 .

Node 1

RDF Graph (MAPS B |
ex:P1foaf:age 45. +r (224) | (211) ‘
& | | | (132)
ex:P2 foaf:age 45. 1s (3238) 132) [211)
’ 3 ! ‘ (311)
ex:P1ex:worksFor ex:D1 . -—9‘_ (211) | (311) . outout
input 1 (132)
it (211)
; —— (311)
Node 2 (133)
(224)
(324)
| RDF Graph ‘ MAP 2 /i ——
|| ex:P2 exworksFor ex:D1. R 311)]

| ex:D1 foaf:name “Computer Science” @en .+> [132) e

! | ex:D1 foaf:name “Informatica” @en. +> (133) ' ! (324)

® B

~N w

& B
BTRE
SR

input 2

Figure 4.4: Example of Triples Encoding: ID-triples Serialization (Job 2.1).

4.1.2.2 Job 2.2: ID-triples Sorting

Similarly to the first process, Triples Encoding requires of a second jobrtare outputs. Based
on the same premises, HDT-MR makes use of HadaaglOrderPartitionerto sample the output
data from the first job, creating partitions of a similar size as input for thengkjob. Then, this job
reads the ID-triples representation generated and sorts it by subgdicate and object ID. This
is a very simple job that uses identity mappers and reducers. As in the mgoimuD-triples are
contained in the key and the value is sentdl. In fact, all the logic is performed by the framework
in the partitioning phase betwedfp andReduce, generating similar size partitions of globally
sorted data. Figufe 4.5 continues with the running example and shows thesgmtidormed by
this job after receiving the output of the previous job (note againniodis are omitted on the
outputs).

4.1.2.3 Local sub-process 2.3: HDT Triples Encoding

This final stage encodes the ID-triples list (generated by the previoyagadDTBitmapTriples
[3€]. It is performed locally in thenasternode as in the original HDT construction. That is,
it sequentially reads the sorted ID-triples to build the sequepeand So, and the aligned
bitsequenceBp andBo, with no scalability issues.

54 CHAPTER 4. HDT-MR

Node 1

1D triples MAP-1 REDUCE 1
1= (224) | 132) .
(132) | . a3y
Iy @24 133 - (33
(224 1> |) b11)
(311) 4z 11) | (211) output
input 1 : (132)
e / (133)
i (211)
Node 2 i 224)
i {(311)
(324)

i MAP 2
1D triples REDUCE 2

133) 1l B11) ' | (224)
¥
(224) {» (32 f (311)>j_ Sﬂ’,
@3 [@29 (324)

(324) >

input 2
Figure 4.5: Example of Triples Encoding: ID-triples Sorting (Job 2.2)

4.2 Implementation and configuration details

We have developed a proof-of-concéfdT- MR prototype (under the Hadoop framework: version
1.2.1) which uses the existing HDT-Java libta(iRC-2). This section describes technical details
of the implementation and configuration of both the prototype and the Hadosterclu

HDT-MR is deployed on a virtualized Hadoop cluster consisting on a potasterand 10
slavenodes running on a more memory-limited configuration. This infrastructusettrigimulate
a computational cluster in which further nodes may be plugged to procgeRidF datasets. See
table[4.1

MACHINE CONFIGURATION

Master Intel Xeon X5675 @ 3.07 GHz (4 cores), 48GB RAM. Ubuntu 12204.
Slaves Intel Xeon X5675 @ 3.07 GHz (4 cores), 8GB RAM. Debian 7.7

Table 4.1: Cluster configuration.

The underlying physical system is comprised by 10 computation nodegdiindo two Intel
Modular Server chassis. Storage is conducted on a pool of 12 disksRAID 10 plus two
replacement disks, connected through Serial Attached SCSI. It is impddanote that the
virtualization scheme for the cluster has not been stable over time, so deszlbpnd evaluation
had to accommodate.

It is worth noting thatHDT- MR usesl zo to compress the datasets before storing them in
HDFS. This format allows for compressed data to be split among the tagkprawides storage
and reading speed improvements| [88]. In order to be splitted the comgriéieseneed to be
indexed after storing the data in HDFS. This is performed usin@iﬁtﬁaop-LZOlibrar)E version
0.4.17.

HDT-MR operation is managed by thdDTBui | der Dri ver class, which runs the desired
jobs or local processes in order. Note that every job and local paeesls its input from, and
writes its output to, HDFS. This makes possible to launch a sub-set of HRTepkrations,
store intermediate outputs, and continue the process in the future. HDTdvlenpters are
read from a configuration file, but can be overridden by command line raptiasing the

'htt p: // code. googl e. cont p/ hdt -j ava/
*https://github. conftwitter/hadoop-1zo

https://github.com/twitter/hadoop-lzo

4.2. IMPLEMENTATION AND CONFIGURATION DETAILS 55

HDTBui | der Confi gur ati on class with the help oﬂCommandedibrar)E version1. 30.
A complete description of HDT-MR parameters can be seen on appendindAthe current
configuration files (used on the evaluation tests) are available on apjigndix

4.2.1 Job1.1: Roles Detection

This job is charged with the function of parsing the triples and identify the rats®ciated
with each term. It makes use of th# cti onar ySanpl er Mapper class for the Mapper
andDi cti onar ySanpl er Reducer class for both the Combiner and the Reducer. This job
writes to HDFS a series of compress&eiquenceFi | es with terms and their associated roles.
A SequenceFi | e is a Hadooop file format consisting of binary key-value pairs designed fo
MapReduce /O operations. [124]. A simplified class diagram for this jobbeaseen in Figure

4.6

1 1
org.rdfhdt.hdt.triples org.apache.hadoop.mapreduce
TripleString Mapper Reducer
VAN VAN VAN
1
org.rdfhdt.mrbuilder
HDTBuilderDriver
T T
I 1
I 1
[1
: . i
org.rdfhdt.mrbuilder{dictianary 1
' V
ScapedTripleString DictionarySamplerivapper DictionarySamplerReducer

Figure 4.6: Class Diagram: Job 1.1: Roles Detection

4.2.2 Job 1.2: RDF Terms Sectioning

This job divides the terms into the future sections of the HDT Dictionary andtsdhe number of
terms in each section. It uses identity Mappers (a default implemantation oppdvien Hadoop,
which outputs its input without any processing) and Biect i onar yReducer class for the
Reducers. This class simply reads terms and a list of roles and reads thegligntially. To
assign each term to its section, it maintains a list of flags (one for eachedhiffseection) . When
each role is read, the corresponding flag is sdtue. Finally, after traversing the list or roles,
the term is outputted to the corresponding path for each flag seteoThe class makes use of a
Mul ti pl eQut put s object to write to different HDFS paths. In addition, this job maintains
a global counterfor each section. Each time that a term is written to a section, its value is
incremented by one. When the job finishes, the values of the countersitiemwo HDFS.

*http://j commander. org

http://jcommander.org

56 CHAPTER 4. HDT-MR

In order to perform the data sampling using thetalOrderPartitioner Hadoop provides
three different sampling methods through the clagsutSampler All of them sample a
SequenceFi | e stored in HDFS.

« | nt erval Sanpl er: Sampless splits at regular intervals. It accepts as parameters the
frequency with which records will be sampled and the maximum number of spliie to
sampled.

* Randonanpl er: Samples from random points in the input. It has the following
parameters: The probability with which a key will be chosen, the total nunftearoples
to obtain from all selected splits, and the maximum number of splits to examine.

e Spl it Sanpl er: Samples the firgtrecords frons splits. Its parameters are the following:
The total number of samples to obtain, and the maximum number of splits to examine.

HDT-MR uses thel nt er val Sanpl er, which gave better results in initial tests. The
frequency used i8. 000001, while no maximum number of splits is set, meaning that all splits
are sampled.

A simplified class diagram for this job can be seen in Figure 4.7

I I I
org.rdfhdt.mrbuilder org.apache.hadoop.filecache org.apache.hadoop.mapreduce
HDTBuilderDriver DistributedCache Reducer

e bt el o
FAS

1 1
org.apache.hadoop.iapreduce.lib.output org.rdfhdt.m r?uilde r.dictionary

—
org.apache.had?op‘mapreduce‘lib.partition
'l

ToRIOmerParitione nputSampler MultipleQutputs DictionarvReducer

Figure 4.7: Class Diagram: Job 1.2: RDF Terms Sectioning

4.2.3 Local sub-process 1.3: HDT Dictionary Encoding

The final process reads the sorted files on each path sequentiallyilisdadDictionary section for
each one. Each section is encodeRlain Front-Coding[85], which is based on thigront-Coding
techniquel[125]. This technique achieves compression in lexicogrdigtsoated dictionaries by
differentially encoding a string (a term in our case) with respect the prswdne. Each string is
encoded using an integer indicating the number of characters that matcretieup string plus
the rest of the string. To avoid performance issues due to backtrackiegc@ssive number of
terms the dictionary is divided into blocks. Each block is encoding separatgiiicitly storing
the first string.

A Transi ent Di cti onarySect i on objectis created for each section, with a default block
size of 16 terms. It is worth noting that in java arrays are limite@%® entries, due to using a
signed integer as index. For this reason, a more complex structure idneestere the IDs. We
use a two-dimensional array, where the internal arrays store up to 200l0€ks. In order to
optimize compression, the number of terms of the section (stored in HDFS bysthjelfi) is read

4.2. IMPLEMENTATION AND CONFIGURATION DETAILS 57

and used to determine the number ob bits needed to encode the term ID. \WHeuartkections
have been created they are written to HDFS.

4.2.4 Job 2.1: ID-triples serialization

The first job of the second process translates the triples of the datadetttiples. This is
performed using th8ri pl esSPOVapper class. This class loads the dictionary and parses
the input triples one by one, replacing each term by its correspondingn®triples are stored in
Tri pl eSPOW I t abl e outputted. This job also maintains a global counter for the triples. Each
time that a triple is read by a Mapper, its value is incremented by one. When tfigigites, the
value of the counter is written to HDFS. This job uses identity Reducers. ighaducers that
output the ID-triples in the same order they read them.

In order to group the triples and send them to the Reducers, it has beessagy to implement
the Tr i pl eSPOConpar at or class. This class is used by the Hadoop framework to compare
ID-triples terms, in the orde$- P- Oto determine if they are equal, and sort order if not. This
order is also used by the Reducers to read their input by order.

A simplified class diagram for this job can be seen in Figure 4.8

[1 [1
org.apache.hadoop.io org.rdfhdt.mrbuilder org.apache.hadoop.mapreduce
WritableComparator WritableComparable HDTBuilderDrive: Mapper
PAS Q FAS
T
1
i
I 1 H 1
LI | 1 1 1 —
org.rdfhdt.mrbuilder.io: : : org.apache.hadoop.mecache org.rdfhdt.mrpuildér.triples
Y LV y
JrpleSPOComparator JripleSPOWritable DistributedCache IriplesSPOMapper
<_*_ I R—
T
A !
¥

Figure 4.8: Class Diagram: Job 2.1: ID-triples serialization

4.2.5 Job 2.2: ID-triples Sorting

This job reads the ID-triples written by the previous job and sorts them globalhg identity
Mappers and Reducers. To sample the data this job also uséstles val Sanpl er with a
frequency of0. 000001. The classIri pl eSPOConpar at or is used by th&otalOrderParti-
tionerto group and sort the ID-triples.

4.2.6 Local sub-process 2.3: HDT Triples Encoding

The final local sub-process compresses the triples using BitmapTriptediag [36]. Remember
that this encoding is comprised by two sequences of predicate and dge&d andSo, and two
aligned bitsequenceBp andBo, using a 1-bit tomark the end of each list.

The classTr ansi ent Bi t MapTri pl es creates twolr ansi ent SequencelLog64 ob-
jects to store the sequences, and twansi ent Bi t map375 objects to store the bitsequences.
Each time it reads an ID-triple it performs the following steps:

58 CHAPTER 4. HDT-MR

1. The subject ID is compared with the subject ID of the previous triple. abeahe new
ID increases, both the predicate and object ID are stored in their tespsequences, and
t r ue is appended to each bitsequence, meaning that the subject has charnbeatirrent
triple.

2. In the case of the subject ID not increasing, the predicates ID anpared. If the new
ID increases, both the predicate and object ID are stored in their taspsequences. The
predicate bitsequence is appendddah se, meaning that the triple is related to the same
subject as the previous one, andue is appended to the objects bitsequence, representing
the change of predicate.

3. If predicate IDs are equal only the object ID is stored in its sequamckgf al se appended
to the objects bitsequence, meaning that it relates to the same predicate. Nate tha
comparison is needed; if the ID-triples are lexicographically sorted, anipl2 which does
not fulfill the previous conditions will necessarily increase only the oldject

Initial experiments showed that storing the data in memory for this procesthevasain bot-
tleneck for HDT-MR, causing the process to fail. To avoid memory limitationsTtrensi ent
SequencelLog64 and Tr ansi ent Bi t nap375 write their content to HDFS each time a
threshold is reached (currentty0 items). When all ID-triples are processed, the sequences and
bitsequences are appended in the appropriate &mleBo- Sp- So.

A simplified class diagram for this job can be seen in Figure 4.8

4.2. IMPLEMENTATION AND CONFIGURATION DETAILS

1 1 1
org.rdfhdt.hdt.hdt.impl org.rdfhdt.hdt.triples.impl org.rdfhdt.hdt.compact.sequence
HDTImpl BitmapTriples Sequencel ogb4
e o e e oy e
|
|
|
i} Ay |
1 T |
1 I |
| | I e
|l 1 : org.rdfhdt.hdt.compact.bitmap
T T T i
| ! Bitmap64
L1 |
org.rdfhdt.mrbuilddlr |
i |
HDTBuilderDriver |
|
|
|
|
|
|
|
| T Nt 7
|
|
\.___>.

Figure 4.9: Class Diagram: Local sub-process 2.3: HDT Triples Engodin

60

CHAPTER 4. HDT-MR

Chapter 5

Experiments and Results

This chapter evaluates the performance of HDT-MR, the proposed bthpfe-based HDT
construction. We compare it to the traditional single-node approach toatgadgalability. It

is worth noting that HDT-MR serialization times provided in this chapter are higtzen number

reported inl[4]7]. The reason is that the network and disk bandwidthesiiean limited to improve
stability issues on the underlying physical system.

The experimental setupis designed as follows. We use the HDT-MR configuration stated
on sectio 42 using a potenasterand 10slave nodes running on a more memory-limited
configuration. For the single-node tests we use a powerful computationéijuration. For a
fair comparison, the amount of main memory in the single node is the same as thedotaty
available for the full cluster of Hadoop. Talle 5.1 summarizes configuratibmsnation.

MACHINE CONFIGURATION

fl'(;‘gée Intel Xeon E5-2650v2 @ 2.60GHz (32 cores), 128GB RAM. Debih
Master Intel Xeon X5675 @ 3.07 GHz (4 cores), 48GB RAM. Ubuntu 1204.
Slaves Intel Xeon X5675 @ 3.07 GHz (4 cores), 8GB RAM. Debian 7.7

Table 5.1: Experimental setup configuration.

Regardinglatasets we consider a varied configurationdditasetscomprising real-world and
synthetic ones. All of them are statistically described in Table 5.2. Among thevoell ones,
we choose them based on their volume and variety, but also attending torbdoys uses for
benchmarkinglke@ comprises weather measurements from the lke hurridankedGeoDatAis
a large geo-spatial dataset derived fr@pen Street Mapand DBPedia 3[Bis the well-known
knowledge base extracted from Wikipedia. We also consider the combiradtibase real-world
datasets in differemtnashupscomprising data from the three data sources. On the other hand,
we use the LUBM|[51] data generator to obtain synthetic datasets. We buildll“satasets”
from 1,000 (.13 billion triples) to 8,000 universities1(07 billion triples). From the latter, we
build datasets of incremental size (4,000 universitiess billion triples) up to 72,000 universities
(9.59 billion triples). Data have been preprocessed in order to be stored ifnpkeg notation and
delete duplicates. This preprocessing also sorts the triples lexicogriiyphica

First, we evaluate the performance for real-world datasets. Higure Bhfiazes serialization
times for the datasets and the different mashups. As can be seen, Mbieparts an excellent
performance on real-world datasets. This is an expected result legd@isJava runs the whole
process in main-memory while HDT-MR relies on I/O operations. HowevefT-H#va crashes

*http://wiki.knoesis. org/index. php/ Li nkedSensor Dat a
2http: //1inkedgeodat a. or g/ Dat aset s, as for 2013-07-01
ht t p: // wi ki . dbpedi a. or g/ Downl oads38

61

62 CHAPTER 5. EXPERIMENTS AND RESULTS

Size (GB)

DATASET TrIPLES | SO | S| |9 NT NT+l zo HDT Dict. HDT+gz

Li nkedGeoData 0.27BN 41.5M 10.4M 80.3M 38.5 4.4 6.4 51 1.9
DBPedi a 0.43BN 22.0M 2.8M 86.9M 61.6 8.6 6.4 4.8 2.7
I ke 0.51BN 114.5M 0 145.1K 100.3 49 4.8 1.3 0.6
LGD+DBP 0.70BN 63.5M 13.2M 167.0M 100.1 13.0 126 9.8 3.7
LGD+ ke 0.79BN 156.0M 10.4M 80.4M 138.8 9.3 10.37 6.4 1.7
DBP+l ke 0.95BN 136.5M 27.8M 87.0M 161.8 13,5 10.45 6.1 3.0
LGD+DbP+1 ke 1.22BN 178.0M 13.2M 167.2M 200.3 18.0 171 11.2 4.6
LUBM 1000 0.13BN 5.0M 16.7M 11.2M 18.0 1.3 0.7 0.3 0.2
LUBM 2000 0.27BN 10.0M 33.5M 22.3M 36.2 2.7 1.5 0.6 0.5
LuUBM 3000 0.40BN 14.9M 50.2M 33.5M 54.4 4.0 2.3 0.8 0.8
LUBM 4000 0.53BN 19.9M 67.0M 44.7M 72.7 5.3 3.1 1.1 1.0
LUBM 5000 0.67BN 24.9M 83.7M 55.8M 90.9 6.6 3.9 1.4 1.3
LUBM 6000 0.80BN 29.9M 100.5M 67.0M 109.1 8.0 4.7 1.6 1.6
LUBM 7000 0.93BN 34.9M 117.2M 78.2M 127.3 9.3 5.5 1.9 1.9
LuUBM 8000 1.07BN 39.8M 134.0M 89.3M 145.5 10.6 6.3 2.2 2.2
LUBM 12000 1.60BN 59.8M 200.9M 133.9M 218.8 15.9 9.6 3.3 2.9
LUBM 16000 2.14BN 79.7M 267.8M 178.6M 292.4 21.2 128 4.4 3.8
LUBM 20000 2.67BN 99.6M 334.8M 223.2M 366.0 26.6 16.3 5.5 55
LUBM 24000 3.20BN 119.5M 401.7M 267.8M 439.6 319 196 6.6 6.6
LUBM 28000 3.74BN 139.5M 468.7M 312.4M 513.2 372 229 7.7 7.7
LUBM 32000 4.27BN 159.4M 535.7M 357.1M 586.8 425 26.1 8.8 8.8
LUBM 36000 4.81BN 179.3M 602.7M 401.8M 660.5 47.8 30.0 10.0 9.4
LUBM 40000 5.32BN 198.4M 666.7M 444.5M 730.9 529 332 11.1 10.4
LUBM 44000 5.85BN 218.3M 733.7M 489.2M 804.6 58.2 36.7 12.2 12.2
LUBM 48000 6.38BN 238.3M 800.7M 533.8M 877.8 63.6 40.3 13.3 13.3
LUBM 52000 6.92BN 258.2M 934.6M 578.4M 951.5 68.9 43.6 14.4 14.4
LUBM 56000 7.45BN 278.1M 1,001.6M 623.1M B8 1,024.5 742 473 15.5 155
LUBM 60000 7.99BN 298.0M 1,068.5M 667.8M B 1,097.6 79.5 50.7 16.7 16.1
LUBM 64000 8.52BN 318.0M 1,135.5M 712.4M 8 1,170.8 84.8 53.9 17.8 17.1
LUBM 68000 9.05BN 337.9M 1,202.4M 757.0M B1,244.4 90.2 57.6 18.9 18.9
LUBM 72000 9.59BN 357.8M 1269.4M 801.7M 8 1,318.0 955 61.3 20.0 20.0

Table 5.2: Statistical dataset description

63

for themashupdecause the 128 GB of available RAM are insufficient to process satdiscthe
single node.

35000
30000

25000
20000
15000
10000 I
5000 . . .
o [| . N

Serialization time (seconds)

HDT- HDT- HDT- HDT- HDT- HDT- HDT- HDT- HDT- HDT- HDT- HDT- HDT- HDT-

Java MR Java MR Java MR Java MR Java MR Java MR Java MR

DBPEDIA IKE LINKEDGEODATA DBPEDIA + DBPEDIA + IKE + DBPEDIA +
IKE LINKEDGEODATA LINKEDGEODATA IKE +

LINKEDGEODATA

M Diccionario M Triples ™ Local

Figure 5.1: Serialization times: Real-World Datasets

Second, we perform the evaluation for the LUBM datasets: HDT-Javgais éhe best choice
for the smallest datasets, but the difference decreases with the datasdtigurd 5.2 compares
serialization times for HDT-Java and HDT-MR. HDT-Java fails to procedasgts fromLUBM-
8000(1.07 hillion triples) because of memory requirements. This is the targetrizéoaHDT-
MR, which scales to th& UBM-72000without issues. Serialization times for HDT-MR can be
seen in Figuréhl3. As can be seen in both figures, serialization times iadimeearly with the
dataset size, and triples encoding remains the most expensive stage.

14000

$ 12000

S 10000

2 8000

g 6000

§ 2o I l

c

o 2000

S 0 e -- m -

E © o © [a's o © o © o © [a'

£ £§:%8 % §:%8 £3% %% _az.

] = 5 = 5 =5 = 5 = 5 =5 =5
% T 2 =z e = e =z 2 =z 2 =z 2 =z
LUBM LUBM LUBM LUBM LUBM LUBM LUBM
1000 2000 3000 4000 5000 6000 7000

M Dictionary M Triples ™ Local

Figure 5.2: Serialization times: LUBM (1)

In addition, we have also performed tests against the synthetic datasetedhising SP2B
[@]. Those datasets are generated directly in N-Triples, so noquesgsing is necessary. This
evaluation has shown a fundamental behavior of HDT-MR regardingatdta. Map tasks need
to cache different parts of the dictionary too frequently, with a high impagberformance. To
show behavior we compare SP2B against LUBM. We use LUMB datasets £r000 to 5,000
universities, and we generate SP2B datasets with a correspondingmafriries. The statistical
description of the datasets are shown in Tablé 5.3. Figuie 5.4 shows seigaliimes for those

datasets.

64

140000

Serialization time (seconds)

Serialization time (seconds)

120000
100000

80000

60000

40000

20000 .III
,m H

LUBM LUBM

LUBM LUBM LUBM
8000 12000 16000 20000 24000

CHAPTER 5. EXPERIMENTS AND RESULTS

LUBM LUBM LUBM LUBM LUBM LUBM LUBM LUBM LUBM
28000 32000 36000 40000 44000 48000 52000 56000 60000 64000 68000 72000

M Dictionary M Triples

Figure 5.3: Serialization times: LUBM (2)

LUBM LUBM LUBM

Size (GB)
DATASET TRIPLES | SO | S| |1 | P NT NT+lzo HDT Dict. HDT+gz
LUBM 1000 1336M 5.0M 16.7M 11.2M 18| 18.0 13 07 0.3 0.2
SP2B-134 133.6M 13.9M 10.IM 50M 87| 13.9 26 23 1.8 0.8
LUBM 2000 267.0M 10.0M 33.5M 223M 1§ 36.2 27 15 0.6 05
SP2B-267 267.0M 29.6M 19.6M 10.0M 87| 27.6 52 45 3.4 1.6
LUBM 3000 4005M 149M 50.2M 335M 1§ 54.4 40 23 0.8 0.8
SP2B-401 400.5M 46.0M 29.0M 150 87 41.2 7.7 6.7 5.0 2.4
LUBM 4000 5342M 19.9M 67.0M 447M 1§ 72.7 53 31 11 1.0
SP2B-534 534.2M 62.3M 384M 200 87 54.8 103 89 6.6 3.1
LUBM 5000 667.6M 249M 83.7M 558M 1§ 90.9 6.6 39 14 13
SP2B-668 667.6M 78.5M 47.8M 250M 87| 68.5 128 111 8.2 4.0
Table 5.3: Statistical dataset description of SP2B and LUBM
350000
300000
250000
200000
150000
100000
50000
0 | _- —
LUBM SP2B LUBM SP2B LUBM SP2B LUBM SP2B LUBM SP2B
LUBM LUBM LUBM LUBM LUBM
1000 2000 3000 4000 5000

M Dictionary M Triples

Figure 5.4: Serialization times: LUBM vs SP2B

65

While RDF compression numbers are not the main purpose of this work, teeyath to
mention. On the one hand, previous literature does not report HDT satializesults for such
large datasets. HDT always reports smaller sizes than the original datesgisessed withzo,
with the exception of the mashup binkedGeoDataandDBPedia For instance, HDT serializes
LUBM-40000using 19.7 GB less thaNT+l zo. The difference increases when compressed with
gzi p. For LUBM-4000Q HDT+gz uses 42.5 GB less thadir+| zo. In practice, it means that
HDT+gz uses 5 times less space thdh+| zo. These numbers are summarized in tableks 5.2 and
B.3. Finally, it is worth remembering that HDT-MR obtains the same HDT serializdtian a
mono-node solution, hence achieving the same compression ratio and grtablisame query
functionality.

66

CHAPTER 5. EXPERIMENTS AND RESULTS

Chapter 6

Conclusions and Future Work

6.1 Conclussions

HDT is currently gaining traction, positioning itself as a baseline for RDF cesgion. Latest
practical applications exploit the HDT built-in indexes for RDF retrieval wibtpnior decompres-
sion, making HDT evolve to a self-contained RDF store. However, HDTesements are at the
price of moving scalability issues from consumer to publishers. Serializing iRd HDT is not
a simple task, given that the whole dataset must be exhaustively prddassemory to obtain
the Dictionary and Triples components. Current HDT implementations demanaegbgible
amounts of memory, so the HDT serialization lacks of scalability for huge datédse those hav-
ing hundreds of millions or billions of triples). Although these datasets aremily uncommon,
semantic publication efforts on emerging data-intensive areas (sucH@gtoo astronomy) or in-
tegrating several sources into heterogeneous mashups (as RDFaticddsg data from diverse
datasets) are starting to face this challenge.

This work improves the HDT workflow by introducing MapReduce as the edaimn model
for large HDT serialization. MapReduce is a framework for the distributedgssing of large
amounts of data, and it can be consideredladactostandard for Big Data processing. Our
MapReduce-based approach, HDT-MR, reduces scalability issisggato HDT generation,
enabling larger datasets to be serialized for end-user consumption.

We have performed evaluations against the previous mono-node sokgalimg up to more
than 1 TB of data (20 times larger than the largest dataset serialized byghebHDT). Results
show that HDT-MR is able to scale up to more than 9 billion triples, while the mowie-solution
fails to process datasets larger than 1 billion triples. Thus, HDT-MR greatlyaes hardware
requirements for processing Big Semantic Data.

Nonetheless, evaluations have also identified a dependence of datg.sdripies Encoding
process of HDT-MR does not scale linearly when processing unsdataddata. This issue needs
to be addressed in future work.

As part of the work, we also review MapReduce and its applications to Semakeb
scalability issues, drawing conclussions about its appropriatenessnteinallenges, and different
approaches to deal with them. A comprehensive discussion and comsladiout the state of the
art can be found in sectién 3.4.

6.2 Future Work

While HDT-MR is a contribution to improve serialization of large datasets, thestilisnore
work to be done. Firstly, more experimentation is needed to perform a faieegl assessment

67

68 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

of the possible bottlenecks and limitations. Secondly, some improvements oMHDdre worth
exploring. The more immediate are the following:

» The dependence on data sorting needs to be addressed. This edwneldeby moving the
replacing of terms by ID from th&kp phase to thé&keduce phase. The reducers receive
the data sorted by the framework, removing the necessity to cache diffeads of the
dictionary frequently.

* The current version of HDT libraries serialize the dictionary udiigin Front-Coding
While this compression technique achieves goods results in terms of triplevaktthe
compression rate can be improved. This is specially true when dealing witbetataith
high proportion of literals. HDT++ [56] is a recent implementation of HDT than be
integrated into HDT-MR to improve its performance.

« HDT-MR distributes the complete dictionary among each node of the clustesmat
distribution of data among nodes, instead of relying in vanilla Hadoop mechamsuld
allow to partition the dictionary in smaller chunks, highly improving its performance

e Each one of the two processes of HDT-MR include an step where daitplisg is
performed. We have chosen one of the Hadoop default sampling teelsnighich gave as
the better results in preliminary tests. However, more work be done on this itegieding
more experimentation or the development of a custom sampling method.

Additional future work include exploring the recent evolution in MapRedand related
technologies and how to apply them to enhance HDT-MR, such as upgradidadoop 2.0 or
explore a migration to Apache Spark. Hadoop 2.0 is the most recent varsidadoop and
includes many performance improvements. Siﬁarlalso a distributed computing framework, but
instead of relying on disk-based operations it is based on in-memory datessing.

6.3 Contributions and Publications

The review of the on MapReduce-based solutions on scalability issuesoisti@bation of this
work. Specifically, the state of the art of SPARQL query resolution usiagReduce on section
[3.1 have been published on tBpen Journal of Semantic Web the following article:

José M. Giménez-Garcia, Javier D. Fernandez, and Miguel &tilNez-Prieto. Mapreduce-based
solutions for scalable spargl queryingdpen Journal of Semantic Web (OJSW/j1):1-18, 2014.
ISSN 2199-336X

HDT-MR and its evaluation, discussed in chaptérs 4.and 5 is the main contriladitiois work.
The content of those chapters has served as the basis for the followbhiggtion on theExtended
Semantic Web Conference

José M. Giménez-Garcia, Javier D. Fernandez, and Miguelatinez-Prieto. HDT-MR: A scalable
solution for rdf compression with HDT and mapreduce. In Eabandon, Marta Sabou, Harald
Sack, Claudia d’Amato, Philippe Cudré-Mauroux, and Andatimmermann, editor§;he Semantic
Web. Latest Advances and New Domaimslume 9088 ofLecture Notes in Computer Science
pages 253—-268. Springer International Publishing, 20BN 978-3-319-18817-1. doi: 10.1007
978-3-319-18818-8 16

'htt p://spark. apache. org

http://spark.apache.org

Bibliography

[1] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel J. Abadi, AlexandRasin, and Avi
Silberschatz. Hadoopdb: An architectural hybrid of mapreduce and®Echnologies
for analytical workloadsPVLDB, 2(1):922-933, 2009.

[2] Grigoris Antoniou and Frank Van Harmelefs.Semantic Web Primer, Second Editi@008.
ISBN 0262012103.

[3] D Battré, S Ewen, F Hueske, O Kao, V Markl, and D Warneke. N&phd?ACTs :
A Programming Model and Execution Framework for Web-Scale Analyticatéssing
Categories and Subject Descriptors.Armc. 1st ACM Symp. Cloud Compytages 119-
130. ACM, 2010. ISBN 9781450300360.

[4] Dave Beckett, editorRDF/ XML Syntax Specification (Revise®#y3C Recommendation,
2004.

[5] David Beckett and Tim Berners-LeeTurtle-terse RDF triple language W3C Team
Submission, 2008.

[6] Tim Berners-Lee. Design issues: Linked data, 2006.

[7] Tim Berners-Lee, James Hendler, Ora Lassila, and By Tim BetleersThe Semantic Web.
Sci. Am, 284(5):34-43, 2001. ISSN 00368733. doi: 10.1038/scientificanméyitil -34.

[8] Tim Berners-Lee, Roy Fielding, and Larry Masinter. Uniform nese identifier (uri):
Generic syntax. Technical report, 2004.

[9] E Bertino, P Bernstein, D Agrawal, S Davidson, U Dayal, M FrankligGehrke, L Haas,
A Halevy, J Han, and Others. Challenges and Opportunities with Big Daf4l.. 20

[10] A Bialecki, M Cafarella, D Cutting, and O O'MALLEY. Hadoop: a frame
work for running applications on large clusters built of commodity hardwal&/iki
http//lucene.apache.org/hadadfl, 2005.

[11] Paul Biron, Ashok Malhotra, World Wide Web Consortium, et al. Xmhexma part 2:
Datatypes. World Wide Web Consortium Recommendation REC-xmlschema-2-28)410
2004.

[12] Christian Bizer. The emerging web of linked datBEE Intelligent System24(5):87-92,
2009. doi: 10.1109/MI1S.2009.102.

[13] D Borthakur, Portability Across, and Heterogeneous Hardwine.Hadoop distributed file
system: Architecture and desigdadoop Proj. Websitel1:21, 2007.

69

70 BIBLIOGRAPHY

[14] Tim Bray, Jean Paoli, C Michael Sperberg-McQueen, Eve Maled, Frangois Yergeau.
Extensible markup language (xmlyVorld Wide Web Consortium Recommendation REC-
xml-19980210. http://www. w3. org/TR/1998/REC-xm|-199802601998.

[15] Dan Brickley and Ramanathan V GuHaDF Schema 1.1W3C Recommendation, 2014.

[16] Yingyi Bu, Bill Howe, Magdalena Balazinska, and Michael D. BErnglaloop: Efficient
iterative data processing on large clusté?¥LDB, 3(1):285-296, 2010.

[17] Michelle Butler, Richard Mount, and Mike Hildreth. Snowmass 2013 Qating Frontier
Storage and Data ManagemeatXiv Prepr. arXiv1311.458®013.

[18] Bryan Catanzaro, Narayanan Sundaram, Kurt Keutzer, amgl Ball. A MapReduce
Framework for Programming Graphics Processorswamk. Softw. Tools MultiCore Syst.
2008.

[19] Ronnie Chaiken, Bob Jenkins, Per-Ake Larson, Bill Ramsey,rddaShakib, Simon
Weaver, and Jingren Zhou. SCOPE: easy and efficient paralledgsing of massive data
sets.PVLDB, 1(2):1265-1276, 2008.

[20] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, lakbbd Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E GrubagtaBe: A distributed
storage system for structured dat®CM Trans. Comput. Syst26(2):4, 2008. ISSN
07342071. doi: 10.1145/1365815.1365816.

[21] Huajun Chen, Xi Chen, Peigin Gu, Zhaohui Wu, and Tong Yu. @alkoning framework
over big biological knowledge network.BioMed research international2014. doi:
10.1155/2014/272915.

[22] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M Hellersteiml&d Elmeleegy, and
Russell Sears. MapReduce Online. Rroc. 7th USENIX Conf. Networked Syst. Des.
Implement.page 21, 2010.

[23] Richard Cyganiak and Anja Jentzsch. Linking open data cloud aliag?014. URL
http://1 od- cl oud. net. [Online; accessed: August-2015].

[24] Michael C. Daconta, Leo Obrst, and Kevin T. Smithhe Semantic Web: a guide to the
future of XML, Web services, and knowledge manageridtdy, 2003. ISBN 0471432571.

[25] C David, C Olivier, and B Guillaume. A survey of RDF storage apphes. ARIMA
Journal, 15:11-35, 2012.

[26] Marc de Kruijf and Karthikeyan Sankaralingam. Mapreduce forcglebroadband engine
architecturelBM Journal of Research and Developmes3(5):10-11, 2009.

[27] Jeffrey Dean and Sanjay Ghemawat. MapReduce : Simplified Date$siog on Large
Clusters.Commun. ACM51(1):107-113, 2008. ISSN 00010782. doi: 10.1145/1327452.
1327492.

[28] David J. DeWitt, Erik Paulson, Eric Robinson, Jeffrey F. Naughdashua Royalty, Srinath
Shankar, and Andrew Krioukov. Clustera: an integrated computatiodatadnanagement
system.PVLDB, 1(1):28-41, 2008.

http://lod-cloud.net

BIBLIOGRAPHY 71

[29] Jens Dittrich, Jorge-Arnulfo Quiané-Ruiz, Alekh Jindal, Yagiz ¢dar Vinay Setty, and
Jorg Schad. Hadoop ++ : Making a Yellow Elephant Run Like a CheetathpWt It Even
Noticing). PVLDB, 3(1):515-529, 2010.

[30] M Durstand M Suignard. Rfc 3987, internationalized resourcatifiers (iris), 2005.

[31] Jaliya Ekanayake, Hui Li, Bingjing Zhang, Thilina Gunarathne,r§edee Bae, Judy Qiu,
and Geoffrey Fox. Twister: a runtime for iterative MapReduce.Ptaceedings of the
19th ACM International Symposium on High Performance Distributed Ctingpipages
810-818. ACM, 2010.

[32] Orri Erling and Ivan Mikhailov. Towards web scale RDProc. 4th Int. Work. Scalable
Semant. Web Knowl. Base Sy2008.

[33] Ivan Ermilov, Michael Martin, Jens Lehmann, and Sdren Auer. &th&pen data statistics:
Collection and exploitation. In Pavel Klinov and Dmitry Mouromtsev, edit&rspwledge
Engineering and the Semantic Welmlume 394 ofCommunications in Computer and
Information Sciencegpages 242-249. Springer Berlin Heidelberg, 2013. ISBN 97823-64
41359-9. doi: 10.1007/978-3-642-41360-5_19.

[34] David C Fallside and Priscilla WalmsleyXML schema part 0: primer second editjon
volume 16. W3C recommendation, 2004.

[35] Javier D Fernandez, Mario Arias, Miguel A Martinez-prieto, Clau@utiérrez, Javier D
Fern, Claudio Guti, and Miguel A Mart. Management of Big Semantic D&m Data
Computing pages 131-167, 2013.

[36] Javier D. Fernandez, Miguel A. Martinez-Prieto, Claudio Gut#&rrexel Polleres, and
Mario Arias. Binary rdf representation for publication and exchandé (hNVeb Semantics:
Science, Services and Agents on the World Wide ¥&h2-41, 2013. ISSN 1570-8268.

[37] Pedro Ferrera, lvan de Prado, Eric Palacios, Jose Luis R#eraaMarquez, Giovanna Di
Marzo Serugendo, and G Di Marzo. Tuple MapReduce: Beyond iClasspReduce.
In 12th IEEE International Conference on Data Miningages 260-269. IEEE, leee,
December 2012. ISBN 978-1-4673-4649-8. doi: 10.1109/ICDM.201P

[38] Roy Fielding, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry $iiater, Paul Leach, and
Tim Berners-Lee. Hypertext transfer protocol-http/1.1. Technigaine1999.

[39] Robert W Floyd. Algorithm 97: Shortest pattCommunications of the ACMb(6):345,
1962.

[40] Eric Friedman, Peter Pawlowski, and John Cieslewicz. SQL/Map&sedd practical ap-
proach to self-describing, polymorphic, and parallelizable user-defimections. PVLDB,
2(2):1402-1413, 2009.

[41] J Gantz and D Reinsel. Extracting value from chatite Pap. IDG 2011.

[42] J F Gantz and C Chute. The diverse and exploding digital univArseipdated forecast of
worldwide information growth through 2011. IDC, 2008.

[43] Alan F Gates, Olga Natkovich, Shubham Chopra, Pradeep Kantatiiyeéh M Narayana-
murthy, Christopher Olston, Benjamin Reed, Santhosh Srinivasan, aadsbt8rivastava.
Building a high-level dataflow system on top of MapReduce: the Pig experi¢®VLDB,
2(2):1414-1425, 2009.

72 BIBLIOGRAPHY

[44] Lars George.HBase - The Definitive Guide: Random Access to Your Planet-Size Data
O'Reilly, 2011. ISBN 978-1-449-39610-7.

[45] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. Thraglgofile system. In
Proceedings of the 19th ACM Symposium on Operating Systems Pringiptgss 2943,
2003. doi: 10.1145/945445.945450.

[46] José M. Giménez-Garcia, Javier D. Fernandez, and Miguel Aiha-Prieto. Mapreduce-
based solutions for scalable sparqgl queryi®gen Journal of Semantic Web (OJSW(L):
1-18, 2014. ISSN 2199-336X.

[47] José M. Giménez-Garcia, Javier D. Fernandez, and Miguel Atihz-Prieto. HDT-MR:
A scalable solution for rdf compression with HDT and mapreduce. In FaBimdon,
Marta Sabou, Harald Sack, Claudia d’Amato, Philippe Cudré-Maurouor, Antoine
Zimmermann, editorsThe Semantic Web. Latest Advances and New Domailuisne 9088
of Lecture Notes in Computer Sciengages 253—-268. Springer International Publishing,
2015. ISBN 978-3-319-18817-1. doi: 10.1007/978-3-319-188186.

[48] F Goasdoué and Z Kaoudi. CliqgueSquare: efficient HadoopebB®F query processing.
Journées de Bases de Données Avangegseges 1-28, 2013.

[49] Jan Grant and Dave Beckett, editoRDF Test CasesNV3C Recommendation, 2004.

[50] W3C Owl Working Group.OWL 2 Web Ontology Language Document OvervisM3C
Recommendation, 2009.

[51] Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchnfiar OWL knowledge
base systemdlMeb Semant. Sci. Serv. Agents World Wide, \B):158-182, 2005.

[52] Andreas Harth, Jirgen Umbrich, Aidan Hogan, and Stefan DecRéARS2: A fed-
erated repository for querying graph structured data from the web.Thim Semantic
Web, 6th International Semantic Web Conferenpages 211-224, 2007. doi: 10.1007/
978-3-540-76298-0_16.

[53] Bingsheng He, W Fang, Qiong Luo, Naga K Govindaraju, and mgy@ang. Mars:
a MapReduce framework on graphics processors.17h International Conference on
Parallel Architecture and Compilation Techniqugsages 260-269. ACM, 2008. ISBN
9781605582825.

[54] Yonggiang He, Rubao Lee, Yin Huai, Zheng Shao, Namit Jain, XiagdZhang, and
Zhiwei Xu. Rcfile: A fast and space-efficient data placement strudtutdapReduce-
based warehouse systems. Aroceedings of the 27th International Conference on Data
Engineering pages 1199-1208. IEEE, IEEE, April 2011. ISBN 978-1-4293%86. doi:
10.1109/ICDE.2011.5767933.

[55] Jim Hendler. Broad data: Exploring the emerging web of daigData, 1(1):18-20, 2013.

[56] Antonio Hernandez-lllera, Miguel A. Martinez-Prieto, and JaldeFernandez. Serializing
rdf in compressed space. Data Compression Conference (DC@ages 363-372, 2015.

[57] Aidan Hogan, Andreas Harth, and Axel Polleres. Scalable aitéiive owl reasoning for
the web.IGI Global, 5(2):49-90, 2009.

BIBLIOGRAPHY 73

[58] Jiewen Huang, D J Abadi, Kun Ren, and Daniel J Abadi. Scalabdr&R. Querying of
Large RDF GraphsPVLDB, 4(11):1123-1134, 2011.

[59] MF F Husain, Pankil Doshi, Latifur Khan, and B Thuraisingham. &gerand retrieval of
large RDF graph using Hadoop and MapReduce. pages 680-685, [XBN 978-3-642-
10664-4. doi: 10.1007/978-3-642-10665-1.

[60] MF F Husain, Latifur Khan, M Kantarcioglu, and Bhavani Thuraggiam. Data intensive
query processing for large RDF graphs using cloud computing toolespkgl0. leee, July
2010. ISBN 978-1-4244-8207-8. doi: 10.1109/CLOUD.2010.36.

[61] Mohammad Husain, James McGlothlin, Mohammad M. Masud, Latifur Khad, Bha-
vani M. Thuraisingham. Heuristics-Based Query Processing ford RIQF Graphs Using
Cloud Computing. IEEE Trans. Knowl. Data Eng.23(9):1312-1327, September 2011.
ISSN 1041-4347. doi: 10.1109/TKDE.2011.103.

[62] M Isard and Y Yu. Distributed data-parallel computing using a higlell@rogramming
language. IrProceedings of the ACM SIGMOD International Conference on Managem
of Data, pages 987-994. ACM, 2009. ISBN 9781605585512.

[63] Michael Isard, Andrew Birrell, Dennis Fetterly, M Budiu, and Y Yiryad: distributed
data-parallel programs from sequential building blocks. volume 41,558¢e72. ACM,
2007. ISBN 9781595936363.

[64] David Jiang, Anthony K. H. Tung, and Gang Chen. Map-join-ceduroward scalable and
efficient data analysis on large clustelSEE Trans. Knowl. Data Eng23(9):1299-1311,
September 2011. ISSN 1041-4347. doi: 10.1109/TKDE.2010.248.

[65] Dawei Jiang, B C Ooi, L Shi, and S Wu. The performance of MapiRed An in-depth
study. PVLDB, 3(1-2):472-483, 2010.

[66] W Jiang, Vignesh T Ravi, and Gagan Agrawal. A MapReduce sysii¢man alternate API
for multi-core environments. IRroc. 2010 10th IEEE/ACM Int. Conf. Clust. Cloud Grid
Comput, pages 84-93. IEEE Computer Society, leee, May 2010. ISBN 94344-6987-
1. doi: 10.1109/CCGRID.2010.10.

[67] G Karypis and V Kumar. Metis-unstructured graph partitioning aratspmatrix ordering
system, version 2.0. 1995.

[68] R T Kaushik and M Bhandarkar. GreenHDFS: Towards an Br@gnserving Storage-
Efficient, Hybrid Hadoop Compute Cluster. Rroc. USENIX Annu. Tech. Con2010.

[69] Hyeongsik Kim, Padmashree Ravindra, and Kemafor Anyanwu. OptimiRDF(S)
Queries on Cloud Platforms. [22nd International World Wide Web Conferengages
261-264, 2013. ISBN 9781450320382.

[70] George Kollios, Nick Koudas, T Nykiel, M Potamias, and C Mishra. MBR®: Sharing
across multiple queries in MapRedud®/LDB, 3(1-2):494-505, 2010.

[71] S Kotoulas, E Oren, and F Van Harmelen. Mind the Data Skew: Distdbunerencing
by Speeddating in Elastic Regions.Rmoceedings of the 19th International Conference on
World Wide Weppages 531-540, 2010. ISBN 978-1-60558-799-8.

74 BIBLIOGRAPHY

[72] G Ladwig and Andreas Harth. CumulusRDF: Linked data managemergsted key-value
stores.7th Int. Work. Scalable Semant. Web Knowl. Base Syst. (SSWS gadds 30-42,
2011.

[73] W Lang and J M Patel. Energy management for MapReduce clusRvsDB, 3(1-2):
129-139, 2010.

[74] Ora Lassila and Ralph R SwicResource description framework (RDF) model and syntax

specification W3C Recommendation, 1999.

[75] George Lee, Jimmy Lin, Chuang Liu, Andrew Lorek, and Dmitriy Ryabdhe unified
logging infrastructure for data analytics at Twitt€V/LDB, 5(12):1771-1780, 2012.

[76] Kisung Lee and L Liu. Scaling Queries over Big RDF Graphs with Sdimafiash
Partitioning.PVLDB, 6(14):1894-1905, 2013.

[77] Kyong-ha H K.-h. Lee, Y.-j. Yoon-joon J Lee, H Choi, Y D ChungdaB Moon. Parallel
Data Processing with MapReduce: a Surv&gM SIGMOD Recordd0(4):11-20, 2012.

[78] J Leverich and C Kozyrakis. On the energy (in) efficiency of btguiclustersACM SIGOPS
Oper. Syst. Rew4(1):61-65, 2010.

[79] Boduo Li, Edward Mazur, Yanlei Diao, Andrew McGregor, anthghant Shenoy. A
platform for scalable one-pass analytics using MapReducePrdneedings of the ACM
SIGMOD International Conference on Management of Datages 985-996, New York,
New York, USA, 2011. ACM, ACM Press. ISBN 9781450306614. ddi:1145/1989323.
1989426.

[80] Jimmy Lin and Chris Dyer. Data-intensive text processing with MapiRed Synth.

Lect. Hum. Lang. Technol3(1):1-177, January 2010. ISSN 1947-4040. doi: 10.2200/

S00274ED1V01Y201006HLTO07.

[81] Yuting Lin, Chun Chen, D Agrawal, B C Ooi, and S Wu. Llama: leverggoolumnar
storage for scalable join processing in the MapReduce frameworRrdceedings of the
ACM SIGMOD International Conference on Management of Dp#ajes 961-972. ACM,
2011. ISBN 9781450306614.

[82] Chang Liu, Guilin Qi, Haofen Wang, and Yong Yu. Large scale yupd* reasoning

using mapreduce. Iffthe Semantic Web - ISWC 2011 - 10th International Semantic Web

Conferencepages 405—420. Springer, 2011. ISBN 978-3-642-25072-9.

[83] Dionysios Logothetis and Kenneth Yocum. Ad-hoc data processitigeicloud. PVLDB,
1(2):1472-1475, 2008.

[84] G Malewicz, M H Austern, A J C Bik, J C Dehnert, | Horn, N Leiserda® Czajkowski.
Pregel: a system for large-scale graph processingPréiceedings of the ACM SIGMOD
International Conference on Management of Dapages 135-146. ACM, 2010. ISBN
978-1-4503-0032-2.

[85] M. A. Martinez-Prieto, N. Brisaboa, R. Canovas, F. Claude, @ndNavarro. Practical
compressed string dictionaries. 2015. To appear.

[86] M.A. Martinez-Prieto, J.D. Fernandez, and R. Canovas. QugrRiDF dictionaries in
compressed spac8IGAPP Appl. Comput. Ret2(2):64-77, 2012.

BIBLIOGRAPHY 75

[87] S Melnik, A Gubarev, J J Long, G Romer, S Shivakumar, M Toltord &nVassilakis.
Dremel. interactive analysis of web-scale datas€mnmun. ACM54(6):114-123, 2011.

[88] N. Mirajkar, S. Bhujbal, and A. Deshmukh. Perform wordcourggvReduce Job in Single
Node Apache Hadoop cluster and compress data using Lempel-Zin@her (LZO)
algorithm. CoRR abs/1307.1517, 2013. arXiv:1307.1517.

[89] K Morton and A Friesen. KAMD: A Progress Estimator for MapRegllRipelines. Tech-
nical report, Computer Science and Engineering Department, Univefsiyashington,
2010.

[90] K Morton, M Balazinska, and D Grossman. ParaTimer: a progressdtor for MapReduce
DAGs. InProceedings of the ACM SIGMOD International Conference on Manageof
Data, pages 507-518. ACM, 2010. ISBN 978-1-4503-0032-2.

[91] Kristi Morton, Abram Friesen, Magdalena Balazinska, and Dass&nan. Estimating the
progress of MapReduce pipelines. Pmoceedings of the 26th International Conference
on Data Engineeringpages 681-684. IEEE, IEEE, 2010. ISBN 978-1-4244-5448er.
10.1109/ICDE.2010.5447919.

[92] Boris Motik, Bernardo Cuenca Grau, lan Horrocks, Zhe Wuhife Fokoue, and Carsten
Lutz. OWL 2 Web Ontology Language: Profile®lume 27. W3C recommendation, 2009.

[93] Jaeseok Myung, Jongheum Yeon, and Sang-Goo Lee. SPABKSIC graph pattern
processing with iterative MapReduderoc. 2010 Work. Massive Data Anal. Cloud - MDAC
'10, pages 1-6, 2010. doi: 10.1145/1779599.1779605.

[94] T Neumann and G Weikum. The RDF-3X Engine for Scalable Manageaid®DF data.
VLDB J, 19(1):91-113, 2010. ISSN 1066-8888.

[95] Christopher Olston, Benjamin Reed, U Srivastava, Ravi Kumarparlew Tomkins. Pig
latin: a not-so-foreign language for data processing?roceedings of the ACM SIGMOD
International Conference on Management of Qgiages 1099-1110. ACM, 2008. ISBN
9781605581026.

[96] Alisdair Owens, Andy Seaborne, and Nick Gibbins. Clustered Td8ustered triple store
for Jena. 2008.

[97] Nikolaos Papailiou, loannis Konstantinou, Dimitrios Tsoumakos, anctavies Koziris.
H2RDF: Adaptive Query Processing on RDF Data in the Cloud. pages48@7 2012.
ISBN 9781450312301.

[98] Thomas B PassirExplorer’s guide to the semantic wellanning Greenwich, 2004. ISBN
1932394206.

[99] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlaterpieting the data:
Parallel analysis with SawzalBcientific Programmingl3(4):277-298, 2005.

[100] E Prud’hommeaux and A Seabor@PARQL Query Language for RDW3C Recommen-
dation, 2008.

[101] C Ranger, R Raghuraman, A Penmetsa, G Bradski, and C Kagyfakaluating MapRe-
duce for multi-core and multiprocessor systemsl3st International Conference on High-
Performance Computer Architectyqgages 13-24. IEEE, 2007. ISBN 1-4244-0804-0.

76 BIBLIOGRAPHY

[102] Padmashree Ravindra, Vikas V. Deshpande, and Kemafomfnyarowards scalable RDF
graph analytics on MapReduckroc. 2010 Work. Massive Data Anal. Cloud - MDAC,10
pages 1-6, 2010. doi: 10.1145/1779599.1779604.

[103] Padmashree Ravindra, Hyeongsik Kim, and Kemafor Anyanwulnfermediate Algebra
for Optimizing RDF Graph Pattern Matching on MapReduce. pages 46641, 2SBN
978-3-642-21063-1.

[104] Kurt Rohloff and RE E Richard E Schantz. High-performancessivaly scalable dis-
tributed systems using the MapReduce software framework: The SHARB-stigre. In
SPLASH Workshop on Programming Support Innovations for EmeRjistgbuted Appli-
cations page 4, 2010. ISBN 9781450305440.

[105] Alexander Schatzle. PigSPARQL: mapping SPARQL to Pig LatinPrisceedings of the
International Workshop on Semantic Web Information Managenpagte 4, 2011. ISBN
9781450306515.

[106] Alexander Schatzle and M Przyjaciel-Zablocki. Cascading Mdp-Joins over HBase for
Scalable Join ProcessinGoRR 2012.

[107] Michael Schmidt, Thomas Hornung, Georg Lausen, and ChrisRipkel. Sp2bench:
a spargl performance benchmark. Data Engineering, 2009. ICDE’'09. IEEE 25th
International Conference gmpages 222-233. IEEE, 2009.

[108] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and R&@j&ansler. The Hadoop
distributed file system. NMEEE 26th Symposium on Mass Storage Systems and Technolo-
gies pages 1-10. IEEE, leee, May 2010. ISBN 978-1-4244-715@e2. 10.1109/MSST.
2010.5496972.

[109] Lefteris Sidirourgos, Romulo Goncalves, Martin Kersten, Niels, ldad Stefan Manegold.
Column-store support for RDF data management: not all swans are vi\ieDB, 1(2):
1553-1563, 2008.

[110] Radhika Sridhar, Padmashree Ravindra, and Kemafor AnyaRARBID: Enabling scalable
ad-hoc analytics on the semantic webThe Semantic Web - ISWC 2009, 8th International
Semantic Web Conferengeages 703-718, 2009. ISBN 978-3-642-04929-3.

[111] Theoretical Statistics and Physical SciencesMASSIVE DATA 2013. ISBN
9780309287784.

[112] Jianling Sun and Qiang Jin. Scalable RDF Store Based on HBaddapieduce Proc.
3rd Int. Conf. Adv. Comput. Theory Engages 633-636, 2010.

[113] Herman J. ter Horst. Completeness, decidability and complexity of entdilfoe RDF
Schema and a semantic extension involving the OWL vocabulafideb Semant. Sci.
Serv. Agents World Wide WeB(2-3):79-115, October 2005. ISSN 15708268. doi:
10.1016/j.websem.2005.06.001.

[114] Henry S Thompson, David Beech, M Maloney, et al. Xml schemiglpa&tructures second
edition, 2004.

[115] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shasad®Chakka, Suresh
Anthony, Hao Liu, Pete Wyckoff, and Raghotham Murthy. Hive: a Wwaresing solution
over a MapReduce frameworRVLDB, 2(2):1626—-1629, 2009.

BIBLIOGRAPHY 77

[116] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Stesad*Chakka, Ning Zhang,
Suresh Antony, Hao Liu, and Raghotham Murthy. Hive-a petabyte siedbewarehouse
using Hadoop. IProceedings of the 26th International Conference on Data Enginegering
pages 996-1005. IEEE, leee, 2010. ISBN 978-1-4244-544%61.10.1109/ICDE.2010.
5447738.

[117] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Bkuthilamit Jain, Joydeep Sen
Sarma, Raghotham Murthy, and Hao Liu. Data warehousing and analyftiastiocture at
facebook. InProceedings of the ACM SIGMOD International Conference on Managem
of Data, pages 1013-1020, New York, New York, USA, 2010. ACM, ACM $2eISBN
978-1-4503-0032-2. doi: 10.1145/1807167.1807278.

[118] Jacopo Urbani and Frank Van Harmelen. QueryPIE: Baatkweaisoning for OWL Horst
over very large knowledge bases. The Semantic Web - ISWC 2011 - 10th International
Semantic Web Conferengeages 730-745, 2011. ISBN 978-3-642-25072-9.

[119] Jacopo Urbani and Spyros Kotoulas. OWL reasoning with Webédlculating the closure
of 100 billion triples. InThe Semantic Web: Research and Applications, 7th Extended
Semantic Web Conferenqeages 213-227, 2010. ISBN 978-3-642-13485-2.

[120] Jacopo Urbani, Spyros Kotoulas, Eyal Oren, and F Van Harmefcalable distributed
reasoning using MapReduce. Trhe Semantic Web - ISWC 2009, 8th International
Semantic Web Conferenocelume 48 ofLecture Notes in Computer Sciengages 623—
638. Springer, 2009. ISBN 978-3-642-04929-3.

[121] Jacopo Urbani, Jason Maassen, and Henri Bal. Massiverienvgeb data compression
with MapReduce. InProceedings of the 19th ACM International Symposium on High
Performance Distributed Computingages 795-802, New York, New York, USA, 2010.
ACM Press. ISBN 978-1-60558-942-8. doi: 10.1145/1851476.3851

[122] D Warneke and O Kao. Nephele: efficient parallel data praegdgs the cloud. In
Proceedings of the 2nd Workshop on Many-Task Computing on GriiSapercomputeys
page 8. ACM, 2009.

[123] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. dttea Sextuple Indexing
for Semantic Web Data ManagemeRtYLDB, 1(1):1008-1019, 2008. ISSN 2150-8097.

[124] Tom White.Hadoop: The Definitive Guideefinitive Guide Series. O'Reilly, 2012. ISBN
978-1-449-31152-0.

[125] lan H Witten, Alistair Moffat, and Timothy C BellManaging gigabytes: compressing and
indexing documents and imagedorgan Kaufmann, 1999.

[126] Yu Xu, Pekka Kostamaa, and Like Gao. Integrating Hadoop amdlleeDBMs. In
Proceedings of the ACM SIGMOD International Conference on Manageaf Data pages
969-974, New York, New York, USA, 2010. ACM, ACM Press. ISBRBI1-4503-0032-2.
doi: 10.1145/1807167.1807272.

[127] H.-c. Hung-chih Yang, Ali Dasdan, R.-l. Ruey-lung L Hsiao, ddtott Parker. Map-
reduce-merge: simplified relational data processing on large clusteBroteedings of
the ACM SIGMOD International Conference on Management of Dadges 1029-1040.
ACM, 2007. ISBN 978-1-59593-686-8.

78 BIBLIOGRAPHY

[128] M Zaharia, A Konwinski, A D Joseph, R Katz, and | Stoica. ImprgvidapReduce
performance in heterogeneous environments.8tmUSENIX Symposium on Operating
Systems Design and Implementatipages 29-42, 2008. ISBN 978-1-931971-65-2.

Appendix A

HDT-MR parameters

HDT-MR behavior can be controlled by configuration file or command line aptid he configu-
ration file used by default IdDTMRBUI | der . xm , but other file can be used by using the options

-C,
file.

- - conf . The following are the possible parameters that can be included in a catiogu

gl obal . bucket : Amazon Web Services buckdt.bucket is specified, HDT-MR wiill
useAmazon S3torage service for input and output. It can be overridden using ti@nep
-a, --awsbucket.

gl obal . pat h. base: Root directory for the procesdf a value is specified, it will be
used as the root directory in HDFS. Other directories will be located in the thi@ectory.
It can be overridden using the optionk, - -basedir.

gl obal . pat h. i nput : Path to input files. Relative to basedira directory is specified,
itis used as input path for HDT-MR. The default valué igput . It can be overridden using
the options i, --input.

hdt . bui | d: Whether to build HDT or notBoolean parameter. Is set to true HDT is built.
The default value is r ue. It can be overridden using the optionsh, - - bui | dhdt.

hdt . di cti onary. bui | d: Whether to build HDT dictionary or noBoolean parameter.
Is set to true the dictionary is built. The default value fsue. It can be overridden using
the options bd, --buil ddictionary.

hdt . di ctionary. fil e: Name of hdt dictionary filelf a value is specified, it is used
for the HDT dictionary file name. The default valuedscti onary. hdt. It can be
overridden using the optiond d, --filedictionary.

hdt.file: Name of hdt file. If a value is specified, it is used for the HDT file
name. The default value isut put. hdt. It can be overridden using the options
-fh, --nanehdtfile.

hdt-1ib. baseUri: Base URLIf a URI is specified, it is used for the triples of the
Header The default values ist t p: / / r df hdt . or g/ HDTMR. It can be overridden using
the options bu, --baseURI.

hdt-1ib. configFil e: Conversion config file.If a file is specified, it is forwarded
to hdt-1i b to be used as configuration file. It can be overridden using the options
-hc, --hdtconf.

79

80

APPENDIX A. HDT-MR PARAMETERS

e hdtl-1ib.options: HDT Conversion options (override those of config filepptions
are specified, they are forwardedhdt - | i b to be used as options. It can be overridden
using the optionso, --options.

* hdt-1i b. qui et : Do not show progress of the conversi@oolean paramenter. If used,
the progress conversion of triples bgit - j ava is not shown. The default valuefial se.
It can be overridden using the optiong, --qui et.

e job. di cti onary. nane: Name of dictionary joblf a value is identified, it is used for
the name of the dictionary job. The default valudist i onar yJob. It can be overridden
using the optionsnd, - - namedi cti onaryj ob.

e job.dictionary. pat h. out put: Path to dictionary job output files. Relative to
basedir. If a directory is specified, it is used as output path for the dictionary jatican
input path for the triples job. The default valuadisct i onar y. It can be overridden using
the options od, --outputdictionary.

e job.dictionary. pat h. out put. del et e: Delete dictionary job output path be-
fore running job. Boolean parameter. Is set to true, the dictionary job output direc-
tory is deleted before running the dictionary job. A job fails if its output dirgcto
already exists. The default value fisal se. It can be overridden using the options
-dd, --del eteoutputdictionary.

e job. dictionary. pat h. sanpl e: Path to dictionary job sample files. Relative to
basedir. If a directory is specified, it is used as output path for the dictionary samplin
job and/or input path for the dictionary job. The default valudiiet i onary_sanpl es
It can be overridden using the optionsd, --sanpl esdi cti onary.

e job. dictionary. pat h. sanpl e. del et e: Delete dictionary job sample path before
running job. Boolean parameter. Is set to true, the dictionary sampling job output diyector
is deleted before running the dictionary sampling job. A job fails if its outputcttiny
already exists. The default value izl se. It can be overridden using the options
-dsd, --del etesanpl edictionary.

e job.dictionary.reducers: Number of reducers for dictionary joblf a value is
specified, it is used for the number of reducers in the dictionary job. €fault value isl.
It can be overridden using the optionBd, --reducersdi ctionary

* job. di ctionary. run: Whether to run dictionary job or noBoolean parameter. If set
tot r ue, the dictionary job is launched. The default valug rsue. It can be overridden
using the optionsrd, --rundictionary.

e« job.dictionary. sanpl e. probabi |l i ty: Probability of using each element for
sampling in dictionary job. If a value is specified, it is used as frequency by the
| nput Sanpl er. The default value i®. 001. It can be overridden using the options
-p, --sanpleprobability.

e job. dictionary. sanpl e. reducer s: Number of reducers for dictionary input sam-
pling job. If a value is specified, it is used for the number of reducers in the dic-
tionary sampling job. The default value is It can be overridden using the options
-Rds, --reducersdictionarysanpling.

81

* job.dictionary. sanpl e. run: Whether to run dictionary input sampling job or not.
Boolean parameter. If set tar ue, the dictionary sampling job is launched. The default
value ist r ue. It can be overridden withr ds, --rundi cti onarysanpl i ng.

* job.tripl es. name: Name of triples joblf a value is identified, it is used for the name
of the dictionary job. The default value I i pl esJob. It can be overridden using the
options-nt, --nanetri pl esjob.

e« job.triples. path. out put: Path to triples job output files. Relative to basedfr.
a directory is specified, it is used as output path for the triples job. Theuliefalue is
tripl es. It can be overridden using the optionst, --out puttri pl es.

« job.triples. path. out put. del et e: Delete triples job output path before running
job. Boolean parameter. Is set to true, the triples job output directory is delefedeb
running the triples job. A job fails if its output directory already exists. Thadeévalue is
f al se. It can be overridden using the optiondt , - -del et eout puttri pl es.

« job.triples. pat h. sanpl e: Path to triples job sample files. Relative to basedia
directory is specified, it is used as output path for the triples sampling joloingut path
for the triples job. The default valuetis i pl es_sanpl es It can be overridden using the
options- st, --sanplestriples

« job.triples.path. sanpl e. del et e: Delete triples job sample path before run-
ning job. Boolean parameter. Is set to true, the triples sampling job output directory
is deleted before running the triples sampling job. A job fails if its output dirgctor
already exists. The default value izl se. It can be overridden using the options
-dst, --deletesanpletriples.

e« job.triples.reducers: Number of reducers for triples joldf a value is specified,
it is used for the number of reducers in the triples job. The default valde i$ can be
overridden using the optiondRt , --reducerstri pl es.

e job.triples.run: Whether to run triples job or notBoolean parameter. If set to
t r ue, the triples job is launched. The default valué fsue. It can be overridden using the
options-rt, --runtriples.

e job.triples.sanple.probability: Probability of using each element for sam-
pling in triples job. If a value is specified, it is used as frequency byltng@ut Sanpl er .
The default value i§. 001. It can be overridden withp, --sanpl eprobability.

« job.triples.sanple.reducers: Number of reducers for triples input sampling job.
If a value is specified, it is used for the number of reducers in the tripleplgzg job. The
default value idl. It can be overridden withRt s, --reducerstri pl essanpli ng.

e job.triples.sanpl e. run: Whether to run triples input sampling job or n&oolean
parameter. If set tor ue, the triples sampling job is launched. The default valuerise.
It can be overridden using the optionst s, --runtri pl essanpl i ng.

82

APPENDIX A. HDT-MR PARAMETERS

Appendix B

HDT-MR configuration files

The following is the content of the configuration files used to perform tiaduation of LUBM
datasets on chaptelr 5.

B.1 Dictionary Encoding

<configuration>

<property>
<name>job . dictionary.run</name>
<value>true</value>

</property>

<property>
<name>job . dictionary.sample.run</name>
<value>true</value>

</property>

<property>
<name>job . dictionary.sample.reducers</name>
<value>10</value>

</property>

<property>
<name>hdt. dictionary . build</name>
<value>true</value>

</property>

<property>
<name>job . triples .run</name>
<value>false</value>
</property>

<property>

83

84 APPENDIX B. HDT-MR CONFIGURATION FILES

<name>job . triples.sample.run</name>
<value>false</value>
</property>

<property>
<name>hdt. build</name>
<value>false</value>
</property>

<property>
<name>global. path.base</name>
<value>.</value>
<description>Root directory</description>
</property>

<property>
<name>global.path.input</name>
<value>lubm</value>
<description>input path</description>
</property>

<property>
<name>job . dictionary.path.output</name>
<value>dictionary</value>
<description>
Dictionary output path / Triples input path
</description>
</property>

<property>
<name>job . dictionary.path.output. delete</name>
<value>true</value>
<description>
Whether to delete dictionary output path
</description>
</property>

<property>
<name>job . dictionary.path.sample</name>
<value>dictionary_sample</value>
<description>Dictionary samples path</description>
</property>

<property>
<name>job . dictionary . path.sample. delete</name>
<value>true</value>
<description>
Whether to delete dictionary samples path

B.2. TRIPLES ENCODING

</description>
</property>

<property>
<name>job . dictionary .reducers</name>
<value>10</value>

<description>Number of reducers used by jobs</descrimtto

</property>

<property>
<name>job . dictionary.sample. probability</name>
<value>0.000001</value>
<description>Sampler Probability</description>
</property>

</configuration>

85

B.2 Triples Encoding

<configuration>

<property>
<name>job . dictionary.run</name>
<value>false</value>
</property>

<property>
<name>job . dictionary .sample.run</name>
<value>false</value>

</property>

<property>
<name>hdt. dictionary . build</name>
<value>false</value>

</property>

<property>
<name>job . triples .run</name>
<value>true</value>
</property>

<property>
<name>job . triples.sample.run</name>
<value>true</value>

</property>

86 APPENDIX B. HDT-MR CONFIGURATION FILES

<property>
<name>hdt. build</name>
<value>true</value>
</property>

<property>
<name>global . path.base</name>
<value>.</value>
<description>Root directory</description>
</property>

<property>
<name>global.path.input</name>
<value>lubm</value>
<description>input path</description>
</property>

<property>
<name>job . dictionary.path.output</name>
<value>dictionary</value>
<description>
Dictionary output path / Triples input path
</description>
</property>

<property>
<name>job . triples .path.output. delete</name>
<value>true</value>
<description>
Whether to delete triples output path
</description>
</property>

<property>
<name>job . triples . path.sample</name>
<value>triples_sample</value>
<description>Tripls samples path</description>
</property>

<property>
<name>job . triples.path.sample.delete</name>
<value>true</value>
<description>
Whether to delete tripls samples path
</description>
</property>

<property>

B.2. TRIPLES ENCODING 87

<name>job . triples.reducers</name>

<value>10</value>

<description>Number of reducers used by jobs</descrimtto
</property>

<property>
<name>job . triples .sample. probability</name>
<value>0.000001</value>
<description>Sampler Probability</description>
</property>

</configuration>

	Introduction
	Motivation
	Goals
	Methodology
	Structure

	Background
	Semantic Web
	Foundations of the Semantic Web
	Scalability Challenges

	HDT
	Structure
	Building HDT
	Performance
	Scalability Issues

	MapReduce
	Distributed FileSystems
	MapReduce
	Challenges and Main Lines of Research

	State of the Art
	SPARQL Query Resolution
	Native solutions
	Hybrid Solutions
	Analysis of Results

	Reasonig
	RDF Compression
	Discussion

	HDT-MR
	System Design
	Process 1: Dictionary Encoding
	Process 2: Triples Encoding

	Implementation and configuration details
	Job 1.1: Roles Detection
	Job 1.2: RDF Terms Sectioning
	Local sub-process 1.3: HDT Dictionary Encoding
	Job 2.1: ID-triples serialization
	Job 2.2: ID-triples Sorting
	Local sub-process 2.3: HDT Triples Encoding

	Experiments and Results
	Conclusions and Future Work
	Conclussions
	Future Work
	Contributions and Publications

	HDT-MR parameters
	HDT-MR configuration files
	Dictionary Encoding
	Triples Encoding

