
 LABORATORY OF APPLIED THERMODYNAMICS
 MECHANICAL ENGINEERING DEPARTMENT
 ARISTOTLE UNIVERSITY THESSALONIKI
 P.O. BOX 458 GR 541 24 THESSALONIKI GREECE

COPERT 4
Beta Version Software Description

Santiago Bel
Charis Kouridis

Leonidas Ntziachristos

Thessaloniki

December 2005

LABORATORY OF APPLIED THERMODYNAMICS
MECHANICAL ENGINEERING DEPARTMENT
ARISTOTLE UNIVERSITY THESSALONIKI
P.O.BOX 458 GR-54124 THESSALONIKI GREECE

tel: +30 2310 996047 fax: + 30 2310 996019
http://lat.eng.auth.gr/

Project Title

COPERT 4

Contract No

3331/B2005.EEA-ETC/ACC

Report Title

Beta Version Software Description

Reference No

Web version

Project Manager

Prof. Zissis Samaras (zisis@auth.gr)

Author(s)

Santiago Bel, Charis Kouridis (hkouridi@auth.gr),
Leonidas Ntziachristos (leon@auth.gr)

Summary

This report describes the development and the characteristics of the beta version of Copert 4. It
justifies the selection of .NET as the software development platform and analyses the structure of
the new software. This report is intents to inform the national experts and Copert users of the
upcoming software characteristics and to introduce them into the new specifications. Any
observations, requests or general feedback should be addressed to Leonidas Ntziachristos
(leon@auth.gr) and Charis Kouridis (hkouridi@auth.gr).

Keywords

Software, Copert, emission factor, .NET

Internet reference

http://vergina.eng.auth.gr/mech0/lat/copert/copert.htm

Version / Date

1.0/December 2005

Classification statement

FOR EVALUATION

No of Pages

52

Price

FREE

Declassification date

Summer 2005

Bibliography

Yes

Contents

1. Introduction .. 5
1.1 Introduction of the methodology used by COPERT .. 5
1.2 COPERT 4 prototype and development objectives.. 6
1.3 Technical Solution for the prototype development .. 7

2. Methodology for calculation of COPERT.. 8

3. Detailed prototype requirements analysis.. 11

4. Diagram and Specification... 13
4.1 Diagram .. 13
4.2 Specification ... 14

5. Kernel and Database programming ... 20
5.1 Database Technologies ... 20
5.2 Kernel Technologies... 21

6. Database design and construction... 23
6.1 Table Explanation... 25
6.1.4. A_POLLUTANTS ... 26

7. Calculation system design.. 34
7.1 Class Diagram .. 34
7.2 Operations Specification .. 36

8. Summary & Status of the software... 51

9. References ... 52

1. Introduction

The software COPERT (COmputer Programme to calculate Emissions from Road
Transport) estimates emissions of all regulated air pollutants (CO, NOx, VOC, PM)
produced by different vehicle categories (passenger cars, light duty vehicles, heavy duty
vehicles, mopeds and motorcycles) as well as CO2 emissions on the basis of fuel
consumption. Furthermore, emissions are calculated for an extended list of non
regulated pollutants, including CH4, N2O, NH3, SO2. Emissions estimated are generally
distinguished in three sources: Emissions produced during thermally stabilized engine
operation (hot emissions), emissions occurring during engine start from ambient
temperature (cold-start and warming-up effects) and NMVOC emissions due to fuel
evaporation. The total emissions are calculated as a product of activity data provided by
the user and speed-dependent emission factors calculated by the software.

The objective of this report is to present the software characteristics of the beta version
of COPERT 4. This will be the fourth update of the initial methodology developed on
the basis of the work of a working group which was set up for this purpose (the initial
version was COPERT 85 (1989) and then followed COPERT 90 (1993) and COPERT II
(1997) and COPERT III (2000)). The current software however does not include any of
the new methodological elements of Copert 4 but it is just a transfer of Copert III
methodology into the new platform for evaluation.

The technology used for the new Copert version is completely new. Previous versions
were developed using MS Access and this new version will be developed using MS
Visual Studio .NET. This change of technology implies a completely new software
design and coding work.

Note: It should be made clear that this report and the beta version of the software should
be only treated as evaluation versions. The software is supposed to be used by national
experts and interested parties in an effort to collect comments about its compatibility
with different operation systems, speed of calculations and ease of operation. It should
by no means be used as a tool for official data submission in the framework of
CLRTAP, UNFCCC or other activities. Additionally, the development team shall not be
liable for any damages whatsoever arising out of the use or inability to use the Copert 4
beta version software.

Note: For any requests, feedback and general questions, users should contact Leonidas
Ntziachristos (leon@auth.gr) or Charis Kouridis (hkouridi@auth.gr).

1.1 Introduction of the methodology used by COPERT

COPERT calculates the pollution produced by one (or more) vehicle in one year. For
this objective, the COPERT methodology [2] bases the calculations in the called
Emission Factors. These factors describe how much quantity of a pollutant is produced
by a vehicle per Km.

Basically there are two Emission Factors,

a. Hot Emission Factors
b. Cold Emission Factors

This differentiation is made because the pollutant produced by a vehicle depends highly
on the temperature of the engine. Hot Emission factors are related to the quantity of
pollutant produced when the engine is in normal temperature conditions. In the other
hand, Cold Emission Factors are related to the quantity of pollutant produced when the
engine is not still in the proper warm temperature.

Once the Emission Factors are calculated it is possible to calculate the Cold and Hot
Emissions that the vehicle will make in one year. Knowing the pollution that will
produce in one Km (in hot or cold conditions), will be only needed the information
about how many Km will run in one year and how many of these Km will be in cold or
hot conditions. Intuitively:

Being the Hot Pollutant Emissions calculated, by analogy, in the same way.

Of course the number of Km made by a vehicle in cold or hot conditions is not obvious
and is calculated by COPERT using many parameters.

To reach better refined results, COPERT calculates and uses the Mileage Degradation
Factor and the Fuel Effect Factor. The first one takes in account that the age of the
vehicle is important (older cars will produce more pollution). The last one is related to
the effects that new fuel types can produce in older cars (improved fuels will make the
cars produce less pollution even being elders).

This methodology is described more detailed in the chapter 2.

1.2 COPERT 4 prototype and development objectives

The prototype will be a complete and autonomous system capable of performing the
calculations explained in section 2. The calculations are made following the guidelines
of previous versions of COPERT[1] and its methodology [2] in some moments, but
must be reprogrammed since new calculation methodologies are used.

The new prototype, focused also in the structure of the data stored, will have a new
feature: keep in the same database the information calculated for several countries and
several years which imply an extension of all the other functionalities to achieve this
goal.

Cold Pollutant
Emissions
while the car is
in cold
conditions

=

Quantity of
Pollutant per
Km will be
produced by the
vehicle in cold
conditions

X

Number of
Km made by
the vehicle
per year in
cold
conditions

Summarizing, the prototype will re-implement the following functionalities:

a. Management of Sectors, Subsectors, Technologies.
b. Management of input data: Fleet Information, Fuel Information, Country

information, etc…
c. Calculation of Hot and Cold Emissions
d. Calculation of Fuel Effects and Mileage Degradation Factors.

Also will implement with a new methodology the Calculation of Hot and Cold Emission
Factors and will incorporate, as a new feature, the functionality of performing these
calculations for several countries and several years’ scenarios.

For more information about the functionalities offered by the prototype, in chapter 3 are
given complete specifications of the requirements and the objectives.

As a last point, the way of coding the prototype will be focused on the extensibility,
making easier future upgrades. One way to achieve this goal will be programming all
the calculations as independent calculations. In previous versions of COPERT this
procedure was not followed enough and made the modifications or upgrades difficult to
perform. If it is true that this way of coding will be in detrainment of the performance,
the objective is to get enough good performance level as far as it is possible to keep this
coding requirement.

1.3 Technical Solution for the prototype development

After evaluating all the possibilities, the chosen one, was to develop the prototype with
Visual Basic .NET. The reasons are based on it is easy to use, economically is not a
problem, it is easy to link with MSOffice tools and the Databases connection is good.

The easiness of use should not be something to take in account at all, but this prototype
is in a special situation. Future developments will not be done by very experienced
programmers or computer engineers. This could be a problem in the future since many
engineers have large knowledge about their areas (like pollutants and vehicles) but not
that much in software programming. Choosing an easy way since the beginning would
improve a lot the view of the future.

Secondly, the way of linking with MS Office makes easy to import data from the Excel
Datasheets that the users are very familiar with. When large quantity of data is going to
be introduced in the system and frequently, this functionality can save a lot of time.

Finally, the connection to databases is also very important since all the data will be
stored in databases. The chosen one at last is MS Access, what makes even stronger the
decision of using both systems from the same company.

In the Database design, was decided to use MS Access because it does not need any
server installation, is enough powerful to response to the SQL Queries needed and other
reasons less but also important

2. Methodology for calculation of COPERT

The objective of COPERT is the calculation of the pollution generated by the vehicle
fleet of one country in one specific year. To reach this final value it is needed to follow
some steps in sequence:

1. Hot Emission Factors Calculation: The Hot Emission factor is the numerical
expression for the quantity of pollution that one vehicle generates per Km in
normal conditions. This calculation takes many parameters:

a. Engine Parameters: Some coefficients depending on the engine type.
These parameters are named with Greek letters (Alpha, Beta, Gamma,
Delta, Epsilon, Zita and Ita). Also it is important the type of petrol used
by the vehicle.

b. Year of production: Depending on the year if production (resp. year of
registration), vehicles must fulfill different legal requirements (emission
standards) about emissions, etc… These values are also taken in account.
Many times there is no enough information about the consumption of
one engine, the pollutant quantity, etc.. but it is known that is the
pollution of another vehicle type reduced with a coefficient (for example
the new version of one car will reduce the pollutant quantity of its
predecessor in a 30%). This coefficient (Reduction Factor) is also a
parameter for the calculation of the Hot Emission Factors.

c. Driving Mode: The Driving mode is very important since the pollution
produced will change depending on the type of road. We take in account
3 types of road, so 3 driving modes: Urban, Rural and Highway.

d. Average Speed: Depending on the average speed the pollutant
production is different.

2. Hot Emissions Calculation: The Hot Emissions is the numerical expression for

the quantity of pollution produced by all the vehicles of one country in normal
conditions. Since we already have calculated the Hot Emission factors, now we
only need to make a last calculation using other parameters:

a. Population: Number of vehicles of every type existing in the country,
b. Road Share: Percentage that explains the portion of Km that every

vehicle runs in every type of road. (As an example, a truck will stay 80%
in Highways and a small motorbike only a 10%. This will affect to the
calculation of pollution)

c. Mileage per Year: Mileage made by every vehicle per year.

3. Cold Emission Factor Calculation: This emission factor represents the
pollution produced per Km by the vehicles when they are not in a hot state. This
happens in the beginning of any trip. This calculation is based in the Hot
Emission Factors calculation. The other parameters used are:

a. Temperature of the country: It is taken in account the temperature of
every month of the year in country since in colder seasons the engine
will become hot later than in warm seasons.

b. Engine Parameters: Depending on the engine, like in the Hot Emission
Factors, the pollutant production differs.

c. Year of Production: Like in the Hot Emission Factors
d. Driving mode: For this calculation is only taken in account the Rural and

Urban driving modes since it is supposed that a car will never be in a
cold state in a Highway. Normally to reach the Highway will do some
Km and get hot.

4. Cold Emissions Calculation: This is the number that represents the pollution
produced in one year by the vehicles of one country when they are not in a hot
state. For the calculation will be used:

a. Urban Share: Percent of Km made in Urban roads
b. Mileage per Year: Km made in the simulation year.
c. Population: Number of vehicles of every type that are active in the

country.
d. Fuel Type: Affects to the pollution produced.
e. Average Trip Length: 12.3 Km is taken as the standard average trip

length. As more trips are made with fewer miles per year means that the
vehicles will be more time in a cold state, so, it is taken in account.

Hot
Emission
Factors

Empirical Data.

Temperature of the Country
Engine Parameters
Year of production

Driving Mode

Empirical Data

Urban Share
Population
Fuel Type

Mileage per Year
Average Trip Lenght

Cold
Emissions

Cold Emissions Calculation

Cold
Emission
Factors

These basic calculations are good approximations to the real values, but, it is possible
get better approximations taking account some other factors that have influence in the
production of pollutants. In this prototype are two of these improvements implemented:

1. Fuel Effect Calculation: In order to calculate the Hot Emission Factors with
more precision, the effect that the fuel makes in the emission is very important.
That’s why it is calculated and modifies the Hot Emission Factor values. In this
way, the Fuel Effects are dependant of:

a. Fuel Type: Dependant on Diesel or Gasoline type
b. Post EURO I: The engines posterior to EURO I had better response to

the fuel pollutants.

2. Mileage Degradation Calculation: Also the Hot Emission Factors are

influenced by the state of the car. Intuitively we can imagine that a new brand
car will produce less pollution than a car 25 years old. This appreciation is taken
in account. To calculate the degradation are taken some parameters:

a. Mileage of the vehicle: The real parameter that matters is the mileage in
front of the age of the car. A car very old can be in better condition that a
newer if the new made more Km.

b. Speed in Different Roads: The speed in the different roads is important
since many Km made in a Highway but slowly have a different influence
than made at top speed for example.

c. Factors about speed ranges: Empirically are some values taken that are
important factors depending the average speed.

Hot
Emission
Factors

Statistical Data.

Temperature of the Country
Engine Parameters
Year of production

Driving Mode

Statistical Data

Urban Share
Population
Fuel Type

Mileage per Year
Average Trip Lenght

Cold
Emissions

General Calculation

Cold
Emission
Factors

Mileage
Degradation

Fuel
Effects

Hot
Emissions

Statistical Data.

Engine Parameters
Year of production

Driving Mode
Average Speed

Statistical Data

Population
Road Share

Mileage per Year

Technical
Data

Engine
Parameters

3. Detailed prototype requirements analysis

The main objective of this project is to develop a first prototype for COPERT 4. The
final COPERT 4 will be developed with successive refinements of this prototype. So,
although these refinements are out of range of this project, the first developed prototype
must be as much as possible a good basis for developing the next prototype.

3.1 Functional Requirements

The prototype must perform these following calculations, in the way that are specified
in the methodology [2].

1. Hot emission factors calculation.
2. Cold emission factors calculation.
3. Fuel Effect calculation.
4. Mileage Degradation calculation.
5. Hot emissions calculation.
6. Cold emissions calculation.
7. All emissions calculation.

All these calculations must be made for all vehicle technologies, sectors and subsectors
selected by the user. This selection must be made one by one vehicle type.

The user must be able to see all the results from the calculation and all the intermediate
data stored in the system used to calculate these values. Every calculation result will be
in different screen.

Must exist an easy way to introduce all the data needed to perform these calculations. A
way similar to old versions of COPERT is expected, graphical application using
windows system.

The functionality of calculation for several countries and several years must be possible
for the user. The user must be able to select different countries for different scenarios,
using the data related to this country like temperature, fleet population, etc… happening
the same with the year related data. The user will be able then to change the current
country for calculations.

For real data, obtained by empirical methods, the user must have a way to introduce its
own values for the calculation without override the real ones, having also the possibility
to use some real data values mixed with some own values. These own values will be
also stored with the other data in order to be used in posterior calculations saving the
user of introduce them again.

Also the user must be able to Add/Delete vehicle technologies, sectors or subsectors to
the system for more specific calculations. For existing vehicle technologies, sectors and
subsectors, specified by the standard normative the user must be able to modify their
characteristics.

All the data calculated must be stored in a permanent system like a Database or any
other system with the same functionalities. The prototype must retrieve, on demand on
the user, information stored in previous calculations. In the same way, the user must be
able to store calculations performed by the prototype in a permanent system for later
use.

The prototype must include help section for the user with topics related to the use of the
software.

3.2 Non-functional requirements

3.2.1 General purpose requirements

The way that the prototype must save the data calculated must be in a one single file,
making easier the interchange of data between users.

The prototype must contain the data needed to make the calculations for one scenario
simulation consisting in one year in Greece.

The language used in the Graphical User Interface will be English.

3.2.2 Language and coding requirements

The prototype code must be as much as possible using Object Oriented Programming
languages and technologies.

In order to make possible future refinements of the prototype, the code must be written
following the coding style described in this document in the respective section.

All variables, functions, labels, comments, etc…, must be written in English.

The coding must give more priority to calculation efficiency in front of other qualities
like upgradeability or connectivity until reach the appropriate level of low timing in the
calculations.

3.2.3 System requirements

The prototype must be able to work in good conditions in a personal computer with the
following characteristics or better:

• Athlon AMD XP1800+, or quicker processor.
• 256 Mb RAM memory
• 300Mb Hard Drive free space for software. The space needs increase depending on the
user data storage.
• CDROM x32
• 1024 x 768 screen
• Windows keyboard 88-/99 keys.
• Mouse or similar pointing system.
• Windows XP system installed

4. Diagram and Specification.

4.1 Diagram

User

Add/Delete
Technology

Add/Delete Sector
Add/Delete
Subsector

Edit Sector
Properties

Edit Subsector
Properties

Edit Technology
Properties

Edit/Introduce Input
Hot Emission Parameters

Edit/Introduce Input
Cold Emission Parameters

View/Calculate Hot
Emission Factors

View/Calculate Cold
Emission Factors

Edit/Introduce Input
Fuel Parameters

Edit/Introduce Mileage
Degradation Parameters

View/Calculate Hot
Emissions

View/Calculate
Cold Emissions

View/Calculate All
Emissions

View/Calculate
Fuel Effects

View/Calculate
Mileage Degradation

Edit/Introduce
Fleet Info

Edit/Introduce
Circulation Info

Edit/Introduce
Evaporation Share Info

View/Calculate
Results

«uses»

«uses»

«uses» «uses» «uses»

«uses»

«uses»

«uses»

Edit/Introduce
Calculation Data

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»

Manage Vehicle
Categories

«uses»

«uses»

«uses» «uses»

«uses»

«uses»

«uses»

4.2 Specification

Use Case: Add/Delete Technology
Information in screen:
Output: List of current technologies
Input: Technology Name, Technology Order, Technology Euro Number

Description: Screen with the fields in blank to be filled by the user in order to add a
new technology and its properties or the list of technologies on system. To delete one,
the technology must be selected. On accept, the system will ask confirmation to the
user.

Use Case: Add/Delete Sector
Information in screen:
Output: List of current sectors
Input: Sector Name, Sector Order

Description: Screen with the fields in blank to be filled by the user in order to add a
new Sector and its properties or the list of technologies on system. To delete one, the
Sector must be selected. On accept, the system will ask confirmation to the user.

Use Case: Add/Delete SubSector
Information in screen:
Output: List of current subsectors
Input: SubSector Name, SubSector Order, SubSector Fuel Type

Description: Screen with the fields in blank to be filled by the user in order to add a
new SubSector and its properties or the list of technologies on system. To delete one,
the SubSector must be selected. On accept, the system will ask confirmation to the
user.

Use Case: Edit Sector Properties
Information in screen:
Output: List of current sectors
Input: Sector Name, Sector Order

Description: Screen with the list of sectors in the system. After selecting the sector, the
user can edit the properties of the sector in the specified fields. After accepting the
changes the system asks for confirmation.

Use Case: Edit SubSector Properties
Information in screen:
Output: List of current subsectors
Input: SubSector Name, SubSector Order, SubSector Fuel Type

Description: Screen with the list of subsectors in the system. After selecting the
subsector, the user can edit the properties of the subsector in the specified fields. After
accepting the changes the system asks for confirmation.

Use Case: Edit Technology Properties
Information in screen:
Output: List of current technologies
Input: Technology Name, Technology Order, Technology Euro Number

Description: Screen with the list of technologies in the system. After selecting the
technology, the user can edit the properties of the technology in the specified fields.
After accepting the changes the system asks for confirmation.

Use Case: Edit/Introduce Fleet Info
Information in screen:
Input/Output: List of vehicles(Sector, Subsector and Technology)
Input: Population, Annual Mileage, Fuel Injection and Evaporation Control.

Description: Screen with the list of vehicles in the system, showing the Sector,
Subsector and Technology. For each vehicle, related to the Fleet info, the fields with
the already introduced data for these vehicles or blank in case of nothing introduced
yet.
In any moment the user can create or delete new vehicles in the fleet, selecting the
proper Sector, Subsector and Technology. On create will raise an error if exists another
vehicle with the same Sector,Subsector and Technology.

Use Case: Edit/Introduce Circulation Info
Information in screen:
Output: List of vehicles(Sector, Subsector and Technology)
Input: Urban Speed, Rural Speed, Highway Speed, Driving Share Rural, Driving
Share Urban, Driving Share Highway

Description: Screen with the list of vehicles in the system, showing the Sector,
Subsector and Technology. For each vehicle, related to the Circulation info, the fields
with the already introduced data for these vehicles or blank in case of nothing
introduced yet.

Use Case: Edit/Introduce Evaporation Share Info
Information in screen:
Output: List of vehicles(Sector, Subsector and Technology)
Input: Urban Speed, Rural Speed, Highway Speed, Driving Share Rural, Driving
Share Urban, Driving Share Highway

Description: Screen with the list of vehicles in the system, showing the Sector,
Subsector and Technology. For each vehicle, related to the Evaporation Share info, the
fields with the already introduced data for these vehicles or blank in case of nothing
introduced yet.
These fields will contain the values for the percentage share in Urban, Rural and
Highway roads.
On finishing the introduction or modification of data the system will check the integrity
controlling sum of all the values for every vehicle are not bigger than 100%

Use Case: Edit/Introduce Input Hot Emission Parameters
Information in screen:
Output: List of vehicles(Sector, Subsector and Technology)
Input: For each Vehicle Range Speed(Order, Alpha, Beta, Gamma, Delta, Epsilon,
Zita, Ita, Thita, Reduction Factor, Low Speed Limit, Top Speed Limit, Include Top
Speed, Include Low Speed)

Description: Screen with the list of vehicles in the system, showing the Sector,
Subsector and Technology. For each vehicle, related to the Hot Emission Parameters,
the fields with the already introduced data for these vehicles or blank in case of nothing
introduced yet.
These fields will contain the values for all the parameters needed to calculate the Hot
Emission Factors. The values will be separated using the Driving Mode value, so, by
Urban, Rural or Highway driving modes.
On accept the system will check the integrity of the values, avoiding having speed
ranges with wrong values.

Use Case: Edit/Introduce Input Cold Emission Parameters
Information in screen:
Output: List of vehicles(Sector, Subsector and Technology)
Input: For each Vehicle Range Speed and Month(Order,Month, A, B, C, Low Speed
Limit, Top Speed Limit, Include Top Speed Limit, Low Temperature Limit, Top
Temperature Limit, Include Low Temperature Limit)

Description: Screen with the list of vehicles in the system, showing the Sector,
Subsector and Technology. For each vehicle, related to the Cold Emission Parameters,
the fields with the already introduced data for these vehicles or blank in case of nothing
introduced yet.
These fields will contain the values for all the parameters needed to calculate the Cold
Emission Factors. The values will be separated using the Driving Mode value, so, by
Urban, Rural or Highway driving modes.
On accept the system will check the integrity of the values, avoiding having speed

ranges or temperature ranges with wrong values.

Use Case: Edit Input Fuel Parameters
Information in screen:
Input/Output: Gasoline E100, Gasoline E150, Gasoline Aromatics, Gasoline Sulphur,
Gasoline Oxygenates, Gasoline Olefins, Gasoline Benzane, Diesel Density, Diesel
PCA, Diesel CN, Diesel T95, Diesel Sulphur

Description: Screen with all the values related to the different Fuel Types, depending
on the year.
These fields will be able to be changed and after accepting the changes a correctness
check will be performed.

Use Case: Edit/Introduce Mileage Degradation Parameters
Information in screen:
Output: List of vehicles(Sector, Subsector and Technology) and Pollutants
Input: For each Vehicle and Pollutant (Am 19Km, Am 63Km, Bm 19Km, Bm 63Km)

Description: Screen with the list of vehicles in the system, showing the Sector,
Subsector and Technology. For each vehicle, related to the Mileage Degradation
Parameters, the fields with the already introduced data for these vehicles or blank in
case of nothing introduced yet.
These fields will contain the values for all the parameters needed to calculate the
Mileage Degradation Factors.
On accept the system will check the integrity of the values, avoiding having erroneous
values.

Use Case: Calculate/View Fuel Effects
Information in screen:
Output: List of vehicles(Sector, Subsector and Technology),Pollutants and Fuel Effect
Values

Description: Screen with the list of vehicles in the system, showing the Sector,
Subsector and Technology. For each vehicle, related to the Fuel Effects, the fields with
the already calculated data for these vehicles or blank in case of nothing calculated yet.
On response to user petition, the Fuel Effects will be calculated and this screen will be
updated.

Use Case: View/Calculate Mileage Degradation
Information in screen:
Output: List of vehicles(Sector, Subsector and Technology),Pollutants and Urban
Value, Rural Value, Highway value

Description: Screen with the list of vehicles in the system, showing the Sector,
Subsector and Technology. For each vehicle, related to the Mileage Degradation
Calculation, the fields with the already calculated data for these vehicles or blank in
case of nothing calculated yet.

On response to user petition, the Mileage Degradation will be calculated and this
screen will be updated.

Use Case: View/Calculate Hot Emission Factors
Information in screen:
Output: List of vehicles(Sector, Subsector and Technology),Pollutants and Urban
Values, Rural Values, Highway values for Base Type and Calculated Type

Description: Screen with the list of vehicles in the system, showing the Sector,
Subsector and Technology. For each vehicle, related to the Hot Emission Factors
Calculation, the fields with the already calculated data for these vehicles or blank in
case of nothing calculated yet.
On response to user petition, Hot Emission Factors will be calculated and this screen
will be updated.

Use Case: View/Calculate Cold Emission Factors
Information in screen:
Output: List of vehicles(Sector, Subsector and Technology),Pollutants, Months and
Urban Value, Rural Value, Highway value.

Description: Screen with the list of vehicles in the system, showing the Sector,
Subsector and Technology. For each vehicle, related to the Cold Emission Factors
Calculation, the fields with the already calculated data for these vehicles or blank in
case of nothing calculated yet.
On response to user petition Cold Emission Factors will be calculated and this screen
will be updated.

Use Case: View/Calculate Hot Emissions
Information in screen:
Output: List of vehicles(Sector, Subsector and Technology),Pollutants and Urban
Value, Rural Value, Highway value.

Description: Screen with the list of vehicles in the system, showing the Sector,
Subsector and Technology. For each vehicle, related to the Hot Emissions Calculation,
the fields with the already calculated data for these vehicles or blank in case of nothing
calculated yet.
On response to user petition Hot Emissions will be calculated and this screen will be
updated.

Use Case: View/Calculate Cold Emissions
Output: List of vehicles(Sector, Subsector and Technology),Pollutants and Urban
Value, Rural Value.

Description: Screen with the list of vehicles in the system, showing the Sector,
Subsector and Technology. For each vehicle, related to the Cold Emissions
Calculation, the fields with the already calculated data for these vehicles or blank in

case of nothing calculated yet.
On response to user petition Cold Emissions will be calculated and this screen will be
updated.

Use Case: View/Calculate All Emissions
Output: List of vehicles(Sector, Subsector and Technology),Pollutants and Urban
Value, Rural Value, Highway Value.

Description: Screen with the list of vehicles in the system, showing the Sector,
Subsector and Technology. For each vehicle, related to the Cold Emissions Calculation
and Hot Emissions Calculation and the Sum of them, the fields with the already
calculated data for these vehicles or blank in case of nothing calculated yet.
On response to user petition Cold Emissions will be calculated and this screen will be
updated.

5. Kernel and Database programming

5.1 Database Technologies

For this stage prototype would be possible to think on using a normal file to store all the
data that is going to be used. In order to fulfill all the functionalities expected, the
quantity of data stored would not be very large, so, in this case affordable by a normal
binary file. If this solution was revoked was because of three main reasons.

a. The commodity of the SQL Query system: Using a simple file to store the
data, we had to have all the data in memory, stored probably in matrix, and
since all the calculations are made in a sequential way, would produce a
chaotic code. The calculations are enough complicated to made them more
complicated because of the code.

b. The easy portability for future uses of the data: A possible future step for this
data will be a Web Programmed interface, making accessible the data over
the world. Obviously having this future situation in mind, the normal file
way is not a good choice since from all the Web technologies the access to
Databases is very easy, contrary to file access.

c. Import system from other applications: If a file is used, the idea of exporting
data from other applications like, for instance, MS Excel, is not a straight
job. Having a Database, with other applications, if the Database has ODBC
driver makes easier the way to introduce data.

d. Future enlargement of the data: In the future is possible to have a system
with stored data for many years calculation, many countries at the same time,
the file would be a limitation.

So, after these reasons, the way of storing the data seems to have a clear manner in
shape of a Database. The first look was to MS SQL Server or Oracle. These two
Databases, with very good performance would be very useful and really good.
Unfortunately we find the first important problem, the economical. If COPERT would
use a pay based Database, all the users whose would use it must have the proper licence.
This idea is not good when COPERT is supposed to be for all type of budgets.

Discarding the pay based Databases we can focus on others systems like MySQL or
PostgreSQL. These two systems, at first sight were the correct choice, but lately we
discovered that to force the user to install any of these Databases could be problematic.
That is how we found finally the solution for our necessities.

Finally MS Access was chosen in order to store all the persistent data for COPERT, for
several reasons:

a. SQL Queries: Is true that is not the best SQL based system, but enough to
perform the queries that COPERT needs.

b. ODBC Compliant: Offers a very easy way to introduce data. Using ODBC,
from other MS Office programs, etc…

c. Data Portability: In case of need another Database, the portability of the data
is very easy and at any case can be performed using MS Access
programming code to transfer to XML, a binary file or any other way.

d. Licence: If it is true that to program in MS Access requires a licence, to
distribute a MS Access file does not require anything. And, if the user would
like to open the database by itself and change something, is expectable that
the user will have MS Office licence.

e. No server needed: The database is working by itself, without the need of
installing new servers or additional systems. Also for information exchange
between users is very useful since only is needed to send one file.

Another possibility that was thought was to have a SQL Server or Oracle system
running in a central server and give access to the users that wanted to use COPERT.
This solution was also revoked because many institutions or countries have no access to
Internet all the time and have connection problems. MS Access being offline or with
basic online features for intranets seems to be enough.

5.2 Kernel Technologies

The decision about which technology to use by the kernel of the prototype was since the
beginning an easier question. The first idea was to program it on Java, it is a free
technology, easy for the programmer and with good connectivity with Databases.

But, since this is only a prototype, and future versions will be made taking this
prototype as basis, it was a very important point to think who was going to continue
with the development. This made to decide finally to program in Visual Basic. The
future programmers of COPERT where going to be mechanical engineers, all of them
very used to work with Visual Basic and MsOffice, but unfortunately not so used with
Java technologies.

So, in this way we decided the Visual Basic programming, also good on connectivity
with databases (better even with Microsoft Databases which was the case).

Currently, the developing in Visual Basic 96 is getting down because of the increasing
programmer community working with its new version Visual Basic .NET. Also, this
new version had some important features that made it the best choice:

a. New Middleware for connection with databases, ADO.NET
b. Possible use of other languages, since in .NET framework is possible to

compile software using several programming languages together. This could
be useful if in future versions a new language can be used by any expert.

c. Future web application: The .NET technology makes easier to transfer an
application not internet focused to a whole web based application. The future
of COPERT could be focused on this direction and could be useful in the
future.

d. Possible link with MS Office: The users of COPERT are used to work with
MS Excel for example. To make an import procedure from Excel is easier
with Visual Basic .NET

At last, following all these reasons made the Visual Basic .NET the chosen option.
Unfortunately, the ADO.NET at last was not used since had very bad performance
results accessing to MS Access databases, something really unexpected. A completely
reprogramming of the access to the database had to be done to make the access quicker.

At last was used DAO technology, which archaic technology but very efficient. The
newer versions of DAO (ADO or ADO.NET) incorporated new interesting features to
increase the functionalities but where not useful at all for the COPERT calculations.

Visual Studio .NET is not a free technology. A license is required, but fortunately the
problem of the license was inexistent in this case because the University had already the
license of Visual Studio .NET.

The last decision to take was where were going to be placed all the queries. It was
possible in two ways:

a. Queries in the kernel code: This way would separate completely the data
layer from the calculation layer. Very useful for future upgrades of the
system. Unfortunately the performance was not the desired.

b. Queries in the database: This option, the chosen finally, was taken to
improve the performance. The fact of having the query precompiled in the
database made it much quicker.

The bad point of the query in the database was that anybody could open the database by
its own and change any query used by the system. This could cause system crashes not
really desirable and probably, with malicious minds, destroy some important data. To
avoid this problem the queries used by the system are under administrator rights making
impossible to modify by the user.

6. Database design and construction

The design of the Database is according to the implementation. Unfortunately, the MS
Access is a very small system with not many features. In some cases, in order to
implement correctly the data system would have been useful some foreign key system
or some triggering system. With these restrictions these functionalities had to be
implemented in the kernel. Anyway in this section are explained the major constrains
for the data even is not implemented properly in the database.

In the following diagrams can be appreciated that the database is divided in four sectors.
The prefix (A_, B_, C_ or D_) also shows de distinction.

a. User Input Tables: Tables used to store the classical variable data that the user
can introduce. Does not mean that the user has no access to insert or update in
the other tables, but these tables are the ones that suffer this action more
commonly.

A_COUNTRIES

PK,I1 CNT_ID

CNT_NAME
CNT_LTRIP

A_COUNTRIES_PER_MONTH

PK CPM_COUNTRY_ID
PK CPM_MONTH

CPM_TEMP_MIN
CPM_TEMP_MAX
CMP_BETA
CMP_RVP

A_POLLUTANTS

PK POL_ID

POL_NAME

A_SECTORS

PK SEC_ID

SEC_NAME
SEC_ORDER

A_FUEL_CHARACTERISTICS_PER_YEAR

PK FCY_YEAR

FCY_GAS_E100
FCY_GAS_150
FCY_GAS_AROMATICS
FCY_GAS_SULPHUR
FCY_GAS_OXYGENATES
FCY_GAS_OLEFINS
FCY_GAS_BENZANE
FCY_DSL_DENSITY
FCY_DSL_PCA
FCY_DSL_CN
FCY_DSL_T95
FCY_DSL_SULPHUR

A_SUBSECTORS

PK SSC_ID

SSC_NAME
SSC_ORDER
SSC_FUEL_TYPE

A_TECHNOLOGIES

PK TEC_ID

TEC_NAME
TEC_ORDER
TEC_EURO_NO

A_VEHICLES

PK VEH_ID

I1 VEH_COUNTRY_ID
I2 VEH_SECTOR_ID
I3 VEH_SUBSECTOR_ID
I4 VEH_TEC_ID

VEH_YEAR
VEH_POPULATION
VEH_MILEAGE
VEH_FUEL_INJECTION_PCT
VEH_EVAP_CONTROL_PCT
VEH_U_SPEED
VEH_R_SPEED
VEH_H_SPEED
VEH_U_SHARE_PCT
VEH_R_SHARE_PCT
VEH_H_SHARE_PCT
VEH_U_EVAP_SHARE_PCT
VEH_R_EVAP_SHARE_PCT
VEH_H_EVAP_SHATE_PCT

User Input Tables

b. COPERT Empirical Parameters Tables: Tables used to store all the parameters

and constants that COPERT has as default values. All the values contained in
this tables are values obtained in real environments, the user can change them
although is not very recommendable.

c. Intermediate Calculation Tables: Tables with the Emission Factors calculated.
These values do not change significantly if the data stored in the b. section is not
changed.

d. Final Calculation Tables: Tables with the results of Emissions.

6.1 Table Explanation

 6.1.1. A_COUNTRIES

This table contains the information for every country inside the system. The average
Length trip is in this table because every country can have its own value although
generally is used the agreed one 12.3 Km

Column Name Data Type Description
CNT_ID Long Id for the country
CNT_NAME Text Name of the country
CNT_LTRIP Double Average Length trip for the country

6.1.2. A_COUNTRIES_PER_MONTH

This table contains the attributes monthly dependant for every country. Although a good
choice had been to store the monthly data all in one row, for simplification of the code
was created a new row for every month.

The Beta and RVP parameters are used to calculate the Cold Emission Factors.

Table Restrictions: CPM_TEMP_MIN cannot be greater than CPM_TEMP_MAX.

Column Name Data
Type Description

CPM_COUNTRY_ID Long Id for the country
CPM_MONTH Integer Month number
CPM_TEMP_MIN Double Minimum temperature for this month
CPM_TEMP_MAX Double Maximum temperature for this month
CMP_BETA Double Beta parameter for this month
CMP_RVP Double RVP parameter for this month

6.1.3. A_FUEL_CHARACTERISTICS_PER_YEAR

In the system needs to be stored some fuel characteristics for three special year: 1996,
2000, 2005. This fuel characteristics are used to calculate the fuel effects in the Hot
Emission Factors.

Column Name Data
Type Description

FCY_YEAR Integer Year (1996,2000 or 2005)
FCY_GAS_E100 Double Gasoline E100 value
FCY_GAS_150 Double Gasoline E150 value

FCY_GAS_AROMATICS Double Gasoline Aromatics value
FCY_GAS_SULPHUR Double Gasoline Sulphur value
FCY_GAS_OXYGENATES Double Gasoline Oxygenates value
FCY_GAS_OLEFINS Double Gasoline Olefins value
FCY_GAS_BENZANE Double Gasoline Benzane value
FCY_DSL_DENSITY Double Diesel Density value
FCY_DSL_PCA Double Diesel PCA value
FCY_DSL_CN Double Diesel CN value
FCY_DSL_T95 Double Diesel T95 value
FCY_DSL_SULPHUR Double Diesel Sulphur value

6.1.4. A_POLLUTANTS

This table stores the basic information for the pollutants.

Column Name Data
Type Description

POL_ID Long Identifier for the pollutant
POL_NAME Text Technical name of the pollutant. (‘CO’, ‘NOx’, etc…)

6.1.5. A_SECTORS

The sectors are the general categories to classify the vehicles. Are the most general,
including descriptions as ‘Buses’ or ‘Motorcycles’.

This table stores this sectors information. Every sector has a popular name and a
sequence order. This order is used because all the sectors are show always to the user in
the same order.

Column Name Data
Type Description

SEC_ID Long Idenfier for the Sector
SEC_NAME Text Popular name of the sector (‘Passanger Car’, ‘Light

Duty Vehicle’, etc…)
SEC_ORDER Integer Order to be shown to the user. Always positive.

6.1.6. A_SUBSECTORS

The subsectors are more specific classification for the vehicles. Are part of this level
categories like ‘Gasoline 1,4 - 2,0 l’ or ‘2-Stroke’.

This table stores this subsectors information. Every subsector has a popular name and a
sequence order. This order is used because all the subsectors are show always to the
user in the same order. The information about the Fuel type used by these subsectors is
stored in this table as well.

Column Name Data
Type Description

SSC_ID Long Identifier for the Subsector
SSC_NAME Text Popular name of the subsector (‘Coaches’, ‘Gasoline

1,4 - 2,0 l’, etc…)
SSC_ORDER Integer Order to be shown to the user. Always positive.
SSC_FUEL_TYPE Text ‘GAS’ for Gasoline,

‘DSL’ for Diesel,
‘LPG’ for Liquid Petroleum Gas.

6.1.7. A_TECHNOLOGIES

The technologies are the third level of categorization and the most specific. These
categories are related to the technology of the engine and are based on standards. Some
of these categories are ‘91/441/EEC’ or ‘Open Loop’.

This table stores the technologies information. Every technology has the label or
popular name, the order and the technology which represents relative to the EURO I.
For many calculations is important to know if a vehicle uses a technology posterior to
the technology EURO I.

Column Name Data Type Description
TEC_ID Long Identifier for the technology
TEC_NAME Text Name for the technology
TEC_ORDER Integer Order to follow when is shown the list of technologies

to the user.
TEC_EURO_NO Integer 0 if is a Pre or EURO I Technology

x for Technologies EURO x

6.1.8. A_VEHICLES

This table contains the information about all the vehicles types of all countries. The
VEH_ID is considered Primary Key, as an alternative key exists:
(VEH_COUNTRY_ID, VEH_SECTOR_ID, VEH_SUBSECTOR_ID, VEH_TEC_ID,
VEH_YEAR)

Also with every vehicle all the data related to it in the country like the population,
average speed in urban ways, etc…

Column Name Data
Type Description

VEH_ID Long Identifier for the vehicle
VEH_COUNTRY_ID Long Identifier of the country which it

belongs

VEH_SECTOR_ID Long Identifier of the sector of the vehicle
VEH_SUBSECTOR_ID Long Identifier of the subsector of the

vehicle
VEH_TEC_ID Long Identifier of the technology of the

vehicle
VEH_YEAR Integer Year of the vehicle data
VEH_POPULATION Double Population of this type of vehicle in

the given year
VEH_MILEAGE Double Mileage of this type of vehicle in the

given year
VEH_FUEL_INJECTION_PCT Double Fuel Injection Percentage of this type

of vehicle in the given year
VEH_EVAP_CONTROL_PCT Double Evaporation Control Percentage of

this type of vehicle in the given year
VEH_U_SPEED Double Average Urban Speed of this type of

vehicle in the given year
VEH_R_SPEED Double Average Rural Speed of this type of

vehicle in the given year
VEH_H_SPEED Double Average Highway Speed of this type

of vehicle in the given year
VEH_U_SHARE_PCT Double Urban Share Percentage of this type

of vehicle in the given year
VEH_R_SHARE_PCT Double Rural Share Percentage of this type

of vehicle in the given year
VEH_H_SHARE_PCT Double Highway Share Percentage of this

type of vehicle in the given year
VEH_U_EVAP_SHARE_PCT Double Urban Evaporation Share Percentage

of this type of vehicle in the given
year

VEH_R_EVAP_SHARE_PCT Double Rural Evaporation Share Percentage
of this type of vehicle in the given
year

VEH_H_EVAP_SHATE_PCT Double Highway Evaporation Share
Percentage of this type of vehicle in
the given year

6.1.9. B_COLD_EMISS_PARAMETERS

This table contains the parameters needed to calculate the Cold Emission Factors for
every vehicle. Every factor parameter has a speed range, for instance, if the vehicle runs
faster than 30 Km/h will have different parameters for the calculation than if the vehicle
runs faster than 100 Km/h. In this way every parameter has several ranges of
calculation. Every parameter is also related to a month since the parameters change

depending the month (ambient temperature). Also the temperature range is used to
chose which parameters are used for the calculation.

Vehicle restriction: No speed range with greater order can specify a speed range of
lower speeds than another speed range with lower order.

Column Name Data
Type Description

CEP_VEH_ID Long Identification of the vehicle
CEP_POLLUTANT_ID Single Identification of the pollutant
CEP_SPEED_RANGE_ORDER Integer Order of the speed range.

Always bigger than 0.
CEP_MONTH Integer Month which can be applied

the parameter.
CEP_A Double A parameter
CEP_B Double B Parameter
CEP_C Double C Parameter
CEP_LOW_SPEED_LIMIT Double Low Bound of the speed

range
CEP_TOP_SPEED_LIMIT Double Top Bound of the speed range
CEP_INCLUDE_TOP_SPEED_LIMIT Boolean True if the upper bound is

included in the range
CEP_LOW_TEMP_LIMIT Double Low Bound of the

temperature range.
CEP_TOP_TEMP_LIMIT Double Top Bound of the temperature

range
CEP_INCLUDE_LOW_TEMP_LIMIT Boolean True if the lower bound of the

temperature is included in the
range

CEP_INCLUDE_TOP_TEMP_LIMIT Boolean True if the upper bound of the
temperature is included in the
range

CEP_VALUES_K Boolean Not used in this version

6.1.10. B_FUEL_EFFECTS

This table contains all the fuel effects calculated values for all the pollutants and
vehicles

Column Name Data
Type Description

FEF_VEHICLE_ID Long Identifier of the vehicle
FEF_POLLUTANT_ID Long Identifier of the pollutant
FEF_VALUE Double Fuel Effect Value

6.1.11. B_HOT_EMISS_PARAMETERS

This table contains the parameters needed to calculate the Hot Emission Factors for
every vehicle. Every factor parameter has a speed range, for instance, if the vehicle runs
faster than 30 Km/h will have different parameters for the calculation than if the vehicle
runs faster than 100 Km/h. In this way every parameter has several ranges of
calculation.

Vehicle restriction: No speed range with greater order can specify a speed range of
lower speeds than another speed range with lower order.

Column Name Data
Type Description

HEP_VEH_ID Long Identifier of the vehicle
HEP_DRIVING_MODE Text U for Urban Mode,

R for Rural Mode,
H for Highway Mode.

HEP_POLLUTANT_ID Long Identifier of the pollutant
HEP_SPEED_RANGE_ORDER Integer Order of the speed range.

Always greater than 0.
HEP_ALPHA Double Alpha parameter
HEP_BETA Double Beta parameter
HEP_GAMMA Double Gamma parameter
HEP_DELTA Double Delta parameter
HEP_EPSILON Double Epsilon parameter
HEP_ZITA Double Zita parameter
HEP_ITA Double Ita parameter
HEP_THITA Double Thita parameter
HEP_RF Double Reduction Factor relative to

the EURO I vehicle.
HEP_LOW_SPEED_LIMIT Double Low Bound for the speed

range
HEP_TOP_SPEED_LIMIT Double Top Bound for the speed

range
HEP_INCLUDE_TOP_SPEED_LIMIT Boolean True if the upper bound is

included in the range
HEP_INCLUDE_LOW_SPEED_LIMIT Boolean True if the lower bound is

included in the range
HEP_VALUES_K Boolean Not used in this version

6.1.12. B_MILEAGE_DEGRADATION_FACTORS

This table contains the parameters to calculate the Mileage Degradation Factors. Also
the factors will be stored in this table once calculated.

Column Name Data
Type Description

MDF_VEHICLE_ID Long Identifier of the vehicle
MDF_POLLUTANT_ID Long Identifier of the pollutant
MDF_AM_19KM Double Parameter Am for speed lower than 19 Km/h
MDF_BM_19KM Double Parameter Bm for speed lower than 19 Km/h
MDF_AM_63KM Double Parameter Am for speed greater than 63 Km/h
MDF_BM_63KM Double Parameter Bm for speed greater than 63 Km/h
MDF_U_VALUE Double Mileage Degradation value for Urban Roads
MDF_R_VALUE Double Mileage Degradation value for Rural Roads
MDF_H_VALUE Double Mileage Degradation value for Highway

Roads

6.1.13. B_REDUCTION_PARAMETERS

This table stores some constant reduction parameters used to calculate the Cold
Emission Factors.

Column Name Data
Type Description

REP_TECH_ID Long Identifier of the technology
REP_POLLUTANT_ID Long Identifier of the pollutant
REP_VALUE Double Value for the reduction parameter

6.1.14. C_COLD_EMISS_FACTORS_MONTHLY

This is the table that stores the calculated cold emission factors for all the vehicles.
Every cold emission factor is depending as well of the month. Also exist a corrected
value, this is the calculated value with some modifications for other calculations. The
user can set its own value in the User field. This value is taken in account if the
Value_K field is set to true.
Only the values for Urban Road are stored since it is supposed that the cold emissions
are made always on Urban Roads.

Column Name Data
Type Description

CEF_VEHICLE_ID Long Identifier of the vehicle
CEF_POLLUTANT_ID Long Identifier of the vehicle

CEF_MONTH Integer Month number
CEF_U_VALUE_CALC Double Urban Calculated Value
CEF_U_VALUE_COR Double Urban Corrected Value
CEF_U_VALUE_USR Double Urban User Given Value
CEF_U_VALUE_K Boolean True if user value is used.

6.1.15. C_HOT_EMISS_FACTORS

This table stores all the calculated hot emission factors data. Every vehicle has a
collection of values associated also to every pollutant. This values are stored in this
table as it follows.

Column Name Data
Type Description

HEF_VEHICLE_ID Long Identifier of the vehicle
HEF_POLLUTANT_ID Long Identifier of the pollutant
HEF_U_VALUE_CALC Double Urban calculated value
HEF_R_VALUE_CALC Double Rural calculated value
HEF_H_VALUE_CALC Double Highway calculated value
HEF_U_VALUE_COR Double Urban corrected value
HEF_R_VALUE_COR Double Rural corrected value
HEF_H_VALUE_COR Double Highway corrected value
HEF_U_VALUE_USR Double Urban User value
HEF_R_VALUE_USR Double Rural User value
HEF_H_VALUE_USR Double Highway User value
HEF_U_VALUE_CALC_BASE Double Urban Calculated Base value (without

reduction factors)
HEF_R_VALUE_CALC_BASE Double Rural Calculated Base value (without

reduction factors)
HEF_H_VALUE_CALC_BASE Double Highway Calculated Base value

(without reduction factors)
HEF_U_VALUE_K Boolean True if User value is used for Urban

Value
HEF_R_VALUE_K Boolean True if User value is used for Rural

Value
HEF_H_VALUE_K Boolean True if User value is used for Highway

Value

6.1.16. D_COLD_EMISSIONS

This store keeps the data of cold emissions. For each vehicle and pollutant keeps the
Urban and the Rural Emissions. It is possible to have Rural Emissions if the quantity of

emissions exceeds the Urban Share of the vehicle. In this case, the remaining emissions
are placed as Rural Emissions.

Column Name Data
Type Description

CEM_VEHICLE_ID Long Identifier of the vehicle
CEM_POLLUTANT_ID Long Identifier of the pollutant
CEM_U_EMISS Double Urban Cold Emissions value
CEM_R_EMISS Double Rural Cold Emissions value

6.1.17. D_HOT_EMISSIONS

This table stores the Hot Emissions Data. For every vehicle and pollutant the Emissions
for Urban, Rural and Highway are kept as it shows.

Column Name Data
Type Description

HEM_VEHICLE_ID Long Identifier for the vehicle
HEM_POLLUTANT_ID Long Identifier for the pollutant
HEM_U_EMISS Double Urban Hot Emissions value
HEM_R_EMISS Double Rural Hot Emissions value
HEM_H_EMISS Double Highway Hot Emissions value

7. Calculation system design

7.1 Class Diagram

This is the main structure of the COPERT 4 prototype calculation system. As it shows
there are two main parts: COPERTKernel and COPERTCalculator.

New()
Connect()
Disconnect()
rsGetReadOnlyRecordset()
rsGetRecordset()
ClearTable()
CalcHotEmissionFactors()
CalcHotEmissions()
CalcColdEmissFactors()
CalcColdEmissions()
CalcFuelEffect()
CalcMileageDegradation()

sDBPath : String
sDBVersion : String
LOW_SPEED_LIMIT : Double
TOP_SPEED_LIMIT : Double
dbEngine : DBEngine
dbDB : Database
oCOPERTCalculator : COPERTCalculator

COPERTKernel

New()
dCalcHotEmissionFactor()
dCalcHotEmissions()
CalcTotalHotColdEmissions()
dCalcColdEmissionFactor()
CalcColdEmissions()
CalcFuelEffectGas()
CalcFuelEffectDiesel()
CalcMileageDegradationFactors()

COPERTCalculator

COPERT IV Calculation System

New(in pisMessage : String, in pieInnerException : SystemException)
New(in pisMessage : String)

COPERTException

COPERTCalculator encapsulates all the calculations made by prototype. All formulas,
constants, etc... are introduced in this module. In this way, from other parts of the code,
it is not important to know what really does. Just passing the arguments, encapsulating
every function, reduces the spread of responsibilities focusing the calculations in this
member.

In the other hand, COPERTKernel is the manager of the data. Is the responsible to
connect with the Database and take all the important data to pass it to
COPERTCalculator. Later, on every result, it will update the Database.

Another feature important in the COPERTKernel is the way that the operations are
divided. The programming is made focusing on the independence of every operation.
The user for example, on changing the population of one vehicle type, does not need to
calculate again all the steps. Only with the last step, the emissions, can appreciate the
changes. This was not that clear in previous versions of COPERT what makes this
version more useful avoiding long waiting times.

At the bottom is shown the COPERTException. This class is responsible of the error
management. On every error from the database for example, this class overrides the
standard error. It is very useful for the error handling from the front end of the
application, giving specific error messages to the user.

It is very special that in a project of this size only exist three classes. The truth is that
although an Object Oriented Programming language is used, the background is not a
Object Oriented Application. If it is true that the Object Orientation is very useful, in
this project is not that much since the performance is a big deal. If the system should
have an instance for every vehicle that is being processed and every pollutant, etc… not
only would have a enormous waste of memory, also would have a very big lost of
performance since the use of every instance would be very small in time speaking.

Is in this way that the prototype is seen more as a batch processing software, using the
data as it comes from the data base, processing it and bringing back to the database as a
result. In this way, not many classes are needed, as it is the case.

7.2 Operations Specification

Context: COPERTKernel
Method: CalcHotEmissionFactors(Optional ByVal pisSQLQuery as String)
Precondition: pisSQLQuery must be a well formed SQL “WHERE” clause or NULL
Postcondition:

Clear the table C_HOT_EMISS_FACTORS

For all vehicles obtained from the CalcHotEmissFactorsSelect using if not null
pisSQL as WHERE clause in the query:

1. Call COPERTCalculator.dCalcHotEmissionFactor with the values obtained.

2. Insert the results obtained in the table
C_HOT_EMISS_FACTORS(HEF_x_VALUE_CALC,HEF_x_VALUE_CALC_BASE) where x is
the driving mode of the current row.

3. Set value 0 to fields: HEF_U_VALUE_COR,HEF_R_VALUE_COR,HEF_H_VALUE_COR,
HEF_U_VALUE_USR,HEF_R_VALUE_USR,HEF_H_VALUE_USR

4. Set value false to fields HEF_U_VALUE_K, HEF_R_VALUE_K,HEF_H_VALUE_K

Context: COPERTKernel
Method: CalcColdEmissionFactors(Optional ByVal pisSQLQuery as String)
Precondition: pisSQLQuery must be a well formed SQL “WHERE” clause or NULL
Postcondition:

Clear the table C_COLD_EMISS_FACTORS_MONTHLY

For all vehicles obtained from the CalcColdEmissFactorsSelect using if not null
pisSQL as WHERE clause in the query:

1. Call COPERTCalculator.dCalcColdEmissionFactor with the values obtained.

2. Insert in the table C_HOT_EMISS_FACTORS(CEF_U_VALUE_CALC) the value
obtained if it is not a vehicle post EURO I, if it is and the value is
less than 1, insert value 1, else insert the value.

3. Set value 0 to fields: CEF_U_VALUE_COR, CEF_U_VALUE_USR

4. Set value false to field CEF_U_VALUE_K

CalcHotEmissionFactors

CopertCalculat
or

COPERTKernel

rs: Recordset

DataBase

rsHotEmisFact:
Recordset

GetReadOnlyRecordset

CalcHotEmissFactorsSelect

Data Filling

ClearTable

Clear C_HOT_EMISS_FACTORS

GetRecordset

EndOfFile?

GetRowData

dCalcHotEmissionFactor
AddNewValues

Update

NextRow

CalcColdEmissFactors

COPERTKernel

rs: Recordset

DataBase

rsColdEmisFact:
Recordset

CopertCalculat
or

GetReadOnlyRecordset

ClearTable

GetRecordset

Create

EndOfFile?

GetRowData

NextRow

CalcColdEmissFactorsSelect

Data Filling

Clear C_COLD_EMISS_FACTORS_MONTHLY

Create

AddNewValues

Update

dCalcColdEmissionFactor

Context: COPERTKernel
Method: CalcFuelEffect (ByVal pinYear As Integer)
Precondition: pinYear must be a valid year posterior to 1970
Postcondition:

Clear the table B_FUEL_EFFECTS

Obtain the Fuel characteristic for years 1996,2000,2005

For all vehicles obtained from the CalcFuelEffectSelect:

1. Call COPERTCalculator.CalcFuelEffectGas or call
COPERTCalculator.CalcFuelEffectDiesel with the values obtained,

depending on the fuel type of the vehicle. Call these procedures for the year
equal to pinYear and for the base year that will be 2000 if the vehicle is posterior
EURO II and pinYear is 2005, otherwise 1996

2. Insert in the table B_FUEL_EFFECTS (FEF_POLLUTANT_ID, FEF_VALUE) for
pollutants CO,Nox,PM and VOC the values divided by the base year
value. For the rest pollutants insert the value 1

Context: COPERTKernel
Method: CalcMileageDegradation ()
Precondition: None
Postcondition:

For all vehicles obtained from the CalcMileageDegradationFactorsSelect:

1. Call COPERTCalculator.CalcMileageDegradationFactors with the values
obtained

2. Insert in the table B_MILEAGE_DEGRADATION_FACTORS(MDF_U_VALUE,
MDF_R_VALUE, MDF_H_VALUE)

CalcFuelEffects

DataBaseCOPERTKernel

rs: Recordset

FuelEffects:
Recordset

rsChar2000:
Recordset

rsChar96:
Recordset

CopertCalculat
or

rsChar:
Recordset

GetReadOnlyRecordset

ClearTable

GetRecordset

Create

EndOfFile?

GetRowData

NextRow

CalcFuelEffectSelect

Data Fil ling

Clear B_FUEL_EFFECTS

CalcFuelEffectGas

Create

GetReadOnlyRecordset

Create

B_FUEL_EFFECTS

Data Fi l ling

Select * from A_FUEL_CHARACTERISTICS_PER_YEAR WHERE FCY_YEAR = 2000

Data Fi l ling

Select * from A_FUEL_CHARACTERISTICS_PER_YEAR WHERE FCY_YEAR = 1996

Create

GetReadOnlyRecordset

Data Fil ling

GetReadOnlyRecordset

Create

Select * from A_FUEL_CHARACTERISTICS_PER_YEAR WHERE FCY_YEAR = pinYear

Data Fi l ling

CalcFuelEffectDiesel

Depending on the vehicle fuel type

GetRowData

GetRowData
GetRowData

CalcMileageDegradation

COPERTKernel

rs: Recordset

DataBase CopertCalculator

GetReadOnlyRecordset

EndOfFile?

GetRowData

NextRow

CalcMileageDegradationFactorsSelect

Data Filling

CalcMileageDegradationFactors

Create

AddNewValues

Edit

Update

Context: COPERTKernel
Method: CalcHotEmissions ()
Precondition: None
Postcondition:

Clear the table D_HOT_EMISSIONS

For all vehicles obtained from the CalcHotEmissionsSelect:

1. Call COPERTCalculator.dCalcHotEmissions with the values obtained,
getting the values for all driving modes for the current vehicle.

2. Insert in the table D_HOT_EMISSIONS(HEM_U_EMISS, HEM_R_EMISS,
HEM_H_EMISS) the values obtained.

Context: COPERTKernel
Method: CalcColdEmissions ()
Precondition: None
Postcondition:

Clear the table D_COLD_EMISSIONS

For all vehicles obtained from the CalcColdEmissionsSelect:

1. Call COPERTCalculator.dCalcColdEmissionswith the values obtained,
getting the values for all driving modes for the current vehicle.

2. Sum all the monthly cold emissions for each vehicle.

3. Insert in the table D_COLD_EMISSIONS (CEM_U_EMISS, CEM_R_EMISS) the sum
of all months for every vehicle.

CalcHotEmissions

COPERTKernel

rs: Recordset

DataBase

rsHotEmission
s: Recordset

CopertCalculator

GetReadOnlyRecordset

ClearTable

GetRecordset

Create

EndOfFile?

GetRowData

NextRow

CalcHotEmissionsSelect

Data Filling

Clear D_HOT_EMISSIONS

Create

AddNewValues

Update

dCalcHotEmissions

dCalcHotEmissions

dCalcHotEmissions

Calculation for Urban,Rural and
Highway Emissions

CalcColdEmissions

CopertCalculatorCOPERTKernel

rs: Recordset

DataBase

rsColdEmissions:
Recordset

GetReadOnlyRecordset

ClearTable

GetRecordset

Create

EndOfFile?

GetRowData

NextRow

CalcColdEmissionsSelect

Data Filling

Clear D_COLD_EMISSIONS

Create

AddNewValues

Update

dCalcColdEmissions

NextMonthRow

LastMonthInYear?

Calculates the sum of values of all
months of the year

Context: COPERTCalculator
Method: dCalcHotEmissionFactor(ByVal pidEuroNo As Integer, ByVal pisFuelType As String, ByVal pidSpeed As Double,
ByVal pidAlpha As Double, ByVal pidBeta As Double, ByVal pidGamma As Double, ByVal pidDelta As Double,
ByVal pidEpsilon As Double, ByVal pidZita As Double, ByVal pidIta As Double, ByVal pidThita As Double,
ByVal pidRF As Double, ByRef podCalcEmissFactorBase As Double,ByRef podCalcEmissFactor As Double, Optional ByVal
pidFuelEffect As Double = 1, Optional ByVal pidMileageDegradation As Double = 1)
Precondition: All not optional parameters are not null.
Postcondition:

podCalcEmissFactor =
((pidAlpha * pidSpeed ^ 2) + (pidBeta * pidSpeed) + pidGamma + (pidDelta * Log(pidSpeed)) + (pidEpsilon *
Exp(pidZita * pidSpeed)) + (pidIta * (pidSpeed ^ pidThita))) * (1 - pidRF) * pidFuelEffect

If pidEuroNo > 1 And pisFuelType = "GAS" Then
 podCalcEmissFactorBase = podCalcEmissFactor / (1 - pidRF)
Else
 podCalcEmissFactorBase = podCalcEmissFactor
End If

podCalcEmissFactor = podCalcEmissFactor * pidMileageDegradation

Context: COPERTCalculator
Function: CalcColdEmissionFactor(ByVal pidSpeed As Double,
 ByVal pidTemperature As Double, ByVal pidParamA As Double,
 ByVal pidParamB As Double, ByVal pidParamC As Double
Returns: Double
Precondition: All parameters are not null
Postcondition:
Return
(pidSpeed * pidParamA) + (pidTemperature * pidParamB) + pidParamC

Context: COPERTCalculator
Method: CalcMileageDegradationFactors(ByVal pidMileage As Double, ByVal pidUrbanSpeed As Double, ByVal pidRuralSpeed As
Double, ByVal pidHighwaySpeed As Double, ByVal pidAm19Km As Double, ByVal pidBm19Km As Double, ByVal pidAm63Km As
Double, ByVal pidBm63Km As Double, ByRef podUrbanValue As Double, ByRef podRuralValue As Double, ByRef podHighwayValue
As Double)
Precondition: All parameters are not null
Postcondition:

Dim dMileageCorrected As Double
Dim dMileageCorrectedUrban As Double
Dim dMileageCorrectedRural As Double
Dim dMileageCorrectedHighway As Double

dMileageCorrected = IIf(pidMileage > 120000, 120000, pidMileage)

If pidUrbanSpeed <= 19 Then
 podUrbanValue = pidAm19Km * dMileageCorrected + pidBm19Km
ElseIf pidUrbanSpeed >= 63 Then
 podUrbanValue = pidAm63Km * dMileageCorrected + pidBm63Km
Else
 podUrbanValue = (pidAm19Km * dMileageCorrected + pidBm19Km) + ((pidUrbanSpeed - 19) * ((pidAm63Km *
dMileageCorrected + pidBm63Km) - (pidAm19Km * dMileageCorrected + pidBm19Km)) / 44)
End If

If pidRuralSpeed <= 19 Then
 podRuralValue = pidAm19Km * dMileageCorrected + pidBm19Km
ElseIf pidRuralSpeed >= 63 Then
 podRuralValue = pidAm63Km * dMileageCorrected + pidBm63Km
Else
 podRuralValue = (pidAm19Km * dMileageCorrected + pidBm19Km) + ((pidRuralSpeed - 19) * ((pidAm63Km *
dMileageCorrected + pidBm63Km) - (pidAm19Km * dMileageCorrected + pidBm19Km)) / 44)
End If

If pidHighwaySpeed <= 19 Then
 podHighwayValue = pidAm19Km * dMileageCorrected + pidBm19Km
ElseIf pidHighwaySpeed >= 63 Then
 podHighwayValue = pidAm63Km * dMileageCorrected + pidBm63Km
Else
 podHighwayValue = (pidAm19Km * dMileageCorrected + pidBm19Km) + ((pidHighwaySpeed - 19) * ((pidAm63Km *
dMileageCorrected + pidBm63Km) - (pidAm19Km * dMileageCorrected + pidBm19Km)) / 44)
End If

podUrbanValue = IIf(podUrbanValue = 0, 1, podUrbanValue)
podRuralValue = IIf(podRuralValue = 0, 1, podRuralValue)
podHighwayValue = IIf(podHighwayValue = 0, 1, podHighwayValue)

Context: COPERTCalculator
Function: CalcFuelEffectGas(ByVal pidGasE100 As Double,
ByVal pidGasE150 As Double, ByVal pidGasAromatics As Double,
ByVal pidGasSulphur As Double, ByVal pidGasOxygenates As Double,
ByVal pidGasOlefins As Double, ByVal pidGasBenzane As Double,
ByRef podCO As Double, ByRef podVOC As Double,
ByRef podNOx As Double, ByRef podPM As Double)
Precondition: All parameters are not null
Postcondition:

podCO = (2.459 - 0.05513 * pidGasE100 + 0.0005343 * pidGasE100 * pidGasE100 + 0.009226 * pidGasAromatics -
0.0003101 * (97 - pidGasSulphur)) * (1 - 0.037 * (pidGasOxygenates - 1.75)) * (1 - 0.008 * (pidGasE150 - 90.2))

podNOx = (0.1884 + 0.001438 * pidGasAromatics + 0.00001959 * pidGasAromatics * pidGasE100 - 0.00005302 * (97 -
pidGasSulphur)) * (1 + 0.004 * (pidGasOlefins - 4.97)) * (1 + 0.001 * (pidGasOxygenates - 1.75)) * (1 + 0.008 *
(pidGasE150 - 90.2))

podVOC = (0.1347 + 0.0005489 * pidGasAromatics + 25.7 * pidGasAromatics * Exp((-0.2642 * pidGasE100)) -
0.0000406 * (97 - pidGasSulphur)) * (1 - 0.004 * (pidGasOlefins - 4.97)) * (1 - 0.022 * (pidGasOxygenates -
1.75)) * (1 - 0.01 * (pidGasE150 - 90.2))

podPM = 1

Context: COPERTCalculator
Method: CalcFuelEffectDiesel(ByVal pidDensity As Double,
ByVal pidPCA As Double, ByVal pidCN As Double, ByVal pidT95 As Double, ByVal pidSulphur As Double,
ByVal pidSectorId As Integer, ByRef podCO As Double, ByRef podVOC As Double, ByRef podNOx As Double,
ByRef podPM As Double)
Precondition: All parameters are not null
Postcondition:

If pidSectorId = 1 or pidSectorId = 2

podCO = -1.3250726 + 0.003037 * pidDensity - 0.0025643 * pidPCA - 0.015856 * pidCN + 0.0001706 * pidT95

podNOx = 1.0039726 - 0.0003113 * pidDensity + 0.0027263 * pidPCA - 0.0000883 * pidCN - 0.0005805 * pidT95

podVOC = -0.293192 + 0.0006759 * pidDensity - 0.0007306 * pidPCA - 0.0032733 * pidCN - 0.000038 * pidT95

podPM = (-0.3879873 + 0.0004677 * pidDensity + 0.0004488 * pidPCA + 0.0004098 * pidCN + 0.0000788 * pidT95) *
(1 - 0.015 * (450 - pidSulphur) / 100)

else

podCO = 2.24407 - 0.0011 * pidDensity + 0.00007 * pidPCA - 0.00768 * pidCN - 0.00087 * pidT95

podNOx = -1.75444 + 0.00906 * pidDensity - 0.0163 * pidPCA + 0.00493 * pidCN + 0.00266 * pidT95

podVOC = 1.61466 - 0.00123 * pidDensity + 0.00133 * pidPCA - 0.00181 * pidCN - 0.00068 * pidT95

podPM = (0.06959 + 0.00006 * pidDensity + 0.00065 * pidPCA - 0 * pidCN) * (1 - 0.0086 * (450 - pidSulphur) /
100)

End if

Context: COPERTCalculator
Function: dCalcHotEmissions(ByVal pidVEH_POPULATION As Double, ByVal pidShare As Double,
ByVal pidVEH_MILEAGE As Double, ByVal pidCalcEmissFactor As Double, ByVal pidCorrEmissFactor As Double,
ByVal pidUsrEmissFactor As Double, ByVal pibKeepValue As Boolean) As Double
Precondition: All parameters are not null
Postcondition:

Dim dEmission As Double
Dim sEmissFactor As Double

 If pibKeepValue Then
 sEmissFactor = pidUsrEmissFactor
 Else
 sEmissFactor = IIf(pidCorrEmissFactor = Nothing, pidCalcEmissFactor, pidCorrEmissFactor)
 End If
 dEmission = pidVEH_POPULATION * (pidShare / 100 * pidVEH_MILEAGE) * (sEmissFactor / 1000000)

Return dEmission

Context: COPERTCalculator
Method: CalcColdEmissions(ByVal pidBeta As Double, ByVal pidCirculationShare As Double, _
ByVal pinPopulation As Integer, ByVal pinMileageKm As Integer, ByVal pidColdOverHotRatio As Double, ByVal
pidHotEmissFactor As Double, ByRef podColdEmissionUrban As Double, ByRef podColdEmissionRural As Double, _
Optional ByVal dCorrFactorIfGasolineAndPostEuroI As Double = 1)
Precondition: All parameters are not null
Postcondition:

Dim dBetaMinusUrbanShare As Double
Dim dBetaMinusUrbanShareCorrected As Double
Dim dBetaCorrected As Double

dBetaMinusUrbanShare = dCorrFactorIfGasolineAndPostEuroI * pidBeta - pidCirculationShare / 100
dBetaMinusUrbanShareCorrected = IIf(dBetaMinusUrbanShare > 0, dBetaMinusUrbanShare, 0)

 dBetaCorrected = IIf(dBetaMinusUrbanShare < 0, pidBeta, pidBeta - dBetaMinusUrbanShare)

 podColdEmissionUrban = (dBetaCorrected * pinPopulation * (pinMileageKm / 12) * pidHotEmissFactor *
(pidColdOverHotRatio - 1)) / 1000000 * dCorrFactorIfGasolineAndPostEuroI

 podColdEmissionRural = (dBetaMinusUrbanShareCorrected * pinPopulation * (pinMileageKm / 12) *
pidHotEmissFactor * (pidColdOverHotRatio - 1)) / 1000000 * dCorrFactorIfGasolineAndPostEuroI

8. Summary & Status of the software

This report presents the software characteristics of the new beta version of Copert 4.

From the calculations point of view all the calculation functionalities of Copert III have
been introduced successfully in this beta version: Hot and Cold Emission Factors
Calculation, Hot and Cold Emissions Calculation, Evaporation losses, Mileage
Degradation Factor Calculation and Fuel Effect Factor Calculation.

All calculations have been tested at LAT with real past data and the behaviour of the
prototype is as expected. This remains to be further confirmed by national experts and
other users, before the official introduction of Copert 4.

The beta version has been coded focusing on efficiency and structure. The current code
is open to be extended in future refinements of the software. This has been achieved
taking care of the extensive coding features in the Visual Basic .NET code and placing
the SQL queries in the Database for easy management and better efficiency. Also, the
independency of every calculation inside the code makes easier the manipulation or
addition of code in future versions and the performance of the calculations is adequate.
The required time for the calculations is also satisfactory on a common personal
computer. This is also expected to be confirmed by users.

A similarity to Copert III was required from the point of view of User Interface. This
has been fulfilled although some screens have been modified slightly from the previous
versions of COPERT due the Visual Basic .NET limitations. The previous versions,
being programmed with MS Access had better solutions for showing data in screen than
the Visual Basic .NET libraries. Anyway the user can perform the expected
functionalities in a very similar way and any changes do not require any extra training.

The coding of the User Interface has been also performed focusing on the
upgradeability. The insertion or modification of screens could be made easily.
Additionally, error manipulation algorithms have been introduced and proper error
messages are given when the software identifies errors, without these crushing the
system.

In this bet version, a slightly slow response has been identified in some cases during
data manipulation. This is produced by the connection between Visual Basic .NET and
MS Access through ADO.NET. At this point, nothing can be done to fix this, unless
Microsoft introduces a patch. This is because the use ADO.NET is compulsory when
Visual Studio.NET Graphical libraries are used.

9. References

[1]
Web page of COPERT III
Aristotle University of Thessaloniki - Lab of Applied Thermodynamics
http://vergina.eng.auth.gr/mech/lat/copert/copert.htm

[2]
Leonidas Ntziachristos and Zissis Samaras
COPERT III Computer Programme to calculate emissions from road transport.
Methodology and emission factors (version 2.1)
November 2000
http://reports.eea.eu.int/Technical_report_No_49/en/tech49.pdf

