Universidad deValladolid

EscuerLa TECNICA SUPERIOR DE
INGENIERIA INFORMATICA

DEPARTAMENTO DE INFORMATICA

Tesis Doctoral:

Design and evaluation of a Thread-Level
Speculation runtime library

Presentada por D. Alvaro Estébanez Lopez para optar al
grado de doctor por la Universidad de Valladolid

Dirigida por:

Dr. Diego R. Llanos Ferraris

Valladolid, Octubre 2015

Resumen

En los préximos anos es mas que probable que maquinas con cientos o, incluso, miles de
procesadores sean algo habitual. Para aprovechar estas maquinas, y debido a la dificultad de
programar de forma paralela, seria deseable disponer de sistemas de compilacién o ejecucién
que extraigan todo el paralelismo posible de las aplicaciones existentes. Para ello, durante los
dltimos tiempos, se han propuesto multitud de técnicas paralelas. Sin embargo, la mayoria
de ellas se centran en cddigos simples, es decir, sin dependencias entre sus instrucciones.
La paralelizacion especulativa surge como una solucién para estos codigos complejos, po-
sibilitando la ejecucién de cualquier tipo de c6digos, con o sin dependencias. Esta técnica
asume de forma optimista que la ejecucién paralela de cualquier tipo de cédigo no de lugar a
errores y, por lo tanto, necesitan de un mecanismo que detecte cualquier tipo de colisién. Para
ello, constan de un monitor responsable que comprueba constantemente que la ejecucién
no sea errénea, asegurando que los resultados obtenidos de forma paralela sean similares a
los de cualquier ejecucidén secuencial. En caso de que la ejecucion fuese errénea los threads
se detendrian y reiniciarian su ejecucion para asegurar que la ejecucion sigue la semantica
secuencial.

Nuestra contribucién en este campo incluye (1) una libreria de ejecucion especulativa
nueva y facil de utilizar; (2) nuevas propuestas que permiten reducir de forma significativa el
ndmero de accesos requeridos en las operaciones especulativas, asi como consejos para redu-
cir la memoria a utilizar; (3) propuestas para mejorar los métodos de scheduling centradas en
la gestién dinamica de los bloques de iteraciones utilizados en las ejecuciones especulativas;
(4) una solucién hibrida que utiliza memoria transaccional para implementar las secciones
criticas de una libreria de paralelizacién especulativa; y (5) un anélisis de las técnicas especu-
lativas en uno de los dispositivos mas vanguardistass del momento, los coprocesadores Intel
Xeon Phi.

Como hemos podido comprobar, la paralelizacidn especulativa es un campo de investi-
gacidén activo. Nuestros resultados demuestran que esta técnica permite obtener mejoras de
rendimiento en un gran nimero de aplicaciones. Asi, esperamos que este trabajo contribuya
al acercamineto del uso de soluciones especulativas a los compiladores comerciales y/o los
modelos de programacién paralela de memoria compartida.

Palabras clave

Paralelizacién especulativa, Especulacién a nivel de Thread, Paralelizacién optimista, Sche-
duling, Rendimiento, Evaluacién.

Abstract

It is very likely that, in the next years, shared-memory systems with hundreds or even
thousands of computational units will become commonplace. Since parallel programming
is conceptually difficult, and to take advantage of these platforms, it is desirable to have
compiling and/or runtime systems that automatically extract all the available parallelism of a
sequential application. Although many parallel processing approaches have been developed
in the last decades, most automatic parallelization proposals are focused on codes with no
hurdles. Speculative parallelization (SP) techniques arise as a more general solution, allowing
the parallel execution of any code, even in the presence of dependence violations. To ensure
that, SP approaches rely on a runtime monitor responsible for ensuring that the results
of the parallel execution match the expected output of the original, sequential code. This
technique, based on the optimistic assumption that no dependences will arise when executing
the code in parallel, launches threads that execute different fragments of the sequential code
at the same time. If a dependence violation is detected, the offending threads are stopped
and restarted with the correct values, thus ensuring that the execution follows sequential
semantics.

Our contribution in this field includes (1) a new, easy-to-use speculative runtime lib-
rary; (2) new proposals which allow to decrease the number of memory accesses involved
in speculative operations, as well as some advice to decrement the memory footprint; (3)
research on new scheduling methods focused on the dynamic management of chunks of
iterations in speculative executions; (4) an hybrid approach which implements speculative
parallelism using transactional memory to handle its critical sections; and (5) an analysis of
the speculative techniques in one of the most state-of-the-art devices as are Intel Xeon Phi
COProcessors.

Speculative parallelization is a lively research field. Our results show that these techniques
have the potential of leading to considerable improvements in the performance of many
applications. We expect that this work, among others, will foster the use of SP-based solutions
in commercial compilers and shared-memory parallel programming models.

Keywords

Speculative parallelization, Thread-Level Speculation, Optimistic parallelism, Scheduling,
Performance, Evaluation.

A i wadre

Agradecimientos

Para llevar a cabo una tesis doctoral, hace falta mucho mas que matricularse. Durante su
desarrollo hay muchos momentos buenos, pero también hay otros en que se hace muy duro
seguir adelante. Con estas lineas quiero agradecer a todos los que celebraron conmigo
los buenos ratos, pero sobretodo a los que me ayudaron a levantarme en cada caida y me
animaron cuando mas lo necesitaba.

Primero, quiero acordarme de mis compaiieros de fatigas, Yuri, Sergio, Javier, Héctor
y Ana, por esas charlas sobre nuestro futuro, por el apoyo, las risas y sobretodo el buen
ambiente creado en el grupo. También mencionar a Arturo que ha sido un excelente tutor y
una gran persona.

También quiero agradecer a mi familia y amigos por estar ahi, especialmente a mi hermano
Juan Cruz, y mi amigo Pablo con los que he compartido tantos, y tan buenos momentos.
También quiero destacar a mis abuelos, cuya pérdida ha sido el momento mas agrio de mi
vida. Sélo puedo agradecerles el haber estado conmigo siempre, ayudando a mi madre en
todo lo posible. Sin ellos no se si hubiera llegado hasta aqui, y desde luego les recordaré
siempre.

Pero para ser justos hay tres personas que merecen unos agradecimientos mucho mas
concretos.

Diego R. Llanos Ferraris, quiero agradecerle que haya confiado en mi desde el principio.
Ese principio que data de Febrero de 2011 cuando llamé a la puerta de su despacho para
empezar un proyecto de fin de carrera que me permitié obtener la Ingenieria Técnica. Cuando
después, apostd por mi de nuevo al asignarme un trabajo de fin de grado con un tema tan
importante para él, y que fue el germen de esta tesis doctoral, el desarrollo de la libreria
especulativa. También por darme todo su apoyo durante el siempre complicado master. Con
respecto al final del camino, esta tesis, decir que ha sido un placer y un orgullo trabajar bajo
su tutela, siendo comprensivo, exigente, y ensefiadome perfectamente cémo ser un buen
investigador. Si me permites, te animo a que sigas investigando y formando doctores puesto
que la ciencia y la Universidad de Valladolid lo agradeceran. Ademas seria injusto no recordar
todo el esfuerzo econémico que ha hecho por mi. Y es que, junto con Arturo, han intentado
que realice la tesis con todos sus medios, me habéis apoyado cuando me quedaba a las puertas
de una beca, e incluso cuando me equivocaba cumplimentando los papeles. Deciros que
siempre he intentado reconocer vuestros esfuerzos, que me han motivado, y me han llevado
a finalizar esta tesis doctoral, nunca lo olvidaré. Gracias a Diego me voy de la Universidad

- Vii -

con una tesis doctoral, unas cuantas publicaciones, y lo mas importante un amigo para toda
la vida.

Pilar Lépez Alonso, a ella le quiero dar la gracias por todo lo que ha hecho por mi. Y es
que aparte de darme la vida, me ha ensenado todos los valores importantes de la misma. A
través de esfuerzo y constancia ha conseguido sacar a sus hijos adelante, unos hijos que le
debemos todo lo que somos. Quiero darle las gracias por todo su apoyo incondicional en los
buenos y malos momentos. El mundo seria perfecto si lo formase mas gente como tu, espero
que algin dia pueda merecerme que alguien esté tan orgulloso de mi, como lo estoy yo de ti.

Tania Alonso Sambade, porque ha sido mucho mas que una novia para mi. Desde que
comencé mi andadura por la universidad, ella ha sido mi novia, mi mejor amiga y se podria
decir que mi psic6loga. Me has apoyado, escuchado, aconsejado en los momentos dificiles, y
celebrado conmigo las buenas noticias. Gracias por ser como eres y estar conmigo siempre,
esta tesis no hubiera sido posible si ti no hubieras estado a mi lado. Las cosas pueden cambiar,
pero tuy yo seguimos siempre juntos.

Al Estérne- [éli)ez

Contents

Resumen de la tesis

R.1

R2

R3
R4

R.5
R.6

Motivacién L
R.1.1 Sistemas multiprocesador
R.1.2 Violaciones de dependencia
R.1.3 Paralelizacion de c6digos con dependencias
R.1.4 Paralelizaciénespeculativa
Objetivos de estatesiso v it i
R2.1 Preguntadeinvestigaciéon
Metodologia de investigacién Lo
Resumen de contribuciones Lo L L L L.
R4.1 Desarrollar un estudio en profundidad del estado del arte en paralel-
izaciénespeculativa L.
R.4.2 Combinar un libreria especulativa con un compilador
R4.3 Mejorar el rendimiento de las operaciones involucradas en una
librerfaespeculativa Lo
R.4.4 Combinar nuestro sistema especulativo con otras técnicas paralelas
Respuesta a la pregunta de investigaciéon y conclusiones
Agradecimientos

1 Introduction

1.1

1.2

1.3
1.4

Motivation L
1.1.1 Multiprocessor computers
1.1.2 Dependenceviolations
1.1.3 Parallelization of codes with dependences
1.1.4 Speculative Parallelization
Objectives of this dissertation
1.2.1 Researchquestion
122 Milestones
Research methodology
Document structure Lo

-ix -

O 0 N1 O A AN W NN -

10
10

11
11
12
13

15
16
16
18
20
21
24
24
24
26
27

X | CONTENTS

2 State of the art 29
2.1 Introduction 30
2.2 Sourcesof TLS and designchoices 30

2.2.1 Loopsasasource of speculation 31
222 Drawbacksof TLS 33
2.2.3 Afirst classification of TLS techniques 33
2.24 Designchoicesoverview 34
2.3 Precursors 37
2.4 Hardware-based approaches 38
2.5 Software-based approaches L L L. 38
2.5.1 Solutions relying on compile-time and runtime support 39
2.5.2 Solutions relying on programming abstractions 42
253 Otherproposals. 46
2.5.4 TLS mixed with other techniques 47
2.5.5 STLS on distributed-memory systems 49
256 STLSusingGPUs 49
2.6 Otherstudiesrelatedto TLS 49
2.6.1 TLS as a help to manual parallelization 49
2.6.2 Module-level speculation. 50
2.6.3 Energyconsumption 51
2.64 Benchmarksfor TLS 51
2.7 LimitstoTLS 51
28 Conclusions e 52

3 The ATLaS runtime system 53
3.1 Problemdescription 54
3.2 Cintra and Llanos’ original solution 55

3.2.1 Modifications in original sourcecodes 56
3.2.2 Classification of variables 57
3.2.3 Distribution of iterations L. 57
324 Thread management 57
3.3 Main limitations of Cintra and Llanos’solution 58
34 OurnewTLSlibrary 59
34.1 Datastructures 59
3.5 New speculativeoperations 60
3.5.1 Speculativereads 60
3.5.2 Speculativestores 64
3.5.3 Speculative commitso 69
3.54 Reductionoperations 70
3.6 Performance improvements 78

3.6.1 Locating bottlenecks in the new TLS runtime library 78

4

6

3.7 Experimental evaluation
3.7.1 Experimental setup
3.7.2 Experimental results
3.8 Conclusions
The ATLaS framework
4.1 Problem description
4.2 Compilation phase description
4.3 Experimental evaluation
4.3.1 Benchmark evaluation
4.4 Conclusions

Scheduling strategies for TLS

5.1
52

5.3
5.4
5.5
5.6
5.7

5.8

TLS and Transactional Memory
Problem description

6.1
6.2

6.3
6.4

6.5

3.6.2 Keeping version copies: A hash-based solution
3.6.3 Additional improvements

4.2.1 Semantics of Aldea et al.’s speculative clause
4.2.2 Compiler support for the speculative clause

4.3.2 Effectiveness of the ATLaS runtime library

Problem description
Classical scheduling alternatives
5.2.1 Self scheduling
5.2.2 Dynamic scheduling
Scheduling iterations under TLS
Moody Scheduling: Design guidelines
Moody Scheduling function definition
Dynamic and Adaptive Implementations
Experimental evaluation
5.7.1 Environment setup

5.7.2 Experimental results

Conclusions

Background

6.2.1 Transactional Memory in a Nutshell

6.2.2 Brief review of software TM libraries
6.2.3 Transactional Synchronization Extensions
6.2.4 TLS-TM hybrid approaches
Comparison of TM and TLS
Critical sections in ATLaS
6.4.1 Location
Benchmarks used

CONTENTS | XI

XII | CONTENTS

6.6 Protecting data accesses: OpenMP critical vs. TM 133
6.7 Experimentalresults 140
6.7.1 Experimentalsetup 140

6.7.2 Results for OpenMP, STMand HTM 141

6.8 Conclusions e 141
7 TLS and Xeon Phi coprocessors 145
7.1 Problemdescription 146
7.2 Intel XeonPhiinanutshell 146
72.1 Internaldetails, 147

722 UseoftheXeonPhi. 147

7.3 Experimental evaluation, 148
7.3.1 Environmentalsetup 149

7.4 Experimentalresults L 149
7.4.1 Scalability L 149

7.42 Oversubscriptiono 149

7.4.3 Absolute performance 151

7.5 Related work: TLS and the Xeon Phi coprocessor 152
7.5.1 Hardware improvements to benefit software TLS 154

7.5.2 Studies related to the Xeon Phi coprocessor 154

7.6 Conclusions 155
8 Conclusions 157
8.1 Summary of results and contributions L. 158
8.1.1 Goal 1: Deep study of the state-of-the-artin TLS 158

8.1.2 Goal 2: Combine a TLS library with a compiler 158

8.1.3 Goal 3: Improve operations involved in a TLS runtime library . . 159

8.1.4 Goal 4: Test a TLS runtime library with other parallel techniques . 160

8.2 Answer to theresearchquestion 160
83 Futurework 161
A Benchmarks description 163
A.1 Randomized incremental algorithms 164
A.1.1 Minimum enclosingcircle o oL 165

A12 Convexhull 165

A.1.3 Delaunay triangulation 166

A2 TREEbenchmark 168
A3 Syntheticbenchmarks Lo Lo 169
A31 Complete 169

A32 Tough 169

A33 Fast 169

CONTENTS | X1l

B Example of use of the TLS library
B.1 Initialization of theengine
B.2 Use of the engine and variable settings

B.3 An example of use

B.3.1
B.3.2
B.3.3

Bibliography

Sequential application L.
Speculative Parallelization of the sequential application

Summary

173
174
174
175
176
178
181

183

XIV | CONTENTS

1.1
1.2
1.3

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24

4.1

List of Figures

Loop without dependences between iterations
Loop with a dependence between two iterations
Example of speculative parallelization

Different types of loops according to the presence of data dependences . .

Example of speculative load and store operations
Summary of operations carried out by a runtime TLS library
Data structures of our new speculative library
State transition diagram for speculativedata
Speculative load example (1/2)
Speculative load example (2/2)
Speculative store example (1/3)
Speculative store example (2/3)
Speculative store example (3/3)
Speculative commit example (1/6)
Speculative commit example (2/6)
Speculative commit example (3/6)
Speculative commit example (4/6)
Speculative commit example (5/6) L.
Speculative commit example (6/6)
Hash-based version copy data structures with three dimensions
Hash-based version copy data structures
Reducing operating system calls example (1/2)
Reducing operating system calls example (2/2)
Implementation of a static example of the data structure
Structures with the Indirection Matrix
Performance comparison for 2D-Hull benchmark
Performance comparison for Delaunay benchmark
Current appearance of the TLS runtime library

Example of loop parallelization with OpenMP

- XV -

XVI | LIST OF FIGURES

4.2
4.3
4.4
4.5
4.6

5.1
52
53
5.4

6.1
6.2
6.3

7.1
7.2
7.3
7.4

Al
A2
A3
A4
A5

Parallelization of a loop that cannot be parallelized with OpenMP
GCC Compiler Architecture
Loop transformation that allow its speculative execution
Overview of the code generation process for the speculative clause

Performance achieved with the benchmarks considered

Execution profile and example of the linear regressionused
Graphical representation of the Moody scheduling
Dynamic and Adaptive approaches of Moody Scheduling
Performance comparison for some benchmarks tested

Updating the sliding window that handles the speculative execution
Accumulated time in miliseconds required by critical sections
Speedups by number of processors for each benchmark tested

Overview of the microarchitecture of an Intel Xeon Phi coprocessor
Speedups by number of processors for each benchmark tested
Speedups on the Intel Xeon Phi coprocessor
Execution time with respect to the number of threads

Minimum enclosing circle defined by threepoints
Convex hull of asetof points
Delaunay: Two different triangulations with the same set of points
Delaunay triangulationof asetof 6 points
Delaunay triangulation of asetof 100 points

115
117
118
121

129
139
142

148
150
151
153

1.1

3.1
3.2
3.3
3.4

4.1

5.1
5.2

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

7.1

List of Tables

Timing of the loop with the values of each variable at any time

Profile of main functions with a single thread in the baseline TLS library

Profile of main functions with eight threads in the baseline TLS library . .
Profile of main functions with a single thread in the hash-based version . .
Profile of main functions with eight threads in the hash-based version . . .

Percentages of parallelism effectively exploited by ATLaS

Changes on the following chunk sized according to d and meanH
Characteristics of the algorithms and input sizesused

Number of accesses to each protected zone
Percentages of potentially parallelism for the benchmarks
Time in critical sections using GCC HTM and GCC omp critical
Time in critical sections using Intel HTM and ICC omp critical
Time in critical sections using Intel HTM and Tiny STM
Time in critical sections using GCC HTM and Tiny STM
Time in critical sections using GCC OMP and Tiny STM
Time in critical sections using Intel OMP critical and Tiny STM
Time in critical sections with an execution of four threads
Time in critical sections with an execution of eight threads

Shared memory system and Intel Xeon Phi execution times.

- XVvii -

81
81
84
84

XVIII | LIST OF TABLES

1.1
1.2
1.3
1.4

3.1
3.2
3.3
3.4
3.5

Al
A2
A3

B.1

List of Listings

Example of a code with private and shared variables 18
Example of Write-after-write dependence violation 19
Example of Write-after-read dependence violation 19
Example of Read-after-write dependence violation 20
Loop witha RAW dependence 55
Vectors to measure time spend by each function 79
Additional code to measure the time spent by each function 79
Vectors to measure calls and accesses done by specload() 80
Additional code to measure calls and accesses done by specload() 81
Code of the ‘Complete’ synthetic benchmark 170
Code of the ‘Tough’ synthetic benchmark 171
Code of the ‘Fast’ synthetic benchmark 172
Example of manually speculative parallelization: Sequential application . . 177

- XiX -

XX | LIST OF LISTINGS

Resumen de |a tesis

EsDE la aparicién de los circuitos integrados, el rendimiento de los ordenadores ha
D crecido exponencialmente. Sin embargo, esta progresiéon terminé por toparse con
ciertos limites impuestos por leyes fisicas, tales como la disipacién de calor, que obligaron
a repensar el modelo de avance. Asi, en lugar de seguir aumentando la frecuencia de los
procesadores cada vez mds, se optd por utilizar varias unidades computacionales (actuando
como una sola) en el mismo chip, comenzando la era de los sistemas multiprocesador de
memoria compartida. Sin embargo, para sacar rendimiento de una misma aplicacidn, el cédigo
secuencial debe ser o bien rescrito como un conjunto de tareas paralelas, o transformado
autométicamente en cédigo paralelo.
En este capitulo resumiremos la motivacion de esta tesis doctoral, la metodologia seguida,
y los principales objetivos conseguidos. Ademas se enumeraran las conclusiones obtenidas.

R.1

2 | RESUMEN DE LA TESIS

Motivacion

Desde la aparicién del primer microchip en 1971, el 4004 de Intel, con unos 3200 procesado-
res y una frecuencia de 104KHz [16, 122], los ordenadores han experimentado una evolucion
constante y vertiginosa. Asi, el nimero de transistores por dispositivo ha crecido exponen-
cialmente, con el consiguiente aumento en el rendimiento de los mismos. Sin embargo, a
comienzos del siglo XXI, esta tasa de mejora se vié afectada por limites fisicos, tales como la
imposibilidad de extraer todo el calor producido por un chip de unos cuantos milimetros
con un consumo superior a 100W.

Por estos motivos, los ingenieros tuvieron que repensar el modelo de progreso, comen-
zando a integrar varios procesadores en el mismo dispositivo. Esta solucién se beneficia del
incremento de transistores que pueden empaquetarse juntos y de la distribucién del calor en
puntos diferentes del chip. Por otro lado, también se logré disminuir el pico de frecuencia
utilizado, por lo que los dispositivos que requieren un menor consumo de energia (como los
que utilizan baterias) pudieron beneficiarse de este nuevo enfoque.

Sin embargo, por primera vez en la historia, un cambio de arquitectura no produjo auto-
maticamente un aumento en el rendimiento de las aplicaciones subyacentes. Para aprovechar
estas nuevas mejoras, los sistemas de memoria compartida deben ejecutar varias aplicaciones
al mismo tiempo o utilizar versiones paralelas de aplicaciones secuenciales. Esta tesis doctoral
se centra en el segundo problema, estudiando cémo una sola tarea puede ser ejecutada en
paralelo por diferentes procesadores.

R.1.1 Sistemas multiprocesador

Como se ha expuesto, las maquinas multintcleo son capaces de ejecutar tanto varios progra-
mas a la vez, como solamente uno dividido en tareas mas pequenas. Para alcanzar mejoras en
la ejecucién de un programa secuencial con un ordenador multinticleo, es necesario que los
programas se puedan dividir en tareas independientes. Si las tareas tienen dependencias entre
ellas y se ejecutan en un orden incorrecto, es mas que probable que la ejecucién produzca
resultados erréneos.

Localizar aquellas partes de un c6digo que podrian ejecutarse de forma independiente es
una tarea tediosa y propensa a provocar errores porque se deben tener en cuenta factores
como la sincronizacion para evitar resultados indeseados. Actualmente existen lenguajes
especificos, asi como extensiones de los lenguajes secuenciales y librerias de funciones cen-
tradas en facilitar el proceso de paralelizacidn. Sin embargo, para paralelizar un programa
secuencial el programador debe (a) conocer las caracteristicas del hardware inherente, (b)
entender el problema resuelto en el c6digo, y (c) conocer el modelo de programacién a utilizar.
Ademas, desarrollar software paralelo para un arquitectura especifica provocaria que éste no
fuese portable a otras maquinas. Estos hechos hacen de la paralelizacién automatica una idea
muy atractiva.

R.1 MOTIVACION | 3

Actualmente, existen algunos compiladores capaces de paralelizar fragmentos de c6digo
(principalmente los bucles). Sin embargo, los compiladores paralelos rehusan paralelizar un
bucle si tienen la més minima sospecha de que haya una violacién de dependencia entre las
instrucciones del bucle. Determinar o predecir qué instrucciones dependen de otras es una
tarea compleja debido a la explosién combinatoria que provoca la existencia de mualtiples
flujos de control. Ademas, los valores de ciertas variables pueden no ser conocidos en tiempo
de compilacién, previniendo la paralelizacién. Estos hechos son los que mas limitan la
paralizacion en tiempo de compilacién.

Cabe mencionar que existen ciertas herramientas para controlar estas situaciones, como
las barreras, pero su uso limita de forma significativa el rendimiento, llegando a provocar
que el cddigo paralelo resultante sea incluso mas lento que el cddigo secuencial original.

R.1.2 Violaciones de dependencia

Para entender mejor en qué consisten las violaciones de dependencia, debemos mencionar que
éstas se clasifican de acuerdo a su uso. Asi los modelos de programacién paralela compartida
clasifican las variables como compartidas o privadas.

Las variables privadas son aquellas que son escritas siempre antes de ser leidas en una
misma iteraciéon. Como se puede deducir, el ambito de este tipo de variables es una misma
iteracion, y no mas alla de ella. Por otro lado, el ambito de las variables compartidas se
extiende a varias iteraciones, e incluso a todas. Por lo tanto, si un thread utiliza una variable
compartida, y mas tarde otro thread de una iteracion previa escribe un valor nuevo en ella, se
producira una violacién de dependencia.

Como puede deducirse, un bucle que sélo utiliza variables privadas y variables compar-
tidas de sélo lectura es paralelizable. Por el contrario, aquellos bucles cuyas instrucciones
realizan operaciones tanto de lectura, como de escritura sobre variables compartidas proba-
blemente daran lugar a violaciones de dependencia en ejecuciones paralelas.

Tipos de violaciones de dependencia

Hay tres tipos de dependencias de datos entre iteraciones:

« Escritura-tras-escritura: Estetipo de violaciones de dependencia se producen
cuando una variable se escribe en dos iteraciones diferentes, sin lecturas entre las
escrituras. Asi, una ejecuciéon desordenada de las iteraciones produciré una violacién
de dependencia, ya que el valor final de la variable podria no ser correcto.

+ Escritura-tras-lectura: Este tipo de dependencia de datos aparecen cuando
una variable local que ha sido leida previamente en una iteracién previa se escribe en
una iteracion posterior. De nuevo, una ejecucién paralela desordenada puede provocar
una violacién de dependencia.

4 | RESUMEN DE LA TESIS

« Lectura-tras-escritura: Este tipo de dependencia (la més peligrosa de todas) se
produce cuando una variable se escribe con un valor que va a ser leido mas tarde en
iteraciones sucesivas. Si ambas operaciones se llevan a cabo en un orden incorrecto, el
valor leido puede ser incorrecto.

R.1.3 Paralelizacion de codigos con dependencias

Aungque el problema de paralelizar bucles con dependencias puede ser algo arduo de resolver,
existen algunas técnicas capaces de paralelizar tales cédigos. Mientras las soluciones clasicas
rechazan paralelizar cualquier cédigo que pueda provocar violaciones de dependencia, otras
propuestas como el Inspector-Ejecutor o la Paralelizacién Especulativa lidian con estas situa-
ciones. Estas técnicas confian en que la ejecucién seguird un orden secuencial, detectando
cualquier eventual violacién de dependencia y llevando a cabo las operaciones requeridas
para conseguir los resultados correctos. A continuacién, describiremos ambas técnicas.

Inspector-Ejecutor

Esta técnica [165] trata de paralelizar bucles que no pueden ser paralelizados por un com-
pilador. Su funcionamiento se basa en encontrar dependencias entre las iteraciones de un
bucle mediante el uso de un bucle inspector extraido del bucle original. El bucle inspector
trata de asignar todas las iteraciones dependientes entre si al mismo procesador para que
la ejecucion preserve un orden correcto. Mas tarde, un bucle ejecutor lanza las iteraciones
en paralelo. Aunque esta técnica puede ser aplicada a cualquier tipo de bucle, su uso sélo se
aconseja si el tiempo de procesamiento del bucle inspector es bastante menor que el tiempo
de ejecucién del bucle original. Desafortunadamente, ésta no suele ser la ténica general
debido al coste de inspeccionar los bucles que utilizan aritmética de punteros, siguen flujos
de control complejos, o dependen de datos de entrada.

R.1.4 Paralelizacion especulativa

La paralelizacion especulativa [49, 73, 96, 144, 273] trata de extraer paralelismo de bucles
que no pueden paralelizarse en tiempo de ejecucidn. En otras palabras, esta técnica trata
de paralelizar c6digos con dependencias. Esta técnica asume de forma optimista que no se
produciran violaciones de dependencia y ejecuta los bucles en paralelo. Mientras tanto, un
monitor software o hardware se encarga de controlar que la ejecucién sea correcta, realizando
las correcciones oportunas de ser necesario.

Aunque los mecanismos basados en hardware no afiaden ni cambios en el c6digo, ni
sobrecargas en la ejecucion especulativa, requieren cambios en el procesador y/o los sub-
sistemas caché. Por otro lado, los sistemas basados en software requieren cambios en el
cédigo original de los bucles, incluyendo la adicién de algunas instrucciones que controlan
la ejecucidn y vigilan la aparicién de violaciones de dependencia. A pesar de la sobrecarga
de rendimiento inherente a estas instrucciones, las soluciones basadas en software pueden

R.1 MOTIVACION | 5

implementarse en los sistemas actuales de memoria compartida sin ningin cambio en el
hardware subyacente. Esta tesis doctoral se centra en la rama software de este campo.

Modelo de ejecucion

Recordemos que, en caso de detectarse una violacién de dependencia, los resultados cal-
culados hasta el momento por el thread que utilizé el valor incorrecto de la variable y sus
sucesores ya no son validos y deben descartarse, siendo estos threads re-ejecutados en orden.
Tras resolver este problema la paralelizacién optimista puede continuar. Obviamente, se este
proceso de parada y re-ejecucion requiere una gran cantidad de tiempo adicional, por tanto,
cuantas menos violaciones de dependencia se produzcan, mejores resultados obtendremos
en términos de rendimiento.

La solucién mas recurrente utilizada por las soluciones software para evitar tantas vio-
laciones de dependencia como sea posible se denomina forwarding. Si un thread tiene que
leer un valor de una variable compartida, debe leer el valor mas reciente almacenado en la
misma, para lo cual copia el valor mas reciente de los disponibles en los threads predecesores
al thread consumidor. En caso de que se necesite escribir sobre una variable compartida, tras
la escritura, el thread debe comprobar si un thread sucesor ha utilizado un valor desfasado,
para detectar tan pronto como sea posible las violaciones de dependencia que puedan surgir.

Otra solucidn tipica adoptada por las soluciones software es el uso de una version propia
de los datos compartidos por cada thread en ejecucion. Asi, los threads sélo modifican sus
propias copias de las variables compartidas, en lugar de la version global. Cuando un thread
finaliza la ejecucion de su bloque de iteraciones, si no se ha producido ninguna violacion de
dependencia, los resultados se guardan en la variable global compartida por todos los threads
(esta operacidn se conoce como consolidacién). Por otro lado, si se produjese una violacién
de dependencia, todas las versiones locales con valores erréneos deben ser descartadas (esta
operacion se denomina squash). Después tanto el thread en cuestién, como sus sucesores
deben comenzar de nuevo la ejecucion ya que podrian haber utilizado un valor contaminado
del thread que sufrié una violacién de dependencia. La ventaja de utilizar copias locales es
que la operacién més frecuente (lecturas sobre variables compartidas) puede llevarse a cabo
bastante rapido, siempre que exista una copia local. Nos gustaria destacar que este proceso de
parada y re-ejecucion conlleva un tiempo, por tanto, cuantas mas violaciones de dependencia
aparezcan, peores resultados se obtendran con esta técnica.

Operaciones principales de ejecuciones especulativas

Los sistemas software de paralelizacién especulativa necesitan modificar el cédigo fuente
original de la aplicacion en tiempo de compilacién para realizar las siguientes tareas:

« Operaciones especulativas de lectura y escritura: Cada thread tiene su propia versidn de
las variables compartidas, por lo que todas las operaciones de lectura y escritura en
variables compartidas deben sustituirse por una funcién que también comprueba que
no aparezca ninguna violacién de dependencia.

R.2

6 | RESUMEN DE LA TESIS

« Consolidacion de resultados: Al final de la ejecucion correcta de un bloque de iteraciones,
se debe llamar a una funcién para consolidar los resultados producidos y solicitar un
nuevo bloque de iteraciones consecutivas.

* Reparto de bloques de iteraciones consecutivas: Las iteraciones deben distribuirse a lo largo
de todos los threads disponibles que intervienen en la ejecucién especulativa. Esta tarea
se puede realizar siguiendo diferentes estrategias: distribuyendo bloques de iteraciones
de tamano constante; adaptando el tamano de los bloques a las caracteristicas de cada
aplicacion; o decidir dindmicamente el tamano del siguiente bloque de iteraciones.

Objetivos de esta tesis

El disefio de un sistema de paralelizacién especulativa competitivo requiere abordar dife-
rentes problemas. Como hemos mencionado anteriormente, las operaciones involucradas
en la paralelizacion especulativa influyen directamente en el rendimiento de una solucién
especulativa. Por lo tanto, mejorar todo lo posible los mecanismos de acceso a las estruc-
turas de datos de una biblioteca de paralelizacion especulativa, influird directamente en su
rendimiento. Asi, parece mas que interesante, dedicar esfuerzos a acelerar los accesos a la
estructura de datos.

Asimismo, hay muchos cédigos con violaciones de dependencias que presentan arit-
mética de punteros, imposibilitando la aplicacién de las técnicas clasicas de paralelizacién
especulativa. Por ello, serfa til mejorar una biblioteca de paralelizacién especulativa para
que soporte cddigos con este tipo de variables.

Por otro lado, distribuir correctamente las iteraciones entre los threads de una ejecucién
especulativa, influye de forma muy significativa. Por ello, seria aconsejable trabajar en el
desarrollo de nuevas técnicas de reparto dindmico de iteraciones basadas en la historia
reciente de violaciones de dependencia, esperando reducir los tiempos de ejecucion.

Ademas, aunque utilizan diferentes enfoques para resolver distintos problemas, hay
bastantes similitudes entre la memoria transaccional y la paralelizacién especulativa. Por
tanto, seria de utilidad combinar las dos soluciones de forma que las secciones criticas
utilizadas en la paralelizacion especulativa se beneficien de la memoria transaccional.

Finalmente, con la llegada de las mdquinas ‘many-core, han surgido nuevas posibilida-
des respecto a las técnicas de paralelizacidn. Respecto al estado del arte en el campo de la
paralelizacién especulativa, no se habian realizado estudios previos relativos a los coprocesa-
dores Intel Xeon Phi. Por tanto, seria deseable evaluar el comportamiento de una libreria
especulativa en un coprocesador Intel Xeon Phi.

R.2 OBJETIVOS DE ESTATESIS | 7

R.2.1 Preguntade investigacion

De acuerdo con los problemas identificados, podemos proponer las siguientes preguntas de
investigacion a resolver en esta tesis doctoral:

sEs posible desarrollar un sistema de paralelizacion especulativa en tiempo de ejecucion
capaz de utilizar eficientemente estructuras de datos complejas, utilizar aritmética
de punteros y tener en cuenta la tendencia de violaciones de dependencia producida
hasta ahora para estimar el mejor tamario de bloque a repartir? ;Podria implementarse,
dando lugar a buenos resultados experimentales, utilizando memoria transaccional
Y en una arquitectura con un gran niimero de niicleos como los coprocesadores Intel
Xeon Phi?

Para contestar estas preguntas de investigacién, necesitamos llevar a cabo algunos objeti-
vos intermedios, mas especificos:

Desarrollar un estudio en profundidad del estado del arte en paralelizacion espe-
culativa

Establecer una base sélida de los problemas resueltos, los desafios existentes y proponer
una clasificacion de las soluciones existentes en el campo especulativo.

Dado que durante la tltima década se han realizado multitud de trabajos relacionados con
la paralelizacion especulativa, consideramos que realizar un analisis tanto de las soluciones
conocidas, como de las menos conocidas sera un buen punto de partida. Ademas ya que no
existe un articulo que sintetice todo este conocimiento, hemos desarrollado un compendio
de paralelizacion especulativa como parte de nuestra investigacion.

Combinar un libreria especulativa con un compilador

Proponer e implementar una libreria de paralelizacion especulativa que puede ser
combinada fdcilmente con un compilador para obtener una herramienta general de
paralelizacion especulativa.

Hasta donde tenemos entendido, los compiladores actuales no soportan ejecucion espe-
culativas automaticamente, en otras palabras, no pueden transformar un bucle directamente
para paralelizarlo especulativamente. Por lo tanto, una de los objetivos de esta tesis doctoral
es alcanzar este objetivo. Cabe mencionar que este propdsito ha sido llevado a cabo con
la inestimable ayuda del Dr. Sergio Aldea. Mientras su trabajo se centraba en el desarrollo
de la parte del compilador, el nuestro se ha focalizado en la implementacién de la libreria
especulativa que se acopla con su parte.

R.3

8 | RESUMEN DE LA TESIS

Mejorar el rendimiento de las operaciones involucradas en una libreria especula-
tiva

Encontrar un manera de reducir el tiempo requerida por las operaciones mds costosas
relacionadas con la libreria especulativa.

Aunque el desarrollo de una libreria especulativa en si misma ya es una tarea bastante
compleja, si no se logra obtener resultados mejores que los secuenciales, los esfuerzos reali-
zados seran inutiles. Por tanto, mejorar tanto como sea posible el rendimiento de nuestra
solucién es algo mas que recomendable. Asi hemos descubierto como recorrer eficientemente
las estructuras de datos involucradas en las principales operaciones de la libreria, logrando
una mejora de los procedimientos mas pesados en términos de rendimiento. Para ello, hemos
desarrollado algunas estructuras de datos que reducen tanto el espacio, como el tiempo
requeridos por las soluciones clasicas.

Por otro lado, no hemos encontrado demasiados articulos que estudien el reparto de
iteraciones en contextos de paralelizacién especulativa. Consecuentemente, buscar una
solucidn eficiente, asi como desarrollarla nos permitiré probar si el rendimiento se ve influido
por este aspecto.

Combinar nuestro sistema especulativo con otras técnicas paralelas

Sugerir, implementar y probar soluciones hibridas basadas en nuestra libreria especu-
lativa y otras herramientas actuales.

Las técnicas paralelas estan en constante evolucion, proponiendo nuevos métodos y/o
tecnologias. Por tanto, esta tesis doctoral no estaria completa sin combinar una libreria de
paralelizacidn especulativa con otras técnicas paralelas para probar si combinandolas, se
obtendrian mejoras. Por ello hemos combinado algunas de las técnicas mas conocidas de
memoria transaccional, con nuestra libreria especulativa. Ademas, hemos adaptado el codigo
de nuestro sistema a la interfaz de los coprocesadores Intel Xeon Phi.

Metodologia de investigacion

Para el desarrollo de esta tesis doctoral se ha utilizado la metodologia de investigacién definida
por Adrion [1]. Este enfoque, denominado método de investigacién para ingenieria del
software, adapta las fases clasicas del método cientifico hipotético-deductivo a la Informatica.
Asi consta de cuatro fases diferentes que pueden repetirse ciclicamente hasta la consecucién
de los objetivos.

1. Observar las soluciones existentes.

R.4 RESUMEN DE CONTRIBUCIONES |9

Una vez elegido el campo de investigacion donde se va a trabajar, es requisito obliga-
torio conocer el estado del mismo. De otra forma, se podrian desarrollar soluciones
existentes, o algo que carezca de utilidad. Por ello, estudiaremos el campo de la espe-
culacién en profundidad.

2. Proponer soluciones mejores.

Tras analizar toda la informacién, probablemente se localice un nuevo enfoque que
mejore los existentes. Asi, hemos propuesto una libreria de paralelizacién especulativa
capaz de ejecutar cédigos complejos, que puede combinarse facilmente con un compi-
lador para facilitar enormemente su uso. Ademés, hemos desarrollado una estructura
de datos capaz de reducir los accesos requeridos por las operaciones especulativas mas
costosas. También hemos detectado que los métodos de reparto de iteraciones no han
sido suficientemente investigados en el contexto de la paralelizacién especulativa. Por
ello, hemos desarrollado un algoritmo capaz de adaptarse dindimicamente al nimero
de violaciones de dependencia que aparecen para asignar de forma mas optimista (o
pesimista) las iteraciones. Por ultimo, seria til combinar dos técnicas de paralelizaciéon
optimista.

3. Construir o desarrollar la solucién.

Durante esta etapa se deben implementar las soluciones propuestas en la etapa anterior.
Por tanto, hemos desarrollado la libreria especulativa, asi como el nuevo método de
reparto de iteraciones. Ademas hemos combinado nuestra solucidn con otra técnica
de paralelizacién optimista como es la memoria transaccional.

4. Medir y analizar la nueva solucién.

Por dltimo, todo prototipo debe probarse para medir si lo realizado es til o no. En
nuestro caso hemos comparado las versiones paralelas contra las secuenciales. Para
ello hemos utilizado tanto aplicaciones sintéticas, como aplicaciones de reales. Cabe
mencionar que hemos utilizado varios tipos de maquinas, con una gran diversidad
de procesadores, desde sistemas con memoria compartida, sistemas con memoria
transaccional, hasta coprocesadores Intel Xeon Phi.

R.4 Resumen de contribuciones

A continuacion exponemos las contribuciones de esta tesis doctoral ordenadas por objetivos,
asi como las publicaciones obtenidas con las mismas.

10 | RESUMEN DE LA TESIS

R.4.1 Desarrollar un estudio en profundidad del estado del arte
en paralelizacion especulativa

Hemos revisado la mayoria de las soluciones existentes en el campo de paralelizacién es-
peculativa. Asi hemos propuesto una clasificacién para enmarcar todas ellas. Creemos que
éste es un trabajo que nadie habia realizado previamente, y que puede servir tanto para
investigadores ndveles en este campo, como para veteranos. El trabajo realizado ha sido
aceptado para su publicacién en la siguiente revista:

1. Alvaro Estebanez, Diego R. Llanos y Arturo Gonzalez-Escribano. ‘A survey on Thread-
Level Speculation Techniques’. En: ACM Computing Surveys (CSUR). Accepted for
publication

R.4.2 Combinar un libreria especulativa con un compilador

Hasta la fecha, no habia ninguna solucién centrada en combinar la paralelizacion especulativa
con un compilador, hasta que Aldea et al. propusieron la suya [7]. Para ello utilizaron una
libreria de paralelizacién especulativa capaz tanto de ejecutar aplicaciones con operaciones
complejas, como de manejar aritmética de punteros. Por lo tanto hemos implementado una
libreria capaz de combinarse con un compilador de manera transparente y ejecutar todo tipo
de aplicaciones. Esta contribucién ha sido publicada en los siguientes articulos:

2. Alvaro Estebanez, Diego R. Llanos y Arturo Gonzalez-Escribano. ‘Desarrollo de un
motor de paralelizacién especulativa con soporte para aritmética de punteros’ En:
Proceedings of the XX1II Jornadas de Paralelismo. Elche, Alicante, Spain: Servicio de Publi-
caciones de la Universidad Miguel Hernandez, sep. de 2012. 1sBN: 978-84-695-4471-6

3. Sergio Aldea, Alvaro Estebanez, Diego R. Llanos y Arturo Gonzalez-Escribano. ‘A
New GCC Plugin-Based Compiler Pass to Add Support for Thread-Level Speculation
into OpenMP’. English. En: Euro-Par 2014 Parallel Processing. Ed. por Fernando Silva,
Inés Dutra y Vitor Santos Costa. Vol. 8632. Lecture Notes in Computer Science.
Springer International Publishing, 2014, pags. 234-245. 1sBN: 978-3-319-09872-2. por:
10.1007/978-3-319-09873-9_20. URL: http://dx.doi.org/10.1007/978-
3-319-09873-9_20

4. Sergio Aldea, Alvaro Estebanez, Diego R. Llanos y Arturo Gonzalez-Escribano. ‘Una
extension para OpenMP que soporta paralelizacién especulativa’ En: Proceedings of the
XXV Jornadas de Paralelismo. Valladolid, Spain, sep. de 2014. 1s8n: 978-84-697-0329-3

5. S.Aldea, A. Estebanez, D.R. Llanos y A. Gonzalez-Escribano. ‘An OpenMP Extension
that Supports Thread-Level Speculation’. En: IEEE Transactions on Parallel and Distri-
buted Systems, vol. PP, n.° 99, 2015, pags. 1-14. 2015. 1ssn: 1045-9219. por: 160.1109/
TPDS.2015.2393870

http://dx.doi.org/10.1007/978-3-319-09873-9_20
http://dx.doi.org/10.1007/978-3-319-09873-9_20
http://dx.doi.org/10.1007/978-3-319-09873-9_20
http://dx.doi.org/10.1109/TPDS.2015.2393870
http://dx.doi.org/10.1109/TPDS.2015.2393870

R.4 RESUMEN DE CONTRIBUCIONES | 11

R.4.3 Mejorar el rendimiento de las operaciones involucradas en
una libreria especulativa

Como resultado de nuestro objetivo anterior, y para incrementar el posible impacto de
nuestra herramienta, hemos tratado de localizar y aliviar los principales cuellos de botella de
la libreria especulativa. Para ello, hemos propuesto una estructura de datos basada en un hash
que permite decrementar el niimero de accesos involucrados en las operaciones especulativas.
Esto que nos permitié mejorar considerablemente el rendimiento de nuestra libreria.

Ademas, aunque el reparto de iteraciones es un campo ampliamente estudiado, los trabajos
no se han centrado especificamente en la paralelizacién especulativa. Por tanto, tras revisar
algunos de los algoritmos existentes, nos hemos dado cuenta de que no habia soluciones
focalizadas en obtener dindmicamente el mejor tamano de bloque de iteraciones basandose
en parametros de ejecucion. Asi hemos desarrollado una técnica que utiliza las violaciones
de dependencia acontecidas como factor determinante en la asignacion del siguiente bloque
de iteraciones. Estos logros han producido las siguientes publicaciones:

6. Alvaro Estebanez, Diego R. Llanos y Arturo Gonzalez-Escribano. ‘Improving the
Perfomance of a Pointer-Based, Speculative Parallelization Scheme’. En: Proceedings of
the Ist First Congress on Multicore and GPU Programming. PPGM’14. Granada, Spain,
feb. de 2014. Also published in Annals of Multicore and GPU Programming, vol. 1, no. 1,
2014.2014. issn: 2341-3158.

7. Alvaro Estebanez, Diego R. Llanos y Arturo Gonzalez-Escribano. ‘New Data Struc-
tures to Handle Speculative Parallelization at Runtime’. En: Proceedings of the 7th
International Symposium on High-level Parallel Programming and Applications. HLPP
"14. Amsterdam, Netherlands: ACM, 2014, pags. 239-258. Also published in Inter-
national Journal of Parallel Programming, 2015, pp. 1-20. Springer US, 2015. issn:
0885-7458. doi: 10.1007/s10766-014-0347-0. url: http://dx.doi.org/10.1007/
s10766-014-0347-0.

8. Alvaro Estebanez, Diego R. Llanos, David Orden y Belen Palop. ‘Moody Scheduling
for Speculative Parallelization’. English. En: Euro-Par 2015: Parallel Processing. Ed.
por Jesper Larsson Triff, Sascha Hunold y Francesco Versaci. Vol. 9233. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2015, pags. 135-146. 1sBN:
978-3-662-48095-3. por: 10.1007/978-3-662-48096-0_11. URL: http://dx.
doi.org/10.1007/978-3-662-48096-0_11

R.4.4 Combinar nuestro sistema especulativo con otras técnicas
paralelas

Para completar nuestro trabajo, hemos probado nuestra libreria especulativa en otros contex-
tos distintos a las maquinas de memoria compartida convencionales. Asi hemos combinado
la memoria transaccional con nuestra libreria especulativa para comparar como influye el

http://dx.doi.org/10.1007/s10766-014-0347-0
http://dx.doi.org/10.1007/s10766-014-0347-0
http://dx.doi.org/10.1007/978-3-662-48096-0_11
http://dx.doi.org/10.1007/978-3-662-48096-0_11
http://dx.doi.org/10.1007/978-3-662-48096-0_11

12 | RESUMEN DE LA TESIS

uso de secciones criticas de forma convencional, o el uso de las transacciones software o
hardware. Ademés hemos examinado el comportamiento de nuestro software con uno de
los dispositivos mas vanguardistas, un coprocesador Intel Xeon Phi. Este trabajo nos ha
permitido publicar los siguientes articulos:

9. Sergio Aldea, Alvaro Estebanez, Diego R. Llanos y Arturo Gonzalez-Escribano. ‘Study
and Evaluation of Transactional Memory approaches with a Software Thread-Level
Speculation Framework’. En: IEEE Transactions on Parallel and Distributed Systems. To
be submitted

10. Alvaro Estebanez, Diego R. Llanos y Arturo Gonzalez-Escribano. ‘Evaluating the
capabilities of the Xeon Phi platform in the context of software-only, thread-level
speculation’. En: Proceedings of the 8th International Symposium on High-level Parallel
Programming and Applications. HLPP ’15. Pisa, Italy: ACM, 2015. To be also published
in International Journal of Parallel Programming, Springer US.

R.5 Respuesta a la pregunta de investigacion y conclusiones

sEs posible desarrollar un sistema de paralelizacion especulativa en tiempo de ejecucion
capaz de utilizar eficientemente estructuras de datos complejas, utilizar aritmética
de punteros, y tener en cuenta la tendencia de violaciones de dependencia producida
hasta ahora para estimar el mejor tamafio de bloque a repartir? ;Podria implementarse,
dando lugar a buenos resultados experimentales, utilizando memoria transaccional,
Y en una arquitectura con un gran niimero de niicleos como los coprocesadores Intel
Xeon Phi?

Como resultado de nuestra investigacién, podemos afirmar que la pregunta de inves-
tigacién ha sido contestada claramente. Por un lado, hemos desarrollado un software de
paralelizacidn especulativa capaz de (a) controlar estructuras de datos complejas, y (b) utilizar
aritmética de punteros. Ademas, hemos propuesto (c) una estrategia de reparto de iteraciones
que tiene en cuenta no solo parametros de tiempo de ejecucién como las violaciones de
dependencia, si no también el optimismo que el usuario quiera implementar en cuanto a la
asignacién de bloques de iteracién mas grandes o mas pequerios.

También hemos verificado que (d) la paralelizacion especulativa y la memoria transac-
cional se pueden combinar con resultados similares a los de las técnicas clasicas, y () que la
paralelizacién especulativa puede utilizarse en los coprocesadores Intel Xeon Phi.

R.6 AGRADECIMIENTOS | 13

R.6 Agradecimientos

Esta Tesis estd parcialmente financiado por el Ministerio de Industria (CENIT OCEAN-
LIDER), Ministerio de Ciencia e Innovacién y el Fondo Europeo de Desarrollo Regional
(MOGECOPP project TIN2011-25639, CAPAP-H3 network TIN2010-12011-E, CAPAP-H4
network TIN2011-15734-E, CAPAP-H5 network TIN2014-53522-REDT).

14 | RESUMEN DE LA TESIS

CHAPTER 1

Introduction

INCE the invention of integrated circuit, computer performance has been improving
S exponentially. However, this progression quickly reached different physical limits at
the beginning of the 21st century, being power dissipation the most remarkable one. In-
stead of augmenting clock speed even more, computer architects decided to pack several
computational units in the same chip, starting the era of the affordable, shared-memory
multiprocessor. However, to take advantage of these architectures in the execution of a
single application, sequential code should be either rewritten as a set of parallel tasks, or
automatically transformed into parallel code. In this chapter we will explain why the latter is
a non-trivial problem, how speculative parallelization techniques may help, and which are
the goals of this Ph.D. Thesis.

-15-

1.1

16 | INTRODUCTION

Motivation

Since the advent in 1971 of the first microchip, the Intel 4004, with about 2300 transistors and
a frequency of 104 KHz [16, 122], computing machines suffered a dramatic evolution, with
exponential increments on the number of transistors per surface unit and a corresponding
increment in computational performance. This astounding improvement rate quickly reaches
physical limits at the beginning of the 21st century, such as the difficulties associated to extract
all the heat produced by a chip of just a few square millimeters that consumes more than
100WV.

To keep growing the rate of performance, computer architects started to pack several,
simpler computational units in the same chip. This solution took advantage of the increment
in the number of transistors that can be packed together!', while distributing “hot spots”
on different areas of the chip, thus simplifying cooling. This solution also allowed to de-
crease the peak frequency used, consequently making this solution affordable for its use on
battery-powered systems.

Nonetheless, for the very first time in computing history, an architectural improvement
does not automatically lead to better performance of sequential applications. To take advant-
age of these new capabilities, these shared-memory parallel systems should either be used to
run several applications at once, or run a parallel version of a sequential application. This
Ph.D. Thesis is focused on the last problem, studying how a single task can be automatically
executed by different processors in parallel.

1.1.1 Multiprocessor computers

As stated before, multicore machines are capable of executing not only several programs
simultaneously, but also the same program divided on smaller tasks. To achieve improve-
ments in the execution of a sequential program with a multicore computer, it is necessary
that programs can be decomposed on independent tasks. If tasks have dependences among
them, and we execute them in the wrong order, the execution will likely lead to incorrect
results.

To isolate the parts of a code that may be executed independently is a tedious, error
prone task because factors such as synchronization have to be taken into account to avoid
undesirable results. There already exist some specific languages, as well as extensions to
sequential languages, and function libraries centered on ease users this parallelization process.
However, in order to successfully parallelize a sequential program, the programmer should
(a) know the characteristics of the underlying hardware, (b) understand the problem to be
solved by the code, and (c) know the parallel programming model being used. In addition,
parallel software that is tailored for a specific architecture may not be portable to other
systems. These facts make automatic parallelization a very appealing idea.

!"This is another example of an improvement that might soon reach its own physical limit.

1.1 MOTIVATION | 17

Parallel execution

Thread 1 Thread 2 Thread 3

(iterations 1 to 3) (iterations 4 to 6) (iterations 7 to 9)

do i=1, 9
v[i] = £(v[i])
end do

Figure 1.1: Loop without dependences between iterations.

Original source code

Original source code Parallel execution

do i=1,9 Thread 1 Thread 2 Thread 3
lf (1,== *) the_m (iterations 1 to 3, k=5) (iterations 4 to 6, k=5) (iterations 7 to 9, k=5)
v[i] = £(v[i-2])

else

vIi] = £(v[i])
end if
end do

Figure 1.2: Loop with a dependence between two iterations.

Nowadays, there are some compilers capable of parallelizing fragments of a code (mainly
loops). However, parallelizing compilers conservatively refuses to parallelize a loop if there
is the slightest possibility of a dependence violation among its iterations. Determining or
predicting which instructions depend on others is a rather difficult task, because of the
combinatorial explosion due to the existence of multiple control paths. Moreover, values of
certain variables may not be known at compile time, thus preventing parallelization. We will
further explore this point with an example.

Figure 1.1 shows a loop without dependence violations: All the instructions are inde-
pendent, so the code may be safely parallelized at compile time. On the other hand, Figure 1.2
depicts a loop that may produce some dependence violations. Supposing that the value of k
is unknown at compile time, and assuming that it will be £ = 5 at runtime, if the parallel
execution of the loop executes iteration ¢ (with ¢ = 5 in our example) before iteration ¢ — 2
(i — 2 = 3 in our example), the value of v[i — 2] (that is, v[3]) will return an outdated value,
breaking sequential semantics. This issue, called dependence violation, appears when a given
thread produces a datum that has already been consumed by one of its successors, with
respect to the original, sequential order. So as to guarantee a right behavior, it is necessary to
serialize the execution of iterations ¢ — 2 and ¢, a difficult task in the general case?. This one
is the most severe limitation to compile-time parallelization techniques.

2Note that if the dependence did not cross thread boundaries (for example, with k = 6), the compiler could
have parallelized the loop safely.

18 | INTRODUCTION

1 | for (i=0; i<100; i++)

2 | {

3 localVar = sharedVarA+sharedVarB;
4 sharedVarA = ixlocalVar;

s |}

Listing 1.1: Example of a code with private and shared variables.

There exist some parallel constructs to handle these situations, such as barriers, but their
use severely affects performance, sometimes making the resulting parallel code even slower
than the original, sequential one.

1.1.2 Dependence violations

In order to understand when a dependence violation may take place, we will first show how
variables can be classified according to their use. When using a shared-memory programming
model, variables can be classified as either shared or private.

Informally speaking, private variables are those whose values are always written before
being read at a given iteration. Their intended scope is the iteration, and not beyond it.
On the other hand, shared variables contain values whose scope spans several iterations.
Therefore, if a thread consumes a shared value, and later a thread running an earlier iteration
writes a new value onto it, a dependence violation will take place.

An example of private and shared variables is shown at Listing 1.1. In this example,
localVar is private since it is always written locally before being read in the context of each
iteration. On the other hand, sharedVarA and sharedVarB are shared variables. In the case
of sharedVarB, it is a read-only variable, so it will not trigger any dependence violation.
Regarding shareVarA, it is read before being written, so reads and writes that do not follow
sequential semantics are likely to trigger a dependence violation.

A loop that only uses private and read-only shared variables is parallelizable. On the
contrary, loops that performs reads and writes on shared variables are expected to suffer
dependence violations when executed in parallel.

Types of data dependences
There are three types of data dependences among iterations:
* Write-after-write (WAW): This kind of data dependence is produced when a

variable is written in two different iterations, with no reads between the writes. An
incorrect ordering in the execution of both iterations leads to a dependence violation.

1.1 MOTIVATION | 19

for (i=0;i<4;i++)

{
if (i==1)
localVar = 4;
if (i==3)
localVar = 7;
}

Listing 1.2: Example of Write-after-write (WAW) dependence violation.

// Suppose that at the beginning
// localvVarA == 3
for (i=0;i<4;i++)

{
if (i==1)
localVarB = localVarA;
if (i==3)
localVarA = 5;
}

Listing 1.3: Example of Write-after-read (WAR) dependence violation.

Listing 1.2 shows an example. In this code, the localVar variable is written twice,
first at iteration 2, and again at iteration 4. In a sequential code, the value obtained
at the end of the loop in localvar would be 7. However, if we suppose a parallel
execution with two processors, we cannot guarantee that iteration 2 is executed before
iteration 4, and therefore, it cannot be ensured that the value of localVar at the end
of the loop is 7 (the value might be erroneously 4).

Write-after-read (WAR): This type of data dependence appears when a local
variable that has been previously read in a previous iteration is written with a new
value in a subsequent iteration. Again, an incorrect ordering of both iterations may
trigger a dependence violation.

Listing 1.3 shows an example of this data dependence. Variable localvaraA is read
at iteration 2, and later written at iteration 4. In a sequential execution, the value of
localVvarA at the end of the loop would be 5, and the value of localVarB would be
3. Now suppose a parallel execution with two processors, where iterations 1 and 2 are
assigned to the first one, and iterations 3 and 4 are assigned to the other processor. In
this case, it cannot be ensured that iteration 2 is executed before iteration 4, so the
value of localVarB at the end of the loop may not be 3.

20 | INTRODUCTION

/
/
/

{

/ Suppose that at the beginning...
/ sv = 0
/ Localvar = 1;
for (i=0;17<3;i++)
localvVar = sv;
sv = 20;
if (i==1)
{
sv = 10;
}

Listing 1.4: Example of Read-after-write (RAW) dependence violation.

+ Read-after-write (RAW): This data dependence is the most difficult to track.

RAW dependence violations occur when a shared variable is written with a value that
will be read by subsequent iterations. If both operations are carried out in the wrong
order, the value read may be wrong.

Listing 1.4 shows an example. A sequential execution of that code will produce the
values localvVar = 10 and sv = 20. If we run this code in parallel using three
processors, each one executing a single iteration, a parallel execution is likely to lead to
wrong values. The exact values being produced depend on the particular ordering of
the instructions being executed. For example, let us assume that at instant t1 the first
instruction of threads 1 and 2 are executed, so localVar versions of both threads are
0. After that, at instant t2, the following instruction of thread 1 is executed, setting
sv = 20. Once completed, at instant t3 the first instruction of thread 3 is executed,
triggering a dependence violation, since localvar = 20 is consumed, instead of the
value 10 that would follow sequential semantics. But problems do not stop here. If
we suppose that at instant t4 the next instruction of thread 3 is executed, the value
of sv will be 20. And consequently, if at instant t5 the last instruction of thread 2 is
executed, sv will be 10. At the end of the execution, the values of variables would be
either localvar = 20 or localVar = 0,and sv = 10, and the parallel executions
would have failed. All those operations are summarized in the Table 1.1.

1.1.3 Parallelization of codes with dependences

Although the problem of parallelizing loops with dependences may seem hard to tackle,
there are some techniques which allow the parallelization of such complex codes. Whereas
classical solutions simply refuse to parallelize code whenever a single dependence might take

1.1 MOTIVATION | 21

Thread 1 Thread 2 Thread 3
ot e
0 0

t1 0 0 0 1

t2 0 20 0 20 1 20
t3 0 20 0 20 20 20
t4 0 20 0 20 20 20
t5 0 10 0 10 20 10

Table 1.1: Timing of the loop with the values of each variable at any time in the supposed
execution.

place, other proposals, such as Inspector-Executor or Thread-Level Speculation handles these
situations. These techniques optimistically suppose that the whole execution will follow
sequential order. If any dependence violation occurs, they will detect this situation and
perform the required operations so as to achieve a correct result. A brief description of both
techniques follows.

Inspector-Executor

This technique [165] aims to parallelize loops that cannot be parallelized by a compiler. It is
mainly based on finding data dependences among the iterations of a loop through the use of
an inspector loop extracted from the original loop. The inspector loop tries to assign every
single iteration that depends on previous ones to the same processor, so that the execution is
ensured to be done in the correct order. A second, executor loop, carries out the execution
of each chunk of iterations in parallel. Although this technique can be applied to any loop,
its use is only advisable if the processing time of the inspector loop is quite lesser than the
execution time of the original loop. Unfortunately, this does not happen in the general case,
due to the cost of inspecting loops that use pointer arithmetic, complex control flows or
depend on input data. This proposal was later enhanced with different improvements, that
will be discussed on Section 2.3.

1.1.4 Speculative Parallelization

Thread-Level Speculation (TLS) [49, 215, 218, 241], also called Speculative Parallelization
(SP)* [73, 96, 144, 273] or Optimistic Parallelism [157, 158, 159, 160, 161, 162] tries to
extract parallelism of loops that cannot be ensured to be fully parallel at compile time. In
other words, this technique aims to parallelize codes with dependences. TLS optimistically
assumes that dependence violations will not occur, launching the parallel execution of the

*From now on, TLS and SP concepts will be used throughout the text interchangeably.

22 | INTRODUCTION

loop. Meanwhile, a hardware or software monitor ensures the correctness of that assumption,
taking corrective actions when needed.

The monitoring system may be implemented either in hardware or software. Although
hardware mechanisms do not need changes in the code nor add overheads to speculative
execution, they require changes in the processors and/or the cache subsystems (see e.g. [51,
113]). On the other hand, software-based systems require changes in the original source code
of loops, including the addition of some instructions which manage the execution and take
care of possible dependence violations that may take place. Despite the performance overhead
introduced by these instructions, software-based speculative parallelization approaches can
be implemented in current shared-memory systems without any hardware changes. Since
this Ph.D. thesis is centered on the software-based branch, hardware solutions are not going
to be detailed, and affirmations exposed are generally referred to solutions made in software.

TLS systems are usually applied to for loops. Other loops can be considered as well, but
their number of iterations cannot be so easily predicted, and therefore, the applicability of
TLS solutions is limited by scheduling problems (see Chapter 5).

Working model

Recall that, when a dependence violation is detected, results calculated so far by the thread
that used an incorrect value of the variable and its successors (globally called offending
threads) are not longer valid and should be discarded, and these threads should be restarted
in order. After solving this issue, the optimistic parallel execution is allowed to proceed.
Obviously, a great deal of time is lost stopping and restarting threads, so, the less dependence
violations, the better results are obtained in terms of performance.

The most recurrent solution managed by software-based speculative approaches to avoid
as much dependence violations as possible is called forwarding. If a thread has to read the value
of ashared variable, it should read the most recently stored value of it, so the most recent copy
of this value is forwarded from a predecessor to the consumer thread. In the case of needing
to write over a shared variable, after the write the thread should check whether a successor
has used an outdated value, in order to detect as soon as possible dependence violations
which may arise. Chapter 2 discusses with more detail the possible implementations of these
operations.

Another typical solution adopted by software-based TLS approaches is to provide each
thread with its own shared data version. Thus, threads modify only its own copies of the
shared variable, instead of the global shared variable. When a thread finishes the execution
of its chunk of iterations, if no dependence violations have arisen, results would be saved
in the corresponding global, shared variable (this operation is known as commitment). On
the other hand, in the case of dependence violations, all the local versions of shared data
with ‘wrong’ values should be discarded, in a so-called squash operation. Then the thread
whose values has been rejected should start the work again, as well as its successors since they
might have been forwarded a polluted value from him. The advantage of using local copies
is that the most frequent operation (read accesses to shared variables) can be performed

1.2 MOTIVATION | 23

Speculative parallel exection

Original source code Thread 1 Thread 2 Thread 3
(iterations 1 to 3, k=5) (iterations 4 to 6, k=5) (iterations 7 to 9, k=5)
do i=1,9
if (i == k) then vidr=_£f(v[4 2 vITh=_£(vI7 2
vIi] = £(v[i-2]) 1 vI5] = Vi8] =)
else _vieT = £(vi6]) = £(vI9])

v[i] = £(v[i])

end if ||
end do 3

Figure 1.3: Speculative parallelization starts the parallel execution of the loop, while a control
system tracks the execution to detect cross-thread dependence violations. If such a violation
occurs, (1) speculative parallelization stops the consumer thread and all threads that execute
subsequent blocks, (2) discards its partial results, and (3) restarts the threads to consume the
correct values.

really quickly, as long as a local copy exists. An example of these situations can be found at
Figure 1.3. Let us remark that this stop-and-restart process spends some time, so the more
dependence violations appear, the worse results will be obtained with this technique in terms
of performance.

Main operations of speculative executions

Software speculative parallelization systems need to modify the original source code of the
application at compile time to perform the following tasks:

« Speculative load and store operations: Each thread has its own version of the shared
variables, so all read and write operations on shared variables should be replaced with
a function that should also check that no dependence violations appear.

+ Results commitment: At the end of a successful execution of a chunk of iterations, a
function should be called to commit the results produced and to request a new chunk
of consecutive iterations.

Scheduling of chunks of consecutive iterations: Iterations should be distributed throughout
all available threads that take part over speculative execution. It can be done with
different strategies: Distributing iteration chunks of a constant size; adapting their
size to the characteristics of each application; or dynamically deciding the size of the
next chunk to launch (see Chapter 5).

1.2

24| INTRODUCTION

Obijectives of this dissertation

The design of a TLS system to be used at production level implies to address different
problems. As stated previously, operations involved in speculative parallelization have
a direct influence in the performance of a TLS solution. Therefore, improving as much
as possible the access mechanisms to data structures of a TLS library will also affect its
performance. Thus, efforts devoted to speed up accesses to data structure are worthwhile.

Second, there are many codes with dependence violations which present pointer arith-
metic, representing a hurdle to classic speculative parallelization techniques. So, it would be
useful to enhance a TLS library so that it supports codes with these special variables.

Third, achieving a correct distribution of iterations among threads of TLS has the po-
tential of improving speedups achieved considerably. Hence, it would be advisable to work
in the development of new dynamic scheduling techniques based on the recent history of
dependence violations, hoping to reduce execution times.

Fourth, although they use different approaches to solve different problems, there are
some similarities between Transactional Memory and TLS. Therefore, it would be helpful to
combine both solutions in a way that TLS critical sections can be benefited of Transactional
Memory.

Finally, with the advent of many-cores machines, new possibilities have emerged con-
cerning parallel techniques. Regarding the state of the art in the TLS field, no previous studies
had been done related to Intel Xeon Phi coprocessors. So, it would be desired to test a TLS
library within an Intel Xeon Phi coprocessor.

1.2.1 Research question

According to the identified problems detailed in the previous section, we can state the research
questions to be solved in this Ph.D Thesis:

Is it possible to develop a runtime system for thread-level speculation able to efficiently
handle complex data structures, use pointer arithmetic, and take into account the
tendency of dependence violations produced so far to estimate the best chunk size
to be scheduled? Could it be implemented and lead to good execution times using
Transactional Memory, and in new manycores architectures such as the Intel Xeon
Phi coprocessors?

1.2.2 Milestones

In order to answer these research questions, we need to accomplish some intermediate, more
specific objectives:

1.2 OBJECTIVES OF THIS DISSERTATION | 25

Goal 1: To perform an In-depth study of the state-of-the-art in TLS

To gain a solid knowledge of problems solved so far and challenges in the field, and to
propose a classification of the existent approaches.

Many works have been carried out in the field of speculative parallelization during the
las decade. Therefore, we consider that performing an in-depth analysis of both well-known,
and not as well recognized solutions, is a good starting point. As long as there does not exist
a survey paper that summarizes the status of the developments so far, we developed a survey
on TLS as part of our research.

Goal 2: To combine a TLS library with a compiler

To propose and implement a new TLS library which can be coupled with a compiler in
order to develop a speculative transformation framework.

To the best of our knowledge current compilers do not support speculative executions
automatically, in other words, they cannot directly transform a loop so as to parallelize it
speculatively. Because of this, one of the purposes of this Ph.D. thesis is to achieve this goal.
This work was carried out with the help of Dr. Sergio Aldea. Whilst he was centered on
the development of the compiler side, our main concern was implementing the runtime
library which deals with its part. The development of the compile-time transformations are
described in Dr. Aldea’s Ph.D. thesis, Compile-Time Support for Thread-Level Speculation [7].

Goal 3: To improve the performance of operations involved in a TLS runtime lib-
rary

To find ways of reducing the time needed by the costly operations related to TLS.

Although developing a runtime library which supports speculative parallelization is a
hard issue, if no speedup is accomplished, efforts done will be useless. Thus, improving as
much as possible the performance of our approach became mandatory. As a result, we found
out how to efficiently traverse the data structures involved in the main operations done by
the library, leading to an improvement of the most time-consuming procedures. Hence,
we developed some data structures which reduce both space and time required by classic
approaches.

On the other hand, there have not been many papers centered on scheduling strategies
related to TLS. Consequently, searching for existent solutions as well as develop a new
strategy has proven to be a good way of checking whether it is an important issue in terms of
performance.

1.3

26 | INTRODUCTION

Goal 4: To combine our TLS runtime library with other parallel techniques

To suggest, implement, and try out hybrid solutions based on our TLS library and
other, state-of-the-art approaches.

Parallel techniques are constantly evolving through both new methods and/or technology.
Hence, this Ph.D. thesis will not be fully completed without combining a TLS library with
other parallel techniques so as to test if joining them, we will achieve improvements. An im-
plementation which supports vanguard technology will be useful to test new capabilities with
TLS approaches as well. Therefore, we combined some Transactional Memory approaches
with the TLS runtime library mentioned. Also, we adapted the TLS runtime library to the
interface of Intel Xeon Phi coprocessors.

Research methodology

According to [70, 95], Computer Science cannot be directly classified as a science, but rather
as an interdisciplinary science, transversal to very different domains. As a result, it is not
clearly defined a standard research methodology which includes the whole areas within this
discipline. Consequently, plenty of them have been proposed so far, such as the theoretical,
experimental and simulation methods suggested by Freitas [95] and Dodig-Crnkovic [70], or
the formal, experimental, build and process methodologies recommended by Amaral [14].
Nonetheless, the main research methodology followed throughout this Ph.D. thesis is the
software engineering method described by Adrion [1]. It adapts the specific stages of the
classical scientific hypothetico-deductive method to Computer Science. Thus, the software
engineering method is composed of four stages that may be repeated or not depending on
the results achieved. (1) Observe existing solutions, (2) propose better solutions, (3) build or
develop them, and (4) measure and analyze the results. Let us review how these different
stages will be applied throughout this Ph.D. thesis.

1. Observe existing solutions.

Once the research field is chosen it is almost mandatory put into perspective the
existing work. Otherwise, authors might develop something which already exists, or
something which is not useful. Hence, we will study literature related to Thread-Level
Speculation in-depth.

2. Propose better solutions.

After analyzing all the information, authors will probably find out a new approach
which improves the existing ones, at least in a certain manner. We have proposed
a new TLS runtime library able to execute complex codes speculatively, which can
be easily combined with a compiler in order to be used automatically. In addition,

1.4

1.4 DOCUMENT STRUCTURE | 27

we have developed a data new structure capable of reducing the accesses required by
the most time-consuming speculative operations. Also, we detected that scheduling
methods regarding speculative parallelism were not fully studied. So it could be helpful
a new approach which takes advantage of the runtime parameters, and takes into
account some optimistic or pessimistic parameters defined by users. Furthermore, we
thought that combining two optimistic parallel techniques might lead to performance
improvements.

3. Build or develop the solution.

During this stage should be implemented all the solutions proposed in the previous
one. Consequently, we have developed the new TLS runtime library as well as the
novel scheduling method. In addition we have mixed our solution with other parallel
technique as Transactional Memory.

4. Measure and analyze the new solution.

At last, every prototype made has to be deeply examined so as to measure the proposed
solution. In our case, we will perform some experiments with the software developed.
Specifically we will compare sequential versions of applications against those spec-
ulatively parallelized with our approaches. To do so, we will use both real-world
and synthetic benchmarks. In order to conduct the experiments we needed several
machines, from shared-memory systems with a big number of processors, to systems
with a Xeon Phi coprocessor or Transactional Memory extensions.

We would also like to note that we have followed some of the guidelines proposed by
Berndtsson et al. [22] to develop a thesis project.

Document structure

This document is organized as follows. Chapter 2 details the state of the art of the field of
Thread-Level Speculation. It describes in depth the fundamentals of TLS, referencing the
most important works of this domain, and also classifying into broad categories the research
published so far.

Chapter 3 describes the new TLS runtime library developed. It briefly describes the
behavior of the classic solution due to Cintra and Llanos, highlighting its limitations. Then
the new solution is described in detail, along with different improvements proposed to reduce
TLS bottlenecks.

Chapter 4 gives details about the ATLaS framework, the system which allows to compile
a given code with an extended version of the OpenMP programming model that includes a
speculative clause. This clause eases the process of parallelizing programs that may present

28 | INTRODUCTION

dependence violations at runtime. The ATLaS framework uses our runtime library to specu-
latively parallelize loops. This chapter describes the compiler phase, giving some experimental
results obtained with the help of our library.

Chapter 5 explores current scheduling strategies related to TLS. Not much research
has been done regarding the sizes of chunks scheduled in TLS approaches so far, thus this
chapter summarizes some of the work carried out papers, also describes a new proposed
solution which uses some runtime parameters about dependence violations in order to adapt
its behavior either optimistically or pessimistically.

Chapter 6 and Chapter 7 evaluate the adaptability of the TLS runtime library in rela-
tion to emerging programming models. Specifically, Chapter 6 contains descriptions of
how to combine TLS with Transactional Memory. It reviews some Transactional Memory
characteristics, to highlight the differences between this parallel approach and TLS, and
also explains how to manage the critical sections of our TLS library through Transactional
Memory. Meanwhile, Chapter 7 introduces the use of TLS with the Intel Xeon Phi copro-
cessor. It describes current state of Xeon Phi coprocessor with respect to our field as well as
the steps needed to use a TLS software library within these devices.

Finally, Chapter 8 concludes this Ph.D. thesis, enumerating its contributions, the resulting
publications, and some possible ways of continuing this work.

We have also included some appendices to complete the understanding of this thesis.
Specifically, Appendix A details the benchmarks used to conduct the experiments performed.
Finally, we also believed that an example of how to use the TLS runtime library manually
could be helpful, therefore Appendix B explains how to parallelize an application speculatively
using the software described in Chapter 3.

CHAPTER 2

State of the art

HREAD-LEVEL Speculation (TLS) is a promising technique that allows the parallel execu-

tion of sequential code without relying on a prior, compile-time dependence analysis.
Since first approaches, in which loops were optimistically executed and if any dependence
violations arise they were sequentially re-executed, there have been several advances. For
example, current techniques apply a wide range of improvements such as value prediction,
or specific data structures. In addition, takes advantage of most available devices like GPUs,
or Intel Xeon Phi coprocessors. Firstly, this chapter introduces the technique and presents a
taxonomy of TLS solutions. After that, it summarizes and puts into perspective the most
relevant advances in this field regarding the software based solutions.

-29-

2.1

2.2

30 | STATE OF THE ART

Introduction

Thread-Level Speculation (TLS), also called Speculative Parallelization (SP), or even Optim-
istic Parallelization, is a runtime technique that executes in parallel fragments of code that
were originally intended to run sequentially. Instead of relying on compile-time analysis to
identify independent parts of sequential code that can be run concurrently, TLS techniques
optimistically assume that these parts can be executed in parallel by different threads. To en-
sure correctness, speculative threads should detect whether they have consumed a datum that
was subsequently updated by a predecessor thread, that is, a thread executing an earlier part
of the code, according to sequential semantics. Such situations, called dependence violations,
should be detected and rectified by hardware or software mechanisms, or a combination of
both, to keep sequential semantics. If a dependence violation is detected, a corrective action
will take place, typically discarding the results calculated by the thread that has consumed
the incorrect value, and restarting it to be fed with the updated datum.

Although implementations can be based on either hardware or software, in the following
lines we will just describe in-depth the software branch since our work are fully based on
software. Precursors and hardware-based approaches are just introduced.

In this chapter we review the literature related to Thread-Level Speculation techniques,
presenting a taxonomy that helps to better understand each proposed solution in its context.
The chapter is organized as follows. Section 2.2 presents a global view of the problem, in-
cluding a description of sources of speculation in the code, together with the main design
choices that may arise while designing a TLS solution. Section 2.3 examines the first solu-
tions that served as a base for the development of TLS systems. Section 2.4 briefly gives
some notions about hardware-based approaches, where additional hardware is added to
support speculation. Section 2.5 shows software-based proposals, which do not require
additional hardware to monitor the parallel execution, at the cost of a certain performance
loss. Section 2.6 describes other works that take advantage of TLS capabilities for different
purposes. Section 2.7 cites some studies that have pointed out the theoretical and practical
limits of the TLS paradigm. Finally, Section 2.8 concludes this chapter.

Sources of TLS and design choices

In [244], an accurate summary of Thread-Level Speculation techniques is given by Torrellas,
including a detailed description of the two main issues that any TLS system should solve:
How to buffer and manage speculative states, and how to detect and handle dependence
violations. His analysis makes any effort to reproduce a summary of TLS characteristics here
meaningless. Instead, we will briefly discuss where are the main sources of speculation, and
which are the most important design choices that have to be faced to set up a TLS system.

2.2 SOURCES OF TLS AND DESIGN CHOICES | 31

for (i=0; i<SIZE; i++
for (i=0; i<SIZE; i++) ® °rv(['i] GiSERY L o S« garrer nceded
VIil = i; / Statement S ... = f(VIiX]); // Stat. S2 (x>0)
} @ &

Loop body Dependency graph Loop body Dependency graph
(a) DOALL Loop (b) FORALL Loop

for (i=0; i<SIZE; i++) { @ for (i=0; i<SIZE; i++) { e‘zg

... = f(V[i-x]); // Stat. S1 (x>0) X VIWIill = ...; // Stat. S1
VIl = ...; // Stat. S2 @ @ ... = f(VIZ[i]]); // Stat. S2 @ @
Barrier needed }
Loop body Dependency graph Loop body Dependency graph
(c) Regular DOACROSS Loop (d) Irregular DOACROSS Loop

for (i=0; i<SIZE; i++) { @ @

... = f(V[i-11); // Stat. S1 1
Vil = ...; // Stat. S2 @ @
} Barrier needed
Loop body Dependency graph
(e) DOSEQUENTIAL/DOSERIAL Loop

Figure 2.1: Different types of loops according to the presence of data dependences. The label
in each edge represents the dependence distance.

2.2.1 Loops as a source of speculation

Due to how easy it is to distribute work among threads, loops are the most important source
for TLS. The synthesis of loop-based speculation written by Rauchwerger [217], who was also
apioneer in the field, accurately reflects the importance of loops as a source of speculation. We
will first briefly describe how data processed in one iteration may interact with calculations
in different iterations, a situation known as data dependence.

There are three basic types of data dependences among two fragments of code, namely
true, anti, and output dependences. In the following examples, let .S; and S;; be two statements,
where S; should be executed earlier than S; according to sequential semantics.

« True dependence: Statement S; writes into a location that is later read by .S;.
« Anti dependence: Statement S; reads a location that is later written by .S;.
« Output dependence: Both statements .S; and S; writes into the same location.

These definitions can be used to create a taxonomy of loops, according to the presence
of data dependences among their iterations. One of the first taxonomies was proposed by
Polychronopoulos and Kuck [205]. They proposed a mechanism for scheduling nested loops
of parallel programs taking into account communication between processors and reducing
shared memory accesses. Also, this work classified loops into three different types: doall,
forall, and doacross.

32 | STATE OF THE ART

 Doall loops: Loops that do not present any dependence among their iterations. There-
fore, all iterations can be processed in parallel with no further checking [238]. Fig-
ure 2.1(a) shows an example of this loop. Most of current compilers can parallelize
this kind of loops automatically.

« Forall loops: Loop whose iterations may present true dependences: Values produced
by one iteration may be used in a subsequent iteration. An example is depicted in
Fig. 2.1(b). All iterations of a forall loop can be executed simultaneously if and only
if all the statements that produce the value (S1 in the figure) have finished before the
execution of any statement that consumes the value (S2 in the figure). If this behavior
cannot be guaranteed, a synchronization mechanism is needed.

+ Doacross loops: Loops whose iterations may present anti dependences: Values consumed
may be overwritten later. [154] divides doacross loops into three categories:

— Regular doacross loops: Loops whose anti dependences among iterations are
dominated by a constant value X. Figure 2.1(c) shows an example. These loops
can be parallelized by ensuring that the execution of the iterations involved in the
dependence follows sequential semantics. If the value of X is known at compile
time, compilers are usually able to produce a parallel version of the loop.

— Irregular doacross loops: Loops whose dependences among iterations are not
known at compile time. Figure 2.1(d) shows an example. These loops are com-
monly called “irregular loops”, and in general they cannot be parallelized safely
at compile time.

— Dosequential or doserial loops: A special type of regular doacross whose iterations
depend on the previous one (that is, loops that have a dependence distance of
one). Figure 2.1(e) shows an example. These loops have no parallelism at the
iteration level.

Compile-time techniques can be used to generate parallel versions of doall, forall and,
when the dependence distance is known at compile time, regular doacross loops. Since TLS
is a runtime technique, it can use the available information in all of the described loops,
including irregular doacross loops. However, TLS will likely be slower than a compile-time
parallelization, if the latter can be applied. With respect to dosequential loops, a TLS system
will also guarantees that the parallel execution will be correct, at the cost of squashing and re-
starting iterations continuously to follow sequential semantics, thus degrading performance.
The main application of TLS is in the parallel execution of irregular doacross loops when the
total number of dependences that appear at runtime is low.

2.2 SOURCES OF TLS AND DESIGN CHOICES | 33

2.2.2 Drawbacks of TLS

Although TLS can extract parallelism even from irregular doacross loops, it will likely be slower
than a compile-time parallelization, if the latter can be applied. Sources of overhead in TLS
include the cost associated to thread squash and restart due to data dependence violations,
speculative buffer overflows, load imbalance due to data locality issues, thread dispatch and
commit, and inter-thread communications [73].

TLS overheads may not only lead to lower performance in terms of execution time, but
also to a greater energy consumption. This issue appears in software solutions, due to the
energy cost associated to the execution of additional instructions to guarantee that sequential
semantics are followed, and to the wasted work carried out by squashed threads. Energy
inefficiencies also appears in hardware approaches, due to the need of additional hardware
structures in the cache hierarchy for data versioning, dependence checking, and its associated
bus traffic [220]. We will return to this problem in Section 2.6.3.

2.2.3 Afirst classification of TLS techniques

According to [143, 177], there are three types of speculation techniques: (1) control specula-
tion; (2) data dependence speculation; and (3) data values speculation. These types are not
disjoint, and their basis can be combined to achieve better results.

Control speculation

Control speculation applies speculation to loops that include conditional sentences. Execu-
tion paths of each iteration are detected, mapping them to different threads. [4, 130, 253]
combined control speculation with branch prediction. Puiggali et al. [211] tried to predict
the outcome of conditional branches without the need to know all the variables implied in
the condition.

Data dependence speculation

Data dependence speculation is a technique suitable for the parallel execution of loops that
may lead to inter-thread memory dependences. Load operations from speculative variables
(that is, variables whose use may lead to a dependence violation) usually return the most
recent value for that variable, while speculative store operations search for the use of outdated
values in those threads, executing subsequent iterations according to sequential semantics.
Many researchers have contributed to this solution, including [29, 49, 94, 177, 218, 241].

Data value speculation

Data value speculation techniques, also known as value prediction techniques, predict at runtime
the result of instructions before their execution. This approach is based on the idea that
an accurate prediction may avoid a squash. For example, the work by Raman et al. [215]

34 | STATE OF THE ART

describes a prediction-based TLS software that predicted values of the following iterations
without specifying the iteration where a value would be taken from. The main disadvantage
of these proposals is that, in general, for loops with irregular memory accesses and complex
control flow, this solution does not obtain good predictions. Other works that use predictors
are [4, 52, 55, 84, 96, 167, 208, 233, 235, 239].

2.2.4 Design choices overview

To be speculatively executed, the original code should be instrumented at compile or runtime
to handle different operations, such as loading and storing of speculative data, performing
commit operations if the speculative execution succeeds, and discarding incorrect work if it
does not.

The main design choices that should be faced in a TLS system are described by Yiapanis
etal. in [267]. To implement a TLS system, a number of decisions should be taken:

Metadata management

TLS approaches should manage some information in order to detect whether conflicts have
occurred. Thus, each thread should know both what memory addresses have been used, what
operations have been done, and which thread has done each operation. All this information
is collectively known as metadata [267], and its management has two goals: Preserving the
information related to variables at risk of suffering violations, such as which thread has
loaded, stored, or is locking a certain variable; and maintaining references about operations
done by each thread, specifically, recording the variables loaded or written.

Version Management

When executing several consecutive fragments of sequential code in parallel, each thread
usually maintains a version copy of the data structure that is accessed speculatively. This
solution allows changes to this data to be performed locally, only storing these changes to a
permanent place if the speculative execution of this thread proves successful. To do so, TLS
systems require some additional storage to maintain the intermediate copies of each thread.
There are two ways of managing these data:

+ Lazy Version Management. In this case, a local copy of the exposed data is individually
stored and managed. Therefore, when a load or store operation is performed, only the
local version is changed. When a conflict is detected, only local versions of threads in
conflict have to be discarded, instead of modifying the reference version in memory.
Most approaches are based on lazy versions.

+ 'The other approach, Eager Version Management, requires fewer resources, because the
reference version in memory is modified. An additional buffer (called undo log in

2.2 SOURCES OF TLS AND DESIGN CHOICES | 35

the literature) records old values and is used to restore original data in the case of a
dependence violation.

Regarding version management, Garzaran et al. [100, 101] proposed a taxonomy to
classify speculative systems according to the way of buffering the speculative versions of
variables. They took into account the isolation of speculative task states in each processor,
and how the state produced by tasks is merged with the main memory.

Conflict Detection

Dependence violations can be checked with either a lazy or an eager approach: Lazy Conflict
Detection avoids the need to check for conflicts on every access, by delaying this task to a later
stage before the commit operation. A more strict approach, called Eager Conflict Detection,
looks for conflicts on every access. This design avoids performance losses produced by later
checks. However, the time devoted to checking is much higher.

Scheduling of iterations

To speculatively parallelize a loop, it should be partitioned into chunks of iterations to be
assigned to different threads. The simplest solution is to use chunks of fixed size [155]. The
particular size chosen is an important design decision. The use of smaller chunks will reduce
squashing costs, at the cost of a higher scheduling overhead. On the other hand, bigger
chunks will lead to higher speedups if no dependences arise, but they will increase the cost
of thread squashing and may lead to load imbalance.

To mitigate these problems, variable chunk size strategies originally designed to achieve
load balancing in parallel computations, such as [120, 205], can also be used in speculative
execution. Regarding the particular context of TLS, Llanos et al. [174] proposed a variable
chunk size for the speculative execution of randomized incremental algorithms, an important
class of problems where the probability of a dependence violation decreases as execution pro-
ceeds. Their work uses smaller chunks for the first iterations, where randomized incremental
algorithms present more dependence violations, then gradually increases the chunk size to
reduce scheduling overheads, and finally reduces the size of the chunks again to achieve a
better load balancing.

The use of chunk sizes that follows a predefined distribution, however, may not be the
best solution. Speculative parallelization poses a more complex scheduling challenge than
traditional parallelization, because, for irregular applications, both the number and the
particular distribution of dependence violations are unknown before the loop is executed.
Therefore, the idea of changing the chunk size at runtime if the number of squashes exceeds
a certain threshold, or to augment it if no dependences arise, makes sense [84, 134, 172].
Recently, Estebanez et al. [83] proposed a method, called Moody Scheduling, that makes
use of both the number of re-executions of the last chunks of iterations and their tendency
(increasing, decreasing, stable) to figure out an appropriate chunk size for the following
chunk to be scheduled.

36 | STATE OF THE ART

Chapter 5 contains more details about scheduling policies in TLS, and an in-depth
description of [83].

Squashing alternatives

If a dependence violation is produced, the offending thread should be discarded. The mechan-
ism chosen to do so is a design decision that severely affects performance. Some approaches
just discard the threads that have consumed the wrong value, and others discard the offending
thread and all its successors. This leads to the following solution space, as described by Garcia
etal. [97]:

« Stops parallel execution: First solutions, such as [218], simply discard the speculation
when a dependence violation was produced, and then restart the loop sequentially.
These solutions only benefit loops that were indeed parallel.

* Inclusive squashing: This approach stops and restarts the first thread that manages the
wrong value, together with all its successors. Due to its simplicity of implementation,
this is the most used solution (see [38, 49, 52, 208]), although it may discard potentially
useful work carried out by a successor that has not consumed polluted data.

* Exclusive squashing: Only offending threads and those successors that have consumed
any value generated by them are discarded and restarted. Li et al. [167] tried to im-
plement this ideas in hardware. Colohan et al. [57] also used this kind of squashing
mechanism in the context of databases (where restarting a thread leads to big perform-
ance losses), and used sub-threads to check for squashed threads. Tian et al. [240] also
proposed a solution that does not discard all the produced values, only a small part
of them. Also, Garcia et al. [97, 98] developed a software-only version of this idea,
with the help of a list that stores which threads have consumed a value for a particular
predecessor.

o Perfect squashing: Discards offending threads and those successors that have consumed
the outdated value. This is the approach that leads to fewer squashes. However, to keep
track of the definition and use of each particular datum, an in-depth analysis should be
performed. This operation seems to be too costly. For example, [4] proposed a specific
table to store dependences, while [225] used a table that saved all intermediate values.
Nevertheless, [243] addressed this problem and concluded that this squash mechanism
is not profitable.

The following section describes the ideas that led to modern TLS techniques.

2.3

2.4 PRECURSORS | 37

Precursors

One of the first approaches centered on the parallelization of loops that may present de-
pendence violations was the one proposed by Knight [149]. With the functional languages in
mind, specifically the Multi-Lisp approach, Halstead [111] introduced a hardware approach
that allowed speculation through the use of two different caches, one dedicated to storing
those values loaded from memory, and the other used to hold those values produced by
the processor whose accuracy was not confirmed yet. Midkiff and Padua [182] described a
solution to synchronize the concurrent execution of singly-nested loops, while Zhu and Yew
[274] described an algorithm to handle all types of loops. Aiken and Nicolau [3] described
another scheduling algorithm, that analyzed loops and obtained the optimal, dependence-free
distribution. In those years, Saltz et al. [21] performed research to extract some parallelism
of Doconsider loops (a kind of regular Doacross loops where iterations could be rearranged), in
order to preserve dependence semantics, and parallelize as many iterations as possible. They
developed a compiler plugin that divided iterations into subsets of iterations that depend on
each other, so as to execute several independent subsets at the same time. Although this paper
was focused on programs whose dependences are known at compile time, it also mentioned
codes not schedulable at start-time [183, 184], which are codes whose dependences could only
be extracted during their execution. Krothapalli and Sadayappan [153] explored a solution to
remove anti and output dependences. For that purpose, they performed a reference analysis,
storing multiple copies of suspicious variables used in the loop. Later, [154] proposed a
dynamic scheduler based on synchronism, that allowed doacross loops to be addressed with
complex inter-iteration dependences. Afterwards, Wolf and Lam [260] used matrices to
transform and parallelize loops in a general way, including nested loops.

The idea of the use of a dynamic inspector-executor model appeared at that time. With
this approach, an inspector loop checks for dependences in a preliminary phase, and if no
dependences arise, a second phase executes the loop in parallel. Saltz et al. [228] introduced
this method in order to parallelize loops, showing that this technique allowed a significant
performance improvement in loops with a big number of operations, where inspector phase
time was not significant compared to the executor phase. Leung and Zahorjan [165] also
worked in this solution. However, none of these approaches parallelize loops with output
dependences. Chen et al. [43] developed a software solution that reduced delays between
processor communications and allowed the parallelization of loops with output dependences.
They reused some results during the execution, allowing the overlap of dependence iterations
and the sharing of some information between inspector and executor phases.

2.4

2.5

38| STATE OF THE ART

Hardware-based approaches

Several hardware implementations have been developed to support TLS, mainly through
the addition of auxiliary registers to manage speculation. Since the work performed in this
Ph.D. thesis is fully made by software, this section will only cite a brief part of the existent
solutions.

There are mainly two ways to implement TLS on hardware (HTLS): Developing a chip
from scratch, or customizing an existing chip. On the one hand the most relevant solutions
from scratch according to the author’s criteria are mainly the Multiscalar architecture [94,
105, 233], the Trace processor [224, 225], Oplinger et al.” architecture [194, 195], and STAM-
Pede [234, 236).

On the other hand, the customization of an existing chip led to the Simultaneous mul-
tithreading paradigm [247, 248], mainly supported by the Speculative multithreaded pro-
cessor [177, 246] and [-ACOMA [151, 152], and also to the solutions based on Chip Multi-
processor. The main hardware speculative solutions included in the latter are Hydra chip
multiprocessor [112, 113, 192] and Atlas Chip-Multiprocessor [55, 56].

Software-based approaches

Software-based TLS systems implement techniques to guarantee the coherence of the optim-
istic parallel execution on conventional processors, without the need for dedicated functional
units. Research in this field has been centered on reducing, whenever possible, the overheads
in execution times due to the need to ensure consistency by software.

As we will see, first proposals usually executed the loop in parallel, and if a dependence
violation was produced, the work already carried out was discarded, and the loop was
re-executed sequentially. More recent approaches perform partial commits, in order to take
advantage of the work carried out before a dependency violation appears, and thus try to
minimize the number of squashed threads to those that have actually consumed a polluted
value.

Again, we will follow a historical perspective to describe the research in this field. We
will first center our attention on those solutions where programmers should explicitly invoke
runtime library functions and/or compiler support to manage speculative execution. Then,
we will move to solutions that are based on higher-level programming abstractions. We will
finish this discussion with some proposals related to TLS behavior, and a brief review of
some works that mixed TLS with other techniques.

2.5 SOFTWARE-BASED APPROACHES | 39

2.5.1 Solutions relying on compile-time and runtime support

First approaches required programmers to use different methods to explicitly invoke TLS
mechanisms. The most representative ones are described below.

LRPD test

We can place the origins of Software TLS (STLS) in the work carried out by Rauchwerger
and Padua [216, 218], with their research in the parallelism of doall loops. They proposed
the use of a test called LRPD to support the speculative parallelization of loops with some
backtracking capabilities. This proposal re-executed the loop serially if the runtime test
failed. The proposal worked as follows: The target loop was firstly transformed through
privatization and reduction parallelization, and then it was speculatively executed as a doall
loop. After that, a fully-parallel data dependence test was applied to ensure that the loop
had no cross-iteration dependence. If the test failed, the loop was sequentially re-executed.
Otherwise, the parallel execution of the loop was considered successful. Dang et al. [61]
developed a technique to extract the maximum available parallelism for loops that were
known to present some dependences. This solution presented an evolution of the LRPD test,
called Recursive LRPD (R-LRPD). The basic idea was to transform a partially-parallel loop
into a sequence of fully-parallel loops. At each stage, this proposal speculatively executed
all remaining iterations in parallel and the RLRPD test was applied to detect the potential
dependences.

Based on static analysis

Gupta and Nim in [108] proposed a set of new runtime tests for speculative parallelization
of loops that defied parallelization methods based solely on static analysis. They presented a
more efficient method for speculative array privatization that did not require the computation
to be rolled back when a particular variable was not found to be privatizable. They also
presented a technique that allowed the early detection of loop-carried dependences, and
another that detected parallelization hazards immediately after they were produced.

Software versions of hardware solutions

Rundberg and Stenstrém [227] applied many of the ideas of hardware-based speculative
architectures in software. First, name dependences were solved by dynamically renaming
data at run time. Second, the overhead of restoring the system state after a misspeculation
was greatly reduced by reducing the amount of states to commit, and by supporting parallel
implementations of the commit phase. Third, some anti data dependence violations were
avoided by supporting lazy forwarding without the need to enforce synchronizations between
a pair of conflicting threads. Fourth, true data dependence violations were detected when
they happened, which reduces the cost of misspeculations. To do so, each instruction on

40 | STATE OF THE ART

speculative data was augmented with a checking code that detects data dependence violations
dynamically. Finally, it committed data following sequential semantics.

Cintra and Llanos [48, 49] developed a different scheme based on an aggressive sliding
window. It checks for data dependence violations on every speculative stores, while avoiding
synchronization whenever possible. The sliding window used consisted of an array of slots
which store the status of each running thread, and pointers to their own version of the
speculative data. Commits were carried out in order from the non-speculative thread. Each
time a commit operation was finished, the sliding window advanced one position, allowing
a new, most-speculative thread to start. More recently, [81] improved this solution with a
different implementation that supported the speculative access to dynamic data structures
and support for the use of pointer arithmetic (see Chapter 3). This solution used hash tables
to reduce the time needed to find the most up-to-date version of a datum, a problem also
described in [240].

Based on master/slave paradigm

Zilles and Sohi [275] introduced the Master/Slave speculative parallelism, a new kind of
speculation whose basics were the use of a master thread and some slaves that performed the
task assigned by their master. The main idea of this technique was to divide the program into
tasks that would be carried out by the slaves, while the master thread predicted the values
that would be produced by each task and continued with the execution of the code without
waiting for their results. This approximation needed to check all the values produced by
slaves after the execution of a task with respect to the values predicted by the master. If both
were equal, the master’s prediction had been successful, on the other hand, a misspeculation
had been detected. In this case, the work incorrectly carried out by the master and all slaves
since the last checkpoint needed to be discarded and re-executed.

Automatic thread extraction

[197] proposed an automatic approach for thread extraction. The system, called DSWP,
exploited the fine-grained pipeline parallelism of many applications to extract long-running,
concurrently executing threads. Their results showed significant improvements when ex-
ecuting these applications on a dual-core CMP.

Complementing compile-time techniques for auto-parallelization

[245] proposed the use of profile-driven parallelism detection to augment the number of
loops that may considered safe to parallelize, relying on the user for final approval. This work
also uses machine-learning techniques to take better mapping decisions for different target
architectures.

2.5 SOFTWARE-BASED APPROACHES | 41

Other solutions: SpLIP, MiniTLS, and Later

Oancea et al. [190] developed SpLIP, a speculative tool centered on decreasing overheads of
speculative operations of previous approaches, implementing non-locking operations where
was possible, and used a hash function to improve the location of version copies.

Yiapanis et al. [267] introduced a new structure that reduced memory overheads of
classical approaches based on the idea of mapping every user-accessed address into an array
of integers using a hash function. The authors implemented this compact data structure in
two approaches, namely MiniTLS and Later. The main characteristic of MiniTLS was that
threads updated memory locations in-place, and also that all operations followed fast and
optimistic design patterns. This approach required rollback mechanisms because speculative
threads modified values directly, possibly producing errors that needed to be handled. This
solution is similar to SpLIP, so both were compared in this work. Later followed a different
design, implementing a lazy version management of values, together with pessimistic design
patterns in its operations. The structure used was a bit different, but it was based on the same
operations and patterns. This approach also introduced a combination of inspector-executor
techniques (described in Sect. 2.3) and the LRPD test (described in Sect. 2.5.1), implementing
the new solution upon them.

TLS compiler and runtime for distributed systems

[146] present an automatic speculative DOALL parallelization system, composed of a paral-
lelizing compiler and a speculative runtime for clusters that minimizes the overheads due
to validations. Other STLS runtime solutions for distributed enviroments are covered in
Section 2.5.5.

TLS for web applications

Martinsen, Grahn and Isberg [179] used a speculative mechanism in the context of web
browsing. To do so, they implemented their software by means of the Squirrelfish JavaScript
environment, that enabled the parallel execution of Javascript functions. They modified
Squirrelfish interpreter to enable each instance of the interpreter to be executed as a thread,
while executing as many instances as functions. The used variables were maintained in a
special vector that showed modified values to detect dependence violations. The use of TLS
in this context allowed these authors to achieve noticeable speedups.

Apollo

Jimborean et al. [133, 134, 135] introduced a TLS framework specially designed to speculat-
ively execute nested loops. To do so, the authors used features of the polyhedral model to
dynamically transform code into a more optimized version that led to higher speedups. First,
a compiler [136] generated skeletons that were the basis of executions, due to their ability
to produce different code versions that could be selected at runtime. Then, a dynamic part

42 | STATE OF THE ART

was responsible for (a) building interpolating functions, (b) performing dynamic dependence
analysis and transformation selection, (c) instantiating the parallel skeleton code, and (d)
guiding the execution. The execution was based on profiling the code several times during
the execution in order to choose the polyhedral transformations that could better speed
up the execution. The detection of errors was done at three levels: Basic scalars, memory
accesses, and loop bounds. This framework led the authors to parallelize some benchmarks
that had not been parallelized before due to dependence management hurdles.

2.5.2 Solutions relying on programming abstractions

Our second set of software-based solutions eased the use of TLS by offering new, higher-level
abstraction layers.

FastTrack

Kelsey et al. [144] developed a system called FastTrack, that proposed performing TLS with
the help of unsafe optimizations of sequential code. Specifically, their programming interface
allowed users to suggest faster implementations based on partial knowledge of a program
and its usage. They divided code into two branches, the fast track and the normal track,
and programmers could change between both tracks when needed. Their implementation
included both compile-time and runtime support. A compiler insert function calls to ensure
that the fast track produced the same result as the sequential execution. To do so, the authors
limited the use of global and heap data, and the insertion of extra variables to support stack
data. The runtime support checked program correctness through the comparison of states
at the end of the tracks. If both results were similar, results were supposed to be correct.
Otherwise, the fast track results were discarded. In this system, one processor was reserved
to run the fast track, and the rest to the execution of normal tracks.

The Copy-or-Discard model

Tian et al. proposed the Copy-or-Discard (CorD) execution model [241, 242], in which the
execution of parallel threads were separately managed by a non-speculative one. Specu-
lative threads read values of the non-speculative thread and performed their computation.
After that, speculative threads were committed in order. Then, results were checked by a
non-speculative thread so as to preserve the semantics of the sequential order. The commit
operation was performed by the non-speculative thread through the CorD mechanism, which
checked whether results were correct. In this case, results were copied to the non-speculative
data. Otherwise, they were discarded at no additional cost. The speculative execution was
performed in three sections: Prologue, speculative section, and epilogue. The prologue
contained those instructions that could not be speculatively executed, i.e., input statements
and loop index update statements. The speculative section contained the parts that were
not expected to suffer a dependence violation. Finally, the epilogue was intended to manage

2.5 SOFTWARE-BASED APPROACHES | 43

output data. A buffer was used to maintain a copy of the output just in case the code contained
any output instruction in the speculative part, to be finally processed in the epilogue.

CorD and dynamic memory The CorD approach did not give support to those applica-
tions whose speculative variables were dynamically allocated, so [240] enhanced CorD to
be used with programs that had such dynamic data structures. The main problem of this
approach was data traversing, because a dynamic structure could change their size during the
execution. Pointers imposed another problem, since a speculative copy of a dynamic struc-
ture might have a pointer with an address to a non-speculative copy. In order to solve these
problems, they proposed using a mapping table that translated addresses among speculative
and non-speculative threads. They also included optimizations in the treatment of linked
structures. Finally, [239] used a value predictor to improve the parallelization of programs
with frequent and predictable cross-iteration dependences.

Reducing misspeculations [243] later tried to further reduce misspeculations. They
proposed an approach intended to reuse almost all the correct calculations performed by a
thread whose iterations had suffered dependence violations, instead of discarding all this
information, as most approaches did. To do so, they used a partial speculative space in
addition to the primary speculative space of each thread. This new space maintained the
first read values of a speculative variable. If a misspeculation was found, only the successor
spaces of the offending space were discarded. This approach led to better performance and
to a reduction in the number of dependence violations, due to lower recovery times.

TLS based on the use of compile-time directives

Bhowmik and Franklin [26] described a compiler framework for TLS that allowed the par-
allelization of all instructions of a code, instead of only those that compose a loop. This
feature specially benefited non-numerical applications with complex instructions. Codes
were initially analyzed and profiled to produce a control flow graph. It ws then used to
produce partitions that could be executed by multiple threads. Chen et al. [45] also developed
a compiler that focused on providing a quantitative analysis of codes with complex depend-
ences. Their aim was to give probabilities about the possible flows of the code, and detect if a
squash was likely to be produced.

Mitosis It is a compiler framework developed by Quinones et al. [212] which had several
thread units capable of independently executing different instructions and of storing specu-
lative values. TLS execution started when the non-speculative thread found what they called
the spawning point, where a new speculative thread was launched. Once a new speculative
thread had been launched, it predicted the possible values, and began its execution at the end
of the spawning point. Meanwhile, the non-speculative thread continued its execution. If no
errors were produced, speculative threads were committed, otherwise, they were discarded.

44 | STATE OF THE ART

The choice of these spawning points was a key part of the work. To do so, marks were chosen
with the use of a synthetic trace. It selected the most suitable parts of codes to be speculatively
executed regarding some requirements, such as the amount of workload of routines with
respect to the total, or possible misspeculations.

Spice C SpiceC was an approach proposed by Feng et al. [91]. SpiceC implemented a
number of directives that, when added to sequential code, eased parallel programming. Pro-
grammers did not need to be particularly careful about communications or dependences,
because this model supported doall, doacross, pipelining and speculative parallelism. This
solution also supported dynamic structures and pointer addresses. SpiceC threads had their
own private space for data. A shared global space was used to store shared data. Threads’
first accesses were referred to shared space and loaded to each local space, where following
accesses were redirected to. When threads ended their executions, they checked for misspec-
ulations, and committed their data to the shared space if they were correct. Directives were
similar to OpenMP’s [59], so sequential programs only needed a few additional directives:
A directive to suggest what kind of parallelism would be used, and another to mark where
commit operations had to take place.

[92] extended SpiceC with some additional directives to support I/O operations within
parallel loops. To the best of our knowledge, this was the first approach that addressed the
parallelization of this kind of codes through TLS. The main idea behind this research was
to break the cross-iteration dependences caused by I/O operations modifying the original
code. To parallelize input operations, this approach calculated file pointers before entering
the loop to be used in each iteration. File pointer copies were created on demand by the
iterations that used them. Regarding output operations, they required the use of some
additional buffers, in order to store intermediate outputs produced by each thread. Each
output value was stored in the corresponding thread buffer and flushed at the end of each
iteration following sequential semantics. [93] also augmented SpiceC directives to parallelize
loops with dynamically-linked data structures. This work tried to manage different data
partitions of loops using the same code, addressing the problem of codes where multiple
threads managed several data partitions.

ATLaS Aldea et al. [5, 8] developed a GCC plugin so as to add loop-based TLS support to
OpenMP. This solution consisted of the development of a new OpenMP clause to be used
in for loops called speculative, which allowed programmers to declare all variables whose
reads or writes may lead to dependence violations (see Chapter 4 for more details). The
internals of the runtime library that managed dependence violations were described in [81]
(see Chapter 3 for more information).

2.5 SOFTWARE-BASED APPROACHES | 45

The Galois model

Kulkarni et al. [161, 162] introduced Galois, a system that supported complex pointer-based
sets of elements in optimistic parallelism. They were centered on the benchmarks that should
get a subset of points from a big set, in order to obtain a solution to the problem. To do so, they
defined two Java iterators which traversed a set of elements, thus allowing the concurrent
execution of many iterations in a transparent way (note that in this system iterations could
be understood as the search of an element within the set). There were different iterators
for ordered and non-ordered sets. The consistency of data was implemented using locks.
Moreover, to allow recovery from misspeculations, all operations had their corresponding
inverse methods. With this purpose, an undo log was defined for each iteration. In order to
manage all iterations, this solution defined a commit pool that contained data such as the
state of iterations, or the position of the log. It controlled the entire execution, deciding how
iterations were assigned and committed, conflicts were solved, etc.

Efficiency improvement through data partitioning After that, [160] introduced some
improvements that increased the efficiency of Galois. This work implemented a method to
perform data partitioning in data in such a way that all elements of a set were first mapped
to an abstract domain, and then transformed again to physical cores. The abstract domain
could be composed by data partitions (note that their number had to be higher than the
number of existing cores, in order to assign more than one data partition to each core). This
method allowed the authors to implement a way to “steal” work from an overloaded core by
an idle core, achieving more efficiency in the execution. It also allowed cores that support
multithreading to execute more than one partition at the same time.

Scheduling [158] addressed the problem of scheduling, developing an additional frame-
work to Galois. Although iterations could be executed in any order within their baseline
scheduling policy, this work showed the inefficiencies associated to this behavior, and pro-
posed an improvement based on clustering (select a cluster of iterations), labelling (assign the
selected clusters to cores), and ordering (order of the clusters to be executed) of iterations.
Scheduling strategies for irregular applications in TLS were also addressed by [138] with
Galois. Their strategies went from “stealing” the work of overloaded processors by idle pro-
cessors in the static assignment, to using a centralized place as a warehouse for the extracted
partitions.

A profiler: ParaMeter [157] developed a tool to extract parallelism profiles from irregular
applications. This method took abstract measures of the inherent parallelism of the different
points of a code, showing instructions that could be executed concurrently. Although this tool
has been used in the context of Galois, the authors affirmed that it is framework-independent.
[156] also introduced a suite of benchmarks to test irregular applications with the use of TLS
libraries, including those used in the mentioned papers.

46 | STATE OF THE ART

Optimizing irregular applications [181] described three manual techniques to optimize
irregular applications in order to improve their parallel execution. The first one was based on
the idea of modifying codes in such a way that all read operations were done before any write
operation. The second one, called “one-shot”, was based on the detection of dependences
before the execution. If none were detected, checks for them could be disabled, and code
could be parallelized without locks. Finally, for those algorithms whose bottlenecks were
located in the accesses to data sets (appropriate for the benchmarks tested by them, described
in [156]), they developed the “iteration coalescing” optimization. This was based on removing
the correspondence between iterations and activities. So, if an iteration produced a value,
it was processed before its publication in the working set. Later, Prountzos et al. [210]
completed this work by automatizing the manual techniques described. They addressed
again the overhead problems that emerged from optimistic parallelization, specifically, those
related to conflict checking and undo actions. The center of this research was to reduce locks
and rollbacks of the shared objects, using some inferred properties. In 2011, [159] analyzed
whether the order used to launch methods affected execution times.

SEED

An adaptive approach for speculative loop execution that handled nested loops was recently
proposed by Gao et al. [96]. They developed and implemented SEED, a tool that consisted
of an adaptive dynamic scheduling of iterations based on a cost-benefit analysis, and a
selection of the most suitable loops to be benefited by the use of TLS. This tool was composed
by two phases, one related to compilation time, and the other related to runtime. In the
compiler phase, loops were selected, threads were exposed in order to be later created, and
the resulting code was optimized using precomputation and software value prediction to
reduce misspeculations. At runtime, the basic TLS operations, such as thread spawning,
dependence violations detection, and squashes, were carried out, together with the use of
adaptive scheduling techniques.

2.5.3 Other proposals
Finite-State Machine in TLS

Zhaoetal. [272,273] introduced the use of probabilistic analysis into the design of speculation
schemes. In particular, they focused on applications that were based on Finite-State Machines.
The authors affirmed that this type of applications had the most prevalent dependences of all
the programs. They developed a probabilistic model to formulate the relationship between
speculative executions and the properties of the target computation and inputs. Based on
that formulation, they proposed two model-based speculation schemes that automatically
customized themselves with the best configurations for a given Finite-State Machine and its
inputs. [271] presented a set of techniques to remove the need of offline training to collect

2.5 SOFTWARE-BASED APPROACHES | 47

probabilistic properties that help to reduce the probability of misspeculations. Instead, their
techniques allowed probabilistic analysis to be performed on-the-fly.

HVD-TLS

Fan et al. in [84] developed a software-based speculative framework that improved classical
TLS mechanisms by the development of new techniques to improve value prediction, value
checking, dynamic task partition, and scheduling. Predictions performed were done using
several predictors based on the original value of the variables in conflict. Such predictions
used a predictor table that also maintained the number of correct predictions. Values were
checked by the main thread to prevent committing unmodified values, a situation repeated
many times according to the authors. Also, this system allowed different levels of granularity
to be assigned at runtime, following a linear scheme or a heuristic scheme, where the system
monitored the execution and changed the granularity accordingly.

MUTLS

Cao and Verbrugge [37] introduced a mixed model to fork threads in both in-order and
out-of-order ways in a TLS library. Their work was based on the use of the LLVM compiler
framework [164] that allowed multiple source languages and target architectures through the
use of an intermediate representation. MUTLS allowed threads to fork and join in different
parts of the code, and also implemented barriers to avoid some rollbacks. Threads were
managed by four modules: one dedicated to maintaining the status of speculative threads,
two dedicated to manage local and global variables of speculative threads, and the last one
used to managing other modules and interact with the LLVM speculator pass. Speculation
was mainly centered on functions whose speculative versions were available. Other functions
interacted with the library and implemented synchronism.

TLS to decompress: SDM

Jang, Kim and Lee in [131] described a TLS scheme specially designed to be applied to
decompression algorithms. Their approach was centered on the application of prediction
techniques based on partial decompression and pattern matching, to quickly identify block
chunks that can be independently decompressed. The tool decompressed in parallel all the
blocks identified.

2.5.4 TLS mixed with other techniques

Helper threads, run-ahead and multi path execution

Xekalakis, loannou and Cintra in [264] proposed a model that combined different techniques
such as TLS, helper threads, and run-ahead execution, in order to dynamically choose at

48 | STATE OF THE ART

runtime the most appropriate combination. The Helper threads technique is based on the ex-
traction of small threads (also called slices) from the main thread to improve its efficiency, for
example, by resolving highly-unpredictable branches and cache misses. Runahead execution
was based on executing instructions in advance when a long latency operation was expected.
The main difference of this technique with respect to helper threads was that the former
did not require additional threads. The main idea behind this research was to start a TLS
execution with some prefetched threads in a runahead mode (since these threads would be
faster than the others), and predict cache misses to help TLS threads. In other words, these
prefetched threads were essentially helper threads acting in a runahead mode to help the
execution of main threads. Xekalakis and Cintra [263] later combined TLS with MultiPath
execution, a technique consisting in executing the two branches of hard-to-predict branches.
The main idea behind this approach was to enhance processors with multiple-context ex-
ecution to enable a fast way to discard erroneous data of wrong branches. The execution
had normal TLS and MultiPath modes, depending on the number of occurrences of hard-
to-predict branches. The previous combinations were more detailed, extended and mixed
in [265], where the authors described a system that applied TLS to loops. Other techniques
were also proposed, such as the use of prefetched threads when delays were detected.

Continuous speculation

Zhang et al. [269] described continuous speculation, a technique whose main objective was
to achieve full-occupancy of processors. For that purpose, they used speculation techniques
to achieve the parallelization of large sequential codes. Their solution used a sliding window
and a group classification to ensure the correct order of the tasks. To get information about
the possibly parallel regions of a sequential code, they used BOP [68], a tool that analyzed the
program behavior to parallelize it.

Software-based lock elision

Locks could also be used to guarantee sequential semantics of parallel programs. In this way,
[213] proposed speculative lock elision, to execute those sections without conflicts in parallel.
To do so, they automatically replaced locks by optimistic hardware transactions, checking
that no errors were produced. If transactions failed, the system used the original lock. Some
studies were conducted to evaluate Transactional Lock Elision (TLE) supports in different
architectures, including [2, 34, 66].

Roy et al. [226] proposed a software version of the speculative lock elision proposed
by Rajwar and Goodman [213] that was fully implemented in software. If a misspeculation
was produced, the system executed the original lock. Synchronization and privatization
were implemented through special instrumentation for objects and through signals between
threads implemented inside the Linux kernel.

2.6

2.6 OTHER STUDIES RELATED TO TLS | 49

2.5.5 STLS on distributed-memory systems

There have been some efforts on applying TLS techniques on clusters of commodity servers.
[148] present a runtime monitor called Distributed Software Multi-threaded Transactional
Memory (DSMTX) that allows the application of pipeline parallelism, multi-threaded transac-
tions and TLS on distributed-memory environments. [150] described dyDSM, a distributed-
shared memory abstraction to process large dynamic graphs that provides support for ex-
ploiting speculative parallelism. The balance between communication and computation
in graph-based applications is studied in [41], proposing a new runtime, called ABC?2, that
dynamically modified the configuration of the underlying DSM.

2.5.6 STLS using GPUs

Nowadays, parallelism applied to GPUs is one of the most profitable research fields due to
their large number of computer units. This characteristic makes them desirable to find ways
to use TLS with these architectures. Liu et al. [168] discussed how TLS could be correctly
used in the context of GPU computation. Meanwhile, Diamos and Yalamanchili [64] extended
Harmony, a runtime for heterogeneous, many-core systems, to support speculation in GPUs.
Samadi et al. [229] introduced Paragon, a solution that combined CPU and GPU executions
to achieve the best performance. Feng et al. [89, 90] proposed a framework to run loops
speculatively in GPUs. The main idea of their solution was to divide the tasks that should be
carried out by a speculative runtime framework into five categories, and to assign some of
them to CPUs and the others to GPUs. Scheduling, results committing and misspeculation
recoveries were assigned to CPUs, while computation and misspeculation checks were
carried out in GPUs. In a more recent approach, Zhang et al. [270] introduced a new library
based on sliding windows that support TLS in GPUs. Classical solutions that were expected
to have a better behavior with GPUs, such as hybrid dependence checking, and the use of a
parallel commit scheme, were adapted by these authors to their software.

Other studies related to TLS

There are several works that used TLS for other purposes, such as improving manual paral-
lelization, or performing module-level speculation. Other studies include how the energy
consumed by TLS proposals could be reduced. In this section we will review some of them.

2.6.1 TLS as a help to manual parallelization

In order to avoid making speculative codes that might be slower than the original sequential
ones, some researchers have proposed techniques to predict overheads of speculative parallel-
ization. For example, the work developed by Dou and Cintra in [72, 73] contained a compiler

50 | STATE OF THE ART

pass that can be used to estimate the overheads and the expected resulting performance
gains, if any. Ding et al. [68] proposed a software-based TLS system to help in the manual
parallelization of applications. The system required the programmer to mark “possibly par-
allel regions” (PPR) in the application to be parallelized. The system relied on a so-called
“tournament” model, with different threads cooperating to execute the region speculatively,
while an additional thread ran the same code sequentially. If a single dependence arose,
speculation failed entirely and the sequential execution results were used instead. Ke et
al. [139] improved that work with a system that relied on dependence hints provided by the
programmer. This allowed explicit data communication between threads, thus reducing
runtime dependence violations. loannou and Cintra [127] studied the problem of taking
advantage of future many-core architectures by complementing parallel programming at
a coarse-grain level with hardware TLS support to launch fine-grain implicit speculative
threads. Other authors have focused on providing assistance to those programmers that
extract TLS from the applications. For example, [6, 262] developed tools that made a static
and/or dynamic profile of the codes, returning information that allowed a decision to be
made about which loop would be the best candidate to be speculatively parallelized. There
are also libraries that perform speculative parallelization directly, such as in [209], where
Prabhu et al. developed some directives and operations to facilitate programmers to make
their own speculative programs. Chen et al. [46] designed a dependence profiler to extract
information from a code. Bhattacharyya [24] also developed a similar tool that studied the
profitability of TLS with the use of profiling. More recently, [25] used polyhedral analysis to
detect dependences of loops, stating that this analysis overcame the previous one.

2.6.2 Module-level speculation

Module-level speculation is the application of speculation in a module-based layer. Chen
and Olukotun in [44] applied this technique to object-oriented Java programs. Warg and
Stenstrom [257] compared the use of object-oriented and imperative languages in the context
of Module-level parallelism, concluding that there were not significant differences between
both approaches. Their experimental results showed that the use of this method in modules
with a low computational load would adversely affect the performance of applications. [256]
described a predictor that allowed the detection of whether a module had a low overhead. In
this case, no threads were created to help him. Later, [258] developed another prediction
technique to detect when misspeculations would occur, in order to avoid executions that
were expected to be squashed. Their prediction algorithm was based on the analysis of the
execution history. Predictions were managed using two strategies: Assigning this operation
to the closest fork, in other words, the nearest thread created, or assigning it to the common
predecessor, which was the thread that was speculating a previous module. Pickett and
Verbrugge [203] addressed the requirements that Java language imposed to implement this
approach, also analyzing their costs. They developed a design based on the application
of Module-level speculation to support TLS at the level of Java bytecode. To do so, they

2.1

2.7LIMITSTOTLS |51

introduced two new bytecodes, to fork and join speculative threads, in order to ensure their
correctness. They also gave an implementation of the mentioned design, called SableSpMT
analysis framework (described in more depth in [201, 202]).

2.6.3 Energy consumption

Since their origins, TLS was claimed to be energy inefficient. [54] analyzed the energy
consumption of some approaches based on the Trace processors [224, 225]. Renau et al. [219,
220] searched for the main sources of energy consumption in TLS, giving some advice for
energy saving. With the same goal, Xekalakis et al. [266] proposed a power allocation scheme
for TLS systems based on Dynamic Voltage and Frequency Scaling (DVFS) that took power
from non-profitable threads that would need to be discarded and used it to speed up more
useful ones. Li and Guo [166] proposed two algorithms also based on DVFES. They proposed
both static and dynamic assignment algorithms, achieving significant reductions in energy
consumption. However, in the work carried out by these authors, energy savings came at
the cost of lower performances. This topic was also addressed by Luo et al. [176], which
developed a system that analyzed speculative execution, and managed resources in a way
that decreased the energy needed.

2.6.4 Benchmarks for TLS

Many of the aforementioned studies shared the same benchmarks to give experimental results.
We could highlight Standard Performance Evaluation Corporation (SPEC) benchmarks [69, 116,
117, 200], a benchmark suite to measure computing performance. Other benchmark suites
frequently used are Olden [223], a set of relatively small programs that perform a monolithic
task with minimal user feedback; and MiBench [109], a set of programs to test embedded
systems. STAMP [35] is a benchmark suite designed for transactional memory applications,
that was also used by different TLS approaches. The LLVM compiler infrastructure [164]
also offered some benchmarks. Princeton Application Repository for Shared-Memory Computers
(PARSEC) [27] is another benchmark suite composed of multithreaded programs, and [156]
described Lonestar, a suite of benchmarks of TLS specially developed to test the Galois system,
described in Sect. 2.5.2.

Limits to TLS

A number of papers are mainly centered on the analysis of TLS performance and its lim-
itations. Although Prabhu and Olukotun [207] affirmed that significant parallelism could
be extracted using TLS in SPEC2000 applications, Kejariwal et al. [143] affirmed that it is
very difficult to achieve a high level of performance through TLS with this benchmark. [142]
performed an analysis of TLS using SPEC CPU2006 benchmarks and affirmed that the use

2.8

52 | STATE OF THE ART

of TLS with these benchmarks did not lead to significant benefits, with just a 1% improve-
ment. However, as [126] and [198] noted, the former study only considered parallelism at the
innermost loop level, while the parallelization of outer loops would lead to speedups. Later,
[141] briefly analyzed the performance of TLS at module-level (also called graph-level). They
studied factors such as recursion, or I/O, which limits TLS applicability at this level. Also,
[140] proposed an analytical model based on conditional probability to gauge the suitability
of nested TLS.

[128, 129] analyzed loop-level parallelism in embedded applications with and without
TLS, concluding that TLS is useful for extracting the most possible parallelism from this
kind of programs. Finally, [23] studied the influence of input sets in dependences of some
TLS benchmarks. To do so, he had proven 57 benchmarks of SPEC2006, PolyBench/C,
BioBenchmark and NAS in the IBMs BlueGene/Q supercomputer. The author concluded
that the input set did not noticeably change the dependence behavior in the loops of the
benchmarks studied.

Conclusions

Thread-level speculation is an active field, thanks in part to the appealing idea that it may be
possible to automatically extract the loop-level parallelism of sequential applications without
a prior and costly dependence analysis. Most studies described in this work have shown that
TLS techniques effectively lead to a speedup when used under certain conditions. However,
this technique is highly sensitive to the actual number of dependence violations that appear
at runtime. A second drawback of TLS techniques is their comparatively high costs in terms
of energy consumption.

While more general TLS solutions are developed, speculative-based techniques will likely
coexist with other solutions in the execution of irregular codes that are not analyzable by
other means. Current trends are focused on: avoiding, as much as possible, dependences
with better predictors; developing advanced squashing techniques; and the use of TLS in
manycore systems such as GPUs or Intel Xeon Phi.

The work described in this chapter was presented in the following publication:

+ Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘A survey on
Thread-Level Speculation Techniques’. In: ACM Computing Surveys (CSUR). Accepted
for publication

CHAPTER 3

The ATLaS runtime system

E have developed a new TLS runtime library that supports the speculative execution of

for loops. The library architecture follows the same design principles of the speculative
parallelization library developed by Cintra and Llanos. This original library had the following
limitations: (1) Loops to be parallelized should have a number of iterations known before
its execution. (2) Loops to be parallelized must not work with pointer arithmetic. (3) Inside
a target loop we cannot use dynamic memory. Our new thread-level speculative runtime
library removes all these limitations. It allows to speculatively access variables of any data
type, either by name or address. In addition manages the space needed for version copies on
demand. In this chapter we will detail the general architecture of the TLS runtime library
developed as well as some improvements implemented such as a hash-based structure which
severely reduce the accesses involved in the main speculative operations.

-53-

3.1

54 | THE ATLAS RUNTIME SYSTEM

Problem description

Software speculative schemes should allocate some additional memory in order to hold the
information related to speculative executions. The use of this data is mandatory to enable
recovery operations that could arise in an optimistic execution. In this context, memory
needed could be allocated either dynamically, or statically, and the use of an approach instead
of the other is a critical decision that directly influences in the overall memory used in a
program.

One of the biggest challenges in software-based TLS is how to reduce the time needed
(a) to get the most up-to-date value when reading speculative data, and (b) to search for a
possible dependence violation when a thread writes on a speculative variable. The most
common solution to maintain speculative data is allowing each thread to keep a version copy
of all the speculative variables that have been locally accessed. Once a thread finishes the
execution of its chunk of iterations, all changes in the speculative data are committed to main
memory. Note that both operations described above imply traversing all the version copies
maintained by other threads. In the first case, the search for an up-to-date value implies to
traverse all the data being kept by all threads executing earlier chunks of iterations, namely
predecessor threads. In the second case, the search implies to traverse all the speculative data
being maintained by all successors.

Access to predecessor and successor copies of the data are in the critical path of any TLS
system. The problem is even more difficult to solve if the TLS library allows to speculate
over dynamic structures and/or pointer-based references.

In this chapter we address the problem of how to traverse speculative data efficiently
in a software-based TLS library. To do so, we first review the internals of the speculative
parallelization library of Cintra and Llanos [48, 49, 170, 171], highlighting some of its
limitations. The new TLS runtime library proposed [75, 76, 78] supports the speculative
execution of for loops with both dynamic and pointer-referenced speculative variables,
handling dynamic memory and managing on demand the space needed for speculative
variables in each thread. This TLS runtime library allows the parallelization of loops with
variables of any data type, referencing these variables either by name or by address.

However, as we will see throughout the chapter, although this library effectively re-
moves many constrains of Cintra and Llanos’ solution, the strict adherence to the original
architecture leads to unacceptable costs for speculative reads and writes.

We have improved the performance of the new library by proposing some enhance-
ments specially designed to be used in TLS approaches. In particular, we describe how to
dramatically decrease the number of memory accesses when searching for predecessor and
successor versions of speculative data, while keeping the cost of local data storage in O(1).
Our experimental results with well-known benchmarks on a real system show that these
optimizations lead to significant reductions in the number of accesses needed (by a factor
of three orders of magnitude) comparing with a competitive baseline implementation that
lacks this feature [76]. In addition, we have proposed additional solutions to further reduce

3.2

3.2 CINTRAAND LLANOS’ ORIGINAL SOLUTION | 55

1 | for (i=1; i<5; d++)

> | o
3 LocalVarl = SV[x];
4 SV[x] = LocalVar2;
s |}

Listing 3.1: Example where appear a RAW dependence. This type of loop may cause dependence
violations in parallel executions.

the memory allocation calls, needed to dynamically add new variables to the speculative
structures that should be managed at runtime. The combined effect of all these improvements
is an impressive increment in the speedups obtained.

The rest of this chapter is structured as follows: Section 3.2 describes the original TLS
runtime library developed by Cintra and Llanos. Section 3.3 summarizes the limitations
of this solution, in order to establish the requirements that the new library should solve.
Section 3.4 details the data structures used by the TLS runtime library. Section 3.5 describes
how the main speculative operations work. Section 3.6 introduces the bottlenecks of the
TLS runtime library, and addresses some proposals in order to improve its performance.
Mainly, we can highlight a hash-based data structure which can reduce the number of accesses
required by speculative operations. Section 3.7 shows some experimental results in terms of
performance measured in a real system. Finally, Section 3.8 concludes this chapter.

Cintra and Llanos’ original solution

Our research framework is based on a new, pointer-based version of a software-based
TLS library originally developed by Cintra and Llanos [48, 49, 170, 171]. This library was
based on a set of functions that allows the speculative execution of a loop. It required
programmers to add additional code so as to parallelize. In this section we will briefly
describe the original approach by Cintra and Llanos, in order to understand its limitations.
An in-depth explanation of this approach can be found in [48].

To better understand Cintra and Llanos’ solution, let’s see an example of the speculative
execution of a loop with the mentioned tool. Our example is based on loop of the Listing 3.1
with four iterations, and the possible execution trace depicted in Figure 3.1 which supposes
that our system has enough processors to execute a single iteration in each one. As can be
seen, all operations follow sequential semantic until instant t10. Then, thread three modifies
the value of the shared vector SV'[X] used at t7 by thread four. Hence, results calculated so
far by thread four are discarded.

Remark that, as commonly accepted, threads of the lesser iterations are called non-
speculative thread, and threads of the highest iteration are called most-speculative (these

56 | THE ATLAS RUNTIME SYSTEM

1st: x=1; Thread 1 gets
shared value from reference 3rd: x=4; Thread 2 gets
shared value from reference

4th: x=1; Thread 4 forwards
4 5th: x=1; Thread 3 forwards value from thread 1
value from thread 1

t1 — Localvarl = (§Vixl) 12

t3 ':‘Sv[x])= LocalVar2 ___--~ . S
TS t4 Localvarl ={SV[x])

' 6 SVI[x] = LocalVar2)
)
N v Thread 2 S ‘
2nd: Thread 1 writes v ‘
shared variable v Thread 3 ‘
[l Thread 4
4
N 6th: Thread 3 detects violation
Time and squashes thread 4 and its
Y sucessors

Figure 3.1: Speculative load operations search for the most updated version of SV [X], con-
sulting previous threads. Speculative store operations assign a value to the variable as well as
check if any of the following threads have used a wrong value. If so, they are also responsible of
discarding outdated threads.

concepts would be deeper exposed throughout this chapter). Thus, in the example drawn in
Figure 3.1 the thread which executes iteration 1 is the non-speculative, whereas the thread
which executes iteration 4 is the most-speculative.

Each thread managed its own version of shared data, so, if all threads commit their results
with no order, then possible incoherences may appear. Therefore, each thread should commit
its data following an order: from the least speculative thread to the most one.

3.2.1 Modifications in original source codes

All operations mentioned (loads, stores and commitments) required some modifications in
original source codes:

+ Load operations over speculative variables are replaced with a function that recovers
the most recent value, in other words, the most updated value of the variable.

+ Store operations over speculative variables are replaced with a function that stores
the value and detects sporadic dependence violations.

« Each thread executes a commitment of calculated data at the end of the execution
of its chunk of iterations (this operation is also responsible for assigning a new chunk
of iterations to be executed).

Figure 3.2 gives an example of these operations.

3.2 CINTRAAND LLANOS’ ORIGINAL SOLUTION | 57

Thread 1 (non spec) Thread 2 Thread 3 Thread 4 (most-spec)
(iteration 1, x = 1) (iteration 2, x = 1) (iteration 3, x = 2) (iteration 4, x = 2)
t0 (a) Speculative stores plus detection of dependence violations (Time t3: thread 1 detects no dependence violations)
t L+:alVar1 = SV[x] t2 (Time t6: thread 1 detects no dependence violations) o
-

t3 S;Iixl) = LocalVar2 (Time t10: Thread 3 detects violation: thread 4 squashed)

t4 | |Localvarl = svixi:

t6 (:SV[x]::v = LocalVar2

(Time t4: Thread 2 forwards updated value for sv[1] from thread 1)
Reference (Time t8: Thread 3 forwards value of sv[2] from reference copy)

COPY[OZ‘ (Time t7: Thread 4 forwards value of sv[2] from reference copy)
sv|

t6 &2
JUUT, t7 LocalVarl = SV[x]
8 LocalVarl = SV[x] T
9 SV[x] = LocalVar2
t10 4~ SV[x])= LocalVar2

(b) Speculative loads with most-recent value forwarding

(c) In—order commit of data from successfullyfinished threads

Figure 3.2: Example of speculative execution of a loop and summary of operations carried out
by a runtime TLS library.

3.2.2 Classification of variables

In order to speculatively parallelize a loop, it is necessary to classify all variables (supposing a
manual parallelization). Users should label variables, following OpenMP syntax, as private
or shared. Variables in risk of suffering a dependence violation should be classified as shared.
However, it is mandatory to modify all accesses to speculative variables in the target code
with the corresponding functions.

3.2.3 Distribution of iterations

An additional change is required to parallelize a loop speculatively with this system. Instead
of executing a loop with its original syntax, it is replaced by another loop with P iterations
(being P the number of processors). In other words, if a loop has NV iterations, it will be
replaced by another with P. Then, the N iterations are divided into the processors. Note that
the number of iterations given to each chunk has to be specified previously (static scheduling,
see Chapter 5). Once no more chunks remain to be assigned, and all threads end their
execution, the speculative execution will have ended.

3.2.4 Thread management

One of the main novelties of the TLS library made by Cintra and Llanos is the use of a sliding
window mechanism in the management of threads. Thus, when the non-speculative thread
finishes its execution, and a partial commit takes place, the thread executing the following
chunk becomes the new, non-speculative thread. Then the sliding window advances, allowing

3.3

58 | THE ATLAS RUNTIME SYSTEM

the execution of new chunks of iterations by other non/most-speculative threads. Further
details of this original TLS library can be found in [48, 49, 76, 82, 170, 171]

The work by Cintra and Llanos was one of the first solutions in parallelize general
applications speculatively. However, its practical use was constrained by several limitations.
In the following section we will enumerate these limitations, in order to solve them.

Main limitations of Cintra and Llanos’ solution

Although the TLS library developed by Cintra and Llanos has got several advantages, it
requires to comply with the following premises:

+ Their library requires that all speculative variables were packed in a single, one-
dimensional vector before executing the speculative loop. Therefore, to use this
TLS library, programmers should modify the original source code of applications
introducing some extra lines so as to define the mentioned structure which stores all
speculative variables. The use of this solution required threads to allocate memory
for the entire vector, even if most of the positions of it were not used during the
execution of the assigned chunk of iterations. So, in the case that M was the number
of speculative variables used in a problem executed with 7" threads, and each variable
need a byte, variables require M x (T + 1) bytes to be stored (because an additional
space is required to save the persistent copy). Hence, this library can be only used
with vectors or matrices (casted to vectors), and does not support more complex data
structures.

As a result of the previous requirement, all speculative variables should share the
same data type. In fact, sharing a single, one-dimensional vector to preserve all
variables implies that all of them should be from a single data type: char, int, double, etc.

+ Speculative variables can only be accessed by name inside the loop (no references
by addresses or pointers were allowed).

To remove these limitations is critical not only to extend the scope of applications that
may be benefited from TLS techniques, but also to allow a compiler which automatically
performs the transformations required. The following sections will describe our new TLS
runtime, while the following chapter will deal with the compiler support. The entire package
is called ATLaS framework.

3.4

3.4 OUR NEW TLS LIBRARY | 59

Non-spec window slot Most-spec window slot
User-labeled
speculative
variables | | Sliding window
char a float b K .
STATE Running Done Running Free
double ¢ Pointer to versioncopy |
2288 Slot ’1/ Slot 2 Slot 3 \\ Slot 4
&a 1 &al |EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD
&b 4 &b1 MOD &b 4 &b2 | EXPLD &a 1 &a3 | EXPLD
&a 1 &a2 MOD
Pointer Data Pointer Version Pointer Data Pointer Version
to ref. size tolocal state to ref. size tolocal state
copy version Pointer Data Pointer Version copy version
to ref. size tolocal state
al b1 copy version a3 b3
[o] [18897 oo @ 2
Version copy data structures [18997] [1282156 |

Figure 3.3: Data structures of our new speculative library.

Our new TLS library

The TLS runtime library developed overcame the issues of the Cintra and Llanos’ proposal,
by supporting both dynamic memory and pointer arithmetic. We will first describe the new
data structures needed for this task.

3.4.1 Data structures

The data structures needed by the speculative library are depicted in Fig. 3.3. A matrix with
W window slots (four in the figure) implements a sliding window that manages the runtime
of the library. Each slot is responsible to manage the speculative execution of a particular
set of iterations. Slots assigned to the non-speculative and the most-speculative threads are
indicated by two variables, non-spec and most-spec. Each slot is composed of two fields,
STATE with the state of the execution being carried out in each slot; and a pointer to maintain
the position of speculative variables used by each slot in the execution.

Fig. 3.3 also depicts an example of the execution of a loop. The loop has been divided
into three chunks of iterations, and it will be executed in parallel using three threads. It is
really important to understand that there is not a fixed association between threads and slots.
Whenever a thread is assigned a new chunk of iterations, the corresponding slot to work in,
is specified as well. This allows to maintain an order relationship among the chunks being
executed.

3.5

60 | THE ATLAS RUNTIME SYSTEM

In the depicted example, thread working in slot 1 is executing the non-speculative chunk
of iterations (as indicated by its RUNNING state). The following chunk has been already
executed and its data has been left there to be committed after the non-spec chunk finishes
(since it is in DONE state), while the last one, the most-speculative chunk launched so far,
is also RUNNING. In other words, the thread in charge of the second chunk has already
finished, whilst the non-spec and most-spec threads are working. If more chunks were
pending, the following chunk will be assigned to the freed thread, starting its execution in
slot 4. Slot 2 cannot be re-used yet, because the execution of the chunk 2 left changes to
speculative variables that are yet to be committed. As we will see in Section 3.5.3, when the
non-speculative thread working in slot 1 finishes, it will commit its results and the results
stored in all subsequent DONE slots, since commits should be carried out in order. After that,
in our example, the non-spec pointer will be advanced to slot 3 to reflect the new situation.

In addition to its STATE, each slot points out to a data structure that holds the version
copies of the data being speculatively accessed. Figure 3.3 represents a loop with three
speculative variables. At the given time, the thread executing the non-speculative chunk has
speculatively accessed variables a and b. Each row of the version copy data structure keeps
the information needed in order to manage the accesses to different speculative variables.
The first column indicates the address of the original variable, known as the reference copy.
The second one points out its data size. The third one shows the address of the local copy of
this variable associated to this window slot. Finally, the fourth column indicates the state
associated to this local copy. Once accessed by a thread, the version copies of the speculative
data can be in three different states: Exposed Loaded, if the thread has forwarded its value
from a predecessor or from the main copy; Modified, indicating that the thread has written to
that variable without having consumed its original value; and Exposed Loaded and Updated,
where a thread has first forwarded the value for a variable and has later modified it. The
transition diagram for these states is shown in Fig. 3.4.

Fig. 3.3 represents a situation where the thread working in slot 1 has performed a specu-
lative load from variable a (obtaining its value from the reference copy) and a speculative
store to variable b. Regarding a, the figure shows that the thread working in slot 3 has
forwarded its value. With respect to variable b, the information in the figure shows that b
has been overwritten by threads working in both slots 1 and 3.

New speculative operations

3.5.1 Speculative reads

The use of the data structures described above requires the definition of new interfaces for
speculative operations.
The new interface of specload () is as follows:

3.5 NEW SPECULATIVE OPERATIONS | 61

Spec. load / Spec. store

f Modified h
(MOD)

N\ J
Spec.
store

()

Not Accessed
- J
Spec. load Spec.

load

-

Exposed Loaded

L (EXPLD))
Spec.
store

-

Exp. Loaded and Updated
L (ELUP))

Spec. load / Spec. store

Figure 3.4: State transition diagram for speculative data.

specload(VOID* addr, UINT size, UINT chunk_number, VOID* value)

Arguments have the following meaning:
1. addr is the address of the speculative variable.
2. size is the size of the variable.

3. chunk_number is the number of the chunk being executed (needed to infer the slot
being used).

4. value is a pointer to a place in which the datum requested will be stored.

specload() should return the most up-to-date value available for the speculative vari-
able. Figures 3.5 and 3.6 show how the speculative load works. Suppose that the thread
working in slot 2 has only accessed to variable c so far (as is described in Figure 3.5(a)),
and then it calls specload (&b, sizeof(b), 2, &value) to obtain a value for b. The
sequence of events is the following:

1. Thread working in slot 2 scans its version copy data structure to check whether a value
for b has been already stored there. As long as the only speculative variable accessed
so far is c, this search produces no results (see Figure 3.5(b)).

62 | THE ATLAS RUNTIME SYSTEM

Most-spec
User-labeled
speculative
variables l - .
Sliding window
chara float b
STATE Running Running Running Free
double ¢ Pointer to version copy |
32.88
Slot 1 Slot 2 Slot 3 Slot 4
&a 1 &al EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD
&b 4 &bl MOD &a 1 &a3 EXPLD
Pointer Data Pointer Version Pointer Data Pointer Version Pointer Data Pointer Version
to ref. size to local state to ref. size to local state to ref. size to local state
copy version copy version copy version
al bl c2 b3
[9] 18.997 128.215
Version copy data structures
@)
Non-spec window slot Most-spec window slot
User-labeled
speculative
variables l - .
Sliding window
chara float b
STATE Running Running Running Free
double ¢ Pointer to version copy |
32.88 -1.1 7
Slot 1 Slot 2 Slot 3 Slot 4
(122
&a 1 &al EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD
(I
&b 4 &bl MOD B Value &a 1 &a3 EXPLD
not
found
Pointer Data Pointer Version Pointer Data Pointer Version Pointer Data Pointer Version
to ref. size to local state to ref. size to local state to ref. size to local state
copy version copy version copy version
al bl c2 b3
[9] 18.997 128.215

Version copy data structures
(b)

Figure 3.5: Speculative load example (1/2). (a) Initial values of the example. (b) The thread
working in slot 2 scans its version copy to find the value.

Non-spec window slot

Most-spec window slot

3.5 NEW SPECULATIVE OPERATIONS | 63

User-labeled
speculative
variables l l - }
Sliding window
chara float b
STATE Running Running Running Free
double ¢ Pointer to version ¢ 77-
32.88
2 2 b7 Slot 1 Slot 2 Slot 3 Slot 4
2.1 Predecessor
version copy
2.3 éb? Is located
</ &a | 1 &al EXPLD &c / 8 &c2 ELUP &b 4 &b3 MOD
|
Pmdecesso, &bl MOD &a 1 &a3 | EXPLD
stored this
4 value
Pointer Data Pointer Version Pointer Data Pointer Version Pointer Data Pointer Version
to ref. size to local state to ref. size to local state to ref. size to local state
copy version copy version copy version
al b1 2 a3 b3
[o] 16.997 128215
Version copy data structures
©
Non-spec window slot Most-spec window slot
User-labeled
speculative
variables L L - .
Sliding window
chara float b
STATE Running Running Running Free
double ¢ Pointer to version copy [——
32.88
Slot 1 Slot 2 Slot 3 Slot 4
&a 1 &al EXPLD &c 8 &2 ELUP &b 4 &b3 MOD
&b 4 &bl MOD 4 &b2 EXPLD &a 1 &a3 EXPLD
Pointer Data Pointer Version 3.2 A new row Data Pointer Version Pointer Data Pointer Version
to ref. size to local state size to local state to ref. size to local state
copy version copy version copy version
al b1 b2 2 a3 b3
[o] 16.097 [18997] [128215

Version copy data structures

d

Figure 3.6: Speculative load example (2/2). (c) The thread working in slot 2 goes to its prede-
cessor version copy data structure and scans it in order to find a value for b. (d) After storing a
copy of b’s value, the thread working in slot 2 adds a new row to its version copy data structure.

64 | THE ATLAS RUNTIME SYSTEM

2. Our thread goes to its predecessor version copy data structure and scans it in order
to find a value for b. Its predecessor has stored a value for it, so our thread copies its
value to a new location (see Figure 3.6(c)). Note that, if no value for b had been found
there, our thread would have gone to its predecessor, until the non-speculative thread
were found. If no predecessor had used the value, our thread would have gotten the
value from the reference copy.

3. After storing a copy of b’s value, the thread working in slot 2 adds a new row to its
version copy data structure, storing the address of b, its data size, the address of the
version copy of b being managed by the thread, and the new state for this version copy,
EXPLD (see Figure 3.6(d)).

The call to specload () finishes returning the value 18.997 in the address indicated by its
fourth parameter.

Early Squashing

Load operations executed by this library will be optimized to improve the performance
of applications. This optimization is called Early Squashing and consist on performing a
squash operation before the end of the chunk of iterations. To understand this operation,
let us suppose that an application performs a specstore() (store operation described at the
following subsection). This operation checks the slots of the following threads in search
for dependence violations. If a dependence violation is found, the slots will be changed
to the SQUASHED state, but its execution continues, until the end of its iterations. On the
contrary, if earlySquash() operation is introduced, specload() calls check the state of the thread
involved. If it is SQUASHED the specload() call will end, avoiding unnecessary time losses since
earlySquash() will trigger a “jump” to the part of the code where the thread ends the execution
of its block of iterations.

3.5.2 Speculative stores
specstore(VOID* addr, UINT size, UINT chunk_number, VOID* value)
Arguments have the following meaning:
1. addr is the address of the speculative variable.
2. size is the size of the variable.

3. chunk_number is the number of the chunk being executed (needed to infer the slot
being used).

4. value is the address of the variable which will be stored.

3.5 NEW SPECULATIVE OPERATIONS | 65

As it can be noticed, the interface of specstore () is almost the same as specload ()
except for the last parameter, which is a pointer to the value to be stored. Recall that spec-
store() should not only store the new value, but also check whether a successor has con-
sumed an outdated value for it.

Figures 3.7, 3.8 and 3.9 show the sequence of events related to a speculative store. Sup-
pose that the thread working in slot 2 executes specstore(&a, sizeof(a), 2, &temp),
where temp holds the value 7. The sequence of events is the following, taking into account
that initial values are depicted in Figure 3.7(a):

A. The thread working in slot 2 searches for a local version copy of a. Then, the search
produces no results since only copies of ¢ and b are stored in its version copy data
structure (see Figure 3.7(b)). If a had been found, this thread would have updated its
status according to the state diagram of Figure 3.4, and it would have proceed to step
D.

B. The thread working in slot 2 creates a local copy of a, storing value 7 on it (see Fig-
ure 3.8(c)).

C. A new row is added to the version copy data structure, with a pointer to a, its size, the
pointer to the local copy, and the status, that will be MOD in this case (see Figure 3.4).
All these operations will be seen in Figure 3.8(c).

D. After storing the value locally, the thread working in slot 2 should check whether any
successor has consumed an outdated value. To do so, our thread would scan (following
the increasing order imposed by speculative behavior) for any successor slot that holds
a copy of a in EXPLD or ELUP state. These states would indicate that the successor has
used the value (see Figure 3.8(d)).

E. In our example, the search finds out that thread working in Slot 3 has consumed an
incorrect value for a (see Figure 3.8(d)). If no dependence violation was detected, the
call to specstore() would finish here.

F. A dependence violation has been detected. The thread working in slot 3 should be
squashed. To do so, the thread working in slot 2 changes the state of slot 3 from
RUNNING to SQUASHED (see Figure 3.9(e)). Since all threads check their own state
at the beginning of each specload() and specstore() call, the thread working
in slot 3 will eventually detect that it has been squashed, and will execute a call to
commit_or_discard() to be assigned a new chunk (possibly the same) and start the
process again.

G. Finally, the thread working in slot 2 marks itself as the most-speculative thread, since
data stored in association with slot 3 is no longer valid (see Figure 3.9(f)). The most-spec
pointer will be advanced later by the thread that will receive the task of re-executing
chunk 3.

66 | THE ATLAS

RUNTIME SYSTEM

Non-spec window slot Most-spec window slot
User-labeled
speculative
variables l - }
Sliding window
chara float b
STATE Running Running Running Free
double ¢ Pointer to version copy |
32.88
Slot 1 Slot 2 Slot 3 Slot 4
&a 1 &al EXPLD &c 8 &2 ELUP &b 4 &b3 MOD
&b 4 &bl MOD &b 4 &b2 EXPLD &a 1 &a3 EXPLD
Pointer Data Pointer Version Pointer Data Pointer Version
to ref. size to local state to ref. size to local state
copy version Pointer Data Pointer Version copy version
to ref. size to local state
al bl copy version 23 b3
o] 18.997 o2 , [o]
c
18997 | | 128215
Version copy data structures
@)
Non-spec window slot Most-spec window slot
User-labeled
speculative
variables l - .
Sliding window
chara float b
STATE Running Running Running Free
double ¢ Pointer to version co| |
32.88
Slot 1 Slot 2 Slot 3 Slot 4
&a 1 &al EXPLI i A2 la? (&c 8 &2 ELUP &b 4 &b3 MOD
&b 4 &bl MOD A3ia7 : &b 4 &b2 EXPLD &a 1 &a3 EXPLD
L{ Value
not
Pointer Data Pointer Version found Pointer Data Pointer Version
to ref. size to local state to ref. size to local state
copy version Pointer Data Pointer Version copy version
to ref. size to local state
al bl copy version 23 b3
[o] 18.997 o2 , [o]
c
18997 | | 128215

Version copy data structures

(b)

Figure 3.7: Speculative store example (1/3). (a) Initial values of the example. (b) The thread
working in slot 2 scans its version copy to find the value.

3.5 NEW SPECULATIVE OPERATIONS | 67

Non-spec window slot Most-spec window slot
speculative
variables l l - .
Sliding window
char a float b
STATE Running Running Running Free
double ¢ Pointer to version copy [
32.88
Slot 1 Slot 2 Slot 3 Slot 4
&a 1 &al EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD
&b 4 &bl MOD &b 4 &b2 EXPLD &a 1 &a3 EXPLD
1 &a2 MOD
Pointer Data Pointer Version Pointer Data Pointer Version
to ref. size to local state to ref. size to local state
copy version Pointer Data Pointer Version C. A new row version

to ref. size to local state added

bl copy version b3

a.
. S o)
B. A local
18.997 128.215

[e]&

Version copy data structures

©

Non-spec window slot Most-spec window slot
speculative
variables l l - .
Sliding window
chara float b
STATE Running Running Running Free
double ¢ Pointer to version copy | —— /
3288 D.1 The successor 5 oot 3 Slota
verslon copy D.2 la?
is located
A
&a 1 &al EXPLD &c / &c2 ELUP HDE : &b 4 &b3 MOD
&b 4 &bl MOD &b 4 &b2 EXPLD T &a 1 &a3 XPLI
&a/ 1 &a2 MOD E. Successor
loaded this
Pointer Data Pointer Version Pointer Data value fersion
to ref. size to local state to ref. size to local state
copy version Pointer Data Pointer Version copy version
to ref. size to local state

bl copy version

a3 b3
g S &)
18.997 128215

[e]&

Version copy data structures

d)

Figure 3.8: Speculative store example (2/3). (c) After creating a local copy of a, the thread
working in slot 2 adds a new row to its version copy data structure. (d) The thread working in
slot 2 should check whether any successor has consumed an outdated value. In our example,
the search finds out that the thread working in Slot 3 has consumed an incorrect value for a.

68 | THE ATLAS RUNTIME SYSTEM

Non-spec window slot Most-spec window slot
User-labeled
speculative
variables l l - ;
Sliding window
chara float b
" : . F. Current
STATE Running Running RQMﬁgSQUASHED state Is
.) changed
double ¢ Pointer to version copy | ——
32.88
Slot 1 Slot 2 Slot 3 Slot 4
&a 1 &al EXPLD &c 8 &2 ELUP &b 4 &b3 MOD
&b 4 &bl MOD &b 4 &b2 EXPLD &a 1 &a3 EXPLD
&a 1 &a2 MOD
Pointer Data Pointer Version Pointer Data Pointer Version
to ref. size to local state to ref. size to local state
copy version Pointer Data Pointer Version copy version
to ref. size to local state
al bl copy version a3 b3
o] [1s997 w2 ! ' o]
c a
18997 | | 128.215 |
Version copy data structures
@
Non-spec window slot Most-spec window slot
G. most-spec
speculative changed
variables l l -)
Sliding window
chara float b
STATE Running Running Squashed Free
double ¢ Pointer to version copy | ——

32.88
Slot 1 Slot 2 Slot 3 Slot 4

&a 1 &al EXPLD &c 8 &2 ELUP &b 4 &b3 MOD
&b 4 &bl MOD &b 4 &b2 EXPLD &a 1 &a3 EXPLD
&a 1 &a2 MOD
Pointer Data Pointer Version Pointer Data Pointer Version
to ref. size to local state to ref. size to local state
copy version Pointer Data Pointer Version copy version
to ref. size to local state 5
al bl copy version a b3
] [1s9w o]
b2 €2 a2
18997 | | 128.215 |

Version copy data structures

®

Figure 3.9: Speculative store example (3/3). (e) The thread working in slot 3 should be squashed.
To do so, the thread working in slot 2 changes the state of slot 3 from RUNNING to SQUASHED.
(f) The thread working in slot 2 marks itself as the most-speculative thread, since data stored in
association with slot 3 is not longer valid.

3.5 NEW SPECULATIVE OPERATIONS | 69

If, after these events, the thread working in slot 2 finishes its execution, while threads
associated to slot 1 and 3 are still working, we will reach to the situation shown in (see
Figure 3.3). Note that, at that moment, the thread working in slot 3 has already been re-started
and it has forwarded the most up-to-date value for a (that is, 7) from slot 2.

3.5.3 Speculative commits

The partial commit operation is exclusively carried out by the non-speculative thread. Every
time a thread executes commit_or_discard(), it first checks if it has not been squashed
and if is the non-speculative. If the thread is speculative, the slot will be left to be committed
by the non-spec thread.

As in the case of previous operations, let us examine an example case: Suppose that we
are in the situation depicted in Figure 3.10(a), and the thread working in slot 2 finishes.

I

II

I

v

\%

VI

VII

At this time, the thread working in slot 2 should change its state in order to show
other threads that its chunk of iterations have been executed, and should be com-
mitted (see Figure 3.10(b)). However, this operation could only be performed by the
non-speculative thread.

Afterwards, the non-spec thread working in slot 1 finishes, it therefore begins to
commit all of its values. Operations performed to carry out this task are depicted in
Figures 3.11(c) and 3.11(d). For example, b element should be committed, so it copies
the content of b1 into b.

When no more elements are available, i.e., after committing the version copy data
structure associated to slot 1, it changes its state to FREE. (see Figure 3.12(¢)).

Then this thread checks if any successor thread has finished its execution. In our
example the thread working in slot 2 has finished, so its elements must be committed
(see Figure 3.12(f)).

Elements of the slot 2 are committed following the order depicted in Figures 3.13(g),
3.13(h) and 3.14().

When no more elements are available, the state associated to the thread working in
slot 2 is changed to FREE. (see Figure 3.14(j)).

Since the state of the thread working in the next slot is not DONE, commit operation
could be seen as finished. But, we also have to take into account that the non-spec
pointer should be advanced to this slot 3 (see Figure 3.15(k)).

After executing these operations we get to the situation depicted in Figure 3.15(). In
this way, version copies of slots committed are not entirely reseted until another chunk of
iterations is assigned to them, and change their state to RUNNING.

70 | THE ATLAS RUNTIME SYSTEM

It might be interesting to remark that each thread only writes on its local version copy
data structure, and, as a result, no critical sections are needed to protect them. It is necessary
just a single critical section to protect the sliding window data structure, in which threads
can overwrite the state of another one.

3.5.4 Reduction operations

Some operations cannot be parallelized because of the own nature of their instructions.
Nevertheless, there are some kind of operations which could be transformed so that we can
be able to parallelize them. When one of these cases appear, it is said that the operation can
be reduced. For example, sum and the calculation of the maximum and minimum operations
can be reduced.

Sum reduction
Imagine that the loop to be parallelized contains the following sum operation.
matrix(i) = matrix(i) + value

This type of operation involves a sum operation for each iteration of the loop. So, if we
wanted to parallelize it, too many dependence violations would be produced since iteration
that modifies matrix (1) value needs the value of the previous iteration. In other words,
iteration J needs to know the value of matrix (i) in the iteration J-1 so as to update its
value.

In order to solve this problem, it is possible to perform a simple sum reduction in the
following way:

matrix(i) = matrix(i) + valor 1 + valor2 + ... + valorK

In this way, instead of summing a quantity each iteration, all sums are concurrently per-
formed so that dependence violations can be avoided. This operation is known as specredadd():

matrix(i) = matrix(i) + value

I
specredadd(VOID* addr, UINT size, UINT chunk_number, VOID* value)

Arguments have the following meaning:
1. addr is the address of the speculative variable.
2. size is the size of the variable.

3. chunk_number is the number of the chunk being executed (needed to infer the slot
being used).

4. value is the address of the variable which is going to be summed.

Non-spec window slot

3.5 NEW SPECULATIVE OPERATIONS | 71

Most-spec window slot

Version copy data structures

(b)

User-labeled
speculative
variables i - .
Sliding window
char a float b
STATE Running Running Running Free
double ¢ Pointer to version copy [——
32.88
Slot 1 Slot 2 Slot 3 Slot 4
&a 1 &al EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD
&b 4 &bl MOD &b 4 &b2 EXPLD &a 1 &a3 EXPLD
&a 1 &a2 MOD
Pointer Data Pointer Version Pointer Data Pointer Version
to ref. size to local state to ref. size to local state
copy version Pointer Data Pointer Version copy version
to ref. size to local state
al bl copy version a3 b3
o] 18.997 2 , (o]
c
18.997 | | 128.215
Version copy data structures
@)
Non-spec window slot Most-spec window slot
User-labeled
speculative
variables i - .
Sliding window
chara float b B I. Current
STATE Running Running Done <e—1 state should Free
be changed
double ¢ Pointer to version copy [——
32.88
Slot 1 Slot 2 Slot 3 Slot 4
&a 1 &al EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD
&b 4 &bl MOD &b 4 &b2 EXPLD &a 1 &a3 EXPLD
&a 1 &a2 MOD
Pointer Data Pointer Version Pointer Data Pointer Version
to ref. size to local state to ref. size to local state
copy version Pointer Data Pointer Version copy version
to ref. size to local state
al bl copy version a3 b3
[o] 18.997 . , (o]
c
18997 | | 128.215

Figure 3.10: Speculative commit example (1/6). (a) Initial values of the example. (b) The thread
working in slot 2 finishes its chunk of iterations.

72| THE ATLAS RUNTIME SYSTEM

Non-spec window slot

Most-spec window slot

User-labeled
speculative
variables l - .
Sliding window
chara float b
STATE Running Done Running Free
double ¢ Pointer to version copy [
Slot 1 Slot 2 Slot 3 Slot 4
11.3 Local value
Is stored
—1_In reference |
a 1 |- &al EXPLD = 8 &2 ELUP &b 4 &b3 MOD
&b 4 / &bl MOD &b 4 &b2 EXPLD &a 1 &a3 EXPLD
/ [Local value | sa 1 sa2 | Mmop
is located
Pdinter Dgta Pointer Version Pointer Data Pointer Version
taref. sjze to local state to ref. size to local state
cdpy version Pointer Data Pointer Version copy version
to ref. size to local state
al bl copy version a3 b3
o] 18.907 o2 , [o]
C.
18997 | | 128.215
Version copy data structures
©
Non-spec window slot Most-spec window slot
User-labeled
speculative
variables l - .
Sliding window
chara float b
[e] [237418.997 STATE Running Done Running Free
Pointer to version copy |
Slot 1 Slot 2 Slot 3 Slot 4
11.6 Local value
is stored
in reference
&a 1 &al EXPLD 8 &2 ELUP &b 4 &b3 MOD
1.4 This element
&b 4 |~ &bl MOD - shoulq be 4 &b2 EXPLD &a 1 &a3 EXPLD
I
[115 Local value) 1 &a2 MOD
is located
Pointer Data Pointer Version Pointer Data Pointer Version
to ref. size to local state to ref. size to local state
copy version Pointer Data Pointer Version copy version
to ref. size to local state
al bl copy version a3 b3
[o] 18.907 [o]
b2 c2 a2
18997 | | 128.215 |

Version copy data structures

)

Figure 3.11: Speculative commit example (2/6). (c) The non-speculative thread finishes its
execution so its elements start to be committed. (d) The next value of the non-speculative

thread is committed.

3.5 NEW SPECULATIVE OPERATIONS | 73

Non-spec window slot Most-spec window slot
speculative
variables l l - .
Sliding window
char a float b ¥ 1.2 Current
Ru .
18.997 STATE m Free -e{—1 - state should Running Free
- be changed
double ¢ Pointer to version copy [
32.88
Slot 1 Slot 2 Slot 3 Slot 4
&a 1 &al EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD
&b 4 &bl MOD &b 4 &b2 EXPLD &a 1 &a3 EXPLD
lll.1 No more
<—+— ‘ 1 &a2 MOD
Pointer Data Pointer Version | Pointer Data Pointer Version
to ref. size to local state to ref. size to local state
copy version Pointer Data Pointer Version copy version
to ref. size to local state
al bl copy version a3 b3
o] [18997 o2 2 , o]
c a
18.997 128215
Version copy data structures
©
Non-spec window slot Most-spec window slot
speculative
variables l l - .
Sliding window
chara float b IV. This
STATE Free ~«—— slot should Free
18.997 be
double ¢ Pointer to version copy [——
32.88
Slot 1 Slot 2 Slot 3 Slot 4
&a 1 &al EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD
&b 4 &bl MOD &b 4 &b2 EXPLD &a 1 &a3 EXPLD
&a 1 &a2 MOD
Pointer Data Pointer Version Pointer Data Pointer Version
to ref. size to local state to ref. size to local state
copy version Pointer Data Pointer Version copy version
to ref. size to local state
al bl copy version a3 b3
o] [3s99 [o]

b2 c2 a2
18.997 128215

Version copy data structures

(®

Figure 3.12: Speculative commit example (3/6). (€) No more elements are located in the version
copy of the non-speculative slot, so the thread working in slot 1 changes its state from RUNNING
to FREE. (f) After changing its own state, the thread working in slot non-speculative, checks if
any slot of its successors could be committed, in other words, if their states are DONE.

74| THE ATLAS RUNTIME SYSTEM

Non-spec window slot Most-spec window slot
User-labeled
speculative
variables l - .
Sliding window
chara float b
18.997 STATE Free Done Running Free
double ¢ Pointer to version copy [
3288 128.215
- Slot 1 Slot 2 Slot 3 Slot 4
V.3 Local value
is stored
in reference
V.1 This element
&a 1 &al EXPLD \ &c 8 &c2 | ELUP =t should be 4 &b3 MOoD
| p
&b 4 &bl MOD &b 4 V.2 Local value 1 &a3 EXPLD
is stored
&a 1 &a2 MOD
Pointer Data Pointer Version | Pointer Data Pointer Version
to ref. size to local state to ref. size to local state
copy version Pointer Data Pointer Version copy version
to ref. siz to local state
al bl copy version a3 b3
o] 18.907 o2 , [o]
C.
18997 | | 128.215
Version copy data structures
Non-spec window slot Most-spec window slot
User-labeled
speculative
variables l - .
Sliding window
chara float b

E % STATE Free Done Running Free

double ¢ \ Pointer to version copy

128.215

Slot 1 Slot 2 Slot 3 Slot 4
V.6 Local value
stored
in reference
&a 1 &al EXPLD &c 8 &2 ELUP 4 &b3 MOD
V.4 This element
&b 4 &bl MOD &b 4 | _&b2 EXPLD < should be 1 &a3 EXPLD
&a 1 &a2 MOD
7
Pointer Data Pointer Version /|V.5 Local value Pointer Data Pointer Version
to ref. size tolocal state Is located to ref. size tolocal state
copy version Pointer ata Pointer Version copy version
to ref. size to local state
al bl copy version a3 b3
[o] 18.907 [o]
b2 c2 a2
18997 | | 128.215 |

Version copy data structures

(h)

Figure 3.13: Speculative commit example (4/6). (g) The thread working in slot non-speculative
starts to commit elements from slot 2 because its state was DONE. (h) The next element from
slot 2 is committed.

3.5 NEW SPECULATIVE OPERATIONS | 75

Non-spec window slot

Most-spec window slot
User-labeled
speculative
variables i - .
Sliding window
char a float b
18.997 STATE Free Done Running Free
Pointer to version copy I
9 Local value Slot 1 Slot 2 Slot 3 Slot 4
s stored
n reference
&a 1 &al &c 8 &c2 ELUP &b 4 &b3 MOD
&b 4 &bl &b 4 &b2 EXPLD &a 1 &a3 EXPLD
&a 1 &a2 MOD - should be
i I
Pointer Data Pointer Version Pointer Data Pointer Version
to ref. size to local state V.8 Local value to ref. size to local state
copy version Pointer Pointer Is located copy version
to ref. to local ate
al b1 copy varsign 23 b3
[o] 18.997 . , (o]
c
18997 | | 128.215

Version copy data structures

@)

Non-spec window slot Most-spec window slot
User-labeled
speculative
variables i - .
Sliding window
chara float b V1.2 Current
18.997 STATE Free Do e <L ctate should Free
- be changed
double ¢ Pointer to version copy [—
128.215
Slot 1 Slot 2 Slot 3 Slot 4
&a 1 &al EXPLD &c 8 &c2 ELUP &b 4 &b3 MOD
&b 4 &bl MOD &b 4 &b2 EXPLD &a 1 &a3 EXPLD
&a 1 &a2 MOD
Pointer Data Pointer Version

V1.1 No more
*—t Data Pointer Version
to ref. size to local state 8
copy version

size to local state
Pointer Data Pointer Version copy version
to ref. size to local state
al bl copy version a3 b3
(o] (o]
b2 c2
18997 | | 128.215

Version copy data structures
()

Figure 3.14: Speculative commit example (5/6). (i) The last element from slot 2 is committed.
(j) There are not more elements to commit, so, the state of this slot is changed from DONE to
FREE.

76 | THE ATLAS RUNTIME SYSTEM

Non-spec window s| Non-spec window slot Most-spec window slot
VII. Non-spec
User-labeled slot should —
speculative be changed
variables 1 l 1 - }
Sliding window
chara float b
18.997 STATE Free Free Running Free
double ¢ Pointer to version copy |
128.215
Slot 1 Slot 2 Slot 3 Slot 4
&a 1 &al EXPLD &c 8 &2 ELUP &b 4 &b3 MOD
&b 4 &bl MOD &b 4 &b2 EXPLD &a 1 &a3 EXPLD
&a 1 &a2 MOD
Pointer Data Pointer Version Pointer Data Pointer Version
to ref. size to local state to ref. size to local state
copy version Pointer Data Pointer Version copy version
to ref. size to local state
al bl copy version 23 b3
o] 18.997 [o]
b2 c2 a2
18997 | | 128.215 |
Version copy data structures
Non-spec window slot Most-spec window slot
User-labeled
speculative
variables 1 1 - .
Sliding window
chara float b
18.997 STATE Free Free Running Free
double ¢ Pointer to version copy |
128.215
Slot 1 Slot 2 Slot 3 Slot 4
&a 1 &al EXPLD &c 8 &2 ELUP &b 4 &b3 MOD
&b 4 &bl MOD &b 4 &b2 EXPLD &a 1 &a3 EXPLD
&a 1 &a2 MOD
Pointer Data Pointer Version Pointer Data Pointer Version
to ref. size to local state to ref. size to local state
copy version Pointer Data Pointer Version copy version
to ref. size to local state
al bl copy version 23 b3
[o] 18.997 o2 , [o]
c
18997 | | 128.215 |

Version copy data structures

@

Figure 3.15: Speculative commitexample (6/6). (k) No more slots could be committed, therefore,
pointer to non-speculative slot is updated. (l) Final situation.

3.5 NEW SPECULATIVE OPERATIONS | 77

This operation requires changes over the commit operation. Thus, each thread accumu-
lates in its local structure the amount added each iteration. Hence, if a thread should execute
N iterations, when all of them finish its execution, the value will be ‘N x value’. So, regarding
the commit operation, instead of directly modifying the reference value, it performs a sum
of ‘N x value’ each time that is called. Consequently, results are correct at the end of the
operation.

Maximum reduction

Let us suppose that the loop to be parallelized contains an operation which calculates the
maximum in the following way:
IF matrix(i) < value THEN matrix(i) = value
Or with a function like:
matrix(i) = MAX(matrix(i),value)

This kind of operations cannot be parallelized because, as in the sum reduction, depend-
ence violations would appear continuously. Nevertheless, this operation can be also reduced
with something similar to:

matrix(i) = MAX(matrix(i),value L,value2,...,valueK)

At the beginning the maximum was obtained comparing just two values, but now it
requires to compare every single value. The function which implements this operation is the
following.

matrix(i) = MAX(matrix(i),value)

4
specredmax(VOID* addr, UINT size, UINT chunk_number, VOID* value))

Where arguments have the following meaning:

1. addr is the address of the speculative variable in which the maximum value will be
stored.

2. size is the size of the variable.

3. chunk_number is the number of the chunk being executed (needed to infer the slot
being used).

4. value is the address of the variable which will be compared with the speculative variable.

This function works as follows. Each thread obtains the maximum of the values of its
corresponding chunk of iterations. When a thread finishes its execution, committing its data,
its maximum value is compared with the reference variable. If the reference value is lower
than the value obtained by the thread, it will be modified, otherwise, no operation will be
done.

3.6

78 | THE ATLAS RUNTIME SYSTEM

Minimum reduction

Following the same approach than in the maximum reduction, sometimes might be required
to obtain the minimum value of a set. This operation is also implemented in the speculative
library, but since its behavior is similar to the maximum reduction described previously, it is
not going to be detailed. The function which implements this operation is the following.

matrix(i) = MIN(matrix(i),value)

I
specredmin(VOID* addr, UINT size, UINT chunk_number, VOID* value))

The Appendix B details the steps needed to parallelize a given application manually with
the speculative library described.

Performance improvements

Throughout this section we will describe the methodology to find out what were the main
bottlenecks of our new TLS runtime library. In addition, it contains the proposed solutions
to mitigate the bottlenecks found.

3.6.1 Locating bottlenecks in the new TLS runtime library

In order to find the bottlenecks that our speculative engine have, we examined the source
code in detail to extract some ideas of the tasks which require more time.

The main problem we have located is related with one of the new functionalities im-
plemented. One of the main advantages of our new speculative parallelization library is
that each thread only allocates the memory needed to store local copies of the data being
speculatively accessed. This design decision comes at the cost of longer times to find the
most-up-to-date value in speculative loads, and longer times to detect dependence violations
in speculative stores, because both operations should traverse all the values accessed by all
the predecessors and successors, respectively. Being 7' the number of threads, in [49], this
operation was in T' x O(1) = O(T), since all the memory needed to any data that might
be accessed was allocated in advance. In our scheme, being IV the number of data elements
stored locally, the search is done in T' x O(N) = O(T'N).

In order to search for some results that endorse our theories, we implemented some
auxiliary structures to store time measurements of all the functions involved in the execution.
We can take a view in the Listing 3.2. The vectors shown save the time spent in the main
speculative operations carried out by each thread. With their help, we can collect information
about the average time spent by each function.

3.6 PERFORMANCE IMPROVEMENTS | 79

1 |// time vectors

> | double time_specload[threads];
3 | double time_specstore[threads];
4+ | double time_commit[threads];

Listing 3.2: Vectors to measure time spend by each function.

1 | // At the beginning of the function...
> | #ifdef TIME_SPECLOAD

3 double time_ini, time_end;

4 int id = omp_get_thread_num();
5 time_ini = get_time();

¢ |#endif

s | // Function code

1w | // At the end of the function...

1 | #ifdef TIME_SPECLOAD

12 time_end = get_time();

13 time_specload[id] += (time_end - time_ini);
14 #endif

Listing 3.3: Additional code to measure the time spent by each function.

In order to use the vectors described, we had to include some code in the functions to
measure. In the Listing 3.3, we can see the additional code implemented in the specload()
function. Where get_time() is a function that returns current time in microseconds. As we
can see, we have used an #IFDEF clause, hence, we can measure just a single function, all of
them, or none in a given execution. These parameters allow us to get only the interesting
values of each experiment.

Experimental results show us that the main bottlenecks were in the specload() and spec-
store() functions, thus reinforcing our initial guess in which we supposed that traversing
all the values of predecessors, or successors, respectively, was the main bottleneck. We
decided to perform more comprehensive measures since time counters can be affected due
to multitasking issues. Therefore, we perform a deeper analysis using ICC (Intel C compiler).
This compiler allows to profile functions’ execution times just modifying the compilation
flags of the application. Specifically, we had to add the flag -profile-functions However,
one of the disadvantages that presents this software is that the use of OpenMP with profiling
functions is not allowed so far. Therefore we could use this measurement strategy only in

80 | THE ATLAS RUNTIME SYSTEM

1 | #ifdef MEASURE_COUNTERS

2 long long 1int totalAccessesSpecload[threads];
3 long long 1int totalCallsSpecload[threads];
4 | #endif

Listing 3.4: Vectors to measure calls and accesses done by specload().

experiments with a single thread. Nevertheless, this requirement was acceptable because it
allowed us to extract a measure of the most time-consuming functions of the software.

To be able to understand the acquired results (some XML files produced after executing
the application with the mentioned compilation flag), we needed to install the VTune Amplifier
XE 2011. Once installed, and executed, we could see that results were similar than those
obtained with the calls to the get_time() function.

We also decided to directly measure the number of accesses required by each call to the
most time-consuming functions. Listing 3.4 shows the vectors defined to measure the calls
and accesses done in a specload() call, while Listing 3.5 contains the additional code used
to obtain these parameters. As a result, we obtained the Tables 3.1 and 3.2 which show the
total calls to specload() and specstore() operations for the benchmark tested. In these tables,
TC (total calls) is the total number of calls to each function; TS (total searches) is the total
number of accesses in order to complete the corresponding call (getting the most up-to-date
value in specload(), and searching for potential dependence violations in specstore()). These
numbers are average values obtained in three real executions in our target system.

Table 3.1 shows the values obtained when using the TLS library to execute each bench-
mark (described in Appendix A), but using just one thread. This means that all accesses
counted in TS were to the local version data. As it can be seen, this number of accesses in
speculative loads is high on average, from 33.18 to 102.86. The situation is much worse on
speculative stores, with up to 737 accesses on average in order to detect a potential depend-
ence violation. Compare these numbers with the single access needed by both reads and
writes in a non-speculative execution of the same algorithm.

Table 3.2 shows the same values when we speculatively execute the benchmarks with
eight threads. Costs of both speculative loads and stores are roughly doubled. This situation
becomes even worse when the number of cooperative threads was increased.

These figures strongly endorse the affirmation that the main bottleneck and the most
severe scalability limitation comes from the sequential traversing of version copies during
speculative loads and stores operations. One way to speed up these searches is to switch to a
different data structure to hold local version copies of data. Instead of using a single table per
thread as version copy data structure, we have developed a simple but extremely powerful
alternative, using a hash function and H tables.

3.6 PERFORMANCE IMPROVEMENTS | 81

1 | // each time specload() is called...
> | #ifdef MEASURE_COUNTERS

3 totalCallsSpecload[thread]++;

4 |#endif

¢ | // each time a new variable is accessed...
7 | #ifdef MEASURE_COUNTERS

8 totalAccessesSpecload[thread]++;

s |#endif

Listing 3.5: Additional code to measure calls and accesses done by specload().

Speculative load Speculative store

e m o s

2.97x10% 3.05x10™° 102.86 6.65x10° 4.90x10° 737.35

Delaunay 100K 1.14x107 3.77x10® 33.18 5.06x10° 1.69x10° 33.44

Table 3.1: Profile of main functions with a single thread in the baseline TLS library.

Speculative load Speculative store

T o

Square 3.17x10% 3.55x10'° 111.86 2.40x10* 3.30x107 1374.33

Delaunay 100K 1.14x107 1.42x10° 124.83 5.07x10° 7.51x10% 148.09

Table 3.2: Profile of main functions with eight threads in the baseline TLS library.

82 | THE ATLAS RUNTIME SYSTEM

B Q
0
3 e —1 []
2 ey 2
1| & 8 0 ELUP 1
o| &b 4 8 EXPLD
2| &b 4 8 EXPLD 0| & 8 0 ELUP
3| sa 1 12 MOD |:'> 1
2
2
---------- P —
M X1l ga 1 12 MOD
Pointer Data Offset Version Pointer Data Offset Version
to ref. size in local state to ref. size in local state
copy version copy version
vector vector
Version copy data structures 3D Version copy data structures

Figure 3.16: Hash-based version copy data structures with three dimensions.

3.6.2 Keeping version copies: A hash-based solution

We have devised an extremely simple solution that is capable of reducing the number of
accesses needed by a factor of one to three orders of magnitude, while keeping the storage
cost of local versions in O(1). In addition, the developed technique can be seen as a general
solution that can be applied not only to our baseline implementation, but also to most TLS
systems. The solution works at follows: At the beginning of each specload() and specstore()
call, we perform an AND operation of the address of the datum to be processed with a mask
composed by H 1s. Since many addresses are multiple of 4 or 8, the address is first shifted
three positions to its right, to avoid biased hash values. The resulting value will be used as a
hash value. Considering an address A, the operation is:

H
——
hash = (A >> 3) A 00...0111...1

Instead of having just one table to keep local values, each thread maintains H tables.
The obtained hash is used to look into the [-th table of all predecessors and successors,
effectively speeding up the search by an average factor of H without increasing the time
needed to add a new row to the corresponding table, leading to O(T" x %) search times.
Note that, while 7 is a relatively small number (typically up to 64 for current shared memory

architectures), H can be set as big as needed to compensate for higher values of M.

Figure 3.16 shows the new version copy structure in three dimensions with an example.
Suppose that the previous version copy of a thread has the values depicted on the left of the
figure. With the new structure in three dimensions, this version copy is transformed into the
structure shown on the right of the picture, supposing that the hash of c and b is 9, and the
hash of a is X-1. Note that the first value of each hash row that has not been previously used
is marked as void. The same occurs with the third position (depth) of the 0 hash position,
and the second position (depth) of the X-1 hash position.

3.6 PERFORMANCE IMPROVEMENTS | 83

Version copy data structures of hash O

(0 e — » 1| &c 8 0 ELUP
1 2 &b 4 8 EXPLD
2 3
M
Pointer Data Offset Version
to ref. size in local state
copy version
vector
Version copy data structures of hash H-1
H-1| meeeeeeemmeeeee—ees » 1| &a 1 12 MOD
2
Hash list .
M
Pointer Data Offset Version
to ref. size inlocal state
copy version
vector

Figure 3.17: Hash-based version copy data structures.

In practice, these ideas have been implemented with the third dimensional structure
mentioned but, in order to have a better understanding of this optimization, let us introduce
another point of view. Imagine the structure with three dimensions as a vector with H
positions where each one of them has H pointers to H version copy structures. So, instead
of using a version copy for each slot, H version copies for each slot will be used. This idea,
conceptually similar to the one explained in the previous paragraph, is depicted in Figure 3.17.

Tables 3.3 and 3.4 show the total calls to specload() and specstore() operations, with the
total accesses that each one of them needed to find the desired value, and the average accesses
per call, in the new hash-based solution with one and eight processors respectively for each
benchmark used. Compare the values in both tables for TS/TC columns (up to 6.29 accesses)
with the much higher values (up to 1500) of the sequential searches shown in Tables 3.1 and
3.2. Moreover, this solution comes at no cost, since the hash function is extremely easy to
implement.

Memory consumption

New structures could seem to use more space than the previous ones, however, the memory
used are similar in both schemes: Let us suppose that in the first approach each thread
managed N rows to store intermediate values. If there were T threads, the cost to store them
was T X O(N). On the new scheme, with H hash rows that contain M positions to store
values, considering that H x M = N the cost to store themis T x O(H x M). In the best
case, if values were uniformly dispersed throughout the hash rows, H x M ~ N. In the

84 | THE ATLAS RUNTIME SYSTEM

Speculative load Speculative store

2D-Hull Disc 262x10°% 3.46x10° 132 439x10* 1.47x10° 3.34
Square 2.97x10% 3.94x10%8 133 6.65x10° 253x10* 3.80
Kuzmin 2.29x10% 2.78x10° 121 1.65x10° 3.45x10° 2.08
Delaunay 100K 1.14x107 1.74x107 153 5.06x10° 818x10° 1.62

M 147x10% 235x10%° 159 528x107 9.02x107 1.71

Table 3.3: Profile of main functions with a single thread in the hash-based version of the library.

2D-Hull Disc 2.74x10° 4.47x10®° 163 7.24x10* 4.55x10° 6.29
Square 3.19x10°% 4.38x10%® 137 228x10* 1.42x10° 6.23
Kuzmin 2.34x10%® 2.85x10% 1.22 7.18x10° 2.16x10* 3.01
Delaunay 100K 1.14x107 6.06x107 532 5.07x10° 867x10° 1.71

1M 1.47x10% 7.43x10® 504 528x107 1.08x10° 2.05

Table 3.4: Profile of main functions with eight threads in the hash-based version of the library.

worst case, if a single hash stored all the N values, the cost of the new approach would be
(T-1)xOHXxM)+T xO(N)~ O(T x N). So, required memory to store the new
approach will be similar to the previous one.

3.6.3 Additional improvements
Use of dedicated buffers

One of the problems detected was the excessive number of calls to the malloc() and free()
functions. To better understand the reasons, we will use an example. Suppose that a thread
executes a specload() or specstore() call. In both functions, the first task carried out by the thread
is to search in its version copy matrix to check whether this address has been accessed by this
thread. Suppose that the datum has not been used yet, so it should be added to the matrix.
In this process of attaching the new datum to the matrix of the thread, we had to allocate
some memory so as to store the local copy, so malloc() should be called (see Figures 3.5 and
3.6 (specload), or Figures 3.7, 3.8 and 3.9 (specstore)).

Once the thread has finished the speculative execution of the chunk of iterations which
had been assigned, it should free all its allocated memory. Therefore, free() should be re-

3.6 PERFORMANCE IMPROVEMENTS | 85

peatedly called to deallocate each single version copy of speculative data, in order to reuse
the remaining data structures to handle the execution of a new chunk of iterations.

It is easy to see that these operations are costly because they are called quite frequently.
Furthermore, calls to malloc() are in the critical path of the speculative execution. A solution
to avoid these calls is to implement a container for all the data used by each thread. Hence,
anew, Local Version Data dynamic vector was added to each thread. These vectors need an
initial call to the malloc() function to allocate them, and a single free() call to deallocate them
once the parallel loop has been executed entirely. If the vector is full, an additional call to
realloc() may be needed. This solution greatly improves the performance observed.

This new structure, however, leads to changes in the basic structures of the architecture.
Initially we had an structure with four entries, where one of them was a pointer to the local
copy of the datum. Instead, the new solution manages an offset for each datum. In this way,
each datum will be stored in the Local Version Data vector at the position pointed by its
offset, in other words, it will be stored from the position pointed out by its offset to the same
position plus the size of the datum, since each position of the vector will store a byte. Note
that, once stored, the datum will not be deleted until the entire vector containing speculative
data has been committed, so fragmentation will not occur.

As a result, each slot of the sliding window requires an additional pointer to the first free
position of its vector, to allow fast insertions. Hence, the sliding window has been augmented
with this additional datum. This ideas will be better understood with the aid of a graphical
example.

Figure 3.18(a) shows the new structures that have been implemented and the initial values
used in the example. In this way, we supposed a situation in which just a single thread is in
execution (to avoid an unnecessarily complex situation) and is managing two variables, c
and b, with a size of 8 and 4 respectively. Consequently, taking into account that this library
is implemented in C language (vectors begin at O position), actual offset of this thread will be
12.

Figure 3.18(b), and Figures 3.19(c) and (d) show the process of adding new data to the
version copy of a slot. It starts when a new data is modified in the context of the thread,
specifically a, with a size of 1 byte. Figure 3.18(b) shows that this datum has not been used
yet, and therefore it should be added.

First of all, current value of a is stored in the new Local Version Data vector. After
that, thread working in slot 1 adds a new row to its version copy data structure, storing the
address of a, its data size, the offset where is stored the version copy of a being managed by
the thread, and the new state for this version copy, MOD (see Figure 3.19(c)).

Finally, we should update the value of the first free position in the Version Data vector,
in this case, we should augment this value by one: 12 + 1 = 13 (see Figure 3.19(d)).

Note that, after executing a chunk of iterations, it is no longer needed to free() this buffer.
It is enough resetting the index that points to the beginning of the free space on it.

Being T the number of threads, and M the number of data elements stored locally, the
original solution came at a cost that was in 7' x O(M) C O(T x M). With the new

86 | THE ATLAS RUNTIME SYSTEM

Non-spec window slot Most-spec window slot
speculative
variables l l - .
Sliding window
float b
STATE Running Free Free Free
double ¢ Pointer to version copy |
32.88 .
ocal version data
Slot 1 Slot 2 Slot 3 Slot 4
&c 8 0 ELUP
&b 4 8 EXPLD c
| 128.215 234 I/I | I |
o 1 2 3 4 5 6 7 8 9 10 1u 12 13
Local version data structures
Pointer Data Offset Version
to ref. size in local state
copy version
vector

Actual first free position
Version copy data structures

(@)

Non-spec window slot Most-spec window slot
speculative
variables l l - .
Sliding window
char a float b
STATE Running Free Free Free
double ¢ Pointer to version copy |
32.88 __— _
11297 ocal version data
Slot 1 Slot 2 Slot 3 Slot 4
& \’R_I_‘ 0 ELUP
> 1.2 éa?
&b 4 8 EXPLD c
Value| e[1347 | 128.215 234 |/| | I |
f::r:d | o 1 2 3 4 5 6 0 1 12 13
Local version data structures
Pointer Data Offset Version
to ref. size in local state
copy version
vector

Actual first free position
Version copy data structures

(b)

Figure 3.18: Reducing operating system calls example (1/2). (a) Initial values of the example
with the new data structures of this optimization. (b) The thread working in slot 1 scans its
version copy to find the value.

3.6 PERFORMANCE IMPROVEMENTS | 87

Non-spec window slot Most-spec window slot
speculative
variables l l .)
Sliding window
chara float b
STATE Running Free Free Free
double ¢ Pointer to version copy |
32.88 .
ocal version data
Slot 1 Slot 2 Slot 3 Slot 4
&c 8 0 ELUP
&b 4 8 EXPLD c b a'
1 12 MOD <&t 2:2 A new row | 128.215 | 234 |/7/| | | |
Is added
o 1 2 3 4 5 6 7 8 9 10 11 12 13 3
Local version data structures 1
Pointer Data Offset Version
N . al copy
to ref. size in local state of a is created
copy version
vector Actual first free position
Version copy data structures
©
Non-spec window slot Most-spec window slot
speculative
variables l l -)
Sliding window
chara float b
STATE Running Free Free Free
double ¢ Pointer to version copy | —
32.88 .
ocal version data
Slot 1 Slot 2 Slot 3 Slot 4
&c 8 0 ELUP
&b 4 8 EXPLD c b a'
&a 1 12 MOD | 128.215 23.4 | 7 |/| | |
o 1 2 3 4 5 6 7 8 9 10 11 12 13 .
Local version data structures
Pointer Dfata .Offset Version = 3. First free
to ref. size in local state < L position is
copy version updated
vector

Actual first free position
Version copy data structures

d)

Figure 3.19: Reducing operating system calls example (2/2). (c) After creating a local copy of
ain its vector of local copies, the thread working in slot 1 adds a new row to its version copy
data structure. (d) After storing a copy of a’s value, the thread working in slot 1 augment the
indicator to the first free position in the vector of local copies.

88| THE ATLAS RUNTIME SYSTEM

#ifdef __LP64__ typedef struct datacell {
typedef unsigned long long int baseType; void *origPointer;
#else unsigned int copyOffset;
typedef unsigned long int baseType; short unsigned int size;
#endif short unsigned int state;
{ datacell;
baseType matrix[HASH][4][ROWS]; datacell matrix[HASH][ROWS]
(@ (b)

Figure 3.20: Implementation of a static example of the data structure in (a) the baseline solution,
and (b) the improved version.

scheme, the space allocation is done in ' x O(1) C O(T'), asymptotically improving the
performance of the library.

As the reader may have deducted, Figures 3.16 and 3.17 already reflect this improvement,
so it do not require further changes in the implementation.

Structures instead of buffers

We have also modified the implementation of version copy data structures in order to improve
data alignment [30] and the space needed by each version copy data structure. The baseline
representation is shown in Fig. 3.20(a). Although the different elements in a row have different
sizes, the declaration should allocate enough space to store the biggest one, in our case the
pointer to the original data. This implementation requires 8 bytes for each value, that is, a total
of 32 bytes for the representation of each row. Our new representation, shown in Fig. 3.20(b),
states variables as a struct. With this representation we achieve two goals, first, we reduced
the memory needed by half, since the memory used to store this new structure is 16 bytes
(a void pointer needs 8 bytes, an unsigned int needs 4 bytes, and each unsigned short int
needs 2 bytes). Second, this structure also exploits the memory representation of C structs
because these types are usually stored with the following patterns[30]: Structures between 1
and 4 bytes of data are usually padded so that the total structure is 4 bytes; Structures between
5 and 8 bytes of data are padded so that the total structure is 8 bytes; structures between 9
and 16 bytes of data are padded so that the total structure is 16 bytes; and structures greater
than 16 bytes are padded to 16 byte boundary. A different order of the variables would add
paddings because the compiler may decide to store them in 4-bytes places. Therefore, our
new structure is optimized to minimize the memory space needed, thus reducing the number
of cache misses.

3.6 PERFORMANCE IMPROVEMENTS | 89

Non-spec window slot Most-spec window slot
speculative
variables l l - .
Sliding window
chara float b
STATE Running Free Free Free
double ¢ Pointer to version copy |
‘
ocal version data
Indirection Matrix Slot 1 Slot 2 Slot 3 Slot 4
1| & 8 0 ELUP
2 &b 4 8 EXPLD c' b a'
3| &a 1 12 MOD | 128.215 23.4 | 7 I/I
0 1 2 3 4 5 6 7 8 9 10 11 12 13 .
Local version data structures
Pointer Data Offset Version
to ref. size in local state tail
copy version

vector Actual first free position
Version copy data structures

Figure 3.21: Structures with the Indirection Matrix.

Commit optimization

Initially, commit operations required to check all local elements accessed by a thread, both
modified and unmodified items. In addition to the other modifications, we performed an
optimization inspired in the work described in [48, 49], an Indirection Matrix. This matrix
will optimize commit operations since it will store the list with updated elements, allowing
to just commit them.

With this solution each thread will have its own vector of modified items, whose positions
will point to positions of updated items. Additionally, a tail pointer which points out the
position of the last modified item of the Indirection Matrix will be added so that ease even
more the commit process, and the addition of new elements to the vector. Now, to perform
the commit operation it is just needed to copy the elements of this list.

Figure 3.21 shows this new structures in the general architecture, including the optimiz-
ation of the vector with the local data. In the situation depicted in the example, the thread
has just finished the execution of its chunk of iterations. Since is the non-speculative one,
it will begin to commit its elements. It therefore scans its Indirection Matrix to locate those
variables in ELUP or MOD state. In the example, ¢ has been loaded and updated, a has just
been modified while b has been read. So, the thread copies the content of a' into a, and
the content of ¢' into c. In this way, the attempt of committing the content of b is avoided,
unlike what had happened in the original solution (see Figures 3.10, 3.11, 3.12, 3.13, 3.14 and
3.15).

3.7

90 | THE ATLAS RUNTIME SYSTEM

Unlike other improvements, the Indirection Matrix cannot be directly applied to the
hash-based main optimization. Since hash-data structure requires third dimensions to be
implemented, in order to combine both approaches, the Indirection Matrix also needs an
additional dimension to its structure. Otherwise, each position of the Indirection Matrix
will point to a single version copy instead of taking into account existing H version
copies. Just including the hash position H instead of the position of the datum in the version
copy will not be desirable because a hash position will point to several data, and then updating
just one of them, its position would be added, thus including those data from the row that
have not been modified, and reducing the effectiveness of the Indirection Matrix.

Moreover, if the implementation was not modified the same row will be attached several
times in the same column of the mentioned matrix. This case will be better understood with
the use of an example. Suppose that a thread updates a datum from the hash position 30, that
points to the address 5000 of the memory. In order to follow the semantics of the specstore()
operation, this thread will add the datum to its matrix in the 30th hash position. Finally, this
hash position is added to the Indirection Matrix, and the pointer to the last data of this matrix
is augmented. Then, suppose that, afterwards, the same thread updates another datum, with
the same hash, 30, but with other address, for example, 6 000. Then the datum will be added
to the matrix of the thread, and then, the hash position of this datum (30) is erroneously
attached again to the Indirection Matrix. Hence, attaching a new dimension to the mentioned
Indirection Matrix has become mandatory.

This implementation will allow to only commit the elements of the hash position that
have been used, instead of all of them. In this way, each version copy used will have its own
Indirection Matrix. Now, when a thread tries to add a new datum to its Indirection Matrix, it
also needs a hash H to obtain the third dimension of this new Indirection Cube.

Consequently, it is also required to add a new dimension to the tail position of the
indirection matrix because each H hash position of the structure has its own number of
modified items.

Experimental evaluation

3.7.1 Experimental setup

Experiments were carried out on an Intel S7000FC4URE server, equipped with four quad-
core Intel Xeon MPE7310 processors at 1.6 GHz and 32 GB of RAM. The system runs
Ubuntu Linux operating system. All threads had exclusive access to the processors during
the execution of the experiments, and we used wall-clock times in our measurements. We
have used gcc 4.6.2 for all applications. Times shown in the following sections represent the
time spent in the execution of the parallelized loop for each application. The time needed to
read the input set and the time needed to output the results have not been taken into account.

3.7 EXPERIMENTAL EVALUATION | 91

T T T
Baseline version --

7 T T
Baseline version --

6l Improved version
Cintra and Llanos’ version -

[Cintra and Llanos’ version

Improved version

3 5 7 9 11

5 7 9

11

Number of processors

(@

Number of processors

(b)

7

T T
Baseline version
Improved version

[Cintra and Llanos’ version -

Figure 3.22: Performance comparison for 2D-Hull benchmark with three different input sets:

Number

(a) Disc, (b) Square, and (c) Kuzmin.

of processors

©

92 | THE ATLAS RUNTIME SYSTEM

8 T T T T T T T

Baseline version ----@-- Baseline version ----@---
7t Improved version .. 4 b Improved version -
Cintra and Llanos’ version ¥ | Cintra and Llanos’ version

Speedup

1 3 5 7 9 11 13 15 1 3 5 7 9 11 13 15
Number of processors Number of processors
(a) (b)

Figure 3.23: Performance comparison for Delaunay benchmark with an input set of (a) 100K
points, and (b) 1M points.

3.7.2 Experimental results

To test the improvements implemented, we have used two applications the 2-dimensional
Convex Hull problem (2D-Hull) and the Delaunay Triangulation problem. The 2D-Hull
problem solves the computation of the convex hull (smallest enclosing polygon) of a set of
points in the plane. The Delaunay triangulation applied to a two-dimensional set of points
affirms that a network of triangles is a Delaunay triangulation if all the circumcircles of all
the triangles of the network are empty. These benchmarks are detailed in more depth in
Appendix A.

Figure 3.22 compares the performance results of the speculative parallelization of the
2D-Hull with different input sets. Both the baseline version of the library and the version
with all improvements implemented are compared. While the baseline system is not able to
obtain speedups in any case, the new solution leads to a maximum speedup of 1.681 x for
the Disc input set (representing a 28 X performance increment with respect to the baseline
TLS library), 3.094 x for the Square input set (14.19 X performance increment) and 4.188 x
for Kuzmin (8.63 X performance increment). To put these results into perspective, we also
show the best speedups obtained by Cintra and Llanos with their speculative runtime system.
Recall that their solution, while effective, is constrained by many limitations, and it is not
generalizable to any applications. Results show that our solution allows to deliver a good
percentage of the maximum speedup attainable (up to 68%), while offering a speculative
solution applicable in many more cases.

Figure 3.23 compares the performance results of the speculative parallelization of the
Delaunay triangulation with two input sets. The new solution is again clearly better, with a
maximum speedup of 3.646 x for the 1 M-points input set (representing a 3.58 X performance
increment with respect to the baseline TLS library), and 3.873 x for the 100K-points input

3.8

3.8 CONCLUSIONS | 93

set (5.40x performance increment). Again, our solution is compared to the tailored library
of Cintra and Llanos, obtaining, on average, a 75% and a 68% of their maximum speedup in
the 1M-points and the 100K-points input sets, respectively.

Conclusions

In this chapter, we have described a TLS runtime library which can be easily combined
with a compiler in order to ease to parallelize applications speculatively. Thus we have
detailed its structures as well as its operations. Furthermore we have shown a solution to a
problem that is common to any software-based TLS library: How to reduce search times
when accessing to remote versions of speculative data. To mitigate this problem, we have
implemented some optimizations such as the use of an extremely-simple hash function
to avoid the need of traversing all version data, the reduction in the number of memory
management system calls, and the development of new data structures to reduce memory
consumption and cache misses. Our experimental evaluation with non-synthetic benchmarks
on a real, shared-memory multiprocessor clearly shows that these improvements have a
dramatic impact on performance: All applications tested had far better execution times than
those obtained in the baseline version, and the performance results are a significant fraction
of those obtained with a system specifically designed to handle these benchmarks.

Figure 3.24 summarizes the final scheme.

The work described in this chapter has generated the following publications:

+ Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘Desarrollo de
un motor de paralelizacién especulativa con soporte para aritmética de punteros’. In:
Proceedings of the XXIII Jornadas de Paralelismo. Elche, Alicante, Spain: Servicio de Pub-
licaciones de la Universidad Miguel Hernandez, Sept. 2012. 1sBn: 978-84-695-4471-6

+ Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. Tmproving the
Perfomance of a Pointer-Based, Speculative Parallelization Scheme’. In: Proceedings of
the Ist First Congress on Multicore and GPU Programming. PPGM’14. Granada, Spain,
Feb. 2014. Also published in Annals of Multicore and GPU Programming, vol. 1, no. 1,
2014. 2014. issn: 2341-3158.

+ Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘New Data Struc-
tures to Handle Speculative Parallelization at Runtime’. In: Proceedings of the 7th
International Symposium on High-level Parallel Programming and Applications. HLPP
‘14. Amsterdam, Netherlands: ACM, 2014, pp. 239-258. Also published in Inter-
national Journal of Parallel Programming, 2015, pp. 1-20. Springer US, 2015. issn:
0885-7458. doi: 10.1007/510766-014-0347-0. url: http://dx.doi.org/10.1007/
s10766-014-0347-0.

http://dx.doi.org/10.1007/s10766-014-0347-0
http://dx.doi.org/10.1007/s10766-014-0347-0

94 | THE ATLAS RUNTIME SYSTEM

Non-spec window slot Most-spec window slot
speculative
variables l l - .
Sliding window
chara float b
STATE Running Free Free Free
3.4
double ¢ Pointer to version copy *
Pointer to local version data #
Slot 1 Slot 2 Slot 3 Slot 4

* 3D Version copy data structure
M

1 —7

2 g 2
; ot T T f

w
X
\!

0 &c 8 0 EXPLD
1
2
X1l &a 1 12 MOD
Pointer Data Offset Version
to ref. size in local state
copy version
vector

Ff Local version data structure
c' b' a'

32.88 18.997 | 7 \/‘ |

0 1 2 3 4 5 6 7 8 9 10 11 12 13

First free position

Indirection Matrix
02
1
2
X1 1

Figure 3.24: Current appearance of the TLS runtime library.

CHAPTER 4

The ATLaS framework

PENMP directives are the de-facto standard for shared-memory parallel programming.

However, OpenMP does not guarantee the correctness of the parallel execution of a
given loop if runtime data dependences arise. Consequently, many highly-parallel regions
cannot be safely parallelized with OpenMP due to the possibility of a dependence violation.
In this chapter, we detail the ATLaS C Compiler framework, which takes advantage of TLS
techniques to expand OpenMP functionalities, and guarantees the sequential semantics of
any parallelized loop. Specifically, the ATLaS framework is able to handle speculative variables,
classified in the same way as OpenMP does, through a new clause. It makes the compilation
process, and the management of variables completely transparent to users, considerably
reducing the required effort.

-95-

4.1

96 | THE ATLAS FRAMEWORK

#pragma omp parallel for \
private (i,b) shared (a,v)
for (i=0; i<MAX; i++) { for (i=0; i<MAX; i++) {
b = func(i); b = func(i);
v[i] = b % a[i]; v[i] = b % a[i];
} }
@ (b)

Figure 4.1: Example of loop parallelization with OpenMP.

Problem description

The advent of multicore technologies in the new century made parallel processing ubiquitous.
Many parallel languages and parallel extensions to sequential languages have been proposed
to exploit the capabilities of modern multicore systems. The most successful proposal is
OpenMP [40], a directive-based parallel extension to sequential languages (such as C, Fortran
or C++) that allows parallel execution of user-defined code regions.

Figure 4.1 shows an example of (a) a sequential C loop, and (b) its parallelization with
OpenMP directives. As can be seen, all variables inside the loop body should be classified
as private or shared. Informally speaking, variables whose values are always set in a given
iteration before their use should be labeled as private, while variables that have values visible
by all threads executing the loop in parallel should be classified as shared (Remark that
Chapter 1 explained with more detail how to classify variables). In our example, a[] is a
read-only shared vector, while v [] is a shared vector that is modified by each iteration.

As OpenMP is a simple and powerful mechanism for code parallelization, its use has
several limitations. First, the classification of all variables inside the critical region, according
to their use, is a time-consuming, error-prone task. Second, OpenMP does not ensure
the parallel execution of the code according to sequential semantics, as the programmer is
responsible for such a task. In the example shown in Fig. 4.1, the programmer is responsible
for ensuring that each thread modifies a different element of v[]. Third, in many cases,
potentially-parallel regions cannot be safely parallelized because their control flow depends
on runtime data. Consider the code depicted in Fig. 4.2. Suppose that the value of k is not
known at compile time. Assuming b>0 for a given 1, if the parallel execution of the loop
calculates iteration i before iteration i-b, access to v[i-b] may return an outdated value,
breaking sequential semantics. The only way to guarantee a correct behavior would be to
serialize the execution of iterations ¢ — b and i, a difficult task in the general case.

Safely parallelizing loops that may present runtime dependence violations can have a
significant impact in terms of performance. Aldea et al. have previously measured the amount
of loop-level parallelism that could be extracted from the SPEC CPU 2006 benchmark, with
different techniques [12]. Their results show that, while around 48% of the loops present in
the applications analyzed (representing around 13% of their aggregate execution time) are
potentially parallelizable with existent parallel programming models such as OpenMP, an

4.1 PROBLEM DESCRIPTION | 97

for (i=0; i<MAX; i++) {
b = func(i);
if (b==k)
v[i] = v[i-b];
else
v[i] = b x a[i];

()

#pragma omp parallel for \
private (i,b) shared (a,k) \
speculative(v)

for (i=0; i<MAX; i++) {

b = func(i);
if (b==k)

v[i] = v[i-b];
else

v[i] = b x a[i];

(b)

Figure 4.2: A loop that cannot be safely parallelized with current OpenMP clauses (a), and its
parallelization with our new speculative clause (b).

additional 38% of loops (representing around 20% of the execution time) could be run in
parallel with the help of runtime speculative parallelization techniques.

The ATLaS framework consists in augmenting OpenMP with software-based, Thread-
Level Speculation (TLS) techniques to ensure that definitions and uses of shared variables are
carried out according to sequential semantics. This solution allows the OpenMP program-
ming model to be used even when dependence violations may arise at runtime. To do so, we
define a new speculative clause. Variables labeled as speculative will be accessed following
two simple rules:

+ Allreads of a speculative variable will return the most up-to-date value for this variable.
This value can either be generated previously by this thread or by any of its predecessors,
defined as threads that execute earlier iterations according to sequential semantics.
This is called a forwarding operation.

+ All writes to a speculative variable will store the value in a local copy, and will check
whether a successor thread (that is, threads that are executing “future” iterations) has
consumed an outdated value of this variable. In this case, the offending thread (and
possibly some of its successors) will be stopped and re-started, in order to force them
to consume the updated value of the variable. This is called a squash operation.

Aslong as a dependence violation forces the values of speculative variables to be discarded,
all threads maintain version copies of the speculative variables being accessed. When a
non-speculative thread (that is, a thread with no alive predecessors) successfully finishes the
execution of its block of consecutive iterations, all changes are committed to the main copy
of all speculative variables. After this commit operation, the thread will become the most
speculative one, since it will execute the following block of iterations that remains unassigned.

The three main contributions of this chapter, i.e., of ATLaS framework, are the following:

1. It extends OpenMP specifications adding a clause to support speculative accesses to
data in omp parallel for constructs. This clause follows the guidelines proposed by
Aldea et al. [13].

4.2

98 | THE ATLAS FRAMEWORK

2. Itis internally managed by the brand-new TLS runtime library described in the previ-
ous chapter. This runtime library not only manages accesses to speculative data, but
also handles the scheduling of iterations among threads and ensures correctness in
the parallel execution of the loop.

3. It defines a new plugin-based compiler pass to the GCC OpenMP implementation
to support the speculative clause. This pass transforms the loop to be parallelized,
inserting the runtime TLS calls needed to (a) distribute blocks of iterations among
processors, (b) perform speculative loads and stores of speculative variables, and (c)
perform partial commits of the correct results calculated so far.

The result is ATLaS, a complete framework that allows OpenMP to execute loops in
parallel without the need of a prior dependence analysis. Our performance evaluation,
using both synthetic and real-world applications on a real multicore system, shows that this
approach leads to performance speedups.

The rest of the chapter is organized as follows. Section 4.2 briefly describes Aldea et
al’s proposal of a new OpenMP speculative clause, and how they added support to handle
this clause in the GCC OpenMP compiler. Section 4.3 presents the experimental evaluation.
Finally, Section 4.4 summarizes our conclusions.

Compilation phase description

First of all, remark that this phase was fully developed by Aldea et al.. Thus, we are not
going to give a detailed description of this phase. Inside each subsection are referenced the
documents in which find out more information.

4.2.1 Semantics of Aldea et al.’s speculative clause

The problem of adding speculative parallelization support to OpenMP can be handled using
two approaches. The first one requires the addition of a new directive, such as pragma omp
speculative for. However, there are many OpenMP related components that should be
modified in order to add a new directive. A simpler solution is to add a new OpenMP clause
to the list of available parallel constructs, which allows the programmer to enumerate which
variables should be handled speculatively. The syntax of this clause is:

speculative(variable[, var_list])

4.2 COMPILATION PHASE DESCRIPTION |99

In this way, if the programmer is unsure about the use of a certain data structure, he can
simply label it as speculative. In this case, a tailored OpenMP implementation should replace
all definitions and uses of this data structure with the corresponding specload() and spec-
store() function calls. An additional commit_or_discard() function will be automatically
inserted once each thread has finished its chunk of iterations, to either commit the results,
or to restart the execution if the thread has been squashed due to a runtime dependence
violation.

Our new TLS runtime library, described in-depth in the following chapter, was indeed
developed using standard OpenMP clauses. In order to integrate our library into an exper-
imental OpenMP framework that includes a new speculative clause, two particularities
of our TLS library should be taken into account. First, since our TLS runtime library has
also been developed using OpenMP, some private and shared control variables should be
added to the target loop in order to use it. Therefore, if a speculative clause is found by the
compiler, this occurrence, which implies the use of our speculative library, should trigger the
inclusion of several private and shared variables to the existing lists. Fortunately OpenMP
allows the repetition of clauses, so the compile time support for this new speculative clause
can add additional private and shared clauses that will later be expanded by the compiler.

Second, the standard scheduling methods implemented by OpenMP are not enough to
handle speculative parallelization. These methods assume that the execution of a chunk of
iterations will never fail, so they do not consider the possibility of restarting a chunk that has
failed due to a dependence violation. Therefore, it is necessary to use a speculative scheduling
method (Scheduling methods for TLS are detailed in Chapter 5).

For further information about the development of this clause see [7, 13].

4.2.2 Compiler support for the speculative clause

The compiler phase of ATLaS is implemented on the GCC C compiler [103], extending its
functionality through a plugin. Before describing the implementation of the plugin, it is
necessary to introduce the GCC architecture.

GCC architecture in a nutshell

Figure 4.3 shows the scheme of the GCC architecture [102, 187]. In basic terms, GCC is a
big pipeline that converts one program representation into another, in different stages. Each
stage generates a lower-level representation, until the assembly code is generated at the last
stage. GCC architecture has three clearly-defined blocks: Front End, Middle End and Back End.
There is one front end for each programming language. The parser of each language converts
source files into a unified tree form, called GENERIC, which is a high-level tree representation.
When it finishes, the Front End emits a GENERIC intermediate representation (IR) of the
code, which serves as the interface between the front end and the rest of the compiler.

100 | THE ATLAS FRAMEWORK

FrontEnd ' | Middle End } | Back End !

C parser
GIMPLE RTL
Plugin Pass
| |Interprocedural RTL PEE— Call Graph
(| Optimizer Optimizer | | Manager
|
I ¢ ¢ I
|
I SSA Final Code | Pass
\| Optimizer Generation | 77 Manager
Java parser A e e ’
Assembly

Figure 4.3: GCC Compiler Architecture. The main OpenMP related components, highlighted
in grey, are the C, C++ and Fortran parsers, and the GIMPLE IR level. Highlighted in black is the
location of the plugin pass which implements ATLaS.

The Middle End works on GIMPLE, which is a 3-address language with no high-level
control flow structures. In GIMPLE, each statement does not contain more than three
operands (except function calls); control flow structures are combinations of conditional
statements and goto operators; and there is a single scope for variables. This kind of rep-
resentation is convenient to optimize the source code. Once the source code is in GIMPLE
form, an interprocedural optimizer is called, where inlining operations, constant propagation, or
static variable analysis are performed. We have inserted our plugin at this point.

The following step is the transformation from GIMPLE into SSA (Static Single Assign-
ment) representation. In SSA form, each variable is assigned or written only once, creating
new versions for each assignment of the same variable, which can be read many times. When
different versions of the same variable are written into both branches of a conditional ex-
pression, a ¢-function is added just after the conditional block, allowing the selection of the
correct version of the variable, depending on the branch executed. SSA representation is
used for several optimizations, such as forward expression substitution, loop interchange,
vectorization or parallelization, among others. These optimizations are performed in around
100 passes.

After these optimizations, the SSA representation is converted back to the GIMPLE
form, which is transformed into a register-transfer language (RTL) form, in which the Back
End works on. RTL was the original primary intermediate representation used by GCC.
It is a hardware-based representation which corresponds to an abstract machine with an
infinite number of registers. GCC also uses this form to perform several optimizations, such
as branch prediction or register renaming, in around 70 passes.

Finally, the Final Code Generation step of the Back End creates the assembly code for the
target architecture (x86, mips, etc.) from the RTL representation.

4.2 COMPILATION PHASE DESCRIPTION | 101

Transactions between the different phases are sequenced by the Call Graph and the Pass
Manager. The Call Graph Manager generates a call graph for the compilation unit, decides in
which order the functions are optimized, and drives the interprocedural analysis. The Pass
Manager sequences individual transformations and handles pre- and post-cleanup actions as
needed by each pass.

Parsing the new clause

In order to parse the new speculative clause, we have extended the GNU OpenMP (GOMP)
compiler, the OpenMP implementation for GCC. The main parts of the GCC architecture
related with OpenMP are highlighted in grey in Figure 4.3. GOMP has four main compon-
ents [188]: parser; intermediate representation; code generation; and the runtime library
called 11bGOMP. We have focused on modifying the GOMP parsing phase. The generation of
new code to support TLS is located in the plugin developed, and mainly consists of inserting
calls to the TLS library functions described in the previous sections.

The parser identifies OpenMP directives and clauses, and emits the corresponding GEN-
ERIC representation. We have modified the C parser and the IR to add support for the new
speculative clause. First, we have created the GENERIC representation of the new clause as
other standard clauses. Then, the compiler has been modified to recognize and parse that
clause as part of the parallel loop construct. When the new clause has been parsed, and the
IR is generated, our plugin detects the clause and triggers all the transformations needed by
the code.

GCC speculative plugin description

GCC plugins provide extra features to the compiler —although they cannot extend the parsed
language-, allowing passes to be added, replaced, monitored, or even removed from the GCC
compiler without touching the GCC source code. Hence, plugins ease the programming of
modifications and contributions to the GCC community. Using this mechanism, our system
adds a new pass in the GCC pipeline. This new pass performs all the transformations needed
in the code when the programmer marks a variable as speculative.

The new pass is added before the compiler optimization passes, and just before GCC
does the first pass in relation with OpenMP: omplower. At this point, we have the code in a
GIMPLE representation, and the for loop marked with the parallel loop directive preserves
all the clauses introduced by the programmer. Therefore, we have the information about
which variables are speculative. After this pass, GCC manages speculative variables as shared,
while their handling as speculative is carried out by the TLS runtime library.

Figure 4.4 shows a brief example of the transformations made by the plugin. The parser
detects the new speculative clause, and the new compiler pass performs automatically all
the transformations needed to speculatively parallelize the loop. With the list of variables
and data structures that should be speculatively updated, the plugin replaces each read of
one of these variables or data elements with a specload() function call. Similarly, all write

102 | THE ATLAS FRAMEWORK

1: char a; float b; 1: char a; float b;
2: char temp; float value;
3: 1int tid, threads; ...
4: threads = omp_get_num_threads();
5: specbegin(MAX);
6: #pragma openmp parallel for \ | 6: #pragma openmp parallel for \
private (i) \ private (i, tid, temp, value,...) \
speculative (a, b) shared (a, b, threads,...) \
7: for (i=0; i<MAX; i++) { 7: for (tid=0; tid<threads; tid++) {
8: while(true) {
9: i = assign_following_chunk(tid,MAX,..)}
’Original loop code, part 1‘ ‘Original loop code, part l‘
10: a = f(b); 10: specload(&b, sizeof(b),..., &value);
11: temp = f(value);
12: specstore(&a, sizeof(a),..., &temp);
’Original loop code, part 2‘ ‘Original loop code, part 2‘
13: commit_or_discard_data(tid,...)}
14: if(no_chunks_left(tid, MAX,...))
15: break;
16: }
17: } 17: }
@ (b)

Figure 4.4: Loop transformation to allow its speculative execution: Original (a) and transformed
(b) code.

operations to speculative variables are replaced with a specstore() function call. Loads
or stores involving other variables do not require additional changes in the code, since all
flavors of private and shared variables keep their respective semantics in the context of
a speculative execution. The plugin also adds all the structures and functions needed to
speculatively parallelize the code. This process is completely transparent to the programmer,
who does not need to know anything about the speculative parallelization model. The
programmer should only label the variables involved in the target loop as private or shared,
as with any other OpenMP program, and mark as speculative those variables that might lead
to any dependence violation.

The scheme of the process followed by the plugin can be summarized in the following
steps:

1. The plugin traverses each function of the original program looking for an OpenMP
parallel loop directive with a speculative clause on it. If the plugin does not find the
speculative clause on the pragma, the semantic of the loop remains identical to any
other standard OpenMP loop.

4.3 COMPILATION PHASE DESCRIPTION | 103

Compiler parameters:

- Threads
- Block size
ATLaS
Programmer Code GCC 4.6.2
C + OpenMP with + Linker Elxecutable
speculative clause plugin T binary
TLS Runtime library

Figure 4.5: Overview of the code generation process for the speculative clause.

2. If the plugin finds the speculative clause, it extracts the speculative variables pointed by
the clause, and two functions are added before the loop: omp_set_num_threads(T),
where T is the number of threads indicated in the compilation command; and specbe-
gin(N), where N is the number of iterations of the loop.

3. The plugin adds, as private or shared variables, those variables needed by the runtime
system. The code generated by the plugin also includes the creation of other new
variables, which are also added as private or shared.

4. The plugin adds all the code needed to run the TLS system, including the replacement
of the original loop by a new loop that drives the speculative execution.

5. The plugin traverses the GIMPLE nodes of the loop, searching for readings from
and writings into the speculative variables. Each read and write are replaced by a
specload() and specstore() function, respectively.

Once the plugin has transformed the loop, GCC operation continues with the next passes.
When the compilation ends, the resulting binary file is prepared to run speculatively.

Use of the ATLaS framework

To speculatively parallelize a source code with our system, programmers should add the
OpenMP directive in the target loop, and classify its variables, according to their usage, into
private (and its variants), shared, or speculative. To compile the program, the programmer
should also indicate the size of the block of iterations that will be issued for speculative
execution, among other minor parameters. With these simple modifications, a program-
mer can speculatively parallelize a code, while the rest of the transformations needed are
transparently performed by the plugin and the compiler. Figure 4.5 summarizes the code
generation process performed by the plugin, and the link to the TLS runtime system, which
is transparent to the user.

4.3

104 | THE ATLAS FRAMEWORK

2D-MEG'
14 + 2D-Hull (Kuzmin) =
2D-Hull (Square) =+«

2D-Hull (Disc)
Delaunay /\
TREE /

12 b e //

32 40 48 56 64
Number of processors

Figure 4.6: Performance achieved by the parallelizable loop of the benchmarks considered.

For further information about the development of this compiler support for the specu-
lative clause see [5, 6,7, 8,9, 11].

Experimental evaluation

Experiments were carried out on a 64-processor server, equipped with four 16-core AMD
Opteron 6376 processors at 2.3GHz and 256GB of RAM, which runs Ubuntu 12.04.3 LTS.
All threads had exclusive access to the processors during the execution of the experiments,
and we used wall-clock times in our measurements. We have used the ATLa$ plugin together
with gcc for all applications.

4.3.1 Benchmark evaluation

To test the ATLaS framework, we have used both real-world and synthetic benchmarks. The
real-world applications include the 2-dimensional Minimum Enclosing Circle 2D-MEC)
problem, the 2-dimensional Convex Hull problem (2D-Hull), the Delaunay Triangulation
problem, and a C implementation of the TREE benchmark. The synthetic benchmarks are
Complete, Tough, and FAST. Benchmarks used are fully described in Appendix A.

Figure 4.6 shows the speedups achieved using the proposed OpenMP speculative clause
with the mentioned applications. For the 2D-MEC benchmark, our solution achieves a peak

4.3 EXPERIMENTAL EVALUATION | 105

speedup of 2.6 x. Although these are not big figures, these results are achieved by simply
declaring as speculative the variables that hold the solution found so far.

In the case of 2D-Hull, as described above, results depend on the input set. Perform-
ance varies from a 2.4 x speedup with the Disc input set, which causes a huge number of
dependence violations, to a 13x speedup with the Kuzmin input set, which leads to fewer
violations.

Delaunay’s execution produces a high number of dependence violations, which affects
the speedup. Delaunay achieves a peak performance of 3.1x speedup.

Finally, TREE obtains a peak of 6.5 x speedup. This benchmark is characterized by the
presence of reductions over sum and maximum operations that involve speculative variables.

Regarding synthetic benchmarks, let us start with the so-called Complete. While execut-
ing this loop in parallel, all the iterations lead to dependence violations. Consequently, the
speedup obtained is very poor (0.03x with 64 processors), but the parallel execution finishes
successfully.

Concerning Tough synthetic benchmark, all of its iterations perform a load and a store on
the same speculative data structure, with almost no computational load on private variables.
This situation adversely affects performance (speedups obtained ranged from 0.1 x with 2
processors to 0.002 x with 64 processors), even when the number of dependence violations
during parallel execution is relatively small (4.46%). Despite of this, the parallel execution is
also successful.

With reference to FAST synthetic benchmark, only two of the 180 000 iterations (0.001%)
lead to a dependence violation. Note that these two dependences are enough to prevent the
compile-time parallelization of this loop. The speculative execution of this benchmark in our
shared-memory parallel system returns a maximum speedup of 44.5x with 64 processors.
When using 32 processors, the speedup is 29.3 X, representing an efficiency of more than 90%.
These results indicate that the overhead due to the runtime speculative library is negligible.

4.3.2 Effectiveness of the ATLaS runtime library

Table 4.1 summarizes the percentage of time consumed by the target loops of each benchmark,
together with an estimation of the maximum speedup obtained (using Amhdahl’s Law), and
the performance results obtained by our runtime library for the entire application, both
in terms of speedup and as a percentage of the maximum speedup attainable. The last two
columns indicate the percentage of iterations that lead to runtime dependence violations, and
the number of speculative variables. Since all benchmarks but TREE present dependences
among some iterations, the value given by Amhdahl’s law is just an upper bound of the
available parallelism.

The percentage of the speedup effectively exploited depends on a number of factors.
The first one is the occurrence of runtime dependence violations. In general, the more
dependencies there are, the less speedup there will be. This fact can be observed in the results
for the execution of 2D-Hull with different input sets that lead to a different number of

4.4

106 | THE ATLAS FRAMEWORK

Max. speedup | Maximum % of % of iterations of | # of potentially | Size of

Application P=64 speedup | exploited that present speculative chunks
(Amhdahl) obtained speedup dep. violations | scalarvariables | issued

2D-MEC 43.75 1.37 77.84% 0.009%

FAST 100 44.49 69.52% 0.001% 2 25
TREE 95.17 5.12 32.32% 0% 259 100
2D-Hull, Kuzmin 100 12.92 20.18% 0.0008% 1206 11000
2D-Hull, Square 100 8.47 13.23% 0.0032% 3906 3000
Delaunay 97.60 2.96 11.62% 0.5% 12030060 2
2D-Hull, Disc 100 2.48 3.88% 0.0219% 26 406 1250

Table 4.1: Percentages of parallelism effectively exploited by ATLaS for the benchmarks con-
sidered, together with some benchmarks’ characteristics. 1/0 time consumed by the benchmarks
were not taken into account.

runtime dependencies. The second factor is load imbalance, since not all iterations present
the same amount of workload. As long as the scheduling mechanism implemented in ATLaS
issues chunks of iterations of fixed size (with the best sizes obtained by experimentation),
runtime load imbalance is not being mitigated in any way. The third factor that affects
parallel performance is the efficiency of the ATLaS runtime library itself. The performance
results obtained with the FAST benchmark, show that the library presents a very low runtime
overhead. Finally, the fourth factor is the number of speculative variables. As can be seen,
the more speculative variables there are, the less percentage of exploited speedup there will
be. This is due to the cost of the commit operation, which should be done sequentially for
each variable by the non-speculative thread.

A more detailed analysis of the TLS operations carried out by the library, together with
an execution breakdown for speculative loads and stores, can be found in the following
chapter. Regarding the influence of the number of squashes in performance, please see [97].
The ATLaS framework incorporates tools to measure these and other values.

To find the most recent version of the ATLaS framework, and the user manual [9] we
recommend visiting http://atlas.infor.uva.es/.

Conclusions

In this chapter we have described ATLaS, a framework which allow to automatize the process
of parallelizing applications speculatively. Commonly processes of parallelization are hard
task, and usually are error-prone. So, we have introduced why might be useful to develop a
tool like the developed.

Afterwards we have explained some brief notions about the compiler plugin which uses
ATLaS.

The work described in this chapter has generated following publications:

http://atlas.infor.uva.es/

4.4 CONCLUSIONS | 107

Sergio Aldea, Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘A
New GCC Plugin-Based Compiler Pass to Add Support for Thread-Level Speculation
into OpenMP”. English. In: Euro-Par 2014 Parallel Processing. Ed. by Fernando Silva,
Inés Dutra and Vitor Santos Costa. Vol. 8632. Lecture Notes in Computer Science.
Springer International Publishing, 2014, pp. 234-245. 1sN: 978-3-319-09872-2. por:
10.1007/978-3-319-09873-9_20. URL: http://dx.doi.org/10.1007/978-
3-319-09873-9_20

Sergio Aldea, Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘Una
extension para OpenMP que soporta paralelizacion especulativa’ In: Proceedings of the
XXV Jornadas de Paralelismo. Valladolid, Spain, Sept. 2014. 1sBn: 978-84-697-0329-3

S. Aldea, A. Estebanez, D.R. Llanos and A. Gonzalez-Escribano. ‘An OpenMP Ex-
tension that Supports Thread-Level Speculation’ In: IEEE Transactions on Parallel
and Distributed Systems, vol. PP, no. 99, 2015, pp. 1-14. 2015. 1ssn: 1045-9219. por:
10.1109/TPDS.2015.2393870

http://dx.doi.org/10.1007/978-3-319-09873-9_20
http://dx.doi.org/10.1007/978-3-319-09873-9_20
http://dx.doi.org/10.1007/978-3-319-09873-9_20
http://dx.doi.org/10.1109/TPDS.2015.2393870

108 | THE ATLAS FRAMEWORK

CHAPTER 5

Scheduling strategies for
Thread-Level Speculation

CHEDULING is one of the factors that most directly affect performance in Thread-Level

Speculation (TLS). Since loops may present dependences that cannot be predicted before
runtime, finding a good chunk size is not a simple task. The most used mechanism, Fixed-Size
Chunking (FSC), requires many “dry-runs” to set the optimal chunk size. If the loop does
not present dependence violations at runtime, scheduling only needs to deal with load
balancing issues. For loops where the general pattern of dependences is known, as is the case
with Randomized Incremental Algorithms, specialized mechanisms have been designed to
maximize performance. To make TLS available to a wider community, a general scheduling
algorithm that does not require a-priori knowledge of the expected pattern of dependences
nor previous dry-runs to adjust any parameter is needed. In this chapter, we present an
algorithm that estimates at runtime the best size of the next chunk to be scheduled. The result
is a method with a solid mathematical basis that, using information of the execution of the
previous chunks, decides the size of the next chunk to be scheduled. This algorithm simply
offers two parameters that need to be adjusted: how optimistically and how pessimistically we
increase or decrease the chunk-size, depending on the runtime information of the previous
chunks executed so far. Our experimental results show that the use of the proposed scheduling
function compares or even increases the performance that can be obtained by FSC, greatly
reducing the need of a costly and careful search for the best fixed chunk size.

-109 -

5.1

52

110 | SCHEDULING STRATEGIES FORTLS

Problem description

Thead-Level Speculation (TLS) [49, 190, 218] is the most promising technique for automatic
extraction of parallelism of irregular loops. With TLS, loops that cannot be analyzed at
compile time are optimistically executed in parallel. A hardware or software mechanism
ensures that all threads access to shared data according to sequential semantics. A dependence
violation appears when one thread incorrectly consumes a datum that has not been generated
by a predecessor yet. In the presence of such a violation, earlier software-only speculative
solutions (see, e.g. [108, 218]) interrupt the speculative execution and re-execute the loop
serially. Subsequent approaches [48, 61, 227] squash only the offending thread and its
successors, re-starting them with the correct data values. More sophisticate solutions [97, 167,
239] squash only the offending thread and subsequent threads that have actually consumed
any value from it.

It is easy to see that frequent squashes adversely affect the performance of a TLS frame-
work. One way to reduce the cost of a squash is to assign smaller subsets (called chunks) of
iterations to each thread, reducing both the amount of work being discarded in the case of
a squash, and the probability of occurrence of a dependence violation. However, smaller
chunks also imply more frequent commit operations and a higher scheduling overhead.
Therefore, a correct choice of the chunk sizes is critical for speculation performance. Most
scheduling methods proposed so far in the literature deal with independent blocks of iter-
ations, and were not designed to take into account the cost of re-executing threads in the
context of a speculative execution.

The rest of the chapter is organized as follows. Section 5.2 reviews some of the classical
scheduling alternatives developed for executing loops in parallel. In this way, Section 5.3
completes the previous information focusing on scheduling techniques concerning TLS.
Section 5.4 introduces the main aspects of our proposal. Section 5.5 describes the function
from a mathematical point of view. Section 5.6 explores two different uses for our Moody
Scheduling. Section 5.7 gives some experimental results, comparing the new algorithm with
FSC, while Section 5.8 concludes this chapter.

Classical scheduling alternatives for parallel loops

As described in [174], the problem of scheduling iterations of irregular loops in order to
assign them to different processors has been extensively studied in the literature. All existing
proposals assume that there are no dependences among iterations, and therefore all the
iterations can be executed in parallel in any order. We review in this section some of the
solutions that have been proposed in the last years to this problem.

We will describe first the three most well-known techniques to distribute iterations
among processors. Let [N be the total number of iterations, and P the total number of threads

5.2 CLASSICAL SCHEDULING ALTERNATIVES | 111

(equal to the number of processors in the system). The first one, called static scheduling, divides
the iteration space statically into N/ P chunks of equal size. This system does not allow to
balance dynamically the workload during the execution of the loops. Hence, the processors
may finish at very different times, leading to a poor load balance. On the other hand, self
scheduling [237] and dynamic scheduling change the amount of iterations to execute given to
processors from one place to others. These approaches minimize load imbalance, but at the
cost of an increase of the scheduling overhead. The main difference between self and dynamic
scheduling is that self scheduling arranges iterations before being executed whereas dynamic
scheduling manage iterations at runtime frequently using parameters of current execution.

5.2.1 Self scheduling

Within self scheduling different alternatives have been proposed. A brief description follows.

Fixed-size chunking (FSC). In this approach, proposed by Kruskal and Weiss [155], the
iteration space is statically divided into chunks of fixed size. Each free thread executes the
following chunk. This solution reduces synchronization overhead in comparison with self
scheduling, with a better load balancing than the static scheduling. The efficiency of this
scheme depends on the choice of an appropriate value for the chunk size, K, a difficult task
for both programmers and compilers.

Guided self-scheduling (GSS) This technique, proposed by Polychronopoulos and Kuck
[204], addresses the problem of uneven start times for each processor. Instead of using a
fixed chunk size, they propose decreasing chunk sizes, calculated as a decreasing function
of the current iteration number 7 being executed. As execution proceeds, smaller chunks
improve the balance of the workload toward the end of the loop.

In order to avoid having many small chunks by the end of the loop, an additional function
GSS(K) is proposed to bound the chunk size from below by K, specified either by the
compiler or the programmer.

Factoring. This mechanism, proposed by Hummel et al. [119], is similar in concept to
guided self-scheduling, but the allocation of iterations to processors proceeds in phases. In
each phase, a part of the remaining iterations is divided in batches of P equal-size chunks.

Factoring can be viewed as a generalization of GSS and Fixed-Size Chunking: GSS is
factoring where each batch contains a single chunk, while Fixed-Size Chunking is factoring
with a single batch.

Trapezoidal scheduling (TSS). This technique, proposed by Tzen and Ni [249], uses
chunks that decrease in size linearly. This approach is simpler to implement than GSS and
specially GSS(K), thus reducing scheduling overhead. Moreover, according to their authors,
a big value of K in GSS(K) leads to a high unbalance, while small values lead to too much
scheduling overhead. Consequently, an optimum value of K for GSS is difficult to obtain,
particularly in unbalanced loops. By decreasing the chunk size linearly, TSS reduces the
number of chunks, and hence the overhead, and simplifies the calculation of the next chunk
size, allowing its computation with atomic Fetch-&s-Increment operations.

53

112 | SCHEDULING STRATEGIES FORTLS

Wang et al.’s solution. More recently, Wang et al. [254] developed a self-scheduling
method able to support hardware faults on shared memory systems.

The total number of iterations being scheduled is, at least, NV for all scheduling alternatives
described. Only Self Scheduling always leads to exact correspondence. Consequently, the
scheduler should always check whether the upper limit will be exceeded, and order the
execution of only the remaining iterations.

5.2.2 Dynamic scheduling

Finally, dynamic proposals determine the optimum chunk size at runtime, based on the total
available parallelism, the optimal grain size and the statistical variance of execution times for
individual tasks. Let us reference some of them in order to put into perspective our proposal
framed in this group.

The Tapering algorithm. Lucco [175] proposed one of the first approaches which
followed a dynamic scheduling of iterations. He was centred on the improvement of GSS
methods taking into account some parameters extracted at execution time.

Affinity scheduling. Markatos and LeBlanc [178] proposed the affinity scheduling in
which iterations were assigned mainly taking into account processor affinity. Iterations
were divided into the available processors up to load imbalance occurred, when idle pro-
cessors ‘stole’ some iterations of others. Later, Jin et al. [137] improved this algorithm by
allowing to change the number of iterations to execute in each chunk. This was one of the
first approaches of pure dynamic scheduling. Thus, authors used the number of iterations
executed so far in order to increase, or decrease sizes of the following chunks. In the initial
phase of their scheduling policy, iterations were divided constantly throughout the available
processors. Afterwards, during execution, some of the remaining iterations of each processor
are downloaded to a queue allowing other processors to execute them when finishing their
work. The number of iterations downloaded changed according to the workload of the
processor.

Chen and Guo’ solution. Recently, Chen and Guo [42] proposed an enhancement of
the static scheduling of OpenMP (based on FSC) which changed static chunk sizes in order
to better exploit load balance of loops. Thus, they adapted FSC to a dynamic approach.

Scheduling regarding energy. Scheduling has not only been studied in order to im-
prove performances, but also regarding energy costs. Hence Dong et al. [71] adapted schedul-
ing algorithms so as to save some energy.

Scheduling iterations under TLS

The scheduling method used with speculative parallelization is different from classic schedul-
ing methods, e.g. [110, 155, 249]. Under TLS, the execution of an iteration or chunk of
iterations can be discarded, so the scheduling method should be able to re-assign the squashed

5.3 SCHEDULING ITERATIONS UNDER TLS | 113

iteration to the same or a different thread. The loop structure should be changed to allow re-
execution of iterations. Thus, the main concern of scheduling in TLS is avoiding dependence
violations.

Some research done regarding scheduling of TLS solutions has just address thread
scheduling, e.g. [73, 96, 255], or instruction scheduling, e.g. [268], more than sizes of chunks
to be executed. However, since the size of the chunk assigned to each processor directly
affects performance in TLS, numerous algorithms have been proposed so as to give a solution
to this problem.

The simplest and, according to [192], the most used one is the FSC [155] described
previously. Nevertheless, finding the right constant needs several dry-runs on each particular
input set for each parallelized loop. When no dependence violations arise at runtime, this
technique is perfectly adequate. The only remaining concern is to achieve a good load balance
when the last iterations are being scheduled. Some examples of mechanisms that uses this
technique can be found in [208] and [129].

Due to the complexity of TLS approaches, most of the TLS papers developed so far are
not focused on the scheduling of iterations, and therefore, details of the policy used are
brief, e.g. [90], or even unavailable. Thus, we suppose that probably those works used FSC or
similar approaches, many of them giving chunks of a single iteration. Following lines contain
a brief description of the TLS papers in which some information about the way iterations
were scheduled was available or could be deducted. For example, Raman et al. [215] gave
some notes about a load balancing algorithm which dynamically assigned iterations, but it is
not detailed, nor described. Gupta and Nim [108] affirmed that its solution could be easily
enhanced with a dynamic scheduler of iterations, but again it is the only information shown.

There are solutions based on compile-time dependence analysis [73, 196, 268]. In these
approaches, scheduling decisions are taken by reviewing the possible dependence pattern
that can arise, so an in-depth analysis of the loop is needed.

Other approaches rely on the expected dependence pattern of the loop to be parallelized. In
particular, for Randomized Incremental Algorithms, where dependences tend to accumulate
in the first iterations of the loop, two methods have been shown to improve performance. The
first one, called Meseta [173], divides the execution in three stages. In the first one, chunks of
increasing sizes are scheduled, aiming to compensate for possible dependence violations,
until a lower bound of the probability of finding a dependence is reached. From then on, a
second stage applies FSC to execute most of the remaining iterations. A third stage gradually
decreases the chunk size, aiming to achieve a better load balancing.

The second mechanism is called Just-In-Time (JIT) Scheduling [172]. This method also
focuses on randomized incremental algorithms, where dependences are more likely to appear
during the execution of the first chunks. JIT Scheduling defines different logarithmic-based
functions that issue chunks of increasing size, and relies on runtime information to modulate
these functions according to the number of dependence violations that effectively appear.

Kulkarni et al. [158, 162] also discussed the importance of scheduling strategies in
TLS. These authors defined a schedule through three steps, i.e., three design choices that

54

114 | SCHEDULING STRATEGIES FORTLS

specify the behavior of a schedule, namely clustering, labeling and ordering. They tested several
strategies for each defined module, using their Galois framework. Their results show that
each application analyzed was closely linked to a different scheduling strategy.

Some approaches [214, 251] used Decoupled Software Pipelining to enhance scheduling
of iterations. This technique, instead of executing full iterations by the same thread, is based
on dividing each iteration into smaller parts and assigning them to the available threads.
Thus, threads, ordered forming a pipeline, executed parts of all iterations.

Feng et al. [92] in their approach centred on adapt I/O operations to TLS approaches,
used the GSS algorithm described in the previous section. Tian et al. [241], in their Copy-or-
Discard approach, addressed scheduling by unrolling loops to reduce dependences. Oancea
et al. [190] tried to schedule iterations whose instructions had dependences among them to
the same processor, i.e., avoiding the sequential order. To did so, they needed to perform a
dependences analysis before parallel executions.

Both [84] and [134] proposals are the most similar scheduling techniques to the developed
in this chapter called Moody [83]. Specifically, they increased or decreased the number of
iterations executed regarding the runtime parameters that reflected dependence violations
produced. However, they were not based on a mathematical basis like ours, and therefore
their approaches are different.

In summary, we can conclude that proposed solutions so far either depend on the expected
dependency pattern of the loop to be speculatively executed, or require a big number of
training experiments to be tuned, as in the case of FSC. In this chapter we present a new
mechanism that issues chunks of different sizes, by taking into account the actual occurrence
of dependence violations, without using any prior knowledge about their distribution.

Moody Scheduling: Design guidelines

Our main purpose is to design a scheduling function that is able to predict the best size
for the following chunk to be issued at runtime, without the need of a knowledge of the
underlying problem. In order to decide the size of the next chunk to be scheduled, we will
use the number of times that the last h chunks have been squashed and re-executed due to
dependence violations. As an example, Fig 5.1(a) shows, for each scheduled chunk (z-axis),
the number of times it has been executed so far (y-axis).

The design guidelines of the Moody Scheduling strategy were developed by Diego Llanos,
Belen Palop and David Orden between 2009 and 2014. We will first present these guidelines,
to later discuss the implementation issues and the experimental evaluation we carried out.

Given the number of executions of the last i chunks (regardless whether they were
already committed or not), we will consider two parameters. The first one is the average
number of executions of the last h chunks, which we call meanH and whose value is, at least,
1. The second one is the tendency of these re-executions. This value, which we call d, lies in the

5.4 MOODY SCHEDULING: DESIGN GUIDELINES | 115

Number of executions
Number of executions

. H H . H I
. | h \ . i h Vo h

Chunk number Chunk number
(@) (b)

Figure 5.1: (a) A possible execution profile for a given loop, and (b) an example of the use of
linear regression to measure the tendency of the last h chunks. Recall that the y-axis does not
represent the chunk size, but the number of re-executions for each chunk.

interval (—1, 1) and determines if the number of executions is decreasing (d < 0), increasing
(d > 0), or remaining unchanged (d = 0). As we will see, d depends on the angle § between
the linear regression line for the last i chunks and the horizontal axis (see Fig. 5.1(b)).

The size of the following chunk to be scheduled will depend on these two parameters.
We will first present an informal description of the idea. The following section shows the
mathematical background and the implementation details.

1. If the tendency of re-executions is decreasing (d close to -1):

(a) If meanH is very low (close to 1), we will (optimistically) set the chunk size to
the maximum size suitable for this problem. We will call this maximum value
maxChunkSize.

(b) If meanH is between the minimum value (1) and an acceptable value (that we call
accMeanH), we will (optimistically) increase the chunk size.

(c) If meanH is between accMeanH and an upper limit (that we call maxMeanH),
we will keep the same chunk size, with the aim that its execution will help to
further reduce meanH.

(d) If meanH is higher than maxMeanH, we set the size of the following chunk to 1.
2. If the tendency of re-executions is stable (d close to 0):

(a) If meanH is very low (close to 1), then we will (optimistically) issue a larger chunk
size.

(b) If meanH is acceptable (close to accMeanH), then we will keep the same chunk
size.

55

116 | SCHEDULING STRATEGIES FOR TLS

meanH ~ accMeanH | meanH ~ maxMeanH | meanH > maxMeanH

Table 5.1: Changes on the following chunk sized according to d and meanH parameters.

(c) If meanH is between accMeanH and maxMeanH, then we will (pessimistically)
decrease the chunk size.

(d) If meanH is higher than maxMeanH, we set the size of the following chunk to 1.
3. If the tendency of re-executions is increasing (d close to 1):

(a) If meanH is very low (close to 1), then we propose to keep the same chunk size,
waiting for the next data to confirm if meanH really gets larger.

(b) If meanH is acceptable (close to accMeanH), then we decrease the chunk size,
intending to reduce the number of executions.

(¢) If meanH is close to (or higher than) maxMeanH, then we propose a chunk of
size 1 intending to minimize the number of re-executions.

The last question is what size we should use to issue the first chunk, where there is no
past history to rely on. As we will see in Sect. 5.7, setting this inital value to 1 leads to a good
performance in all the applications considered.

Table 5.1 summarizes the behavior of our scheduling mechanism. Using this approach,
given the current lastChunkSize and a pair of values (d, meanH) our function will use the
guidelines described above to propose a value for nextChunkSize. The following section
discusses the implementation details.

Moody Scheduling function definition

After the informal description presented above, the following step is to define a function that
determines the value for nextChunkSize using the current value of lastChunkSize, together
with d and meanH. In order to obtain the value of §, we compute the regression line defined
by the last h points in our execution window (see Fig. 5.1(b)).

The main problem with the intuitive behavior described above is that its straightforward
implementation (with nested if...then constructs) leads to a discontinuous function. This
is not a desirable situation, since the behavior of the scheduling function would drastically
change for very similar situations.

5.5 MOODY SCHEDULING FUNCTION DEFINITION | 117

nextChunkSize

1 aceMean T

®) (©

Figure 5.2: (a) 3D representation of the Moody Scheduling function, that returns a value for
nextChunkSize (nCS) provided the current lastChunkSize and depending on d and meanH; (b) 2D
representation that connects our function with the intuitive behavior described in Sect. 5.4; (c)
Intersection of the graphic of nextChunkSize(d, meanH) with d = 0.

Instead, we define a bidimensional function that, for a given value of meanH and d,
returns the size of the next chunk to be scheduled. Figure 5.2(a) shows a 3D representation
of the Moody Scheduling function proposed. Figure 5.2(b) shows its projection onto a
horizontal plane, using the same grey scale as in Table 5.1.

To properly define this scheduling function, several parameters should be set. The value
of d is calculated by measuring the angle 0 of the tendency with respect to the horizontal axis.
This angle lies in (—7 /2, 7/2). Our growth tendency d € (—1, 1) will be given by d = %/2.

The following parameter to be defined is accMeanH, that is, the highest value of meanH
considered to be acceptable. We initially set accMeanH = 2, considering that, on average,

we will accept that chunks have to be reexecuted at most once.

There are two remaining parameters: maxChunkSize and maxMeanH, whose values
depend on the slopes of the graphic of the bidimensional scheduling function as follows. If
we fix d = 0 in the scheduling function, we obtain the plot depicted in Fig. 5.2(c). In this case,
we can define two angles, o and [(see figure). The angle « represents how optimistically
the chunk size is going to be increased. The higher the value for , the most optimistic the
scheduling function will be. Analogously, 3 represents how pessimistically the chunk size is
going to be decreased. If we fix the value for these two angles, the value of maxChunkSize is
determined by the intersection between the segment from P with angle ¢, and the vertical
line defined by meanH = 1. Analogously, the value for maxMeanH is determined by the
intersection between the segment from P with angle 3, and the horizontal line defined by
nextChunkSize = 1. In the case that lastChunkSize = 1, § will be 0. On the other hand,
« # 0 as long as accMeanH will never be set to 1.

The nine particular points defined by meanH € {1, accMeanH, maxMeanH} and d €
{-1,0,1} are defined by the values described above. Given that the call to the func-
tion nextChunkSize(d, meanH) will return maxChunkSize for the three points (—1,1),
(—1,accMeanH), and (0, 1), the function will also return maxChunkSize to all points inside

5.6

118 | SCHEDULING STRATEGIES FORTLS

N non-spec most-sped
(0] thread thread
Chunknumbers ...4 5 6 7 8 9 10 11 12 13...
Chunk sizes ‘ 25 ‘ 28 ‘ 33 ‘40 ‘ 54 ‘ 69 ‘ 89 ‘ ‘ ‘ ‘
Execution counters ‘ 1 ‘ 1 ‘ 1 ‘ 2 ‘ 1 ‘ 1 ‘ 1 ‘ ‘ ‘ ‘

Last T+1 threads

. on-speq) most-spey
(i) thread thread
Chunknumbers ...4 5 6 7 8 9 1 12 13...
AN
Chunk sizes ‘ 25 ‘ 28 ‘ 33 ‘ 40 ‘ 54 ‘ 69 ‘){‘M‘ ‘ ‘
executoncounios | 1] 1|2 [0] |]
Ton-spec) most-spey
thread thread
Chunknumbers ...4 5 6 7 8 9 10 11 12 13... (iii) "thread | e
Chunk sizes ‘25‘25‘33‘40‘5“‘69‘59‘ ‘ ‘ ‘ Chunknumbers ...4 5 6 7 8 9 10 11 12 13...
Execution counters ‘ 1 ‘ 1 ‘ 1 ‘ 2 ‘ 1 ‘ 1 ‘ 1 ‘ ‘ ‘ ‘ Chunk sizes ‘25‘23‘33 ‘40‘54‘69‘51 ‘109‘ ‘ ‘
pLast T threads 4 Execution counters ‘1‘1‘1‘2‘w‘w‘2‘2‘ ‘ ‘

(a) (b)

Figure 5.3: (a) Dynamic Moody Scheduling. The size for the following chunk to be executed
(#10) is calculated once (89 iterations). Its size will be preserved regardless of the number of
re-executions of this chunk. (b) Adaptive Moody Scheduling. (i) Size of chunk #10 is calculated
with the Moody Scheduling function (89 iterations). (ii) Chunk #9 issues a squash operation.
(iii) Squashed threads recalculate in program order the new sizes of the chunks to be executed,
using the new values of the execution counters.

this triangle. Analogously, for all points inside the triangle with vertices (1, accMeanH),
(1, maxMeanH), and (0, maxMeanH), the function will return 1. Notice that points on
the diagonals (1, 1) to (0,accMeanH), and from there to (—1, maxMeanH) will return
lastChunkSize. These three facts provide a natural triangulation for the space in Figure 5.2(b).

Dynamic and Adaptive Implementations

If no dependences arose during the parallel execution, the size of the following chunk would
be calculated only once, that is, just before issuing its execution. Otherwise, if the execution
of the chunk fails, it gives the runtime system an opportunity to adjust its calculation by
calling the scheduling function with updated runtime information. As it happens in [172],
this leads to two different ways to use the scheduling function:

« To calculate the size of the following chunk only the first time this particular chunk
will be issued. Subsequent re-executions will keep the same size. See Fig.5.3(a).

+ To re-calculate the size of the following chunk each time the chunk is scheduled. This
solution is called adaptive scheduling in [172]. See Fig.5.3(b).

5.7

5.7 EXPERIMENTAL EVALUATION | 119

Loop time Iterations % of FSC chunk

Application as % of per dependence | size used
parallelize | total time call violations (iterations)

TREE Off-axis parab. collision accel_10 4096

2D-Hull Kuzmin, 10M points Main loop 99 9999997 0.0008 11000
2D-Hull Square, 10M points Main loop 99 9999997 0.0032 3000
2D-Hull Disc, 10M points Main loop 99 9999997 0.021 1250
2D-MEC Disc, 10M points Inner loop 99 Changes dynamically 0.009 1800
Delaunay 100K points Main loop 99 95000 0.5 2

Table 5.2: Characteristics of the algorithms and input sizes used.

The advantage of adaptive over dynamic scheduling is that the first calculation of the
chunk size may rely on incomplete information, since some or all of the previous chunks are
still being executed, and therefore they may suffer additional squashes. Adaptive scheduling
will always reconsider the situation using updated data. Naturally, this comes at the cost of
additional calls to the scheduling function.

Experimental evaluation

We have used the ATLaS framework (described in Chapter 4) to execute in parallel four
different benchmarks (described in Appendix A), specifically, the TREE benchmark; the
2-Dimensional Convex Hull (2D-Hull), with their corresponding three different input sets
namely Disc, Square, and Kuzmin; the 2-Dimensional Minimum Enclosing Circle 2D-MEC);
and the Delaunay triangulation using the input set of 100K points. Table 5.2 summarizes the
characteristics of each application considered.

5.7.1 Environment setup

Experiments were carried out on a 64-processor server, equipped with four 16-core AMD
Opteron 6376 processors at 2.3GHz and 256GB of RAM, which runs Ubuntu 12.04.3 LTS. All
threads had exclusive access to the processors during the execution of the experiments, and
we used wall-clock times in our measurements. Applications were compiled with gcc. Times
shown below represent the time spent in the execution of the main loop of the application.
The time needed to read the input set and the time needed to output the results have not
been taken into account.

120 | SCHEDULING STRATEGIES FOR TLS

5.7.2 Experimental results

Figure 5.4 shows the relative performance of the mentioned applications when executed
with the ATLaS speculative parallelization framework [5] and three different scheduling
mechanisms: Adaptive Moody Scheduling, Dynamic Moody Scheduling and Fixed-Size
Chunking (FSC).

The plots show the performance obtained when an optimum chunk size is used for FSC
(a choice that required more than 20 experiments per application) and for Moody Scheduling,
whose choice of parameters required less than five experiments in all cases. In the case
of Moody Scheduling, we have used a value of 2 for accMeanH, 3 = 7, and a value for
h (the size of the window to be considered) equal to twice the number of processors for
all applications. Regarding , we have used values € (55,), depending on whether the
application is known to produce dependence violations at runtime.

Furthermore, Moody Scheduling turns out to be competitive even without any tuning: If
we set to 1 the initial chunk size, its performance reaches 88.3% of the best FSC on geometric
average. Meanwhile, the performance of FSC with chunk size 1 drops almost to zero (except
for Delaunay, when the best chunk size for FSC is 2).

Regarding 2D-Hull (Figs. 5.4(a), 5.4(b), and 5.4(c)), the results for the Disc and Square
input sets show that our scheduling method leads to a better performance than FSC. For the
Disc input set, the highest speedup (2.17 x) is achieved with 32 processors and the Dynamic
version. For the Square input set, the biggest speedup (6.81 x) is achieved with the Dynamic
version and 40 processors. Finally, the performance figures when processing the Kuzmin
input set are similar for all the scheduling alternatives. The best performance (11.11x) is
achieved with 56 processors and the Adaptive version. The two remaining applications
lead to similar performance results with all the scheduling mechanisms considered. The 2D
Smallest Enclosing Circle (Fig. 5.4(d)) achieved a speedup of 2.18 x with 24 processors and
the Dynamic version. The Delaunay triangulation (Fig. 5.4(e)) achieved a speedup of 2.58 x
using the Adaptive version. Finally, Fig. 5.4(f) shows the speedup of TREE. This benchmark
gained with the use of our scheduling method: With 40 processors, FSC approach achieved
its speedup peak, while the Adaptive version continued improving its performance even
with the maximum of available processors. It is interesting to note that, for TREE, both the
Dynamic and Adaptive mechanisms are equivalent: As long as no squashes are issued, the
size for each new chunk is calculated only once. The best performance in this benchmark
(7.96 %) is obtained with the Adaptive version and 64 processors.

Concerning the relative performance of FSC and Moody Scheduling, both strategies
lead to similar performance figures for all applications, with the exception of the TREE
benchmark, where Moody Scheduling is clearly better. The main difference between them is
that the choice of the optimum block size in FSC required a prior, extensive testing (more
than 20 runs per benchmark), while the Moody Scheduling self-tuning mechanism leads to
competitive results right from the beginning. Moreover, the results obtained for the TREE
application show that, contrary to intuition, our self-tuning mechanism leads to better results
than FSC even without dependence violations, despite the higher computing cost added by

(a) 2D-Hull, Disc input set

4
ADAMS -
DYNMS —=—
FSC .
3
°
3 B WSS S
2 X
@
1
o
0900 0. g g P o . -
1 9 17 25 33 41 49 57
Number of processors
(c) 2D-Hull, Kuzmin input set
12
ADA MS
n DYNMS —=—
10 ~
o L ADAMS FC=1 e
DYN MS FC-1
8 FSC=1
s 7
3 s
& 5
4
3
2 >
1L
[
1 9 17 25 33 41 49 57
Number of processors
() Delaunay Triangulation, 100K points
4
ADA MS ADAMS FC=1
DYNMS —=— DYN MS FC=1
FSC s FSC=1 @
3
o
S
® 2
2
&
1
0
1 9 17 25 33 41 49 57

Number of processors

Speedup

Speedup

Speedup

5.7 EXPERIMENTAL EVALUATION | 121

(b) 2D-Hull, Square input set

~

M ow Ao oo

FSC -
ADA MS FC=1 ---#-
DYN MS FC=1

ADA MS
DYNMS —m=—

FSC=1 ---®

9 17 25 33 4“1 49 57
Number of processors

(d) 2D-MEC

ADA MS ADAMS FC=1 -
DYNMS —m— DYN MS FC=
FSC - FS

1

Number of processors

(1) TREE

ADA MS FC=1 &
DYN MS FC=1
FS

ADA MS
DYNMS —=—
F¢ "

C=1 ---®

Number of processors

Figure 5.4: Performance comparison for 2D-Hull with Disc, Square, and Kuzmin input sets, and
2D-MEC, Delaunay, and TREE benchmarks. Note the extremely poor performance of FSC when
the chunk size is set to 1.

58

122 | SCHEDULING STRATEGIES FOR TLS

the runtime calls to the Moody Scheduling function. Regarding which approach is better,
Dynamic or Adaptive, it seems to depend on the application. Therefore, we will keep both of
them in the ATLaS framework.

Conclusions

This work addresses an important problem for speculative parallelism: How to compute
the size of the following chunk of iterations to be scheduled. We have found that most of
the existent solutions are highly dependent on the particular application to parallelize, and
they require many executions of the problem to obtain the scheduling parameters. Our
new method, Moody Scheduling, automatically calculates an adequate size for the next
chunk of iterations to be scheduled, and can be tuned further by making slight changes to its
parameters, namely «, (3, h, and accMeanH. Our scheduling method can be used as a general
approach that avoids most of the ‘dry-runs’ required to arrive to scheduling parameters in
other methods. Results show that execution times are similar (or better) to those obtained
with a carefully-tuned FSC execution. Moody Scheduling just needs from the user to decide
how optimistic, and pessimistic, the TLS system will be when it schedules the following

The work described in this chapter has not only been developed by the main authors of
this thesis, but also by David Orden and Belen Palop. With their invaluable collaboration our
approach has generated the following publication:

+ Alvaro Estebanez, Diego R. Llanos, David Orden and Belen Palop. ‘Moody Scheduling
for Speculative Parallelization’. English. In: Euro-Par 2015: Parallel Processing. Ed.
by Jesper Larsson Triff, Sascha Hunold and Francesco Versaci. Vol. 9233. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2015, pp. 135-146. 1sBN:
978-3-662-48095-3. por: 10.1007 /978 -3-662-48096-0 _11. URL: http:
//dx.doi.org/10.1007/978-3-662-48096-0_11

http://dx.doi.org/10.1007/978-3-662-48096-0_11
http://dx.doi.org/10.1007/978-3-662-48096-0_11
http://dx.doi.org/10.1007/978-3-662-48096-0_11

CHAPTER 6

ATLaS in the context of emerging
architectures: TLS and
Transactional Memory

RANSACTIONAL Memory (TM) is a technique that aims to mitigate the performance losses

that are inherent to the serialization of accesses in critical sections. Some studies have
shown that the use of TM may lead to performance improvements, despite the existence of
management overheads. However, the relative performance of TM, with respect to classical
critical sections management depends greatly on the actual percentage of times in which the
same data are handled simultaneously by two transactions.

In this chapter, we compare the relative performance of the critical sections provided by
OpenMP with respect to not only two Software Transactional Memory (STM) implementa-
tions, namely TinySTM and GCC-STM, but also a Hardware Transactional Memory device,
i.e., Intel’s Haswell chips. These methods are used to manage concurrent data accesses in
ATLaS, the software-based, Thread-Level Speculation (TLS) system described throughout
this Ph.D. thesis. The complexity of this application makes it extremely difficult to predict
whether two transactions may conflict or not, and how many times the transactions will be
executed. Our experimental results show that TM solutions produce similar performances
with respect to OpenMP critical sections.

-123-

6.1

6.2

124 | TLS AND TRANSACTIONAL MEMORY

Problem description

Current multicore processors offer an opportunity to speed up the computation of sequential
applications. To exploit these parallel technologies, the software needs to be parallelized,
that is, transformed in order to correctly distribute the work among different threads. This
process usually involves synchronizing accesses to certain memory areas that are shared by
the concurrent threads, with the aim of avoiding potential data races. This synchronization
is usually performed by using critical sections which protect shared memory structures.

To simplify this process, parallel programming models such as OpenMP [40] offer com-
piler directives to parallelize the code as well as to synchronize accesses and define and
manage critical sections. Despite their simplicity, these solutions present a problem: Critical
sections introduce performance losses, not only because they serialize the code, but also
because of the cost associated to locking management.

Transactional Memory (TM) [232] arises as a possible solution to the first problem,
allowing programmers to transform critical sections in transactions that are concurrently
and atomically executed. This is based on the optimistic assumption that the code inside a
transaction will access to different locations of the shared memory being protected. In these
cases, accesses are carried out concurrently. If this is not the case, conflictive transactions
should be rolled back and executed one at a time.

This chapter compares the OpenMP critical sections approach with a Software TM (STM)
library as well as a Hardware TM (HTM) architecture. To do so, we use them to implement
the critical sections which handle the runtime library of the ATLaS framework detailed in the
Chapter 3. Our goal is to study the relative performance of both approaches when managing
concurrent accesses in such a complex piece of code.

The rest of this chapter is structured as follows: Section 6.2 describes the fundamentals
of TM, describing the most important software- and hardware-based solutions, and also lists
some of the existent approaches which connect TM with TLS. Section 6.3 compares both
TM and TLS approaches. Section 6.4 details how critical data structures are protected in the
ATLaS runtime library to ensure correctness, and enumerates the critical sections used in it.
Section 6.6 describes how this protection can be ensured using OpenMP and TM, and details
the time spent inside critical sections for each approach in the TLS library. Section 6.7 shows
the performance results obtained in a system with 8 cores and HTM extensions. Finally,
Section 6.8 concludes this chapter.

Background

Since TLS has been described well enough throughout this Ph.D. thesis, we are just going to
describe TM in this section.

6.2 BACKGROUND | 125

6.2.1 Transactional Memory in a Nutshell

Transactional Memory (TM) [114, 115, 163] is another method of optimistic execution.
The main difference between TLS and TM is that TM does not have to preserve any order
among execution threads whereas TLS does (in the following subsection these differences
are explained deeply). TM main concepts come from database systems where transactions
handles all the operations guaranteeing that concurrent accesses follow ACID properties [106].
According to memory semantics, TM does not have to keep durability, however, it partly’
meets atomicity, concurrency, and isolation standards to coordinate concurrent threads of
shared memory systems.

When a conflict appears among certain transactions, TM systems are responsible to
abort all but one of the transactions. Then, the discarded transactions are restarted while the
other is committed, avoiding inconsistent states. As occurs with TLS, TM approaches can be
also implemented using either hardware or software.

In order to improve its procedure, let us regard the example seen at figure 3.2 with a TM
perspective. Let us assume that the code depicted is enclosed in a transaction. Remark that
now non-speculative or most-speculative labels have no sense since TM approaches imply
no order among threads. At the beginning Thread 1 started its transaction at ¢, finishing
it at t3 with no other thread using shared resources. Afterwards, Thread 3 did the same
operation with similar results. Then, the first conflict appeared at tg when Thread 3 started
its transaction using the shared resource SV. Before Thread 3 finished, Thread 4 had started
its own transaction working with SV at £7. A TM system should deal with such a situation
discarding the results of Thread 3, and when Thread 4 release the resources, Thread 3 should
be retried. As can be seen, a TM execution would not produce the same results of TLS. While
a TLS system would have discarded results of Thread 4, a TM one would have discarded
results of Thread 3.

6.2.2 Briefreview of software TM libraries

STM simulates transactions using software libraries. As described in [114] the main purpose
of these libraries is to provide separate per-thread views of the heap as transactions execute,
and a mechanism for detecting and resolving conflicts between transactions.

Works such as [261] have shown that STM can outperform OpenMP critical sections,
despite the relatively high overheads of STM. However, the relative performance of STM
versus OpenMP critical sections is highly dependent on the running profile of each particular
application. Different patterns of accesses to the same critical section may lead to different
performance figures.

There exist different software TM (STM) proposals, although some of them have a limited
scope of applicability. A brief review of STM libraries follow.

! According to [163] ACI model is just partially applicable to TM because TM models have to interact with codes
outside of transactions, whilst database systems execute every single operation as a transaction.

126 | TLS AND TRANSACTIONAL MEMORY

« IBM XL C/C++ Compiler [121]. Although the compiler is available for different
operating systems, the transactional built-in memory functions are only valid for
Power8 architecture and Blue Gene/Q.

.

Intel C++ STM Compiler [123]. It is not currently possible to be used, because the
project was retired in 2012, and licenses are not longer available.

« GCC-TM C/C++ Compiler [222]. Experimental feature available since version 4.7.
Part of the work done in this branch of GCC belongs to the VELOX project.

« TinySTM [86]. This STM library is compatible with GCC-TM and DTMC (Dresden
TM Compiler) [47] from the VELOX project [88]. This runtime library can also be
used independently of a compiler, gaining control in the parallelization process, but
increasing the required effort.

« SUN TL2 STM [67]. It is available to be used with the STAMP benchmark suite [36],
and it was originally designed by the “Scalable Synchronization” SUN’s project. The
parallelization process is similar to TinySTM’s; in fact, it is possible to replace both
libraries in the STAMP benchmark by simply changing a link in the corresponding
Makefile.

6.2.3 Transactional Synchronization Extensions

The simplest hardware TM (HTM) solutions only require to modify the cache consistency
protocols and complementing the instruction set architecture with a number of new instruc-
tions[114]. These modifications allow to manage speculative states.

Intel provides the Transactional Synchronization Extensions (TSX), an extension to the
x86 instruction set that adds hardware transactional memory support to some of their micro-
processors. TSX extension allows programmers to potentially improve the performance of
lock-protected critical sections by enabling concurrent threads to execute the same critical
section. Intel TSX detects conflicts at L1 cache granularity, hence concurrent threads can
update shared resource locations without leading to transactional aborts as long as these
threads do not update the same L1 cache line. However, the progress of a transaction is
not guaranteed. HTM are based on a “Best-effort” model , which means that a transaction
may always abort. This is why it is necessary that either the source code, or the underlying
library enabling TSX, implements a fallback execution path. The simplest fallback technique
consists in acquiring a lock when the transaction does not succeed, whilst in the transaction
mode the lock is elided. This technique is called “lock elision”. Therefore, TSX-enabled locks
are not fully acquired, but elided: the lock is only read and watched, but not written to.

The Intel TSX feature can be implemented by using different alternatives. On the one
hand, Intel defines two software interfaces: Hardware Lock Elision (HLE), and Restricted
Transactional Memory (RTM). HLE targets legacy hardware, being the code paths for both
transactional and non-transactional execution the same. In transactional mode, the program

6.3 BACKGROUND | 127

will try first to complete the transaction, atomically committing on memory operations if
it successes. If the transaction aborts, all the memory operations would be rolled back in
the buffer, and the program will execute the code path in non-transactional mode, acquiring
the corresponding lock. This operation is completely different in RTM: the code paths are
different for the transactional and non-transactional modes, the so-called fallback path.
Compilers such as Intel and GCC provides HLE and RTM intrinsics to enable Intel TSX.

On the other hand, the OpenMP library shipped with the Intel C++ compiler provide
a useful functionality: Traditional critical sections protected by OpenMP explicit locks?
can be enabled with an Intel TSX code path. Therefore, using these OpenMP explicit locks,
any application can be run in transactional mode, only setting the environment variable
KMP_LOCK_KIND=adaptive.

6.2.4 TLS-TM hybrid approaches

So far, transactions have been combined with TLS in two ways, (1) using transactions to
guarantee sequential semantics of loops, and (2) speculating over large transactions to be ex-
ecuted in parallel. Regarding the first approach, [107] proposed LogSPoTM, a hardware-based
solution that enhanced a TM system called LogTM [185]), to ensure sequential semantics
and give support to TLS. LogSPoTM was mainly based on the integration of timestamps
and arbitration policies to impose an order among threads and preserve semantics. [62]
improved this solution with the help of a hardware value predictor. [60] also used LogSPoTM
in their work. They tried to reduce squashes applying some of the ideas of network theories
to speculation. This work considered that thread data were packets, and assigned higher
priority to those belonging to predecessor threads. This solution helped to reduce both
timeouts and the number of squashes.

Ceze et al. tried to improve the way data dependences are managed in the speculative
context of TLS and TM threads with Bulk [38]. To do so, they used signatures to encode
the needed information related to the variables involved in speculative executions and each
corresponding operations.

Bulk and LogSPoTM are both fully based on hardware, so their operations are driven by
the hardware signals of a specific multiprocessor.

Other approaches are focused on decreasing transactions’ contention with the use of TLS.
STMLite [180] is a software TM mechanism which uses TLS so as to reduce the overheads of
accesses to logs of the variables used in transactions. Some approaches [19, 147, 214, 250]
based their ideas on Multi-threaded Transactions (MTXs) in which threads were speculatively
executed for a single transaction, thus speculating inside each transaction. These works
are mainly based on changes to the cache coherence protocol. Note that [250] is based
on hardware, while SMTX[214], DSMTX[147], and TLSTM[19] are software-based. This
approach was also followed in [206] whose authors also used TLS to improve the performance
of their hardware-based TM architecture.

2omp_set_lock() and omp_unset_lock()

6.3

6.4

128 | TLS AND TRANSACTIONAL MEMORY

Comparison of TM and TLS

Speculative parallelization techniques are runtime-based solutions that aim to solve many
of the problems and limitations of the compile-time parallelization techniques. Speculative
solutions include Transactional Memory (TM) approaches [115, 118, 163], and Thread-Level
Speculation (TLS) [217, 244]. Although both TM and TLS are speculative parallelization
techniques, they have some differences and cannot be directly applied for the same purposes.

TM is suitable in those situations that do not require to maintain the sequential se-
mantics of the operations performed by the involved threads during the parallel execution.
Typical applications are codes that can be divided into independent fragments that can
be executed in any order, such as independent transactions. For this kind of applications,
TM reduces the costs of the required locks to avoid race conditions. To do so, some TM
approaches propose language extensions and new constructs to declare a transactional block
which comprises statements that must be executed atomically. In order to parse these
new constructs, it is necessary to implement or modify an existing compiler. To declare
a transactional block, TM libraries rely on different alternatives, such as new constructs
(e.g. GCC-TM’s __transaction_atomic{}, Intel's __tm_atomic{}, or the more generic
__transaction{}), new compiler directives (such as IBM’s #pragma tm_atomic{}) or
even new OpenMP pragmas, such as #pragma omp transaction{}, defined by OpenTM
[17]. The latter is the closest approach to ATLaS [5] from the syntactic point of view, defining
anew OpenMP clause to handle dependence violations.

It is important to highlight that the goals of TLS and TM are different. While TLS
is intended to automatically parallelize sequential code, TM libraries aim to improve the
performance of already parallelized codes, typically using Pthreads [31]. As long as the use of
TM does not guarantee the order in which threads make their commits, they cannot be used
directly to mimic the behavior of loop-based speculative parallelization whenever sequential
semantics should be preserved.

Critical sections in ATLaS

One of the key advantages of the ATLaS runtime library over previous designs is that ours
is almost free of critical sections. The only critical section needed is the one that manages
the data structure which maintains the assignment of chunks of iterations to each thread.
ATLaS handles the parallel execution of each chunk of iterations through a sliding window
mechanism, which is implemented by a matrix with W columns representing W window
slots. Figure 6.1 depicts a simplified version of the sliding window implementation. The
figure represents a sliding window with four slots, hosting the execution of three parallel
speculative threads.

6.4 CRITICAL SECTIONS IN ATLAS | 129

Non-spec Most-spec Non-spec Most-spec
window slot window slot window slot window slot

T

State | Running Running Running Free | Free Running Running Running
. Thread C |Thread B |Thread A 1 Thread B | Thread A |Thread C
Chunk exec. details | iter; [0,0) | Iter: [10,19] | Iter: [20,29] ! ' iter: [10,19] | Iter: [20,29] iter: [30,39]
Pointer to the version copy |

A Y s
1 1 | ({1

Version copy data structures Version copy data structures

Figure 6.1: Updating the sliding window that handles the parallel, speculative execution. At a
given moment (left), the thread C working in slot 1 is running. When Thread C finishes, it frees
its slot and gets a new one, updating non-spec and most-spec pointers (right).

The thread executing the earliest chunk of iterations (Thread C in our example) is called
non-speculative, since it has no predecessors that may squash it. Conversely, the thread
executing the latest chunk is called the most-speculative thread. As can be seen in Figure 6.1,
two pointers indicate the slots where the non-speculative and most-speculative threads are
being executed. The part of the window being used is always the one from the non-spec
pointer to the right, up to the most-spec pointer.

The only critical section in the ATLaS runtime library is the one that protects this sliding
window. If two or more threads finish at the same time, they could be assigned to the same
Free slot, resulting in an incorrect execution. Therefore, in order to ensure the correct
operation of the ATLaS runtime library, it is necessary to protect the accesses to these shared
structures, including the matrix that implements the sliding window mechanism, and the
variables that point to the non- and most-speculative slots.

Figure 6.1 shows what happens when a non-speculative thread successfully finishes its
execution. Suppose that Thread C, the one executing the non-speculative thread, finishes its
execution and commits its data (the commit operation is not shown in the figure). After this,
it enters the critical section to perform several actions. It marks slot 1 as Free; it advances
the non-speculative pointer to slot 2; after checking that the slot past the most-speculative
one is Free, it assigns it to itself, setting the most-speculative pointer to 4 and changing its
state to Running; and finally, after getting the following chunk of iterations to be executed
(iterations 30 to 39 in our example), it exits the critical section. Note that the implementation
of the sliding window works in a circular way: When Thread B eventually finishes, it will
assign itself the slot that follows the one used by Thread C, in our case the leftmost slot.

6.5

130 | TLS AND TRANSACTIONAL MEMORY

6.4.1 Location

The sliding window is modified in three different locations within the ATLaS runtime library.
Therefore, the same lock is used in three different parts of the code to protect the access to
these data structures. As will be seen, the place from where the access is performed has a
noticeable impact in the performance of the protecting system being used. These places are
the following:

+ (A) Each time a dependence violation is detected. In the case of a write to a specu-
lative variable, the thread in charge should update its version copy, and check whether
a successor has consumed an outdated value of this variable. If this is the case, a
dependence violation has happened, so the offending thread should be restarted in order
to consume an updated version of the variable. This is done in several steps. First, the
thread that has detected the situation should enter the critical section to change the
state of the offending thread, from Running to Squashed, and the most-speculative
pointer should be moved backwards to the last Running thread. After these changes,
the thread exits the critical section and resumes its normal operation. The offending
squashed thread will eventually discover its new state and will enter the critical section
(see below).

- (B) Each time a thread finishes its work, either because the chunk has been suc-
cessfully executed or because the thread discovers that it has been squashed. In both
cases, the thread enters the critical section to change its own state from Running (resp.
Squashed) to Free. After this operation, if the slot following the most-speculative
one is Free, the thread assigns it to itself, and advances the most-speculative pointer
by one. Otherwise, it means that the following slot is occupied either by a Running
thread (this means that the window is full) or by another Squashed thread. In both
cases our thread should exit the critical section and attempt to re-enter again, in order
to give the thread that is using the slot the opportunity to free it (see below).

+ (C) Each time a thread should wait for a free slot. If a thread is not able to get a
free window slot to work, because the following slot is not Free yet, it should get out
and try to gain access again to the critical section to assign itself the following slot and
to advance the most-speculative pointer.

Benchmarks used

To perform the experiments, we used both real-world and synthetic benchmarks. The
real-world applications include the 2-dimensional Minimum Enclosing Circle (2D-MEC),

3Our thread cannot simply wait inside the critical section, because it should get out in order to let the thread
using that slot to get in and change its own state.

6.5 BENCHMARKS USED | 131

the 2-dimensional Convex Hull problem (2D-Hull), the Delaunay Triangulation problem, and
a C implementation of the TREE benchmark. We have also used a synthetic benchmark called
Fast, which presents almost no dependences between iterations, and which was designed
to test the overheads of the ATLaS runtime library. All these benchmarks are detailed in
Appendix A, so here they are just going to be briefly introduced.

The Fast benchmark was designed to test the efficiency of the speculative scheduling
mechanism, with few iterations leading to a dependence violation, although they are enough
to prevent a compiler from parallelizing the loop. This benchmark has very few dependence
violations, so the critical section is primarily accessed to get the following chunk of iterations
to be executed (access of type B in our library).

Unlike the rest of the benchmarks, TREE does not suffer from dependence violations,
but it is still not parallelizable at compile time because the compiler is not able to ensure that
there are no data dependencies. Since it does not present dependence violations, the code
that accesses the critical section is primarily B.

The 2D-MEC benchmark is a tricky code which has only 10 speculative variables that
are frequently accessed. This benchmark calls the speculative loop many times with a very
different number of iterations each time, making threads access the sliding window system
frequently to get the following chunk. As long as it presents some dependence violations, the
critical sections are accessed by codes A, but mostly B and C.

The overheads are even more noticeable for the Delaunay problem, the benchmark with
the highest number of dependence violations (0.5%). Critical sections are accessed quite
frequently, because of the detection of dependence violations (code A), the need to schedule
the execution of many chunks (code B), and some degree of load imbalance which frequently
makes the window to be full, leading to contention (code C). In order to ease these factors,
we set the smallest optimum chunk size (just two iterations), making the need to schedule
the execution of new chunks the main issue, instead of the others. However, the stress on
the exclusive access management is so high that, in fact, the TinySTM library is not able to
properly handle the accesses to the protected sliding window when running this problem
with two or more threads. Hence, we cannot present performance figures for this library in
this case.

A similar issue occurs with the execution of the 2D-Hull problem with different input sets.
We have found that runs of the 2D-Hull problem, with datasets whose execution involves
a larger amount of conflicts and dependence violations (as happen when the Square and
Disc input sets are used), do not finish when using TinySTM, regardless of the number of
parallel threads. TinySTM also fails when using 2 threads and the Kuzmin dataset, producing
different, unexpected outcomes on each execution. This benchmark leads to accesses of the
three types, but as occurs with the others, the most expensive critical section is the B.

because of the detection of dependence violations (code A), the need to schedule the
execution of many chunks (code B), and some degree of load imbalance which frequently
makes the window to be full, leading to contention (code C).

132 | TLS AND TRANSACTIONAL MEMORY

Application # accesses - # accesses - # accesses -

FAST 0.03 7204 99.61 0.36
TREE 0 0.00 31529 99.73 86 0.27
2D-MEC 2236 5.81 28 864 75.02 7375 19.17
2D-Hull, Kuzmin 74 5.20 1091 76.67 258 18.13
2D-Hull, Square 329 5.61 4285 73.01 1255 21.38
2D-Hull, Disc 1557 6.63 14436 61.44 7504 31.94
Delaunay 276 0.06 498 693 99.55 1986 0.40

Table 6.1: Number of accesses to each protected zone (results obtained from the average values
of three executions). Each execution used the 8 threads of a 8-core machine, and was compile
using GCC.

Max. speedup | % of iterations | # of potentially | Size of Critical

Application P=64 that present speculative chunks | Sections
(Amhdahl) dep. violations | scalar variables | issued | accessed

FAST 100 0.001% 2

TREE 95.17 15.84 0% 259

2D-MEC 43.75 1.76 0.009% 10 1800 AB,C
2D-Hull, Kuzmin 100 64 0.0008% 1206 11000 A B,C
2D-Hull, Square 100 64 0.0032% 3906 3000 AB,C
2D-Hull, Disc 100 64 0.0219% 26406 1250 A,B,C
Delaunay 97.60 25.47 0.5% 12030060 2 B

Table 6.2: Percentages of potentially parallelism for the benchmarks and loops considered,
together with some benchmarks’ characteristics.

Table 6.1 shows the number of accesses obtained to each critical section. As can be
seen, generally the zone A (due to the detection of dependence violations) takes few accesses,
achieving a 6.63% of the total accesses in the highest case (2D-Hull, Disc). The zone C
(some degree of load imbalance which frequently makes the window to be full, leading to
contention) requires from some more accesses, needing a 31.94% of the total accesses in the
highest case (2D-Hull, Disc). Finally, the zone B (due to the need to schedule the execution of
many chunks) gets most of the exclusive accesses used in the execution of all applications
tested, achieving a 99.73% of the total accesses in the highest case (TREE). So we can affirm
that the need to schedule the execution of many chunks is the main bottleneck regarding
critical sections (note that Delaunay required almost 500 000 accesses on average).

6.6

6.6 PROTECTING DATA ACCESSES: OPENMP CRITICALVS.TM | 133

Table 6.2 summarizes the characteristics of each benchmark, including the percentage
of execution time consumed by each target loop, an estimation of the maximum speedup
attainable (applying Amhdahl’s Law), the percentage of iterations of the target loop that lead
to runtime dependence violations, the number of speculative variables within the loop, and
the size of the chunk of consecutive iterations speculatively executed. I/O time consumed by
the benchmarks were not taken into account. We also give an indication of which accesses
to the sliding window protected by the critical section are more frequent in the benchmark
(bold letters indicate that the corresponding call is more frequent).

Protecting data accesses: OpenMP critical vs. TM

The original TLS runtime library uses the OpenMP critical directive to guarantee exclusive
access of the threads to the three parts of the code mentioned above. Because the same data
structures are accessed from three different places, the same lock is used to protect them
in all cases. Recall that a block of code marked with an OpenMP critical directive is only
executed by one thread at a time, whilst the rest of the threads that have reached the same
point in the code have to wait. This procedure ensures that the sliding window is always in a
consistent state, thus avoiding multiple threads concurrently updating this structure with
the potential loss of consistency.

It is easy to see that the serialization of operations described above should imply a no-
ticeable overhead in the performance of the speculative runtime library. A possible way to
reduce this performance penalty would be to replace the strict, OpenMP critical construct
with the more optimistic constructs that offer the Transactional Memory paradigm. The
goal of TM is precisely to help in explicit parallel programming by reducing the costs of the
locks required to avoid race conditions in critical sections [19, 39]. While OpenMP critical
constructs only allows one single thread at a time inside the critical section, a transactional-
based implementation allows several threads inside it, permitting their concurrent execution
as long as consistency is not compromised.

However, the optimism of TM and TLS, comes at the cost of some overheads, because of
the extra instrumentation needed to handle the transactions, as well as the cost associated
to the extra runs of particular transactions when a conflict appears. As can be seen, both
OpenMP and TM approaches to protect data integrity have identified overheads. It is
extremely difficult to predict which approach will be better for a particular problem, since it
depends on the application, its running profile, and how often the benchmark accesses the
potentially conflictive shared variables, among other factors.

Regarding the programmability, OpenMP has been designed to simplify, to a great
extent, the process of parallelization, while the direct use of TM approaches involves a
non-trivial instrumentation of the source code, from the definition of the transactional
region to monitoring each access to speculative variables. This effort is mitigated by the

134 | TLS AND TRANSACTIONAL MEMORY

existence of TM solutions that rely on the compiler to replace TM constructs with calls to the
TM library or directly to the subjacent hardware. Some STM approaches propose language
extensions or new constructs to declare transactional code regions that comprises statements
that must be executed atomically. Then, either an ad-hoc compiler, or an existing compiler
modified for this purpose, parses these new constructs, and generates all the instrumentation,
in the same way as compilers process OpenMP constructs.

As we said above, OpenMP allows the user to delimit the critical sections with the
construct omp critical. To declare a transactional region, STM libraries rely on differ-
ent alternatives, such as new constructs (e.g. GCC-TM’s transaction_atomic{} [222],
the Intel’s tm_atomic{} [123], or the more generic transaction{}), new compiler dir-
ectives (such as IBM’s [121] tm_atomic{}), or even new OpenMP pragmas, such as omp
transaction, defined by OpenTM [17]. Unfortunately, Intel STM compiler and OpenTM
are not currently available, while the IBM compiler’s transactional built-in memory functions
are only valid for Power8 architecture and Blue Gene/Q.

In this work, we have used the Intel OpenMP implementation, the Intel HTM extensions,
the GCC OpenMP implementation, the GCC-TM, and the TinySTM libraries [86, 87] to
protect the accesses to the sliding window described previously. These five approaches
simplify the parallelization process with the mentioned constructs and directives. Moreover,
GCC-TM defines a specification for transactional language constructs that other STM librar-
ies can leverage, and hence, changing the underlying STM library is just a process of proper
linking. In fact, TinySTM is compatible with GCC-TM, allowing programmers to use the
same interface and save some programming effort. In addition, it is important to say in order
to understand the experimental results that if the GCC-TM detects a hardware transactional
support on the machine, it will use it instead of executing software transactions. Hence, in
this work, we have used just the hardware approach.

Handling the critical sections with OpenMP is straightforward: The programmer should
simply delimit the region by using the defined omp critical directive. This process is
similar when using the GCC-TM specification. However, to ensure that the transaction is
atomically executed, there may be certain functions inside the transaction that must not be
executed. Since the compiler is not able to detect this issue for the functions called within a
transaction, it is also necessary to annotate their declaration and specify whether they are
safe to be called, with the transaction_safe attribute.

Table 6.3 details the time used by critical sections using GCC HTM and GCC omp critical.
A similar comparison is done in table 6.4 where Intel HTM and ICC omp critical are exposed.
Similar results with the rest of approaches will be found at tables 6.5, 6.6, 6.7, and 6.8.

Furthermore tables 6.9 and 6.10 show the average time in seconds spent by a thread
within critical sections. They show a four threads execution, and another with eight threads
respectively. These tables are supplemented with the figure 6.2. This figure has got depicted
the accumulated time used inside critical regions by every thread, both with four and eight
threads.

6.6 PROTECTING DATA ACCESSES: OPENMP CRITICALVS. TM | 135

4 threads 8 threads
Application (A) (B) (A) (B)
GCCHTM | GCCOMP GCCHTM | GCCOMP
FAST 0.0011 0.0009 1.2222 0.0010 0.0006 1.6667
TREE 0.0262 0.0152 1.7237 0.0209 0.0092 2.2717
2D-MEC 0.0062 0.0033 1.8788 0.0100 0.0033 3.0303

2D-Hull, Kuzmin 0.0035 0.0017 2.0588 0.0037 0.0014 2.6429
2D-Hull, Square 0.0061 0.0033 1.8485 0.0077 0.0029 2.6552
2D-Hull, Disc 0.0108 0.0053 2.0377 0.0244 0.0072 3.3889
Delaunay 0.4993 0.2662 1.8757 0.3635 0.1648 2.2057

Table 6.3: Comparison of the time in seconds, on average, spent by each thread within critical
sections using GCC HTM and GCC omp critical.

4 threads 8 threads
Application (A) (B) (A) (B)
IntelHTM | ICCOMP IntelHTM | ICCOMP
FAST 0.0008 0.0012 0.6667 0.0005 0.0007 0.7143
TREE 0.0130 0.0150 0.8667 0.0078 0.0086 0.9070
2D-MEC 0.0030 0.0044 0.6818 0.0039 0.0048 0.8125

2D-Hull, Kuzmin 0.0018 0.0019 0.9474 0.0019 0.0034 0.5588
2D-Hull, Square 0.0033 0.0035 0.9429 0.0032 0.0043 0.7442
2D-Hull, Disc 0.0052 0.0058 0.8966 0.0078 0.0083 0.9398
Delaunay 0.2264 0.2170 1.0433 0.1365 0.1502 0.9088

Table 6.4: Comparison of the time in seconds, on average, spent by each thread within critical
sections using Intel HTM and ICC omp critical.

136 | TLS AND TRANSACTIONAL MEMORY

4 threads 8 threads

Application (A) . (A)) (B)
IntelHTM | TinySTM IntelHTM | TinySTM

FAST 0.0008 0.0037 0.2162 0.0005 0.0027 0.1852
TREE 0.0130 0.0708 0.1836 0.0078 0.0513 0.1520
2D-MEC 0.0030 0.0112 0.2679 0.0039 0.0121 0.3223
2D-Hull, Kuzmin 0.0018 0.0019

2D-Hull, Square 0.0033 0.0032

2D-Hull, Disc 0.0052 0.0078

Delaunay 0.2264 0.1365

Table 6.5: Comparison of the time in seconds, on average, spent by each thread within critical
sections using Intel HTM and Tiny STM.

4 threads 8 threads

Application (R) (B) (R) (B)
GCCHTM | TinySTM GCCHTM | TinySTM

FAST 0.0011 0.0037 0.2973 0.0010 0.0027 0.3704
TREE 0.0262 0.0708 0.3701 0.0209 0.0513 0.4074
2D-MEC 0.0062 0.0112 0.5536 0.0100 0.0121 0.8264
2D-Hull, Kuzmin 0.0035 0.0037
2D-Hull, Square 0.0061 0.0077
2D-Hull, Disc 0.0108 0.0244
Delaunay 0.4993 0.3635

Table 6.6: Comparison of the time in seconds, on average, spent by each thread within critical
sections using GCC HTM and Tiny STM.

6.6 PROTECTING DATA ACCESSES: OPENMP CRITICALVS. TM | 137

Application (A) (B) (A) (B)
GCCOMP | TinySTM GCCOMP | TinySTM

FAST 0.0009 0.0037 0.2432 0.0006 0.0027 0.2222
TREE 0.0152 0.0708 0.2147 0.0092 0.0513 0.1793
2D-MEC 0.0033 0.0112 0.2946 0.0033 0.0121 0.2727
2D-Hull, Kuzmin 0.0017 0.0014
2D-Hull, Square 0.0033 0.0029
2D-Hull, Disc 0.0053 0.0072
Delaunay 0.2662 0.1648

Table 6.7: Comparison of the time in seconds, on average, spent by each thread within critical
sections using GCC OMP and Tiny STM.

Application (A)) (B) (A) ' (B)
IntelOMP | TinySTM IntelOMP | TinySTM

FAST 0.0012 0.0037 0.3243 0.0007 0.0027 0.2593
TREE 0.0150 0.0708 0.2119 0.0086 0.0513 0.1676
2D-MEC 0.0044 0.0112 0.3929 0.0048 0.0121 0.3967
2D-Hull, Kuzmin 0.0019 0.0034
2D-Hull, Square 0.0035 0.0043
2D-Hull, Disc 0.0058 0.0083
Delaunay 0.2170 0.1502

Table 6.8: Comparison of the time in seconds, on average, spent by each thread within critical
sections using Intel OMP critical and Tiny STM.

138 | TLS AND TRANSACTIONAL MEMORY

Application (A) GCCHTM | (B) GCCOMP | (C) IntelHTM | (D) IntelOMP | (E) TinySTM
TREE 0.0262 0.0152 0.0130 0.0150 0.0708
2D-Hull, Kuzmin 0.0035 0.0017 0.0018 0.0019

2D-Hull, Disc 0.0108 0.0053 0.0052 0.0058

Table 6.9: Comparison of the time in seconds, on average, spent by each thread within critical
sections with an execution of four threads.

Application (A) GCCHTM | (B) GCCOMP | (C)IntelHTM | (D) IntelOMP | (E) TinySTM
TREE 0.0209 0.0092 0.0078 0.0086 0.0513
2D-Hull, Kuzmin 0.0037 0.0014 0.0019 0.0034

2D-Hull, Disc 0.0244 0.0072 0.0078 0.0083

Table 6.10: Comparison of the time in seconds, on average, spent by each thread within critical
sections with an execution of eight threads.

6.6 PROTECTING DATA ACCESSES: OPENMP CRITICALVS. TM | 139

Fast Tree
2
® [Goonv == 400 [~ GCCHTM ===
g GCCOMP == 2 350 | GCCOMP ==
2 20 1 ntelHTM == 2 IntelHTM ==
8 IntelOMP == § 300 I ntelOMP ==
& 15| TinySTM mmmm $ 250 - TinySTM mmmm
£ T 200
c 10 £ 150
g sl] £ 100
= = st 1
4 threads 8 threads 4 threads 8 threads
2D-MEC Delaunay
T = o | ST =
%) — @ 2500 —
2 801 IntelHTM == 2 IntelHTM ==
53 IntelOMP =—= 8 2000 |} IntelOM
$ 60 TinySTM memmm 3
g T 1500
s 4 £
2 2 1000 |
£ 2 1 £ 500 |
0
4 threads 8 threads 4 threads 8 threads
2D-Hull-Kuzmin 2D-Hull-Square
35 70
GCCHTM ==1 GCCHTM ==
o 30 I GCCOMP == o 60 I GCCOMP ==
K IntelHTM === e IntelHTM ===
S 251 IntelOMP == S 501 IntelOMP ==
g g
g g
£ £
(o] (o]
£ £
= =
4 threads 8 threads 4 threads 8 threads
2D-Hull-Disc
200 —cohM =
2 GCCOMP ==
€ 150 } IntelHTM ==
8 IntelOMP ==
&
E
£
(o]
£
£

4 threads 8 threads

Figure 6.2: Accumulated time in miliseconds required by critical sections regarding the different
approaches tested.

6.7

140 | TLS AND TRANSACTIONAL MEMORY

As can be seen, generally, TinySTM is the approach which spends more time within
critical sections regarding all the benchmarks tested. In addition, results show that GCC using
TM also requires, on average, more time using critical sections than the others. This noticeable
result may be due to the TM extension of GCC is more general than the TM extension of
ICC. Thus, whereas ICC probably adjust its HTM extension to the subjacent architecture
(Intel), GCC is not as customized to this hardware. In this sense, Intel extension to HTM
even needed the least time with several benchmarks in some executions, e.g., Fast (four and
eight threads), Tree (four and eight threads), 2D-MEC (four threads) and 2D-Hull Kuzmin
(eight threads). However, we can observe that, overall, ICC HTM extension, GCC OpenMP
and ICC OpenMP spent similar times within critical sections. Thus, in the benchmarks
examined, we can conclude that the use of HTM does not produce any improvement with
respect to OpenMP critical regarding the time spent inside critical sections of the TLS library.
Furthermore, this affirmation may be extended to all the approaches examined because
results depicted in the plots are expressed in miliseconds, and therefore, differences between
times can be neglected concerning the global execution times of the benchmarks. Hence,
they will not influence on the speedups (as will be seen in the following sections).

Experimental results

This section describes the performance results obtained by ATLaS when using GCC-HTM,
Intel HTM, GCC OpenMP critical sections, Intel OpenMP critical sections, and TinySTM
to execute the benchmarks exposed.

6.7.1 Experimental setup

HTM experiments were performed in a 8-processor server, equipped with eight Intel®
Core™ i7-4770 processors at 3.40GHz and 16GB of RAM, which runs Ubuntu 14.04 LTS.
We used wall-clock times in our measurements. We have used the OpenMP implementation
from GNU Compiler Collection (GCC) 4.8.2 and Intel C/C++ Compiler (ICC) 15.0.1, the
transactional libraries from GCC-TM 4.8.2* and TinySTM 1.0.5, and the RTM of Intel TSX
provided by the OpenMP library of ICC. In order to confirm the use of hardware transactions,
and their effect in the execution, we used the Linux kernel tool perf stat -T.

We would like to thank to Dr. Lujan, of the University of Manchester, for allowing us to
use their machine with the mentioned capabilities.

“#Recall that, in spite of the theoretical simulation of transactions through software performed by GCC-TM, our
experiments lead us to affirm that this extension of GCC is able to detect the subjacent architecture, mapping software
transactions to hardware extensions. Hence, we have also concluded that GCC-TM uses hardware extensions as
long as possible.

6.8 CONCLUSIONS | 141

6.7.2 Results for OpenMP, STM and HTM

Figure 6.3 illustrates the experimental results obtained. Remind that in this case GCC-TM
uses hardware transactions, and note that sequential versions were compiled with GCC.

Experimental results for the Fast bechmark show that there are no differences related to
the use of OpenMP critical sections, STM, or HTM. However, there exist significant contrast
concerning the use of GCC or ICC. Whilst every GCC versions had the same behavior, ICC
versions led to worse results. Actually, GCC versions achieved almost 3.5 x with 5 processors,
whereas ICC versions gained almost 2 with 8 processors.

Regarding TREE benchmark, again, OpenMP, STM, or HTM solutions did not influ-
ence in the performance. However, depending on the compiler used, different results were
produced. Whereas every GCC versions had a similar performance, with a peak speedup
of 1.35% when running with 8 processors, ICC had different, and faster results, leading to
worse times than GCC. ICC versions achieved a speedup of almost 1.25x with 8 processors.

For the 2D-MEC benchmark the use of OpenMP critical sections, STM, and HTM led
to rather similar performance. OpenMP critical sections gets a peak speedup of 1.0x with 6
processors, while HTM a 1.0 x with 7 processors, and STM a 0.97 x with 6 processors. In
this case, compiling with GCC or ICC lead to similar results.

Concerning Delaunay benchmark, again, there are no diferences related to the use
of OpenMP critical sections, STM, or HTM. However, ICC led to rather lower speedups
compared with the use of GCC compiler. GCC versions got a peak of speedup of more than
2%, whilst ICC versions got a 1.8 x both with 8 processors.

Finally, 2D-Hull benchmarks behaved similarly for OpenMP’s and TM’s versions for
each dataset.

From the results described above we can make the following observation:

1. In general, HTM approaches do not improve OpenMP critical sections, or STM solu-
tions. Actually, in some cases even obtain worse results. However, it is highly possible
that, due to the limited number of processors available, results cannot be extrapolated
to every approaches. A possible future work could be repeat the experiments in a
machine with many more cores.

2. In some cases, similar compilation parameters lead to better results using ICC or
GCC. Specifically, it seems that in benchmarks where dependences hardly appear, or
with a pattern of appearances throughout the whole runtime, GCC produces higher
speedups. This issue can also be related to the optimization flag used -00.

6.8 Conclusions

The aims of this study were to test whether the use of TM might lead to an improvement in
the performance of our software-based, thread-level speculation system. Our experimental

142 | TLS AND TRANSACTIONAL MEMORY

Fast Tree
2.
5 GCC OMP ——~— 5 GCC OMP ——~—
4 Intel OMP 2 Intel OMP
GCC HTM GCC HTM
g 4| IntelHTM R S 5| IntelHT™
3 Tiny S'W/:xf’— = 3 - Tiny STM -——-
g 2 & 4
[7) P g %) ’/ i
1 0.5 | o=
0 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
Number of processors Number of processors
2D-MEC Delaunay
1.4+ GCCOMP —— 25 GCC OMP ——~—
1.2 Intel OMP 2 Intel OMP e
'1 GCC HTM GCC HTNI\{I/Wif f
a et HTiv =3 Intel HT!
S T - 3 15
g 0.8 Tiny STM E /,,//
5 ooy g
oo b 05
0 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
Number of processors Number of processors
2D-Hull-Kuzmin 2D-Hull-Square
2 2
GCCOMP ——~— GCC OMP ——~—
Intel OMP I SR Intel OMP
1.5 GCC HTM e 2o 1.5 GCC HTM e
g Intel HTM . g Intel HTM
° bl o
Q 1 — o) 1
g = g 7
%) g %) Pl
0.5 0.5
0 0
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7
Number of processors Number of processors
2D-Hull-Disc
14 I GCCOMP ———
12 Intel OMP
: GCC HTM
g 1 e S
§ 0.8 e
(% 0.6
0.4
0.2
0
1 2 3 4 5 6 7 8

Number of processors

Figure 6.3: Speedups by number of processors for each benchmark tested, comparing the
performance obtained by using OpenMP critical sections, compiled with both GCC and Intel
compilers, GCC-TM, Intel Hardware Transactional Memory, and TinySTM.

6.8 CONCLUSIONS | 143

results show that, in general, TM solutions deliver similar performances than the use of the

classical OpenMP critical sections for our problem.
The work described in this chapter has produced the following publication:

+ Sergio Aldea, Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano.
‘Study and Evaluation of Transactional Memory approaches with a Software Thread-
Level Speculation Framework’. In: IEEE Transactions on Parallel and Distributed Systems.

To be submitted

144 | TLS AND TRANSACTIONAL MEMORY

CHAPTER 7

ATLaS in the context of emerging
architectures: TLS and Xeon Phi
COProcessors

NTEL Xeon Phi accelerators are one of the newest devices used in the field of parallel
I computing. However, there are comparatively few studies concerning their performance
when using most of the existing parallelization techniques. One of them is thread-level
speculation, a technique that optimistically tries to extract parallelism of loops without the
need of a compile-time analysis that guarantees that the loop can be executed in parallel.
In this chapter we evaluate the performance delivered by an Intel Xeon Phi coprocessor
when using a software, state-of-the-art thread-level speculative parallelization library in the
execution of well-known benchmarks. Our results show that, although the Xeon Phi delivers
a relatively good speedup in comparison with a shared-memory architecture in terms of
scalability, the low computing power of its computational units when specific vectorization
and SIMD instructions are not exploited, indicates that further development of new specific
techniques for this platform is needed to make it competitive for the application of specu-
lative parallelization comparing with high-end processors or conventional shared-memory
systems.

- 145 -

7.1

1.2

146 | TLS AND XEON PHI COPROCESSORS

Problem description

Currently, physical limitations of single core chips are inducing a quick development of
multicore architectures. One of the most recent approaches is the Intel® Xeon Phi™ [58,
124, 132], a coprocessor with more than 60 cores able to execute either offloaded and native
codes. Nonetheless, due to its own novelty, this coprocessor has not yet been extensively
tested with non-regular parallel codes. The dissemination of experimental results under
these conditions would be really useful to test the behavior and capabilities of this computing
resource.

In this chapter we use a Xeon Phi coprocessor to run irregular applications that were
speculatively parallelized, with the help of a software-only, speculative parallelization library.
TLS is useful when executing codes that present scarce dependence violations at runtime.
Otherwise, costs associated to check for correctness, stop and retry executions, and commit-
ments, make this technique inefficient.

The contribution of this chapter is to test the performance of a state-of-the-art TLS
runtime library using an Intel Xeon Phi. This coprocessor has a big number of parallel
threads, therefore, it is interesting to measure its behavior with a shared-memory technique
such as TLS, when data is permanently shared among threads. Our experimental results show
that the benchmarks considered scale well when running them with a Xeon Phi coprocessor.
However, our results also show that, due to the irregular nature of the target applications
for TLS techniques, and the modest computing capabilities of each individual core when
vectorized and SIMD instructions are not exploited, execution times are much higher than
those gauged in conventional shared-memory systems.

The rest of this chapter is structured as follows: Section 7.2 describes the main character-
istics of the Xeon Phi coprocessor. Section 7.3 describes both the experimental environment
and the benchmarks used. Section 7.4 shows some experimental results in terms of per-
formance measured in a shared-memory system without coprocessor, and in a Xeon Phi
coprocessor. Section 7.5 summarizes some works that helps to put into perspective our
contribution. Finally, Sect. 7.6 concludes this chapter.

Intel Xeon Phi in a nutshell

Intel Xeon Phi [58, 124, 132] is a coprocessor launched by Intel in 2012. It is called coprocessor
because, although it can run a Linux operating system by itself, it should be placed aside
another processor to work properly. Although first impressions might suggest a number
of similarities, it is not an accelerator such as GPUs. Whereas the Intel Xeon Phi cores are
more similar to classical complete CPUs, the GPUs thread scheduling hardware is different.

7.2 INTEL XEON PHIIN ANUTSHELL | 147

Furthermore, Intel Xeon Phi coprocessors do not use the grid, and groups of threads concept!
in the same way, and also the memory latency hiding mechanisms are different. This issue
hinders easy code migrations to the latter kind of accelerators, and requires and in-depth
understanding of special programming models as CUDA [189], or OpenCL [145]. On the
other hand, the Xeon Phi coprocessor is able to use all standard parallel programming models
such as OpenMP [59], POSIX threads, MPI [252], or even OpenCL. Thus, using this new
coprocessor only requires a minimum learning curve, assuming that the programmer knows
at least one of these common parallel programming models.

7.2.1 Internal details

Intel Xeon Phi coprocessors have up to 61 cores at 1090 MHz, interconnected by a high-speed
bidirectional ring. Each core is enhanced with four hardware threads (up to 244 threads
per coprocessor), and with a 512-KB L2 cache. L2 cache levels are shared by all cores.
Furthermore, in addition to 64-bit x86 instructions, cores offer 512-bit wide SIMD vectors,
making vectorization the most powerful way to gain performance. The coprocessor is
generally connected to the host system via the PCI Express bus, and supports up to 8 GB
GDDR5 memory. Figure 7.1 briefly describes the architecture of the Intel Xeon Phi.

7.2.2 Use of the Xeon Phi

There are mainly two ways of executing an OpenMP program into a Xeon Phi coprocessor:

Native Execution: The Intel Xeon Phi coprocessor is capable of running a Linux operating
system. It is possible to log in to the Xeon Phi from the host processor using SSH,
through a mic0 network interface, added to the kernel by a module provided by Intel,
and use it natively. Thus, it allows the execution of the typical Linux-based commands
as well as our own programs.

Offload Extensions from the host: Intel defined a set of pragmas and keywords to be used
in parallel codes in order to execute them in coprocessors. A programmer only needs
to declare the region which should be executed in a coprocessor. Inside this region,
any kind of function can be used. For example, in the case of OpenMP, a single pragma
defined as #pragma offload target{mic} should be used, where mic represents
the identifier of the target Xeon Phi coprocessor. In addition, we should point out
the variables that will be used in the coprocessor, declaring their use with the clauses
in(),out(),or inout(). The use of variables with dynamic size requires to explicitly

'As the reader may know, GPUs have a hierarchical hardware architecture, so they should be programmed
with a hierarchical thread structure in mind [33], that uses the concept of threads, blocks, and grids. A thread is
the simplest unit of execution, intended to process a specific code. A block is defined as a group of threads, where
threads can be executed concurrently or sequentially with no order. At this level, a block allow the coordination of
its threads with the use of barriers. A grid is a group of blocks without any possible synchronization among them.

7.3

148 | TLS AND XEON PHI COPROCESSORS

4-threads| |4-threads 4-threads| |4-threads
Core Core Core Core
LN]
PCle L2 L2 L2 L2
Client
Logic t t t t

GDDR
MC

GDDR
MC

GDDR
MC

GDDR
MC

L2 L2 L2 L2
(XX
4-threads| |4-threads 4-threads| |4-threads
Core Core Core Core

Figure 7.1: Overview of the microarchitecture of an Intel Xeon Phi coprocessor.

declare the size, e.g. in(a:length(n)). These variables will be copied from the host to
the device, and/or vice versa, depending on their usage.

As can be seen, the Xeon Phi programming methodology is really convenient in order to
gain speedup with a relatively low programming effort.

Experimental evaluation

The goal of this work is to test the Xeon Phi coprocessor in off-loading mode to speculatively
execute in parallel different, well-known benchmarks. In this way, the ATLa$S runtime library
was adjusted to offload the execution of the parallel loop to the Xeon Phi coprocessor, without
further optimizations such as vectorization, one of the most important features of the Xeon
Phi. In any case, this feature is not very useful for our benchmarks, mainly composed of
irregular code.

To test the performance of the ATLaS TLS runtime, we have used three different real-
world benchmarks, together with a synthetic one. The real-world applications include the
2-dimensional Convex Hull problem (2D-Hull) [53], the Delaunay Triangulation problem [63,
186], and a C implementation of the TREE benchmark [18]. The synthetic benchmark is the
FAST. All of them are described in the Appendix A.

1.4

7.4 EXPERIMENTAL RESULTS | 149

7.3.1 Environmental setup

We have used two different platforms to compare the scalability of the speculative execution
of our benchmarks. The first one is Heracles, a 64-processor server, equipped with four
16-core AMD Opteron 6376 processors at 2.3GHz and 256GB of RAM, which runs CentOS
7 Linux. The second one is Chimera, a server equipped with two Intel Xeon E5-2620 V2
processors with six cores each, 32 Gb of RAM, and a Xeon Phi 3120A coprocessor with 6 Gb
of RAM running at 1.1 GHz. The system also runs CentOS 7 Linux.

All threads had exclusive access to the processors during the execution of the experiments,
and we used wall-clock times in our measurements without taking into account times spent
in data transfer. We have used icc (ICC) 15.0.2 for all applications in both platforms (Xeon
Phi offloaded codes can only be compiled with ICC). Times shown in the following sections
represent the time spent in the execution of the parallelized loop for each application. To
better assess the scalability offered by the Xeon Phi, the time required for data offloading has
not been taken into account in the measurements.

Experimental results

7.4.1 Scalability

Figure 7.2 compares the speedup obtained with the same parameters in both the shared-
memory processor, and the Xeon Phi coprocessor. Results show that, regarding the speedup,
the Xeon Phi coprocessor delivers a better scalability than a conventional, shared-memory
system. This scalability improvement is related to the Xeon Phi memory architecture. All
TLS runtime libraries require many accesses to shared data, so the faster and higher band-
width, the better performance. In our case, while the AMD Opteron 6376 achieves up to
51.2 GB/s memory bandwidth per socket, [15], the Intel Xeon Phi coprocessor achieves a
peak of 240 GB/s [125]. In our experiments, the benchmark with the highest number of
variables involved in the speculative execution is the Delaunay triangulation, with more
than 12 million, different scalar variables, while the one with the smallest shared data set is
FAST, with just two variables. Whilst in the latter benchmark the speedup is similar in both
architectures, in the Delaunay triangulation the speedup achieved by the Intel Xeon Phi is up
to 2.38x higher with respect to the AMD Opteron 6376.

7.4.2 Oversubscription

Figure 7.3 shows the experimental results produced with the execution of the benchmarks
using the whole threads of the Xeon Phi coprocessor. The particular nature of the threads
per core in this platform, being not independent of each other, severely limits the scalability
when more than 60 or 70 threads are launched, depending on the application. In some cases,

150 | TLS AND XEON PHI COPROCESSORS

Fast Tree
2
60 Intel)ﬁeon IIDhi - 0 Intel)ﬁeon IIDhi —
50 eracles eracles
15 e
o 40 a
3 3
o 30 2 10
[9] 153
& 20 - 3 5
10 T _—]
0 0
10 20 30 40 50 60 10 20 30 40 50 60
Number of threads Number of threads
Delaunay 2D-Hull-Disc
10 5
Intel Xeon Phi —_— Intel Xeon Phi =
8 %evfeeis’——‘_\ [I— 4 Heracles
g s g S
153 153]
& 4 / s 2
%) / %) —_—]
2 1 7
0 0
10 20 30 40 50 60 10 20 30 40 50 60
Number of threads Number of threads
2D-Hull-Square 2D-Hull-Kuzmin
10
Intel Xeon Phi —— 14 Intel Xeon Phi ——
8 Heracles — 12 Heracles
o a 10
g 6 = 3 s —
8 —— 8
o 4 2 6
» » .
2 L
| 2 [
0 0
10 20 30 40 50 60 10 20 30 40 50 60
Number of threads Number of threads

Figure 7.2: Speedups by number of processors for each benchmark tested, comparing the
performance obtained by using Intel Xeon Phi coprocessor, and a conventional shared-memory

system.

7.4 EXPERIMENTAL RESULTS | 151

Fast Tree
60 - n
Intel Xeon Phi- — ——] 14 Intel Xeon Phi ——
50 % 12 /
/
o 40 % a 10 Y .
2 / 3 / \
B 30 / B 8 X
8 2w}/ & o/ N
4ty e
10 |/ 2t/ B — —
0E 0
50 100 150 200 50 100 150 200
Number of threads Number of threads
Delaunay 2D-Hull-Disc
10 - 5 -
r,lme\l\Xeon Phi Intel Xeon Phi ——
8 J N = 4
2 / I 2
o 6 / ° 3 —
2 / g / .
& 4 & 2 ~
2t/ 1 —
0 0
50 100 150 200 50 100 150 200
Number of threads Number of threads
2D-Hull-Square 2D-Hull-Kuzmin
10 Intel Xeon Phi ——— 14 Intel Xeon Phi ———
8 < 12 =
o / . a 10 = ——
> 6 g - > d -
E / T E 8
-) -
& 4 N & 6 , <
2 R 417
2
0 0
50 100 150 200 50 100 150 200

Number of threads Number of threads

Figure 7.3: Speedups by number of processors for each benchmark tested on the Intel Xeon
Phi coprocessor.

performing such an oversubscription with respect to the number of cores leads to slightly
better results, but the performance decays when we tried to use more cores. We attribute
this fact mainly to memory issues. As we have exposed in Sect. 7.2.1, Xeon Phi coprocessors
can manage up to 244 threads. However, due to the fact that threads of each core are not
independent, from 61 threads on (there are in total 61 cores) most of them are idle when
executing a speculative operation.

In conclusion, we have found that the particular architecture of the Xeon Phi, with
threads working synchronously in each core, is not particularly suitable for software-based

speculative execution.

7.4.3 Absolute performance

Although the Xeon Phi presents a better scalability when comparing with a conventional,
shared-memory system, when considering absolute times, the picture is very different. Fig-

7.5

152 | TLS AND XEON PHI COPROCESSORS

32 processors 64 processors
Application (A) Xeon Phi | (B) Heracles H (A) Xeon Phi | (B) Heracles
FAST 154.45 19.28 8.01 87.68 9.03 9.71
2D-Hull, Disc 11.71 2.22 5.27 13.81 2.39 5.77
2D-Hull, Square 4.93 0.99 4.98 4.58 0.80 5.75
2D-Hull, Kuzmin 3.01 0.54 5.62 2.36 0.40 5.90
Delaunay 114.08 22.04 5.18 139.50 23.24 6.00
TREE 87.30 23.18 3.77 99.33 47.49 2.09

Table 7.1: Comparison of the time in seconds required to execute the benchmarks tested in
both the Heracles, the shared memory system, and in the Xeon Phi coprocessor of Chimera.

ure 7.4 shows the absolute times required to run each benchmark in Heracles and in the
Xeon Phi installed in Chimera. The analysis of this figure leads to two conclusions. First,
the use of the Xeon Phi to execute these benchmarks in parallel reduces the execution time
needed by a single, high-end processor for the Fast, Tree, and 2D-Hull benchmarks, using
the Square and the Kuzmin input sets. On the contrary, Delaunay and 2D-Hull using the
Circle input set does not benefit at all from this architecture.

The second conclusion is that when comparing the absolute times obtained with the same
number of threads in both architectures, we can see that the shared-memory architecture of
Heracles allows to obtain execution times that are roughly an order of magnitude better than
those produced by the Xeon Phi. The reasons are the more advanced architecture of AMD
processors, with out-of-order execution, and their higher clock speed, among other factors.
These reasons compensates the performance losses derived from the memory organization
in the shared-memory system with respect with the one offered by the Xeon Phi, that leads
to a better scalability as we saw in previous sections.

Table 7.1 summarizes the execution times for 32 and 64 threads in both architectures,
with the corresponding relationship. As can be seen, relative speedups obtained by Heracles
range from 2.09 X for TREE with 64 processors, to 9.71x for FAST with 64 processors.

Despite the poor performance delivered, we consider that the Xeon Phi coprocessor may
still help in the speculative execution of loops thanks to their comparatively big number of
threads. Our future work include the combination of software-based TLS techniques with
other solutions, such as value prediction, or the use of helper threads.

Related work: TLS and the Xeon Phi coprocessor

To the best of our knowledge, this is the first research that tests TLS with Xeon Phi copro-
cessors. We have deeply reviewed some related TLS approaches in the Chapter 2, so in the

7.5 RELATED WORK: TLS AND THE XEON PHI COPROCESSOR | 153

Fast
° 1000 \
E 00
c
£ 10
5
o
o 1 q
o Heracles, sequential =
0.1 Intel Xeon Phi ——
) Heracles
0 20 40 60 80 100
Number of threads
Delaunay
1000
§ 10
5
8 1
o
] Heracles, sequential =
0.1 Intel Xeon Phi ——
Heracles
0 20 40 60 80 100
Number of threads
2D-Hull-Square
100
g
Ky
£ 10 e —
K]
5 1 e
]
] Heracles, sequential ===
0.1 Intel Xeon Phi ———
Heracles
0 20 40 60 80 100

Number of threads

Execution time Execution time

Execution time

Tree
1000 f\
100 P -
10 ~—|
1
Heracles, sequential s
0.1 Intel Xeon Phi ———
Heracles
0 20 40 60 80 100
Number of threads
2D-Hull-Disc
100
10 |
1
Heracles, sequential =
0.1 Intel Xeon Phi ———
Heracles
0 20 40 60 80 100
Number of threads
2D-Hull-Kuzmin
100 \
10
T
1
Heracles, sequential ===
0.1 Intel Xeon Phi ———
Heracles
0 20 40 60 80 100

Number of threads

Figure 7.4: Execution time in seconds with respect to the number of threads for each benchmark.
The sequential time obtained with a single Xeon processor in Heracles is also shown.

154 | TLS AND XEON PHI COPROCESSORS

following related work we are going to center our efforts just on research about Xeon Phi
capabilities. To do so, we will propose a number of possible hardware additions which might
improve the performance of TLS on the Intel Xeon Phi coprocessors. Afterwards, we will
describe some of the papers related to Xeon Phi coprocessors.

7.5.1 Hardware improvements to benefit software TLS

We will now explore some enhancements which might possibly improve the performance
of TLS on Intel Xeon Phi coprocessors. We will center our discussion on applying ideas
belonging to the classical hardware approaches to manage speculation in multicore pro-
cessors. Therefore, the implementation of these ideas would need changes in the Xeon Phi
architecture.

Sohi et al. [233] developed the Multiscalar processor, where cores were interconnected
through a ring, an approach also followed in the Speculative multithreaded processor [177].
For these systems, hardware modules developed to store intermediate versions of variables
were also proposed, such as ARB [94] or SVC [105]. As long as the ring interconnection
mechanism is also present in the Xeon Phi coprocessors), the application of their mechanisms
to handle dependences in hardware might decrease software overheads.

Another possible improvement might be the addition of a new cache, based on the Trace
cache [224]. This proposal stored traces (dynamic sequences of instructions stored in the
hardware) at runtime, and instructions were executed in parallel, while dependences were
speculated with the use of predictors.

A different approach like the used in the -ACOMA architecture [151] may work as
well. They used a binary annotator that added some notes into executable files to detect
possible dependences, that were managed at runtime with a special module called Memory
Disambiguation Table. Another source of ideas for improvements is the Threaded Multi-Path
Execution [253] approach, that was focused on prediction techniques. This proposal executed
all possible branches of a loop, whilst there were enough resources, a situation that is likely
to occur in Xeon Phi coprocessors.

7.5.2 Studies related to the Xeon Phi coprocessor

The Xeon Phi coprocessor is being extensively studied. Some papers have developed ex-
tensions to offloaded regions. For example, COSMIC [32] is a middleware integrated in
the subjacent software that tried to ease and improve the performance of multiprocessing
in Xeon Phi coprocessors. This work aimed to reduce imbalance and overheads through
the management of resources. It handled offload regions and takes care of the request of
coprocessors, cores and memory. Snapify [221] tried to reduce failure rates of Xeon Phi
coprocessors. The underlying idea was taking snapshots during execution (saving the state
of applications) and if an error was produced, the execution was restored to a correct, saved
state, instead of being restarted.

7.6

7.6 CONCLUSIONS | 155

Some essays are focused in the implementation of existing algorithms into coprocessors.
For example, [199] developed a multi-node 1D FFT implementation on coprocessors; [169]
implemented a sparse matrix-vector multiplication; and [191] developed a SQL engine that
benefited from the inherent parallelism related to Xeon Phi coprocessors.

Furthermore, as it is the case, there are many other papers centered on the measurement
of the performance obtained from a Xeon Phi. [230] was one of the first papers that used
Intel Xeon Phi coprocessor (that was called Intel Knights Ferry) to evaluate the performance
of scientific applications. Later, Cramer et al. [58] evaluated the behavior of some OpenMP
benchmarks in a Xeon Phi coprocessor. They affirmed that common OpenMP codes could
be easily migrated to Intel Xeon Phi, gaining more parallel performance without adding
overheads. This study was enhanced in [231]. [85] also tested the Xeon Phi through the
development of some microbenchmarks.

Conclusions

In this work we have evaluated the behavior of the Xeon Phi coprocessor in the context
of software-only, thread-level speculation (TLS), a parallel technique that optimistically
executes in parallel sequential codes without a prior dependence analysis. Intel Xeon Phi
coprocessors are one of the state-of-the-art architecture that aims to execute parallel codes.
Our experimental results show that the particular memory architecture of the Xeon Phi leads
to better scalability with regards to speculative execution, with better relative speedups than
those obtained using a conventional, shared-memory architecture. However, the relative low
computing power of its computational units when specific vectorization and SIMD instruc-
tions are not exploited, indicates that further development of new specific techniques for this
platform is needed to make it competitive for the application of speculative parallelization
comparing with high-end processors or conventional shared-memory systems.

Although the use of a Xeon Phi coprocessor to execute software-based, TLS codes is not
competitive, the Xeon Phi architecture might be useful when combining TLS solutions with
other existing techniques such as value prediction or helper threads. In this way, some of the
available threads could be used to help TLS execution, reducing dependence violations and
thus improving performance.

The work described in this chapter has generated the following publications:

+ Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘Evaluating the
capabilities of the Xeon Phi platform in the context of software-only, thread-level
speculation’. In: Proceedings of the 8th International Symposium on High-level Parallel
Programming and Applications. HLPP ’15. Pisa, Italy: ACM, 2015. To be also published
in International Journal of Parallel Programming, Springer US.

156 | TLS AND XEON PHI COPROCESSORS

CHAPTER 8

Conclus

Oons

PECULATIVE parallelism is an optimistic parallel technique whose importance has increased
S in the last two decades due to advances in parallel computing. Nonetheless, the fact that
it requires irregular codes with dependences, or irregularities which does not allow standard
parallel techniques parallelize them, as well as the need that these codes do not have too many
dependencies (otherwise results are even poorer), hinders speculative parallelism to be useful
in real-life applications. It, therefore, continues being a research field with both supporters
and detractors. We might be included in the former group. Thus, throughout this Ph.D. thesis
we have developed tools and strategies in order to contribute to this promising method of
parallelism. Among them we can highlight the runtime library of the ATLaS framework
described in chapters Chapter 3 and Chapter 4 respectively, the hash-based data structure
which severely reduces accesses to data structures involved in speculative operations, the
moody scheduling approach which dynamically ease the achievement of the best size of
chunks of iterations executed, and the combination of our speculative library with some
Transactional Memory implementations in order to test if these approaches are better than
the critical sections used. Furthermore, we give some experimental results to endorse our
research not only in conventional shared-memory machines, but also in one of the most
novel devices, the Intel Xeon Phi coprocessor. This chapter summarizes the work carried out
throughout this Ph.D. thesis emphasizing on the contributions, the answer to the research
question formulated at the beginning of this document, and proposes a number of ways so
that this work will be continued in the future.

-157-

8.1

158 | CONCLUSIONS

Summary of results and contributions

The contributions of this Ph.D. thesis ordered by goals, as well as the publications achieved
with them are the following.

8.1.1 Goal 1: Deep study of the state-of-the-artin TLS

We have reviewed most of the existent solutions regarding speculative parallelism. Thus, we
have proposed a classification in which every approach may be framed. To the best of our
knowledge no previous work had been done of this kind, at least, as wide as ours. The work
done has been accepted to be published in the following journey:

1. Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘A survey on
Thread-Level Speculation Techniques’. In: ACM Computing Surveys (CSUR). Accepted
for publication

8.1.2 Goal 2: Combine a TLS library with a compiler

Concerning compilers, there were no approaches centered on giving support to TLS until
Aldeaetal. proposed one [7]. To did so their framework required of a TLS runtime library able
to execute applications with complex instructions such as pointer arithmetic or complicated
‘structs’. We therefore implemented an easy-to-use TLS runtime library capable of both
communicating with a compiler effortlessly and executing all kind of applications. This
contribution have been published in the following papers:

2. Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘Desarrollo de
un motor de paralelizacion especulativa con soporte para aritmética de punteros’ In:
Proceedings of the XXIII Jornadas de Paralelismo. Elche, Alicante, Spain: Servicio de Pub-
licaciones de la Universidad Miguel Hernindez, Sept. 2012. 1sBN: 978-84-695-4471-6

3. Sergio Aldea, Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘A
New GCC Plugin-Based Compiler Pass to Add Support for Thread-Level Speculation
into OpenMP’. English. In: Euro-Par 2014 Parallel Processing. Ed. by Fernando Silva,
Inés Dutra and Vitor Santos Costa. Vol. 8632. Lecture Notes in Computer Science.
Springer International Publishing, 2014, pp. 234-245. 1s8N: 978-3-319-09872-2. por:
10.1007/978-3-319-09873-9_20. URL: http://dx.doi.org/10.1007/978-
3-319-09873-9_20

4. Sergio Aldea, Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘Una
extension para OpenMP que soporta paralelizacion especulativa’. In: Proceedings of the
XXV Jornadas de Paralelismo. Valladolid, Spain, Sept. 2014. 1sBN: 978-84-697-0329-3

http://dx.doi.org/10.1007/978-3-319-09873-9_20
http://dx.doi.org/10.1007/978-3-319-09873-9_20
http://dx.doi.org/10.1007/978-3-319-09873-9_20

8.1 SUMMARY OF RESULTS AND CONTRIBUTIONS | 159

5. S. Aldea, A. Estebanez, D.R. Llanos and A. Gonzalez-Escribano. ‘An OpenMP Ex-
tension that Supports Thread-Level Speculation’ In: IEEE Transactions on Parallel
and Distributed Systems, vol. PP, no. 99, 2015, pp. 1-14. 2015. 1ss8: 1045-9219. por:
10.1109/TPDS.2015.2393870

8.1.3 Goal3: Improve operationsinvolvedinaTLS runtime library

As a result of the previous goal, and in order to increase the possible impact which ATLaS
may achieve, we tried to locate and ease the main bottlenecks included in the TLS library.
To do so, the main proposal has been a hash-based data structure able to severely decrease
accesses to data structures involved in main speculative operations. Hence, it lead us to quite
noticeable improvements in the performance of the library.

Additionally, scheduling of iterations have been a research field deeply studied. Non-
etheless, regarding scheduling of iterations under TLS there are not much work done so far.
Thus, after reviewing some of the existent algorithms, we realized that there were no solution
focused on achieve the best chunk size dynamically based on both runtime and user-defined
parameters. We devised ‘Moody scheduling’ so as to speculatively execute loops following the
dependence pattern as well as the optimism desired to set sizes of chunks of iterations under
TLS. These achievements led to the following publications:

6. Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. Tmproving the
Perfomance of a Pointer-Based, Speculative Parallelization Scheme’. In: Proceedings of
the Ist First Congress on Multicore and GPU Programming. PPGM’14. Granada, Spain,
Feb. 2014. Also published in Annals of Multicore and GPU Programming, vol. 1, no. 1,
2014. 2014. issn: 2341-3158.

7. Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘New Data Struc-
tures to Handle Speculative Parallelization at Runtime’. In: Proceedings of the 7th
International Symposium on High-level Parallel Programming and Applications. HLPP
'14. Amsterdam, Netherlands: ACM, 2014, pp. 239-258. Also published in Inter-
national Journal of Parallel Programming, 2015, pp. 1-20. Springer US, 2015. issn:
0885-7458. doi: 10.1007/s10766-014-0347-0. url: http://dx.do1 .org/10.1007/
s10766-014-0347-0.

8. Alvaro Estebanez, Diego R. Llanos, David Orden and Belen Palop. ‘Moody Scheduling
for Speculative Parallelization’. English. In: Euro-Par 2015: Parallel Processing. Ed.
by Jesper Larsson Triff, Sascha Hunold and Francesco Versaci. Vol. 9233. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2015, pp. 135-146. 1sBN:
978-3-662-48095-3. por: 10.1007 /978 -3-662-48096-0 _11. URL: http:
//dx.doi.org/10.1007/978-3-662-48096-0_11

http://dx.doi.org/10.1109/TPDS.2015.2393870
http://dx.doi.org/10.1007/s10766-014-0347-0
http://dx.doi.org/10.1007/s10766-014-0347-0
http://dx.doi.org/10.1007/978-3-662-48096-0_11
http://dx.doi.org/10.1007/978-3-662-48096-0_11
http://dx.doi.org/10.1007/978-3-662-48096-0_11

160 | CONCLUSIONS

8.1.4 Goal 4: Test a TLS runtime library with other parallel tech-
niques

So as to complete our work, we have tested our TLS runtime library in other contexts
different from the conventional shared-memory machines. In this way, we have combined
the transactional memory approach with our library. Hence, we compared the original
critical sections implemented in the software, against a new approach which uses a number
of hardware- and software-based transactional memory solutions. Furthermore, we have
examined the behavior of our software in one of the most state-of-the-art devices of the
moment, a Intel Xeon Phi coprocessor. This work allow us to publish the following paper:

9. Sergio Aldea, Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano.
‘Study and Evaluation of Transactional Memory approaches with a Software Thread-
Level Speculation Framework’. In: IEEE Transactions on Parallel and Distributed Systems.
To be submitted

10. Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘Evaluating the
capabilities of the Xeon Phi platform in the context of software-only, thread-level
speculation’. In: Proceedings of the 8th International Symposium on High-level Parallel
Programming and Applications. HLPP ’15. Pisa, Italy: ACM, 2015. To be also published
in International Journal of Parallel Programming, Springer US.

8.2 Answer to the research question

Is it possible to develop a runtime system for thread-level speculation able to efficiently
handle complex data structures, use pointer arithmetic, and take into account the
tendency of dependence violations produced so far to estimate the best chunk size
to be scheduled? Could it be implemented and lead to good execution times using
Transactional Memory, and in new manycores architectures such as the Intel Xeon
Phi coprocessors?

As a result of the research done we can affirm that our research question has been
clearly answered. On the one hand, we developed a TLS software capable of (a) handling
complex data structures, as well as, (b) using pointer arithmetic. Moreover, we proposed
(c) a scheduling strategy which takes into account not only runtime parameters such as
dependence violations, but also the optimism decided by the user to assign higher or smaller
chunks of iterations.

In addition, we verified that (d) TLS can be combined with transactional memory pro-
ducing similar results than the classical approach, and (e) can be used in a Intel Xeon Phi
COpProcessor.

8.3 FUTURE WORK | 161

8.3 Future work

There are still a wide range of work to do in the field. In this sense, this Ph.D. thesis might be
extended in future research projects following one of this proposals.

Helper threads. Currently devices have more and more processors, consequently there
are some algorithms which do not improve their performance even using a bigger
number of processors. Thus, some of these free processors might be used as a helper
thread. In other words, a thread whose aim is ease the operations to others. We guess
that devices such as Xeon Phi coprocessors would be likely to gain from this idea.

GPUs. Nowadays, one of the most successful approaches to parallelize codes are GPUs
since they may consists of more than a thousand of processing units. There are not
many speculative solutions using these devices so far, therefore, it could be a good
idea either extend the capabilities of our software runtime library, or develop a new
branch to take advance of the high computational capacity of GPUs.

Use predictors. As stated throughout this thesis, speculative operations spend a big
amount of time looking for the most recent values. Thus the use of a predictor respons-
ible of forecasting the possible values of variables with a high and accurate success
rate would be likely a good way of improving the performance (as some approaches
has already proven).

Polyhedral model. One of the most relevant approaches to transform loops in order to
reduce dependences is the polyhedral model [20]. To the best of our knowledge only
one approach takes advantage of such an interesting technique as is [135]. Therefore it
could be a good idea combine these two approaches and compare with the mentioned
solution. Hence both research fields will likely be benefited of the possible conclusions
which may arise.

162 | CONCLUSIONS

APPENDIX A

Benchmarks description

HE use of some well-known benchmarks to test the work done is mandatory in order to
T put a development into perspective. In this chapter are described the benchmarks used
throughout this Ph.D. thesis to test every solution made. They include some randomizes
incremental algorithms as well as other applications widely used in the ‘real life’. In addition,
we have implemented three synthetic benchmarks which able to check the correctness of
our developments.

-163 -

A.l

164 | BENCHMARKS DESCRIPTION

To test the speculative library, we have used both real-world and synthetic benchmarks.
In order to obtain a better understanding of the experimental results, both of them are going
to be explained.

Randomized incremental algorithms

First of all, we will briefly review a kind of algorithms called randomized incremental
algorithms, because some of the benchmarks tested in our experiments are included in this
category.

Randomized incremental algorithms have been deeply studied in the context of Com-
putational Geometry and Optimization. Their use have allowed the development of simple,
easy-of-implement and efficient algorithms that solve several problems. For example, line seg-
ment intersection, Voronoi diagrams, triangulation of simple polygons, linear programming
and many others.

In its most general formulation, the input set of a randomized incremental algorithm is a
set of elements (they can be points or not) subjected to some operations in order to obtain
certain output. Generally, a loop iterates over every element of the set, trying to find those
which fulfill a range of requirements. The simultaneous execution of two iterations in two
different processors requires that no dependence exists between results calculated in the
first iteration and values needed by the second iteration. These kind of algorithms present
a common dependence pattern among iterations of loops independently of the problem
to solve. Informally, it could be said that at the beginning of the execution most of the
elements inserted modify the solution being calculated iteration by iteration. However, as
the execution progresses, less dependencies appear, i.e., less elements modify the solution.
Regarding complexity analysis, it is expected that would normally be much lower than the
complexity found in the worst case. Speculative parallelization is the most effective technique
to execute in parallel this dependencies distribution.

Some of the problems addressed to obtain experimental results are:

+ Welzl algorithm to calculate the “2-dimensional Minimum Enclosing Circle” problem
(2D-Mec).

« Clarkson et al. algorithm to calculate the “2-dimensional Convex Hull” problem
(2D-Hull).

+ Jump-and-Walk strategy to calculate the “2-dimensional Delaunay Triangulation” prob-
lem 2D-DT).

A.1 RANDOMIZED INCREMENTAL ALGORITHMS | 165

Figure A.1: Minimum enclosing circle defined by three points.

A.1.1 Minimum enclosing circle

The 2D-MEC problem consists in finding the smallest circle that encloses a set of points. We
have parallelized the randomized incremental approach due to Welzl [259], which solves the
problem in linear time. This algorithm starts with a circle of radius equal to zero located
in the center of the search space. If a point lies outside the current solution, the algorithm
defines a new circle that uses this point as one of its frontiers. It is interesting to note that
points inside the old solution may lie outside the new one. Therefore, all points should be
processed again to check if the new circle encloses them. The solution can be defined by two
or three points, and the algorithm is composed of three nested loops. We have used a random,
ten-million point, uniformly distributed input set. We have speculatively parallelized the
innermost loop, which consumes 43.75% of the total execution time (see Tab. 4.1). In [82]
can be found experimental results of the parallelization of the other loops. Figure A.1 shows
an example of the minimum enclosing circle of a given input set.

A.1.2 Convex hull

The 2D-Hull problem solves the computation of the convex hull (smallest enclosing polygon)
of a set of points in the plane. We have parallelized Clarkson et al.’s [53] implementation [50,
65, 104]. The algorithm starts with the triangle composed by the first three points and adds
points in an incremental way. If the point lies inside the current solution, it will be discarded.
Otherwise, the new convex hull is computed. Note that any change to the solution found so
far generates a dependence violation, because other successor threads may have used the old
enclosing polygon to process the points assigned to them. The probability of a dependence

166 | BENCHMARKS DESCRIPTION

Figure A.2: Convex hull of a set of points.

violation in the 2D-Hull algorithm depends on the shape of the input set. Therefore, we have
used three different, ten-million-point input sets to run this benchmark. The Kuzmin input
set [28] follows a Gauss-Kuzmin distribution, with a higher density of points around the
center of the distribution space, which leads to very few dependence violations, since points
far from the center are very scarce. The two other input sets, Square and Disc, cause more
dependence violations than Kuzmin, with their points uniformly distributed inside a square
and a disc, respectively. The Square input set leads to an enclosing polygon with fewer edges
than the Disc input set, thus generating fewer dependence violations. Figure A.2 shows an
example of the convex hull of a given input set.

A.1.3 Delaunay triangulation

A triangulation is a subdivision of an area or plane polygon into a set of triangles, taking
into account that each side of the triangle is shared by two adjacent triangles. Analogously a
triangulation of a two-dimensional set of points is defined as a convex hull partition into
triangles. The structure is a maximal family of disjoint interior triangles whose vertices are
points of the set. Of course, there are not points located inside the triangles. Figure A.3
shows that a single data set could generate different triangulation.

Delaunay triangulation [99] applied to a two-dimensional set of points affirms that a
network of triangles is a Delaunay triangulation if all the circumcircles of all the triangles of
the network are empty, i.e., the circumcircle of each triangle of the network contains no other
vertices that those three that define the triangle. This condition ensures that the interior
angles of the triangles are as large as possible and the length of the sides of the triangles is
minimal. See Figure A.4.

A.1 RANDOMIZED INCREMENTAL ALGORITHMS | 167

Figure A.3: Delaunay: Two different triangulations with the same set of points.

Figure A.4: Delaunay triangulation of a set of points: Circumcircles of triangles shown do not
contain any point inside them.

A.2

168 | BENCHMARKS DESCRIPTION

Figure A.5: Delaunay triangulation of a set of 100 points.

In this case, the randomized incremental construction of the Delaunay triangulation will
be addressed by using Jump-and-Walk strategy, introduced by Miicke, Zhu et al. [63, 186].
This incremental strategy starts with a number of points, called anchors, whose containing
triangles are known. The algorithm finds the closest anchor to the point to be inserted (the
jump phase), and then traverses the current triangulation until the triangle which contains
the point to be inserted is found (the walk phase). The goal of the algorithm is to find the
network of triangles in which all the circumcircles of all triangles in the network are empty,
i.e,, the circumcircle of each triangle contains no other vertices than those three that define
the triangle. We have used an input set of 5000 anchors, and one million points to be inserted,
or another of 5000 anchors, and one hundred thousand points to be inserted. Figure A.5
shows an example of the Delaunay triangulation of a given input set that contains 100 points.

TREE benchmark

The TREE problem [18], unlike the previous three applications, does not suffer from depend-
ence violations, but it is still not parallelizable at compile time because the compiler is not
able to ensure that there are no data dependencies. This application spends a large fraction
of its sequential execution time on a loop that can not be automatically parallelized by state-
of-the-art compilers because it has dependence structures that are either too complicated
to be analyzed at compile time or dependent on the input data. Specifically, we have been
focused on the loop that iterates over the bodies and computes the forces on them, which
has more than 150 code lines. Compilers also find hurdles in several sum and maximum

A.3

A.3 SYNTHETIC BENCHMARKS | 169

reductions contained in the code, which ATLaS detects and handles properly. We have run
this benchmark with a 4096-point input set.

Synthetic benchmarks

Listings A.1, A.2 and A.3 show the code of three synthetic benchmarks: Complete, Tough
and Fast. The purpose of these benchmarks is to test (a) the correctness of our solution when
using different speculative data sizes (the Complete benchmark); (b) the robustness of the
solution when few speculative variables are under heavy use (the Tough benchmark); and (c)
the overheads due to the scheduling of the speculative code (the Fast benchmark). However,
these synthetic benchmarks were not designed to exhaustively study the sensitivity of the
ATLaS framework in different situations, such as the number of speculative variables or the
chunk sizes.

A.3.1 Complete

The Complete benchmark, shown in Listing A.1, aims to concurrently test the most useful
features of our solution, including (1) speculative accesses to scalar data with different sizes,
and (2) speculative accesses to elements that are part of more complex data structures. While
executing this loop in parallel, all the iterations lead to dependence violations.

A.3.2 Tough

The Tough benchmark, depicted in Listing A.2, was designed to heavily test the robustness
of our solution and of the underlying consistency protocol used. All of its iterations perform
aload and a store on the same speculative data structure, with almost no computational load
on private variables.

A.3.3 Fast

The Fast benchmark, shown in Listing A.3, has been designed to test the efficiency of the
speculative scheduling mechanism. In this benchmark, only two of the 180 000 iterations
(0.001%) lead to a dependence violation. Note that these two dependences are enough to
prevent the compile-time parallelization of this loop.

170 | BENCHMARKS DESCRIPTION

1 | #define NITER 6000

> [1int array[MAX], array2[MAX];

s | struct card{ int field; };

4+ | struct card pl = {3}, p2 = {99999}, p3 = {11111};
s | char aux_char = ’’a;

¢ | double aux_double = 3.435;

7+ lint i, J;

9o | /*...x/

u | #pragma omp parallel for default(none) \

12 private(i,j) shared(arrayl,p2) \

13 | speculative(pl,p3,aux_char,aux_double,array2)
w [for (i =0 ; i < NITER ; i++) {

15 for (j = 0 ; j < NITER ; j++) {

17 if (i <= 1000)

18 pl.field = array[i%4] + j;

19 else

20 array2[i%4] = pl.field;

21

22 if (i > 2000)

23 aux_char = %20 + 48 + aux_char%48;

2 else

25 aux_char = %20 + array[i%4]%10 + 48;

26

27 if (i > 1500)

28 aux_double = array[i%4]/(i+1) + aux_double;
29 else

30 array2[i%4] = (int) (aux_double / ixj) +
31 (array2[(i+j)%4] +1%*j)%1234545;
32 if ('I*J > 10000)

33 pl = p2;

34 else

35 p3 = pl;

36 }

st |}

Listing A.1: Code of the ‘Complete’ synthetic benchmark.

10

11

12

13

14

15

A.3 SYNTHETIC BENCHMARKS | 171

#define NITER 1000000
#define MAX 100
int array[MAX];

/*..

x/

#pragma omp parallel default(none) \

}

private(P)

\

speculative(array)

for (P =0 ; P < NITER ; P++) {
Q = P % (MAX) + 1;

aux = array[Q-1];

Q = (4 * aux) % (MAX) + 1;

array[Q-1]

= aux;

Listing A.2: Code of the ‘Tough’ synthetic benchmark.

172 | BENCHMARKS DESCRIPTION

1 | #define NITER 180000
> | #define MAX 4

4 |int array[MAX];

s |int i,3,k;

s |int specl=0, spec2=0;
< |int iterl, diter2;

o | /*...x/

1 | #pragma omp parallel default(none) \

12 private(i,k) shared(array,iterl,iter2) \
13 | speculative(specl,spec2)

w | for (i =0 3 i < NITER ; i++) {

15 if (i == iterl)
16 j = specl;
17 if (i == iter2)
18 j = spec2;

19 for (k = 0; k<array[i%MAX]+j; k++) {

0 if (k >= 179900)

22

23 specl = k + array[(i+k)%MAX];
24

25 if (k <= 1200)

26 spec2 = array[i%MAX];

27 }

28 if (i == NITER—l)

29 specl = spec2;

30 }

Listing A.3: Code of the ‘Fast’ synthetic benchmark.

APPENDIX B

Example of manual use of the TLS
runtime library

His chapter completes the description of the TLS runtime library seen in the Chapter 3,

detailing the functions and variables needed to parallelize a given code manually. In
addition, it provides an example of use of the speculative library which eases readers’ learning
process.

-173-

174 | EXAMPLE OF USE OF THE TLS LIBRARY

B.1 Initialization of the engine

specbegin(UINT maxlterations)

The speculative library developed in this work uses some data structures (described in
Chapter 3), which should be initialized before executing any speculative code. To do so, we
have defined a function called specbegin(). It only requires a single argument which is the
number of iterations of the target loop. Let us enumerate the responsibilities of this function.

Initialize the number of iterations to execute in the loop.

Clean the number of attempts of re-executions for this execution of the block (this
number is required for scheduling techniques).

Initialize each position of the structure used to manage threads. If it is the first time
that the function is called:

— Allocate the memory needed by the dynamic data structures used by the specu-
lative library.

Initialize the structures of the Indirection matrices.

Set the state of the first threads to RUNNING, and consequently, establish the non-
speculative and most-speculative pointers.

Schedule iterations (depending on the dynamic or static approach followed, it schedules
the whole of them, or only a few for starting the execution).

Initialize counters for measurements.

B.2 Use of the engine and variable settings

There are a number of variables whose definition is mandatory before executing any code.
They are defined through constants in the source files of the library. Some of them are directly
declared in header files because they are not frequently modified. The most dependent on
the target code, on the contrary, are set adding parameters to the compilation tool make. Let
us enumerate the most important parameters.

.

.

wsize: window size, that is, the number of slots of the sliding window. This parameter
is not set as a parameter but as a constant since it is not normally changed.

threads: indicate the number of threads to execute the problem.

B.3

B.3 AN EXAMPLE OF USE | 175

blocksize: specifies the size of each block of iterations. Either dynamic or static ap-
proaches can be used (see Chapter 5 for more information). Details of how to use this
parameter can be found in [9].

+ maxiter: Maximum number of iterations of the loop to be parallelized.
« maxpointer: specifies the maximum number of elements which are speculative.
« mask: specifies the size of the mask used (see Section 3.6).

A template for a correct execution of ATLaS could be the following:
$ make threads=4 maxiter=1000000 blocksize=100 maxpointer=101 mask=127

Once implemented the values of these constants some changes should be applied in the
original code. We should include OpenMP library, and the library of the TLS library called
‘specEngine.h’ After that, it is also necessary to call the initializing function specstart(it-
erations)), and set the number of threads to be used. To do so we should call the function
omp_set_num_threads(threads). Then we should classify variables into two types: private or
shared (this is one of the requirements of OpenMP [40, 59, 193]).

Some variables used inside speculative library are always classified in the same way:

« Private: current, tid, retflag.
« Shared: wheel_ns, wheel_ms, wheel, upper_limit, varblock.

Note that speculative variables should be labeled as shared.

Once classified every variable, all accesses to speculative ones should be modified with
the corresponding functions, specifically, specload() when the variable is read, or specstore()
when the variable is written. These functions are described in-depth in 3.5.

Finally, in order to support the partial commit operation, we should declare the function
threadend() at the end of the loop. This function is responsible to manage the sliding window,
and commit it following the sequential order. Furthermore, it checks if there are any more
blocks to be executed, in which case it assigns them.

Let us see the explained process with the aid of an example.

An example of use

In order to know how to manually use the TLS runtime library, we are going to show
an example. The application of the example! (developed using C) will only have a single
speculative load, and a single speculative store to simplify the process.

"Note that the example application provided is the Tough synthetic benchmark seen detailed at section A.3.2

176 | EXAMPLE OF USE OF THE TLS LIBRARY

B.3.1 Sequential application

Listing B.1 shows the sequential version of the application.

First of all let us describe the input set used. We developed a specific application which
produces random numbers in order to produce an input set file with a million of random
numbers. In the code shown in the Listing B.1 from line 19 to 30 the file is read, obtaining
random numbers. In spite of the fact that numbers are random, input file will always be the
same, therefore, similar experimental results will be produced, achieving a deterministic
version of this application. Note that numbers of the file must be higher than 0 because they
are used as the indexes of a vector.

Once the file is read and their data are stored at the variable vector, the main loop start
its NITER iterations (from line 32 to 40). Then, at line 37, an element of the vector is read,
and also, at line 39, another one is written. Note that being Q the variable which stores the
index of the element to be load or stored:

« In the case of load operation, the value of Q is equal to the remainder between current
iteration and the maximum size of the vector plus one.

+ In the case of store operation the value of Q is equal to the remainder between the
value load, multiplied by four and the maximum size of the vector plus one.

The value of Q is unknown at compile time because it depends on the value read from the
input file. Therefore, compilers cannot guarantee concurrent execution of some iterations
without errors, so, the loop of the line 19 is not parallelized. In these kind of codes we can
take advantage of speculative parallelization, and use our TLS runtime library.

Finally, from line 42 to 45 data calculated are checked by summing vector elements.

It may be interesting to describe the meaning of the variables used in the application
before starting the explanation of the process followed to speculatively parallelize this code.

+ NITER: The number of iterations of the loop.

« MAX: Vector size.

« aux: Used to store the value of an element of the vector.
« Q: Used to save indexes of the vector.

- P: It indicates current iteration of the loop.

« sum: It stores the sum of the elements of the vector at the end of the execution. It is
used only to check the results.

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

B.3 AN EXAMPLE OF USE | 177

// Synthetic application written in C //

// Requirements: 1input values should be higher than 0 //
#include <stdio.h>

#include <stdlib.h>

// Vector size

#define MAX 100

int vector[MAX];

// Number of iterations

#define NITER 1000000

int main() {
// Local variables: P = current iteration, Q = vector index
int P, Q, aux, i, sum=0;
FILE xfile;

if ((file = fopen("randl000000.1in", "r'")) == NULL) {
printf ("Error opening the file \n ");
exit(0);

} else {

fscanf(file, "%d", &aux);

for (i =0 ; i < MAX ; i++) {
vector[i] = aux;
fscanf(file, "%d", &aux);

}

fclose (file);

// Loop can not be parallelized because the index of the elements
// of the vector written depends on the input values of the file
for (P 1 ; P <= NITER ; P++) {

Q = P % (MAX+1);

aux = vector[Q-1];

Q = (4xaux)%(MAX+1);

vector[Q-1] = aux;
} // END for

printf(" Vector results \n");

for (i = 0; i < MAX; 1i++)
sum = sum + vector[i];

printf("%d\n",sum);

Listing B.1: Example of manually speculative parallelization: Sequential application.

178 | EXAMPLE OF USE OF THE TLS LIBRARY

B.3.2 Speculative Parallelization of the sequential application

In order to speculatively parallelize a sequential code there exist some questions that have to
be answered.

+ What lines should be parallelized? Firstly, it is necessary to know what are the lines of
the code that can be parallelized. It is a simple step in this example because there is a
single loop. If there had been several loops, all of them could have been speculatively
parallelized. Note that it is recommended that loops to be parallelized consist of a
high number of iterations in order to extract better performances. Obtaining good
performance is not the objective of the example shown, but to show how an application
could be parallelized.

In the case of nested loops only one of the loops can be parallelized, the outermost,
the innermost, or any of the intermediate loops.

« Which are the speculative variables? This question refers to those shared variables of
the loop that can induce dependence violations during a parallel execution. In the
example seen, four variables are used inside the loop, namely, P, Q, aux and vector.
The first three variables modify their values at the beginning of the loop, before their
usage. Therefore, they do not induce dependence violations and can be considered
private variables. On the other hand, the fourth variable is shared by all iterations
of the loop. If, while a given thread writes the position k of the vector, another one
reads the same position k, a dependence violation arises. So, the speculative variable
is vector, and its accesses should be protected.

Once answered these questions, the modification of the sequential application can be
started. First of all, we have to link the TLS runtime library files to the application path.

« specEngine.h. This is the header file in which the main functions and structures of the
speculative library are defined.

« speccode.c. It contains the implementation of the main functions used by the speculative
library.

« user_parameters.h. This file is used to check that all the required parameters are defined
correctly.

Once configured the parameters of the library, the original code can be modified. First,
we should declare the following two headers.
// speccode: OpenMP header file dincluded

#include <omp.h>

// speccode: Main header file with all common variables
#include

B.3 AN EXAMPLE OF USE | 179

The next step will be initialize the structures used by the library, and explicitly set the
number of threads.

// speccode: OMP threading directive
omp_set_num_threads(threads);

// Initialize data structures needed to speculative parallelism
specbegin(NITER);

Just before the beginning of the loop the following lines, related to the use of OpenMP,
should be written.

#pragma omp parallel default(none) \
private(Q, P, aux, iteration, ini, \
current, tid, retflag) \
shared(array, wheel_ns, wheel_ms, \
wheel, upper_limit, varblock)

{

#pragma omp for schedule(static)

Note that variables called iteration and ini are auxiliary and might be omitted.

Line 87 contains the OpenMP directive used to mark the start of the for loop which
will be parallelized. From line 87 to 91 the clauses of directive parallel for are found.
The default(none) clause indicates to OpenMP library what are the classification of
variables that will be performed manually, specifically, that no variable should be classified
automatically. Finally, line 93 indicates that the size of the chunks of iterations used will be
static (it does not mean that we cannot use dynamic scheduling in the speculative execution,
it is just an indicator to the OpenMP scheduler).

The loop statement:

| for (P=1; P<=NITER; P++)

is replaced by:
//for (P = 1; P <= NITER; P++)
for (tid = 0; tid <= threads - 1; tid++) {
ini = 1;

current = tid;
iteration = varblock[0] [current]+ini;

// If there is no work for this thread, go out.
if (iteration > upper_limit - 1)
goto labelSquash;

Hence, it is scheduled a single iteration of the transformed loop to the threads launched.
Note that ini is an auxiliary variable which marks the initial value to iterate, current is the
variable used to know the identity of a thread (also is optional), iteration is the auxiliary variable
used to manage the iteration of the loop to execute (since varblock is the data structure which
manage the scheduling), and upper_limit is the variable which contains the limit of the loop,
in this case NITER.

180 | EXAMPLE OF USE OF THE TLS LIBRARY

The following step will be search all lines where a speculative variable is used. In this
way, vector has been used in lines 37 and 39 of the sequential code. The first one is a load
operation, therefore, it is replaced by the specload() function (detailed in section 3.5.1).

//‘K*‘k**‘k*‘k**‘kk‘k**‘kk‘k***k‘k‘k*‘k**‘k*‘k**‘kk‘k**‘kk‘k‘k*‘kk‘k‘k*‘k****‘k***k‘k**‘kk‘k**‘kk‘k‘k*
// speccode: speculative load. Original line:
// aux = vector[Q-1];
if (specload((void *) &(vector[Q-1]), sizeof (vector[Q-1]), current,
(void %) &aux) == -1)
earlySquash();

[] KKK KKK K Kk kK ok kK ok kK ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok k ok

The earlySquash() function is also described in 3.5.1.
The second operation related to speculative variables is a store in the line 39 of the
sequential application. So it is modified (specstore() function is detailed in section 3.5.2).

//***
// speccode: speculative store. Original line:
// vector[Q-1] = aux;
specstore((void *) &(vector[Q-1]), sizeof (vector[Q-1]), current,
(void *) &aux);
//**********~k****~k************~)<****~k****~k********************************

Finally, we have to check if we have more iterations left to be executed, or otherwise call
the function which manages commitments, that is, threadend(). This operations are performed
with the following lines.

if ((iteration != varblock[1][current] + ini) && (iteration < NITER - 1)) {
iteration = diteration + 1;
goto labelStartIteration;

}

/* Thread done, perform the commit %/
labelSquash:
retflag = threadend(¤t);

/* End if job done %/

if (retflag == JOBDONE) goto labelEndLoop;
if (retflag == JOBTODO) {
/* Set loop variable */
iteration = varblock[0][current] + 1ini;
goto labelStartIteration;

}

Recall that threadend|() is the function responsible of managing the sliding window, com-
mitting it following the sequential order (call the commit_or_discard() function detailed in
section 3.5.3), and, if there are more iterations, it schedules some of them. Also note that
threadend() requires an argument, the identity of the thread that calls the function (used to
manage speculative order), and return a value (retflag in this case) to show whether the thread
may execute more iterations or not.

B.3 AN EXAMPLE OF USE | 181

B.3.3 Summary

Steps performed to speculatively parallelize an application can be resumed in:

1.

2.

3.

Identify the loop to be parallelized and its number of iterations.
Identify speculative variables.

Link the files of the speculative library to the path of the application.

. Add the headers of OpenMP and those related to the speculative library.
. Initialize the structures of the engine.

. Classify as private or shared the variables of the loop with the use of the OpenMP

directives.

. Change the original declaration of the loop.

. Replace load and store operations of the speculative variables with specload() and

specstore() functions respectively.

. Change the end of the loop with the lines that checks its limits, and with the threadend()

function which manages commitments.

The source code of this library is included in the package of the ATLaS framework which
can be found at http://atlas.infor.uva.es/.

http://atlas.infor.uva.es/

182 | EXAMPLE OF USE OF THE TLS LIBRARY

Bibliography

W. Richards Adrion. ‘Research Methodology in Software Engineering’ In: ACM SIGSOFT
Software Engineering Notes. Summary of the Dagstuhl Workshop on Future Directions in Software
Engineering, vol. 18, no. 1, 1993, pp. 36-37. ACM, 1993. por: 10.1145/157397.157399.

Yehuda Afek, Amir Levy and Adam Morrison. ‘Software-improved hardware lock elision’.
In: Proceedings of the 2014 ACM symposium on Principles of distributed computing. ACM. 2014,
pp. 212-221.

A. Aiken and A. Nicolau. ‘Optimal loop parallelization’. In: Proceedings of the ACM SIGPLAN
1988 conference on Programming Language design and Implementation. PLDI "88. Atlanta, Georgia,
USA: ACM, 1988, pp. 308-317. 1sBN: 0-89791-269-1. por: 10 . 1145 /53990 . 54021. URL:
http://doi.acm.org/10.1145/53990.54021.

Haitham Akkary and Michael A. Driscoll. ‘A Dynamic Multithreading Processor”. In: Proceedings
of the 31st Annual ACM/IEEE International Symposium on Microarchitecture. MICRO 31. Dallas,
Texas, USA: IEEE Computer Society Press, 1998, pp. 226-236. 1sBN: 1-58113-016-3. URL:
http://dl.acm.org/citation.cfm?id=290940.290988.

S. Aldea, A. Estebanez, D.R. Llanos and A. Gonzalez-Escribano. ‘An OpenMP Extension that
Supports Thread-Level Speculation’. In: IEEE Transactions on Parallel and Distributed Systems,
vol. PP, no. 99, 2015, pp. 1-14. 2015. 1ssn: 1045-9219. por: 10.1109/TPDS.2015.2393870.

S. Aldea, D.R. Llanos and A. Gonzélez-Escribano. “Towards a Compiler Framework for Thread-
Level Speculation’. In: Parallel, Distributed and Network-Based Processing (PDP), 2011 19th Eur-
omicro International Conference on. Ayia Napa, Cyprus: IEEE Computer Society, Feb. 2011,
pp- 267-271.por1: 10.1109/PDP.2011. 14.

Sergio Aldea. ‘Compile-Time Support for Thread-Level Speculation’. PhD thesis. Valladolid,
Spain: University of Valladolid, July 2014.

Sergio Aldea, Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘A New
GCC Plugin-Based Compiler Pass to Add Support for Thread-Level Speculation into OpenMP".
English. In: Euro-Par 2014 Parallel Processing. Ed. by Fernando Silva, Inés Dutra and Vitor Santos
Costa. Vol. 8632. Lecture Notes in Computer Science. Springer International Publishing, 2014,
pp. 234-245. 1sBN: 978-3-319-09872-2. por: 10 . 1007 /978 -3-319- 09873 -9 _20. URL:
http://dx.doi.org/10.1007/978-3-319-09873-9_20

Sergio Aldea, Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ATLaS:
Applied Thread-Level Speculation - User Manual. 2015.

-183-

http://dx.doi.org/10.1145/157397.157399
http://dx.doi.org/10.1145/53990.54021
http://doi.acm.org/10.1145/53990.54021
http://dl.acm.org/citation.cfm?id=290940.290988
http://dx.doi.org/10.1109/TPDS.2015.2393870
http://dx.doi.org/10.1109/PDP.2011.14
http://dx.doi.org/10.1007/978-3-319-09873-9_20
http://dx.doi.org/10.1007/978-3-319-09873-9_20

184 | BIBLIOGRAPHY

(13]

Sergio Aldea, Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘Study and
Evaluation of Transactional Memory approaches with a Software Thread-Level Speculation
Framework’. In: IEEE Transactions on Parallel and Distributed Systems. To be submitted.

Sergio Aldea, Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘Una ex-
tension para OpenMP que soporta paralelizacidn especulativa’. In: Proceedings of the XXV
Jornadas de Paralelismo. Valladolid, Spain, Sept. 2014. 1sBN: 978-84-697-0329-3.

Sergio Aldea, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘The Bonafide C Analyzer:
Automatic Loop-level Characterization and Coverage Measuremen’. English. In: The Journal
of Supercomputing, vol. 68, no. 3, 2014, pp. 1378-1401. Springer US, 2014. 1ssN: 0920-8542.
DOI: 10.1007/s11227-014-1091-3. URL: http://dx.doi.org/10.1007/s11227-014-
1091-3.

Sergio Aldea, Diego R. Llanos and Arturo Gonzéalez-Escribano. ‘Support for Thread-Level
Speculation into OpenMP". English. In: OpenMP in a Heterogeneous World. Ed. by BarbaraM.
Chapman, Federico Massaioli, MatthiasS. Miiller and Marco Rorro. Vol. 7312. Lecture Notes in
Computer Science. Springer Berlin Heidelberg, 2012, pp. 275-278. 1sBN: 978-3-642-30960-1.
DOI: 10.1007/978-3-642-30961-8_25. URL: http://dx.doi.org/10.1007/978-3-
642-30961-8_25.

José Nelson Amaral, Renee Elio, Jim Hoover, Ioanis Nikolaidis, Mohammad Salavatipour, Lorna
Stewart and Ken Wong. About Computing Science Research Methodology. 2007. urL: webdocs .
cs.ualberta.ca/~c603/readings/research-methods.pdf.

AMD Opteron 6300 Series processor - Quick Reference Guide. [Last visit: June 2015]. urL: https:
//www.amd.com/Documents/Opteron_6300_QRG.pdf.

William Aspray. ‘The Intel 4004 microprocessor: what constituted invention?’ In: Annals of the
History of Computing, IEEE, vol. 19, no. 3, July 1997, pp. 4-15. July 1997. 1ssN: 1058-6180. por:
10.1109/85.601727.

Woongki Baek, Chi Cao Minh, Martin Trautmann, Christos Kozyrakis and Kunle Olukotun.
‘The OpenTM Transactional Application Programming Interface’. In: 16th ISCA Proceedings.
IEEE Computer Society, 2007, pp. 376-387.

Joshua E. Barnes. TREE. Institute for Astronomy, University of Hawaii. http: //www.ifa.
hawaii.edu/~barnes/ftp/treecode/.Jan. 1997.

Joao Barreto, Aleksandar Dragojevic, Paulo Ferreira, Ricardo Filipe and Rachid Guerraoui.
‘Unifying thread-level speculation and transactional memory’. In: Proceedings of the 13th In-
ternational Middleware Conference. Middleware ’12. ontreal, Quebec, Canada: Springer-Verlag
New York, Inc., 2012, pp. 187-207. 1sBN: 978-3-642-35169-3. URL: http://dl.acm.org/
citation.cfm?id=2442626.2442639.

C. Bastoul. ‘Code generation in the polyhedral model is easier than you think’. In: Parallel Archi-
tecture and Compilation Techniques, 2004. PACT 2004. Proceedings. 13th International Conference
on. Sept. 2004, pp. 7-16. por: 10.1109/PACT.2004.1342537.

D. Baxter, R. Mirchandaney and J. H. Saltz. ‘Run-time Parallelization and Scheduling of Loops’.
In: Proceedings of the First Annual ACM Symposium on Parallel Algorithms and Architectures.
SPAA ’89. Santa Fe, New Mexico, USA: ACM, 1989, pp. 303-312. 1s8n: 0-89791-323-X. por:
10.1145/72935.72967. URL: http://doi.acm.org/10.1145/72935.72967.

http://dx.doi.org/10.1007/s11227-014-1091-3
http://dx.doi.org/10.1007/s11227-014-1091-3
http://dx.doi.org/10.1007/s11227-014-1091-3
http://dx.doi.org/10.1007/978-3-642-30961-8_25
http://dx.doi.org/10.1007/978-3-642-30961-8_25
http://dx.doi.org/10.1007/978-3-642-30961-8_25
webdocs.cs.ualberta.ca/~c603/readings/research-methods.pdf
webdocs.cs.ualberta.ca/~c603/readings/research-methods.pdf
https://www.amd.com/Documents/Opteron_6300_QRG.pdf
https://www.amd.com/Documents/Opteron_6300_QRG.pdf
http://dx.doi.org/10.1109/85.601727
http://www.ifa.hawaii.edu/~barnes/ftp/treecode/
http://www.ifa.hawaii.edu/~barnes/ftp/treecode/
http://dl.acm.org/citation.cfm?id=2442626.2442639
http://dl.acm.org/citation.cfm?id=2442626.2442639
http://dx.doi.org/10.1109/PACT.2004.1342537
http://dx.doi.org/10.1145/72935.72967
http://doi.acm.org/10.1145/72935.72967

(27]

(28]

B.3 BIBLIOGRAPHY | 185

Mikael Berndtsson, Jérgen Hansson, Bjorn Olsson and Bjérn Lundell. Thesis Projects, A Guide
for Students in Computer Science and Information Systems. 2nd. ISBN 978-1848000087. Springer,
Oct. 2007.

Arnamoy Bhattacharyya. ‘Do Inputs Matter?: Using Data-dependence Profiling to Evaluate
Thread Level Speculation in BG/Q’. In: Proceedings of the 22Nd International Conference on Parallel
Architectures and Compilation Techniques. PACT ’13. Edinburgh, Scotland, UK: IEEE Press, 2013,
pp. 401-402. 1sBN: 978-1-4799-1021-2. urL: http://dl.acm.org/citation.cfm?id=
2523721.2523775.

Arnamoy Bhattacharyya. ‘Using Combined Profiling to Decide when Thread Level Speculation
is Profitable’. In: Proceedings of the 21st International Conference on Parallel Architectures and
Compilation Techniques. PACT '12. Minneapolis, Minnesota, USA: ACM, 2012, pp. 483-484.
1sBN: 978-1-4503-1182-3. por: 10.1145/2370816.2370908. URL: http://doi.acm.org/
10.1145/2370816.2370908.

Arnamoy Bhattacharyya and José Nelson Amaral. ‘Automatic Speculative Parallelization of
Loops Using Polyhedral Dependence Analysis’. In: Proceedings of the First International Workshop
on Code OptimiSation for Multl and Many Cores. COSMIC ’13. Shenzhen, China: ACM, 2013,
1:1-1:9. 1sBN: 978-1-4503-1971-3. por: 10 . 1145 /2446920 .2446921. URL: http://doi .
acm.org/10.1145/2446920.2446921.

Anasua Bhowmik and Manoj Franklin. ‘A General Compiler Framework for Speculative Mul-
tithreading’. In: Proceedings of the Fourteenth Annual ACM Symposium on Parallel Algorithms
and Architectures. SPAA "02. Winnipeg, Manitoba, Canada: ACM, 2002, pp. 99-108. 1sBN:
1-58113-529-7. por: 10. 1145 /564870 . 564885. URL: http: //doi.acm.org/10.1145/
564870.564885.

Christian Bienia. ‘Benchmarking Modern Multiprocessors’. PhD thesis. Princeton University,
Jan. 2011.

G. E. Blelloch, G. L. Miller, J. C. Hardwick and D. Talmor. ‘Design and Implementation of a
Practical Parallel Delaunay Algorithm'’. In: Algorithmica, vol. 24, no. 3, July 1999, pp. 243-269.
July 1999.

Scott Elliott Breach. ‘Design and evaluation of a multiscalar processor’. AA19910432. PhD thesis.
The University of Wisconsin - Madison, 1998. 1saN: 0-599-31966-6.

Randal E. Bryant and David R. O’'Hallaron. Computer Systems: A Programmer’s Perspective. 2nd.
USA: Addison-Wesley Publishing Company, 2010. rssn: 0136108040, 9780136108047.

Dick Buttlar and Jacqueline Farrell. Pthreads programming: A POSIX standard for better multipro-
cessing. "O’Reilly Media, Inc.”, 1996.

Srihari Cadambi, Giuseppe Coviello, Cheng-Hong Li, Rajat Phull, Kunal Rao, Murugan Sank-
aradass and Srimat Chakradhar. ‘COSMIC: Middleware for High Performance and Reliable
Multiprocessing on Xeon Phi Coprocessors’. In: Proceedings of the 22Nd International Symposium
on High-performance Parallel and Distributed Computing. HPDC ’13. New York, New York, USA:
ACM, 2013, pp. 215-226. 1sBN: 978-1-4503-1910-2. por: 10.1145/2462902.2462921. URL:
http://doi.acm.org/10.1145/2462902.2462921.

http://dl.acm.org/citation.cfm?id=2523721.2523775
http://dl.acm.org/citation.cfm?id=2523721.2523775
http://dx.doi.org/10.1145/2370816.2370908
http://doi.acm.org/10.1145/2370816.2370908
http://doi.acm.org/10.1145/2370816.2370908
http://dx.doi.org/10.1145/2446920.2446921
http://doi.acm.org/10.1145/2446920.2446921
http://doi.acm.org/10.1145/2446920.2446921
http://dx.doi.org/10.1145/564870.564885
http://doi.acm.org/10.1145/564870.564885
http://doi.acm.org/10.1145/564870.564885
http://dx.doi.org/10.1145/2462902.2462921
http://doi.acm.org/10.1145/2462902.2462921

186 | BIBLIOGRAPHY

(33]

Panpan Cai, Yiyu Cai, Indhumathi Chandrasekaran and Jianmin Zheng. ‘A GPU-Enabled
Parallel Genetic Algorithm for Path Planning of Robotic Operators’. English. In: GPU Computing
and Applications. Ed. by Yiyu Cai and Simon See. Springer Singapore, 2015, pp. 1-13. 1sBN:
978-981-287-133-6. por: 10.1007/978-981-287-134-3_1. URL: http://dx.doi.org/
10.1007/978-981-287-134-3_1.

Harold W Cain, Maged M Michael, Brad Frey, Cathy May, Derek Williams and Hung Le. Robust
architectural support for transactional memory in the power architecture’. In: ACM SIGARCH
Computer Architecture News. Vol. 41. 3. ACM. 2013, pp. 225-236.

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis and Kunle Olukotun. ‘STAMP: Stanford
Transactional Applications for Multi-Processing’. In: Workload Characterization, 2008. IISWC
2008. IEEE International Symposium on. Seattle, WA, USA: IEEE Computer Society, Sept. 2008,
pp. 35-46.por: 10.1109/IISWC.2008.4636089.

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis and Kunle Olukotun. ‘STAMP: Stan-
ford Transactional Applications for Multi-Processing’. In: IISWC "08: Proceedings of The IEEE
International Symposium on Workload Characterization. Sept. 2008.

Zhen Cao and C. Verbrugge. ‘Mixed Model Universal Software Thread-Level Speculation’. In:
Parallel Processing (ICPP), 2013 42nd International Conference on. Lyon,France: IEEE Computer
Society, Oct. 2013, pp. 651-660. por: 10.1109/ICPP.2013.79.

Luis Ceze, James Tuck, Josep Torrellas and Calin Cascaval. ‘Bulk Disambiguation of Speculative
Threads in Multiprocessors’. In: Proceedings of the 33rd annual international symposium on Com-
puter Architecture. ISCA ’06. Washington, DC, USA: IEEE Computer Society, 2006, pp. 227-238.
1sBN: 0-7695-2608-X. por: 10.1109/ISCA.2006.13. URL: http://dx.doi.org/10.1109/
ISCA.2006.13.

Luis Ceze, James Tuck, Josep Torrellas and Calin Cascaval. ‘Bulk disambiguation of speculative
threads in multiprocessors’ In: ACM SIGARCH Computer Architecture News, vol. 34, no. 2, 2006,
pp. 227-238. 2006.

Rohit Chandra, Ramesh Menon, Leo Dagum, David Kohr, Dror Maydan and Jeff McDonald.
Parallel Programming in OpenMP. 1st ed. San Francisco, California, USA: Morgan Kaufmann,
Oct. 2000. 1s8N: 1558606718.

Sai Charan Koduru, Keval Vora and Rajesh Gupta. ‘ABC2: Adaptively Balancing Computation
and Communication in a DSM Cluster of Multicores for Irregular Applications’. In: Parallel
«# Distributed Processing Symposium Workshops IPDPSW), 2014 IEEE International. IEEE. 2014,
pp- 391-400.

Benbin Chen and Donghui Guo. ‘A static scheduling scheme of multicore compiler for loop
load imbalance in OpenMP’. In: Anti-counterfeiting, Security, and Identification (ASID), 2014
International Conference on. Dec. 2014, pp. 1-4. por: 10.1109/ICASID.2014.7064954.

Ding Kai Chen, Josep Torrellas and Pen Chung Yew. ‘An Efficient Algorithm for the Run-time
Parallelization of DOACROSS Loops. In: Proceedings of the 1994 ACM/IEEE Conference on
Supercomputing. Supercomputing ‘94. Washington, D.C.: IEEE Computer Society Press, 1994,
pp- 518-527. 1sBN: 0-8186-6605-6. URL: http://dl.acm.org/citation.cfm?id=602770.
602857.

http://dx.doi.org/10.1007/978-981-287-134-3_1
http://dx.doi.org/10.1007/978-981-287-134-3_1
http://dx.doi.org/10.1007/978-981-287-134-3_1
http://dx.doi.org/10.1109/IISWC.2008.4636089
http://dx.doi.org/10.1109/ICPP.2013.79
http://dx.doi.org/10.1109/ISCA.2006.13
http://dx.doi.org/10.1109/ISCA.2006.13
http://dx.doi.org/10.1109/ISCA.2006.13
http://dx.doi.org/10.1109/ICASID.2014.7064954
http://dl.acm.org/citation.cfm?id=602770.602857
http://dl.acm.org/citation.cfm?id=602770.602857

(46]

(47]

B.3 BIBLIOGRAPHY | 187

M.K. Chen and K. Olukotun. ‘Exploiting method-level parallelism in single-threaded Java
programs’. In: Proceedings of the 1998 International Conference on Parallel Architectures and Compil-
ation Techniques. PACT "98. Washington, DC, USA: IEEE Computer Society, 1998, pp. 176-184.
DOI: 10.1109/PACT.1998.727190.

Peng-Sheng Chen, Ming-Yu Hung, Yuan-Shin Hwang, Roy Dz-Ching Ju and Jenq Kuen Lee.
‘Compiler Support for Speculative Multithreading Architecture with Probabilistic Points-to
Analysis’. In: Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. PPoPP "03. San Diego, California, USA: ACM, 2003, pp. 25-36. ISBN:
1-58113-588-2. por: 10.1145/781498.781502. uRL: http://doi.acm.org/10.1145/
781498.781502.

Tong Chen, Jin Lin, Xiaoru Dai, Wei-Chung Hsu and Pen-Chung Yew. ‘Data Dependence
Profiling for Speculative Optimizations’. In: Compiler Construction. Ed. by Evelyn Duesterwald.
Vol. 2985. Lecture Notes in Computer Science. Berlin Heidelberg: Springer, 2004, pp. 57-72.
ISBN: 978-3-540-21297-3. por: 10. 1007 /978-3-540-24723-4_5. URL: http://dx.do1.
org/10.1007/978-3-540-24723-4_5.

Dave Christie, Jae-Woong Chung, Stephan Diestelhorst, Michael Hohmuth, Martin Pohlack,
Christof Fetzer, Martin Nowack, Torvald Riegel, Pascal Felber, Patrick Marlier and Etienne
Riviére. ‘Evaluation of AMD’s Advanced Synchronization Facility Within a Complete Trans-
actional Memory Stack’. In: Proceedings of the 5th European Conference on Computer Systems.
EuroSys '10. Paris, France, 2010, pp. 27-40. 1sBN: 978-1-60558-577-2.por: 10.1145/1755913.
1755918.

Marcelo Cintra and Diego R. Llanos. ‘Design Space Exploration of a Software Speculative
Parallelization Scheme’. In: IEEE Trans. on Paral. and Distr. Systems, vol. 16, no. 6, June 2005,
pp- 562-576. June 2005.

Marcelo Cintra and Diego R. Llanos. “Toward Efficient and Robust Software Speculative
Parallelization on Multiprocessors’. In: Proceedings of the Ninth ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming. PPoPP '03. San Diego, California, USA: ACM,
2003, pp. 13-24. 1sBN: 1-58113-588-2. por: 10.1145/781498.781501. URL: http://doi .
acm.org/10.1145/781498.781501.

Marcelo Cintra, Diego R. Llanos and Belén Palop. ‘Speculative Parallelization of a Randomized
Incremental Convex Hull Algorithm. In: ICCSA 2004 Proc. Intl. Conf. on Computer Science
and its Applications. LNCS 3045, ISSN 0302-9743. Perugia, Italy: Springer-Verlag, May 2004,
pp. 188-197.

Marcelo Cintra, José F. Martinez and Josep Torrellas. ‘Architectural Support for Scalable
Speculative Parallelization in Shared-memory Multiprocessors’. In: Proceedings of the 27th
Annual International Symposium on Computer Architecture. ISCA’00. Vancouver, British Columbia,
Canada: ACM, 2000, pp. 13-24. 1sBN: 1-58113-232-8. por: 10.1145/339647 .363382. URL:
http://doi.acm.org/10.1145/339647.363382.

Marcelo Cintra and Josep Torrellas. ‘Eliminating Squashes Through Learning Cross-Thread
Violations in Speculative Parallelization for Multiprocessors’. In: Proceedings of the 8th Inter-
national Symposium on High-Performance Computer Architecture. HPCA '02. Washington, DC,
USA: [EEE Computer Society, 2002, pp. 43—. urL: http://dl.acm.org/citation.cfm?
id=874076.876479.

http://dx.doi.org/10.1109/PACT.1998.727190
http://dx.doi.org/10.1145/781498.781502
http://doi.acm.org/10.1145/781498.781502
http://doi.acm.org/10.1145/781498.781502
http://dx.doi.org/10.1007/978-3-540-24723-4_5
http://dx.doi.org/10.1007/978-3-540-24723-4_5
http://dx.doi.org/10.1007/978-3-540-24723-4_5
http://dx.doi.org/10.1145/1755913.1755918
http://dx.doi.org/10.1145/1755913.1755918
http://dx.doi.org/10.1145/781498.781501
http://doi.acm.org/10.1145/781498.781501
http://doi.acm.org/10.1145/781498.781501
http://dx.doi.org/10.1145/339647.363382
http://doi.acm.org/10.1145/339647.363382
http://dl.acm.org/citation.cfm?id=874076.876479
http://dl.acm.org/citation.cfm?id=874076.876479

188 | BIBLIOGRAPHY

(61]

K. L. Clarkson, K. Mehlhorn and R. Seidel. ‘Four results on randomized incremental construc-
tions’. In: Comput. Geom. Theory Appl. Vol. 3, no. 4, 1993, pp. 185-212. 1993.

Michele Co, Dee A. B. Weikle and Kevin Skadron. ‘Evaluating Trace Cache Energy Efficiency’.
In: ACM Trans. Archit. Code Optim. Vol. 3, no. 4, Dec. 2006, pp. 450-476. New York, NY,
USA: ACM, Dec. 2006. 1ssn: 1544-3566. por: 10 . 1145/ 1187976 . 1187980. URL: http :
//doi.acm.org/10.1145/1187976.1187980.

L. Codrescu and D.S. Wills. ‘Architecture of the Atlas chip-multiprocessor: dynamically par-
allelizing irregular applications’. In: Proceedings of the 1999 IEEE International Conference on
Computer Design. ICCD ’99. Washington, DC, USA: IEEE Computer Society, 1999, pp. 428-435.
15BN: 0-7695-0406-X. por: 10.1109/ICCD.1999.808577.

Lucian Codrescu, D. Scott Wills and James Meindl. ‘Architecture of the Atlas Chip Multipro-
cessor: Dynamically Parallelizing Irregular Applications’. In: IEEE Transactions on Computers,
vol. 50, no. 1, Jan. 2001, pp. 67-82. Washington, DC, USA: IEEE Computer Society, Jan. 2001.
1ssN: 0018-9340. por: 10.1109/12.902753. urL: http://dx.doi.org/10.1109/12.
902753.

Christopher B. Colohan, Anastassia Ailamaki,]. Gregory Steffan and Todd C. Mowry. “Tolerating
Dependences Between Large Speculative Threads Via Sub-Threads’. In: Proceedings of the 33rd
Annual International Symposium on Computer Architecture. ISCA’06. Washington, DC, USA: [EEE
Computer Society, 2006, pp. 216-226. 1sBN: 0-7695-2608-X. por: 10.1109/ISCA.2006.43.
URL: http://dx.doi.org/10.1109/ISCA.2006.43.

Tim Cramer, Dirk Schmidl, Michael Klemm and Dieter an Mey. ‘OpenMP Programming on
Intel R Xeon Phi TM Coprocessors: An Early Performance Comparison’. In: 2012. 2012.

Leonardo Dagum and Ramesh Menon. ‘OpenMP: An Industry-Standard API for Shared-
Memory Programming’. In: IEEE Comput. Sci. Eng. Vol. 5, no. 1, Jan. 1998, pp. 46-55. Los
Alamitos, CA, USA: IEEE Computer Society Press, Jan. 1998. 1ssN: 1070-9924. por: 10.1109/
99.660313. URL: http://dx.doi.org/10.1109/99.660313.

Wenbo Dai, Hong An, Qi Li, Gongming Li, Bobin Deng, Shilei Wu, Xiaomei Li and Yu Liu.
‘A Priority-Aware NoC to Reduce Squashes in Thread Level Speculation for Chip Multipro-
cessors”. In: Proceedings of the 2011 IEEE Ninth International Symposium on Parallel and Distrib-
uted Processing with Applications. ISPA "11. Washington, DC, USA: IEEE Computer Society,
2011, pp. 87-92. 1sBN: 978-0-7695-4428-1. por: 10 . 1109 / ISPA . 2011 . 21. UrRL: http:
//dx.doi.org/10.1109/ISPA.2011.21.

Francis Dang, Hoo Yu and Lawrence Rauchwerger. ‘The R-LRPD Test: Speculative Parallel-
ization of Partially Parallel Loops” In: Proceedings of the 16th International Parallel and Dis-
tributed Processing Symposium. IPDPS "02. Washington, DC, USA: IEEE Computer Society,
Apr. 2002, pp. 318-327. 1sBN: 0-7695-1573-8. por: 10. 1109 /IPDPS. 2002 .1015493. URL:
http://dl.acm.org/citation.cfm?id=645610.662024.

Bobin Deng, Hong An, Qi Li, Gongming Li and Mengjie Mao. ‘Value Predicted LogSPoTM:
Improve the Parallesim of Thread Level System by Using a Value Predictor’. In: Proceedings of
the 2012 IEEE/ACIS 11th International Conference on Computer and Information Science. ICIS °12.
Washington, DC, USA: IEEE Computer Society, 2012, pp. 130-135. 1sBN: 978-0-7695-4694-0.
DOI: 10.1109/ICIS.2012.116.URL: http://dx.doi.org/10.1109/ICIS.2012.116.

http://dx.doi.org/10.1145/1187976.1187980
http://doi.acm.org/10.1145/1187976.1187980
http://doi.acm.org/10.1145/1187976.1187980
http://dx.doi.org/10.1109/ICCD.1999.808577
http://dx.doi.org/10.1109/12.902753
http://dx.doi.org/10.1109/12.902753
http://dx.doi.org/10.1109/12.902753
http://dx.doi.org/10.1109/ISCA.2006.43
http://dx.doi.org/10.1109/ISCA.2006.43
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1109/99.660313
http://dx.doi.org/10.1109/ISPA.2011.21
http://dx.doi.org/10.1109/ISPA.2011.21
http://dx.doi.org/10.1109/ISPA.2011.21
http://dx.doi.org/10.1109/IPDPS.2002.1015493
http://dl.acm.org/citation.cfm?id=645610.662024
http://dx.doi.org/10.1109/ICIS.2012.116
http://dx.doi.org/10.1109/ICIS.2012.116

(63]

B.3 BIBLIOGRAPHY | 189

L. Devroye, E. P. Miicke and Binhai Zhu. ‘A Note on Point Location in Delaunay Triangulations
of Random Points’ English. In: Algorithmica, vol. 22, no. 4, 1998, pp. 477-482. Springer-Verlag,
1998. 1ssN: 0178-4617. por: 10.1007 /PLOOO09234. URL: http://dx.doi.org/10.1007/
PLOO009234.

G. Diamos and S. Yalamanchili. ‘Speculative execution on multi-GPU systems’. In: Parallel
Distributed Processing (IPDPS), 2010 IEEE International Symposium on. Atlanta, GA, USA: IEEE
Computer Society, Apr. 2010, pp. 1-12. por: 10.1109/IPDPS.2010.5470427.

Pedro Diaz, Diego R. Llanos and Belén Palop. Parallelizing 2D-Convex Hulls on clusters:
Sorting matters’. In: Proc. XV Jornadas de Paralelismo. ISBN 84-8240-714-7. Almeria, Spain, Sept.
2004, pp. 247-252.

Dave Dice, Yossi Lev, Mark Moir, Dan Nussbaum and Marek Olszewski. Early experience with
a commercial hardware transactional memory implementation. Tech. rep. 2009.

Dave Dice, Ori Shalev and Nir Shavit. ‘“Transactional Locking II' In: Proceedings of the 20th
International Conference on Distributed Computing. DISC’06. Stockholm, Sweden, 2006, pp. 194-
208. 1sBN: 3-540-44624-9, 978-3-540-44624-8.

Chen Ding, Xipeng Shen, Kirk Kelsey, Chris Tice, Ruke Huang and Chengliang Zhang. ‘Software
behavior oriented parallelization’. In: Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation. PLDI '07. San Diego, California, USA: ACM,
2007, pp. 223-234. 1sBN: 978-1-59593-633-2. por: 10.1145/1250734.1250760. URL: http:
//doi.acm.org/10.1145/1250734.1250760.

Kaivalya M Dixit. Overview of the SPEC Benchmarks. 1993.

Gordana Dodig-Crnkovic. ‘Scientific methods in computer science’. In: Proceedings of the Con-
ference for the Promotion of Research in IT at New Universities and at University Colleges in Sweden,
Skovde, Suecia. 2002, pp. 126-130.

Yong Dong, Juan Chen, Xuejun Yang, Lin Deng and Xuemeng Zhang. ‘Energy-Oriented
OpenMP Parallel Loop Scheduling’. In: Parallel and Distributed Processing with Applications, 2008.
ISPA "08. International Symposium on. Dec. 2008, pp. 162-169. por: 10.1109/ISPA.2008.68.

Jialin Dou and Marcelo Cintra. ‘A compiler cost model for speculative parallelization’. In: ACM
Trans. Archit. Code Optim. Vol. 4, no. 2, June 2007, pp. 71-81. New York, NY, USA: ACM, June
2007. 1ssN: 1544-3566. por: 10.1145/1250727.1250732. URL: http://doi.acm.org/10.
1145/1250727.1250732.

Jialin Dou and Marcelo Cintra. ‘Compiler Estimation of Load Imbalance Overhead in Specu-
lative Parallelization’ In: Proceedings of the 13th International Conference on Parallel Architectures
and Compilation Techniques. PACT 04. Washington, DC, USA: IEEE Computer Society, 2004,
pp- 203-214. 1sBN: 0-7695-2229-7. por: 10 . 1109 /PACT . 2004 . 12. URL: http: //dx.do1i.
org/10.1109/PACT.2004.12.

Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘A survey on Thread-Level
Speculation Techniques’. In: ACM Computing Surveys (CSUR). Accepted for publication.

Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘Desarrollo de un motor
de paralelizacién especulativa con soporte para aritmética de punteros’. In: Proceedings of the
XXIII Jornadas de Paralelismo. Elche, Alicante, Spain: Servicio de Publicaciones de la Universidad
Miguel Hernandez, Sept. 2012. 1sBN: 978-84-695-4471-6.

http://dx.doi.org/10.1007/PL00009234
http://dx.doi.org/10.1007/PL00009234
http://dx.doi.org/10.1007/PL00009234
http://dx.doi.org/10.1109/IPDPS.2010.5470427
http://dx.doi.org/10.1145/1250734.1250760
http://doi.acm.org/10.1145/1250734.1250760
http://doi.acm.org/10.1145/1250734.1250760
http://dx.doi.org/10.1109/ISPA.2008.68
http://dx.doi.org/10.1145/1250727.1250732
http://doi.acm.org/10.1145/1250727.1250732
http://doi.acm.org/10.1145/1250727.1250732
http://dx.doi.org/10.1109/PACT.2004.12
http://dx.doi.org/10.1109/PACT.2004.12
http://dx.doi.org/10.1109/PACT.2004.12

190 | BIBLIOGRAPHY

(76]

(77]

(86]

Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘Desarrollo de un motor de
paralelizacién especulativa con soporte para aritmética de punteros’ Trabajo de Fin de Grado.
Universidad de Valladolid, July 2012.

Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘Evaluating the capabilities
of the Xeon Phi platform in the context of software-only, thread-level speculation’. In: Proceed-
ings of the 8th International Symposium on High-level Parallel Programming and Applications. HLPP
"15. Pisa, Italy: ACM, 2015.

Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. Tmproving the Perfo-
mance of a Pointer-Based, Speculative Parallelization Scheme’. MA thesis. Spain: University of
Valladolid, July 2013.

Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. Tmproving the Perfomance
of a Pointer-Based, Speculative Parallelization Scheme’. In: Proceedings of the Ist First Congress
on Multicore and GPU Programming. PPGM’14. Granada, Spain, Feb. 2014.

Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘New Data Structures to
Handle Speculative Parallelization at Runtime’. In: Proceedings of the 7th International Symposium
on High-level Parallel Programming and Applications. HLPP ’14. Amsterdam, Netherlands: ACM,
2014, pp. 239-258.

Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘New Data Structures
to Handle Speculative Parallelization at Runtime’. English. In: International Journal of Parallel
Programming, 2015, pp. 1-20. Springer US, 2015. 1ssn: 0885-7458. por: 10.1007 /s10766-
014-0347-0.URL: http://dx.doi.org/10.1007/s10766-014-0347-0.

Alvaro Estebanez, Diego R. Llanos and Arturo Gonzalez-Escribano. Paralelizacién especulativa
de un algoritmo para el menor circulo contenedor’. Proyecto de Fin de Carrera. Universidad de
Valladolid, Sept. 2011.

Alvaro Estebanez, Diego R. Llanos, David Orden and Belen Palop. ‘Moody Scheduling for
Speculative Parallelization’. English. In: Euro-Par 2015: Parallel Processing. Ed. by Jesper Larsson
Traff, Sascha Hunold and Francesco Versaci. Vol. 9233. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2015, pp. 135-146. 1sBN: 978-3-662-48095-3. por: 10.1007/978~
3-662-48096-0_11. URL: http://dx.doi.org/10.1007/978-3-662-48096-0_11.

Xu Fan, Shen Li and Wang Zhiying. ‘HVD-TLS: A Novel Framework of Thread Level Specula-
tion”. In: Proceedings of the 2012 IEEE 11th International Conference on Trust, Security and Privacy
in Computing and Communications. TRUSTCOM ’12. Washington, DC, USA: IEEE Computer
Society, 2012, pp. 1912-1917. 1sBN: 978-0-7695-4745-9. po1: 10.1109/TrustCom.2012.176.
URL: http://dx.doi.org/10.1109/TrustCom.2012.176.

Jianbin Fang, Henk Sips, LiLun Zhang, Chuanfu Xu, Yonggang Che and Ana Lucia Varban-
escu. ‘Test-driving Intel Xeon Phi’. In: Proceedings of the 5th ACM/SPEC International Confer-
ence on Performance Engineering. ICPE "14. Dublin, Ireland: ACM, 2014, pp. 137-148. 1sBN:
978-1-4503-2733-6. por: 10.1145/2568088.2576799. URL: http://doi.acm.org/10.
1145/2568088.2576799.

Pascal Felber, Christof Fetzer, Patrick Marlier and Torvald Riegel. ‘Time-based Software
Transactional Memory’. In: IEEE Transactions on Parallel and Distributed Systems, vol. 21, no. 12,
Dec. 2010, pp. 1793-1807. Dec. 2010. 1ssN: 1045-9219. por: 10.1109/TPDS.2010.49.

http://dx.doi.org/10.1007/s10766-014-0347-0
http://dx.doi.org/10.1007/s10766-014-0347-0
http://dx.doi.org/10.1007/s10766-014-0347-0
http://dx.doi.org/10.1007/978-3-662-48096-0_11
http://dx.doi.org/10.1007/978-3-662-48096-0_11
http://dx.doi.org/10.1007/978-3-662-48096-0_11
http://dx.doi.org/10.1109/TrustCom.2012.176
http://dx.doi.org/10.1109/TrustCom.2012.176
http://dx.doi.org/10.1145/2568088.2576799
http://doi.acm.org/10.1145/2568088.2576799
http://doi.acm.org/10.1145/2568088.2576799
http://dx.doi.org/10.1109/TPDS.2010.49

01

(92]

B.3 BIBLIOGRAPHY | 191

Pascal Felber, Christof Fetzer and Torvald Riegel. ‘Dynamic Performance Tuning of Word-Based
Software Transactional Memory'. In: PPoPP ‘08 Proceedings. 2008, pp. 237-246.

Pascal Felber, Etienne Riviere, Walther Maldonado Moreira, Derin Harmanci, Patrick Marlier,
Stephan Diestelhorst, Michael Hohmuth, Martin Pohlack, Adrian Cristal, Ibrahim Hur et al.
“The velox transactional memory stack’. In: Micro, IEEE, vol. 30, no. 5, 2010, pp. 76-87. 2010.

Min Feng, Rajiv Gupta and Laxmi N Bhuyan. ‘Optimistic Parallelism on GPUSs'. In: Languages
and Compilers for Parallel Computing. Springer, 2014, pp. 3-18.

Min Feng, Rajiv Gupta and Laxmi N. Bhuyan. ‘Speculative Parallelization on GPGPUS’ In:
Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
PPoPP ’12. New Orleans, Louisiana, USA: ACM, 2012, pp. 293-294. 1sBN: 978-1-4503-1160-1.
DOI: 10 . 1145 /2145816 .2145860. URL: http://doi.acm.org/10.1145 /2145816 .
2145860.

Min Feng, Rajiv Gupta and Yi Hu. ‘SpiceC: Scalable Parallelism via Implicit Copying and Explicit
Commit’. In: Proceedings of the 16th ACM Symposium on Principles and Practice of Parallel Program-
ming. PPoPP '11. San Antonio, TX, USA: ACM, 2011, pp. 69-80. 1s8N: 978-1-4503-0119-0. por:
10.1145/1941553.1941564. URL: http://doi.acm.org/10.1145/1941553.1941564.

Min Feng, Rajiv Gupta and Iulian Neamtiu. ‘Effective parallelization of loops in the presence
of I/O operations’. In: Proceedings of the 33rd ACM SIGPLAN conference on Programming Lan-
guage Design and Implementation. PLDI "12. Beijing, China: ACM, 2012, pp. 487-498. 1sBN:
978-1-4503-1205-9. por: 10.1145 /2254064 .2254122. URL: http://doi.acm.org/10.
1145/2254064.2254122.

Min Feng, Changhui Lin and Rajiv Gupta. ‘PLDS: Partitioning Linked Data Structures for
Parallelism’. In: ACM Trans. Archit. Code Optim. Vol. 8, no. 4, Jan. 2012, 38:1-38:21. New
York, NY, USA: ACM, Jan. 2012. 1ssN: 1544-3566. por: 10 . 1145 /2086696 . 2086717. URL:
http://doi.acm.org/10.1145/2086696.2086717.

Manoj Franklin and Gurindar S. Sohi. ‘ARB: A Hardware Mechanism for Dynamic Reordering
of Memory References’. In: IEEE Trans. Comput. Vol. 45, no. 5, May 1996, pp. 552-571. Washing-
ton, DC, USA: IEEE Computer Society, May 1996. 1ssn: 0018-9340. por: 10.1109/12.509907.
URL: http://dx.doi.org/160.1109/12.509907.

Ricardo Freitas. ‘Scientific Research Methods and Computer Science’. In: Proceedings of the
MAP-I Seminars Workshop. Porto, Portugal, 2009.

Lin Gao, Lian Li, Jingling Xue and Pen-Chung Yew. ‘SEED: A Statically-Greedy and
Dynamically-Adaptive Approach for Speculative Loop Execution’ In: IEEE Transactions
on Computers, vol. 62, no. 5, 2013, pp. 1004-1016. Los Alamitos, CA, USA: IEEE Computer
Society, 2013. 1ssN: 0018-9340. por: http://doi.ieeecomputersociety.org/10.1109/
TC.2012.41.

Alvaro Garcia-Yaguez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘Squashing Alternatives
for Software-based Speculative Parallelization’. In: IEEE Transactions on Computers, vol. 63,no.7,
2014, pp. 1826-1839. Los Alamitos, CA, USA: IEEE Computer Society, 2014. 1ssN: 0018-9340.

http://dx.doi.org/10.1145/2145816.2145860
http://doi.acm.org/10.1145/2145816.2145860
http://doi.acm.org/10.1145/2145816.2145860
http://dx.doi.org/10.1145/1941553.1941564
http://doi.acm.org/10.1145/1941553.1941564
http://dx.doi.org/10.1145/2254064.2254122
http://doi.acm.org/10.1145/2254064.2254122
http://doi.acm.org/10.1145/2254064.2254122
http://dx.doi.org/10.1145/2086696.2086717
http://doi.acm.org/10.1145/2086696.2086717
http://dx.doi.org/10.1109/12.509907
http://dx.doi.org/10.1109/12.509907
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TC.2012.41
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TC.2012.41

192 | BIBLIOGRAPHY

(98]

(99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

Alvaro Garcia-Yagiiez, Diego R. Llanos and Arturo Gonzalez-Escribano. ‘Exclusive squashing
for thread-level speculation’. In: Proceedings of the 20th international symposium on High perform-
ance distributed computing. HPDC ’11. San Jose, California, USA: ACM, 2011, pp. 275-276. IsBN:
978-1-4503-0552-5. por: 10.1145/1996130.1996172. URL: http://doi.acm.org/10.
1145/19961360.1996172.

Alvaro Garcia-Yaguez, Diego R. Llanos, David Orden and Belen Palop. ‘Paralelizacién especu-
lativa de la triangulacién de Delaunay’. In: Proc. XX Jornadas de Paralelismo. A Coruia, Spain,
Sept. 2009.

Maria Jesus Garzaran, Milos Prvulovic, José Maria Llaberia, Victor Vinals, Lawrence Rauchwer-
ger and Josep Torrellas. “Tradeoffs in buffering speculative memory state for thread-level specula-
tion in multiprocessors’ In: ACM Trans. Archit. Code Optim. Vol. 2, no. 3, Sept. 2005, pp. 247-279.
New York, NY, USA: ACM, Sept. 2005. 1ssn: 1544-3566. por: 10.1145/1089008.1089010.
URL: http://0-doi.acm.org.almena.uva.es/10.1145/1089008.1089010.

Maria Jests Garzaran, Milos Prvulovic, Victor Vifials, José Maria Llaberia, Lawrence Rauch-
werger and Josep Torrellas. ‘Using Software Logging to Support Multi-Version Buffering in
Thread-Level Speculation’. In: Proceedings of the 12th International Conference on Parallel Architec-
tures and Compilation Techniques. PACT "03. Washington, DC, USA: IEEE Computer Society,
2003, pp. 170—-. 1sBN: 0-7695-2021-9. urL: http: //dl.acm.org/citation.cfm?id=
942806.943847.

GNU Project. GCC Internals. http: //gcc.gnu.org/onlinedocs/gccint/. [Last visit:
June 2015].

GNU Project. GCC, the GNU Compiler Collection. http://gcc.gnu.org/. [Last visit: June
2015].

Arturo Gonzalez-Escribano, Diego R. Llanos, David Orden and Belén Palop. ‘Parallelization
alternatives and their performance for the convex hull problem’ In: Applied Mathematical
Modelling, special issue on Parallel and Vector Processing in Science and Engineering, vol. 30, no. 7,
July 2006. ISSN 0307-904X, pp. 563-577. July 2006.

S. Gopal, T. N. Vijaykumar, J.E. Smith and G.S. Sohi. ‘Speculative versioning cache’. In: Proceed-
ings of the 4th International Symposium on High-Performance Computer Architecture. HPCA '98.
Washington, DC, USA: IEEE Computer Society, 1998, pp. 195-205. 1sBN: 0-8186-8323-6. por:
10.1109/HPCA.1998.650559. URL: http://dl.acm.org/citation.cfm?id=822079.
822729.

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. 1st. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1992. 1s3n: 1558601902.

Rui Guo, Hong An, Ruiling Dou, Ming Cong, Yaobin Wang and Qi Li. ‘LogSPoTM: a scalable
thread level speculation model based on transactional memory’. In: Computer Systems Architecture
Conference, 2008. ACSAC 2008. 13th Asia-Pacific. Washington, DC, USA: IEEE Computer Society,
2008, pp. 1-8.por: 10.1109/APCSAC.2008.4625443.

Manish Gupta and Rahul Nim. “Techniques for Speculative Run-time Parallelization of Loops’.
In: Proceedings of the 1998 ACM/IEEE Conference on Supercomputing. SC ’98. San Jose, CA:
IEEE Computer Society, 1998, pp. 1-12. 1s8N: 0-89791-984-X. urL: http://dl.acm.org/
citation.cfm?id=509058.509070.

http://dx.doi.org/10.1145/1996130.1996172
http://doi.acm.org/10.1145/1996130.1996172
http://doi.acm.org/10.1145/1996130.1996172
http://dx.doi.org/10.1145/1089008.1089010
http://0-doi.acm.org.almena.uva.es/10.1145/1089008.1089010
http://dl.acm.org/citation.cfm?id=942806.943847
http://dl.acm.org/citation.cfm?id=942806.943847
http://gcc.gnu.org/onlinedocs/gccint/
http://gcc.gnu.org/
http://dx.doi.org/10.1109/HPCA.1998.650559
http://dl.acm.org/citation.cfm?id=822079.822729
http://dl.acm.org/citation.cfm?id=822079.822729
http://dx.doi.org/10.1109/APCSAC.2008.4625443
http://dl.acm.org/citation.cfm?id=509058.509070
http://dl.acm.org/citation.cfm?id=509058.509070

[109]

[110]

[111]

(112)

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

B.3 BIBLIOGRAPHY | 193

M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge and R.B. Brown. ‘MiBench: A
free, commercially representative embedded benchmark suite’. In: Workload Characterization,
2001. WWC-4. 2001 IEEE International Workshop on. Washington, DC, USA: IEEE Computer
Society, Dec. 2001, pp. 3-14. por: 10.1109/WWC.2001.990739.

Torben Hagerup. ‘Allocating Independent Tasks to Parallel Processors: An Experimental Study.
In: J. Parallel Distrib. Comput. Vol. 47, no. 2, 1997, pp. 185-197. 1997.

Robert H. Halstead Jr. ‘MULTILISP: a language for concurrent symbolic computation’. In: ACM
Trans. Program. Lang. Syst. Vol. 7, no. 4, Oct. 1985, pp. 501-538. New York, NY, USA: ACM, Oct.
1985. 1ssN: 0164-0925. por: 10.1145/4472 . 4478. URL: http://doi.acm.org/10.1145/
4472 .4478.

Lance Hammond, Benedict A. Hubbert, Michael Siu, Manohar K. Prabhu, Michael Chen and
Kunle Olukotun. ‘The Stanford Hydra CMP"’. In: IEEE Micro, vol. 20, no. 2, Mar. 2000, pp. 71—
84. Los Alamitos, CA, USA: IEEE Computer Society Press, Mar. 2000. 1ssN: 0272-1732. por:
10.1109/40.848474. urL: http://dx.doi.org/10.1109/40.848474.

Lance Hammond, Mark Willey and Kunle Olukotun. ‘Data Speculation Support for a Chip
Multiprocessor’. In: Proceedings of the Eighth International Conference on Architectural Support
for Programming Languages and Operating Systems. ASPLOS VIIL San Jose, California, USA:
ACM, 1998, pp. 58-69. 1sN: 1-58113-107-0. por: 10 . 1145/291069.291020. URL: http:
//doi.acm.org/10.1145/291069.291020.

T. Harris, A. Cristal, O.S. Unsal, E. Ayguade, F. Gagliardi, B. Smith and M. Valero. “Transactional
Memory: An Overview’. In: Micro, IEEE, vol. 27, no. 3, May 2007, pp. 8-29. May 2007. 1ssN:
0272-1732.por: 10.1109/MM.2007.63.

Tim Harris, James Larus and Ravi Rajwar. Transactional Memory, 2nd Edition. 2nd. San Rafael,
CA, USA: Morgan and Claypool Publishers, 2010. 1sBn: 1608452352, 9781608452354.

John L. Henning. ‘SPEC CPU Suite Growth: An Historical Perspective’. In: SSIGARCH Comput.
Archit. News, vol. 35, no. 1, Mar. 2007, pp. 65-68. New York, NY, USA: ACM, Mar. 2007. 1ssN:
0163-5964. por: 10 . 1145 /1241601 . 1241615. URL: http://doi.acm.org/10.1145/
1241601.1241615.

John L. Henning. ‘SPEC CPU2006 Benchmark Descriptions’. In: SSIGARCH Comput. Archit. News,
vol. 34, no. 4, Sept. 2006, pp. 1-17. New York, NY, USA: ACM, Sept. 2006. 1ssn: 0163-5964. por:
10.1145/1186736.1186737.URL: http://doi.acm.org/10.1145/1186736.1186737.

Maurice Herlihy and J. Eliot B. Moss. “Transactional memory: architectural support for lock-
free data structures’ In: 20th ISCA Proceedings. ISCA ’93. ACM, 1993, pp. 289-300. 1sBN:
0-8186-3810-9. por: 10.1145/165123.165164. (Visited on 03/03/2013).

Susan Flynn Hummel, Edith Schonberg and Lawrence E. Flynn. ‘Factoring: A Method for
Scheduling Parallel Loops”. In: Communications of the ACM, vol. 35, no. 2, Aug. 1992, pp. 90-100.
Aug. 1992.

Susan Flynn Hummel, Edith Schonberg and Lawrence E Flynn. ‘Factoring: A method for
scheduling parallel loops’. In: Communications of the ACM, vol. 35, no. 8, 1992, pp. 90-101. ACM,
1992.

http://dx.doi.org/10.1109/WWC.2001.990739
http://dx.doi.org/10.1145/4472.4478
http://doi.acm.org/10.1145/4472.4478
http://doi.acm.org/10.1145/4472.4478
http://dx.doi.org/10.1109/40.848474
http://dx.doi.org/10.1109/40.848474
http://dx.doi.org/10.1145/291069.291020
http://doi.acm.org/10.1145/291069.291020
http://doi.acm.org/10.1145/291069.291020
http://dx.doi.org/10.1109/MM.2007.63
http://dx.doi.org/10.1145/1241601.1241615
http://doi.acm.org/10.1145/1241601.1241615
http://doi.acm.org/10.1145/1241601.1241615
http://dx.doi.org/10.1145/1186736.1186737
http://doi.acm.org/10.1145/1186736.1186737
http://dx.doi.org/10.1145/165123.165164

194 | BIBLIOGRAPHY

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

(129

[130]

[131]

[132]

[133]

IBM. Thread-Level Speculative Execution for C/C++. IBM XL C/C++ for Blue Gene. Tech. report.
Last access: April 2014. 2012.

Intel. The Story of the Intel® 4004. http: / /www. intel.co.uk/content/www/uk/en/
history/museum-story-of-intel-4004.html. [Last visit: June 2015].

Intel C++ STM Compiler, Prototype Edition. 2012. UrRL: https://software.intel.com/en-
us/articles/intel-c-stm-compiler-prototype-edition.

Intel® Xeon Phi Coprocessor Instruction Set Architecture Reference Manual. urL: https : / /
software.intel.com/sites/default/files/forum/278102/327364001len.pdf.

Intel®Xeon Phi Product Family: Product Brief. [Last visit: June 2015]. urL: https: //www-ss1.
intel.com/content/dam/www/public/us/en/documents/product-briefs/high-
performance-xeon-phi-coprocessor-brief.pdf.

N. loannou, J. Singer, S. Khan, P. Xekalakis, P. Yiapanis, A. Pocock, G. Brown, M. Lujén, 1.
Watson and M. Cintra. “Toward a more accurate understanding of the limits of the TLS execu-
tion paradigm’. In: Workload Characterization (IISWC), 2010 IEEE International Symposium on.
Washington, DC, USA: IEEE Computer Society, Dec. 2010, pp. 1-12. por: 16.1109/IISWC.
2010.56491609.

Nikolas Ioannou and Marcelo Cintra. ‘Complementing user-level coarse-grain parallelism
with implicit speculative parallelism’. In: Proceedings of the 44th Annual IEEE/ACM International
Symposium on Microarchitecture. ACM. 2011, pp. 284-295.

M.M. Islam, A. Busck, M. Engbom, S. Lee, Michel Dubois and P. Stenstrom. ‘Limits on Thread-
Level Speculative Parallelism in Embedded Applications’. In: Eleventh Workshop on Interaction
between Compilers and Computer Architectures INTERACT-11). Phoenix, USA, Feb. 2007.

M.M. Islam, A. Busck, M. Engbom, S. Lee, Michel Dubois and P. Stenstrom. ‘Loop-level Specu-
lative Parallelism in Embedded Applications’ In: Parallel Processing, 2007. ICPP 2007. Interna-
tional Conference on. Washington, DC, USA: IEEE Computer Society, Sept. 2007, pp. 3—-13. por:
10.1109/ICPP.2007.53.

Quinn Jacobson, Eric Rotenberg and James E. Smith. ‘Path-based Next Trace Prediction’. In:
Proceedings of the 30th Annual ACM/IEEE International Symposium on Microarchitecture. MICRO
30. Research Triangle Park, North Carolina, USA: IEEE Computer Society, 1997, pp. 14-23.
ISBN: 0-8186-7977-8. urRL: http://dl.acm.org/citation.cfm?1d=266800.266802.

Hakbeom Jang, Channoh Kim and Jae W. Lee. ‘Practical speculative parallelization of variable-
length decompression algorithms’. In: Proceedings of the 14th ACM SIGPLAN/SIGBED conference
on Languages, compilers and tools for embedded systems. LCTES "13. Seattle, Washington, USA:
ACM, 2013, pp. 55-64. 1sBN: 978-1-4503-2085-6. por: 10 . 1145 /2465554 . 2465557, URL:
http://doi.acm.org/10.1145/2465554.2465557.

James Jeffers and James Reinders. Intel Xeon Phi coprocessor high-performance programming.
Newnes, 2013.

Alexandra Jimborean. ‘Adapting the polytope model dor dynamic and speculative paralleliza-
tion’. PhD thesis. Strasbourg,France: University of Strasbourg, 2012.

http://www.intel.co.uk/content/www/uk/en/history/museum-story-of-intel-4004.html
http://www.intel.co.uk/content/www/uk/en/history/museum-story-of-intel-4004.html
https://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition
https://software.intel.com/en-us/articles/intel-c-stm-compiler-prototype-edition
https://software.intel.com/sites/default/files/forum/278102/327364001en.pdf
https://software.intel.com/sites/default/files/forum/278102/327364001en.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/product-briefs/high-performance-xeon-phi-coprocessor-brief.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/product-briefs/high-performance-xeon-phi-coprocessor-brief.pdf
https://www-ssl.intel.com/content/dam/www/public/us/en/documents/product-briefs/high-performance-xeon-phi-coprocessor-brief.pdf
http://dx.doi.org/10.1109/IISWC.2010.5649169
http://dx.doi.org/10.1109/IISWC.2010.5649169
http://dx.doi.org/10.1109/ICPP.2007.53
http://dl.acm.org/citation.cfm?id=266800.266802
http://dx.doi.org/10.1145/2465554.2465557
http://doi.acm.org/10.1145/2465554.2465557

[134]

[135]

[136]

(137)

[138]

[139]

[140]

[141]

B.3 BIBLIOGRAPHY | 195

Alexandra Jimborean, Philippe Clauss, Jean-Frangois Dollinger, Vincent Loechner and
JuanManuel Martinez Caamano. ‘Dynamic and Speculative Polyhedral Parallelization Using
Compiler-Generated Skeletons”. English. In: International Journal of Parallel Programming, vol. 42,
no. 4, 2013, pp. 529-545. USA: Springer US, 2013. 1ssN: 0885-7458. por: 10.1007/s10766~
013-0259-4. URL: http://dx.doi.org/10.1007/s10766-013-0259-4.

Alexandra Jimborean, Philippe Clauss, Benoit Pradelle, Luis Mastrangelo and Vincent Loechner.
‘Adapting the Polyhedral Model As a Framework for Efficient Speculative Parallelization’. In:
Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming.
PPoPP ’12. New Orleans, Louisiana, USA: ACM, 2012, pp. 295-296. 1sBN: 978-1-4503-1160-1.
DoI: 10 .1145 /2145816 .2145861. URL: http://doi.acm.org/10.1145/2145816.
2145861.

Alexandra Jimborean, Luis Mastrangelo, Vincent Loechner and Philippe Clauss. VMAD: An
Advanced Dynamic Program Analysis and Instrumentation Framework’. In: Proceedings of the
2Ist International Conference on Compiler Construction. CC’'12. Tallinn, Estonia: Springer-Verlag,
2012, pp. 220-239. 1sBN: 978-3-642-28651-3. por: 10.1007/978-3-642-28652-0_12. URL:
http://dx.doi.org/10.1007/978-3-642-28652-0_12.

Canming Jin, Yong Yan and Xiaodong Zhang. ‘An adaptive loop scheduling algorithm on
shared-memory systems’. In: Parallel and Distributed Processing, 1996., Eighth IEEE Symposium
on. Oct. 1996, pp. 250-257. por: 10.1109/SPDP.1996.570341.

Youngjoon Jo and Milind Kulkarni. ‘Brief Announcement: Locality-aware Load Balancing for
Speculatively-parallelized Irregular Applications’. In: Proceedings of the 22Nd ACM Symposium
on Parallelism in Algorithms and Architectures. SPAA ’10. Thira, Santorini, Greece: ACM, 2010,
pp. 183-185.1sBN: 978-1-4503-0079-7. por: 10.1145/1810479.1810516. URL: http://doi.
acm.org/10.1145/1810479.1810516.

Chuanle Ke, Lei Liu, Chao Zhang, Tongxin Bai, Brian Jacobs and Chen Ding. ‘Safe Parallel
Programming using Dynamic Dependence Hints’ In: OOPSLA’11 Proceedings. Portland, Oregon,
USA: ACM, 2011, pp. 243-258.

Arun Kejariwal, Milind Girkar, Xinmin Tian, Hideki Saito, Alexandru Nicolau, Alexander V.
Veidenbaum, Utpal Banerjee and Constantine D. Polychronopoulos. ‘Exploitation of Nested
Thread-level Speculative Parallelism on Multi-core Systems’. In: Proceedings of the 7th ACM
International Conference on Computing Frontiers. CF ’10. Bertinoro, Italy: ACM, 2010, pp. 99-100.
1sBN: 978-1-4503-0044-5. por: 10.1145/1787275.1787302. URL: http://doi.acm.org/
10.1145/1787275.1787302.

Arun Kejariwal, Milind Girkar, Xinmin Tian, Hideki Saito, Alexandru Nicolau, Alexander V.
Veidenbaum, Utpal Banerjee and Constantine D. Ppoluchronopoulos. ‘On the Efficacy of Call
Graph-level Thread-level Speculation’. In: Proceedings of the First Joint WOSP/SIPEW International
Conference on Performance Engineering. WOSP/SIPEW '10. San Jose, California, USA: ACM,
2010, pp. 247-248. 1sBN: 978-1-60558-563-5. por: 10.1145/1712605.1712645. URL: http:
//doi.acm.org/10.1145/1712605.1712645.

http://dx.doi.org/10.1007/s10766-013-0259-4
http://dx.doi.org/10.1007/s10766-013-0259-4
http://dx.doi.org/10.1007/s10766-013-0259-4
http://dx.doi.org/10.1145/2145816.2145861
http://doi.acm.org/10.1145/2145816.2145861
http://doi.acm.org/10.1145/2145816.2145861
http://dx.doi.org/10.1007/978-3-642-28652-0_12
http://dx.doi.org/10.1007/978-3-642-28652-0_12
http://dx.doi.org/10.1109/SPDP.1996.570341
http://dx.doi.org/10.1145/1810479.1810516
http://doi.acm.org/10.1145/1810479.1810516
http://doi.acm.org/10.1145/1810479.1810516
http://dx.doi.org/10.1145/1787275.1787302
http://doi.acm.org/10.1145/1787275.1787302
http://doi.acm.org/10.1145/1787275.1787302
http://dx.doi.org/10.1145/1712605.1712645
http://doi.acm.org/10.1145/1712605.1712645
http://doi.acm.org/10.1145/1712605.1712645

196 | BIBLIOGRAPHY

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

Arun Kejariwal, Xinmin Tian, Milind Girkar, Wei Li, Sergey Kozhukhov, Utpal Banerjee,
Alexander Nicolau, Alexander V. Veidenbaum and Constantine D. Polychronopoulos. ‘Tight
analysis of the performance potential of thread speculation using spec CPU 2006’ In: Proceedings
of the 12th ACM SIGPLAN symposium on Principles and practice of parallel programming. PPoPP
’07. San Jose, California, USA: ACM, 2007, pp. 215-225. 1sBN: 978-1-59593-602-8. por: 10.
1145/1229428.1229475. URL: http://0-doi.acm.org.almena.uva.es/10.1145/
1229428.1229475.

Arun Kejariwal, Xinmin Tian, Wei Li, Milind Girkar, Sergey Kozhukhov, Hideki Saito, Utpal
Banerjee, Alexandru Nicolau, Alexander V. Veidenbaum and Constantine D. Polychronopoulos.
‘On the performance potential of different types of speculative thread-level parallelism: The
DL version of this paper includes corrections that were not made available in the printed
proceedings’. In: Proceedings of the 20th annual international conference on Supercomputing. ICS
'06. Cairns, Queensland, Australia: ACM, 2006, pp. 24-. 1sBN: 1-59593-282-8. por: 10.1145/
1183401.1183407.URL: http://0-doi.acm.org.almena.uva.es/10.1145/1183401.
1183407.

Kirk Kelsey, Tongxin Bai, Chen Ding and Chengliang Zhang. ‘Fast Track: A Software System
for Speculative Program Optimization’ In: Proceedings of the 7th Annual IEEE/ACM International
Symposium on Code Generation and Optimization. CGO ’09. Washington, DC, USA: IEEE Com-
puter Society, Mar. 2009, pp. 157-168. 1sBN: 978-0-7695-3576-0.por: 10.1109/CG0.2009. 18.
URL: http://dx.doi.org/10.1109/CG0.2009.18.

Khronos. Open Computing Language (OpenCL). http: //www.khronos.org/opencl/, Last
visit: December 2, 2013. 2010.

Hanjun Kim, Nick P Johnson, Jae W Lee, Scott A Mahlke and David I August. ‘Automatic
speculative DOALL for clusters’. In: Proceedings of the Tenth International Symposium on Code
Generation and Optimization. ACM. 2012, pp. 94-103.

Hanjun Kim, Arun Raman, Feng Liu, Jae W. Lee and David I. August. ‘Scalable Speculative
Parallelization on Commodity Clusters’. In: Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture. MICRO ’43. Washington, DC, USA: IEEE Com-
puter Society, 2010, pp. 3—14. 1sBN: 978-0-7695-4299-7. por: 10.1109/MICRO.2010.19. URL:
http://dx.doi.org/10.1109/MICRO.2010.19.

Hanjun Kim, Arun Raman, Feng Liu, Jae W Lee and David I August. ‘Scalable speculative
parallelization on commodity clusters’ In: Proceedings of the 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture. IEEE Computer Society. 2010, pp. 3-14.

Tom Knight. ‘An architecture for mostly functional languages’ In: Proceedings of the 1986
ACM conference on LISP and functional programming. LFP ’86. Cambridge, Massachusetts, USA:
ACM, 1986, pp. 105-112. 1sBN: 0-89791-200-4. por: 10.1145/319838.319854. URL: http:
//doi.acm.org/10.1145/319838.319854.

Sai Charan Koduru, Min Feng and Rajiv Gupta. Programming large dynamic data structures
on a DSM cluster of multicores’. In: 7th International Conference on PGAS Programming Models.
2013, p. 126.

http://dx.doi.org/10.1145/1229428.1229475
http://dx.doi.org/10.1145/1229428.1229475
http://0-doi.acm.org.almena.uva.es/10.1145/1229428.1229475
http://0-doi.acm.org.almena.uva.es/10.1145/1229428.1229475
http://dx.doi.org/10.1145/1183401.1183407
http://dx.doi.org/10.1145/1183401.1183407
http://0-doi.acm.org.almena.uva.es/10.1145/1183401.1183407
http://0-doi.acm.org.almena.uva.es/10.1145/1183401.1183407
http://dx.doi.org/10.1109/CGO.2009.18
http://dx.doi.org/10.1109/CGO.2009.18
http://www.khronos.org/opencl/
http://dx.doi.org/10.1109/MICRO.2010.19
http://dx.doi.org/10.1109/MICRO.2010.19
http://dx.doi.org/10.1145/319838.319854
http://doi.acm.org/10.1145/319838.319854
http://doi.acm.org/10.1145/319838.319854

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

B.3 BIBLIOGRAPHY | 197

V. Krishnan and J. Torrellas. ‘A chip-multiprocessor architecture with speculative multithread-
ing’. In: IEEE Transactions on Computers, vol. 48, no. 9, 1999, pp. 866-880. 1999. 1ssn: 0018-9340.
DOI:10.1109/12.795218.

Venkata Krishnan and Josep Torrellas. ‘Executing Sequential Binaries on a Clustered Multith-
readed Architecture with Speculation Support’. In: Proceedings of the 1998 Fourth International
Symposium on High-Performance Computer Architecture. HPCA '98. Washington, DC, USA: [EEE
Computer Society, 1998.

V. P. Krothapalli and P. Sadayappan. ‘An approach to synchronization for parallel computing’.
In: Proceedings of the 2nd international conference on Supercomputing. ICS ’88. St. Malo, France:
ACM, 1988, pp. 573-581. 1s6N: 0-89791-272-1. por: 10 . 1145 /55364 . 55420. URL: http:
//doi.acm.org/10.1145/55364.55420.

V. P. Krothapalli and P. Sadayappan. ‘Dynamic scheduling of DOACROSS loops for multi-
processors’. In: Databases, Parallel Architectures and Their Applications,. PARBASE-90, Interna-
tional Conference on. Washington, DC, USA: IEEE Computer Society, 1990, pp. 66—75. por:
10.1109/PARBSE.1990.77118.

C.P. Kruskal and A. Weiss. ‘Allocating Independent Subtasks on Parallel Processors’. In: Soft-
ware Engineering, IEEE Transactions on, vol. SE-11, no. 10, 1985, pp. 1001-1016. 1985. 1ssn:
0098-5589.

M. Kulkarni, M. Burtscher, C. Cascaval and K. Pingali. ‘Lonestar: A suite of parallel irregular
programs’. In: Performance Analysis of Systems and Software, 2009. ISPASS 2009. IEEE International
Symposium on. Washington, DC, USA: IEEE Computer Society, Apr. 2009, pp. 65-76. por:
10.1109/ISPASS.2009.4919639.

Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav Pingali and Calin Cascaval. ‘How
Much Parallelism is There in Irregular Applications?” In: Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. PPoPP '09. Raleigh, NC, USA:
ACM, 2009, pp. 3-14. 1sBN: 978-1-60558-397-6. por: 10 . 1145 /1504176 . 1504181. URL:
http://doi.acm.org/10.1145/1504176.1504181.

Milind Kulkarni, Patrick Carribault, Keshav Pingali, Ganesh Ramanarayanan, Bruce Walter,
Kavita Bala and L. Paul Chew. ‘Scheduling Strategies for Optimistic Parallel Execution of Irreg-
ular Programs’. In: Proceedings of the Twentieth Annual Symposium on Parallelism in Algorithms and
Architectures. SPAA '08. Munich, Germany: ACM, 2008, pp. 217-228. 1sBN: 978-1-59593-973-9.
DOI: 10 . 1145 /1378533 .1378575. URL: http://doi.acm.org/10.1145/1378533.
1378575.

Milind Kulkarni, Donald Nguyen, Dimitrios Prountzos, Xin Sui and Keshav Pingali. ‘Exploiting
the Commutativity Lattice’ In: Proceedings of the 32Nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation. PLDI ’11. San Jose, California, USA: ACM,
2011, pp. 542-555. 1sBN: 978-1-4503-0663-8. por: 10.1145/1993498.1993562. URL: http:
//doi.acm.org/10.1145/1993498.1993562.

http://dx.doi.org/10.1109/12.795218
http://dx.doi.org/10.1145/55364.55420
http://doi.acm.org/10.1145/55364.55420
http://doi.acm.org/10.1145/55364.55420
http://dx.doi.org/10.1109/PARBSE.1990.77118
http://dx.doi.org/10.1109/ISPASS.2009.4919639
http://dx.doi.org/10.1145/1504176.1504181
http://doi.acm.org/10.1145/1504176.1504181
http://dx.doi.org/10.1145/1378533.1378575
http://doi.acm.org/10.1145/1378533.1378575
http://doi.acm.org/10.1145/1378533.1378575
http://dx.doi.org/10.1145/1993498.1993562
http://doi.acm.org/10.1145/1993498.1993562
http://doi.acm.org/10.1145/1993498.1993562

198 | BIBLIOGRAPHY

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

Milind Kulkarni, Keshav Pingali, Ganesh Ramanarayanan, Bruce Walter, Kavita Bala and
L. Paul Chew. ‘Optimistic Parallelism Benefits from Data Partitioning’ In: Proceedings of the 13th
International Conference on Architectural Support for Programming Languages and Operating Systems.
ASPLOS XIII. Seattle, WA, USA: ACM, 2008, pp. 233-243. 1sBN: 978-1-59593-958-6. por:
10.1145/1346281.1346311. URL: http://doi.acm.org/10.1145/1346281.1346311.

Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala and L. Paul
Chew. ‘Optimistic Parallelism Requires Abstractions’ In: Commun. ACM, vol. 52, no. 9, Sept.
2009, pp. 89-97. New York, NY, USA: ACM, Sept. 2009. 1ssn: 0001-0782. por: 10 . 1145/
1562164.1562188. URL: http://doi.acm.org/10.1145/1562164.1562188.

Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala and L. Paul
Chew. ‘Optimistic parallelism requires abstractions’. In: PLDI 2007 Proceedings. New York, NY,
USA: ACM, 2007, pp. 211-222.

James Larus and Christos Kozyrakis. “Transactional memory’. In: Commun. ACM, vol. 51, no. 7,
July 2008, pp. 80-88. July 2008. rssn: 0001-0782. por: 10.1145/1364782.1364800. (Visited
on 03/03/2013).

Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong Program
Analysis & Transformation’. In: Proceedings of the International Symposium on Code Generation
and Optimization: Feedback-directed and Runtime Optimization. CGO ’04. Palo Alto, California:
IEEE Computer Society, 2004, pp. 75-. 1sBN: 0-7695-2102-9. urL: http://dl.acm.org/
citation.cfm?id=977395.977673.

Shun-Tak Leung and John Zahorjan. Tmproving the performance of runtime parallelization’. In:
Proceedings of the fourth ACM SIGPLAN symposium on Principles and practice of parallel program-
ming. PPOPP "93. San Diego, California, USA: ACM, 1993, pp. 83-91. 1sBN: 0-89791-589-5.
DOI: 10.1145/155332.155341. URL: http://doi.acm.org/10.1145/155332.155341.

Peng Li and Song Guo. ‘Energy Minimization on Thread-Level Speculation in Multicore
Systems”. In: Proceedings of the 2010 Ninth International Symposium on Parallel and Distributed
Computing. ISPDC ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 125-132.
ISBN: 978-0-7695-4120-4. por: 10.1109/ISPDC.2010.17. UrRL: http://dx.doi.org/10.
1109/ISPDC.2010.17.

Xiao-Feng Li, ZhaoHui Du, Chen Yang, Chu-Cheow Lim and Tin-Fook Ngai. ‘Speculative
Parallel Threading Architecture and Compilation’. In: Proceedings of the 2005 International
Conference on Parallel Processing Workshops. ICPPW ’05. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 285-294. 1sBN: 0-7695-2381-1. por: 10 . 1109 / ICPPW . 2005 . 81. URL:
http://dx.doi.org/10.1109/ICPPW.2005.81.

Shaoshan Liu, Christine Eisenbeis and Jean-Luc Gaudiot. ‘Speculative Execution on GPU:
An Exploratory Study’. In: Proceedings of the 2010 39th International Conference on Parallel Pro-
cessing. ICPP ’10. Washington, DC, USA: IEEE Computer Society, 2010, pp. 453-461. 1sBN:
978-0-7695-4156-3. por: 10.1109/ICPP.2010.53. urL: http://dx.doi.org/10.1109/
ICPP.2010.53.

http://dx.doi.org/10.1145/1346281.1346311
http://doi.acm.org/10.1145/1346281.1346311
http://dx.doi.org/10.1145/1562164.1562188
http://dx.doi.org/10.1145/1562164.1562188
http://doi.acm.org/10.1145/1562164.1562188
http://dx.doi.org/10.1145/1364782.1364800
http://dl.acm.org/citation.cfm?id=977395.977673
http://dl.acm.org/citation.cfm?id=977395.977673
http://dx.doi.org/10.1145/155332.155341
http://doi.acm.org/10.1145/155332.155341
http://dx.doi.org/10.1109/ISPDC.2010.17
http://dx.doi.org/10.1109/ISPDC.2010.17
http://dx.doi.org/10.1109/ISPDC.2010.17
http://dx.doi.org/10.1109/ICPPW.2005.81
http://dx.doi.org/10.1109/ICPPW.2005.81
http://dx.doi.org/10.1109/ICPP.2010.53
http://dx.doi.org/10.1109/ICPP.2010.53
http://dx.doi.org/10.1109/ICPP.2010.53

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

B.3 BIBLIOGRAPHY | 199

Xing Liu, Mikhail Smelyanskiy, Edmond Chow and Pradeep Dubey. ‘Efficient Sparse Matrix-
vector Multiplication on x86-based Many-core Processors’. In: Proceedings of the 27th Interna-
tional ACM Conference on International Conference on Supercomputing. ICS '13. Eugene, Oregon,
USA: ACM, 2013, pp. 273-282. 1sBN: 978-1-4503-2130-3. por: 10.1145/2464996.2465013.
URL: http://doi.acm.org/10.1145/2464996.2465013.

Diego R. Llanos. Introduccidn a las técnicas de ejecucion especulativa’. In: Proceedings of specu-
lative parallelization at running time (UVa). Oct. 2008.

Diego R. Llanos. ‘Un modelo software de ejecucion especulativa’. In: Proceedings of speculative
parallelization at running time (UVa). Oct. 2008.

Diego R. Llanos, David Orden and Bel? Palop. Just-In-Time Scheduling for Loop-based Specu-
lative Parallelization’. In: Parallel, Distributed, and Network-Based Processing, Euromicro Conference
on, 2008, pp. 334-342. Los Alamitos, CA, USA: IEEE Computer Society, 2008. 1ssn: 1066-6192.
poI: http://doi.ieeecomputersociety.org/10.1109/PDP.2008.13.

Diego R. Llanos, David Orden and Belén Palop. ‘Meseta: A new scheduling strategy for spec-
ulative parallelization of randomized incremental algorithms. In: Proc. 2005 ICPP Workshops
(HPSEC-05). Oslo, Norway, June 2005, pp. 121-128. 1sBN: 0-7695-2381-1.

Diego R. Llanos, David Orden and Belén Palop. ‘New Scheduling Strategies for Randomized
Incremental Algorithms in the Context of Speculative Parallelization’. In: IEEE Transactions on
Computers, vol. 56, no. 6, 2007, pp. 839-852. Los Alamitos, CA, USA: IEEE Computer Society,
2007. 1ssn: 0016-9340. por: http: / /doi . ieeecomputersociety.org/10.1109/TC.
2007.1030.

Steven Lucco. ‘A dynamic scheduling method for irregular parallel programs’. In: PLDI "92: Pro-
ceedings of the ACM SIGPLAN 1992 conference on Programming language design and implementation.
San Francisco, California, United States: ACM Press, 1992, pp. 200-211. 1sBN: 0-89791-475-9.
pol: http://doi.acm.org/10.1145/143095.143134.

Yangchun Luo, Wei-Chung Hsu and Antonia Zhai. “The Design and Implementation of Het-
erogeneous Multicore Systems for Energy-efficient Speculative Thread Execution’. In: ACM
Trans. Archit. Code Optim. Vol. 10, no. 4, Dec. 2013, 26:1-26:29. New York, NY, USA: ACM,
Dec. 2013. 1ssn: 1544-3566. por: 10.1145/2541228.2541233. URL: http://doi.acm.org/
10.1145/2541228.2541233.

Pedro Marcuello, Antonio Gonzalez and Jordi Tubella. ‘Speculative multithreaded processors’
In: Proceedings of the 12th international conference on Supercomputing. ICS *98. Melbourne, Aus-
tralia: ACM, 1998, pp. 77-84. 1sBN: 0-89791-998-X. por: 10 . 1145 /277830 . 277850. URL:
http://doi.acm.org/10.1145/277830.277850.

E.P. Markatos and T.J. LeBlanc. ‘Using processor affinity in loop scheduling on shared-memory
multiprocessors’. In: Parallel and Distributed Systems, IEEE Transactions on, vol. 5, no. 4, Apr.
1994, pp. 379-400. Apr. 1994. 1ssN: 1045-9219. por: 10.1109/71.273046.

Jan Martinsen, Hakan Grahn and Anders Isberg. ‘Using Speculation to Enhance JavaScript
Performance in Web Applications’. In: IEEE Internet Computing, vol. 17, no. 2, Mar. 2013, pp. 10—
19. Piscataway, NJ, USA: IEEE Educational Activities Department, Mar. 2013. 1ssn: 1089-7801.
DpoI: 10.1109/MIC.2012.146.URL: http://dx.doi.org/10.1109/MIC.2012.146.

http://dx.doi.org/10.1145/2464996.2465013
http://doi.acm.org/10.1145/2464996.2465013
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/PDP.2008.13
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TC.2007.1030
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TC.2007.1030
http://dx.doi.org/http://doi.acm.org/10.1145/143095.143134
http://dx.doi.org/10.1145/2541228.2541233
http://doi.acm.org/10.1145/2541228.2541233
http://doi.acm.org/10.1145/2541228.2541233
http://dx.doi.org/10.1145/277830.277850
http://doi.acm.org/10.1145/277830.277850
http://dx.doi.org/10.1109/71.273046
http://dx.doi.org/10.1109/MIC.2012.146
http://dx.doi.org/10.1109/MIC.2012.146

200 | BIBLIOGRAPHY

[180]

[181]

[182]

[183]

[184]

[185]

[186]

[187]

[188]

[189]
[190]

[191]

(192)

Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu and Scott Mahlke. ‘Parallelizing sequential applic-
ations on commodity hardware using a low-cost software transactional memory’. In: Pro-
ceedings of the 2009 ACM SIGPLAN conference on Programming language design and implement-
ation. PLDI '09. Dublin, Ireland: ACM, 2009, pp. 166-176. 1sBN: 978-1-60558-392-1. por:
10.1145/1542476.1542495. URL: http://doi.acm.org/10.1145/1542476.1542495.

Mario Méndez-Lojo, Donald Nguyen, Dimitrios Prountzos, Xin Sui, M. Amber Hassaan, Milind
Kulkarni, Martin Burtscher and Keshav Pingali. ‘Structure-driven Optimizations for Amorph-
ous Data-parallel Programs’. In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming. PPoPP ’10. Bangalore, India: ACM, 2010, pp. 3—14. 1sBN:
978-1-60558-877-3. por: 10.1145/1693453.1693457. URL: http://doi.acm.org/10.
1145/1693453.1693457.

Samuel P Midkiff and David A Padua. ‘Compiler algorithms for synchronization’ In: IEEE
Transactions on Computers, vol. 100, no. 12, 1987, pp. 1485-1495. IEEE, 1987.

R. Mirchandaney and J. H. Saltz. Dodynamic: A construct for on-the-fly parallelization of loops.
Tech. rep. 650. in preparation. 1988.

J. H. Saltz and R. Mirchandaney. How to schedule complex loops in parallel. Tech. rep. 657. 1988.

K. Moore,]. Bobba, M.J. Moravan, M.D. Hill and D.A. Wood. ‘LogTM: log-based transactional
memory’. In: High-Performance Computer Architecture, 2006. The Twelfth International Symposium
on. Feb. 2006, pp. 254-265. por: 10.1109/HPCA.2006.1598134.

E. P. Miicke, I. Saias and B. Zhu. ‘Fast randomized point location without preprocessing in two-
and three-dimensional Delaunay triangulations’ In: Proceedings of the 12th ACM Symposium on
Computational Geometry. 1996, pp. 274-283.

Diego Novillo. ‘GCC an architectural overview, current status, and future directions’. In: Pro-
ceedings of the Linux Symposium. Tokyo, Japan, Sept. 2006, pp. 185-200.

Diego Novillo. ‘OpenMP and automatic parallelization in GCC'’. In: Proceedings of the 2006 GCC
Developers’ Summit. Ottawa, Canada, 2006, pp. 135-144.

NVIDIA. NVIDIA CUDA Architecture Introduction and Overview Version 1.1. 2009.

Cosmin E. Oancea, Alan Mycroft and Tim Harris. ‘A lightweight in-place implementation
for software thread-level speculation’. In: Proceedings of the twenty-first annual symposium on
Parallelism in algorithms and architectures. SPAA ’09. Calgary, AB, Canada: ACM, 2009, pp. 223~
232.1sBN: 978-1-60558-606-9. por: 10.1145/1583991.1584050. URL: http://doi.acm.
org/10.1145/1583991.1584050.

Stuart Olsen, Brian Romoser and Ziliang Zong. ‘SQLPhi: A SQL-Based Database Engine
for Intel Xeon Phi Coprocessors’. In: Proceedings of the 2014 International Conference on Big
Data Science and Computing. BigDataScience '14. Beijing, China: ACM, 2014, 17:1-17:6. 1sBN:
978-1-4503-2891-3. por: 10.1145/2640087 .2644172. URL: http://doi.acm.org/10.
1145/2640087.2644172.

Kunle Olukotun, Lance Hammond and Mark Willey. Improving the performance of speculat-
ively parallel applications on the Hydra CMP’. In: Proceedings of the 13th international conference
on Supercomputing. ICS ’99. Rhodes, Greece: ACM, 1999, pp. 21-30. 1sBN: 1-58113-164-X. por:
10.1145/305138.305155. URL: http://doi.acm.org/10.1145/305138.305155.

http://dx.doi.org/10.1145/1542476.1542495
http://doi.acm.org/10.1145/1542476.1542495
http://dx.doi.org/10.1145/1693453.1693457
http://doi.acm.org/10.1145/1693453.1693457
http://doi.acm.org/10.1145/1693453.1693457
http://dx.doi.org/10.1109/HPCA.2006.1598134
http://dx.doi.org/10.1145/1583991.1584050
http://doi.acm.org/10.1145/1583991.1584050
http://doi.acm.org/10.1145/1583991.1584050
http://dx.doi.org/10.1145/2640087.2644172
http://doi.acm.org/10.1145/2640087.2644172
http://doi.acm.org/10.1145/2640087.2644172
http://dx.doi.org/10.1145/305138.305155
http://doi.acm.org/10.1145/305138.305155

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

B.3 BIBLIOGRAPHY | 201

OpenMP Specification, version 4.0. http: //www.openmp.org/mp-documents/OpenMP_4.
0_RC2.pdf. [Last visit: June 2015].

Jeffrey T. Oplinger, David L. Heine and Monica S. Lam. ‘In Search of Speculative Thread-Level
Parallelism’. In: Proceedings of the 1999 International Conference on Parallel Architectures and Com-
pilation Techniques. PACT '99. Washington, DC, USA: IEEE Computer Society, 1999, pp. 303-.
1sBN: 0-7695-0425-6. URL: http://dl.acm.org/citation.cfm?id=520793.825732.

Jeffrey Oplinger, David Heine, Shih Liao, Basem A. Nayfeh, Monica S. Lam and Kunle Olukotun.
Software and Hardware for Exploiting Speculative Parallelism with a Multiprocessor. Tech. rep.
Stanford, CA, USA, 1997.

Guilherme Ottoni and David August. ‘Global Multi-Threaded Instruction Scheduling’. In:
MICRO 40 Proceedings. Washington, DC, USA: IEEE Computer Society, 2007, pp. 56—68. IsBN:
0-7695-3047-8.

Guilherme Ottoni, Ram Rangan, Adam Stoler and David I August. ‘Automatic thread extraction
with decoupled software pipelining’. In: Proceedings of the 38th annual IEEE/ACM International
Symposium on Microarchitecture. IEEE Computer Society. 2005, pp. 105-118.

V. Packirisamy, A. Zhai, Wei-Chung Hsu, Pen-Chung Yew and Tin-Fook Ngai. ‘Exploring
speculative parallelism in SPEC2006 In: Performance Analysis of Systems and Software, 2009.
ISPASS 2009, IEEE International Symposium on. Washington, DC, USA: IEEE Computer Society,
Apr. 2009, pp. 77-88.por: 10.1109/ISPASS.2009.4919640.

Jongsoo Park, Ganesh Bikshandi, Karthikeyan Vaidyanathan, Ping Tak Peter Tang, Pradeep
Dubey and Daehyun Kim. “Tera-scale 1D FFT with Low-communication Algorithm and In-
tel&Reg; Xeon Phi&Trade; Coprocessors”. In: Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis. SC "13. Denver, Colorado: ACM,
2013, 34:1-34:12. 1sBN: 978-1-4503-2378-9. por: 10.1145/2503210.2503242. URL: http:
//doi.acm.org/10.1145/2503210.2503242.

A.Phansalkar, A. Joshi, L. Eeckhout and L. K. John. ‘Measuring Program Similarity: Experiments
with SPEC CPU Benchmark Suites’. In: Proceedings of the IEEE International Symposium on
Performance Analysis of Systems and Software, 2005. ISPASS "05. Washington, DC, USA: IEEE
Computer Society, 2005, pp. 10-20. 1sBN: 0-7803-8965-4. por: 10 . 1109 / ISPASS . 2005 .
1430555. URL: http://dx.doi.org/10.1109/ISPASS.2005.1430555.

Christopher J. F. Pickett. ‘Software Speculative Multithreading for Java’ In: Companion to
the 22Nd ACM SIGPLAN Conference on Object-oriented Programming Systems and Applica-
tions Companion. OOPSLA ’07. Montreal, Quebec, Canada: ACM, 2007, pp. 929-930. 1sBN:
978-1-59593-865-7. por: 10.1145/1297846.1297950. URL: http://doi.acm.org/10.
1145/1297846.1297950.

Christopher J. F. Pickett and Clark Verbrugge. ‘SableSpMT: A Software Framework for Ana-
lysing Speculative Multithreading in Java’ In: Proceedings of the 6th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering. PASTE "05. Lisbon, Portugal:
ACM, 2005, pp. 59-66. 1sBN: 1-59593-239-9. por: 10.1145/1108792.1108809. URL: http:
//doi.acm.org/10.1145/1108792.1108809.

http://www.openmp.org/mp-documents/OpenMP_4.0_RC2.pdf
http://www.openmp.org/mp-documents/OpenMP_4.0_RC2.pdf
http://dl.acm.org/citation.cfm?id=520793.825732
http://dx.doi.org/10.1109/ISPASS.2009.4919640
http://dx.doi.org/10.1145/2503210.2503242
http://doi.acm.org/10.1145/2503210.2503242
http://doi.acm.org/10.1145/2503210.2503242
http://dx.doi.org/10.1109/ISPASS.2005.1430555
http://dx.doi.org/10.1109/ISPASS.2005.1430555
http://dx.doi.org/10.1109/ISPASS.2005.1430555
http://dx.doi.org/10.1145/1297846.1297950
http://doi.acm.org/10.1145/1297846.1297950
http://doi.acm.org/10.1145/1297846.1297950
http://dx.doi.org/10.1145/1108792.1108809
http://doi.acm.org/10.1145/1108792.1108809
http://doi.acm.org/10.1145/1108792.1108809

202 | BIBLIOGRAPHY

[203]

[204]

[205]

[206]

[207]

[208]

[209]

[210]

[211]

Christopher J. F. Pickett and Clark Verbrugge. ‘Software Thread Level Speculation for the Java
Language and Virtual Machine Environment’. In: Proceedings of the 18th International Conference
on Languages and Compilers for Parallel Computing. LCPC'05. Hawthorne, NY: Springer-Verlag,
2006, pp. 304-318. 1sBN: 3-540-69329-7, 978-3-540-69329-1. por: 10.1007/978-3-540~
69330-7_21.URL: http://dx.doi.org/10.1007/978-3-540-69330-7_21.

C.D. Polychronopoulos and D. J. Kuck. ‘Guided Self-Scheduling: A Practical Scheduling Scheme
for Parallel Supercomputers’. In: IEEE Transactions on Computers, vol. C-36, no. 12, Dec. 1987,
pp. 1425-1439. Dec. 1987.

C. D. Polychronopoulos and D. J. Kuck. ‘Guided self-scheduling: A practical scheduling scheme
for parallel supercomputers’. In: IEEE Trans. Comput. Vol. 36, no. 12, Dec. 1987, pp. 1425-1439.
Washington, DC, USA: IEEE Computer Society, Dec. 1987. 1ssn: 0018-9340. por: 10.1109/TC.
1987.5009495. URL: http://dx.doi.org/10.1109/TC.1987.5009495.

Leo Porter, Bumyong Choi and Dean M. Tullsen. ‘Mapping Out a Path from Hardware Trans-
actional Memory to Speculative Multithreading’. In: Proceedings of the 2009 18th International
Conference on Parallel Architectures and Compilation Techniques. PACT ’09. Washington, DC, USA:
IEEE Computer Society, 2009, pp. 313-324. 1sBN: 978-0-7695-3771-9. por: 10.1109/PACT .
2009.37. uRL: http://dx.doi.org/10.1109/PACT.2009.37.

Manohar K. Prabhu and Kunle Olukotun. ‘Exposing speculative thread parallelism in
SPEC2000’. In: Proceedings of the tenth ACM SIGPLAN symposium on Principles and prac-
tice of parallel programming. PPoPP ’05. Chicago, IL, USA: ACM, 2005, pp. 142-152. IsBN:
1-59593-080-9. por: 10.1145/1065944.1065964. URL: http://doi.acm.org/10.1145/
1065944 .1065964.

Manohar K. Prabhu and Kunle Olukotun. ‘Using Thread-level Speculation to Simplify Manual
Parallelization’. In: Proceedings of the Ninth ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming. PPoPP ’03. San Diego, California, USA: ACM, 2003, pp. 1-12. 1sBN:
1-58113-588-2. por: 10.1145/781498.781500. URL: http://doi.acm.org/10.1145/
781498.781500.

Prakash Prabhu, Ganesan Ramalingam and Kapil Vaswani. ‘Safe programmable speculative
parallelism’. In: Proceedings of the 2010 ACM SIGPLAN conference on Programming language
design and implementation. PLDI ’10. Toronto, Ontario, Canada: ACM, 2010, pp. 50-61. 1sBN:
978-1-4503-0019-3. por: 10.1145/1806596.1806603. URL: http://doi.acm.org/10.
1145/1806596.1806603.

Dimitrios Prountzos, Roman Manevich, Keshav Pingali and Kathryn S. McKinley. ‘A Shape
Analysis for Optimizing Parallel Graph Programs’. In: Proceedings of the 38th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’11. Austin, Texas,
USA: ACM, 2011, pp. 159-172. 1s6N: 978-1-4503-0490-0. por: 10.1145/1926385.1926405.
URL: http://doi.acm.org/10.1145/1926385.1926405.

Joan Puiggali, Boleslaw K Szymanski, Teo Jové and Jose L Marzo. ‘Dynamic branch specula-
tion in a speculative parallelization architecture for computer clusters’. In: Concurrency and
Computation: Practice and Experience, vol. 25, no. 7, 2012. Wiley Online Library, 2012.

http://dx.doi.org/10.1007/978-3-540-69330-7_21
http://dx.doi.org/10.1007/978-3-540-69330-7_21
http://dx.doi.org/10.1007/978-3-540-69330-7_21
http://dx.doi.org/10.1109/TC.1987.5009495
http://dx.doi.org/10.1109/TC.1987.5009495
http://dx.doi.org/10.1109/TC.1987.5009495
http://dx.doi.org/10.1109/PACT.2009.37
http://dx.doi.org/10.1109/PACT.2009.37
http://dx.doi.org/10.1109/PACT.2009.37
http://dx.doi.org/10.1145/1065944.1065964
http://doi.acm.org/10.1145/1065944.1065964
http://doi.acm.org/10.1145/1065944.1065964
http://dx.doi.org/10.1145/781498.781500
http://doi.acm.org/10.1145/781498.781500
http://doi.acm.org/10.1145/781498.781500
http://dx.doi.org/10.1145/1806596.1806603
http://doi.acm.org/10.1145/1806596.1806603
http://doi.acm.org/10.1145/1806596.1806603
http://dx.doi.org/10.1145/1926385.1926405
http://doi.acm.org/10.1145/1926385.1926405

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

B.3 BIBLIOGRAPHY | 203

Carlos Garcia Quifiones, Carlos Madriles, Jests Sdnchez, Pedro Marcuello, Antonio Gonzélez
and Dean M. Tullsen. ‘Mitosis compiler: an infrastructure for speculative threading based on
pre-computation slices’. In: Proceedings of the 2005 ACM SIGPLAN conference on Programming
language design and implementation. PLDI '05. Chicago, IL, USA: ACM, 2005, pp. 269-279. IsBN:
1-59593-056-6.por: 10.1145/1065010.1065043. URL: http://doi.acm.org/10.1145/
1065010.1065043.

Ravi Rajwar and James R. Goodman. ‘Speculative Lock Elision: Enabling Highly Concurrent
Multithreaded Execution’. In: Proceedings of the 34th Annual ACM/IEEE International Symposium
on Microarchitecture. MICRO 34. Austin, Texas: IEEE Computer Society, 2001, pp. 294-305.
1SBN: 0-7695-1369-7. urL: http://dl.acm.org/citation.cfm?i1d=563998.564036.

Arun Raman, Hanjun Kim, Thomas R. Mason, Thomas B. Jablin and David I. August. ‘Speculative
parallelization using software multi-threaded transactions’. In: Proceedings of the fifteenth edition
of ASPLOS on Architectural support for programming languages and operating systems. ASPLOS
XV. Pittsburgh, Pennsylvania, USA: ACM, 2010, pp. 65-76. 1sBN: 978-1-60558-839-1. por:
10.1145/1736020.1736030. URL: http://doi.acm.org/10.1145/1736020.1736030.

Easwaran Raman, Neil Vahharajani, Ram Rangan and David I. August. ‘Spice: speculative parallel
iteration chunk execution’ In: Proceedings of the 6th annual IEEE/ACM international symposium
on Code generation and optimization. CGO ’08. Boston, MA, USA: ACM, 2008, pp. 175-184.
1BN: 978-1-59593-978-4. por: 10.1145/1356058.1356082. URL: http://0-doi.acm.org.
almena.uva.es/10.1145/1356058.1356082.

L. Rauchwerger and D. A. Padua. “The LRPD Test: Speculative Run-Time Parallelization of
Loops with Privatization and Reduction Parallelization’. In: IEEE Transactions on Parallel and
Distributed Systems, vol. 10, no. 2, 1999, pp. 160-180. 1999.

Lawrence Rauchwerger. ‘Speculative Parallelization of Loops’. In: Encyclopedia of Parallel Com-
puting. Ed. by David Padua. USA: Springer US, 2011, pp. 1901-1912. 1sBn: 978-0-387-09765-7.
DOI: 10.1007/978-0-387-09766-4_35. URL: http://dx.doi.org/10.1007/978-0-
387-09766-4_35.

Lawrence Rauchwerger and David Padua. “The LRPD test: Speculative run-time parallelization
of loops with privatization and reduction parallelization’ In: SIGPLAN Not. Vol. 30, no. 6, June
1995, pp. 218-232. New York, NY, USA: ACM, June 1995. 1ssn: 0362-1340. por: 10.1145/
223428.207148.URL: http://doi.acm.org/10.1145/223428.207148.

J. Renau, K. Strauss, L. Ceze, Wei Liu, S.R. Sarangi, J. Tuck and J. Torrellas. ‘Energy-Efficient
Thread-Level Speculation’. In: IEEE Micro, vol. 26, no. 1, 2006, pp. 80-91. 2006. 1ssn: 0272-1732.
DOI:10.1109/MM.2006.11.

Jose Renau, Karin Strauss, Luis Ceze, Wei Liu, Smruti Sarangi, James Tuck and Josep Torrellas.
‘Thread-Level Speculation on a CMP can be energy efficient’. In: Proceedings of the 19th annual
international conference on Supercomputing. ICS ’05. Cambridge, Massachusetts: ACM, 2005,
pp. 219-228. 1sBN: 1-59593-167-8. por: 10 .1145/1088149.1088178. URL: http: //doi.
acm.org/10.1145/1088149.1088178.

http://dx.doi.org/10.1145/1065010.1065043
http://doi.acm.org/10.1145/1065010.1065043
http://doi.acm.org/10.1145/1065010.1065043
http://dl.acm.org/citation.cfm?id=563998.564036
http://dx.doi.org/10.1145/1736020.1736030
http://doi.acm.org/10.1145/1736020.1736030
http://dx.doi.org/10.1145/1356058.1356082
http://0-doi.acm.org.almena.uva.es/10.1145/1356058.1356082
http://0-doi.acm.org.almena.uva.es/10.1145/1356058.1356082
http://dx.doi.org/10.1007/978-0-387-09766-4_35
http://dx.doi.org/10.1007/978-0-387-09766-4_35
http://dx.doi.org/10.1007/978-0-387-09766-4_35
http://dx.doi.org/10.1145/223428.207148
http://dx.doi.org/10.1145/223428.207148
http://doi.acm.org/10.1145/223428.207148
http://dx.doi.org/10.1109/MM.2006.11
http://dx.doi.org/10.1145/1088149.1088178
http://doi.acm.org/10.1145/1088149.1088178
http://doi.acm.org/10.1145/1088149.1088178

204 | BIBLIOGRAPHY

[221]

(222

[223]

[224]

[225]

[226]

[227]

[228]

[229]

[230]

Arash Rezaei, Giuseppe Coviello, Cheng-Hong Li, Srimat Chakradhar and Frank Mueller.
‘Snapify: Capturing Snapshots of Offload Applications on Xeon Phi Manycore Processors’.
In: Proceedings of the 23rd International Symposium on High-performance Parallel and Distributed
Computing. HPDC ’14. Vancouver, BC, Canada: ACM, 2014, pp. 1-12. 1sBN: 978-1-4503-2749-7.
DOI: 10 . 1145 /2600212 .2600215. URL: http://doi.acm.org/10.1145/2600212.
2600215.

Torvald Riegel. Transactional Memory in GCC. 2012. urL: https://gcc.gnu.org/wiki/
TransactionalMemory.

Anne Rogers, Martin C. Carlisle, John H. Reppy and Laurie J. Hendren. ‘Supporting Dynamic
Data Structures on Distributed-memory Machines’. In: ACM Trans. Program. Lang. Syst. Vol. 17,
no. 2, Mar. 1995, pp. 233-263. New York, NY, USA: ACM, Mar. 1995. 1ssn: 0164-0925. por:
10.1145/201059.201065. URL: http://doi.acm.org/10.1145/201059.201065.

Eric Rotenberg, Steve Bennett and James E. Smith. “Trace Cache: A Low Latency Approach to
High Bandwidth Instruction Fetching’ In: Proceedings of the 29th Annual ACM/IEEE International
Symposium on Microarchitecture. MICRO 29. Paris, France: IEEE Computer Society, 1996,
pp- 24-35. 1sBN: 0-8186-7641-8. urL: http://dl.acm.org/citation.cfm?i1d=243846.
243854.

Eric Rotenberg, Quinn Jacobson, Yiannakis Sazeides and Jim Smith. “Trace Processors”. In:
Proceedings of the 30th Annual ACM/IEEE International Symposium on Microarchitecture. MICRO
30. Research Triangle Park, North Carolina, USA: IEEE Computer Society, 1997, pp. 138-148.
ISBN: 0-8186-7977-8. UrRL: http://dl.acm.org/citation.cfm?1d=266800.266814.

Amitabha Roy, Steven Hand and Tim Harris. ‘A Runtime System for Software Lock Elision’. In:
Proceedings of the 4th ACM European Conference on Computer Systems. EuroSys '09. Nuremberg,
Germany: ACM, 2009, pp. 261-274. 1sBN: 978-1-60558-482-9. por: 10 . 1145/ 1519065 .
1519094. URL: http://doi.acm.org/10.1145/1519065.1519094.

Peter Rundberg and Per Stenstrom. ‘Low-Cost Thread-Level Data Dependence Speculation on
Multiprocessors’. In: Workshop on Scalable Shared Memory Multiprocessors. June 2000.

Joel H Saltz, Ravi Mirchandaney and Kay Crowley. ‘Run-time parallelization and scheduling of
loops’. In: IEEE Transactions on Computers, vol. 40, no. 5, 1991, pp. 603-612. IEEE, 1991.

Mehrzad Samadi, Amir Hormati, Janghaeng Lee and Scott Mahlke. ‘Paragon: Collaborative
Speculative Loop Execution on GPU and CPU’. In: Proceedings of the 5th Annual Workshop on
General Purpose Processing with Graphics Processing Units. GPGPU-5. London, United Kingdom:
ACM, 2012, pp. 64-73. 1sBN: 978-1-4503-1233-2. por: 10 . 1145 /2159430 . 2159438. URL:
http://doi.acm.org/10.1145/2159430.2159438.

Nadathur Satish, Changkyu Kim, Jatin Chhugani, Hideki Saito, Rakesh Krishnaiyer, Mikhail
Smelyanskiy, Milind Girkar and Pradeep Dubey. ‘Can Traditional Programming Bridge the
Ninja Performance Gap for Parallel Computing Applications?’ In: Proceedings of the 39th Annual
International Symposium on Computer Architecture. ISCA ’12. Portland, Oregon: IEEE Computer
Society, 2012, pp. 440-451. 1sBN: 978-1-4503-1642-2. urL: http://dl.acm.org/citation.
cfm?id=2337159.2337210.

http://dx.doi.org/10.1145/2600212.2600215
http://doi.acm.org/10.1145/2600212.2600215
http://doi.acm.org/10.1145/2600212.2600215
https://gcc.gnu.org/wiki/TransactionalMemory
https://gcc.gnu.org/wiki/TransactionalMemory
http://dx.doi.org/10.1145/201059.201065
http://doi.acm.org/10.1145/201059.201065
http://dl.acm.org/citation.cfm?id=243846.243854
http://dl.acm.org/citation.cfm?id=243846.243854
http://dl.acm.org/citation.cfm?id=266800.266814
http://dx.doi.org/10.1145/1519065.1519094
http://dx.doi.org/10.1145/1519065.1519094
http://doi.acm.org/10.1145/1519065.1519094
http://dx.doi.org/10.1145/2159430.2159438
http://doi.acm.org/10.1145/2159430.2159438
http://dl.acm.org/citation.cfm?id=2337159.2337210
http://dl.acm.org/citation.cfm?id=2337159.2337210

[231]

[232]

[233]

[234]

[235]

[236]

[237]

[238]

[239]

[240]

B.3 BIBLIOGRAPHY | 205

Dirk Schmidl, Tim Cramer, Sandra Wienke, Christian Terboven and MatthiasS. Miiller. ‘Assess-
ing the Performance of OpenMP Programs on the Intel Xeon Phi’ English. In: Euro-Par 2013
Parallel Processing. Ed. by Felix Wolf, Bernd Mohr and Dieter an Mey. Vol. 8097. Lecture Notes
in Computer Science. Springer Berlin Heidelberg, 2013, pp. 547-558. 1sBN: 978-3-642-40046-9.
DOI: 10.1007/978-3-642-40047-6_56. URL: http://dx.doi.org/10.1007/978-3-
642-40047-6_56.

Nir Shavit and Dan Touitou. ‘Software Transactional Memory’. In: Distributed Computing, vol. 10,
1997, pp. 99-116. 1997.

Gurindar S. Sohi, Scott E. Breach and T. N. Vijaykumar. ‘Multiscalar processors”. In: Proceedings
of the 22nd annual international symposium on Computer architecture. ISCA °95. S. Margherita
Ligure, Italy: ACM, 1995, pp. 414-425. 1sBN: 0-89791-698-0. por: 10.1145/223982.224451.
URL: http://doi.acm.org/10.1145/223982.224451.

J. Greggory Steffan, Christopher B. Colohan, Antonia Zhai and Todd C. Mowry. ‘A scalable
approach to thread-level speculation’. In: Proceedings of the 27th annual international symposium
on Computer architecture. ISCA’00. Vancouver, British Columbia, Canada: ACM, 2000, pp. 1-12.
1sBN: 1-58113-232-8. por: 10 . 1145 /339647 . 339650. URL: http://doi.acm.org/10.
1145/339647.339650.

J. Gregory Steffan, Christopher B. Colohan, Antonia Zhai and Todd C. Mowry. Tmproving Value
Communication for Thread-Level Speculation’. In: Proceedings of the 8th International Symposium
on High-Performance Computer Architecture. HPCA '02. Washington, DC, USA: IEEE Computer
Society, 2002, pp. 65—. UrL: http://dl.acm.org/citation.cfm?1d=874076.876480.

J. Steffan and T Mowry. ‘The Potential for Using Thread-Level Data Speculation to Facilitate
Automatic Parallelization’. In: Proceedings of the 4th International Symposium on High-Performance
Computer Architecture. HPCA "98. Washington, DC, USA: IEEE Computer Society, 1998, pp. 2-.
1sBN: 0-8186-8323-6. URL: http://dl.acm.org/citation.cfm?id=822079.822712.

Peiyi Tang and Pen-Chung Yew. Processor Self-Scheduling for Multiple Nested Parallel Loops’
In: IEEE Intl. Conf. on Parallel Processing. Aug. 1986, pp. 528-535.

Peiyi Tang and Pen-Chung Yew. ‘Processor Self-Scheduling for Multiple-Nested Parallel Loops’
In: ICPP. Vol. 86. USA: CRC Press, 1986, pp. 528-535.

Chen Tian, Min Feng and Rajiv Gupta. ‘Speculative Parallelization Using State Separation and
Multiple Value Prediction’. In: Proceedings of the 2010 International Symposium on Memory Manage-
ment. ISMM ’10. Toronto, Ontario, Canada: ACM, 2010, pp. 63-72. 1sBN: 978-1-4503-0054-4.
DOI: 10 . 1145 /1806651 . 1806663. URL: http://doi.acm.org/10.1145/1806651.
1806663.

Chen Tian, Min Feng and Rajiv Gupta. ‘Supporting speculative parallelization in the presence
of dynamic data structures’. In: Proceedings of the 2010 ACM SIGPLAN conference on Programming
language design and implementation. PLDI "10. Toronto, Ontario, Canada: ACM, 2010. 1sBN:
978-1-4503-0019-3. por: 10.1145/1806596.1806604.

http://dx.doi.org/10.1007/978-3-642-40047-6_56
http://dx.doi.org/10.1007/978-3-642-40047-6_56
http://dx.doi.org/10.1007/978-3-642-40047-6_56
http://dx.doi.org/10.1145/223982.224451
http://doi.acm.org/10.1145/223982.224451
http://dx.doi.org/10.1145/339647.339650
http://doi.acm.org/10.1145/339647.339650
http://doi.acm.org/10.1145/339647.339650
http://dl.acm.org/citation.cfm?id=874076.876480
http://dl.acm.org/citation.cfm?id=822079.822712
http://dx.doi.org/10.1145/1806651.1806663
http://doi.acm.org/10.1145/1806651.1806663
http://doi.acm.org/10.1145/1806651.1806663
http://dx.doi.org/10.1145/1806596.1806604

206 | BIBLIOGRAPHY

[241]

[242]

[243]

[244)

[245]

[246]

[247]

[248]

[249]

[250]

Chen Tian, Min Feng, Vijay Nagarajan and Rajiv Gupta. ‘Copy or Discard execution model
for speculative parallelization on multicores’. In: Proceedings of the 41st annual IEEE/ACM Inter-
national Symposium on Microarchitecture. MICRO 41. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 330-341. 1sBN: 978-1-4244-2836-6. por: 10.1109/MICR0O.2008.4771802.
URL: http://dx.doi.org/10.1109/MICR0.2008.4771802.

Chen Tian, Min Feng, Vijay Nagarajan and Rajiv Gupta. ‘Speculative Parallelization of Sequen-
tial Loops on Multicores’. In: Int. J. Parallel Program. Vol. 37, no. 5, Oct. 2009, pp. 508-535.
Norwell, MA, USA: Kluwer Academic Publishers, Oct. 2009. 1ssn: 0885-7458. por: 10.1007/
s10766-009-0111-z. URL: http://dx.doi.org/10.1007/s10766-009-0111-z.

Chen Tian, Changhui Lin, Min Feng and Rajiv Gupta. ‘Enhanced speculative parallelization
via incremental recovery’. In: Proceedings of the 16th ACM symposium on Principles and practice
of parallel programming. PPoPP "11. San Antonio, TX, USA: ACM, 2011, pp. 189-200. 1sBn:
978-1-4503-0119-0. por: 10.1145/1941553.1941580. URL: http://doi.acm.org/10.
1145/1941553.1941580.

Josep Torrellas. ‘Speculation, Thread-Level’ In: Encyclopedia of Parallel Computing. Ed. by David
Padua. USA: Springer US, 2011, pp. 1894-1900. 1sBN: 978-0-387-09765-7. por: 10.1007 /978~
0-387-09766-4_170. URL: http://dx.doi.0rg/10.1007/978-0-387-09766-4_170.

Georgios Tournavitis, Zheng Wang, Bjérn Franke and Michael FP O’Boyle. “Towards a hol-
istic approach to auto-parallelization: integrating profile-driven parallelism detection and
machine-learning based mapping’. In: ACM Sigplan Notices. Vol. 44. 6. ACM. 2009, pp. 177-187.

Jordi Tubella and Antonio Gonzalez. ‘Control speculation in multithreaded processors through
dynamic loop detection’. In: Proceedings of the 1998 Fourth International Symposium on High-
Performance Computer Architecture. HPCA "98. Washington, DC, USA: IEEE Computer Society,
1998, pp. 14-23. por: 10.1109/HPCA.1998.650542.

Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo and Rebecca L. Stamm.
‘Exploiting Choice: Instruction Fetch and Issue on an Implementable Simultaneous Multithread-
ing Processor’. In: Proceedings of the 23rd Annual International Symposium on Computer Architecture.
ISCA ’96. Philadelphia, Pennsylvania, USA: ACM, 1996, pp. 191-202. rsBn: 0-89791-786-3.
DOI: 10.1145/232973.232993. URL: http://doi.acm.org/10.1145/232973.232993.

Dean M. Tullsen, Susan J. Eggers and Henry M. Levy. ‘Simultaneous Multithreading: Maxim-
izing On-chip Parallelism’. In: 25 Years of the International Symposia on Computer Architecture
(Selected Papers). ISCA 98. Barcelona, Spain: ACM, 1998, pp. 533—544. 1sBn: 1-58113-058-9.
DOI: 10.1145/285930.286011. URL: http://doi.acm.org/10.1145/285930.286011.

Ten H. Tzen and Lionel M. Ni. ‘Trapezoid Self-Scheduling: A Pratical Scheduling Scheme for
Parallel Compilers’. In: IEEE Transactions on Parallel and Distributed Systems, vol. 4, no. 1, 1993,
pp- 87-98.1993.

Neil Amar Vachharajani. ‘Intelligent speculation for pipelined multithreading’. AAI3338698.
PhD thesis. Princeton, NJ, USA: Princeton University, 2008. 1sBN: 978-0-549-93358-8.

http://dx.doi.org/10.1109/MICRO.2008.4771802
http://dx.doi.org/10.1109/MICRO.2008.4771802
http://dx.doi.org/10.1007/s10766-009-0111-z
http://dx.doi.org/10.1007/s10766-009-0111-z
http://dx.doi.org/10.1007/s10766-009-0111-z
http://dx.doi.org/10.1145/1941553.1941580
http://doi.acm.org/10.1145/1941553.1941580
http://doi.acm.org/10.1145/1941553.1941580
http://dx.doi.org/10.1007/978-0-387-09766-4_170
http://dx.doi.org/10.1007/978-0-387-09766-4_170
http://dx.doi.org/10.1007/978-0-387-09766-4_170
http://dx.doi.org/10.1109/HPCA.1998.650542
http://dx.doi.org/10.1145/232973.232993
http://doi.acm.org/10.1145/232973.232993
http://dx.doi.org/10.1145/285930.286011
http://doi.acm.org/10.1145/285930.286011

[251]

[252]

[253]

[254]

[255]

[256]

[257]

[258]

[259]

[260]

B.3 BIBLIOGRAPHY | 207

Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges, Guilherme Ottoni and
David I. August. ‘Speculative Decoupled Software Pipelining’. In: Proceedings of the 16th Interna-
tional Conference on Parallel Architecture and Compilation Techniques. PACT '07. Washington, DC,
USA: IEEE Computer Society, 2007, pp. 49-59. 1sBN: 0-7695-2944-5. por: 10. 1109 /PACT .
2007.66.URL: http://dx.doi.org/10.1109/PACT.2007.66.

David W. Walker. ‘The design of a standard message passing interface for distributed memory
concurrent computers’. In: Parallel Comput. Vol. 20, no. 4, 1994, pp. 657-673. 1994. urL: http:
//portal.acm.org/citation.cfm?id=180103.

Steven Wallace, Brad Calder and Dean M. Tullsen. “Threaded Multiple Path Execution’. In:
Proceedings of the 25th Annual International Symposium on Computer Architecture. ISCA "98.
Barcelona, Spain: IEEE Computer Society, 1998, pp. 238-249. 1s8n: 0-8186-8491-7. por: 10.
1145/279358.279392. URL: http://dx.doi.org/10.1145/279358.279392.

Yizhuo Wang, A. Nicolau, R. Cammarota and A.V. Veidenbaum. ‘A fault tolerant self-scheduling
scheme for parallel loops on shared memory systems’. In: High Performance Computing (HiPC),
2012 19th International Conference on. Dec. 2012, pp. 1-10. por: 10 . 1109 / HiPC . 2012 .
6507476.

F. Warg and P. Stenstrom. ‘Dual-Thread Speculation: Two Threads in the Machine are Worth
Eight in the Bush’. In: Computer Architecture and High Performance Computing, 2006. SBAC-PAD
'06. 18TH International Symposium on. Oct. 2006, pp. 91-98. por: 10.1109/SBAC-PAD.2006.
17.

Fredrik Warg and Per Stenstrom. Tmproving Speculative Thread-Level Parallelism Through
Module Run-Length Prediction’. In: Proceedings of the 17th International Symposium on Parallel
and Distributed Processing. IPDPS "03. Washington, DC, USA: IEEE Computer Society, 2003,
pp- 12.2-.1sBN: 0-7695-1926-1. urL: http://dl.acm.org/citation.cfm?id=838237.
838521.

Fredrik Warg and Per Stenstrém. ‘Limits on Speculative Module-Level Parallelism in Imperative
and Object-Oriented Programs on CMP Platforms’. In: Proceedings of the 2001 International
Conference on Parallel Architectures and Compilation Techniques. PACT '01. Washington, DC, USA:
IEEE Computer Society, 2001, pp. 221-230. 1s6N: 0-7695-1363-8. urL: http://dl.acm.org/
citation.cfm?id=645988.674160.

Fredrik Warg and Per Stenstrom. ‘Reducing misspeculation overhead for module-level spec-
ulative execution’. In: Proceedings of the 2nd conference on Computing frontiers. CF ’05. Ischia,
Italy: ACM, 2005, pp. 289-298. 1s8N: 1-59593-019-1. por: 10.1145/1062261.1062310. URL:
http://doi.acm.org/10.1145/1062261.1062310.

Emo Welzl. ‘Smallest enclosing disks (balls and ellipsoids)’. In: New results and new trends in
computer science. Vol. 555. Lecture notes in computer science. Springer-Verlag, 1991, pp. 359-
370.

Michael E Wolf and Monica S Lam. ‘A loop transformation theory and an algorithm to maximize
parallelism’. In: IEEE Transactions on Parallel and Distributed Systems, vol. 2, no. 4, 1991, pp. 452-
471.1EEE, 1991.

http://dx.doi.org/10.1109/PACT.2007.66
http://dx.doi.org/10.1109/PACT.2007.66
http://dx.doi.org/10.1109/PACT.2007.66
http://portal.acm.org/citation.cfm?id=180103
http://portal.acm.org/citation.cfm?id=180103
http://dx.doi.org/10.1145/279358.279392
http://dx.doi.org/10.1145/279358.279392
http://dx.doi.org/10.1145/279358.279392
http://dx.doi.org/10.1109/HiPC.2012.6507476
http://dx.doi.org/10.1109/HiPC.2012.6507476
http://dx.doi.org/10.1109/SBAC-PAD.2006.17
http://dx.doi.org/10.1109/SBAC-PAD.2006.17
http://dl.acm.org/citation.cfm?id=838237.838521
http://dl.acm.org/citation.cfm?id=838237.838521
http://dl.acm.org/citation.cfm?id=645988.674160
http://dl.acm.org/citation.cfm?id=645988.674160
http://dx.doi.org/10.1145/1062261.1062310
http://doi.acm.org/10.1145/1062261.1062310

208 | BIBLIOGRAPHY

[261]

[262]

[263]

[264]

[265]

[266]

[267]

[268]

[269]

(270]

Michael Wong, Barna L. Bihari, Bronis R. de Supinski, Peng Wu, Maged Michael, Yan Liu and
Wang Chen. ‘A case for including transactions in OpenMP’. In: IWOMP’10 Proceedings. 2010,
pp- 149-160. 1sBN: 3-642-13216-2, 978-3-642-13216-2. por: 10.1007/978-3-642-13217~
9_12. (Visited on 02/03/2013).

Peng Wu, Arun Kejariwal and Calin Cascaval. ‘Compiler-Driven Dependence Profiling to Guide
Program Parallelization’. In: Languages and Compilers for Parallel Computing. Ed. by José Nelson
Amaral. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 232-248. 1sBN: 978-3-540-89739-2. por:
10.1007/978-3-540-89740-8_16.URL: http://dx.doi.org/10.1007/978-3-540—-
89740-8_16.

P. Xekalakis and M. Cintra. ‘Handling branches in TLS systems with Multi-Path Execution’
In: High Performance Computer Architecture (HPCA), 2010 IEEE 16th International Symposium
on. Washington, DC, USA: IEEE Computer Society, Jan. 2010, pp. 1-12. por: 10.1109/HPCA.
2010.5416632.

Polychronis Xekalakis, Nikolas Ioannou and Marcelo Cintra. ‘Combining Thread Level Spec-
ulation, Helper Threads and Runahead Execution’ In: Proceedings of the 23rd International
Conference on Supercomputing. ICS '09. Yorktown Heights, NY, USA: ACM, 2009, pp. 410-420.
ISBN: 978-1-60558-498-0. por: 10.1145/1542275.1542333. urL: http://doi.acm.org/
10.1145/1542275.1542333.

Polychronis Xekalakis, Nikolas Ioannou and Marcelo Cintra. ‘Mixed Speculative Multithreaded
Execution Models’ In: ACM Trans. Archit. Code Optim. Vol. 9, no. 3, Oct. 2012, 18:1-18:26. New
York, NY, USA: ACM, Oct. 2012. 1ssN: 1544-3566. por: 10 .1145/2355585.2355591. URL:
http://doi.acm.org/10.1145/2355585.2355591.

Polychronis Xekalakis, Nikolas Ioannou, Salman Khan and Marcelo Cintra. ‘Profitability-based
power allocation for speculative multithreaded systems’. In: Parallel ¢ Distributed Processing
(IPDPS), 2010 IEEE International Symposium on. IEEE. 2010, pp. 1-11.

Paraskevas Yiapanis, Demian Rosas-Ham, Gavin Brown and Mikel Lujan. ‘Optimizing software
runtime systems for speculative parallelization’. In: ACM Trans. Archit. Code Optim. Vol. 9,
no. 4, Jan. 2013, 39:1-39:27. New York, NY, USA: ACM, Jan. 2013. 1ssn: 1544-3566. por:
10.1145/2400682.2400698. URL: http://doi.acm.org/10.1145/2400682.2400698.

Antonia Zhai, J. Gregory Steffan, Christopher B. Colohan and Todd C. Mowry. ‘Compiler and
Hardware Support for Reducing the Synchronization of Speculative Threads’. In: ACM Trans.
Archit. Code Optim. Vol. 5, no. 1, May 2008, 3:1-3:33. New York, NY, USA: ACM, May 2008.
ISSN: 1544-3566. por: 10.1145/1369396.1369399.

Chao Zhang, Chen Ding, Xiaoming Gu, Kirk Kelsey, Tongxin Bai and Xiaobing Feng. ‘Continu-
ous speculative program parallelization in software’. In: Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming. PPoPP '10. Bangalore, India: ACM,
2010, pp. 335-336. 1sBN: 978-1-60558-877-3. por: 10.1145/1693453.1693501. URL: http:
//doi.acm.org/10.1145/1693453.1693501.

Chenggang Zhang, Guodong Han and Cho-Li Wang. ‘GPU-TLS: An Efficient Runtime for
Speculative Loop Parallelization on GPUS.. In: Cluster, Cloud and Grid Computing (CCGrid), 2013
13th IEEE/ACM International Symposium on. Washington, DC, USA: IEEE Computer Society,
2013, pp. 120-127. por: 10.1109/CCGrid.2013.34.

http://dx.doi.org/10.1007/978-3-642-13217-9_12
http://dx.doi.org/10.1007/978-3-642-13217-9_12
http://dx.doi.org/10.1007/978-3-540-89740-8_16
http://dx.doi.org/10.1007/978-3-540-89740-8_16
http://dx.doi.org/10.1007/978-3-540-89740-8_16
http://dx.doi.org/10.1109/HPCA.2010.5416632
http://dx.doi.org/10.1109/HPCA.2010.5416632
http://dx.doi.org/10.1145/1542275.1542333
http://doi.acm.org/10.1145/1542275.1542333
http://doi.acm.org/10.1145/1542275.1542333
http://dx.doi.org/10.1145/2355585.2355591
http://doi.acm.org/10.1145/2355585.2355591
http://dx.doi.org/10.1145/2400682.2400698
http://doi.acm.org/10.1145/2400682.2400698
http://dx.doi.org/10.1145/1369396.1369399
http://dx.doi.org/10.1145/1693453.1693501
http://doi.acm.org/10.1145/1693453.1693501
http://doi.acm.org/10.1145/1693453.1693501
http://dx.doi.org/10.1109/CCGrid.2013.34

[271]

[272]

[273]

[274]

[275]

B.3 BIBLIOGRAPHY | 209

Zhijia Zhao and Xipeng Shen. ‘On-the-Fly Principled Speculation for FSM Parallelization’. In:
Proceedings of the Twentieth International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM. 2015, pp. 619-630.

Zhijia Zhao, Bo Wu and Xipeng Shen. ‘Challenging the embarrassingly sequential: parallelizing
finite state machine-based computations through principled speculation’. In: ACM SIGARCH
Computer Architecture News. Vol. 42. 1. ACM. 2014, pp. 543-558.

Zhijia Zhao, Bo Wu and Xipeng Shen. ‘Speculative parallelization needs rigor: probabilistic
analysis for optimal speculation of finite-state machine applications’ In: Proceedings of the 2Ist
international conference on Parallel architectures and compilation techniques. PACT ’12. Minneapolis,
Minnesota, USA: ACM, 2012, pp. 433-434. 1sBN: 978-1-4503-1182-3. por: 10.1145/2370816.
2370882.URL: http://doi.acm.org/10.1145/2370816.2370882.

Chuan-Qi Zhu and Pen-Chung Yew. ‘A scheme to enforce data dependence on large multi-
processor systems’. In: IEEE Transactions on Software Engineering, vol. SE-13, no. 6, June 1987,
pp- 726-739. IEEE, June 1987. 1ssN: 0098-5589. por: 10.1109/TSE.1987.233477.

Craig Zilles and Gurindar Sohi. ‘Master/slave speculative parallelization’. In: Proceedings of
the 35th annual ACM/IEEE international symposium on Microarchitecture. MICRO 35. Istanbul,
Turkey: IEEE Computer Society Press, 2002, pp. 85-96. 1sBN: 0-7695-1859-1. UrL: http :
//dl.acm.org/citation.cfm?id=774861.774871.

http://dx.doi.org/10.1145/2370816.2370882
http://dx.doi.org/10.1145/2370816.2370882
http://doi.acm.org/10.1145/2370816.2370882
http://dx.doi.org/10.1109/TSE.1987.233477
http://dl.acm.org/citation.cfm?id=774861.774871
http://dl.acm.org/citation.cfm?id=774861.774871

	Title
	Resumen
	Abstract
	Agradecimientos
	Contents
	List of Figures
	List of Tables
	List of Listings
	Resumen de la tesis
	Motivación
	Sistemas multiprocesador
	Violaciones de dependencia
	Paralelización de códigos con dependencias
	Paralelización especulativa

	Objetivos de esta tesis
	Pregunta de investigación

	Metodología de investigación
	Resumen de contribuciones
	Desarrollar un estudio en profundidad del estado del arte en paralelización especulativa
	Combinar un librería especulativa con un compilador
	Mejorar el rendimiento de las operaciones involucradas en una librería especulativa
	Combinar nuestro sistema especulativo con otras técnicas paralelas

	Respuesta a la pregunta de investigación y conclusiones
	Agradecimientos

	Introduction
	Motivation
	Multiprocessor computers
	Dependence violations
	Parallelization of codes with dependences
	Speculative Parallelization

	Objectives of this dissertation
	Research question
	Milestones

	Research methodology
	Document structure

	State of the art
	Introduction
	Sources of TLS and design choices
	Loops as a source of speculation
	Drawbacks of TLS
	A first classification of TLS techniques
	Design choices overview

	Precursors
	Hardware-based approaches
	Software-based approaches
	Solutions relying on compile-time and runtime support
	Solutions relying on programming abstractions
	Other proposals
	TLS mixed with other techniques
	STLS on distributed-memory systems
	STLS using GPUs

	Other studies related to TLS
	TLS as a help to manual parallelization
	Module-level speculation
	Energy consumption
	Benchmarks for TLS

	Limits to TLS
	Conclusions

	The ATLaS runtime system
	Problem description
	Cintra and Llanos' original solution
	Modifications in original source codes
	Classification of variables
	Distribution of iterations
	Thread management

	Main limitations of Cintra and Llanos' solution
	Our new TLS library
	Data structures

	New speculative operations
	Speculative reads
	Speculative stores
	Speculative commits
	Reduction operations

	Performance improvements
	Locating bottlenecks in the new TLS runtime library
	Keeping version copies: A hash-based solution
	Additional improvements

	Experimental evaluation
	Experimental setup
	Experimental results

	Conclusions

	The ATLaS framework
	Problem description
	Compilation phase description
	Semantics of Aldea et al.'s speculative clause
	Compiler support for the speculative clause

	Experimental evaluation
	Benchmark evaluation
	Effectiveness of the ATLaS runtime library

	Conclusions

	Scheduling strategies for TLS
	Problem description
	Classical scheduling alternatives
	Self scheduling
	Dynamic scheduling

	Scheduling iterations under TLS
	Moody Scheduling: Design guidelines
	Moody Scheduling function definition
	Dynamic and Adaptive Implementations
	Experimental evaluation
	Environment setup
	Experimental results

	Conclusions

	TLS and Transactional Memory
	Problem description
	Background
	Transactional Memory in a Nutshell
	Brief review of software TM libraries
	Transactional Synchronization Extensions
	TLS-TM hybrid approaches

	Comparison of TM and TLS
	Critical sections in ATLaS
	Location

	Benchmarks used
	Protecting data accesses: OpenMP critical vs. TM
	Experimental results
	Experimental setup
	Results for OpenMP, STM and HTM

	Conclusions

	TLS and Xeon Phi coprocessors
	Problem description
	Intel Xeon Phi in a nutshell
	Internal details
	Use of the Xeon Phi

	Experimental evaluation
	Environmental setup

	Experimental results
	Scalability
	Oversubscription
	Absolute performance

	Related work: TLS and the Xeon Phi coprocessor
	Hardware improvements to benefit software TLS
	Studies related to the Xeon Phi coprocessor

	Conclusions

	Conclusions
	Summary of results and contributions
	Goal 1: Deep study of the state-of-the-art in TLS
	Goal 2: Combine a TLS library with a compiler
	Goal 3: Improve operations involved in a TLS runtime library
	Goal 4: Test a TLS runtime library with other parallel techniques

	Answer to the research question
	Future work

	Benchmarks description
	Randomized incremental algorithms
	Minimum enclosing circle
	Convex hull
	Delaunay triangulation

	TREE benchmark
	Synthetic benchmarks
	Complete
	Tough
	Fast

	Example of use of the TLS library
	Initialization of the engine
	Use of the engine and variable settings
	An example of use
	Sequential application
	Speculative Parallelization of the sequential application
	Summary

	Bibliography

