Trabajo de fin de Grado Curso 2015-2016

Universidad de Valladolid

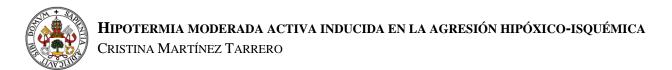
Facultad de Enfermería

GRADO EN ENFERMERÍA

HIPOTERMIA MODERADA ACTIVA INDUCIDA EN LA AGRESIÓN HIPÓXICO-ISQUÉMICA

Autor/a: CRISTINA MARTÍNEZ TARRERO

Tutor/a: JOSÉ MARÍA JIMÉNEZ PÉREZ

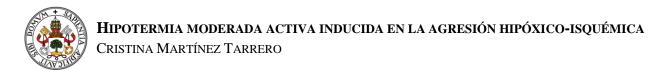

Cotutor/a: ANA GARCÍA DEL RÍO

HIPOTERMIA MODERADA ACTIVA INDUCIDA EN LA AGRESIÓN HIPÓXICO-ISQUÉMICA CRISTINA MARTÍNEZ TARRERO

<u>Índice</u>

1.	. Resumen	2
2.	2. Introducción	3
3.	3. Objetivos	6
4.	l. Material y métodos	7
5.	5. Desarrollo	9
	5.1. Encefalopatía hipóxico-isquémica	9
	Fases de la encefalopatía hipóxico-isquémica	9
	Diagnóstico y grados de severidad	10
	5.2. Hipotermia terapéutica	11
	Criterios de inclusión y exclusión	12
	Fases del tratamiento	13
	5.3. Secuelas	17
	Secuelas según grado de encefalopatía	17
	Seguimiento del niño con encefalopatía hipóxico-isquémica	18
	5.4. Avances en la hipotermia terapéutica	19
6.	5. Limitaciones del estudio	21
7.	7. Conclusiones	22
8.	B. Bibliografía	23
9.	O. Anexos	26
	9.1. Anexo I: Clasificación de Sarnat	26
	9.2. Anexo II: Fármacos durante la hipotermia terapéutica	27
	9.3. Anexo III: Monitorización del neonato	27
	9.4. Anexo IV: Tabla propuesta de tareas	29
	9.5. Anexo V: Fármacos neuroprotectores	33

1. Resumen


INTRODUCCIÓN: La encefalopatía hipóxico-isquémica es definida como la deficiencia en el aporte de oxígeno y/o perfusión sanguínea adecuada al cerebro del neonato durante el periparto. Se considera una de las principales causas de morbimortalidad neonatal, teniéndolo en cuenta como un problema sociosanitario. A principios del siglo XX su tratamiento era sintomático, realizándose ahora terapias neuroprotectoras tales como la hipotermia activa moderada inducida. Esta terapia consiste en disminuir la temperatura corporal del neonato 3-4°C durante 72h, reduciendo así las secuelas esperadas. Es importante destacar el seguimiento clínico adecuado del niño, abarcando como mínimo hasta la edad escolar.

<u>OBJETIVO</u>: describir la terapia de hipotermia en el neonato con encefalopatía hipóxico isquémica, el trabajo de enfermería, las posibles secuelas y los avances en la terapia.

MATERIAL Y MÉTODO: la revisión bibliográfica se basó en artículos obtenidos de la base de datos MEDLINE mediante el buscador Pubmed. Como apoyo, cabe mencionar Cochrane y Google Académico. Con los descriptores elegidos, los resultados fueron filtrados por fecha, tipo de artículo, especie y sin limitación de idioma, de tal forma que se redujo de 290 a 32 artículos, sobre los cuales se trabajó.

<u>CONCLUSIÓN</u>: la hipotermia terapéutica precoz en el neonato muestra tener efecto neuroprotector tras una agresión hipóxico isquémica en el momento perinatal, cuando se lleva a cabo en una Unidad de Cuidados Intensivos Neonatales (UCIN) nivel III mediante un personal de enfermería correctamente adiestrado y un protocolo estricto, siendo de vital importancia la sobre duración de la terapia y la temperatura del paciente.

<u>PALABRAS CLAVE</u>: hipotermia inducida, hipoxia isquemia encefálica, neonato, atención de enfermería.

2. Introducción

La encefalopatía hipóxico-isquémica (EHI) es conocida como la deficiencia en el aporte de oxígeno al cerebro y/o la correcta perfusión sanguínea cerebral del neonato¹, producida antes, durante o después del momento del nacimiento.

A principios del siglo XX, el tratamiento de la EHI se consideraba sintomático, proporcionando a los niños con dicha patología un soporte general avanzado (monitorización de constantes vitales, soporte ventilatorio, etc.), tratando mediante fármacos las convulsiones que pudieran presentar, así como las complicaciones potenciales tras la agresión asfíctica ocurrida en el periodo perinatal. Este tratamiento, sin embargo, no se centraba en la neuroprotección tras el evento hipóxico-isquémico, por lo que no se enlentecía ni detenía el daño cerebral que se pudiera haber producido durante el mismo²⁻⁸. En este momento, el tratamiento de elección ante la EHI es la hipotermia terapéutica (HT) ².

Tras la progresiva mejora de las técnicas obstétricas⁹, esta patología no ha desaparecido aunque sí se ha visto disminuida su incidencia desde hace 30 años hasta el presente¹⁰. Actualmente, la asfixia perinatal ocurre aproximadamente en 2-4 nacimientos por cada 1000. De estos, el 25-50% desemboca en un diagnóstico de EHI¹¹. En países desarrollados, la EHI se produce con una incidencia de 1 a 3 recién nacidos vivos de 36 semanas de edad gestacional por cada 1000 al año^{3,10}. En España, esta cifra se aproxima anualmente a los 500-1500 recién nacidos vivos⁶.

A día de hoy, la EHI es considerada como una de las principales causas de muerte neonatal y discapacidad moderada-grave a largo plazo¹²⁻¹⁵, entre las que se incluye parálisis cerebral severa, retraso mental, convulsiones y trastornos del aprendizaje. Es importante destacar que incluso cuando no existe evidencia clínica de discapacidad neurológica, pueden desarrollarse problemas de aprendizaje¹⁶.

Debido a estas graves consecuencias que produce la EHI así como a la frecuencia de aparición, se considera tanto un problema sanitario como social, teniendo también en cuenta el número de recursos empleados^{9,12,17} tanto en el momento del nacimiento como en la aplicación de terapias, así como en el seguimiento y asistencia del niño a lo largo de su infancia. Por tanto, aquí radica la importancia de establecer un tratamiento eficaz y seguro ante dicha patología.

Como ya se mencionó con anterioridad, en los últimos 15 años aparece la hipotermia terapéutica (HT) para el tratamiento de la EHI como uno de los avances más destacados de la época en cuanto al campo de la Neonatología¹⁸.

Anteriormente, la hipotermia se había empleado como anestesia local así como para tratar lesiones en la zona de la cabeza, incluyendo la cirugía cardíaca y neurológica⁵. Curiosamente, el frío ya se empleaba en neonatos para estimular la respiración espontánea tras el nacimiento, al introducirles en agua fría. También destacan los casos de recuperación cardíaca completa tras estar el paciente accidentalmente sumergido en agua fría al sufrir una parada cardíaca¹⁵.

Alrededor de 1960 se iniciaron los estudios formales acerca del poder de disminución de la isquemia producida por la neurotoxicidad, por lo que se comenzó a sospechar su capacidad neuroprotectora, ya que se comprobó que afectaba tanto al metabolismo como a la perfusión cerebral^{5,12}.

En la actualidad, la HT es uno de los tratamientos estándar en neonatos a término² diagnosticados de EHI, además de ser el más prometedor con respecto a la neuroprotección¹⁸⁻²⁰.

Existe cierta controversia en el uso de la hipotermia como tratamiento, ya que el mecanismo de acción terapéutico aún no está muy claro¹². Sin embargo, la HT ha sido respaldada desde hace 20 años por numerosos estudios que demuestran cómo, si se disminuye la temperatura corporal 3-4°C, ya sea de cuerpo entero o selectivo de la cabeza, antes de las 6 horas de vida, de forma controlada y se mantiene durante las 72h posteriores^{8,15,21}, se reduce la mortalidad y las secuelas a medio-largo plazo^{6,14} en comparación a las producidas en los niños tratados con normotermia¹⁸. Esto sucede debido a que se ralentiza la lesión, previniendo así el empeoramiento⁷ siempre y cuando se aplique hasta una vez concluida la primera fase de muerte neuronal¹³.

Como respaldo a la terapia, destacan metanálisis centrados en su seguridad y eficacia¹⁰, ensayos clínicos estandarizados como el del *National Institute of Child Health and Human Development* (NICHD) apoyado por el *Committee on Fetus and Newborn of the American Academy of Pediatrics, Total Body Hypothermia for Neonatal Encephalopathy Trial* (TOBY) y *CoolCap*²², entre otros.

Cabe apuntar la inclusión en 2010 de la HT en la guía de reanimación "Resuscitation Council Guidelines for Resuscitation 2010 (ILCOR)"¹¹, por lo cual se ha extendido su uso, siguiendo vigente en las recomendaciones actuales del ILCOR 2015, publicadas en octubre de ese mismo año²³.

Hoy en día no existen terapias neuroprotectoras que puedan considerarse una alternativa eficaz a la hipotermia terapéutica¹², si bien es verdad que se están llevando a cabo nuevas investigaciones con el fin de establecer el posible efecto neuroprotector que se produce tras el empleo de determinados fármacos¹³. Se debe tener en cuenta a la hipotermia como un tratamiento seguro y eficaz, tal y como demuestran los numerosos estudios, pero siempre y cuando se lleve a cabo de una manera protocolarizada⁶, en Unidades de Cuidados Intensivos Neonatal (UCIN) de nivel III¹⁰ y mediante un equipo multidisciplinar especialmente entrenado en dicha terapia²⁴.

El seguimiento clínico de estos niños durante sus primeros años de vida, así como durante su etapa escolar es primordial para detectar cuanto antes cualquier secuela¹⁶ y así valorar e intentar mejorar su calidad de vida.

La encefalopatía hipóxico-isquémica es, por tanto, una entidad clínica importante debido a las secuelas físicas, psíquicas además de sociales que puede llegar a producir en los niños afectados por dicha patología. El reto consiste en intentar reducir las posibles secuelas al máximo.

3. Objetivos

Objetivo general

 Describir la terapia de hipotermia moderada activa inducida en el neonato con agresión hipóxico isquémica.

Objetivos específicos

- Desarrollar las fases de las que se compone la terapia, con sus indicaciones y características a tener en cuenta.
- Describir la monitorización que se lleva a cabo y su registro, así como los fármacos empleados.
- Especificar la actuación y responsabilidad de enfermería durante cada fase.
- Detallar las secuelas psicomotrices y sensoriales obtenidas tras el empleo de esta terapia, en comparación a las esperadas en niños tratados con normotermia y el seguimiento a los niños con dicha patología.
- Valorar los avances futuros de la terapia de hipotermia moderada activa inducida.

4. Material y métodos

En la búsqueda de información para este trabajo se emplearon bases de datos científicas tales como MEDLINE mediante el buscador Pubmed, apoyándose también en Cochrane y Google Académico como fuentes de investigación paralelas. Se emplearon los siguientes descriptores en las sucesivas búsquedas, recurriendo a la web Descriptores en Ciencias de la Salud (DECS) como traductor de las palabras:

PALABRA INTRODUCIDA	DESCRIPTOR EN ESPAÑOL	DESCRIPTOR EN INGLÉS
Hipotermia inducida	Hipotermia inducida	Hypothermia, Induced
Neonato	Neonato	Infant, newborn
Encefalopatía hipóxico isquémica	Hipoxia-isquemia encefálica	Hypoxia-ischemia, brain
Enfermería	Enfermería	Nursing
Resultado	Resultado del tratamiento	Treatment outcome
Farmacoterapia	Quimioterapia	Drug therapy

Tabla 1.Descriptores

Los descriptores y marcadores booleanos empleados en cada búsqueda fueron los siguientes, además del número de artículos seleccionados con cada uno:

- Pubmed: Filtros "Artículos de revisión", "Texto completo", "Fecha: 2010-2016" y "Especie: humanos", sin limitación de idioma.

DESCRIPTORES	RESULTADOS	REDUCCIÓN	ELEGIDOS
Newborn [and] hypothermia induced [and] hypoxia ischemia brain	556	12	7
Newborn [and] hypothermia induced [and] treatment outcomes	332	30	7
Newborn [and] hypothermia induced [and] outcomes	165	19	4
Newborn [and] hypothermia induced [and] drug therapy	165	9	2
Newborn [and] hypothermia induced [and] nursing	33	5	1
Newborn [and] hypothermia induced [and] future	52	20	1

Tabla 2. Búsqueda bibliográfica en Pubmed

Como apoyo, se realizaron búsquedas otras bases de datos. En Cochrane se realizó con el descriptor "hipotermia inducida", obteniendo 14 resultados, de los cuales se eligió 1. En Google Académico, con los descriptores "Neonatal [and] hipotermia inducida [and] hipoxia isquemia encefalopatía", filtros "Todas las palabras" y "en todo el artículo", se obtuvieron 181 resultados, eligiendo 19.

Tras la búsqueda de los descriptores anteriores en cada base de datos se generaron 1498 resultados. Tras la aplicación de los siguientes filtros se obtuvieron 290. De éstos, se seleccionaron 32 para realizar la revisión bibliográfica:

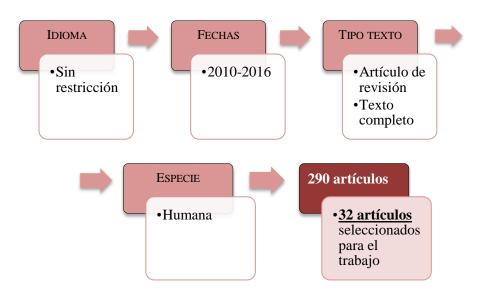


Figura 1. Algoritmo de búsqueda

A la hora de organizar la bibliografía obtenida, se consideró la creación de diferentes categorías, teniendo en cuenta los puntos clave de los cuales trataría el trabajo. Como consecuencia, se obtuvieron 8 categorizaciones diferentes para los artículos.

5. Desarrollo

5.1. Encefalopatía hipóxico-isquémica

La EHI es un cuadro clínico que se desarrolla a lo largo del tiempo, evolucionando a lo largo de 4 fases diferentes. Una de estas fases, la llamada "latente", es considerada como periodo ventana para tratamientos neuroprotectores. La duración de esta fase dependerá del grado de severidad de la EHI.

Fases de la encefalopatía hipóxico-isquémica

Esta patología divide su evolución en tres fases bien descritas a lo largo del tiempo y otra más, la fase III, no tan conocida. Es importante tener en cuenta la fisiopatología para actuar en el momento oportuno y de manera precisa²⁴.

- Fase I o fase primaria del daño:

En este periodo la agresión hipóxico-isquémica tiene lugar. Presenta una duración de 30-60 minutos, con el siguiente proceso^{5-7,25-27}:

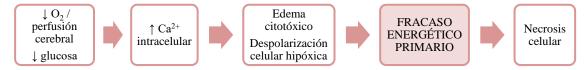
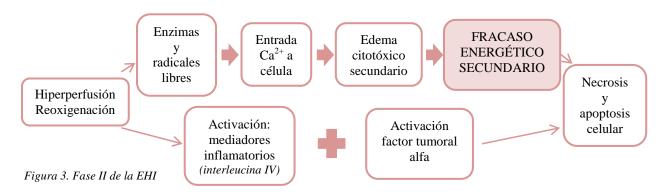


Figura 2. Fase I de EHI

- Fase latente o "periodo ventana":

Producido hasta las 6h post-agresión^{15,28}, se considera un periodo de recuperación, en el que el metabolismo oxidativo alcanza una leve producción energética⁶, tras la que se produce hiperperfusión y reoxigenación cerebral⁵.

Considerada "ventana terapéutica", es el momento adecuado de comenzar las terapias para intentar disminuir la lesión cerebral o limitar su evolución^{7,26} ya que después, la lesión producida no tiene vuelta atrás²⁸ y la efectividad de las terapias es mínima o incluso nula¹³.


Hay que tener en cuenta la variabilidad de duración, en función del tiempo y gravedad de la agresión, que la disminuyen, además de la hipotermia pasiva, que la aumenta incluso hasta las 8h tras el insulto hipóxico-isquémico^{21,29}.

Por tanto, se considerará este periodo como la fase más importante de la EHI.

- Fase II o fase secundaria de daño:

Los mecanismos de lesión de esta fase no son tan bien conocidos como los de la fase I⁵. Destaca la labor de enzimas como la caspasa, proteasa, lipasa, endonucleasa y fosfolipasa. Con una duración de 6-15h tras la agresión, se llevan a cabo los siguientes procesos²⁵⁻²⁸.

- **Fase III**: se produce a lo largo de los años posteriores, tras la fase II. En este "daño cerebral terciario" destaca la persistencia de alcalosis láctica cerebral, gliosis, cambios epigenéticos y activación persistente de los receptores inflamatorios, generalmente en niños con secuelas en el neurodesarrollo²⁵.

Diagnóstico y grados de severidad

Se considera sospecha de EHI cuando existe un evento centinela en el periparto, tales como antecedentes obstétricos, estado fetal no tranquilizador, evento hipóxico centinela (prolapso del cordón, desprendimiento prematuro de placenta, rotura uterina, exanguinación fetal) y/o distocia de parto^{6,28}.

La EHI fue clasificada por Sarnat en tres grados de severidad: EHI leve, EHI moderada o EHI grave, según la sintomatología que presente el neonato (<u>Anexo I</u>). Esta clasificación se considera un importante método predictivo de secuelas^{3,9}. También existen otras como la de Amiel-Tison, García-Alix et al., Thompson et al., etc., siendo menos empleadas en España que la de Sarnat^{6,20}.

La clasificación del paciente no siempre es sencilla debido a la necesidad de administración de fármacos sedantes, terapias neuroprotectoras como la hipotermia, etc. que enmascaran la clínica presente¹⁸.

5.2. Hipotermia terapéutica

La terapia neuroprotectora empleada en la actualidad en la EHI es la hipotermia moderada activa inducida o hipotermia terapéutica (HT). Esta terapia se basa en la disminución de la temperatura 3-4°C, mantenida de forma estable y controlada durante 72h, según la mayoría de estudios tales como TOBY, NICHD, Gunn et al.^{1,15,27}.

Con esta duración de 72h, la recuperación de la actividad electroencefalográfica normal mejora, se reduce el edema y la pérdida neuronal⁶. Sin embargo, Eicher et al. demuestran en su investigación que con 48h podría ser suficiente, aunque esta se realizó en una muestra muy pequeña como para establecer resultados concluyentes. Cabe destacar lugares como Japón, donde lo más habitual es extender el tiempo de la terapia más allá de las 72h habituales¹⁵.

El efecto neuroprotector se consigue gracias al descenso de cerca del 5% del metabolismo cerebral con cada bajada de cada grado centígrado^{5,28}, además de necesidades de O₂^{18,25,26}, disminución de radicales libres, tamaño de la lesión y pérdida neuronal. Por tanto, reduce el daño de la fase II¹⁴ al interferir en ciertos mecanismos de dicha fase (*tabla 3*)^{11,18,28}. Esto trae consigo la disminución de secuelas neurológicas y de comportamiento en el niño afectado¹².

Mecanismos en los que interfiere la hipotermia terapéutica^{6,7}

Tabla 3. Mecanismos afectados por la HT

Pero esta terapia precisa de ciertos requisitos para ser efectiva. Entre estos destacan un estricto protocolo, personal sanitario cualificado, inicio inmediato en un hospital adecuado con UCIN nivel III, criterio de selección preciso, corrección previa del pH, tensión arterial y glucemia, etc.^{7,12,22}, ya que si no, no será tan beneficiosa¹.

Si en el hospital de nacimiento no se dispusiera de este servicio, se procedería al traslado a otro hospital. Durante el traslado se puede mantener una hipotermia pasiva de 34,5-35,5°C, monitorizando estrechamente para evitar sobreenfriamientos^{6-9,12}.

Criterios de inclusión y exclusión

Como criterios de inclusión y exclusión de la hipotermia terapéutica destacan:

Criterios de inclusión 12,21,27-30	Criterios de exclusión ^{6,9,10}
Presencia de EHI Evento centinela pH del cordón < 7,0 Déficit de bases > 16mmol/L APGAR < 5 a los 5' REA ^a con presión + intermitente > 10' Neonato > 35 SEG ^b Criterio EEG/EEGa ^c	Neonato < 35 SEG, <1800g Malformación congénita grave Cromosomopatía Lesión cerebral estructural intraútero > 6h de vida Predicción de cirugía en las primeras 72h Neonatos moribundos
 ^a REA: reanimación ^b SEG: semanas de edad gestacional 	

^c EEG/EEGa: electroencefalograma / electroencefalograma de amplitud

Tabla 4. Criterios de inclusión y exclusión en la hipotermia inducida

Es importante considerar que ninguno de estos criterios es inamovible en la práctica, siendo el criterio de presencia de EHI el más importante.

El criterio de exclusión "> 6h de vida", que podría verse modificado a "> de 8h de vida" si el neonato se ha beneficiado de una hipotermia pasiva desde el momento de la agresión. Para ello, la reanimación se procurará realizar sin encender la cuna térmica y con una FiO₂ inicial de 21% (recomendaciones ILCOR 2015)²³.

Ante la falta de confirmación del pH de cordón, se deberá tener en cuenta de forma indispensable el test de APGAR y la necesidad de reanimación con presión positiva intermitente durante más de 10 minutos⁶.

Fases del tratamiento

El tratamiento con HT divide su actuación en varias fases: inducción, mantenimiento y recalentamiento. Habrá que obtener el consentimiento informado paterno, siendo en este caso suficiente con el "asentimiento informado".

Antes de la llegada del neonato a la UCIN, el personal de enfermería correctamente cualificado preparará el equipo necesario para la hipotermia terapéutica^{22,31}. Esta preparación engloba al equipo de hipotermia, cuna térmica, sondas de monitorización, monitor de función cerebral⁸, además del soporte ventilatorio necesario, material para canalización umbilical y de vía venosa periférica, bombas de infusión y sondaje urinario¹⁹. Dicha preparación comenzará en cuanto los neonatólogos opten por la hipotermia, ya que se necesitan unos 30-40 minutos⁶. Cabe destacar el gran trabajo de enfermería realizado con este tipo de pacientes, realizándolo de forma precisa y cuidadosa para lograr el mayor beneficio durante toda la terapia.

En cuanto el paciente llegue a la UCIN, con el aparataje correctamente montado, se iniciará la hipotermia de forma inmediata.

El <u>Anexo IV</u> representa una propuesta de tareas a llevar a cabo con un paciente tratado con hipotermia terapéutica. Dichas actividades se basan en los diagnósticos NANDA, incluidos a continuación durante la explicación de cada fase de la terapia, con sus consecuentes NOC y NIC.

Inducción

La fase de inducción consiste en el enfriamiento del neonato hasta la temperatura diana en 30-40 minutos. Existe debate sobre cuál es la temperatura adecuada. Teniendo en cuenta que la barrera de los 34°C se considera como límite de neuroprotección y que por debajo de 32°C los efectos adversos son demasiados para ser asumidos^{9,28}, la temperatura debería encontrarse entre los 33-34°C¹², tal y como indican los ensayos *European Network RCT* y el *Infant Cooling Evaluation* (ICE)^{10,27}. Esta temperatura también depende del método de enfriamiento escogido.

Existen varios métodos de enfriamiento: el global (33-34°C) o el selectivo de cabeza (34-35°C)^{25,27,29}. El global emplea mantas y colchones o chalecos y gorros de hipotermia, mientras que el selectivo de cabeza usa un casco.

Ambas técnicas se consideran efectivas, con similar afectación sistémica según investigaciones de Sakar et al. Sin embargo, el método selectivo da menos efectos secundarios y Rutherford et al. indican la menor aparición de lesiones corticales severas, aunque es difícil establecer una temperatura estable adecuada por el gradiente entre la cabeza y el cuerpo^{5,9}. Aun así, generalmente se prefiere el método global ya que permite el acceso a la cabeza y la temperatura es más estable². También existen otros métodos de baja gama como los packs de frío, no recomendables^{6,15,28}.

En este periodo, el personal de enfermería se encarga de^{4-10,15,22}:

- Monitorización del neonato: con la colocación de las sondas, además del control y registro de las constantes, de vital importancia durante toda la terapia.
 Cabe destacar la monitorización de la temperatura, que se realizará durante esta fase cada 15 minutos (*Anexo III*).
- **Enfriamiento**: controlando que se lleve a cabo a una correcta velocidad.
- Vigilancia de los efectos adversos: pueden ser producidos por un enfriamiento demasiado rápido. Entre ellos destacarían bradicardia (descenso de 14 lpm/°C), aumento de la viscosidad sanguínea 4-6%/°C de descenso, aumento de las necesidades de O₂, sobreenfriamiento, etc., siendo este último más frecuente en los niños más graves o con menor peso. También puede producirse estrés neonatal por una sedoanalgesia no efectiva, que influirá en la terapia disminuyendo su efectividad^{4,11,13}.

Entre los diagnósticos NANDA que podrían ser aplicados en esta fase de la terapia, destacan "00029 Disminución del gasto cardíaco", "00032 Patrón respiratorio ineficaz", "00132 Dolor agudo", "00005 Riesgo de desequilibrio de la temperatura corporal" y "00214 Disconfort"³².

Mantenimiento

Durante la fase de mantenimiento, lo más importante consiste en evitar las oscilaciones térmicas para que la terapia aporte el mayor beneficio posible al neonato. Se intentará en la medida de lo posible concentrar las actividades que se vayan a realizar, siguiendo así los cuidados centrados en el neurodesarrollo.

El mantenimiento de la temperatura se puede llevar a cabo de forma manual por parte de enfermería o mediante servocontrol. El servocontrol permite establecer un control térmico lo más preciso posible evitando así sobreenfriamientos o recalentamientos precoces. Para ello se emplea una sonda rectal/esofágica y otra cutánea. Hoque et al. muestra en su investigación la preferencia por estos métodos en contraposición a los manuales debido a las razones anteriores además de que suponen una reducción en la carga de trabajo de enfermería^{2,26,28}. Aun así, la monitorización constante es necesaria para evitar lecturas erróneas por mala colocación de la sonda.

Los fármacos más empleados durante esta fase de la terapia son aquellos destinados a la sedoanalgesia del paciente y a la corrección de las posibles alteraciones, tales como anticonvulsivos, antibióticos, inotrópicos, óxido nítrico, hemoderivados, etc. (*Anexo II Fármacos durante HT*). Tener en cuenta que la hipotermia afecta a la farmacodinamia y farmacocinética de los medicamentos, adaptar dosis^{4,11,13}.

El personal de enfermería se hace cargo de^{6-11,31,33}:

- Monitorización: como en la fase anterior, el control térmico cobra gran importancia, realizándose cada 4h en esta fase. Además también se monitorizará el estado ventilatorio, hemodinámico, EEG, diuresis, glucemia, muestras de laboratorio, estado cutáneo, etc. (<u>Anexo III: Monitorización</u>). El control de la correcta posición de las sondas es de vital importancia sobre con el servocontrol.
- Mantenimiento térmico: como ya se mencionó, el mantenimiento mediante servocontrol es el preferido debido a la reducción de la carga de trabajo para el personal de enfermería. Tanto la agitación como el exceso de actividad puede aumentar la temperatura del neonato.

- Vigilancia de los efectos adversos: los efectos adversos durante este periodo son variados y numerosos. Entre ellos destacan arritmias cardiacas, sangrados, convulsiones, hipotensión, hipoxemia, hipoglucemia, alteraciones hidroelectrolíticas, eritemas, cianosis, esclerema, necrosis de la grasa subcutánea, sepsis, efectos adversos de fármacos...

La reducción del enfriamiento debe considerarse si⁶:

- \circ FiO₂ > 30% inicial, por el riesgo de hipertensión pulmonar persistente.
- Coagulopatía, trombocitopenia grave, sangrado activo no refractario a hemoderivados.
- o Bradicardia menor de 80lpm.

Como diagnósticos NANDA destacan "00179 Riesgo de nivel de glucemia inestable", "00025 y 00195 Riesgo de desequilibrio hidroelectrolítico", "00004 Riesgo de infección", "00047 Riesgo de deterioro de la integridad cutánea" y "00005 Riesgo de desequilibrio de la temperatura corporal"³².

Recalentamiento

Es el periodo de recuperación de la normotermia. Una vez alcanzadas las 72h de hipotermia, se recalentará al neonato lentamente, teniendo en cuenta que puede aparecer disconfort en el paciente. Se mantendrá en la cuna térmica durante al menos 24h^{27,31}.

Las actividades de enfermería durante el recalentamiento son ^{10,12,26-28}:

- Monitorización: debido al cambio de temperatura a la que se va a someter al neonato, el control térmico será el protagonista, registrándolo cada 15-30 minutos hasta alcanzar la normotermia (36,5-37°C) (<u>Anexo III</u>).
- Recalentamiento: se deberá realizar aumentando la temperatura 0,2-0,5°C cada hora, evitando la hipertermia. El recalentamiento será más lento en los neonatos más graves y con un peso menor.
- Vigilancia de efectos adversos: esta fase es crítica debido a los posibles efectos adversos derivados del recalentamiento, entre los que destaca las convulsiones.

Como diagnósticos NANDA se consideran "00005 Riesgo de desequilibrio de la temperatura corporal" y "00035 Riesgo de lesión"³².

5.3. Secuelas

Las secuelas derivadas de una EHI tratada con HT se deben, en su mayoría, al inicio de la terapia en una fase avanzada del proceso o el incorrecto método de enfriamiento, lo que hace aún más importante el contar con profesionales y protocolos cualificados. El pronóstico de dichas secuelas a largo plazo tras la EHI no es una tarea sencilla²⁸. Es importante tener en cuenta que las 2-3 semanas de vida se considera el mejor momento para llevar a cabo las pruebas con este fin¹⁸.

El empleo de la resonancia magnética nuclear (RMN) para observar la distribución de lesiones^{2,20}, lactato³¹ y la tríada APGAR – clasificación de Sarnat – EEGa son los métodos más empleados para el pronóstico de secuelas a largo plazo. Hay que tener en cuenta que métodos como el EEGa se verán afectados por la HT, ya que no alcanzarán el trazado normal hasta las 48h ni tampoco los ciclos vigilia-sueño hasta las 60h, en contra de las 24h para el trazado y las 36h para el ciclo vigilia-sueño en pacientes normotérmicos^{14,18,29}.

Secuelas según grado de encefalopatía

La EHI es la mayor causa de morbimortalidad infantil⁵. Las secuelas posibles, según el grado de EHI de Sarnat, podrían ser las siguientes:

Secu	Secuelas según el grado de EHI ^{3,27,34}												
Leve	Moderada	Grave											
Desarrollo normal en general	25% de posibilidad de secuelas adversas	100% de posibilidad de secuelas adversas											
Riesgo muy bajo de alteraciones en el neurodesarrollo	Secuelas mucho más variables que en cualquier otra categoría	Fallecimiento inmediato o tras el alta											
Problemas motores finos	Trastornos motores leve	Parálisis cerebral grave con complicaciones musculo-esqueléticas											
Trastornos neuropsicológicos y de memoria	Riesgo leve de parálisis cerebral (PC)	Problemas de comportamiento											
Problemas de comportamiento	Retraso cognitivo y del lenguaje	Déficit cognitivo											
Necesidades educativas especiales	Trastornos conductuales	Epilepsia y convulsiones											
Importante incluirlos en programas de seguimiento	Problemas visuales	Alteraciones oromotoras con trastornos de alimentación y lenguaje											
_	Epilepsia	Trastornos auditivos y visuales											

Tabla 5.Secuelas en el niño tras EHI según su gravedad

La parálisis cerebral (PC) es considerada la secuela más importante. Cabe destacar la disparidad de presentación que existe entre ambos sexos, siendo más frecuente en los varones debido a diferencias en las formas de muerte celular respecto a las mujeres³.

Seguimiento del niño con encefalopatía hipóxico-isquémica

Estos niños requieren un seguimiento más exhaustivo que el de cualquier otro de su edad, que se llevará a cabo por parte de un equipo clínico especializado. Debe ser continuado en el tiempo, alcanzando como mínimo la edad escolar, ya que es en este momento cuando se detectarán problemas de aprendizaje que podrían haber permanecido ocultos hasta entonces^{1,34,35}.

Es posible que surja la necesidad de que la familia afronte una importante carga económica dependiendo de las secuelas producidas (material ortopédico, adaptaciones del hogar, etc.), por lo que la búsqueda de ayuda será muy importante para ellos. La rehabilitación y fisioterapia forman una parte vital del seguimiento infantil³⁴, además de la evaluación neurológica y los estudios de neuroimagen y neurofisiológicos⁶.

El plan de seguimiento propuesto del niño que sufrió una EHI en su periodo neonatal podría ser el siguiente:

Seguimiento del niño con EHI ^{6,21,34}													
A los 2 años	A los 4 años	A los 6 años											
Mínimo hasta este periodo	Edad escolar, importante real	izar seguimiento en esta etapa											
	Evaluación neurológica												
Escala Bayley II (MDI) o Bayley III Otros como Brunet-Lezine, Batelle, etc.	Clasificación SCPE para la parálisis cerebral	Evaluación neuropsicológica: test Wechsler, NEPSY, K- ABC											
Valoración funcional: función motora grosera (GMFCS)	Valoración funcional: función motora fina (BFMF)	Alteraciones del comportamiento, psicopatología y aprendizaje											
E	valuación sensorial: auditiva y visua	al											
Va	loración de trastornos de alimentaci	ón											
Va	loración de trastornos de comunicac	ión											
		Valoración general de secuelas / discapacidad											

Tabla 6. Seguimiento del niño con EHI

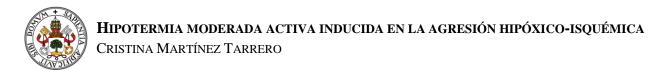
Las causas de fallecimiento más frecuentes tras la EHI son problemas respiratorios y crisis epilépticas que no responden a tratamiento. Es importante en caso de producirse este desenlace, brindar un apoyo adecuado tanto a los padres como al resto de la familia más cercana. También destaca la tranquilización y seguimiento de cerca de embarazos posteriores^{20,34}.

5.4. Avances en la hipotermia terapéutica

Como meta futura, el principal objetivo en cuanto a la hipotermia terapéutica sería la mejora de su efectividad²⁸ mediante la determinación del mejor método de enfriamiento (global o de cabeza), la temperatura, la duración (el NICHD está estudiando los efectos de una HT a 32°C durante 120h)²⁷, el momento más adecuado de inicio¹⁹, la forma de recalentamiento óptima para evitar las posibles complicaciones reduciendo así la morbilidad^{2,5,31}, la afectación de los fármacos por la HT^{1,3}, y la determinación de dosis adecuadas a neonatos enfriados¹¹ así como el establecimiento de protocolos para conseguir la óptima neuroprotección^{9,13,24}.

Entre otros temas a estudio en el futuro se podría destacar:

- Desarrollo de las técnicas de pronóstico¹⁸ y afectación de las mismas por la HT²⁴, así como la determinación del momento adecuado para llevarlas a cabo.
- Mejora de la hipotermia pasiva en el paritorio o el transporte¹⁵.
- HT en lugares menos favorecidos²⁴.
- Control térmico de las diversas zonas cerebrales¹⁵.
- Posibilidad de enfriamiento de prematuros ^{19,27}.
- Neuroprotección mediante fármacos como antiepilépticos, eritropoyetina, melatonina, gas xenón^{1,3,22}, alopurinol, inhibidores selectivos neuronales, inductores de la síntesis de óxido nítrico³¹ y otros (*Anexo V Fármacos neuroprotectores*).



No con mucha dilación se conocerán nuevos datos gracias a los estudios que se están llevando a cabo actualmente sobre temas tales como HT en menores de 35SEG (NCT 1793129)²² e HT tardía a las 6-24h de la agresión del NICHD (NTC00614744)²¹.

Una de las facetas a mejorar sobre la actual HT consistiría en unos seguimientos más adecuados a lo largo del tiempo, incluyendo la edad escolar. Estos niños podrán manifestar secuelas, esté presente o no una lesión cerebral en las pruebas diagnósticas. De esta forma se podrá determinar si la relación beneficio-riesgo de la terapia merece la pena^{2,5,29}. Importante mejorar la calidad de asistencia a los niños y familias, actuando de forma proactiva y estando preparados para las dificultades que se puedan presentar¹⁸.

En cuanto a las técnicas de diagnóstico, hoy en día también se habla sobre la identificación del neonato con riesgo de sufrir EHI antes del nacimiento mediante técnicas como marcadores en sangre materna o pequeños volúmenes fetales obtenidos de la calota. Además se está desarrollando métodos rápidos de diagnóstico tras el nacimiento tales como un "stick bioluminiscente" que tiña ciertas moléculas bucales en caso de daño cerebral¹.

También destacar la posibilidad de uso de la HT en otras afecciones neonatales tales como podría ser la enterocolitis necrosante (ECN)^{29,30} debido a su eficacia reduciendo enzimas elevadas tras la EHI²⁴, entre otras.

6. Limitaciones del estudio

Como dificultad a la hora de realizar la revisión bibliográfica, podría destacarse la obtención de bibliografía. En el momento de la búsqueda de datos en castellano, los resultados son limitados, basándose la gran mayoría en el artículo de Blanco et al. "Neuroprotección con hipotermia en el recién nacido con encefalopatía hipóxico-isquémica. Guía de estándares para su aplicación clínica". Cabe señalar que la terapia se comenzó a realizar en el año 2010 en hospitales de España, mientras que en otros países se inició con anterioridad, por lo que la falta de bibliografía en nuestro idioma puede verse debida a este hecho.

7. Conclusiones

- La hipotermia moderada activa inducida es una de las terapias más prometedoras respecto a la neuroprotección tras una agresión hipóxico-isquémica, apoyada por numerosos ensayos clínicos.
- Los beneficios de la hipotermia terapéutica aumentan notablemente si se dispone de un equipo de enfermería adiestrado correctamente en la terapia y se lleva a cabo en Unidades de Cuidados Intensivos Neonatales de nivel III.
- El empleo de unos protocolos adecuados y una monitorización precisa es de vital importancia en todas las fases de la terapia.
- Los equipos de enfriamiento con servocontrol disminuyen las oscilaciones térmicas del neonato durante la terapia, mejorando así los resultados.
- Las técnicas de imagen demuestran la reducción de las secuelas neurológicas tras la terapia mediante la modalidad de hipotermia global en comparación a la selectiva.
- El seguimiento adecuado del paciente a lo largo de su primera infancia, así como durante su etapa escolar, ayuda a la hora de actuar ante las secuelas neurológicas producidas además de detectar precozmente las de nueva aparición.
- El estudio de determinados fármacos debido a su posible efecto neuroprotector es de vital importancia para el futuro, así como las aplicaciones de la hipotermia en pretérminos y el estudio más profundo sobre duración y grado de enfriamiento.

8. Bibliografía

- 1. Savman K, Brown K. Treating Neonatal Brain Injury Promise and Inherent Research Challenges. Recent Patents on Inflammation & Allergy Drug Discovery. 2010;4(1):16-24.
- 2. Allen K. Moderate Hypothermia. Moderate Hypothermia is selective head cooling or whole body cooling better? Advances in Neonatal Care. 2014;14(2):113-118.
- Johnston M, Fatemi A, Wilson M, Northington F. Treatment advances in neonatal neuroprotection and neurointensive care. The Lancet Neurology. 2011;10(4):372-382.
- 4. Zanelli S, Buck M, Fairchild K. Physiologic and pharmacologic considerations for hypothermia therapy in neonates. J Perinatol. 2010;31(6):377-386.
- Ma H, Sinha B, Pandya R, Lin N, Popp A, Li J et al. Therapeutic Hypothermia as a Neuroprotective Strategy in Neonatal Hypoxic-Ischemic Brain Injury and Traumatic Brain Injury. CMM. 2012;12(10):1282-1296.
- 6. Blanco D, García-Alix A, Valverde E, Tenorio V, Vento M, Cabañas F. Neuroprotección con hipotermia en el recién nacido con encefalopatía hipóxico-isquémica. Guía de estándares para su aplicación clínica. Anales de Pediatría. 2011;75(5):341.e1-341.e20.
- Martínez C, Pouso C, Borbonet D, Bidegain M, Goldberg R. Neuroprotección mediante hipotermia moderada en recién nacidos con encefalopatía hipóxico-isquémica. Archivos de Pediatría Uruguay. 2011;82(3):159-170.
- Jerez Calero A, Ruiz López A, Quesada Moreno A. Protocolo para enfermería de hipotermia en recién nacidos. Boletín de la Sociedad de Pediatría de Andalucía Oriental (SPAO). 2014;8:1-2.
- Wachtel E, Hendricks-Muñoz K. Current Management of the Infant Who Presents with Neonatal Encephalopathy. Current Problems in Pediatric and Adolescent Health Care. 2011;41(5):132-153.
- 10. Tenorio V, Alarcón A, García-Alix A, Arca G, Camprubí M, Agut T et al. Hipotermia cerebral moderada en la encefalopatía hipóxico-isquémica. Experiencia en el primer año de su puesta en marcha. Anales de Pediatría. 2012;77(2):88-97.
- 11. Wood T, Thoresen M. Physiological responses to hypothermia. Seminars in Fetal and Neonatal Medicine. 2015;20(2):87-96.
- 12. Gómez F, Vega C, Mirás A, Arnáez J. Neuroprotección con hipotermia terapéutica en la encefalopatía hipóxico-isquémica en pediatría. Boletín de la Asociación de Pediatría de Asturias, Cantabria y Castilla y León. 2014;54:148-155.
- 13. Wassink G, Lear C, Gunn K, Dean J, Bennet L, Gunn A. Analgesics, sedatives, anticonvulsant drugs, and the cooled brain. Seminars in Fetal and Neonatal Medicine. 2015;20(2):109-114.
- 14. Merchant N, Azzopardi D. Early predictors of outcome in infants treated with hypothermia for hypoxic-ischaemic encephalopathy. Dev Med Child Neurol. 2015;57:8-16.
- 15. Iwata O, Iwata S. Filling the evidence gap: How can we improve the outcome of neonatal encephalopathy in the next 10 years? Brain and Development. 2011;33(3):221-228.

HIPOTERMIA MODERADA ACTIVA INDUCIDA EN LA AGRESIÓN HIPÓXICO-ISQUÉMICA CRISTINA MARTÍNEZ TARRERO

- 16. Boylan G, Kharoshankaya L, Wusthoff C. Seizures and hypothermia: Importance of electroencephalographic monitoring and considerations for treatment. Seminars in Fetal and Neonatal Medicine. 2015;20(2):103-108.
- 17. Puebla Molina S, Aparicio Sánchez J, Modesto y i Alapont V. La hipotermia terapéutica reduce la mortalidad y las secuelas neurológicas en la encefalopatía hipóxico-isquémica del recién nacido. Evidencias en Pediatría. 2010;6(2):1-4.
- 18. Sabir H, Cowan F. Prediction of outcome methods assessing short- and long-term outcome after therapeutic hypothermia. Seminars in Fetal and Neonatal Medicine. 2015;20(2):115-121.
- 19. Sarkar S, Barks J. Management of neonatal morbidities during hypothermia treatment. Seminars in Fetal and Neonatal Medicine. 2015;20(2):97-102.
- Bonifacio S, deVries L, Groenendaal F. Impact of hypothermia on predictors of poor outcome: How do we decide to redirect care?. Seminars in Fetal and Neonatal Medicine. 2015;20(2):122-127.
- 21. Tagin M, Woolcott C, Vincer M, Whyte R, Stinson D. Hypothermia for Neonatal Hypoxic Ischemic Encephalopathy. Arch Pediatr Adolesc Med. 2012;166(6):558-66.
- 22. Committee on Fetus and Newborn. Hypothermia and Neonatal Encephalopathy. PEDIATRICS. 2014;133(6):1146-1150.
- 23. Perlman JM, Wyllie J, Kattwinkel J, Wyckoff MH, Aziz K, Guinsburg R, et al. Part 7: Neonatal resuscitation: 2015 international consensus on cardiopulmonary resuscitation and emergency cardiovascular care science with treatment recommendations. Circulation 2015; 132: S204-S241
- Sarkar S, Barks J. Systemic complications and hypothermia. Seminars in Fetal and Neonatal Medicine. 2010;15(5):270-275.
- Hassell K, Ezzati M, Alonso-Alconada D, Hausenloy D, Robertson N. New horizons for newborn brain protection: enhancing endogenous neuroprotection. Archives of Disease in Childhood - Fetal and Neonatal Edition. 2015;100(6):F541-F552.
- 26. Orozco Guitérrez A, Alcocer Arreguín C, Sauviñón Tejeda P, Gil Rosales C, Calderón Jiménez C. Hipotermia corporal inducida en los recién nacidos con asfixia. Revista Mexicana de Pediatría. 2013;80(5):179-184.
- 27. Shankaran S. Current Status of Hypothermia for Hypoxemic Ischemia of the Newborn. Indian J Pediatr. 2014;81(6):578-584.
- 28. Silveira R, Procianoy R. Hypothermia therapy for newborns with hypoxic ischemic encephalopathy. Jornal de Pediatria. 2015;91(6):S78-S83.
- 29. Thoresen M. Patient selection and prognostication with hypothermia treatment. Seminars in Fetal and Neonatal Medicine. 2010;15(5):247-252.
- 30. Higgins R, Shankaran S. Hypothermia: Novel approaches for premature infants. Early Human Development. 201;87(Supplement):S17-S18.
- 31. Groenendaal F, Brouwer A. Clinical aspects of induced hypothermia in full term neonates with perinatal asphyxia. Early Human Development. 2009;85(2):73-76.
- 32. Luis Rodrigo, Mª T. Los diagnósticos enfermeros. Revisión crítica y guía práctica; Barcelona, España: Elsevier Masson; 2013;(9).

HIPOTERMIA MODERADA ACTIVA INDUCIDA EN LA AGRESIÓN HIPÓXICO-ISQUÉMICA CRISTINA MARTÍNEZ TARRERO

- 33. Natus Medical Incorporated CFM Olympic Brainz Monitor [Sede web]. Natus.com. 2016 [Consultado el 26 de Abril de 2016]. Disponible en: http://www.natus.com/index.cfm?page=products_1&crid=778
- 34. Martínez-Biarge M, Blanco D, García-Alix A, Salas S. Seguimiento de los recién nacidos con encefalopatía hipóxico-isquémica. Anales de Pediatría. 2014;81(1):52.e1-52.e14.
- 35. Casado Flores J, Serrano A. Urgencias y tratamiento del niño grave. Casos clínicos comentados. Volumen VI. Majadahonda, España: Ergon; 2013;377-381
- Cloherty J, Stark A, Eichenwald E. Manual de neonatología. Barcelona, España: Wolters Kluwer / Lippincott Williams & Wilkins; 2008;(6):512-522

9. Anexos

9.1. Anexo I: Clasificación de Sarnat

	Estadio I	Estadio II	Estadio III				
Nivel de conciencia	Hiperalerta, irritable	Letárgico	Estuporoso				
Control							
neuromuscular							
Tono	Normal	Hipotonía	Flaccidez				
Postura	Flexión distal leve	Flexión distal máxima	Descerebración intermitente				
Reflejos osteotendinosos	↑	↑	↓ / 0				
Mioclonos segmental	+	+	0				
Reflejos complejos							
Succión	Débil	Débil / ausente	Ausente				
Moro	Incrementado	Débil, incompleto	Ausente				
Óculo-vestibular	Normal	Hiperactivo	Débil / ausente				
Tónico-cervical	Leve	Presente ↑	Ausente				
Función neurovegetativa	Simpático	Parasimpático	Ambos deprimidos				
Pupilas	Midriasis	Miosis	Variable				
Frecuencia cardíaca	Taquicardia	Bradicardia	Variable				
Secreciones	Escasa	Profusa	Variable				
Respiración	Espontánea	Espontánea, apnea ocasional	Periódica, apnea				
Motilidad gastrointestinal	Normal o reducida	Aumentada, diarrea	Variable				
Convulsiones	-	Frecuentes, focales o multifocales	Infrecuentes				
Electroencefalograma	Normal	Anormal	Anormal				
Duración de síntomas	Menos de 24h	2-14 días	Horas a semanas				

Tabla 7. Clasificación de Sarnat^{35,36}

9.2. Anexo II: Fármacos durante la hipotermia terapéutica

	FÁRMACOS I	DURANTE HT ^{8-13,26,31}					
Anticonvulsivos Según estudios no se deben emplear antes de la terapia	Fenobarbital	Ante convulsiones como primera línea de actuación. Sin embargo, hay publicaciones que aseguran no ser beneficioso durante la hipotermia ni tampoco tener un gran efecto profiláctico en cuanto a morbilidad y mortalidad, al igual que ocurre con el lorazepam y la fosfenitoína					
de hipotermia, ya que causan peores	Fenitoína, levetiracetam, lidocaína	Empleados como segunda línea de actuación tras el fenobarbital					
secuelas neuronales	AMPA-receptores antagoni	stas del topiramato					
Sedoanalgesiantes	Fentanilo Opioides e hidrato de cloral Morfina Benzodiacepinas y barbitúricos	De forma sistemática para evitar el estrés en el paciente, que repercute negativamente en la efectividad de la terapia					
Paralizantes musculares							
Antibioterapia	Gentamicina y ampicilina	Se realiza de manera sistemática en cualquier paciente que presente EHI					
Soporte arterial	Inotrópicos, aminas	Pueden ser necesarios emplearlos en las mismas condiciones que en la normotermia, sobre todo en pacientes muy enfermos					
Hipertensión pulmonar	Óxido nítrico (NO)	Empleando el mismo protocolo que en normotermia					
	Plaquetas	En plaquetopenia					
Coagulopatías	Plasma fresco congelado	En tiempos de coagulación prologados y/o sangrados activos					
	Concentrado de hematíes	En anemias					
Alteración de metabolitos	Glucosa, calcio, magnesio	Manteniéndolos en niveles normales					

Tabla 8. Fármacos más empleados durante la hipotermia inducida

9.3. Anexo III: Monitorización del neonato

ÍТЕМ	PERIODICIDAD	OBSERVACIONES
Temperatura	Continua, con un registro	
Transcutáneo	estricto: c/15min las primeras 4h c/h las primeras 12h	Comprobar la correcta colocación y rotarlos
Rectal / esofágico	c/4h durante el mantenimiento c/15-30min en el recalentamiento	El rectal se debe introducir 5-6cm, mientras que el esofágico se colocará en el tercio inferior del esófago
Ventilación	c/ingreso-12-24-48-72h La saturación se monitorizará de forma continua	Se comprobará el tipo de ventilación, los sistemas de ventilación empleados, la saturación trascutánea y la perfusión

HIPOTERMIA MODERADA ACTIVA INDUCIDA EN LA AGRESIÓN HIPÓXICO-ISQUÉMICA CRISTINA MARTÍNEZ TARRERO

Sistema cardiovascular								
Frecuencia cardiaca	Continua mediante monitor	Se considera bradicardia si <80lpm y taquicardia si >120lpm						
Tensión arterial	Continua mediante monitor	Mejor si es invasiva. TAM > 40mmHg para garantizar la perfusión Posible hipertensión						
Hidroelectrolítico	Diuresis horaria, análisis de orina c/ingreso-12-24-48-72h	Mediante sonda vesical o bolsa						
		Restricción hídrica, aporte intravenoso de 40- 50cc/kg/día						
Sistema neurológico								
EEG / EEGa	Continuo	Para observar el voltaje, la actividad de fondo, los ciclos vigilia-sueño y la posible aparición de convulsiones. Puede verse afectado por fármacos						
RMN	Al finalizar la terapia	Predicción de secuelas neurológicas. No se afecta por la HT						
Ultrasonido craneal	Una durante las primeras 48h y	Transfontanelar. Para descartar otras lesiones, hemorragias, etc.						
Doppler cerebral	otra al finalizar la terapia	Indicador de la perfusión cerebral						
Biomarcadores	Cuando precise	Existen no específicos (suero, orina y líquido cefalorraquídeo), aunque se están estudiando la especificidad de otros (proteína ácida glial fibrilar (PAGF), ubiquitina carboxiloterminal hidrolasa L1 (UCHL1))						
Piel y tegumentos	c/turno	Evitar la aparición de úlceras por presión y necrosis de la grasa subcutánea						
Muestras Analítica venosa (HEM, BQ COAG,, electrolitos, fibrinógenos, enzimas hepáticos y lactato)	c/ingreso-12-24-48-72h	Aumenta el tiempo de sangrado y alteración de los factores de coagulación. Mantener electrolitos en niveles fisiológicos, teniendo en cuenta que Ca y Mg estarán disminuidos						
Gasometría	c/ingreso-12-24-48-72h	La PCO ₂ suele verse afectada, mantener en 40-50mmHg Evitar hipocapnia Controlar el estado ácido-base						
Glucemia	Ingreso, a partir de entonces: c/4-6h	Importante mantener niveles normales entorno a 100mg/dl						
Cultivos de catéteres centrales y periféricos	A la retirada de los mismos	Para descartar posibles infecciones						

Tabla 9. Monitorización detallada durante hipotermia inducida

9.4. Anexo IV: Tabla propuesta de tareas

	DÍA 1																					
HORAS	Ingreso	0,15	0,30	0,45	1,00	1,15	1,30	1,45	2,00	2,15	2,30	2,45	3,00	3,15	3,30	3,45	4,00	4,00	6,00	7,00	8,00	9,00
ACTIVIDAD																						
Registro temperatura	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Control temperatura	CONTINUO																					
Control ventilación	X																					
Control saturación											CONT	INUO	•				•	•		•		
Control FC	CONTINUO																					
Control TA											CONT	INUO										
Control Diures is					X				X				X						HOR	ARIA		
Análisis de orina	X																					
Control EEG											CONT	INUO										
RMN																						
Doppler cerebral									1 VEZ	Z DURA	NTE L	AS PRIN	1ERAS	48H								
Eco cerebral									1 VEZ	Z DURA	NTE L	AS PRIN	/IERAS	48H								
Control piel y tegumentos. Cambios posturales	X																				X	
Analítica venosa (Hem, BQ, Coag, enzimas hepáticos y lactato)	X																					
Gasometría	X																					
Glucemia	X																		X			
Cultivos de catéteres centrales y periféricos										Ι	EN RET	IRADA										

Tabla 10.1 Propuesta de tareas en terapia de hipotermia inducida

HIPOTERMIA MODERADA ACTIVA INDUCIDA EN LA AGRESIÓN HIPÓXICO-ISQUÉMICA

CRISTINA MARTÍNEZ TARRERO

				DÍA 1				DÍA 2									DÍA 3					
HORAS	10,00	11,00	12,00	16,00	18,00	20,00	24,00	28,00	30,00	32,00	36,00	40,00	42,00	44,00	48,00	52,00	54,00	56,00				
ACTIVIDAD																						
Registro temperatura	X	X	X	X		X	X	X		X	X	X		X	X	X		X				
Control temperatura									CONT	INUO												
Control ventilación							X								X							
Control saturación		CONTINUO																				
Control FC		CONTINUO																				
Control TA									CONT	INUO												
Control Diures is									HOR	ARIO												
Análisis de orina			X				X								X							
Control EEG			•						CONT	INUO					•							
RMN																						
Doppler cerebral					1	VEZ D	URANT	ΓE LAS	PRIME	RAS 48F	I											
Eco cerebral					1	VEZ D	URANT	ΓE LAS	PRIME	RAS 48F	ł											
Control piel y tegumentos. Cambios posturales				X						X		X			X			X				
Analítica venosa (Hem, BQ, Coag, enzimas hepáticos y lactato)							X								X							
Gasometría							X								X							
Glucemia			X		X		X		X		X		X		X		X					
Cultivos de catéteres centrales y periféricos									EN RET	TRADA												

Tabla 10.2 Propuesta de tareas en terapia de hipotermia inducida

HIPOTERMIA MODERADA ACTIVA INDUCIDA EN LA AGRESIÓN HIPÓXICO-ISQUÉMICA

CRISTINA MARTÍNEZ TARRERO

	DÍA 3																					
HORAS	60,00	62,00	62,30	63,00	63,30	64,00	64,30	65,00	65,30	66,00	66,30	67,00	67,30	68,00	68,30	69,00	69,30	70,00	70,30	71,00	71,30	72,00
ACTIVIDAD																						
Registro temperatura	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Control temperatura											CONT	TINUO										
Control ventilación																						X
Control saturación											CONT	INHO										Λ
Control FC	CONTINUO																					
Control TA	CONTINUO																					
Control Diures is	HORARIA																					
Análisis de orina																						X
Control EEG	CONTINUO																					
RMN																						
Doppler cerebral																						
Eco cerebral																						
Control piel- tegumentos. Cambios posturales						X																X
Analítica venosa (Hem, BQ, Coag, enzimas hepáticos y lactato)																						X
Gasometría																						X
Glucemia	X									X												X
Cultivos de catéteres centrales y periféricos		EN RETIRADA																				

Tabla 10.3 Propuesta de tareas en terapia de hipotermia inducida

HIPOTERMIA MODERADA ACTIVA INDUCIDA EN LA AGRESIÓN HIPÓXICO-ISQUÉMICA

CRISTINA MARTÍNEZ TARRERO

	Periodo de recalentamiento											E, III					
HORAS	72,30	73,00	73,30	74,00	74,30	75,00	75,30	76,00	76,30	77,00	77,30	78,00	78,30	79,00	79,30	80,00	Fin HT
ACTIVIDAD																	
Registro temperatura	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
Control temperatura	CONTINUO																
Control ventilación																	
Control saturación	CONTINUO																
Control FC	CONTINUO																
Control TA	CONTINUO																
Control Diures is	HORARIA X											X					
Análisis de orina																	
Control EEG	CONTINUO																
RMN																	X
Doppler cerebral																	X
Eco cerebral																	X
Control piel- tegumentos. Cambios posturales																X	
Analítica venosa (Hem, BQ, Coag, enzimas hepáticos y lactato)																	
Gasometría																	
Glucemia												X					
Cultivos de catéteres centrales y periféricos	EN RETIRADA																

Tabla 10.4 Propuesta de tareas en terapia de hipotermia inducida

9.5. Anexo V: Fármacos neuroprotectores

FÁRMACOS NEUROPROTECTORES ^{3,5,19}									
Opioides	Reducen disconfort neonatal (FC<120lpm) que es el causante de la disminución de la neuroprotección								
Xenón inhalado	Parece que presenta efecto neuroprotector además de efecto sinérgico de la hipotermia terapéutica. Como añadido, cabe destacar los pocos efectos adverso en dosis controladas								
Inhibidores de radicales libres	Según ciertos estudios, estaría recomendado su uso								
Levetiracetam	Posible efecto neuroprotector								
Melatonina	Debido a su efecto antiinflamatorio se podría considerar neuroprotector								
Magnesio	Efecto teórico neuroprotector no contradicho con las experiencias en la práctica								
Clonidina	Antagonista del receptor α-adrenérgico. Es neuroprotector a bajas dosis								
Dexmedetomidina	Se ha estudiado su efecto protector en la corteza cerebral animal con daño neuronal isquémico								
Eritropoyetina	Según estudios en animales, puede reducir excitotoxicidad, producción de NO e inflamación dependiendo de la dosis, la cual aún no se ha determinado cual es segura								
Alopurinol	Según estudios clínicos, parece que mantiene el metabolismo así como la perfusión cerebral durante la EHI. También se han encontrado estudios con resultados contradictorios, por lo que su uso aún no se recomienda								

Tabla 11. Fármacos neuroprotectores