
UNIVERSIDAD DE VALLADOLID

Dpto. de Teoría de la Señal, Comunicaciones e Ingeniería Telemática

Escuela Técnica Superior de Ingenieros de Telecomunicación

Tesis Doctoral

GLUE!: An Architecture for the

Integration of External Tools in Virtual

Learning Environments

AUTOR

Carlos Alario Hoyos

Ingeniero de Telecomunicación

DIRECTORES

Miguel L. Bote Lorenzo

Dr. Ingeniero de Telecomunicación

Eduardo Gómez Sánchez

Dr. Ingeniero de Telecomunicación

Junio de 2012

A mis padres.

Acknowledgements

The opening lines of this document serve to close this dissertation. In them, I want to sincerely

thank all those who have made this work possible, and without whom this dissertation could not

have been accomplished. First, I would like to thank my supervisors Miguel and Eduardo, with

whom I share the credit of this work, and who have supported me throughout all these years in

which we have worked together very closely. They believed in me from the very �rst moment I

ran into them, and they spent much time and e�ort to make this dissertation succeed.

Yannis is also one of the great minds that has most in�uenced me over these years, and so

I owe him much of this work. He insisted in showing me the right way, and he never hesitated to

give me on-the-�y advice or answers to my questions, despite his busy schedule. Of course, I have

to specially thank Asen, Guillermo and Adolfo, who have very closely followed my dissertation,

and with whom I had deep and intense discussions.

Regarding the development tasks, I have been very lucky to be supported by David and

Javier; without their work, this dissertation would have needed much more time, and the de-

veloped systems would have been simpler and poorer. Besides, I learnt a lot from all the people

working in the GSIC-EMIC research group; people like Chus, Luis Pablo, Iván, Eloy, Osmel,

Juan or Alejandra among many others, with whom I shared the good and the bad days in the

laboratory. They all made the working environment a dynamic and pleasant place to spend the

long working hours.

I would also like to use these lines to thank the hospitality of the people I visited in

the research stays I made during my PhD. First, thanks to those working in the Institute for

Educational Cybernetics in the University of Bolton, with special thoughts for Scott Wilson, Bill

Olivier, Dai Gri�ths and Mark Johnson. Also, I would like to include in these acknowledgements

the people I visited in the di�erent Universities in the Sydney area, highlighting James Dalziel,

who welcomed me at the MELCOE, Peter Goodyear and Sue Bennett.

Finances are normally a terrible headache on research. Nevertheless, I was very fortu-

nate to participate in several European projects (IST-FP6-507838, IST-FP6-034567), national

projects (TIN2008-03023, TIN2011-28308-C03-02, IPT-430000-2010-054), and regional projects

(VA293A11-2, VA301B11-2), in which the GSIC-EMIC was involved, and that somehow served

to partially cover my stipend and research expenses at di�erent stages of my PhD. It is also

noteworthy the fellowship I received from the Training of Research Sta� (FPI) Spanish program

(BES-2009-014397), associated to one of the aforementioned national projects (TIN2008-03023).

This fellowship gave me economic stability for almost three years and allowed me to make several

short research stays abroad.

Despite this ideal working environment, I could never have �nished this dissertation without

the support of my family and friends. Among them, special words of thanks are to Martín,

iii

Eduardo, Natalia, Miguel Ángel, Dani, Quini and many others who stood by my side to a

greater or lesser extend throughout these years. Here, I would also like to remember all my

college friends which led me to the front door of this PhD after a �ve-year degree in which we

all shared great times and memories.

My parents, Julián and Tere, deserve my best words. They raised me in the values of

sacri�ce and knowledge. They always backed me up in every choice, and helped me overcome

the di�culties, and what is more important, they still keep doing it day by day. They are the

ones that encourage me to get the best out of myself.

Finally, my last words of gratitude must be for Bea, because she su�ered this dissertation

as I did. She was always by my side and never gave up on me. She gave me the strength to face

this challenge, being even able to follow me to the end of the world. You have been the most

important support for me these years. I have no other words, but THANKS!

iv

Abstract

The integration of external tools in Virtual Learning Environments (VLEs) aims at enriching the

learning activities that educational practitioners may design and enact. Traditionally, external

tools have been integrated by means of ad hoc developments, being this solution very ine�cient

as the number of VLEs and tools employed by practitioners increases. Besides, those generic

approaches tackling the integration of multiple external tools in multiple VLEs have not found

a broad adoption, mainly because of the high development e�ort required to integrate new tools

and VLEs, and the restrictions imposed on VLE and tool providers. Some recent works tried

to overcome these two limitations by proposing a lightweight integration of tools. Nevertheless,

these works do not facilitate the instantiation and enactment of collaborative learning situations,

which signi�cantly precludes practitioners from employing VLEs distinctive collaborative features

for the management of users and groups.

This dissertation proposes a middleware integration architecture called GLUE! (Group

Learning Uniform Environment) that enables the lightweight integration of multiple existing

external tools in multiple existing VLEs, overcoming these limitations. GLUE! fosters this in-

tegration by imposing few restrictions on VLE and tool providers, as well as by expecting an

attainable e�ort from developers. Besides, GLUE! facilitates the instantiation and enactment of

collaborative learning situations within VLEs, leveraging the VLEs distinctive features for the

management of users and groups. By means of GLUE!, practitioners may use external tools as

if they were VLE built-in tools, and without having to give up the VLEs they are used to.

GLUE! has been evaluated using three authentic collaborative learning situations that were

designed to meet the pedagogical needs of three di�erent higher education courses. These three

situations were employed in four di�erent experiments involving real educators and students.

The results of this evaluation show that GLUE! allows the instantiation and enactment of col-

laborative learning situations that require the integration of external tools, reduces the burden

associated to the instantiation of complex collaborative activities, and facilitates students the

realization of these activities in collaboration. Interestingly, the development e�ort required by

the proposed integration software was similar to that in other lightweight generic approaches

that o�er a lower degree of functionality.

v

Resumen

La integración de herramientas externas en VLE (Virtual Learning Environments - Entornos de

Aprendizaje Virtual) tiene como objetivo enriquecer las actividades de aprendizaje que los profe-

sionales de la educación pueden diseñar y poner en marcha. Tradicionalmente, las herramientas

externas han sido integradas mediante desarrollos ad hoc, siendo esta solución muy poco e�ciente

a medida que aumentaba el número de VLE y herramientas utilizados por estos profesionales.

Además, aquellas aproximaciones genéricas que abordan la integración de múltiples herramientas

en múltiples VLE no han conseguido obtener una amplia adopción, principalmente debido al alto

esfuerzo de desarrollo necesario para integrar nuevas herramientas y VLE, y a las restricciones

impuestas sobre los proveedores. Algunos trabajos recientes han intentado superar estas dos

limitaciones proponiendo una integración ligera de herramientas. Sin embargo, estos trabajos no

facilitan la instanciación y puesta en marcha de situaciones de aprendizaje colaborativo, lo que

impide de forma signi�cativa que se puedan emplear las propiedades colaborativas especí�cas

que proporcionan los VLE para la gestión de usuarios y grupos.

Esta tesis propone una arquitectura middleware de integración denominada GLUE! (Group

Learning Uniform Environment - Entorno Uniforme de Aprendizaje en Grupo) que permite la

integración ligera de múltiples herramientas externas existentes en múltiples VLE existentes,

superando estas limitaciones. GLUE! fomenta esta integración imponiendo pocas restricciones

sobre los proveedores de VLE y herramientas, así como demandando un esfuerzo asumible por

parte de los desarrolladores. Además, GLUE! facilita la instanciación y puesta en marcha de

situaciones de aprendizaje colaborativo desde los VLE, aprovechando las propiedades especí�cas

de éstos para la gestión de usuarios y grupos. Por medio de GLUE!, los profesionales de la

educación pueden utilizar herramientas externas como si fueran herramientas nativas de los

VLE, y además sin tener que renunciar a los VLE a los que están acostumbrados.

GLUE! ha sido evaluado con la ayuda de tres situaciones de aprendizaje colaborativo

auténticas, las cuales fueron diseñadas para cubrir las necesidades pedagógicas de tres cursos

de educación superior. Estas tres situaciones se utilizaron en cuatro experimentos diferentes

con educadores y estudiantes reales. Los resultados de esta evaluación mostraron que GLUE!

permite la instanciación y puesta en marcha de situaciones de aprendizaje colaborativo que

requieran la integración de herramientas externas, reduce la carga asociada a la instanciación de

actividades colaborativas complejas, y facilita a los estudiantes la realización de estas actividades

en colaboración. Curiosamente, el esfuerzo de desarrollo necesario por el software de integración

fue similar al de otras aproximaciones de integración genéricas que ofrecen un menor grado de

funcionalidad.

vii

Contents

1 Introduction 1

1.1 Research problem of the dissertation . 5

1.2 Objectives and contributions . 10

1.3 Research methodology . 14

1.4 Structure of the document . 15

2 Integration of external tools in VLEs 19

2.1 Introduction . 20

2.2 Computer Supported Collaborative Learning . 22

2.2.1 Life cycle of collaborative learning situations 24

2.3 Virtual Learning Environments . 26

2.3.1 Examples of VLEs . 27

2.3.2 Life cycle of VLEs in collaborative learning situations 43

2.4 Software tools . 44

2.4.1 Examples of software tools . 45

2.4.2 Life cycle of software tools in collaborative learning situations 48

2.5 The integration problem . 51

2.5.1 Integration contracts . 53

2.5.2 Requirements of the main stakeholders . 55

2.5.3 Integration approaches . 56

2.5.4 Design issues and alternatives . 59

2.6 Analysis of existing integration approaches . 62

2.7 Conclusions . 66

3 The GLUE! architecture 69

3.1 Introduction . 69

3.2 Methodology and process . 71

3.3 Initial requirements and design decisions . 72

3.4 Description of the architecture . 74

3.4.1 Overview of the architecture . 74

ix

3.4.2 GLUE! integration contract for tools . 78

3.4.3 GLUE! integration contract for VLEs . 86

3.4.4 Technologies and behavior of the GLUElet Manager 90

3.5 Overall behavior of the architecture . 92

3.5.1 Use case 1: creation, con�guration and assignment of external tool instances 92

3.5.2 Use case 2: use of external tool instances 94

3.5.3 Use case 3: update of users sharing external tool instances 96

3.5.4 Use case 4: deletion of external tool instances 98

3.6 Security issues . 98

3.6.1 User level authorization for the management of external tool instances . . 103

3.7 Discussion . 105

3.7.1 Compliance to the stakeholders' requirements 105

3.7.2 GLUE! interoperability with other loosely-coupled integration approaches 107

3.7.3 GLUE! for the integration of external tools in other contexts 109

3.8 Conclusions . 110

4 GLUE!-RI: Reference implementation of the architecture 113

4.1 Introduction . 113

4.2 Methodology . 115

4.3 Reference implementation . 116

4.3.1 Technologies . 116

4.3.2 Overview . 117

4.3.3 GLUE! core . 119

4.3.4 VLE Adapters . 121

4.3.5 Tool Adapters . 127

4.4 Developing new VLE and tool adapters . 131

4.5 Installation and con�guration of GLUE!-RI . 132

4.6 Usage of GLUE!-RI . 133

4.7 Conclusions . 135

5 Evaluation 137

5.1 Introduction . 137

5.2 Evaluation methodology . 138

5.2.1 Evaluation framework and experiments . 138

5.2.2 Evaluation methods and data sources . 141

5.3 Collaborative learning situations . 143

5.3.1 Collaborative learning situation I . 144

5.3.2 Collaborative learning situation II . 145

x

5.3.3 Collaborative learning situation III . 147

5.4 Compliance to the requirements . 148

5.4.1 Instantiation of individual and collaborative activities (REQ1) 148

5.4.2 Enactment of collaborative activities (REQ2) 152

5.4.3 Integration of existing and popular VLEs and external tools (REQ3) . . . 153

5.4.4 Integration of many external tools (REQ4) 154

5.4.5 Development e�ort (REQ5) . 155

5.4.6 Built over VLEs and tools (REQ6) . 158

5.4.7 Other �ndings . 158

5.5 Comparison with other loosely-coupled integration works 160

5.5.1 Feature analysis . 161

5.5.2 Development e�ort . 163

5.6 Conclusions . 166

6 Conclusions and future work 169

6.1 Conclusions of the dissertation . 169

6.2 Future work . 173

Appendix A: Study of the development e�ort 181

Appendix B: GLUE! data format 185

Appendix C: Developing tool adapters in Java 197

Appendix D: Installation and con�guration manuals 213

Appendix E: Examples of usage 227

xi

List of Figures

1.1 General scheme of the dissertation. 11

2.1 Scheme of the main concepts belonging to the research context. 22

2.2 Life cycle of collaborative learning situations. 25

2.3 Moodle screenshot showing the structure of a course. 30

2.4 LAMS screenshot showing the design of a lesson in the authoring environment. . 32

2.5 .LRN screenshot showing the structure of a community. 34

2.6 Sakai screenshot showing the structure of a course. 36

2.7 Blackboard screenshot showing the structure of a course. 37

2.8 Claroline screenshot showing the structure of a course. 38

2.9 SharePoint LMS screenshot showing the structure of a course. 40

2.10 Life cycle of collaborative learning situations and life cycle of software tools. . . . 50

2.11 Abstraction of the integration problem. 53

2.12 Architectural approaches for the integration of tools in VLEs. 58

2.13 Overview of the integration problem. 67

3.1 Overview of the GLUE! architecture. 75

3.2 Sequence diagram representing the successful creation, con�guration and assign-

ment of external tool instances. 93

3.3 Sequence diagram representing the use of external tool instances. 95

3.4 Sequence diagram representing the update of users sharing external tool instances. 97

3.5 Sequence diagram representing the deletion of external tool instances. 99

3.6 Overview of the security issues in the GLUE! architecture. 100

3.7 GLUE! interoperability with other loosely-coupled integration approaches. 108

3.8 Overview of the proposed architecture within the integration problem. 112

4.1 Overview of GLUE!-RI. 117

5.1 CSCL-EREM components. 139

5.2 CSCL-EREM representation diagram for the GLUE! evaluation in AN-2011. . . . 146

5.3 CSCL-EREM representation diagram for the GLUE! evaluation in SE-2011. . . . 147

5.4 CSCL-EREM representation diagram for the GLUE! evaluation in ICTE-2012. . 149

xiii

5.5 Examples of the new SLOC in the integration of Note�ight in Moodle and LAMS. 157

5.6 Examples of the new SLOC in loosely-coupled integration approaches. 164

xiv

List of Tables

2.1 Feature analysis of the main VLEs. 28

2.2 Feature analysis of other commonly employed platforms in education. 41

2.3 Feature analysis of the main software tools for learning. 46

2.4 Requirements of the main stakeholders. 55

2.5 Design issues and alternatives chosen for the integration of external tools in VLEs. 62

3.1 Alternatives to the design issues chosen for the GLUE! architecture. 73

3.2 Elements in the GLUE! architecture: purpose and functionality. 77

3.3 Restrictions imposed on tools and degree of adoption. 79

3.4 Technological requirements on tool adapters. 80

3.5 Behavior expected from tool adapters. 85

3.6 Restrictions imposed on VLEs and degree of adoption. 87

3.7 Technological requirements on VLE adapters. 87

3.8 Behavior expected by VLE adapters. 90

3.9 Behavior of the GLUElet Manager. 91

3.10 Restrictions imposed on other platforms used for learning and degree of adoption. 110

4.1 Iterations in the development of GLUE!-RI. 118

4.2 Fields in the internal tool registry. 120

4.3 Fields in the gluelets repository. 120

4.4 Fields in the tables added by the Moodle adapter to the Moodle database. 123

4.5 Information persisted in tool adapters. 128

5.1 Stakeholders' requirements, methods and data sources employed for their evaluation.141

5.2 Summary of the three collaborative learning situations. 143

5.3 Summary of the four authentic experiments. 144

5.4 Approximate instantiation time with and without GLUE! in the four experiments,

with details for AN-2011. 150

5.5 Aggregated answers obtained from the educators that instantiated the experiments.151

5.6 Aggregated answers obtained from the students that enacted the experiments. . . 152

5.7 Study of the new SLOC and the time invested. 156

xv

5.8 Answers obtained from the ICTE students to the question about the seamless

integration. 159

5.9 Feature analysis comparing the three main loosely-coupled integration approaches. 161

xvi

Chapter 1

Introduction

The use of Information and Communication Technologies (ICTs) in many di�erent domains

like medicine, industry, or education [Abb01] is changing society in a way that some years ago

would have been di�cult to foresee [Duq05]. The quick rise of Internet, web technologies, wireless

networks and mobile devices have led to the adoption of ICTs not only at work or at school,

but also in our daily lives, in a very short period of time [Pel01]. This o�ers the opportunity of

ubiquitous communication among people around the world, as well as ubiquitous access to many

services and data [Tho08].

Education takes advantage of these trends regarding ICTs in a �eld of study called

Technology-Enhanced Learning (TEL) [Joh04], which has been under research for more than

two decades [Gul08]. TEL studies the support of learning activities through technology at

di�erent levels, from primary school to higher education [Bat03], and at di�erent contexts, in-

cluding formal and informal learning [Era04, Fol06], but considering the challenges involved in

the lifelong learning process [Sha00]. Research on TEL also includes distance learning (some-

times referred as e-learning) [Ros11], face-to-face learning and blended learning [Osg03], which

combines traditional face-to-face and online activities. The important community of researchers

working on TEL can be exempli�ed through outstanding active projects, such as STELLAR1

(with more than �fteen research partners working on this project all over Europe), speci�c calls

on this topic in several international funded programmes, like The Seventh Framework Pro-

gramme2, as well as through numerous speci�c journals, conferences, and recent publications on

this �eld [Bal09,Hak08].

Within TEL, Computer Supported Collaborative Learning (CSCL) [Kos96] constitutes a

multidisciplinary paradigm in which ICTs are used to facilitate the social and e�ective interac-

tions among participants in the acquisition of knowledge and skills [Dil99,Mat97]. Practitioners

1http://stellarnet.eu. Last visited: June 2012.
2http://cordis.europa.eu/fp7/home_en.html. Last visited: June 2012.

1

http://stellarnet.eu
http://cordis.europa.eu/fp7/home_en.html

2

with di�erent backgrounds on psychology, education or technology generally participate in the

development of CSCL systems, which are software applications that support the design, instan-

tiation and enactment of collaborative learning situations [Her06b, Kop05]. In the same way

that TEL, CSCL also presents an important community of researchers, as it can be seen in re-

markable active projects such as Euro-CAT-CSCL3, an international project with partners from

three di�erent countries funded by the European Commission, as well as in numerous journals,

conferences, and recent publications on this topic [Bud08,Dil09].

According to [Dil99], collaborative learning situations are those that lead to the achieve-

ment of learning through collaboration. Authors in [Osu99] analyze �ve features that describe

collaborative learning situations. The �rst feature is the social con�guration, which comprises

the description of the participants and their roles (student, educator, administrator, instruc-

tional designer, etc.), as well as the group structure [Mar04]. The learning objectives express

both the individual and group goals that the participants must achieve during the enactment

of the situation; these goals should be formalized in the design of the collaborative learning

situation [Dil02a]. The situation has a structure, which can be decomposed in a set of activi-

ties [Gif99], each oriented to the accomplishment of a set of tasks [Dil02a]; this structure can

sometimes be organized following a certain order of activities, thus forming a sequence of activi-

ties [Dal03]. Here, it is important to point out that collaborative learning situations may include

both individual and collaborative learning activities [Osu99, Sta06]. In structured collaborative

learning activities, participants can build strong relationships in order to achieve a common goal;

as opposed to unstructured collaborative learning activities, in which participants do not share

goals, and a minimum dependency among them is required [Chi02]. Another feature that should

be de�ned is the set of resources supporting each learning activity [Her06a]; these resources may

be tools, resources or other artifacts [Pal08]. Finally, the situation happens in an environment,

in which participants �nd the structure of activities, tools and resources, and in which the ob-

jectives and the social con�guration can be explicitly de�ned [Bak97]. In order to achieve more

e�ective interactions, these CSCL environments and their resources should be personalized for

each participant, depending on its role and group in each activity, and on the objectives that

must be reached [Ase08].

Historically, the evolution of CSCL environments (also referred as CSCL systems) started

with small isolated software tools or applications like emails, chats, or instant messengers, that

were originally designed to facilitate the communication among users [Sta06]. These tools were

later arranged into CSCL software environments, which provided several forms of pedagogical

sca�olding for collaborative learning, and included additional shared tools like calendars or edi-

tors. As an example, C-CHENE [Bak96], whose purpose was to facilitate the learning of concepts

in physics through modeling, was one of the �rst CSCL environments, and included some speci�c

3http://cat-cscl.eu. Last visited: June 2012.

http://cat-cscl.eu

Chapter 1. Introduction 3

collaborative tools like an energy chain editor. However, these �rst CSCL systems promoted an

unstructured collaboration among users, as no tutor could explicitly de�ne the learning objec-

tives, neither a script could be formalized with the sequence of activities that should be realized

and the shared objectives that should be achieved in each activity [Dil02a]. The use of scripting to

guide learners through collaborative learning situations is a common practice to structure collabo-

ration, and has been demonstrated to increase the e�ectiveness of interactions and learning among

students [Dil02a]. According to authors in [Gom09,Her06a], scripted collaborative learning has a

life cycle comprising four phases: the design phase, in which educators (or instructional designers)

de�ne the computational support, the structure of activities, the learning objectives, the group

structure (but not the speci�c components belonging to each group), and the tasks that tools

and resources should support in each activity (e.g. synchronous text editing) [Kop05,Mia05];

the instantiation phase, in which educators populate the groups, select the speci�c tools sup-

porting the activities [IMS03], create the di�erent tool instances [Bot08, Per10] for each group

in each activity, and customize the environment according to the needs of each participant; the

enactment phase, in which students (or learners) carry out the activities de�ned for the collabo-

rative learning situation, being monitored by educators (or monitors) [Dil07], which can mediate

to promote the learning process; and the evaluation phase, in which educators (or evaluators)

assess the acquired knowledge and skills of students [Dil02a,Vil09].

Next generation CSCL environments allowed the de�nition of di�erent roles (characteriz-

ing, for instance, educators, students and administrators with di�erent permissions in the learning

environment), and facilitated the structuring of collaborative learning situations through scripts.

Some examples of pioneering CSCL environments that supported the use of roles and scripting are

Universanté [Ber01], a speci�c purpose system aimed at learning about public health problems,

and Gridcole [Bot05], a general purpose system that could be tailored to adjust to educators'

needs. At that historical moment, the term Virtual Learning Environment (VLE) [App99,Dil00]

was coined to de�ne those CSCL systems that, like Universanté or Gridcole, supported a role

hierarchy in which the educator was the main actor, and that provided a shared customizable

workspace for the realization of structured individual and collaborative activities. Nevertheless,

a formal de�nition for VLE has not been agreed in the community of researchers, and some-

times terms like Learning Management System (LMS), Content Management System (CMS),

Learning Content Management System (LCMS), Managed Learning Environment (MLE), or

simply, Learning Platform (LP) are used as synonyms of VLE. Interestingly, some papers point

out minor di�erences among these terms. For example, authors in [Dvo11] see VLE and LMS as

interchangeably names that refer to software systems designed to support teaching and learning

using browsers, and that include tools likes quizzes, wikis, or blogs, while CMS is the term

employed to designate centralized data repositories that allow publishing, editing and reading

general purpose content.

4

In this dissertation, a VLE is de�ned as an educator-centered system that allows the

design, instantiation, enactment, and evaluation of collaborative learning situations through a set

of synchronous/asynchronous, face-to-face/distance, individual/collaborative learning activities,

which are supported by a collection of available tools and resources; this de�nition is consistent

with the most common use of the term VLE in the literature (see for example [Dil02b, Sti07,

Wel06, Xu05]). Nowadays, the most commonly used VLE is Moodle45 with more than 66,000

installations in 216 counties as of this writing6. Nonetheless, some other outstanding examples

of VLEs that educators are largely using worldwide are LAMS7 (Learning Activity Management

System), .LRN8 (Learn, Research, Network), Sakai9, Blackboard10, Claroline11 or SharePoint

LMS12.

In the last decade, VLEs have quickly become mainstream, especially for distance and

blended learning, both in academia [Dun03,Wel06] and industry [Mor03]. However, some practi-

tioners and researchers on the �eld consider that VLEs are too much focused on meeting the needs

of institutions, rather on the own learners' needs [Sev08]. Therefore, a research trend propos-

ing more student-centered software alternatives, which can be grouped under the term Personal

Learning Environment (PLE) [Att07,Har06,Wil06], has strongly emerged in the last few years.

Despite the term PLE is relatively new, some research works on this topic, like Symba [Bet03],

which promoted the personalization of the learning environment by the own students, were pub-

lished almost a decade ago. On the contrary, some other practitioners and researchers understand

that educators should be responsible for providing learners with adequate learning resources and

tools, in order to develop intended knowledge and skills systematically [Mue11,Wel07a], as it

generally happens in VLEs. Nevertheless, they all agree on the fact that PLEs will not replace

VLEs, since both can coexist, or even merge, depending on the learning scenarios and pursued

objectives. For example, authors in [Wil06] suggest that PLEs will become dominant on informal

learning and competence-based learning, while VLEs will be preferred for formal education. At

this point, it is important to note that this dissertation focuses its research scope on VLEs, but

the expected contributions that will be de�ned later in this chapter, could also be useful for

PLEs, as well as for other environments that might be employed for collaborative learning, such

as wikis [Aug04] or social networking sites [Lip02].

4http://moodle.org. Last visited: June 2012.
5Originally an acronym for �Modular Object-Oriented Dynamic Learning Environment�, although this acronym

is not used anymore.
6http://moodle.org/sites. Last visited: June 2012.
7http://lamsinternational.com. Last visited: June 2012.
8http://openacs.org/projects/dotlrn. Last visited: June 2012.
9http://sakaiproject.org. Last visited: June 2012.
10http://blackboard.com. Last visited: June 2012.
11http://claroline.net. Last visited: June 2012.
12http://sharepointlms.com. Last visited: June 2012.

http://moodle.org
http://moodle.org/sites
http://lamsinternational.com
http://openacs.org/projects/dotlrn
http://sakaiproject.org
http://blackboard.com
http://claroline.net
http://sharepointlms.com

Chapter 1. Introduction 5

1.1. Research problem of the dissertation

Nowadays, VLEs are one of the most widespread systems for the support of collaborative

learning situations [Wel07b]. Most VLEs, such as Moodle, LAMS, Sakai or Blackboard support

the features described in [Osu99] to foster learning through collaboration. In this regard, they

allow the de�nition of a social con�guration based on roles and groups, the structuring of the

situation in activities, courses and/or lessons with prede�ned learning objectives, and the use

of several built-in tools and resources in each activity. Besides, they can also support the four

phases de�ned in the life cycle of scripted collaborative learning [Gom09,Her06a], although only

a few of these VLEs (e.g. LAMS) promote the formalization of scripts. Therefore, educators can

typically design and instantiate individual and collaborative learning activities within VLEs that

students enact afterwards, being their acquired knowledge and skills evaluated by the educators

after the completion of the activities. The actual implementation of these four phases (design,

instantiation, enactment, and evaluation) depends on the learning strategy and the architecture

of the VLE. For instance, Moodle does not explicitly separate design, instantiation and enact-

ment, since it is based on the philosophy of pedagogical bricolage, according to which educators

can re�ne and iterate over the learning design as the activities are being carried out [Ber05]. On

the other hand, LAMS explicitly distinguishes between design, instantiation and enactment in

three di�erent internal environments (authoring, monitoring and learning environments) aimed

at di�erent actors [Dal03]. However, there exists some overlapping in the way these three phases

are implemented in LAMS, since the selection of speci�c tools, which is due at the instantiation

phase, is made at design time within the authoring environment.

In any case, those practitioners designing and instantiating collaborative learning situations

through VLEs must indicate, at some point, the set of tools they want the learners to employ

in order to carry out the activities de�ned for the situation. VLEs typically include a limited

set of ten to twenty built-in tools, both for individual or collaborative purposes. These tools

can be added to the learning activities, in order to facilitate students the completion of the

intended tasks. Some examples of tools that appear in the distribution of the main VLEs are

chats, forums, notice boards, questionnaires and polls [Col07,Dal03,Uzu06]. However, the actual

implementation and functionality o�ered by each of these tools also depends on the speci�c VLE;

for instance, the implementation of the Moodle chat di�ers from that in the LAMS chat. Built-in

tools are usually designed for general purpose tasks and so, they can support common learning

activities in di�erent learning contexts. Nevertheless, the reduced set of VLE built-in tools is

frequently criticized by educational practitioners, who consider it an important limitation to

support a wide range of learning activities [Bow11,Dag07,Fie07,Liv08].

Apart from the evidences of this problem found in the literature, a set of interviews per-

formed as a preliminary work for this dissertation helped to gain insight into the reasons educators

6 1.1. Research problem of the dissertation

have to be unsatis�ed with VLE built-in tools13. One of the reasons educators argue is that they

expect to �nd in VLEs the same tools they usually employ in their classes, such as generic presen-

tation tools, or speci�c simulators and processors (e.g. �I would like to have a shared whiteboard

and a network simulator in my VLE for my Advanced Networking course�). The motivation for

this assertion comes from the reduced number of available tools in VLEs, which is even more

reduced when speci�c purpose tools are required. In some other cases, the functionality of the

VLE built-in tools does not come up to the expectations of educators (e.g. �Moodle allows me to

link a web content as a resource, but I cannot con�gure this resource in a di�erent way for each

of the groups I need to de�ne in my course�). In addition, some practitioners are used to cer-

tain concrete tools, favoring them ahead of VLE built-in tools (e.g. �I frequently employ Google

Spreadsheet14 to create my spreadsheets, and so, I prefer it to the equivalent spreadsheet tool in

LAMS �). The educator that made this comment also stated that he is sometimes unwilling to try

new tools because of the extra time and e�ort that may take. Finally, educators can be managing

information and contents in other applications or services, thus requiring an easy way to include

them in their regular VLE (e.g. �I manage a MediaWiki15 distribution in which I prepare my

master courses, and I would like to link its content to our institutional VLE, Moodle, instead of

using the default Moodle wiki �). This educator also mentioned that a single centralized platform

for the enactment of his lessons and the supplying of extra material is essential to deliver his

courses. The conclusion of these interviews together with the cited references in the literature

is that the restricted set of available built-in tools in existing VLEs hinders and even precludes

from designing, instantiating and enacting many individual and collaborative learning activities.

The problem with the restricted set of built-in tools in learning platforms might seem

recent, but it is not new at all. In fact, three di�erent research lines have been historically

proposed to overcome this problem. Pioneering works aimed at developing new �exible and

tailorable VLEs, which were speci�cally designed to facilitate the addition of external tools. This

is the case, for instance, of DARE [Bou01], Symba [Bet03] or Gridcole [Bot05,Bot08], and more

recently, Pelican [Vel09]. The main limitation of these new VLEs was that they were conceived

to replace other existing and popular VLEs. Unfortunately, educators and students that are

used to a given VLE in their classes are typically reluctant to embrace a new one, sometimes

because of the learning e�ort and the adaptation period required, and sometimes because their

institutions force them to use a particular, institutional VLE [Ala10a]. In addition, these �exible

and tailorable VLEs were the outcomes of research projects that never become stable products,

thus hindering their adoption by those potentially interested. Some other authors decided to

13The comments quoted in this paragraph were collected from semi-structured interviews with six educators with
extensive experience in learning design and collaborative learning, working in the School of Telecommunication
Engineering at the University of Valladolid (Spain). This comments are employed as additional evidences to
support the general discontent of practitioners with VLE built-in tools

14http://docs.google.com. Last visited: June 2012.
15http://mediawiki.org. Last visited: June 2012.

http://docs.google.com
http://mediawiki.org

Chapter 1. Introduction 7

develop tools from scratch for certain VLEs. This is the case of many Moodle modules and

plugins16 [Gut09] or Blackboard Building Blocks [Pit03] that extend the set of available tools

in Moodle and Blackboard, respectively. These tools may provide the functionality expected

by some educators combined with the native VLE features, and occasionally, they have been

adopted by the own VLE providers, and even packaged in subsequent o�cial releases of these

VLEs. Nevertheless, those educators that normally employ other VLEs, such as LAMS or Sakai,

cannot add Moodle plugins or Blackboard Building Blocks for the support of their learning

activities. Besides, these tools might also be replacing existing tools with a similar functionality,

and so, once again, educators and students should assume an additional learning e�ort and

adaptation period to master these newly developed tools. Both alternatives resulted in a lack

of widespread adoption of related works, causing the quick rising of a third alternative: the

integration of existing external tools in existing VLEs [Fon09,Fue11,Sev08].

The integration of existing external tools in existing VLEs aims at o�ering practitioners

a larger set of available tools in their commonly used VLEs for the support of their learning

activities [Fue11]. Researchers and developers working on this line are especially encouraged by

the recent spread of web technologies [Pau08] and the growth of Web 2.0 [ORe07], which brought

an explosion of third-party software tools used more and more by practitioners, in principle,

outside of VLEs [Wel07b]. Furthermore, many of these tools are freely available for education

(and in some cases for any other use), which makes them very interesting for schools, colleges or

universities that cannot a�ord multiple software licences for commercial applications. Examples

of freely available tools are Google Apps17, Twitter18, Wordpress19, Flickr20, or Doodle21. A clear

sign of the success of software tools in education is the publication of lists with the most useful

tools that educators are employing in their classrooms. In particular, the Centre for Learning

& Performance Technologies (C4LPT) updates every year its well-known Top 100 Tools for

Learning site22 with the most outstanding educators' preferences regarding applications, web

sites, learning platforms and hardware devices. Another example is the Cool Tools for Schools

wiki23, which indexes a lot of Web 2.0 tools, arranged according to their main educational task

(e.g. drawing tools, mapping tools, audio tools, etc.). The huge number of software tools available

for education, the popularity of VLEs, and their limitations regarding built-in tools, motivate

the signi�cant number of research works that are tackling the integration of existing external

tools in existing VLEs [Bol07,Boo09,Bla09,Dod08,Fon09,Fue11, IMS06c,Sev08].

16http://moodle.org/plugins. Last visited: June 2012.
17http://google.com/apps/intl/en/edu. Last visited: June 2012.
18http://twitter.com. Last visited: June 2012.
19http://wordpress.org. Last visited: June 2012.
20http://flickr.com. Last visited: June 2012.
21http://doodle.com. Last visited: June 2012.
22http://c4lpt.co.uk/recommended/2011.html. Last visited: June 2012.
23http://cooltoolsforschools.wikispaces.com. Last visited: June 2012.

http://moodle.org/plugins
http://google.com/apps/intl/en/edu
http://twitter.com
http://wordpress.org
http://flickr.com
http://doodle.com
http://c4lpt.co.uk/recommended/2011.html
http://cooltoolsforschools.wikispaces.com

8 1.1. Research problem of the dissertation

Nevertheless, the integration of a tool in a VLE is not an easy task mainly due to two

reasons. First, each VLE and each tool typically imposes di�erent heterogeneous requirements

to enable their functional extension and technological interoperability with other systems. These

requirements are included in the integration contracts [Ghi06, Lar02], being these contracts ex-

plicit or not. An integration contract determines, at least, the technologies, the interfaces, and

the data models that must be employed to enable the communication between the system that

imposes such contract and other applications [Ala12a]. In general terms, the more requirements

de�ned in the integration contracts, the tighter the integration, and the richer the communication

that can be established between VLEs and tools; as opposed to contracts with few requirements

that promote loose integrations, but normally at the expense of a poorer communication between

VLEs and the tools [Pau09]. Second, a developer must program the code needed to enable the

communication between a VLE and a tool contract. The role of developer can be played by

anyone interested in that integration; this may include the VLE provider, the tool provider, or

a third-party [Ala10a]. Those programming this code will usually expect a bene�t in return.

This bene�t could be recognition, reputation, economic compensations, or the satisfaction to

use (or let others use) the integrated tools within VLEs. Research works tackling the integra-

tion of external tools in VLEs should thus consider in their proposals the expected developers;

otherwise, it might happen that nobody develops the aforementioned code.

The development of the code that enables the interoperability between a VLE contract

and a tool contract thus demands a certain development e�ort [Alb83]. Nevertheless, this de-

velopment e�ort is signi�cantly high in most integration approaches, mainly due to two factors.

First, many of these approaches foster a one-to-one integration between VLEs and tools. This

implies that new code must always be developed for each new VLE-tool integration, as it happens

with most of the Moodle plugins aimed at integrating existing external tools in this VLE. For

example, if a developer assumes the e�ort to integrate Flickr in Moodle using Moodle's own

extension mechanism (i.e. the Moodle integration contract), he could barely reuse either the

generated code or the acquired knowledge, when integrating Flickr in LAMS, Sakai or Black-

board. Second, many approaches promote a tight integration [Ort90] between VLEs and tools.

This requires generating an important amount of extra code aimed at enabling richer interac-

tions among them, even if these interactions are not necessary for the support of most learning

situations. The IMS Learning Tools Interoperability (IMS LTI) speci�cation [IMS06c] (popu-

larly referred as to Full LTI) and the CopperCore Service Integration (CCSI) framework [Vog06]

are two examples of integration proposals that entail a high development e�ort because of this

second factor. The lesson that can be learned from these and other similar works is that a

high development e�ort limits the adoption of integration approaches, since it may discourage

developers to contribute to the integration of new tools and VLEs, also reducing the interest of

practitioners and institutions on these approaches.

Chapter 1. Introduction 9

Trying to address these issues, two works were recently proposed with the aim of reducing

the development e�ort, by fostering a many-to-many integration between VLEs and tools, and

following loosely-coupled approaches. This is the case of Apache Wookie (Incubating)24, a refer-

ence implementation of the software architecture proposed in [Wil08]. Apache Wookie enables

the integration of di�erent software applications, provided that they are developed following the

W3C (World Wide Web Consortium) Widgets speci�cation [W3C11]. Nevertheless, this can be

considered a very strict technological restriction that hinders the possibility of integrating

many other existing tools that do not ful�ll this restriction (e.g. Google Apps, Wordpress, etc.),

although these tools could be of great interest to support many learning activities. Therefore, this

restriction reduces the set of external tools integrated through Apache Wookie that educational

practitioners might use in their learning situations. Besides, the W3C Widgets speci�cation

was de�ned to standardize simple tools or mash-ups, thus also limiting the functionality of the

external tools that can be integrated. The conclusion is that the imposition of strict technologi-

cal restrictions, like those in Apache Wookie, may discourage institutions and practitioners from

adopting this and other approaches that also present this limitation.

Another work that has recently been proposed with the aim of reducing the development

e�ort, by fostering a many-to-many integration, and following a loosely-coupled approach, is IMS

Basic LTI (Basic Learning Tools Interoperability) [IMS10b]. Basic LTI is a speci�cation de�ned

by the IMS GLC (IMS Global Learning Consortium) as a subset of the aforementioned Full

LTI [IMS06c], although they both were merged this year in one single speci�cation called simply

LTI [IMS12]. Basic LTI enables an easier integration of a wide range of existing external tools

in existing VLEs. However, Basic LTI also presents an important limitation: it just enables

the retrieval of a generic instance for each external tool. As a consequence, Basic LTI does

not allow educators to request a separate creation and particularization of tool instances for

each group de�ned in each learning activity, not being responsible for the management of the

user and group access to the functionality and content of external tool instances. Therefore,

Basic LTI cannot take advantage of the collaborative features provided by VLEs, such as the

management of groups to set the social con�guration during the design and instantiation of

collaborative learning situations [Mar04,Osu99]; nor the personalization of the integrated tools,

in order to achieve more e�ective interactions among students during the enactment of these

situations [Ase08]. In other words, Basic LTI is a very limited integration approach to support

the instantiation and enactment of collaborative learning situations. This limitation

can motivate that many educational practitioners and institutions that promote the collaboration

among learners in their practices may discard Basic LTI or other similar integration approaches

that also present this limitation.

24http://incubator.apache.org/wookie. Last visited: June 2012.

http://incubator.apache.org/wookie

10 1.2. Objectives and contributions

Considering all these issues, current integration works present three important limitations

that hinder their widespread adoption for the support of collaborative learning situations. A

solution that could overcome these limitations would be the de�nition and implementation of a

middleware integration architecture [Bri04] that: fosters a many-to-many integration and follows

a loosely-coupled approach in order to reduce the development e�ort; imposes only restrictions

that most VLE and tool providers currently meet ; and facilitates the instantiation and enactment

of both individual and collaborative activities that require the integration of external tools, by

enabling the creation and con�guration of external tool instances according to the social con-

�guration de�ned in VLEs. Besides, this architecture should be compatible with other existing

loosely-coupled integration approaches, so that the adoption of one of them does not preclude

from using the others. Finally, and as an historical note, it is noteworthy that some of the main

ideas regarding tool integration through loosely-coupled approaches emerged at the heart of the

GSIC-EMIC25 research group [Ase08,Bot08] in which this dissertation is being developed, and

have been con�rmed by some of the aforementioned recent integration works like Apache Wookie

and Basic LTI.

1.2. Objectives and contributions

The previous section described the three main limitations of current research works ad-

dressing the integration of external tools in Virtual Learning Environments. These limitations

are mainly responsible for the lack of widespread adoption of existing integration works in this

context. In order to overcome these limitations, the global objective of this dissertation is:

To design, develop and evaluate a middleware architecture that enables the

integration of multiple existing external tools in multiple existing VLEs, demanding

an attainable development e�ort to integrate new VLEs and tools, imposing only

basic restrictions that most VLE and tool providers already meet, and supporting

enough functionality to facilitate the instantiation and enactment of collaborative

learning situations.

In order to achieve this global objective, several partial objectives are set. These partial

objectives, as well as the speci�c contributions expected for each of them, are depicted in Figure

1.1 in the general scheme of this dissertation, and are described next:

To analyze the problem of integrating existing external tools in existing VLEs.

This partial objective is intended to identify and analyze the main requirements of the

stakeholders involved in the integration problem, as well as the main technological and

25http://gsic.uva.es. Last visited: June 2012.

http://gsic.uva.es

Chapter 1. Introduction 11

Figure 1.1: General scheme of the dissertation including its context, the aimed objectives, the expected
original contributions, and the evaluation planned to assess them.

12 1.2. Objectives and contributions

functional design issues that should be taken into account before proposing new integration

approaches. This analysis is complemented by a deep study of the integration works in the

literature, which include some middleware architectures, and also some standards de�ned

by international organisms aimed at establishing new generic integration contracts.

On this objective, the contributions of this dissertation are: the identi�cation of the

main stakeholders' requirements, and the identi�cation of the main design issues

and alternatives to be considered when proposing new integration approaches.

Both the stakeholders' requirements and the alternatives to the design issues are taken

into account when addressing the global objective of this dissertation. Actually, these

requirements and issues are the guidelines to design and develop the architecture proposed

in this dissertation. The conclusions about this partial objective and the contributions have

been published in [Ala10a], including the de�nition of the main issues and the integration

proposals up to 2009, being revised and updated in [Ala10c] to include later integration

works. Besides, the stakeholders' requirements have been formally embodied in [Ala12a].

To propose a middleware architecture that enables the integration of multiple existing

external tools in multiple existing VLEs, and that overcomes the limitations of previous

related works.

This partial objective consists on the proposal of an architecture that connects VLEs

and tools, whose design principles follow the guidelines distilled in the previous partial

objective, and that overcomes the three main limitations of previous related works: the

high development e�ort, the strict restrictions on VLE and tool providers, and the limited

support to the instantiation and enactment of collaborative activities. According to these

limitations, three parts must be clearly distinguished in the proposal of this architecture:

• To de�ne and detail the restrictions on VLEs and tools, provided that these restrictions

must be met by most existing VLE and tool providers.

• To de�ne and detail the integration contracts of the architecture, provided that these

contracts must reduce the development e�ort required to integrate existing external

tools in existing VLEs.

• To de�ne and detail the elements of the architecture and their responsibilities, provided

that these elements must facilitate practitioners the instantiation and enactment of

collaborative learning situations that requiere the integration of external tools within

VLEs.

The contribution of this dissertation to this objective is GLUE! (Group Learning Uni-

form Environment), a middleware integration architecture that meets the de-

sired objective, thus overcoming the limitations of previous related works. The proposal

of this architecture is detailed in [Ala12a].

Chapter 1. Introduction 13

To develop a reference implementation of the proposed architecture.

This partial objective aims at developing a reference implementation that includes the

structure and the main functionality of the proposed architecture. Also, as part of this

objective, a start-up collection of VLEs and tools is generated. This reference implemen-

tation should be a model to facilitate external contributors and third-party developers

the integration of new VLEs and tools. Nevertheless, it is important to remark that the

main ideas underlying the proposal of the GLUE! architecture could be applied to other

implementations, di�erent from this reference implementation.

The contribution of this dissertation to this partial objective is GLUE!-RI (GLUE!

Reference Implementation), the reference implementation of the GLUE! architecture.

This implementation and its prototype have been published in [Ala12a], with further details

for the particularities of the VLE LAMS in [Ala11b]. Besides, [Ala12c] is a demonstration

paper showing the usage of this reference implementation in Moodle and LAMS. The code

of GLUE!-RI is available at http://gsic.uva.es/glue to be downloaded and installed by

anyone interested.

To evaluate the proposed architecture and its reference implementation. Once the proposal

has been de�ned and developed, it must be evaluated. This evaluation must assess whether

the architecture meets the stakeholders' requirements, and overcomes the limitations of

previous related works. Besides, since the objectives and contributions belong to both

the CSCL and software integration �elds, then both the educational and technological

dimensions should be considered in this evaluation [Zel02]. Taking these considerations,

the evaluation of this proposal comprises:

• Four authentic experiments with real educators and students [Dew01] at university

level. These experiments serve to study the compliance of the architecture to the

stakeholders' requirements. Besides, they respond to educators' needs in di�erent

learning settings, and cover several knowledge domains, collaborative strategies, VLEs

and external tools. Di�erent versions of the GLUE! reference implementation, which

is incrementally and iteratively developed, are employed by practitioners in these

four experiments. The CSCL-EREM (Computer Supported Collaborative Learning

Evaluand-oriented Responsive Evaluation Model) [Jor09], which is a framework that

facilitates the formal evaluation of software systems in CSCL settings supports the

evaluation of GLUE! in these experiments. Data from the usage of the architecture

are collected combining qualitative and quantitative techniques [Kit96a], and analyzed

using the mixed method proposed in [Mar03].

• A comparison of GLUE! with other loosely-coupled integration approaches. This com-

parison includes a feature analysis [Kit96a], and an analysis of the development e�ort

http://gsic.uva.es/glue

14 1.3. Research methodology

required for the integration of new tools and VLEs. The latter is based on an empirical

measure, called the source lines of code (SLOC), which is frequently used as an indi-

cator of software complexity [Alb83].

This evaluation has partially been published in [Ala12a], showing the results and conclu-

sions of the four authentic experiments, as well as the comparison of the development e�ort

in loosely-coupled integration approaches. Besides, an extended evaluation focused on two

of the experiments can be found in [Ala12b].

1.3. Research methodology

This dissertation is framed into a multidisciplinary �eld, since its objectives and contri-

butions are oriented to the design and development of a software system, which is expected to

have a certain impact on the educational domain. This is the main reason that motivates an

evaluation that combines both the educational and technological dimensions [Zel02], as already

anticipated in the previous section. Similarly, the research methodology should also combine

di�erent methods to better take into account the multidisciplinary nature of the contributions.

In this regard, the engineering method proposed by Adrion [Adr93] could cover most of the

methodology needed for this research. This method iterates on the following four steps: observe

existing solutions, propose a better solution, build or develop, measure and analyze. Never-

theless, this method could be merged, especially in the evaluation stage, with the empirical

method [Big82], due to the employment of experiments [Dew01] as part of the educational

evaluation. Glass [Gla95] formalized the combination of these two methods, taking Adrion's

work as a basis, in four iterative phases that have already been applied to similar recent disser-

tations with technological contributions in the CSCL �eld [Her07b,Per11,Vil10]:

Informational phase. The �rst phase aims at collecting information about the domain

in which the research is carried out. The �rst task is the review and analysis of existing

literature in order to detect the a�ordances that may become research questions, and

the related works that previously explored such a�ordances. Next, it is convenient to

participate in scienti�c events and research projects to assess the potential interest of these

a�ordances, and also to get feedback from the community of people working in the �eld.

In this dissertation, this phase addresses the review of multiple works on TEL, CSCL,

learning platforms, use of tools for educational purposes, technological trends, software

engineering, software architectures, and software integration in multiple contexts. During

this process, the integration of external tools in VLEs to facilitate the realization of a

wider range of collaborative learning situations emerges as the main research question for

this dissertation. Besides, this phase also includes the participation on European, national

Chapter 1. Introduction 15

and regional projects related to the domain, the attendance to several conferences, and

the realization of short research stays with experts on software integration and learning

platforms.

Propositional phase. The second phase aims at proposing or formulating hypothesis or

solutions to the research questions identi�ed in the informational phase. In this regard, the

literature review allows to identify the limitations of previous related works on this topic

and raises new original alternatives to tackle these limitations. In this dissertation, this

phase comprises the identi�cation of the main stakeholders' requirements, the analysis of

the main design issues that should be considered when tackling the integration problem,

and the proposal of a middleware architecture that takes into account these requirements

and issues in order to overcome the limitations of previous approaches.

Analytical phase. The third phase aims at analyzing and exploring the propositions

made in the previous phase, to achieve a demonstration or formulation of principles. This

may include the development of the necessary systems or applications that facilitate this

demonstration. In the context of this dissertation, a reference implementation of the ar-

chitecture proposed in the second phase is developed, providing a prototype that can be

tested and used by educational practitioners. This reference implementation is employed

for the analysis and evaluation of the contributions of this research, and can be enhanced

as the iterations along the phases of this methodology happen.

Evaluative phase. The last phase aims at evaluating the propositions by means of experi-

mentation or observation, helped by the systems or applications developed in the analytical

phase (if applicable). In this dissertation the architecture is evaluated by means of four au-

thentic experiments intended to demonstrate that it meets the stakeholders' requirements

and overcomes the limitations of previous related works. A supporting comparison with

other loosely-coupled integration works is also carried out as part of the evaluation phase.

1.4. Structure of the document

The rest of the document is structured according to the partial objectives de�ned in section

1.2. Therefore, after this introduction, chapter 2 delves into the theoretical background of this

research. That includes the main ideas on which the CSCL research �eld is based, emphasizing

the bene�ts of using learning platforms and software tools for the support of interactions among

learners. Besides, this chapter reviews and compares the main Virtual Learning Environments

and other outstanding platforms, as well as a set of representative tools employed for educational

purposes. Then, a deep analysis of the integration problem in this context is carried out, with

the aim of identifying the main stakeholders' requirements and the main issues that should be

16 1.4. Structure of the document

taken into account when designing new integration approaches. Finally, the literature is critically

reviewed, indicating which of the detected issues contributed to the lack of success in terms of

adoption of current integration works.

Chapter 3 introduces GLUE!, the middleware architecture that enables the integration of

multiple existing external tools in multiple existing VLEs. This chapter begins by highlighting

the main design decisions of GLUE!, which are the result of taking into account the lessons

learned from the previous analysis of the integration problem. Then, a global overview of the

architecture is presented, detailing the integration contracts and the elements involved, as well

as their responsibilities in order to provide the functionality needed to facilitate the instantiation

and enactment of collaborative learning situations that require the integration of external tools

within VLEs. This chapter also deals with the security issues that appear in the interactions

throughout the architecture. Besides, the opportunities for connecting GLUE! and other existing

loosely-coupled integration works are discussed before the conclusions.

Chapter 4 presents GLUE!-RI, the reference implementation of the GLUE! architecture.

This chapter delves into low level details of each of the GLUE! elements, discussing technical al-

ternatives for their implementation, and pointing out the di�erences that appear when integrating

some outstanding VLEs and tools. Besides, it is in this chapter where di�erent processes related

to the architecture are described: from the development of code that an interested contributor

should be aware of, through the installation and con�guration by a GLUE! administrator, to the

usage of GLUE! by educators and learners

Chapter 5 explains and discusses the evaluation of the GLUE! architecture, supported by its

reference implementation. This chapter starts by introducing the overall evaluation methodology,

including the data gathering techniques, and the data analysis method employed. Then, the

four authentic experiments supporting the GLUE! evaluation are detailed. After that, results

obtained from these experiments are used to support the conclusions regarding the compliance of

the GLUE! architecture to the stakeholders' requirements. Finally, the comparative evaluation

with other loosely-coupled integration approaches, focused on the functionality o�ered and in

the development e�ort required, is presented.

Chapter 6 draws together the conclusions and the future work of this dissertation sum-

marizing the main original contributions and the objectives achieved. In addition, this chapter

also links these contributions with a series of active ongoing research works at the heart of the

GSIC-EMIC research group. The global objective of all these works is to design and develop an

extensible architecture for the support of the main actors involved in the design, instantiation,

enactment and evaluation of collaborative learning situations, using GLUE! as the core for the in-

tegration of tools in learning platforms, and following many of the design principles that emerged

as a consequence of the realization of this dissertation.

Chapter 1. Introduction 17

This document also includes �ve appendices that complement the discussion of the disser-

tation. Appendix A contains more details about the study of the development e�ort. Appendix B

details the data format used for the communication between the elements of the GLUE! architec-

ture. Appendix C collects the documentation of GLUE! for developers interested in contributing

to the integration of new external tools. Appendix D gathers further information for GLUE!

administrators, including the installation and con�guration manuals for the main components

of the reference implementation. Appendix E includes user manuals for educators and students

using GLUE! within three representative VLEs and learning platforms: Moodle, LAMS and

MediaWiki.

18 1.4. Structure of the document

Chapter 2

Integration of external tools in VLEs

The aim of this chapter is to present the theoretical background on which the research work of this

dissertation is based, emphasizing the speci�c challenges it undertakes. The chapter starts by intro-

ducing in section 2.2 the CSCL as a multidisciplinary research �eld, in which technology is employed

to foster the interactions and collaboration among learners. Then, VLEs are studied in section 2.3

as signi�cant examples of successfully adopted systems that facilitate the design, instantiation, en-

actment and evaluation of collaborative learning situations. The use of software tools alongside the

learning process is introduced in section 2.4, discussing the tool life cycle when supporting collabo-

rative activities. In this point, special emphasis is given to the limitation regarding the restricted set

of VLE built-in tools, and how this limitation, together with the massive use of third-party external

tools, has caused a great research interest in the learning community, resulting in many works

proposing approaches that address the integration of external tools in VLEs. Section 2.5 discusses

the integration problem in this context, identifying the requirements of the main stakeholders (prac-

titioners, developers, and providers), as well as the main design issues and alternatives that should

be considered by those tackling this problem in order to increase their chances of adoption. These

design issues are: the number and kinds of restrictions imposed on VLEs and tools, the coupling

and multiplicity promoted by the integration, and the degree of functionality o�ered. Next, Section

2.6 presents the most representative integration works, relating them with these design issues, and

discussing the reasons for the lack of success in adoption of these works. Finally, section 2.7 distills

some lessons learned from the earlier discussion of the integration problem and the existing works.

These lessons should be of interest for those proposing new integration approaches, including the

one presented later in this dissertation.

The identi�cation of the main issues that should be taken into account when tackling the problem

of integrating existing external tools in existing VLEs is a contribution of this dissertation, and

has been published in [Ala10a], including the de�nition of these issues and an analysis of existing

proposals up to 2009. These issues were revised and updated in [Ala10c, Ala12a] to include later

integration works.

19

20 2.1. Introduction

2.1. Introduction

TEL is a �eld of study that aims at facilitating and improving teaching and learning

through technology [Joh04]. Research on TEL covers all educational levels in both formal and

informal learning. It is important to note that the term TEL is sometimes misused as a synonym

of distance learning or e-learning. On the contrary, TEL also includes face-to-face, and blended

learning scenarios in which technology is employed [Osg03]. With the introduction of technology

into learning designs based on traditional pedagogies new challenges arise, requiring a redesign

of educational systems and practices [Kop04].

CSCL is the multidisciplinary �eld within TEL that studies how technology facilitates the

collaboration in groups, in order to increase the e�ectiveness of learning [Kos96]. In collaborative

learning situations, the acquisition of knowledge and skills is carried out through interactions

with peers [Dil99]. These interactions have been demonstrated to promote a more e�ective and

deeper learning, compared to other processes, such as individual or competitive learning [Vig78],

especially regarding high-level reasoning and knowledge transfer. CSCL environments are those

systems that include a set of features, resources and software tools intended to support the

realization of collaborative learning situations which, remarkably, may include both individual

and collaborative activities [Osu99].

VLEs, such as Moodle, LAMS, Sakai or Blackboard, are successful examples of centralized

software systems used worldwide in TEL, especially for distance and blended learning. Besides,

VLEs are recurrently used by practitioners to support collaborative learning processes, since they

enable the de�nition of social con�gurations of users, structures of activities, and the use of some

built-in tools that promote collaboration and groupwork (e.g. chats, forums and wikis) [Wel07b].

All these features make VLEs suitable for the design, instantiation, enactment and evaluation of

collaborative activities in learning contexts [Jon05].

A large number of studies report the bene�ts of educators and students using VLEs for

learning contexts [Kat10]. For instance, Koeber [Koe05], after carrying out a comparative study

between two groups of almost one hundred of sociology students each, found that average grades

of the group using a VLE during the course were considerable better that those of the other group,

which did not use any technological support. Koeber justi�ed the results obtained asserting that

the use of a VLE had a positive e�ect in the motivation of the students enrolled in that course.

Another study by Patzold [Pat05] con�rms this assertion by showing an increasing engagement

on students' behavior when realizing VLE built-in tool-mediated activities, including tests and

discussions on forums, which also had a positive e�ect on students' �nal grades. Regarding

educators, Seaman [Sea09] found that the majority of faculty members thought that learning

outcomes using VLEs were �as good as or better that through face-to-face instruction�. Finally,

O'Leary [OLe02] points out two additional advantages of using VLEs. First, educators can

Chapter 2. Integration of external tools in VLEs 21

provide a more �exible support to students. This is due to the fact that educators do not need

to be in a �xed time or place to interact with students. Besides, students become more active

and independent, making use of online access to learning materials and collaborative features,

on and o� their institution. Both advantages are essential to support the new teaching models

at all levels and contexts.

The advantages of including VLEs as the technological support in education in order to pro-

mote a more engaged and structured collaborative learning seem clear now. Nevertheless, other

studies pointed out some important limitations that should also be considered. For instance,

Bower [Bow11] reported educators' concerns regarding potential technical problems or crashes

that may happen when their courses are entirely supported by VLEs. Nevertheless, this problem

has not stopped thousands of institution from adopting VLEs, and here it is noteworthy that

any technological support always implies some risk of failures at �rst, but after improvements

and tests, the chances of occurrence of failure are minimized. The same study also remarked

that setting learning situations and courses within VLEs is a time-consuming and burdensome

task for educators (compared to traditional face-to-face courses). Nevertheless, the introduction

of new software systems normally entails a certain initial learning e�ort (i.e. learning curve),

but in the case of VLEs, once this e�ort is undertaken, educators can take advantage of VLEs

functionality in order to reuse educational content and automatize the management of courses

and lessons [Dal03]. Other authors [Att07,Har06,Sev08] go beyond, criticizing the institutional

and educator-centered basis of VLEs, targeting their research towards other platforms, generally

called PLEs [Har06], in which learning is controlled by the own learners. Nonetheless, these

authors agree that both educator-centered and learner-centered models can coexist, being VLEs

dominant platforms in formal education [Wil06].

The small and reduced set of available built-in tools is also agreed as another important

limitation in VLEs [Con10,Dag07,Liv08]. For instance, practitioners on Bower's study [Bow11]

stress the �smaller range of tools� available in Moodle, as well as the low �exibility regarding

LAMS tools. Practitioners' perception on this study may be motivated by their expectations of

�nding in VLEs the tools they usually employ in their classes. The lack of a larger and proper set

of built-in tools thus limits the kind of learning situations that educators may design and enact

within VLEs. Furthermore, this limitation might be partially responsible for many educators

using VLEs as simple document repositories, in which students mostly perform administrative

tasks, such as reading announcements, or submitting coursework [Kat10], rather than carrying

out more complex and structured learning activities using the required software tools.

Meanwhile, practitioners are using more and more software tools outside of VLEs, not

only in their classes, but also in their daily life. Some reasons supporting this massive tool

adoption are: the high number of hardware devices in the market, from laptops to mobiles

or tablets; the possibility of an online connection, everytime, everywhere; and the existence of

22 2.2. Computer Supported Collaborative Learning

many software tools o�ered as Software as a Service (SaaS) applications [Pap03], and designed

under Web 2.0 principles [ORe07]. These principles are typically associated to interoperable web-

based systems, provided by di�erent vendors, and designed to promote the collaboration and the

sharing of information and contents [ORe07]. Such a large number of available distributed tools

might overwhelm inexperienced (and even some expert) practitioners, which could bene�t from

the centralization of these SaaS, Web 2.0 and many other tools in a single environment that

already provides educational and collaborative features, like the widespread VLEs.

Summarizing what this introduction has anticipated, the remaining of this chapter focuses

on the integration of existing external tools in existing VLEs, in order to enrich the collaborative

learning situations that can be carried out within these VLEs. Therefore, classical challenges in

software interoperability are considered from the perspective of VLEs and software tools, in the

current more and more web-like technological world, in which human collaboration to achieve a

common goal (being it learning in this context) is a recurrent process that normally brings better

outcomes. An scheme relating the concepts introduced in this section and further explained along

this chapter is presented in Figure 2.1.

Figure 2.1: Scheme of the main concepts belonging to the research context.

2.2. Computer Supported Collaborative Learning

CSCL is a recent emerging research �eld within TEL [Kos96], characterized by its multi-

disciplinarity [Sta10], involving practitioners from pedagogy, education, computer science, and

social science. CSCL origins date back to a NATO-sponsored workshop that was held in 1989 in

Maratea (Italy), and which, for the �rst time, included the term Computer-Supported Collabo-

rative Learning in its title [Sta06]. From then on, an increasing global community of researchers

Chapter 2. Integration of external tools in VLEs 23

have been working on this �eld, meeting every two years since 1995, in the biennial CSCL con-

ference, which had its 9th occurrence in 2011 in Hong Kong (China). Besides, this community of

researchers have been publishing their novelties and contributions in a speci�c journal named the

International Journal of CSCL (ijCSCL). The evolution of CSCL has been reviewed several times

by important names, and can be consulted in the works of Dillenbourg [Dil09] and Stahl [Sta06].

CSCL can be contrasted with other three earlier TEL �elds identi�ed by Koschmann in

his highly cited book [Kos96]. These �elds are sequenced as follows: CAI (Computer-Assisted

Instruction), ITSs (Intelligent Tutoring Systems), and Logo-as-Latin. CAI began in the 1960s

and conceived learning as a completely passive process where information had to be memorized,

and where the role of educators was just acquiring a prior knowledge that was later passed

on and shared with the students. ITSs started in the 1970s and relied on the personalized

tutoring, creating arti�cial intelligence applications that represented student mental models,

and that responded with appropriate feedback to students' interactions. Logo-as-Latin gained

momentum in the 1980s under a constructivist approach, and encouraged students to explore,

develop, and run their own applications, thus building their knowledge by themselves. Finally,

CSCL began in the 1990s motivated by social constructivism [Jon99, Win93], and promotes

social interactions among students and learning together opportunities using technology, being

educators only mediators that facilitate (if needed) these interactions.

The support of collaboration processes through computers and technology is not restricted

to the CSCL �eld, since it is also the grounding of CSCW (Computer-Supported Cooperative

Work) [Ell91,Gru92]. Nevertheless, despite sharing some important features, such as the promo-

tion of social interactions and groupwork, CSCL and CSCW target completely di�erent goals.

While, CSCL pursues more e�ective learning outcomes through the collaboration in groups,

CSCW pursues the increase of productivity in industrial and corporate environments through

the cooperation in groups. Apart from the di�erences in the acronyms regarding �learning� and

�work�, which suggests di�erent goals and approaches, the di�erences between the terms �collabo-

rative� and �cooperative� can be further discussed. Actually, even though most authors consider

these two terms rather synonyms, others point out that collaboration requires realizing all the

tasks together (the focus is on the process), while cooperation may entail a division of work into

independent sub-tasks (the focus is on the product) [Dil99]. Nonetheless, the terms collaboration

and collaborative learning are preferred along this dissertation, and they are used indistinctively

when embracing cooperation.

All in all, CSCL is a multidisciplinary research �eld that devotes important e�orts to the

development of applications and systems for the support of collaborative learning situations.

Some of these systems are explored along this chapter, as well as their technical, functional and

pedagogical challenges, in order to improve their support to the life cycle of collaborative learning

situations.

24 2.2. Computer Supported Collaborative Learning

2.2.1. Life cycle of collaborative learning situations

The life cycle of collaborative learning situations [Gom09,Her06a], being they supported

by technology or not, involves the whole process starting from the �rst fuzzy ideas in edu-

cators' minds regarding a potential structure of individual and collaborative activities (and

their settings), to the obtention and subsequent evaluation of students' outcomes after the

realization of these activities. This life cycle is sometimes made explicit through the use of

scripting [Her07a,Vil09], which aims at �facilitating social and cognitive processes of collabora-

tive learning by shaping the way learners interact with each other� [Har07b]. Numerous studies

have shown the bene�ts of scripting; among them, the greater e�ectiveness of collaboration

and learning [Dil02a,Her07a]. Nevertheless, in some other cases, the life cycle of collaborative

learning situations is not formalized through scripting, thus promoting more open and �exible

designs motivated by practitioners' improvisation [Pri11]. This life cycle (explicit or not) can be

found in most formal learning situations, as a juxtaposition of non-curriculum-based, unstruc-

tured, unsequenced, and non-assessed informal situations [Wel91]. Nonetheless, cautions must

be taken, since the formal/informal border is sometimes blurred [Dil09]. Thus, this life cycle

could be found in other situations di�erent from those belonging to formal learning.

The life cycle of collaborative learning situations comprises four phases: design, instan-

tiation, enactment and evaluation [Gom09,Her06a], as shown in Figure 2.2. In the �rst phase

(design), skilled instructional designers [Vil09], or simply any educator, de�ne the structure or

sequence of individual and collaborative activities, with the tasks that participants have to ac-

complish, as well as the learning objectives and the generic social con�guration. Signi�cantly,

this �rst stage does not consider speci�c participants, nor speci�c tools, thus promoting the reuse

of learning designs in other scenarios and the creation of design templates [Bou06] that can be

shared among educators. In the second phase (instantiation), those educators supervising the

collaborative learning situation select the tools and populate the groups according to the list of

students participating in the situation, particularizing this way an abstract generic design into

a speci�c context. Next, in the third phase (enactment), students carry out the learning activ-

ities, being monitored by educators. Finally, in the last phase (evaluation), educators evaluate

students' work as well as their acquired knowledge and skills [Dil02a]. It is noteworthy that the

results of the evaluation phase give feedback to educators, who can improve and adapt their

learning designs to achieve better outcomes, as it is represented in Figure 2.2.

Other works in the literature de�ne life cycles for collaborative learning situations with

small variations. This is the case of Vignollet [Vig08], who suggests a linear life cycle composed of

three phases: modeling, operationalization and execution. This life cycle emerges from applying

the three levels de�ned in the IMS LD speci�cation [IMS03] for the de�nition of collaborative

scripts. Nevertheless, the three phases de�ned by Vignollet can be easily mapped to those

of design, instantiation and enactment (in this order) according to the life cycle presented in

Chapter 2. Integration of external tools in VLEs 25

Figure 2.2: Life cycle of collaborative learning situations including the four phases: design, instan-
tiation, enactment, and evaluation.

this section. Similarly, authors in [Cae06a, Per10] also consider the three �rst phases, which

they denominate design-time, instantiation-time and run-time. A somewhat di�erent example is

the proposal of Dalziel [Dal06], who partially merges the instantiation phase in the design and

enactment phases. Dalziel's life cycle and the adaptation to the one presented in this section

is later exempli�ed in this document, when discussing the implementation of Dalziel's life cycle

in the LAMS. As a conclusion, the life cycle presented in this section is consistent with other

equivalent life cycles in the literature, which are accepted by the learning design and the CSCL

communities.

Finally, it is convenient to clarify that this dissertation mainly contributes to the instan-

tiation and enactment phases of the life cycle presented here. First, it contributes to the instan-

tiation, since educators select and con�gure the speci�c tools that support the individual and

collaborative activities in this phase. Second, it contributes to the enactment, because it is in

this phase where students use these tools to accomplish the activities and achieve the learning

objectives. It is important to note that this dissertation does not a�ect the way educators design

the learning activities, since no new tool abstractions [Veg08] are de�ned. Nevertheless, the par-

ticularization of this life cycle with examples of VLEs and tools is later studied in this document,

and remarkably, the design, instantiation and enactment phases may merge in some cases.

26 2.3. Virtual Learning Environments

2.3. Virtual Learning Environments

Virtual Learning Environment (VLE) is a popular term in education, though a common

de�nition for it has not been agreed yet, and many times other terms like Learning Management

System (LMS), Content Management System (CMS), or Learning Platform (LP), are used as

analogous concepts. One of the �rst and most popular de�nitions for VLE was provided in 2000

by the Joint Information Systems Committee (JISC) in the UK, and refers to �the components

in which learners and tutors participate in online interactions of various kinds, including online

learning�1. Nevertheless, many authors disagree on the need for online interactions [Dil02b],

excluding this part of their own de�nition. This is the case of Stiles, who stated that both VLEs

and LMSs are �designed to act as a focus for students' learning activities and their management

and facilitation, along with the provision of content and resources required to help make the

activities successful� [Sti00]. Similarly, Britain and Liber also excluded the online communication

from their de�nition, while adding the collaboration as a remarkable feature, thus characterizing

VLEs as CSCL systems: VLEs �aim to accommodate a wider range of learning styles and goals,

to encourage collaborative and resource-based learning and to allow greater sharing and reuse of

resources� [Bri06].

One of the most formal and commonly cited de�nitions of VLEs comes from Dillenbourg's

work [Dil02b] published in 2002, and argued upon seven distinctive features.

1. VLEs are designed information spaces in which multiple authors can produce both struc-

tured and unstructured information.

2. VLEs are social spaces that promote interactions and discussions both synchronously or

asynchronously.

3. VLEs are explicitly represented ranging from text-based interfaces to complex 3D graphical

systems.

4. VLE students are also actors, thus producing, rather than consuming contents.

5. VLEs are not restricted to distance education, supporting also presential and blended

learning situations.

6. VLEs integrate heterogenous technologies (including a variety of tools supporting di�erent

tasks), and multiple pedagogical approaches, because integration is under the idea of envi-

ronment.

1http://www.jiscinfonet.ac.uk/InfoKits/effective-use-of-VLEs/intro-to-VLEs/introtovle-intro.
Last visited: June 2012.

http://www.jiscinfonet.ac.uk/InfoKits/effective-use-of-VLEs/intro-to-VLEs/introtovle-intro

Chapter 2. Integration of external tools in VLEs 27

7. Most VLEs overlap with physical environments at some point, since learning activities may

involve the use of non-computerized resources or interactions among participants.

Besides, it is noteworthy that Dillenbourg also stressed the a�ordances of VLEs for col-

laborative learning in his de�nition, due to the opportunities they o�er for: �structuring collabo-

ration�, through the speci�cation of learning scenarios or scripts; and �regulating interactions�,

through the monitoring of educators to ensure all group members participate in the activities.

From all the features reported in Dillenbourg's de�nition of VLEs, two of them are the

basis for the research developed under this dissertation: the integration of heterogeneous tech-

nologies, and the support of collaboration. Therefore, despite consistent with Dillenbourg's and

other accepted de�nitions in literature, this dissertation o�ers a broader characterization for

VLEs, highlighting the aforementioned two features, and referring to educator-centered2 systems

that allow the design, instantiation, enactment, and evaluation of collaborative learning situa-

tions through a set of synchronous/asynchronous, face-to-face/distance, individual/collaborative

learning activities, which are supported by a collection of available tools and resources. This de�-

nition eases the discussion regarding the proper use of terms like VLE, LMS or CMS, since all

of them, as well as many of the LP, may �t under this description, as it is further discussed.

The remainder of this section presents multiple examples of VLEs, emphasizing those

with a higher adoption among practitioners and institutions. Besides, the generic life cycle of

collaborative learning situations, which was introduced in the last section, is particularized for

these outstanding VLEs.

2.3.1. Examples of VLEs

Moodle, LAMS, .LRN, Sakai, Blackboard, Claroline or SharePoint LMS are some of the

most widespread VLEs worlwide. Nevertheless, many others examples with a lower adoption are

available, some of which might be trending VLEs in the next few years. Remarkable examples

of these other VLEs are: Dokeos3, Desire2Learn (D2L)4, JoomlaLMS5, RCampus6, ILIAS7,

ATutor8, eCollege9 or Alphastudy10. Besides, it is noteworthy that a few other VLEs achieved a

certain degree of success during the last decade; this is the case of WebCT, which now belongs

2in the sense that educators determine the activities, resources and tools in the learning design, as opposed to
Personal Learning Environments (see �Other platforms used in education� in section 2.3.1)

3http://dokeos.com. Last visited: June 2012.
4http://desire2learn.com. Last visited: June 2012.
5http://joomlalms.com. Last visited: June 2012.
6http://RCampus.com. Last visited: June 2012.
7http://ilias.de. Last visited: June 2012.
8http://atutor.ca. Last visited: June 2012.
9http://ecollege.com. Last visited: June 2012.
10http://alphastudy.com. Last visited: June 2012.

http://dokeos.com
http://desire2learn.com
http://joomlalms.com
http://RCampus.com
http://ilias.de
http://atutor.ca
http://ecollege.com
http://alphastudy.com

28 2.3. Virtual Learning Environments

to Blackboard. Finally, there is another important group of VLEs that were the results of

research works and never became stable systems, like Gridcole [Bot08] or Pelican [Vel09], but

that signi�cantly contributed to the community working on this �eld.

The seven most widespread VLEs are studied next from a technical and functional perspec-

tives emphasizing the features that enable the communication with external systems, as well as

the functionality to support collaboration and groupwork. Table 2.1 summarizes and compares

the main features analyzed for these VLEs along this section. Remarkably, while they are all

based on web technologies, follow a classical three-tier client-server architecture [Eck95], o�er

extension APIs (Application Programming Interfaces) and include enough functionality for the

support of collaboration, groupwork and role distinction, they are very heterogeneous on their

pedagogical approaches and programming languages.

Table 2.1: Feature analysis of the main VLEs.

Feature Moodle LAMS .LRN Sakai Blackboard Claroline
SharePoint

LMS

Current stable ver-

sion (June 2012)
Moodle 2.2 LAMS 2.4 .LRN 2.5.0 Sakai 2.8.0

Blackboard
Learn 9.1

Claroline
1.10

SharePoint
LMS 3.1

Business model Free Free Free Free Commercial Free Commercial

Technical features

Distribution
Open
source

Open
source

Open
source

Open
source

Proprietary
Open
source

Proprietary

System
Web-based
system

Web-
based
system

Web-based
system

Web-
based
system

Web-based
system

Web-based
system

Web-based
system

Architecture
Three-tier
client-
server

Three-tier
client-
server

Three-tier
client-
server

Three-tier
client-
server

Three-tier
client-
server

Three-tier
client-
server

Three-tier
client-
server

Programming Lan-

guage
PHP Java TCL Java Java PHP .NET

Extension API 4 4 4 4 4 (private) 4 4 (private)

Functional features

Pedagogical

approach

Course-
based
learning

Activity-
based
learning

Community
and course-
based
learning

Course-
based
learning

Course-
based
learning

Course-
based
learning

Course-
based
learning

Support of

scripting
8 4 8 8 8 4 4

Support of collabo-

ration
4 4 4 4 4 4 4

Support of groups 4 4 4 4 4 4 4

Support of roles 4 4 4 4 4 4 4

Number of built-in

tools
14 25 15 20 16 8 16

Chapter 2. Integration of external tools in VLEs 29

Moodle

Moodle is currently the most successful VLE, with more than 66,000 registered sites and

almost 60 million users all over the world at the time of writing11. Its claimed grounding on social

constructionist [Jon99], its great �exibility regarding the management of learning activities, and

of course, its free and open source distribution have fostered its quick adoption among institutions

and practitioners worldwide [Mar08b]. Besides, its simple implementation using mature web

technologies, its easier extension mechanisms compared to other VLEs, and the existence of

plenty of development documentation have also promoted the creation of a huge community of

people that contributes to the improvement of Moodle. This community is constantly developing

new features and applications through hundreds of Moodle plugins12, as well as supporting and

advising other developers and end-users. Moodle �rst version (1.0) was released in 2002, as part

of Martin Dougiamas' research on the use of open source software for teaching and learning

within Internet-based communities [Dou99, Dou00]. Nonetheless, a lot of work has been done

since this �rst version, and Moodle is currently distributed in the 2.2 stable version, being the

2.3 version announced for June 2012.

Moodle pedagogical approach is centered in the concept of course, which contains a set of

activities and resources [Dou03]. Courses can be arranged in three di�erent formats: weekly (the

course is split in weeks, scheduling activities and resources along the time), topics (the course is

divided into topics, each of which is composed by a structure of activities and resources), and

social (the course is centered around a collaborative forum and its discussions). The concept

of activity in Moodle is closely related to that of a tool, and 14 built-in activities are currently

included in the Moodle distribution (see Figure 2.3), each of them mapped to a di�erent kind of

tool. Some examples of Moodle built-in tools are: forum, chat, quiz, multiple choice and wiki.

Nevertheless, Moodle administrators can install a wide range of additional plugins to extend the

set of activities of a Moodle installation.

Moodle promotes collaboration to engage students in the learning process [Cor05], enabling

educators the creation and management of groups. These groups are de�ned in two di�erent levels

(groups and groupings). Those students belonging to a certain group or grouping share the same

resources in each activity. Nevertheless, Moodle group con�gurations also allow the visualization

of the rest of peers' resources, by setting the �visible groups� option. It is noteworthy that the

design of a Moodle course follows a bricolage philosophy [Ber05], and so, educators can re�ne and

iterate on the learning design as the course is being delivered, rather than completing it before the

realization of the activities. This design philosophy a�ords a high �exibility, and educators can

easily react to common occurrences in the classroom, such as no-shows or latecomers, modifying

on-the-�y the structure of the course or the composition of the groups. This �exibility however,

11http://moodle.org/stats. Last visited: June 2012.
12http://moodle.org/plugins. Last visited: June 2012.

http://moodle.org/stats
http://moodle.org/plugins

30 2.3. Virtual Learning Environments

Figure 2.3: Moodle screenshot showing the structure of a course.

has an important limitation: it hinders the enactment of those designs that require the realization

of the learning activities in a certain order, following a more sequenced and prede�ned scripted

approach.

Regarding the technical side, Moodle is developed in PHP language and, as most VLEs,

uses a common three-tier client-server architecture [Eck95]. The presentation tier de�nes how the

information is presented to end-users, who access to that information using their web browsers.

Business logic tier handles the interactions with Moodle, accessing to the data tier, typically

through MySQL, to store and retrieve information when needed. Moodle is distributed in a single

multiplatform package that includes PHP, MySQL and the Apache HTTP Server to facilitate the

installation and con�guration processes. Signi�cantly, the current Moodle distribution complies

with several educational standards. For instance, Moodle can manage ADL SCORM [ADL04]

packages containing isolated resources or complete courses. Regarding IMS standards, Moodle

supports IMS Content Packaging (IMS CP) [IMS07], IMS Common Cartridge (IMS CC) [IMS11],

IMS Question and Test Interoperability (IMS QTI) [IMS06b], and is listed as one of the IMS

Basic LTI [IMS10b] compliant VLEs.

Chapter 2. Integration of external tools in VLEs 31

LAMS

LAMS is a well-known free and open source web-based VLE for designing and enacting

learning activities, �rst released in 2003 [Dal03]. Unlike Moodle and other VLEs, LAMS was

explicitly developed with the purpose of facilitating the creation and management of learning

designs [Dal05]. To do so, LAMS includes an intuitive and visual drag-and-drop interface where

learning designs can be generated. Besides, these learning designs can be exported and shared

among educators by means of LAMS. Actually, LAMS design philosophy focuses on the concept

of individual activities, which may be sequenced as small lessons [Dal10], rather than as complete

courses, like it happens, for instance, in Moodle. These lessons are more likely to be reused by

di�erent educators in di�erent contexts, especially if they are based on recurrent pedagogical

structures. In this context, LAMS providers have recently released the Activity Planner13, a set

of templates for designing lessons based on good teaching practices that can be imported and

edited by educators within a LAMS environment.

LAMS is supported by a big community of end-users, administrators and developers, called

the LAMS community14. According to the o�cial statistics15, in April 2011 there were more

than 6,700 members from 80 di�erent countries in this community. Besides, more than 800

lessons could be previewed and downloaded, to be used as starting templates when designing new

learning sequences. Signi�cantly, the promotion of design reuse brings important consequences

to the implementation of LAMS, as regards the management of activities, tools and resources,

since this VLE advocates for completing sequenced lessons in the LAMS authoring environment,

before their deployment and execution in the LAMS monitoring environment [Bow11]. Therefore,

educators' burden can be split in two roles (author and monitor), which may be played by di�erent

users, as opposed to Moodle and other similar VLEs. This can be seen as a consequence of the

Educational Modeling Languages (EMLs) [Vig06] in�uence in LAMS, especially IMS LD [IMS03].

Nevertheless, despite sharing some features, like the typical export format [Dal06], LAMS avoided

being a reference implementation of any EML.

Similarly to other VLEs, the concept of activity in LAMS can be mapped to that of a

tool. LAMS current 2.4 version provides 25 built-in tools (Figure 2.4), including chat, forum,

spreadsheet, noticeboard, mindmap or wiki [Dal10]. Most of these tools were developed from

scratch by the own providers, although external developers may also extend this VLE with new

tools. To do so, they must follow the LAMS integration contract [Ghi06], which details the

interfaces, data models and technologies of this VLE. The success of external contributions in

LAMS is quite limited at the moment, with two exceptions: the integration of Google Maps16

13http://lamsinternational.com/product/activityplanner.html. Last visited: June 2012.
14http://lamscommunity.org. Last visited: June 2012.
15http://lamscommunity.org/dotlrn/clubs/educationalcommunity/forums/message-view?message_id=

1261220. Last visited: June 2012.
16http://maps.google.com. Last visited: June 2012.

http://lamsinternational.com/product/activityplanner.html
http://lamscommunity.org
http://lamscommunity.org/dotlrn/clubs/educationalcommunity/forums/message-view?message_id=1261220
http://lamscommunity.org/dotlrn/clubs/educationalcommunity/forums/message-view?message_id=1261220
http://maps.google.com

32 2.3. Virtual Learning Environments

Figure 2.4: LAMS screenshot showing the design of a lesson in the authoring environment.

and <e-Adventure>17. In order to include LAMS tools as activities in a lesson, they must

be dragged and dropped in the LAMS authoring environment, creating besides, linear learning

�ows by drawing lines between activities to indicate progression over time [Dal10]. Every LAMS

activity can be con�gured to support groupwork and collaboration. Furthermore, branchings

can be added to a lesson, so that every group may follow a di�erent learning path, depending

on educators or students' choice, or even on the outcomes of earlier activities. Once a lesson is

designed, it can be deployed (instantiated) in the LAMS monitoring environment indicating the

participants belonging to each group. Afterwards, students can enact the proposed activities in

the LAMS learning environment.

Going into technological details, LAMS is developed in Java language, using the open-

source Apache Struts18 and Spring19 frameworks, plus the Hibernate libraries20 for Java. It

17http://e-adventure.e-ucm.es. Last visited: June 2012.
18http://struts.apache.org. Last visited: June 2012.
19http://springsource.org. Last visited: June 2012.
20http://hibernate.org. Last visited: June 2012.

http://e-adventure.e-ucm.es
http://struts.apache.org
http://springsource.org
http://hibernate.org

Chapter 2. Integration of external tools in VLEs 33

also follows a three-tier client-server architecture with MySQL to access persisted data, and

runs in a JBoss21 application server. LAMS is normally distributed as a single multiplatform

package, although an online website, called LessonLAMS22, o�ering the equivalent authoring,

monitoring and learning environments has become recently available. Finally, it is noteworthy

that LAMS compliance with educational standards has always been very reduced, although in

the later version (2.4) some e�orts have been put to comply with IMS CC and Basic LTI.

.LRN

.LRN (or dotLRN) is a free and open-source web-based VLE that was originally developed

at the Massachusetts Institute of Technology (MIT) using the OpenACS (Open Architecture

Community System)23 framework. .LRN is based on a rather user-centered approach [San07], as

compared to other VLEs, although it allows the de�nition of several roles and hierarchies with

di�erent levels of permissions, similarly to what happens in Moodle or LAMS. Therefore, .LRN

may be categorized halfway between educator-centered VLEs and student-centered PLEs. Its

pedagogical approach enables the creation and management of courses and communities. The

concept of .LRN course is equivalent to that in other VLEs. On the other side, communities

are explicitly de�ned to foster interactions among .LRN users with special interests, projects,

or just for social gatherings [Cal03]. Signi�cantly, the concept of community is very common in

education, especially at the university level, where students normally join to di�erent clubs and

societies.

Each .LRN course or community uses its own set of applications, templates and permissions

[Cal03]. The current .LRN 2.5.0 version provides 15 built-in applications, like forum, webmail,

news, calendar, �le sharing or test, many of which support collaboration and groupwork in both

course and community settings [San07]. Figure 2.5 shows a screenshot of the structure and tools

of a community created within the .LRN environment. End-users can also create and manage

learning units, which can be seen as lessons in the LAMS terminology, within their courses and

communities. Nonetheless, these learning units must comply with the IMS LD speci�cation,

which is supported by .LRN through one of the most relevant extension packages.

On technical details, .LRN is developed in TCL [Ous89], a non-object oriented program-

ming language, on top of the OpenACS framework, thus inheriting all its functionalities and

features [Cal03]; actually, some .LRN tools, like the calendar or the webmail, are originally

from OpenACS [Cal03]. .LRN also follows a three-tier client-server architecture, where data is

managed through Postgresql or Oracle. An AOLserver24 is employed to deliver .LRN content,

21http://jboss.org. Last visited: June 2012.
22http://lessonlams.com. Last visited: June 2012.
23http://openacs.org. Last visited: June 2012.
24http://aolserver.com. Last visited: June 2012.

http://jboss.org
http://lessonlams.com
http://openacs.org
http://aolserver.com

34 2.3. Virtual Learning Environments

Figure 2.5: .LRN screenshot showing the structure of a community.

which can be accessed by end-users through their web browsers. Here, it is important to stress

the high compliance of .LRN with many of the e-learning standards (apart from IMS LD) [San07],

like IMS CP, IMS QTI, SCORM, or IMS Meta-data (IMS MD) [IMS06a].

.LRN had a certain impact short after its �rst released in 2002, being adopted as the

de facto VLE in several institutions worldwide apart from the MIT, such as the University of

Cambridge (UK), the University of Sydney (Australia), or the Universidad Nacional de Educación

a Distancia (Spain) [Cal03]. Nevertheless, the popularity of .LRN has fallen sharply in the last

few years, being quickly replaced by other VLEs like Moodle, LAMS or Blackboard with simpler

programming languages and well-known learning structures. Actually, very few research works

using .LRN have been reported during the last two years, and even the anual Open ACS / .LRN

conference was canceled after 2009.

Sakai

The Sakai Collaboration and Learning Environment (Sakai CLE) or simply Sakai is a free

and open-source web-based VLE designed and developed as part of the Sakai project25. This

25http://sakaiproject.org. Last visited: June 2012.

http://sakaiproject.org

Chapter 2. Integration of external tools in VLEs 35

project was started in 2004 by �ve American institutions, releasing the �rst Sakai version in 2005.

Although the popularity of Sakai cannot be compared to that of Moodle, over 350 institutions

worldwide have adopted this VLE26, and more than 70 partners are involved in the Sakai project,

contributing with funds, or developing code [Sim07].

Sakai pedagogical approach is, like Moodle, based on the concept of course, in which

educators add di�erent unsequenced built-in tools and resources, in order to support students

in the realization of their learning activities. Sakai 2.8.0 provides 20 �core tools�, including

announcement, chat, glossary, syllabus or tests & quizzes27 (Figure 2.6). Most of these tools

support collaboration, and their content can be shared among the participants belonging to the

same group within a Sakai course. However, some other tools, like the email, despite fostering

users' interactions, are not course-aware, being directly used in each user's workspace. Besides,

some extra tools like Gradebook228, or the web conference tool Big Blue Button29 can be installed

and con�gured by Sakai administrators.

Sakai is developed in Java language, following a classical three-tier client-server architec-

ture, in which the data layer is accessed through MySQL. It normally runs on Apache Tomcat

servlet containers, although Apache HTTP servers or JBoss servers could also be used instead.

Like most VLEs, Sakai is distributed in a single pre-built package that includes Apache Tomcat,

thus facilitating the installation and con�guration processes. Signi�cantly, Sakai was designed

to seek compliance with open e-learning standards [Far05], and many of them are currently

supported, including SCORM, IMS CC, IMS CP, IMS LIS (IMS Learning Information Ser-

vices) [IMS10a], Basic LTI or the W3C recommendation WCAG (Web Content Accessibility

Guidelines) [W3C08].

Blackboard

Blackboard Learn or simply Blackboard is currently the most popular commercial VLE,

with more than 1,000 clients using the latest 9.1 version30, as well as the main product o�ered

by the Blackboard Inc. company. The �rst Blackboard version was launched in 1998 gaining a

quick adoption, especially among American Universities and learning centers; however, Black-

board users can nowadays be found all over the world. In 2006, Blackboard Inc. acquired

WebCT, another proprietary VLE with a competitive presence at that time, continuing just the

development of one single brand called Blackboard.

26http://sakaiproject.org/adopt. Last visited: June 2012.
27http://sakaiproject.org/learning-management. Last visited: June 2012.
28http://confluence.sakaiproject.org/display/SG2X/Gradebook2. Last visited: June 2012.
29http://bigbluebutton.org. Last visited: June 2012.
30http://blackboard.com/about-bb/news-center/press-releases/Archive.aspx?releaseid=1481788.

Last visited: June 2012.

http://sakaiproject.org/adopt
http://sakaiproject.org/learning-management
http://confluence.sakaiproject.org/display/SG2X/Gradebook2
http://bigbluebutton.org
http://blackboard.com/about-bb/news-center/press-releases/Archive.aspx?releaseid=1481788

36 2.3. Virtual Learning Environments

Figure 2.6: Sakai screenshot showing the structure of a course.

Blackboard pedagogical approach is, as that of Moodle or Sakai, based on the concept

of courses. Educators can thus add resources and tools (named modules in the Blackboard

terminology) within a Blackboard course, so that students can carry out the learning activities.

Educators can also create and manage groups of students sharing the same resources or tool

settings. The current Blackboard version provides 16 built-in tools, as it can be seen in Figure 2.7,

some of which are announcements, blogs, journals, or tests. Furthermore, it includes additional

features for collecting evidences and outcomes from students' work, as well as rubrics for formative

assessment. Despite being a proprietary software, external developers have contributed to the

extension of the functionality in Blackboard through the implementation of Building Blocks

[Pit03]. Besides, Blackboard providers have developed some extra blocks to include some popular

non-commercial external tools in recent versions, like the video hosting service Youtube31, the

slide hosting service Slideshare32 or the social networking site Facebook33 [Kat10].

31http://youtube.com. Last visited: June 2012.
32http://slideshare.net. Last visited: June 2012.
33http://facebook.com. Last visited: June 2012.

http://youtube.com
http://slideshare.net
http://facebook.com

Chapter 2. Integration of external tools in VLEs 37

Figure 2.7: Blackboard screenshot showing the structure of a course.

Blackboard 9 is developed in Java, although previous versions included both Peal and Java.

It follows a three-tier client-server architecture in which persistence is managed using Oracle or

Microsoft SQL Server. Blackboard runs on Apache HTTP servers, enabling the access to end-

users via web browsers. Regarding the support to e-learning standards, Blackboard is listed as

a compliant partner for Basic LTI, IMS CC and SCORM.

Claroline

Claroline (Classroom Online) is a free and open-source VLE originally designed and de-

veloped by Thomas De Praetere [Wal04] in the Catholic University of Leuven, Belgium, and

�rst released in 2001 [Leb09]. O�cial statistics report that almost 2,200 organizations in 113

countries (especially in European countries like Greece, France, Italy or Belgium) are using

Claroline34. Besides, an increasing research interest on this VLE should be noticed, due to the

important number of recent publications related to Claroline [Liu10], which also has its own

annual international conference for developers and practitioners.

34http://claroline.net/worldwide. Last visited: June 2012.

http://claroline.net/worldwide

38 2.3. Virtual Learning Environments

Figure 2.8: Claroline screenshot showing the structure of a course.

The pedagogical approach in Claroline is, like in Moodle or Sakai, based on courses, which

are created and administered by teachers35. Teachers can create and manage groups within

Claroline courses to promote collaboration, which is a signi�cant feature explicitly reported in the

pedagogical principles of Claroline. Besides, learning paths de�ning sequences of activities can be

added to Claroline courses, forcing students to follow a set of steps when enacting collaborative

leaning situations; this is analogous to LAMS lessons. Practitioners using the current 1.10

Claroline version are however very limited by the reduced set of 8 built-in tools that can be

included in Claroline courses (and also in learning paths), as it can be seen in Figure 2.8.

These tools are: agenda, announcement, document, exercises, assignments, forum, wiki and

chat. Signi�cantly, very few modules have been developed to extend Claroline with new tools,

being most of them, like the web conferencing DimDim36, incompatible with recent Claroline

versions37.

Regarding technological features, Claroline is developed in PHP and follows a three-tier

client-server architecture in which the data layer is accessed through MySQL. Claroline nor-

mally runs on Apache HTTP servers, allowing end-users to connect to this VLE employing web

browsers. Unlike Moodle or Sakai, the Claroline installation package does not include Apache

HTTP server, nor MySQL, hindering the installation and con�guration processes. Finally, the

compliance of Claroline with other educational standards is very poor and only SCORM and

IMS QTI are announced.

35http://doc.claroline.net. Last visited: June 2012.
36http://dimdim.com. Last visited: June 2012.
37http://w2.claroline.net/index.php. Last visited: June 2012.

http://doc.claroline.net
http://dimdim.com
http://w2.claroline.net/index.php

Chapter 2. Integration of external tools in VLEs 39

SharePoint LMS

SharePoint LMS is a commercial VLE that was originally developed in 2007 by the Danish

company ElearningForce38. Sharepoint LMS is based on the proprietary Microsoft O�ce Share-

Point Server39. There does not exist o�cial data about the number of end-users or customers, but

its vendors claim that �many companies, organizations and educational institutions worldwide

are using SharePoint LMS for training across many di�erent kinds of industries�40, including

universities, healthcare, manufacturing or �nancial and legal services.

SharePoint LMS follows the same course-based pedagogical approach that Moodle, Sakai,

Blackboard or Claroline [Ele11], enabling educators the creation and management of Sharepoint

LMS courses. These courses can be categorized according to di�erent levels de�ned by an insti-

tution or organization. Learning paths including sequences of activities in a course can also be

created within this VLE, as in the cases of LAMS or Claroline. SharePoint LMS promotes the

collaboration and the communication among the participants in a course through the de�nition

of groups and the use of chats, mailbox, discussion boards, or the Microsoft Live Meeting online

conference tool. The current 3.1 version of SharePoint LMS includes a total of 16 tools, as it is

shown in Figure 2.9. Some of these tools are also proprietary and developed from scratch for this

VLE, like the Podcasting kit for SharePoint, or are o�ered by some external partners through

special agreements, like the Plagiarism prevention tool [Ele11].

SharePoint LMS is developed in .NET, using the ASP.NET41 framework from Microsoft,

and can be extended by developing web parts, which are the equivalent to plugins in the ASP.NET

terminology42. This VLE also follows a three-tier client-server architecture, running on a Mi-

crosoft O�ce SharePoint Server and using a Microsoft SQL server for persistence. Regarding

compliance with e-learning standards, only SCORM and IMS QTI are supported.

Other platforms used in education

Despite the great success of VLEs, other platforms have also been commonly employed

in educational scenarios in the last few years. Some outstanding examples of these platforms

are: wikis [Leu01], social networking sites [Cho07], and PLEs [Har06]. These platforms share

important technical features with the main VLEs, e.g. they are typically free and open source

web-based systems that follow three-tier client-server architectures. Nevertheless, their function-

ality with respect to the management of activities, groups, roles and tools is limited, and in

38http://elearningforce.dk. Last visited: June 2012.
39http://sharepoint.microsoft.com. Last visited: June 2012.
40http://sharepointlms.com/clients. Last visited: June 2012.
41http://asp.net. Last visited: June 2012.
42http://msdn.microsoft.com/en-us/library/e0s9t4ck.aspx. Last visited: June 2012.

http://elearningforce.dk
http://sharepoint.microsoft.com
http://sharepointlms.com/clients
http://asp.net
http://msdn.microsoft.com/en-us/library/e0s9t4ck.aspx

40 2.3. Virtual Learning Environments

Figure 2.9: SharePoint LMS screenshot showing the structure of a course.

some cases nonexistent. Table 2.2 compares the same features analyzed in VLEs for representa-

tive examples of each of these platforms: MediaWiki (wiki), Facebook (social networking site),

and the Southampton Learning Environment (PLE). None of these platforms can be considered

a VLE, since they are not educator-centered systems; however, they can support the integra-

tion of external applications, as well as the design, instantiation, enactment and evaluation of

collaborative learning situations, as discussed next, and so, they also appear in this analysis.

Wikis are software systems that allow the creation and management of content structured

in interlinked web pages [Leu01]. This content is normally edited by multiple users working

in collaboration, and may include links to external resources. Some well-known examples

of wiki websites are Wikipedia43 (the online encyclopedia), Wiktionary44 (the online dictio-

nary) or Wikiversity45 (the site for creating and sharing tutorials and learning materials).

Most wiki sites run on the PHP-based MediaWiki46 software application, which has also

been used as a Content Management System in several organizations47 and institutions.

For example, authors in [Ala11a, Jor07,Mar08a] illustrate with real examples the use of

43http://wikipedia.org. Last visited: June 2012.
44http://wiktionary.org. Last visited: June 2012.
45http://wikiversity.org. Last visited: June 2012.
46http://mediawiki.org. Last visited: June 2012.
47http://mediawiki.org/wiki/Sites_using_MediaWiki/corporate. Last visited: June 2012.

http://wikipedia.org
http://wiktionary.org
http://wikiversity.org
http://mediawiki.org
http://mediawiki.org/wiki/Sites_using_MediaWiki/corporate

Chapter 2. Integration of external tools in VLEs 41

Table 2.2: Feature analysis of other commonly employed platforms in education.

Feature MediaWiki Facebook SLE

Current stable version (June

2012)
MediaWiki 1.19 hosted by the provider

Under development
(expected during 2012)

Business model Free Free Free

Technical features

Distribution Open source Proprietary Open source

System Web-based system Web-based system Web-based system

Architecture Three-tier client-server Three-tier client-server Three-tier client-server

Programming Language PHP PHP .NET

External API 4 4 Under development

Functional features

Pedagogical approach - -
Student-centered
approach

Support of scripting 8 8 8

Support of collaboration 4 4 4

Support of groups 8 4 4

Support of roles 4 8 8

Number of built-in tools 2 6 Under development

MediaWiki in higher education courses to foster the collaboration among students. Never-

theless, MediaWiki functionality is quite limited for this purpose due to several reasons.

First, MediaWiki has not been designed to follow any pedagogical approach. Besides, it

does not support the concept of course, nor the concept of activity, nor the creation of

groups (there is an extension for group-based access control but its use is not advisable48).

Furthermore, very few built-in tools are included in the MediaWiki distribution (let them

be upload �le and collaborative text editor). Therefore, MediaWiki cannot be categorized

as a VLE, even though it has shown to be useful for the design and enactment of some

collaborative learning situations.

Social Networking sites are online systems where users can create their own pro�les

and build a personal network that connects them to other users [Len07]. These sites have

quickly proliferated in the last ten years, reaching millions of users worldwide. The most

outstanding social networking sites are Facebook, LinkedIn49, MySpace50 and Google+51.

These sites are normally free web-based application that, unlike VLEs, do not need to

be installed and administered, because they are hosted by their own providers. Their

widespread adoption and their focus on social interactions have encouraged the use of

48http://mediawiki.org/wiki/Extension:Group_Based_Access_Control. Last visited: June 2012.
49http://linkedin.com. Last visited: June 2012.
50http://myspace.com. Last visited: June 2012.
51https://plus.google.com. Last visited: June 2012.

http://mediawiki.org/wiki/Extension:Group_Based_Access_Control
http://linkedin.com
http://myspace.com
https://plus.google.com

42 2.3. Virtual Learning Environments

these sites by educators in order to support the communication and collaboration among

students in their courses [Loc08,Mad09, San11]. These social networking sites normally

allow the creation and management of groups within the user's pro�le, but they are not

designed to follow any pedagogical approach. Therefore, most educational features, such

as the creation of activities, the formalization of learning objectives, or the role distinction,

are not supported. Besides, social networking sites present very few built-in tools. In the

case of Facebook, only chat, message, events, news, upload pictures, and a personal wall are

included. Nonetheless, many Facebook extensions from external developers are currently

available. In short, social networking sites cannot be categorized as VLEs, although they

may be useful for the design and enactment of some collaborative learning situations.

Personal Learning Environments (PLEs) are de�ned as software systems �that help

students take control of and manage their own learning� [Har06]. PLEs are characterized

by directly involving learners in the access, aggregation, con�guration and manipulation

of lightweight tools and resources (unlike VLEs in which educators select and manage the

resources and tools that students must use) [Sev08]. PLEs also provide personal spaces and

social contexts for collaboration [Cha07]. Actually, research on PLEs is a very promising

�eld on TEL and CSCL for the next years, although only a few systems with a very low

adoption (compared to that of VLEs), have been so far developed. Some examples of real

PLEs that can be found in the literature are the prototype developed by Scott Wilson in

the PLEX project [Wil06], or the Southampton Learning Environment (SLE) [Whi11], a

customized PLE for the sta� and students belonging to the University of Southampton

(UK) that is expected to be ready during 2012 [Mil11]. Signi�cantly, the SLE may be the

�rst PLE with an institutional adoption after �ve years of research on this �eld, and so

it deserves a further analysis. The SLE is being developed in .NET, running on Microsoft

Sharepoint server 2010, and o�ering a free web-based access. SLE end-users are intended

to have their own homepage that eventually becomes a canvas on which tools and resources

can be dropped. These tools are planned to be developed as web parts, following the App

Store model extension mechanism for mobile devices, although a yet unde�ned number of

built-in tools, such as document spaces, wikis or forums, might be available in the �nal

release [Mil11]. Besides, individual end-users could create and manage groups in the SLE,

thus automatically granting access to these resources and tools to other group members.

All in all, PLEs like the SLE rely on a non-hierarchical approach that promotes students'

self-arrangement during their learning process, and even though they share some technical

and functional features with VLEs, they cannot be categorized as such. However, due to

the promotion of collaboration and groupwork, PLEs may also be very useful for the design

and enactment of some collaborative learning situations.

Chapter 2. Integration of external tools in VLEs 43

2.3.2. Life cycle of VLEs in collaborative learning situations

As previously discussed, VLEs support the creation and management of groups, the distinc-

tion of roles, and include some built-in tools that promote the collaboration and communication

among learners. Besides, in general, group con�gurations and role assignments may change as

activities, lessons or courses, do. Therefore, VLEs can support the life cycle of collaborative

learning situations presented in section 2.2.1, although the implementation of each of the four

phases in this life cycle (i.e. design, instantiation, enactment and evaluation) varies from one

VLE to another, mainly due to their di�erent pedagogical approaches.

For example, in course-based VLEs like Moodle, Sakai, Blackboard, Claroline or Sharepoint

LMS, educators can continuously design and instantiate new activities through the VLE graphical

interface, while some other activities are being enacted and even evaluated. Thus, in this type of

VLEs, the life cycle consists of many short iterations in the design, instantiation and enactment

phases, while the evaluation can be carried out at each iteration or after �nishing the enactment

of the entire learning situation. This implementation of the life cycle is the consequence of a

more �exible bricolage philosophy [Ber05], which enables educators to redesign as the course is

being delivered.

Nevertheless, other VLEs like LAMS, which follows an scripting activity-based approach,

promotes the completion of the learning design before the enactment and evaluation of the

collaborative learning situation. Therefore, LAMS clearly splits design and enactment in two

di�erent phases, although some changes are allowed after the design is completed, but only

before learners start the activities. Remarkably, in LAMS a part of the instantiation (tool

particularization) is done during the design in the authoring environment, and another part

(group population) before the enactment in the monitoring environment.

Authors like Bower [Bow11] have pointed out some important limitations educators �nd

on VLEs in each of these four phases. In the design phase, most complains are due to the lack of

pedagogical support and scripting when creating new learning designs. LAMS is one signi�cant

exception that provides ready-to-use templates for di�erent teaching styles and a scripting-based

design approach. In the instantiation phase, the main limitation is the reduced set of available

tools that educators can select for their learning designs. This is a common and recurrent

problem in all VLEs, as previously discussed. In the enactment phase, the problem is the limited

set of tools learners can use, as a consequence of the same limitation found in the instantiation

phase. Finally, in the evaluation phase, educators complain about the limited VLE functionality

to process activity outcomes, and to get information about students' interactions. Here, it is

convenient to remind the reader that the central scope of this dissertation is the limitation

regarding the reduced set of available VLE built-in tools, which a�ects the instantiation and

44 2.4. Software tools

enactment phases. Despite their research interest, limitations a�ecting the design and evaluation

phases are beyond the scope of this research work.

Before concluding this section, a brief note can be pointed out on wikis, social networking

sites and PLEs. These platforms are more frequently employed for informal settings, in which

learning occurs with no (or few) support from educators. This peculiarity together with the lack

of some collaborative features in these platforms, such as group con�gurations or role assignments,

blurs the distinction of the four phases in the life cycle of collaborative learning situations;

sometimes, even design, instantiation or evaluation phases may be completely missed.

2.4. Software tools

Tools, ranging from paper and pen to highly sophisticated interactive whiteboards have

been traditionally employed to support human actions within education [Arm05]. The use of

tools implemented as programming applications has played a very important role in the support

of learning during the last thirty to forty years, mainly due to the fast development of computing,

along with the incorporation of PCs (Personal Computers), and other electronic systems in our

daily life [Rob97]. Nevertheless, it was not until the last decade, with the spreading of web

technologies and the possibilities of a fast and ubiquitous access to information and resources,

together with the quick proliferation of SaaS applications [Pap03], that these tools have been

massively adopted at all stages, from formal to informal learning, from face-to-face to distance

learning, and from primary school to higher education and beyond.

Furthermore, the current trend of users generating and sharing content through the so-

called Web 2.0 tools [ORe07,Sol07], most of which are delivered as SaaS application, has changed

the way learning happens [Ajj08], encouraging communication and collaboration and fostering a

more constructivist learning. Some examples of these Web 2.0 and SaaS tools with an important

adoption in education are the mapping service Google Maps, the social bookmarking service

Delicious52, or the image hosting service Flickr53.

Additional examples of software tools with a high adoption among practitioners are pre-

sented along this section. Besides, the generic life cycle of collaborative learning situations, which

was introduced in section 2.2.1, is particularized for these software tools, and compared with that

of VLE built-in tools.

52http://delicious.com. Last visited: June 2012.
53http://flickr.com. Last visited: June 2012.

http://delicious.com
http://flickr.com

Chapter 2. Integration of external tools in VLEs 45

2.4.1. Examples of software tools

Practitioners worldwide are currently employing thousands of di�erent software tools for

the support of their learning activities. The most recurrent and valued of these tools are listed

by several organizations, such as The Centre for Learning & Performance Technologies, which

annually gathers the most outstanding tools according to the opinions of learning professionals,

in the Top 100 Tools for Learning54 list. Another similar list of tools but categorized according

to the tasks these tools are designed for (e.g. drawing tools, music tools, presentation tools, etc.)

can be found in the Cool Tools for Schools55 site. Deeply analyzing in this dissertation the whole

number of tools presented in these two lists would be a very overwhelming and unnecessary

task, and so, only the seven most valued tools by learning professionals in the �rst list have been

selected for a further study (as an analogy to the case of VLEs in the previous section). According

to the 2011 Top 100 Tools for Learning list these seven tools are Twitter56, Youtube, Google

Docs57, Skype58, Wordpress59, Prezi60 and Slideshare. It is noteworthy that Moodle, which is

placed in the 7th position, has been excluded from this further study, since in this dissertation

Moodle is considered a VLE rather than a tool, and so, it was analyzed in the previous section.

This selection of seven tools covers multiple categories from the second list, including video tools,

collaborative tools, blog tools, communication tools, presentation tools and slideshow tools.

Table 2.3 summarizes and compares the technical and functional features of these seven

tools. As it can be seen, they are all freely o�ered, although some upgrades can be obtained by

paying a fee in Prezi, Wordpress or SlideShare. Besides, they are all based on web technologies

(except for the client-server Skype), enable their access to end-users via web browsers over

the Internet, and are o�ered as SaaS application. In addition, they all can be employed to

support collaboration and sharing. These three features written in italics are stressed in Solomon's

characterization of Web 2.0 tools [Sol07] in comparison to traditional software applications.

However, some exceptions can be easily found: for instance, many e-portfolios like rGrade61 or

EdCube62 are not free, while many personal sites like TiddlyWiki63, or very simple tools like

the online dictionary Wordreference64 are not collaborative. Regarding the latter, some recent

works like TaKo [Mon12] are tackling the conversion of personal and single-user applications into

transparent collaborative multi-user tools.

54http://c4lpt.co.uk/top-tools/top-100-tools-for-learning-2011. Last visited: June 2012.
55http://cooltoolsforschools.wikispaces.com. Last visited: June 2012.
56http://twitter.com. Last visited: June 2012.
57http://docs.google.com. Last visited: June 2012.
58http://skype.com. Last visited: June 2012.
59http://wordpress.org. Last visited: June 2012.
60http://prezi.com. Last visited: June 2012.
61http://rgrade.com. Last visited: June 2012.
62http://edcube.com. Last visited: June 2012.
63http://tiddlywiki.org. Last visited: June 2012.
64http://wordreference.com. Last visited: June 2012.

http://c4lpt.co.uk/top-tools/top-100-tools-for-learning-2011
http://cooltoolsforschools.wikispaces.com
http://twitter.com
http://docs.google.com
http://skype.com
http://wordpress.org
http://prezi.com
http://rgrade.com
http://edcube.com
http://tiddlywiki.org
http://wordreference.com

46 2.4. Software tools

Table 2.3: Feature analysis of the main software tools for learning.

Feature Twitter Youtube
Google

Docs
Skype Wordpress Prezi Slideshare

Current stable

version (June

2012)

hosted by
the provider

hosted by
the provider

hosted by
the provider

Skype 5.9
(Windows);
Skype 2.2
(Linux); Skype
5.7 (Mac OS)

WordPress
3.3.1

hosted by
the provider

hosted by
the provider

Business model Free Free Free Free
Free / com-
mercial

Free / com-
mercial

Free / com-
mercial

Technical features

Distribution Open source Proprietary Proprietary Proprietary Open source Open source Proprietary

System
Web-based
system

Web-based
system

Web-based
system

Client-Server
sytem

Web-based
system

Web-based
system

Web-based
system

Architecture
Three-tier
client-server

Three-tier
client-server

Three-tier
client-server

Peer-to-Peer
Three-tier
client-server

Three-tier
client-server

Three-tier
client-server

Programming

Language
Ruby

JavaScript,
Adobe
Flash

Java Delphi, C++ PHP
Adobe
Flash,
Adobe AIR

Ruby

Public API 4 4 4 4 4 8 4

Functional features

Purpose

microblog,
social
networking
site

Video
hosting
service

O�ce suite

Audio / Video-
conference,
instant mes-
saging

Blog, CMS
Presentation
tool

Slide
hosting
service

Support of com-

munication
4 8 8 4 8 8 8

Support of col-

laboration
4 4 4 4 4 4 4

Support of groups 8 8 4 4 8 8 8

Support of roles 4 4 4 8 4 4 4

Comparing technical features, it is important to note the high heterogeneity with respect

to the programming languages and the current trend of providing external APIs for these tools

in order to promote their integration in other sites and platforms. Signi�cantly, �ve out of the

seven (Twitter, Youtube, Google Docs, Wordpress and Slideshare) provide REST-like (based on

the Representational State Transfer architectural style) [Fie00] interfaces. These are language-

independent interfaces that o�er a restricted and well-de�ned set of methods aimed at facilitating

the communication of these tools with other systems; however the speci�c resources and data

formats employed to accomplish this communication are speci�cally given by each vendor.

Comparing functional features, only Twitter and Skype are explicitly designed to support

communication, while the de�nition of groups and roles normally depends on the permissions

granted over a certain content. For instance, a spreadsheet in Google Docs can be shared among

a set of users, thus making up a group, similarly to what happens in a multiconference with

Chapter 2. Integration of external tools in VLEs 47

Skype. Regarding roles, all these tools (but Skype) present at least, two of them: producer

and consumer of content. As an example, in Prezi or Slideshare an author may edit or upload

presentations, while the remaining users may visualize them.

Nevertheless, not all the tools that are currently used for learning are web-based SaaS

tools. This is the case of Synergo [Avo04], a Java standalone collaborative mapping environment

developed at the University of Patras (Greece), and still used nowadays. In this example, other

web tools with a similar functionality, like Text2MindMap65 or Dabbleboard66 could replace

Synergo. However, in some other cases, especially in those involving tools designed and de-

veloped for a very speci�c educational purpose, there is no web-based SaaS alternative yet. This

happens, for example, with the Distributed Network Simulator Environment (DNSE) [Bot10], a

Java application based on grid technology intended for the parameter sweep simulation of com-

puter networks, or with the also Java and grid-based Benchmarking Tool [Ala09] developed for

computer architecture students to benchmark multiple workloads in di�erent systems. Here, it is

convenient to point out that some educators and institutions are still reluctant to use SaaS tools,

due to the loss of control derived from using third-party hosted software, which entails additional

security and privacy concerns regarding who access and uses the data [Cay09]. Nonetheless, most

educators are progressively adopting SaaS tools, as previously exempli�ed in this section.

Concluding, there is a huge range of software tools that are employed to support individual

and collaborative learning activities. However, VLEs and other similar platforms in which edu-

cators normally design and deliver their courses and lessons only include a very restricted and

rather ad hoc set of built-in tools. Educators strongly emphasize this VLE limitation [Bow11],

demanding more alternatives for the support of their collaborative learning situations. In this

context, the integration of existing external tools in existing VLEs emerged as a research line

aimed at tackling this problem [Dag07, Liv08]. This line could take advantage of the current

trend in the massive development and use of SaaS and Web 2.0 applications. At this point, three

important clari�cations must be done. First, the integration of existing external tools in existing

VLEs is only one solution to overcome this limitation, and even though it is the most accepted

in literature [Ala12a] (especially from a generic perspective) other alternatives are feasible (see

section 2.5). Second, SaaS and Web 2.0 applications have been quickly adopted in education,

but there exist other non-SaaS and non-Web 2.0 tools with di�erent technical and functional

behaviors and. These other tools may be interested to support some learning activities, and

so, they should also be taken into account when tackling the integration of external tools in

VLEs. Last but not least, since most of these tools have been designed and developed to support

collaboration, then their in�uence in the life cycle of collaborative learning situations should be

further discussed.

65http://text2mindmap.com. Last visited: June 2012.
66http://dabbleboard.com. Last visited: June 2012.

http://text2mindmap.com
http://dabbleboard.com

48 2.4. Software tools

2.4.2. Life cycle of software tools in collaborative learning situations

The life cycle of collaborative learning situations comprises four phases (see section 2.2.1):

design, instantiation, enactment and evaluation [Gom09]. Nevertheless, the management and

utilization of the software tools that support students' learning only involves two of these phases.

More speci�cally, tools are selected and particularized according to the learning objectives, the

social con�guration and the structure of activities in the instantiation phase. Besides, they

are used by learners in order to accomplish the activities and achieve the learning objectives

in the enactment phase. Signi�cantly, the outcomes produced by students as a result of using

some software tools in the enactment phase (e.g. a document generated by a group of students

using Google Documents) can sometimes be the input of the evaluation phase. However, in this

fourth phase, educators evaluate the knowledge and skills acquired by the students, and so, the

importance is in the content of these outcomes, and not in the tools employed to generate that

content. Thus, the evaluation phase is considered independent of the tools that support students'

learning. The same happens in the design phase, where only the tasks that should be performed

by the participants (and not the speci�c tools supporting these tasks) are de�ned. It should be

also noted that when VLEs are the environments supporting collaboration, some of these four

phases may be blurred or merged, as discussed in section 2.3.2 with speci�c examples.

Practitioners managing software tools in the instantiation phase (being this phase sup-

ported by VLEs or not) must take into account two distinctive collaborative features, which

have already been discussed. First, they must consider the social con�guration of the learning

situation, which describes the participants, their roles and their group settings. They must

also consider the environment supporting the learning situation, in which participants �nd their

particularized structure of activities, tools and resources [Bak97].

The social con�guration requires that a di�erent instance of each software tool is assigned

to each student in individual activities and to each occurrence of a group in collaborative activities

[Her06a,Her07b]. The term instance in the context of learning software tools typically comprises

a resource, and a software client used to access to the resource [Bot08,Per10].

The type of each resource is determined by the nature of the tool. Examples of resources

are: a document, in a text editor like Google Documents; a canvas, in a drawing tool like

Dabbleboard; a presentation, in a slide or presentation tool like Prezi or Slideshare; a video, in a

broadcasting service like YouTube; a chat room or an established conversation, in one of the many

chats available in the web or in a conversational tool like Skype; an article, in an encyclopedia like

Wikipedia; a concept map, in mind map tools such as Text2MindMap or Synergo. Some of these

tools are inherently collaborative and hence, the resource must be shared (e.g. though nothing is

wrong technically, it does not make sense to have a chat room for an individual student alone),

while other tools can be used in collaboration or individually (e.g. if a document is shared among

Chapter 2. Integration of external tools in VLEs 49

students in Google Documents they can perform collaborative editing, whereas if the document is

accessed only by one student the writing activity will be performed individually). It should also

be observed that the usage of these resources means sometimes to modify them (e.g. writing on

a document, drawing on a canvas), while some other times students just consume these resources

(e.g. watching a video, reading an article from the encyclopedia).

To modify or consume these resources, students need software clients that run in their

systems. In a few cases these clients may exist in the form of standalone applications (e.g. the

Skype client). Nevertheless, in many cases, these clients run within students' browser making use

of a series of web technologies, including HTML [W3C99], JavaScript [NWG06] or AJAX [Gar05],

among the most popular ones. In these cases, the software client is downloaded (using the

browser) from the service hosted by the tool provider, and then this client retrieves a resource

representation to be consumed by the student and, if applicable, upload changes on that resource.

Given these premises, an instance of a learning tool is de�ned in this dissertation as a

resource that can be accessed and (if applicable) manipulated by the student, and the client soft-

ware needed for it. Examples of such instances are: a document in Google Documents plus the

JavaScript code that enables end-users to see and edit the document in the browser; a video on

YouTube plus the Flash (or HTML5 in the latter versions) code running on the browser that

enables end-users to watch the video; or a Prezi presentation and the Flash code that enables

viewing or editing the presentation in the browser. Signi�cantly, non-web tools also conform to

this de�nition; for example, in Synergo, an instance would be a concept map and the Java client

of the standalone Synergo application.

In collaborative learning, the term instance gives the name to one of the four phases in

the life cycle of collaborative learning situations: the instantiation phase. Therefore, in the

instantiation phase, di�erent tool instances need to be created and assigned to each user or

group, for each activity. Interestingly, main VLEs like Moodle, LAMS, Sakai or Blackboard

create di�erent instances of their built-in tools and automatically assign them to each user or

group de�ned in each activity of the collaborative learning situation.

On the other side, the environment, which is the other collaborative feature, requires a

proper customization for each participant, regarding the structure of activities and tools, and

depending on the social settings and the objectives of the collaborative learning situation. For

instance, when applying a collaborative jigsaw pattern [Her11], each group strives to solve a small

part of a bigger problem in the same activity, but normally using similar tools and artifacts.

Therefore, these tools (and their instances) should be customized in the instantiation phase

according to the particular learning objectives of each group, thus requiring a prior con�guration

before they are used by the participants [Per10]. The original idea of customizing tools before the

realization of a learning activity comes from EMLs, like IMS LD [IMS03], and scripting [Mia05].

Most VLEs also support a prior con�guration of their built-in tools.

50 2.4. Software tools

Once tool instances are created and con�gured, they can be used by learners to support

collaboration and groupwork in the enactment phase. Afterwards, once the collaborative learning

situation is �nished, educators may decide to delete these instances or to store their content

during a certain period of time. Following these ideas, a life cycle for the management and

utilization of tool instances within collaborative learning situations can be depicted. This tool

life cycle can be drawn together with the aforementioned life cycle of collaborative learning

situations, as represented in Figure 2.10

Figure 2.10: Life cycle of collaborative learning situations and life cycle of software tools.

To conclude this discussion, the need for considering the tool life cycle when supporting

the instantiation and enactment of collaborative learning situations is remarked. As studied, this

life cycle comprises: the creation of tool instances (i.e. creating a new resource and packaging the

client side software with a pointer to the resource), their con�guration (i.e. changing some of the

properties of the resource), their assignment (i.e. distributing the instances among participants,

according to their social con�guration), their use (i.e. downloading and executing the client side

software and accessing the resource it points to), and deletion (i.e. destroying the underlying

resource and removing the client side software package, if needed). It is noteworthy that VLEs

natively support this life cycle for their built-in tools. Therefore, those approaches extending the

set of built-in tools or integrating external tools should take this tool life cycle into account.

Chapter 2. Integration of external tools in VLEs 51

2.5. The integration problem

As discussed along this chapter, the restricted set of VLE built-in tools is an important

limitation for the support of collaborative learning situations [Bow11]. Practitioners, however,

are employing thousands of software tools outside of VLEs for the support of individual and

collaborative activities, mainly due to the large increase in the number of SaaS and Web 2.0

applications in the last few years. The integration of external tools is a recent research line

aimed at overcoming the limitation of VLEs regarding built-in tools. Those works tackling the

integration problem should consider the life cycle of collaborative learning situations and the

life cycle of software tools. Unfortunately, despite the number of important works tackling this

problem, none of them have proposed a general and widely adopted solution to this problem, as

later discussed in section 2.6.

Though the integration of external tools is the path followed in this thesis for tailoring

[Mor00] the set of VLE built-in tools, other tailoring alternatives have been followed in the

literature. The term tailorability formally refers to the opportunity to adapt generic software

applications to the speci�c end-user's needs and practices in the usage context, rather than

in the development context [Mor00]. Therefore, tailorable applications are those that provide

mechanisms to modify their appearance and functionality according to end-users' needs. Morch

[Mor95] de�nes three levels of tailorability:

Customization. This is the simplest level of tailorability in software applications. The

customization allows end-users to modify the appearance of a system, and to con�gure the

existing functionality. However, the customization does not support the addition of new

functionality, nor the development of new code. An example of customization occurs when

educators de�ne the questions and select the number of attempts allowed in the Moodle

built-in quiz tool.

Integration. The integration allows the addition of new functionality through the con-

nection of existing software components. These componentes are modular pieces of code,

whose implementation may range from low level commands to high level applications. The

integration typically requires some extra code to achieve interoperability between compo-

nents, although it must not modify the original code of these components. This code is

never developed by end-users who, however, must add it to their systems (e.g. download-

ing and installing it). An example of this level of tailorability is the integration of the

Facebook social networking site in Moodle through the development of a speci�c Moodle

module67. End-users (or system administrators) must add this module to their Moodle

67http://moodle.org/mod/data/view.php?d=13&rid=3316. Last visited: June 2012.

http://moodle.org/mod/data/view.php?d=13&rid=3316

52 2.5. The integration problem

installations, so that it becomes available when designing, instantiating and enacting new

activities within this VLE.

Extension. The extension adds new functionality to an application through the modi�cation

of its implementation. Therefore, this kind of tailorability allows the realization of major

changes in a system, modifying the existing code or adding some new. Besides, in this case,

end-users are responsible for the development of this code; this is a very strict restriction

that can be met in very few application domains. Examples of this level of tailorability are

those tools developed by the own Moodle users from scratch, using its extension interface.

The Doodle-like tool for Moodle68, which replicates the Doodle poll functionality, is an

example of extension for this VLE.

In the context of this dissertation, the customization is discarded as a potential solution,

since it does not allow the addition of new tools to VLEs. The extension is also excluded, insofar

as it requires the development of new tools from scratch by end-users; most VLE end-users are

educational practitioners, such as educators and learners, without a technical background, and so

it should not be expected them to develop new tools, as a general rule. This dissertation, however,

aims at adding new tools to VLEs through the connection of existing components, but without

requiring end-users to develop code, thus following the integration level of tailorability. It is

noteworthy that the integration of existing external tools may, however, require the programming

of some code by developers in order to provide functional and technological interoperability

between VLEs and tools, due to the existing heterogeneity of integration contracts (see section

2.5.1). According to the de�nition of integration, this code must not modify the original VLE or

tool implementations, and so, it must be built following the so-called extension interfaces, which

enable both the extension of the functionality and the integration with other systems. To avoid

misunderstandings due to this name, it is convenient to remark that the purpose of this work is

the integration, and not the extension, as previously discussed.

The remainder of this section deeps in the theoretical aspects that hinder the integration of

external tools in VLEs, highlighting the role of integration contracts, as an outstanding concept

in this problem. After that, the requirements of the main stakeholders interested in the integra-

tion of external tools in VLEs are formally de�ned; those designing and developing integration

approaches are advised to take into account these requirements. Then, two kinds of integration

approaches that may be useful to tackle this problem are introduced: the standardization of some

integration contracts to be adopted by VLE and tool providers, and the proposal of software ar-

chitectures aimed at adapting the di�erences among current heterogeneous contracts. Finally, a

discussion about the main issues and alternatives that should be considered when designing and

implementing any of these approaches is carried out.

68http://moodle.org/mod/data/view.php?d=13&rid=4528, Last visited: June 2012.

http://moodle.org/mod/data/view.php?d=13&rid=4528

Chapter 2. Integration of external tools in VLEs 53

2.5.1. Integration contracts

The overall problem of integrating multiple external tools in multiple VLEs can be ab-

stracted as depicted in Figure 2.11: on the left side, a set of m VLEs with di�erent APIs,

architectures and features that practitioners (educators and students) may use; on the right

side, a set of n tools with di�erent technologies, interfaces, and developed for a varied range

of purposes, that practitioners may be interested in. Each VLE provider may impose di�erent

requirements to integrate a tool. Each tool provider may also impose di�erent requirements to

be integrated in a VLE. The requirements imposed by VLE and tool providers to enable the

functional extension and the technological interoperability of VLEs and tools represent what

has been termed as the integration contract [Ghi06], being it explicit or not. An integration

contract determines, at least, the technologies, the interfaces and the data models that must be

employed to enable the communication between a system and the software application intended

for integration with that system [Ala10a]; this contract may also determine the functionality and

features supported by the integrated systems. An example in the VLE side is the LAMS Tool

Contract69, which speci�es the �behaviours, URLs and API calls that a LAMS tool has to imple-

ment to talk to the LAMS Core�. On the tool side, for instance, the Google Data Protocol70 is a

REST-based contract used to provide external access to data and functionality of many Google

tools.

Figure 2.11: Abstraction of the integration problem.

69http://wiki.lamsfoundation.org/display/lams/Tool+Contract. Last visited: June 2012.
70http://code.google.com/apis/gdata. Last visited: June 2012.

http://wiki.lamsfoundation.org/display/lams/Tool+Contract
http://code.google.com/apis/gdata

54 2.5. The integration problem

Each tool may o�er one or more integration contracts. These contracts can be speci�c to

one single tool (e.g. Delicious provides a REST-based contract, di�erent from the one o�ered by

Slideshare), or shared by several ones (e.g. the Google Data Protocol). The same can be said

for VLE contracts, though these are most frequently VLE-speci�c. Therefore, i VLE contracts

for the m VLEs, and j tool contracts for the n tools should be considered when analyzing the

integration problem. The wide variety of technologies, interfaces and data models employed in

current VLEs and tools (see sections 2.3 and 2.4) make the proposal of integration approaches,

especially those tackling the generic integration of VLEs and tools, a challenging task.

The di�erences between a VLE contract and a tool contract entail a certain integration cost.

This cost may include an administrative burden to enable the discovery of the new tool within

the VLE, an educational burden to add and con�gure the tool in a particular learning setting,

or a learning burden to get educators and students used to the new tool. Nevertheless, due to

the functional and technological heterogeneity between VLEs and tools, most of the integration

cost corresponds to the development e�ort required to generate a certain source code. This

code allows the functional and technological interoperability between the VLE and the tool, that

it is to say, adapts the requirements imposed in a VLE contract to those imposed in a tool

contract [Ala10a]. The development of this code cannot be automated because of the existing

heterogeneity and particularities of VLEs and tools, and so, a human developer must undertake

that development e�ort. The role of developer can be played by anyone willing to accomplish

the integration; for example the VLE or the tool provider themselves, the practitioners (rarely),

or a third-party. Developers normally expect a bene�t in return, which could be recognition,

reputation, economic compensations or the satisfaction to use or let other use the integrated

tools and VLEs [Ala10a].

At this point, it seems reasonable to think that the higher the number of tools integrated in

a given VLE, the higher the number of individual and collaborative learning activities that can be

performed within this VLE, and so, the higher the number of practitioners that will choose it for

their courses. Nevertheless, it is also important to mention that some of these practitioners may

be reluctant to change the VLE they are accustomed to, and that some institutions may impose

the use of speci�c VLEs. Therefore, generic integration approaches should be designed with the

objective of integrating the higher number of tools in, at least, the most popular VLEs [Ala10a].

Nonetheless, since most VLE and tool providers de�ne their own integration contract, then this

objective could imply a huge development e�ort that would not be worthwhile to be made,

even by a very populated community of developers. It is noteworthy that the motivation and

commitment of developers are key issues to tackle the integration problem, since many previous

works, such as Gridcole [Bot08] or CCSI [Vog06] failed in adoption because they could hardly

persuade developers to assume the development e�ort demanded, thus failing in the generation

of a critical mass of integrated systems to be used by practitioners through these approaches.

Chapter 2. Integration of external tools in VLEs 55

2.5.2. Requirements of the main stakeholders

The main stakeholders interested in the integration of external tools in VLEs are: edu-

cational practitioners, who actually want to use external tools integrated in VLEs in order to

enrich the learning activities that can be realized; developers, who write the code needed for the

integration of external tools in VLEs; and VLE and tool providers, who provide the VLEs and

tools that are integrated. The main requirements of these stakeholders have been brie�y outlined

along this section, although they are formalized next. A summary with the main stakeholders'

requirements is shown in Table 2.4.

Table 2.4: Requirements of the main stakeholders.

Stakeholder Tag Requirement

Practitioners REQ1
Enable the instantiation of individual and collaborative activities that require
the integration of external tools with an attainable e�ort for educators.

REQ2
Enable the enactment of collaborative activities that require the integration
of external tools, facilitating the collaboration among participants.

REQ3 Support the integration of existing and popular VLEs and tools.

REQ4 Support the integration of many external tools.

Developers REQ5
Demand an attainable development e�ort for the integration of tools and
VLEs.

VLE and tool providers REQ6
Be built over existing VLEs and tools, rather than modifying their implemen-
tations.

Educational practitioners would generally like to employ integrated tools, as they do with

built-in tools. That includes bene�tting from the main VLE features, among which, the

support of collaboration and groupwork are outstandingly reported [Bow11], as discussed

in section 2.3. Therefore, those approaches tackling the integration problem should con-

sider the life cycle of collaborative learning situations (see section 2.2.1), in particular the

instantiation and enactment phases, when integrating external tools in VLEs. Integration

approaches should thus enable the instantiation of individual and collaborative

activities that require the integration of external tools with an attainable e�ort

for educators; they should also enable the enactment of these activities, facili-

tating the collaboration among participants. In addition, practitioners would not

normally like to give up the VLEs and tools they are used to [Ala10a]. Therefore, inte-

gration approaches should support the integration of existing and popular VLEs

and external tools. Finally, practitioners would like to have the highest number of tools

available, in order to support a wide range of learning activities [Bow11]. Integration

approaches should thus support the integration of many external tools.

56 2.5. The integration problem

Developers are less likely to write the code needed for the integration of tools and VLEs

if a high development e�ort is required. Integration approaches should thus demand an

attainable development e�ort for the integration of tools and VLEs in order to

encourage the contributions of developers.

VLE and tool providers are rarely willing to modify their systems to comply with an inte-

gration approach. Often, they will also disapprove that others modify their systems, since

that may cause incompatibilities with the o�cial releases of their VLEs and tools. Thus,

integration approaches should be built over VLEs and tools, rather than modifying

their implementations.

2.5.3. Integration approaches

Two kinds of integration approaches have been typically employed in the literature to

tackle the integration problem. Some works have tried to de�ne standard integration contracts,

expecting them to be adopted by VLE and tool providers. Others, however, have proposed

architectural approaches aimed at adapting the existing contracts through the development of

some software elements.

Standardized integration contracts

The de�nition of one or at least a few standardized contracts could simplify the integration

problem. However, nowadays there are not standard contracts that are widely accepted by the

main actors in producing and integrating educational software. This can be seen as a conse-

quence of two main factors that normally appear in those �elds where con�ict of interests and

technology are involved [Rob00]: political disagreements, and fast changing technologies. Histor-

ically, each provider decided to make di�erent design decisions when implementing their VLEs

and tools. These decisions included, for instance, di�erent technologies, programming languages,

or pedagogical methods, thus a�ecting the way the life cycle of collaborative learning situations

was implemented, as discussed in section 2.3.2. As an example, LAMS, which was released only

two years after Moodle, was implemented in Java following a scripting activity-based approach,

while Moodle had been previously implemented in PHP following a more unsequenced course-

based approach. Long time after, when international organisms and consortia tried to produce

common standards for the integration of external tools in VLEs, like IMS LTI [IMS06c], VLE

and tool providers were reluctant to adopt these standards, mainly due to the e�ort required to

adapt their contracts to these new ones. Nonetheless, the interest on interoperability standards

might be changing, since in the last two years several VLE providers like Moodle or Blackboard

have adopted Basic LTI [IMS10b], a loosely-coupled contract also proposed by the IMS con-

sortium. However, very few Basic LTI compliant tools are o�cially reported (about 20 at the

Chapter 2. Integration of external tools in VLEs 57

time of writing)71, being main providers like Google not interested yet. Interestingly, IMS is still

working in the IMS LTI standard, and a �nal and renewed version of IMS LTI (1.1), which also

includes Basic LTI, has been released on March 2012 [IMS12]. Nevertheless, the compliance to

this new version of IMS LTI is still very low with only six tools and two LMSs listed (according

to the same reference that the one in the case of Basic LTI).

Fast changing technologies also hinder the adoption of frameworks or speci�cations by

main vendors, since these frameworks and speci�cation may be replaced in a short time by

others that include new technological trends. That happened for example to Gridcole [Bot08],

which adopted grid services [Fos98] and the WSRF speci�cation [OAS06] as the basis for the

integration of external tools. Nevertheless, soon after Gridcole, the interest in developing tools

as grid services passed the hype, while other web technologies became more trendy. Even before,

other technologies and standards for software component interoperability, like CORBA (Common

Object Request Broker Architecture) [Vin97], DCOM (Distributed Component Object Model) or

XML-RPC (Extensible Markup Language - Remote Procedure Call) [StL01], gained momentum,

but by the time the problem of integrating external tools in VLEs raised a great interest, they

could be considered outdated, since no VLE and very few tools were implementing them.

In conclusion, the combination of these two factors in this context, as well as the high

existing heterogeneity in VLE and tool contracts, results in a great challenge behind those trying

to standardize new integration contracts to be adopted by VLE and tool providers.

Architectural approaches

The alternative to the proposal of standard contracts to be adopted by VLE and tool

providers is the proposal of architectural approaches that adapt the existing VLE and tool

contracts without modifying their implementations. Two kinds of architectures have been tra-

ditionally employed in the literature to tackle the generic integration of external tools in VLEs.

Figure 2.12 depicts these two architectures. These architectures are recurrently found in the

related works, which are later studied in section 2.6.

m VLE and n tool contracts adapted through adapters (Figure 2.12a). This kind of architec-

ture allows a direct interoperability between each VLE and each external tool (one-to-one

integration). This interoperability is achieved by means of the well-known adapter design

pattern (wrapper) [Gam95], which wraps VLEs and tools, connecting their heterogeneous

contracts. Each adapter homogenizes the communication between each VLE and each tool,

but without modifying the original source code. Architecturally, two split pieces of code

could be added in both the VLE and the tool sides (as it is represented in the Figure 2.12a),

71http://imsglobal.org/cc/statuschart.cfm. Last visited: June 2012.

http://imsglobal.org/cc/statuschart.cfm

58 2.5. The integration problem

Figure 2.12: Architectural approaches for the integration of tools in VLEs: a) m VLE and n tool
contracts adapted through adapters; b) m VLE and n tool contracts adapted through an
intermediate software layer and adapters.

or similarly, one single component could package all the code needed for the integration.

In both cases, these components could run on third-party domains, unless noted otherwise

in VLE or tool contracts. An example of this approach can be found, for instance, in those

Moodle modules that integrate external tools, like the Big Blue Button web conferencing

module72. Nevertheless, due to the heterogeneity in contracts, very little of the developed

code or the acquired experience can be reused in order to integrate the same tool in other

VLEs, and vice versa.

m VLE and n tool contracts adapted through an intermediate software layer and adapters

(Figure 2.12b). This kind of architecture enables the interoperability between multiple

external tools and multiple VLEs (many-to-many integration) through a common middle-

ware integration element. This common integration element could be made up of di�erent

software components, which may run on di�erent domains. Thus, a new intermediate inte-

gration contract that enables the communication of VLEs and tools with these components

has to be de�ned. In this context, the adapter pattern could also wrap VLEs and tools

in order to meet the requirements imposed by this new intermediate contract (as it is re-

presented in Figure 2.12b). This architecture reduces the development e�ort needed to

integrate each tool in each VLE, since the required code is partially implemented in the

common integration element. Nevertheless, the degree of integration and functionality that

can be achieved with this architecture is lower compared to the �rst one, as it is further

discussed in the next section. Signi�cantly, many recent integration works in literature,

like GSI [Fue11] or Apache Wookie [Wil08] are following this kind of architecture.

72http://moodle.org/mod/data/view.php?d=13&rid=3524. Last visited: January 2012

http://moodle.org/mod/data/view.php?d=13&rid=3524

Chapter 2. Integration of external tools in VLEs 59

2.5.4. Design issues and alternatives

The de�nition of new approaches tackling the integration of external tools in VLEs is a

challenging task, as it was discussed along this section. Therefore, before embarking on this task

there are three main questions that those addressing this problem should answer:

What/Where to integrate? What tools to integrate and where (in which VLEs) are they

integrated? This question refers to the set of tools and VLEs that are eligible for integration,

according to the proposed approach. Due to the existing heterogeneity in integration

contracts, some technical and functional restrictions on VLEs and tools must always be

de�ned; these restrictions may exclude some VLEs and tools from being integrated.

How to integrate? How tools are integrated in VLEs? The aforementioned kinds of

integration approaches foster di�erent integration multiplicities (e.g. one-to-one and many-

to-many integrations). Besides, each particular integration can be designed pursuing a

higher or a lower degree of software coupling between the tool and the VLE (i.e. a more or

less coordinated and interdependent interoperability between the tool and the VLE).

What does the integration allow to do? This question refers to how much of the

tool functionality can be controlled within the VLE. This functionality normally comes

from the original features o�ered by VLEs and tools, although the integration software

may add extra functionality on top of the one o�ered by VLEs and tools. Remarkably,

di�erent integration solutions may o�er access to the same tool from the same VLE, but

with supporting a di�erent functionality.

The main technical and functional issues related to each of these three questions and their

corresponding alternatives are discussed next. New integration approaches should deal with

these issues, while trying to satisfy the stakeholders' requirements. Nevertheless, at the time of

making a decision on the alternatives, it should be noted that some of the issues are interrelated,

and that di�erent requirements may be con�icting.

What/Where to integrate? - Restrictions on VLEs and tools

One relevant technical issue, which a�ects the eligibility of VLEs and tools, refers to the

number of restrictions imposed by integration approaches to VLEs and tools. Some examples

of these restrictions may be programming languages (e.g. PHP for Moodle), certain frameworks

(e.g. OpenACS for .LRN), or exchange data models (e.g. RSS-based models in most blog

tools), among others. Imposing many restrictions usually allow richer, particularized interactions

between VLEs and tools, although this alternative may exclude interesting VLEs and tools from

60 2.5. The integration problem

being integrated. For instance, IMS LTI [IMS06c] imposes many restrictions for the sake of

a richer communication between VLEs and tools. On the contrary, approaches including few

restrictions generally reduce the interactions supported in the communication of VLEs and tools,

but also reduce the development e�ort required to meet these restrictions; as a consequence, the

chances that some popular VLEs and tools may be discarded for the integration with a certain

approach (due to an unattainable development e�ort) are reduced too. In particular, as IMS LTI

requires a signi�cant development e�ort and has not been widely adopted, a new contract termed

IMS Basic LTI [IMS10b] was proposed with less restrictions aiming at reducing this e�ort.

A related technical issue is the degree of adoption of the restrictions. The more widespread

the restrictions imposed by an integration approach, the more the number of VLEs and tools that

are likely to natively meet them. Those VLEs and tools that natively meet these restrictions are

normally integrated with a lower e�ort, and without modifying their original implementations.

Nowadays, for instance, the popularity of the REST style [Fie00] is quite spread, o�ering Google

and other major tool providers REST-based contracts. In contrast, the less widespread the

restrictions imposed by an approach, the fewer the VLEs and tools that are likely to be integrated

through it. For example, Gridcole [Bot08] can only integrate tools developed as grid services

following the WSRF [OAS06] speci�cation, which never got too many adopters; as a consequence,

the number of existing tools that can be integrated in Gridcole is very limited. Interestingly, ad

hoc integration approaches might want to impose restrictions with a low adoption, since their

objective is the integration of a speci�c tool in a speci�c VLE (for which these restrictions might

be meet, despite not being very popular).

How to integrate? - Multiplicity and software coupling

Another important technical issue is the multiplicity of the integration. Generic integration

approaches are typically designed to promote the integration of multiple tools in multiple VLEs

(many-to-many integration). These approaches may reduce the development e�ort by fostering

a high code reuse among integrations, but at the cost of supporting only generic functional

commonalities, due to the existing heterogeneity in VLE and tools contracts. For example,

the GSI architecture [Fue11] was designed to foster a many-to-many integration with IMS LD

compliant platforms and third-party services. Ad hoc integration approaches, however, typically

foster a one-to-one integration, and so, they can achieve a richer communication between VLEs

and tools. Nevertheless, an ad hoc approach is normally useful only for the integration of one

tool in one VLE. Many examples of ad hoc approaches can be found in existing Moodle modules

or Blackboard Building Blocks. Alternatively, other approaches could be designed to facilitate

the integration of multiple tools in the same VLE (one-to-many integration), and less often, the

integration of the same tool in multiple VLEs (many-to-one integration).

Chapter 2. Integration of external tools in VLEs 61

The degree of software coupling [Dha95] is another technical issue that is closely related

to the restrictions and multiplicity issues. A tight integration (high software coupling) allows

to control the behavior of the tool from the VLE to a higher extent, but in exchange for a

signi�cant additional development e�ort. This additional e�ort is due to the interdependency

between software components. Many ad hoc integration approaches, like Sloodle [Liv08], which

integrates the virtual world Second Life73 in Moodle, have chosen a tight approach, aiming at a

higher coordination between the tool and the VLE. On the other hand, a loose integration (low

integration coupling) generally entails a lower control on integrated tools, but also reduces the

code needed to allow the communication between each VLE and each tool. For example, those

supporting REST services consider this a good example of a loosely-coupled technology [Vin07],

and so, works based on REST services, like Apache Wookie [Wil08], can leverage the advantages

of this loosely-coupling.

What does the integration allow to do? - Functionality o�ered

The degree of functionality o�ered by an integration approach (how much of the function-

ality of the tool can be controlled from the VLE) is an important functional issue that is related

to the aforementioned technical issues. O�ering a high degree of functionality normally requires

additional restrictions, a higher coupling, and possibly promoting a one-to-one integration. For

instance, Moodlerooms74 has developed an integration that allows Moodle users to access Google

Apps for Education75 within Moodle, enabling a higher control on Google Apps; however, this

approach requires a large amount of code that is useful only for this VLE. On the other hand,

approaches o�ering a low degree of functionality generally demand a lower development e�ort,

and possibly imposing less restrictions. IMS Basic LTI [IMS10b] o�ers the lowest degree of func-

tionality in existing approaches, providing just a single common representation of each integrated

tool.

Besides, in this context, themanagement of the life cycle of software tools (see section 2.4.2)

can be considered an important functional issue, which stems from the degree of functionality

o�ered, since most VLEs and many tools are designed to support individual and collaborative

activities, as discussed along this chapter. This issue refers to the creation, con�guration and

assignment of di�erent instances for each group in each learning activity, which can be par-

ticularly cumbersome in complex collaborative learning �ows that involve multiple groups and

tools. Integration approaches, such as Gridcole [Bot08], GSI [Fue11] or Apache Wookie [Wil08],

aimed at supporting the management of the tool life cycle, facilitating practitioners the instan-

tiation and enactment of collaborative learning situation. On the contrary, approaches like IMS

73http://secondlife.com. Last visited: June 2012.
74http://moodlerooms.com. Last visited: June 2012.
75http://google.com/apps/intl/en/edu. Last visited: June 2012.

http://secondlife.com
http://moodlerooms.com
http://google.com/apps/intl/en/edu

62 2.6. Analysis of existing integration approaches

LTI [IMS06c] or Basic LTI [IMS10b] that do not consider this issue hinder and even preclude

from instantiating and enacting many individual and collaborative activities, even though these

activities may be of great interest for practitioners.

2.6. Analysis of existing integration approaches

There are many proposals in the literature tackling the integration of external tools in

VLEs. This section discusses the most relevant works and relates them with the design issues

and alternatives that have been introduced in the previous section. A summary with the issues,

alternatives and examples is shown in Table 2.5.

Table 2.5: Design issues and alternatives chosen for the integration of external tools in VLEs.

Technical issues Functional issues

Number of

restrictions

imposed

Degree of

adoption

of the

restrictions

Multiplicity of

the integra-

tion

Degree of

software

coupling

Degree of

functionality

o�ered

Management

of the tool life

cycle

Moodle, LAMS, Sakai
or Blackboard (VLE)
contracts

many low one-to-many * * *

Gridcole [Bot08], Peli-
can [Vel09] (VLE) con-
tracts

some low one-to-many medium medium yes

Moodle Web Services
SOA [Con09]

some medium one-to-many medium medium no

Moodlerooms some medium one-to-many medium high yes

Sloodle [Liv08] many low one-to-one tight high yes

Google Apps, Delicious
or Zoho (tool) con-
tracts

some high many-to-one loose * *

IMS LTI [IMS06c],
OKI [Col02]

many low many-to-many tight high no

CCSI [Vog06] many low many-to-many tight high yes

PoEML-based archi-
tecture [Fon09]

some low many-to-many medium low yes

GSI Architec-
ture [Fue11]

some medium many-to-many medium low yes

Apache Wookie [Wil08] few medium many-to-many loose low yes

Basic LTI [IMS10b] few high many-to-many loose very low no

*The particular approach employed to integrate these VLEs or tools may condition the alternative chosen for this issue.

The most widely adopted VLEs, Moodle, LAMS, Sakai or Blackboard impose technologi-

cally heterogeneous and speci�c VLE contracts with many restrictions on the tools that can be

Chapter 2. Integration of external tools in VLEs 63

integrated. Therefore, in most cases, a considerable development e�ort is required to integrate

the same external tool in several of these VLEs, due to the use of the �rst architectural approach

(one-to-one) presented in section 2.5.3. The exact amount of e�ort is highly dependent on the

degree of coupling supported and on the degree of functionality o�ered, as it is further studied

with illustrative examples in the evaluation chapter of this document. Interestingly, due to the

high number of users and active sites of VLEs like Moodle, many developers have considered

that it is worthwhile to develop an ad hoc piece of software to integrate one tool in this VLE. For

instance, members of the European EduJudge project76 developed a module to integrate QUES-

TOURnament in Moodle [Reg09]. In line with this, some remarkable tools that were integrated

via Moodle Modules are the Tiddlywiki personal notebook, the Facebook social networking site

or the Kaltura77 video platform. However, the existence of these modules cannot be generalized,

and other VLEs with a lower adoption like LAMS or .LRN have found hardly any external de-

veloper willing to accomplish the integration of new tools in these platforms. Actually, one of

the few examples of tools integrated in these other VLEs that can be found in the literature is

<e-Adventure> [Bla10], an authoring platform for the design of educational games that was �rst

integrated in Moodle, and afterwards in LAMS [Bla10].

Other VLEs, such as Gridcole, or Pelican also impose very speci�c VLE contracts, but

requiring less restrictions and promoting a lower degree of integration with external tools (com-

pared to the main VLE providers). Nevertheless, these restrictions, which are the use of grid

services and SOAP-based services [Vin02], do not re�ect the current trends regarding distribu-

tion technologies. Therefore, these restrictions along with the idea that Gridcole and Pelican

were conceived to replace other commonly used VLEs, hindered their embracement by educators

and students, and also the contributions from external developers.

Some works, like the one by Conde-González [Con09], decided to extend the contracts of

existing VLEs in order to facilitate the integration of external tools. In this particular example,

the authors extended the Moodle integration contract through a Service-Oriented Architecture

(SOA) [Vin02], whose objective was to promote the integration of external web services. This

approach simpli�es the integration process, since the development e�ort has been partially un-

dertaken by the authors in the VLE side. However, this solution cannot be easily extrapolated

to other VLEs. Besides, not many tools are currently complying with the restrictions imposed

by this approach, thus hindering their adoption.

Some other authors decided to implement their own ad hoc solutions aimed at o�ering a

high degree of functionality just for certain speci�c tools and VLEs. This is the case of Sloodle,

whose authors proposed an ad hoc tight integration architecture [Liv08], or the aforementioned

commercial product for the integration of Google Apps in Moodle, Moodlerooms, which de�ned

76http://eduvalab.uva.es/en/projects/edujudge-project. Last visited: June 2012.
77http://kaltura.com. Last visited: June 2012.

http://eduvalab.uva.es/en/projects/edujudge-project
http://kaltura.com

64 2.6. Analysis of existing integration approaches

a proprietary approach, seeing that its providers do not rely on external contribution. The

problem, once again, is that these solutions cannot be easily generalized and applied to other

VLEs and tools.

On the tool side, it is noteworthy that most software tools have not been designed to be

integrated in other systems. Thus, they implicitly o�er speci�c tool contracts, whose restrictions

did not consider current trends on existing VLEs. In this context, many SaaS [Tur03] tool

providers have started to o�er generic loosely-coupled contracts through web technologies and

REST interfaces in the last few years. This is the case of Delicious, Google Apps for Education,

or Zoho78, among many others. Generic loosely-coupled tool contracts normally avoid low level

details regarding the features o�ered by tool interfaces, thus limiting the set of interactions and

con�gurations of these tools that can be exploited. Therefore, the functionality available when

integrated these tools in VLEs is normally low, although this functionality highly depends on

the speci�c integration approach.

The �rst remarkable works that tried to standardized some contracts as a general many-

to-many solution, in order to promote the integration of existing external tools in existing VLEs,

rather than de�ning new VLEs or tools, or developing ad hoc integrations, were the Open Knowl-

edge Initiative (OKI) [Bav03,Col02], IMS LTI and CCSI. These works de�ned tightly-coupled

contracts that o�ered a high degree of functionality, even though only the latter supports the

management of the tool life cycle, through a set of run-time services. The high development e�ort

required by these approaches and the evolution in the technological trends may have deprived

OKI, Full LTI and CCSI from a more successful adoption.

Recent generic integration approaches, however, aimed at reducing the number of require-

ments and the degree of coupling, but at the cost of reducing the functionality o�ered too.

Nevertheless, they normally �nd some problems to integrate popular VLEs or tools, due to the

kind of restrictions they impose. For example, the PoEML-based (Perspective-oriented Educa-

tional Modeling Language) architecture [Fon09] is based on a language de�ned by the authors,

named PoEML, [Cae06b], which has not been adopted in practice. Another example is the GSI

architecture [Fue08,Fue11], which was designed to extend VLEs that support IMS LD through

a medium-coupled intermediate integration contract. Despite the low degree of functionality

o�ered by GSI, the support to the instantiation and enactment of collaborative activities is

signi�cantly reported. Nevertheless, only an extension of .LRN can currently comply with the

restrictions of GSI, and very few tools have been so far integrated.

Finally, two works have been recently proposed with the aim of promoting the integration of

multiple external tools in multiple VLEs, through loosely-coupled approaches. One of these works

is the Apache Wookie architecture [Wil08]. This architecture o�ers a low degree of functionality,

78http://zoho.com. Last visited: June 2012.

http://zoho.com

Chapter 2. Integration of external tools in VLEs 65

but considering the synchronous communication and the collaboration as outstanding features,

and supporting the life cycle of tools integrated through this approach. Nevertheless, Apache

Wookie only enables the integration of small applications developed as W3C widgets. This is

a very strict requirement that hinders the integration of many other existing tools that may be

of interest for practitioners. Actually, none of the Top 100 Tools for Learning meets the W3C

Widgets speci�cation [W3C11].

The other recent work is IMS Basic LTI [IMS10b], which proposes a loosely-coupled in-

termediate contract with a very low degree of functionality, just providing a single standard

mechanism for launching external applications for all the participants in the same learning ac-

tivity, thus failing to alleviate practitioners of the burden of creating, con�guring and assigning

external tool instances to support collaborative activities. Therefore, unlike Apache Wookie,

Basic LTI does not support the life cycle of external tools, thus hindering and precluding from

instantiating and enacting many collaborative learning situations.

Before concluding this section, it is convenient to analyze the current trends on the in-

tegration of external applications in other platforms that may also be employed in educational

contexts, such as wikis, social networking sites, or PLEs, which gained momentum in the last �ve

years. For instance, generally adopted platforms like MediaWiki, Facebook, Google+, and most

of the PLEs developed so far enable a loosely-coupled third-party integration through their own

speci�c contracts, similarly to what happens with VLEs. However, most integrated applications

are mash-ups, or o�er a very lightweight functionality [Sev08]. In this context, Google along with

MySpace de�ned, in 2007, a common speci�cation for the integration of third-party applications

in social networks, called OpenSocial [Gre09, Has09], which was developed as an open source

reference implementation named Apache Shindig79. Despite its success on adoption by about

twenty social networking sites [Has11], like MySpace, LinkedIn, Hi580, Ning81, or XING82, and

many other applications, neither Facebook, nor surprisingly Google+, have adopted OpenSocial

yet. Unfortunately, this speci�cation cannot be used to tackle the integration of external tools

in VLEs, since it does not consider pedagogical approaches, nor the main educational concepts

included in VLEs, such as roles, social con�gurations, structure of activities or courses, among

others. In any case, it is noteworthy that OpenSocial, the successful MediaWiki, Facebook,

Google+, and most PLEs promote a low degree of coupling with third-party integrated applica-

tions. This should be seen as an important trend that can be extended to the cases of VLEs and

tools, thus discarding tighter solutions when proposing new integration approaches.

All in all, it can be seen that the integration approaches analyzed here present limitations

concerning the kinds of VLEs and tools that can be integrated, the development e�ort required

79http://shindig.apache.org. Last visited: June 2012.
80http://hi5.com. Last visited: June 2012.
81http://ning.com. Last visited: June 2012.
82http://xing.com. Last visited: June 2012.

http://shindig.apache.org
http://hi5.com
http://ning.com
http://xing.com

66 2.7. Conclusions

to accomplish the integration, and the support of the tool life cycle. Thus, there is an oppor-

tunity for new generic approaches to overcome these limitations. Considering the stakeholders'

requirements presented in section 2.5.2, the alternatives recommended for these new approaches

would be: to impose few and popular restrictions to VLEs and tools; to foster a many-to-many

integration and a loose integration to reduce the development e�ort; and, to facilitate at least,

the management of the life cycle of external tools, as part of the compromise that needs to be

achieved among the degree of functionality o�ered and the remaining design issues.

2.7. Conclusions

Collaborative learning is a process in which knowledge is constructed though interactions

with other partners, and in most cases, results in a more e�ective learning compared to individual

or competitive pedagogical processes. The use of technology to promote these interactions is re-

searched by practitioners, psychologists, and technologists in the multidisciplinary CSCL research

�eld. VLEs have outstandingly been employed for the support of education and collaboration

at all levels during the last few years, since they include signi�cant pedagogical and collabora-

tive features, such as the management of groups, roles, activities and courses. Practitioners are

recurrently using VLEs for the design, instantiation, enactment and evaluation of collaborative

learning situations within a centralized platform. Nevertheless, the restricted set of VLE built-in

tools hinders and even precludes from realizing many individual and collaborative learning ac-

tivities. Here, the increasing popularity of web technologies and services has caused a growing

research interest in the integration of external tools in VLEs, so that a wider range of activities

may be supported. This research line replaces a former trend according to which the number of

VLE built-in tools was extended by means of the development of new tools from scratch, which

were speci�cally designed and implemented for one single VLE.

Nevertheless, the integration of external tools in VLEs is a very complex problem, mainly

due to the existence of a great variety of heterogeneous contracts, and none of the current

existing works on this matter is o�ering a generic solutions with a widespread adoption. Figure

2.13 summarizes the main design issues and alternatives found in current integration works,

indicating how they a�ect to the stakeholders' requirements. By way of summary, approaches

imposing a high number of restrictions with a lack of adoption exclude many interesting VLEs

and tools from being integrated. Moreover, tight and one-to-one integration approaches normally

require a high development e�ort, thus discouraging external developers to contribute to the

integration of new tools and VLEs, this way hindering their potential adoption by practitioners.

Finally, approaches lacking support to the tool life cycle hinder the instantiation and enactment

of collaborative learning situations, which are commonly employed in educational practices as a

way for students to achieve a more e�ective learning.

Chapter 2. Integration of external tools in VLEs 67

Figure 2.13: Overview of the integration problem: design issues, alternatives, examples, and stake-
holders' requirements.

68 2.7. Conclusions

The analysis of the limitations found in existing integration works and their causes, can

be distilled as lessons learned of relevance to other researchers that tackle the multiplatform

integration of third-party tools, whether in the educational domain or in others. In order to

overcome these limitations, the next chapter presents the core contribution of this thesis, an

architecture that satis�es the main stakeholders' requirements by featuring: a low number of

broadly adopted restrictions, thus facilitating the integration of existing and popular VLEs and

tools without modifying their code; a many-to-many and loose integration, thus promoting the

integration of many tools in many VLEs with a lower development e�ort; and a su�cient degree of

functionality which, at least, enables the management of tool life cycle. The decisions regarding

the functional issues are the result of a trade-o� considering all the stakeholders' requirements,

and take into account that the degree of functionality o�ered compromises the remaining issues.

Chapter 3

The GLUE! architecture

This chapter tackles the objective of proposing an architecture, called GLUE! (Group Learning

Uniform Environment), that enables the integration of multiple existing external tools in multiple

existing VLEs, taking into account the main design issues of the integration problem, meeting the

main stakeholders' requirements, and overcoming the limitations found in previous related works.

Therefore, GLUE! mediates so that VLEs and external tools, which may be developed with di�erent

technologies and for di�erent purposes, achieve interoperability. In order to structure the presenta-

tion of this architecture in a logical order, section 3.2 �rst introduces the methodology followed for

the proposal of the GLUE! architecture. Then, section 3.3 presents the main requirements considered

in the design of GLUE!. These requirements stem from the limitations found in previous integration

works, and take into account the issues and alternatives analyzed in chapter 2. After that, section

3.4 describes the proposed architecture, including technical and functional details. Section 3.5 ex-

plains the overall behavior of the architecture, detailing the use cases that are currently supported.

Then, security issues are discussed in section 3.6, explaining the problems found in this particular

context, and o�ering a compromise solution for these issues. Next, advantages and limitations of

GLUE! are discussed in section 3.7. This section also discusses the compliance to the stakeholders'

requirements, the compatibility of the architecture with other loosely-coupled approaches in this

domain, and the application of its design principles in order to achieve interoperability between

software systems in other contexts. Finally, section 3.8 concludes the chapter o�ering a general

picture of the integration problem and the proposed solution, including the requirements and design

decisions.

The GLUE! architecture is the major contribution of this dissertation. This architecture, including

the initial requirements and the design decisions has been published in [Ala12a]. Besides, the context

in which the security issues occur was �rst studied in [Ala10b], while the �nal solution presented

here is intended to be published in the near future.

3.1. Introduction

The integration of external tools in VLEs is a research trend aimed at increasing the

diversity of learning activities that can be instantiated and enacted within VLEs. Nevertheless,

69

70 3.1. Introduction

this is a very complex problem, because of the existing functional and technological heterogeneity

in VLEs and tools, as discussed in chapter 2. Therefore, the proposal of solutions that tackle

the generic integration of external tools in VLEs is a great challenge, and none of the existing

generic works in this context has achieved widespread adoption so far.

On one side, the lack of adoption of standards tackling the speci�c integration of external

tools in VLEs was discussed in the previous chapter, being exempli�ed through IMS LTI [IMS06c],

and to a lesser extent (due to a certain success regarding VLE providers, although still quite

limited regarding tool providers), through Basic LTI [IMS10b]. On the other side, di�erent

architectural approaches found in the literature within the scope of the integration problem, like

GSI [Fue11] or Apache Wookie [Wil08], were also presented in the previous chapter, although they

have not become very popular either. Three main limitations, namely the restrictions imposed

on VLE and tool providers, the high development e�ort required, and the lack of support to

the life cycle of external tools, which is especially relevant in the instantiation and enactment

of individual and collaborative activities, were pointed out as the main causes for the lack of

adoption of these generic integration works.

A new integration architecture, called GLUE!, which takes into account these limitations,

the main stakeholders' requirements, as well as the design issues and alternatives discussed in the

previous chapter, is proposed in this chapter. The GLUE! architecture presented here is designed

to tackle the loosely-coupled generic integration of existing external tools in existing VLEs, im-

posing few restrictions with a widespread adoption on VLE and tool providers. That reduces

the development e�ort and facilitates the integration of many well-known tools in popular VLEs.

As a consequence the degree of functionality o�ered has to be low (as a trade-o� between the

technical and functional design issues analyzed in the previous chapter), although the manage-

ment of the tool life cycle is supported in order to facilitate the instantiation and enactment of

collaborative learning situations, as required by practitioners.

Nevertheless, before proposing a new architecture, it is convenient to study the formal

de�nition of software architectures in computer science [Sha96b]. According to three well-known

methodologists on software engineering, Booch, Rumbaugh and Jacobson, a software architec-

ture is de�ned as �a set of signi�cant decisions about the organization of a software system,

the selection of the structural elements and their interfaces by which the system is composed,

together with their behavior as speci�ed in the collaboration among these elements� [Boo99].

The interfaces of these elements and their expected behavior are formally characterized within

operation contracts [Lar02] (being they explicit or not). In the particular context of this disserta-

tion, these operation contracts are normally referred as integration contracts [Ghi06]. Therefore,

and according to this de�nition, the design of GLUE! must determine the structural elements

that compose the architecture, their integration contracts, and also their behavior, so that the

collaboration among these elements can be achieved.

Chapter 3. The GLUE! architecture 71

3.2. Methodology and process

This dissertation follows a global research methodology [Gla95] that combines the engi-

neering methodology [Adr93] and the empirical method (in the evaluation stage) [Big82], as

described in the introductory chapter. This global research methodology includes four phases

(informational, propositional, analytical and evaluative) that are iteratively covered. The pro-

posal of the GLUE! architecture is the result of this research, and it can be framed within the

propositional and analytical phases of this global research methodology. Nevertheless, GLUE! is

a technical proposal that can be seen as a software engineering project, and so, a more speci�c

process for the design and implementation of software engineering projects should be followed.

The GLUE! architecture is designed and developed following the Uni�ed Process (UP)

[Lar02], which is one of the most popular and best documented software development processes

[Jac99,Kru04]. The UP was chosen because of its three de�ning features. First, the UP is an

iterative an incremental process, and so, it �ts within the global research methodology, which is

also iteratively applied. Second, the UP is architecture centric, being software architectures the

core over which projects are built. An architecture is exactly the kind of solution proposed in

this dissertation to tackle the integration problem. Third, the UP is a use case driven process.

Use cases de�ne a system behavior from end-users' perspective [Lar02]. The support of the tool

life cycle, which was studied in the previous chapter, represents the behavior practitioners may

expect when adding external tools to their collaborative learning situations.

UP projects are organized following four iterative phases: the inception phase, where the

scope of the project is studied and an investigation is performed to decide whether to go on

with the project or not; the elaboration phase, where the architecture is iteratively designed and

implemented, and high-risk issues are mitigated; the construction phase, where low-risk issues

are tackled and the environment in which the system must be deployed is prepared; and the

transition phase, which is focused on testing and deployment. Besides, several traditional dis-

ciplines (also referred as activities) are de�ned in the UP, being they iteratively covered along

the four phases. These disciplines include: business modeling, requirements, design, implemen-

tation, test, and deployment [Lar02]. For instance, the elaboration phase strongly focuses on

business modeling, requirements and design, while the transition phase emphasizes testing and

deployment. Nevertheless, it is noteworthy that most disciplines are partially covered in all the

phases.

Two important considerations must be done for the application of these disciplines to the

proposal of this dissertation. The business modeling discipline, which normally comprises a

deep understanding of the concepts and scope of the application context, can be included as

part of the informational phase in the global research methodology. Actually, most relevant

concepts, as well as the context of this proposal were already presented in chapter 2. The

72 3.3. Initial requirements and design decisions

requirements discipline includes the de�nition of the main stakeholders' requirements, which

were also presented in the previous chapter. These are a rather stable set of requirements, since

they are the contribution of a complete research analysis, and so, they lead the proposal of

the GLUE! architecture from the very beginning. Other classical functional and non-funcional

requirements in software engineering projects [Lar02], such as reliability or robustness, are also

considered when designing and implementing the architecture, although they are not the main

scope of this research work. Interestingly, the global research methodology includes an evaluative

phase with multiple experiments involving real practitioners, what might cause the appearance of

new functional and non-functional requirements. As a remarkable example, after the evaluation

of a �rst implementation of the GLUE! architecture, a new use case that enables the update of

users sharing external tool instances was added in the tool life cycle, and as part of the GLUE!

behavior. This new use case aimed at supporting a higher �exibility, allowing educators to adapt

their instantiated activities to typical student absences.

Though the UP is an incremental and iterative process, this dissertation only presents the

�nal results, and so, to facilitate the reading, the narration does not follow that incremental and

iterative approach. Instead, the initial requirements and the design of the GLUE! architecture are

fully explained in this chapter, while the implementation, testing and deployment are presented

in the next chapter.

3.3. Initial requirements and design decisions

The initial requirements for the design of the GLUE! architecture are the main stakeholders'

requirements identi�ed in chapter 2, according to which:

GLUE! should enable the instantiation of individual and collaborative activities

that require the integration of external tools with an attainable e�ort for educators (REQ1).

GLUE! should enable the enactment of collaborative activities that require the

integration of external tools, facilitating the collaboration among participants (REQ2).

GLUE! should support the integration of existing and popular VLEs and tools

(REQ3).

GLUE! should support the integration of many external tools (REQ4).

GLUE! should demand an attainable development e�ort for the integration of new

tools and VLEs (REQ5).

GLUE! should be built over existing VLEs and tools, rather than modifying their

implementations (REQ6).

Chapter 3. The GLUE! architecture 73

The decisions made in the design of the GLUE! architecture are intended to meet these

requirements. Besides, these decisions also take into account the lessons distilled in chapter 2,

after analyzing the integration problem and the related works. Table 3.1 shows an overview of the

design issues, and the alternatives taken in the case of GLUE!. The choice of these alternatives

is further explained next:

Table 3.1: Alternatives to the design issues chosen for the GLUE! architecture.

Questions Design issues Alternatives chosen

What/Where to integrate?
a) Number of restrictions imposed To impose a low number of restrictions

b) Degree of adoption of the restric-
tions

To impose popular restrictions

How to integrate?
c) Multiplicity of the integration To foster a many-to-many integration

d) Degree of software coupling To promote a loose integration

What does the integration e) Degree of functionality o�ered To support the management of the tool

allow to do? f) Management of the tool life cycle life cycle

a) To impose a low number of restrictions. Practitioners worldwide are currently using

tens of VLEs and thousands of software tools. The lower the number of restrictions im-

posed, the more VLEs and tools that could be eventually integrated. Some previous works

did not succeed because they imposed a high number of restrictions, thus precluding many

VLEs and tools from being integrated. Therefore, it seems advisable to design the GLUE!

architecture to impose a low number of restrictions on VLE and tool providers.

b) To impose popular restrictions. Imposing popular restrictions facilitates the integra-

tion of many tools and VLEs that may meet them natively. Therefore, to overcome the

limitation of some previous works that impose restrictions with a low degree of adoption,

the GLUE! architecture must be designed to impose only popular restrictions on VLE and

tool providers.

c) To foster a many-to-many integration. The multiplicity of an integration approach has

an impact on the development e�ort required to integrate multiple tools in multiple VLEs,

and thus, it conditions the number of external developers that may want to collaborate

to increase the set of integrated tools and VLEs. Therefore, to avoid requiring a high

development e�ort when integrating a set of tools in di�erent VLEs, as it happens in some

of the previous one-to-one integration works, the GLUE! architecture must be designed to

foster a many-to-many integration.

d) To promote a loose integration. The degree of software coupling has also an e�ect on

the development e�ort required to integrate each tool in each VLE. Actually, some previous

74 3.4. Description of the architecture

works demand a high e�ort because of their tight integration approaches. With the aim

of demanding a lower development e�ort, the GLUE! architecture must be designed to

promote a loose integration of external tools in VLEs.

e) To support the management of the tool life cycle. In the context of this dissertation,

main VLEs and tools have been designed to support collaboration and groupwork, as

discussed in the previous chapter. Nonetheless, there are some integration approaches that

do not consider the life cycle of collaborative learning situations, nor the tool life cycle in

collaborative settings. In consequence, practitioners must assume a signi�cant burden to

instantiate and enact their learning activities. In order to overcome this limitation, the

GLUE! architecture must be designed to support the management of the tool life cycle in

the instantiation and enactment of individual and collaborative activities.

These �ve design decisions are oriented to reduce the adoption barrier of the architecture

in two di�erent ways. Regarding educational aspects, they increase the number of VLEs and

tools that can potentially be used by educators and students. Besides, they preserve the main

collaborative features of VLE built-in tools, so that practitioners do not need to change their

learning practices. Regarding technological aspects, they facilitate the integration of new tools

and VLEs, thus encouraging external developers to contribute to the architecture.

3.4. Description of the architecture

This section describes the structural elements that compose GLUE! from a high-level per-

spective. Besides, their integration contracts, and their individual expected behaviors are also

detailed here. This coarse-grained description can be supplemented with additional information

about lower level details, which are later explained in the implementation chapter.

3.4.1. Overview of the architecture

Figure 3.1 shows an overview of the GLUE! architecture. GLUE! follows a three-tier

architecture1 with loosely-coupled distributed services, where m VLE and n tool contracts

are adapted through an intermediate software layer and a set of adapters. Therefore, GLUE!

follows the second architectural approach presented in section 2.5.3 for the integration of external

tools in VLEs. This architectural design aims at reducing the development e�ort, since the

required integration code is partially assumed by this common intermediate software layer.
1It is important not to mistake this three-tier architecture, which is composed by three kinds of independent

software elements, for the three-tier client-server architecture mentioned in chapter 2 (and followed by most VLEs
and tools), in which each single software element presents three di�erent layers: presentation, business logic and
data management. Actually, each individual element in GLUE! may also present di�erent layers, as it will be
later exempli�ed in the implementation chapter.

Chapter 3. The GLUE! architecture 75

Figure 3.1: Overview of the GLUE! architecture.

The leftmost and rightmost GLUE! tiers make use of the well-known adapter pattern

[Gam95] to respectively wrap VLEs and tools, also adapting their speci�c and heterogeneous

contracts to two generic and homogeneous intermediate contracts: the GLUE! integration con-

tract for tools, and the GLUE! integration contract for VLEs; these contracts are detailed in

sections 3.4.2 and 3.4.3. These type of software adapters, which were also employed in some

recent two-tier research integration works (e.g. IMS LTI or Basic LTI) to enable the integration

of VLEs and tools without modifying their implementations, are called VLE adapters and

tool adapters in the GLUE! architecture.

The three-tier architecture also contains an intermediate software layer, called GLUE! core,

which o�ers the GLUE! integration contracts. The purpose of the GLUE! core is to decouple

VLE and tool adapters, thus facilitating their independent development, while assuming most of

the integration functionality, thus reducing the development e�ort. Besides, the GLUE! core acts

as a bridge that connects heterogeneous VLEs and tools managing also the security issues, which

are explained in section 3.6. VLEs are connected to the GLUE! core through VLE adapters

that meet the GLUE! integration contract for VLEs, while tools are connected to the GLUE!

core through tool adapters that comply with the GLUE! integration contract for tools. It is

noteworthy that the GLUE! core promotes amany-to-many integration, since every new tool

adapter developed for a tool enables its integration in any VLE with its corresponding VLE

adapter, and the other way around. This is a major advantage of the GLUE! architecture.

76 3.4. Description of the architecture

The GLUE! architecture provides the functionality to create, con�gure, retrieve, update,

and delete external tool instances, thus managing the life cycle of external tools, which

is common to many software tools, including most VLE built-in tools, as discussed in chapter

2. This life cycle can be combined with the VLE features for the management of groups and

activities, in order to associate each external tool instance to each group that participates in

a given activity. Thereby, the students belonging to the same group may collaborate, sharing

the same instance, as they normally do with VLE built-in tools. By using this functionality

practitioners are greatly aided in the instantiation and enactment of individual and collaborative

activities.

In order to support the management of the tool life cycle within VLEs, each of the three

tiers in the GLUE! architecture has a clear role. Requests to create, con�gure, retrieve, update

or delete tool instances are initiated in the VLE user interface; VLE adapters must thus process

and send these request to the GLUE! core. The GLUE! core routes them to the corresponding

tool adapters, which receive and process these requests, resulting in invocation on tool providers

in tool speci�c ways. The following paragraphs deepen into the responsibilities and challenges

of these three tiers.

The GLUE! core includes a processing element, called GLUElet Manager, which acts as

a broker, receiving requests related to the support of the tool life cycle from VLE adapters

(e.g �create two instances of tool T with con�gurations C1 and C2 that will be shared among

students S1−S3 and S4−S6, respectively�), redirecting them to the appropriate tool adapters,

and persisting information on the created instances. The GLUElet Manager, must thus be aware

of the external tools available for integration, and how to reach the tool adapters that wrap

them. This information is kept in the internal tool registry, which is also part of the GLUE! core.

Signi�cantly, the architectures that do not include intermediate software layers require VLE and

tool adapters to assume these responsibilities. The fact that these responsibilities are placed in

the GLUE! core reduces the functionality to be provided by the adapters, thus simplifying their

development.

Tool adapters receive homogeneous requests from the GLUElet Manager for creating, con-

�guring, retrieving, updating and deleting tool instances. These requests are adapted to comply

with the contracts imposed by speci�c external tools. Interestingly, tool adapters are aware of

the speci�c features and con�gurations supported by each tool, and so, they are responsible for

providing con�guration templates with the parameters that can be set during the process of

creating external tool instances. These con�guration templates are rendered as VLE-like forms

by VLE adapters to be �lled out by educators, and afterwards returned to tool adapters, which

can use them, together with their knowledge of the speci�c tool contracts, to create instances

with given con�gurations. The advantage of this approach is that if a tool provider adds inter-

esting con�guration properties, templates can easily be updated, without requiring any further

Chapter 3. The GLUE! architecture 77

modi�cations in the architecture. Finally, it should be noted that if a number of tools have a

similar contract and a similar collection of con�guration parameters, it may be worthy to develop

a single tool adapter to communicate with them all, instead of several adapters with minimal

di�erences. An example of such implementation decision will be provided in next chapter.

The remaining tier of the architecture is formed by VLE adapters, where the requests of

the tool life cycle are actually started. In fact, these requests are made by end-users on the

VLE graphical interface. Thus, VLE adapters should capture and forward them to the GLUElet

Manager. In addition, VLE adapters are responsible for the assignment of external tool instances

to VLE users. To do so, VLE adapters should map the users, groups, and activities de�ned in

VLEs to the instances that are actually created in external tools (i.e. those users belonging to

the same group in an activity share the same external tool instance), as explained during the

study of the tool life cycle. Unlike in the case of tools, VLEs rarely present similar contracts,

and so, a speci�c VLE adapter is usually required for each of them.

Table 3.2 summarizes the purpose and functionality of each of the three GLUE! tiers:

VLE adapters, the GLUE! core and tool adapters. Di�erent providers can independently o�er

the elements in the three GLUE! tiers, except for VLE adapters, which are normally deployed

together with VLEs. The reason is that VLEs adapters need to be implemented, in most cases,

as VLE extensions, embedding partially their functionality in the VLE user interface.

Table 3.2: Elements in the GLUE! architecture: purpose and functionality.

Tier Purpose Functionality

GLUE! core

Promote a many-to-many integration Manage requests related to the life cycle of external tools

Homogenize VLE and tool contracts Manage persistent data about the available tools

Simplify the development of adapters Manage security issues

VLE adapters Connect VLEs and the GLUE! core
Enable the management and use of external tools within VLEs

Map users, groups, and activities to tool instances

Tool adapters Connect the GLUE! core and tools
Translate requests from the GLUElet Manager to tool contracts

Provide and process con�guration information

Finally, it is noteworthy to mention that the GLUE! architecture supports three roles, as

depicted in Figure 3.1. The administrator of a GLUE! installation is responsible for populating

the internal tool registry with information about the available external tools and their corre-

sponding adapters. Besides, two other roles generate di�erent actions within VLEs concerning

the tool life cycle. The �rst role, namely the educator role, is an active role, since it generates

actions that normally require interactions with external tools (creation, con�guration, deletion

and update of tool instances). This role is normally played by educators, but it can also be played

by monitors, instructional designers, and any other user with special permissions to instantiate

78 3.4. Description of the architecture

learning designs within VLEs. The second role, namely the participant role, is a passive role, in

the sense that it generates actions that do not require a GLUE-mediated communication with

external tools, such as the retrieval of created instances. This role is normally played by students,

although any VLE user participating in the enactment of a collaborative learning situation may

play it.

3.4.2. GLUE! integration contract for tools

The GLUE! integration contract for tools is designed following some global criteria that

stem from the decisions made in the design of the GLUE! architecture (see section 3.3). First, the

least number of restrictions a contract has, the most likely it is adopted. Second, selecting broadly

accepted technologies also facilitates adoption. Third, the contract should prescribe the minimum

functionality to support the life cycle of external tools, in order to minimize the development e�ort.

To facilitate its comprehension, the information regarding the GLUE! integration contract for

tools is organized in three blocks, which correspond to each of these criteria: the restrictions on

tool providers, the technological requirements on tool adapters, and the behavior expected from

tool adapters.

Restrictions on tool providers

The GLUE! integration contract for tools must overcome two limitations found in the

literature regarding the eligibility of external tools: the high number of restrictions that these

tools must meet, and the low degree of adoption of such restrictions. According to the design

decisions presented in section 3.3, the GLUE! integration contract for tools must impose few

restrictions with a widespread adoption.

Actually, the GLUE! integration contract for tools imposes just one mandatory restriction

that external tools must meet. The restriction is that the code that external tools provide to

enable the access to their functionality and data must be suitable for its distribution

as a web content. Web applications obviously meet this restriction; however, some standalone

applications, such as those developed in Java whose code can be distributed in JNLP (Java

Network Launching Protocol) [Jav11] �les, may meet this restriction too.

In addition, this integration contract also reports one optional restriction that tools should

meet in order to better exploit the GLUE! architecture. This restriction is that tools should o�er

a programming interface that allows the creation of tool instances, with di�erent con�gurations,

and for di�erent users. If so, particularized tool instances for each group performing a collabo-

rative activity may be provided, and without modifying the code of external tools. Otherwise,

all the students in all the learning activities will access to the same functionality and data in

Chapter 3. The GLUE! architecture 79

the external tool, as it happens in Basic LTI. Besides, the GLUE! contract for tools recommends

this interface to be public, so that external developers may contribute to the development of tool

adapters. Interestingly, the GLUE! contract for tools does not de�ne any additional restrictions

about the kind of interfaces, nor the technologies, nor the methods that must be o�ered by

external tools.

Table 3.3 illustrates the compliance to these restrictions with representative examples. The

seven most outstanding tools currently used in education meet the mandatory restriction, and

so, they can be integrated in VLEs through the GLUE! architecture. Besides, there is high

compliance regarding the optional restriction, and only Prezi does not present a programming

interface. Nevertheless, multiple online references can be found in forums about Prezi users

claiming for a programming interface. This public claim may encourage Prezi sta� to prioritize

the development of this interface in a short time. Moreover, the 69% of the Top 100 Tools for

Learning2 are distributed online, and so, they clearly meet the mandatory restriction, many of

them complying with the optional restriction too. This number even grows if VLEs and hardware

devices (e.g. Kindle3) are excluded from this list.

Table 3.3: Restrictions imposed on tools and degree of adoption. Mandatory restrictions are marked in
bold, while optional restrictions are marked in italics.

Restriction Twitter Youtube
Google

Docs
Skype Wordpress Prezi Slideshare

Suitable for distribu-

tion as a web content
4 4 4 4 4 4 4

Programming interface 4 4 4 4 4 8 4

Technological requirements on tool adapters

The GLUE! integration contract for tools must overcome the limitations found in some

related works regarding the high development e�ort required to integrate external tools in VLEs.

To do so, the requirements chosen for the communication and development of tool adapters

are based on popular and well-de�ned loosely-coupled technologies. The main advantage of

employing loosely-coupled technologies regarding the development e�ort is the opportunity to

easily reuse code from other existing components [Sur09], no matter their architectural approach

or programming language. The main issues that should be considered regarding the commu-

nication and development of tool adapters are explained next, together with the technological

requirements agreed. They are all are summarized in Table 3.4.

2http://c4lpt.co.uk/top-tools/top-100-tools-for-learning-2011. Last visited: June 2012.
3http://kindle.amazon.com. Last visited: June 2012.

http://c4lpt.co.uk/top-tools/top-100-tools-for-learning-2011
http://kindle.amazon.com

80 3.4. Description of the architecture

Table 3.4: Technological requirements on tool adapters.

Problem Technological requirement

1
Remote invocation technologies and interfaces
de�nition

To be designed as REST services, o�ering a RESTful
interface

2 Requests and responses representation format To process requests and responses in the Atom format

3 Con�guration templates representation format To provide XForms or HTML5 con�guration templates

4 Instances naming and identi�cation To provide URLs identifying ool instances

1. Remote invocation technologies and interfaces de�nition. Tool adapters act like services to

be invoked (at least) by the GLUElet Manager. Therefore, they must support some form of

remote invocation, as well as publish the invocable interfaces. RPC-like middlewares, like

Java RMI4, CORBA [Vin97] or W3C Web Services [Cur02], have been popular approaches

for remote invocation, but they su�er from drawbacks such as language dependency, pro-

motion of tight coupling, or computational ine�ciencies [Vin02].

An alternative approach for tool adapters is a REST design. REST is a popular architec-

tural style [Sha96a] de�ned by Roy Thomas Fielding in his thesis in 2000 [Fie00], to enable

the simple communication among distributed elements and systems on the Web. According

to Fielding's work the main restriction of REST-based systems is the uniform interface,

which must consist of a set of �xed and well-de�ned methods. This restriction promotes the

simplicity, scalability and easy development of applications on the Web. REST is not re-

stricted to any transfer protocol, although HTTP (Hypertext Transfer Protocol) [NWG99]

is usually selected as the communication protocol due to its popularity among web appli-

cations. Abstractions of any kind of information in REST are called resources, and are

identi�ed through URIs (Uniform Resource Identi�ers) [NWG05b]. REST services (also

called RESTful Services or RESTful Web Services) are a popular technology among web

applications that combine the REST principles with client-server architectures [Ric07]. Re-

sources exposed by REST services are also identi�ed through URIs, being typically accessed

through four well-de�ned HTTP methods: POST to create a new resource; GET to retrieve

the information contained in a resource; PUT to update the information contained in a

resource; and DELETE to delete a resource. Nevertheless, each REST service is responsible

for de�ning the set of resources that are exposed, and the data exchange format in which

the information is transmitted and stored.

Designing tool adapters as REST services enables a low degree of coupling that eases their

quick and independent development, as compared to other tighter service-oriented alterna-

tives [Pau08], such as W3C Web Services, and of course, as compared to other even tighter

non-service-oriented alternatives, such as Java RMI or CORBA. Besides, the de�nition

4http://docs.oracle.com/javase/1.4.2/docs/guide/rmi/spec/rmiTOC.html. Last visited: June 2012.

http://docs.oracle.com/javase/1.4.2/docs/guide/rmi/spec/rmiTOC.html

Chapter 3. The GLUE! architecture 81

of RESTful interfaces in tool adapters facilitates the implementation of the CRUD-like

(create, read, update and delete) [Mar83] methods in charge of the tool life cycle, as it is

later shown in this section. Finally, it is important to remark that many tools and web

applications are currently o�ering REST-based contracts, as it was studied in the feature

analysis of software tools in chapter 2, thus facilitating also their wrapping by tool adapters.

All in all, designing tool adapters as REST services facilitates their interoperability with

external tools, and reduces their development e�ort.

Therefore, tool adapters must be developed as REST services providing a REST-

ful interface to be invoked by the GLUElet Manager. This interface must o�er a

set of resources identi�ed by URIs and accessed through uniform interfaces. The speci�c

resources that must be provided by tool adapters are presented later in this section.

2. Requests and responses representation format. RPC-like middleware and Web Services

normally impose some type of representation for requests and responses (e.g. Java serialized

objects, SOAP envelopes). Nevertheless, the REST style does not impose any speci�c

data exchange format. In order to achieve interoperability among the elements of the

GLUE! architecture some common representation format must be agreed. Here, the Atom

Syndication format [NWG05a] is chosen as the format that tool adapters must support for

the exchange of data, mainly due to its native use by many web applications, such as blogs,

forums, or podcasts [Ric10].

Atom is an open, extensible, XML-based language that is commonly used for publishing

and editing information in the Web. Atom is also the format used for the transmission of

information in the form of web feeds within many web sites and web tools [Say05]. Users

may subscribe to these web sites and web tools and receive feeds, which are aggregated

through feed readers, like Google News5. The information in each of these feeds is com-

posed by a number of entries, which may contain headlines, articles, and links to other

contents. Besides, every feed (and every entry) must attach some extra metadata including

an author, an identi�er, a title and a timestamp. Therefore, Atom is a well-known format

that can be used to send and receive information among applications developed following

web technologies.

Other data formats like XML or RSS6 (Really Simple Syndication) could have been chosen

instead of Atom, also due to their popularity among web applications. Nonetheless, Atom

is a more speci�c solution for this context because it extends XML for the speci�c purpose

of transmitting web feeds. On the other hand, RSS was discarded because, unlike Atom, it

is not an o�cial speci�cation. Furthermore, few improvements have been done on RSS in

5http://news.google.com. Last visited: June 2012.
6http://rssboard.org/rss-2-0-8. Last visited: June 2012.

http://news.google.com
http://rssboard.org/rss-2-0-8

82 3.4. Description of the architecture

the last few years, and the number of tools currently using RSS is much lower than those

using Atom.

Therefore, tool adapters must be prepared to process requests and responses in

the Atom format. Actually, the data format de�ned in the GLUE! integration contract

for tools is a specialization of the Atom data format, where some minor elements needed by

the architecture, such as the tool provider or the tool type, are added. These extra elements

are de�ned in a speci�c namespace (http://gsic.uva.es/glue/1.0), as it is recommended

by the Atom extension mechanism. Examples with the Atom requests and responses for

tool adapters, including the elements needed by the architecture, can be consulted in the

documentation of the GLUE! data format, which is available in the Appendix B of this

dissertation.

3. Con�guration templates representation format. Tool adapters are aware of the speci�c

features and con�gurations supported by the tools they wrap. So, they must provide

con�guration templates, which must be shown to educators (typically embedded in the

VLE graphical interface) when creating and con�guring instances. In order to facilitate

the processing of these templates in the VLE side, it would be convenient to have them

formalized in a language that could be interpreted by the browser itself, since VLEs are

normally web platforms; both XForms [W3C09a] and HTML5 [W3C12] potentially meet

this demand.

XForms is a W3C standard for the creation and management of forms for the Web. This

standard has several important advantages compared to traditional forms in HTML docu-

ments7. First, XForms is an XML application, and so, it can be included as part of other

XML-based documents like XHTML or Atom. Besides, XForms clearly splits the data and

the representation of the data by using a model-view-controller approach [Kra88]. There-

fore, input values for the parameters de�ned in an XForms document can be validated by

the client of the application, avoiding unnecessary round-trips to the server. Furthermore,

browsers or web clients may easily represent data in their graphical user interfaces with

no or little processing. Nevertheless, no widely used browser supports natively XForms at

the time of writing, and only a special add-on for XForms is compatible with some Firefox

versions.

HTML5, the �fth major revision of the HTML standard, is a well-known W3C speci�cation

for structuring and presenting content in the Web. HTML5 promotes the creation and

management of web forms by incorporating much of the functionality of the superseded

Web Forms 2.0 [W3C09b]. HTML5 has been quickly adopted among web applications in the

last months, mainly led by social networking sites and search engines. Besides, HTML5

7http://w3.org/TR/html4/interact/forms. Last visited: June 2012.

http://gsic.uva.es/glue/1.0
http://w3.org/TR/html4/interact/forms

Chapter 3. The GLUE! architecture 83

is currently supported by several browsers, including Google Chrome, Firefox or Safari.

Interestingly, HTML5 documents can be serialized as XML documents using XHTML5,

being this way easily included as part of other XML-based documents like Atom.

Therefore, tool adapters must be able to provide con�guration templates in

XForms or HTML5, so that educators may set the values for those parameters that

can be con�gured in external tools when creating instances. The GLUE! integration con-

tract for tools currently recommends both representation, although, in the future it might

recommend only HTML5 or XForms, depending on their degree of adoption.

4. Instances naming and identi�cation. Once instances are created, unique identi�ers must

be provided by tool adapters to the outside world. A classical approach has been the

generation of ad hoc alphanumeric tags, or pseudo-random strings. Nevertheless, here,

a URL (Uniform Resource Locator) [NWG05b] representation has been chosen, so that

external tool instances can be uniquely named and identi�ed, but also easily embedded in

web-based VLEs, thus highly simplifying the graphical integration of external tools.

URL refers to a subset of URI that, apart from identifying a resource, provides a means to

locate it. URLs are commonly used to access to resources and contents via web browsers.

The pre�x of the URL (e.g. http) determines how the URL must be interpreted by the web

browser. Web browsers can represent di�erent kinds of resources to end-users, depending

on the URL (web sites, �les, web application clients, etc.). Besides, these resources may

contain hyperlinks to other resources, so that users can navigate through them.

Therefore, tool adapters must be able to provide URLs representing tool in-

stances. This design decision is consistent with the treatment of other resources in tool

adapters, which are represented as URIs, as imposed by the REST-based contract. Signi�-

cantly, if an external tool is not a web application, then the tool adapter must wrap it to

provide a URL. However, many SaaS and Web 2.0 tools are o�ered as web tools, and so,

in most cases, tool adapters do not need any further processing concerning this task.

Behavior expected from tool adapters

The GLUE! integration contract for tools is designed to impose few restrictions with a

widespread adoption, and to support a low degree of coupling in order to reduce the development

e�ort. These design decisions limit the degree of functionality that can be o�ered, as discussed

in the previous chapter. Despite this limitation, the overall GLUE! architecture is designed to

support the management of the tool life cycle, thus facilitating the instantiation and enactment

of collaborative learning situations, due to their importance in the learning process [Dil99] and

in the pedagogical models of VLEs and software tools [Bow11]. Tool adapters are expected to

support this life cycle for the tools they wrap, by o�ering the following behavior:

84 3.4. Description of the architecture

1. The retrieval of the con�guration template for one external tool.

2. The creation of external tool instances with some given con�guration values, and shared

among a list of end-users.

3. The retrieval of external tool instances, once created.

4. The update of the list of end-users sharing external tool instances, once created.

5. The deletion of external tool instances, once created.

This is the minimum functionality that must be o�ered by tool adapters according to

the GLUE! integration contract for tools. The GLUElet Manager employs this functionality

to integrate external tools in VLEs. Signi�cantly, those interested in the development of tool

adapters might extend this behavior adding new functionality to tool adapters, as long as they

meet the GLUE! contract for tools and the contracts imposed by the own external tools. The

internal implementation of this functionality is a responsibility of those developing tool adapters.

Nevertheless, in order to facilitate this development, some guidelines about the actions resulting

into this behavior are advised (although they are not imposed). Table 3.5 presents the expected

behavior and the coarse-grained actions advised for tool adapters. Besides, this table summarizes

the REST resources and HTTP methods that must be o�ered by tool adapters, as well as the

information expected in HTTP requests and the responses that must be returned in case of

success.

Some important clari�cations must be done on this summary table. First, since tool

adapters manage two kinds of information (generic information regarding the con�gurations

of the tools wrapped, and speci�c information regarding the tool instances created), then two

di�erent kinds of REST resources are considered (con�guration and instance). These resources

are typically exposed following a format like http://host:port/ToolAdapter/resource_name.

These REST resources support some of the four CRUD methods reported in the HTTP

speci�cation [NWG99], as detailed in Table 3.5: POST for the creation of a new resource with

a given state; GET for the retrieval of the state (or part of it) of a resource; PUT for the update

of a resource, by completely substituting its state; and DELETE for the deletion of the resources

and its state. It is convenient to note that the /instance/{instanceId} resources support a

POST method, rather than a PUT method, for the update of the list of end-users sharing instances,

since only a part of the state of these resource is modi�ed. The remaining resources and methods

need no further explanation. The REST interface designed for tool adapters follows the guiding

principles de�ned in [Fie00].

HTTP POST requests can include information in the request body (Atom feeds in this

case) [NWG99]. Nevertheless, the request body should be avoided in GET and DELETE requests,

http://host:port/ToolAdapter/resource_name
/instance/{instanceId}

Chapter 3. The GLUE! architecture 85

Table 3.5: Behavior expected from tool adapters: resources and methods that must be o�ered by tool
adapters to be invoked by the GLUElet Manager; coarse-grained actions advised and ex-
pected response from tool adapters.

REST
resource
o�ered

HTTP
Method
o�ered

Information in-
cluded in the
HTTP request

Expected
response

Coarse-grained actions ad-
vised

1 /configuration GET
�tool� attached to the
URI of the request

Con�guration tem-
plate

Search the con�guration tem-
plate for that tool. Return the
con�guration template.

2 /instance POST

Atom containing:
�tool�, �con�guration�,
�users�, �callerUser �,
�parameters�

URI of the
/instance/

{instanceId}

resource. Option-
ally, any extra
information required
for the update or
deletion (e.g. a
di�erent URI)

Create a new resource
/instance/{instanceId}.
Create and con�gure a new
external tool instance. Re-
present the tool instance in
a URL. Store the URL in
the /instance/{instanceId}

resource. Return the URI of
that resource.

3
/instance/

{instanceId}
GET

�callerUser � attached
to the URI of the re-
quest

URL representing
an external tool
instance

Search the instance for that user.
Return the URL for that in-
stance

4
/instance/

{instanceId}
POST

Atom containing:
�tool�, �users�,
�callerUser �, �parame-
ters�

URI of the
/instance/

{instanceId}

resource

Update the list of users sharing
the same instance. If needed,
update the external tool in-
stance. Return the URI of that
resource.

5
/instance/

{instanceId}
DELETE

�callerUser � and �pa-
rameters� attached to
the URI of the request

Ok

Delete the /instance/

{instanceId} resource. Delete
the external tool instance.
Return Ok.

and so, the data that need to be sent (see Table 3.5) is attached in the URL, as it is recommended

when designing REST-based applications [Ric07]. Responses do not �nd this problem and they

all can be formatted in Atom.

There are some information contained in HTTP requests that are intended to be used

either by tool adapters or by external tools. One example is the �con�guration� �lled out by the

educator, which is included in those requests aimed at creating external tool instances. Another

examples are the list of users (�users�) sharing instances, and the particular �tool �; both are

included in the creation and update requests, being the latter also employed to retrieve the

con�guration template. Besides, the name of the end-user that makes requests (�callerUser �)

is attached in most messages as a means of identi�cation with the elements of the architecture

and with external tools. Besides, there are some special information included by the GLUElet

Manager in a generic �eld called �parameters�. Examples of the information contained in this

�eld are the tool provider or credentials for the authentication with external tools. Only those

requests that may need to establish a communication with the tool (creation, update, deletion)

include this special �eld.

/configuration
/instance
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}

86 3.4. Description of the architecture

3.4.3. GLUE! integration contract for VLEs

The GLUE! integration contract for VLEs is also designed following the three global criteria

presented in the previous section: imposing the least number of restrictions, selecting broadly

accepted technologies, and prescribing the minimum functionality to support the life cycle of

external tools. This contract is explained following the same structure as that followed in the

case of tools.

Restrictions on VLE providers

The GLUE! integration contract for VLEs must overcome the two main limitations found

in the literature regarding the eligibility of VLEs: the high number of strict restrictions that

VLEs must meet, and the low degree of adoption of such restrictions. Therefore, and according

to 3.3, the GLUE! integration contract for VLEs must impose few restrictions with a widespread

adoption.

Actually, the GLUE! integration contract for VLEs only imposes three mandatory restric-

tions that VLEs must meet. First, VLEs must be able to render web contents, so that

tool instances can be easily embedded in VLEs, as IFrames, or HTML Objects [W3C12]. This

restriction stems from the fact that most existing tools are currently developed as web tools, and

thus, imposing this restriction highly simpli�es the code required for the graphical integration of

external tools. Main VLEs meet this restriction, since they are all web-based platforms. Second,

VLEs must o�er an extension interface, so that VLE adapters can wrap VLEs, taking ad-

vantage of the functionality they o�er in order to integrate external tools, but without modifying

their code. Furthermore, if this interface is public, then external developers may contribute to

the implementation of the corresponding VLE adapter. Most VLEs meet this restriction, since

they have been typically conceived to promote the extension of their functionality; however, the

extension interface is not always public (e.g. Blackboard). Third, VLEs must understand

the concept of tool or a similar one. For example, in the case of Moodle or LAMS the

concept of tool is mapped to that of activity, while others such as Blackboard or Sharepoint

LMS explicitly use the term tool. This restriction is essential, because otherwise, the integration

of external tools would not make sense. Main VLEs also comply with this restriction, being tools

a key concept in their behavior.

Besides, the GLUE! integration contract for VLEs reports two optional restrictions that

VLEs should meet to fully exploit the features o�ered by the GLUE! architecture. First, VLEs

should understand the concept of group, so that external tool instances can be shared among the

students that belong to the same groups. Otherwise, collaboration and groupwork would not

e�ectively be achieved through VLEs. Besides, VLEs should understand the concept of role, so

Chapter 3. The GLUE! architecture 87

that the roles de�ned by GLUE! can be mapped to the roles de�ned by VLEs. If not, any VLE

user could participate in the instantiation of learning designs, something that does not �t within

the educator-centered pedagogical model of VLEs.

Table 3.6 shows the compliance to these restrictions by main VLEs. All of them meet both

the mandatory and optional restrictions, since these restrictions come from a previous analysis

of their features.

Table 3.6: Restrictions imposed on VLEs and degree of adoption. Mandatory restrictions are marked
in bold, while optional restrictions are marked in italics.

Restrictions Moodle LAMS .LRN Sakai Blackboard Claroline
SharePoint

LMS

Render web contents 4 4 4 4 4 4 4

Extension interface 4 4 4 4 4 4 4

Concept of tool 4 4 4 4 4 4 4

Concept of role 4 4 4 4 4 4 4

Concept of group 4 4 4 4 4 4 4

Technological requirements on VLE adapters

The GLUE! integration contract for VLEs must also overcome the limitations found in

some related works regarding the high development e�ort required to integrate external tools

in VLEs. To overcome these limitations, the GLUE! integration contract for VLEs follows the

same approach as in the case of tools, being the requirements chosen for the communication and

development of VLE adapters based on popular and well-de�ned loosely-coupled technologies.

Actually, the same technological requirements have been agreed to promote the interoperability

among the elements of the architecture. The main issues regarding the communication and

development of VLE adapters, as well as the technological requirements agreed, are explained

next, being summarized in Table 3.7.

Table 3.7: Technological requirements on VLE adapters.

Problem Technological requirement

1
Remote invocation technologies and interfaces
de�nition

To invoke a RESTful interface

2 Requests and responses representation format To process requests and responses in the Atom format

3 Con�guration templates representation format To process XForms or HTML5 con�guration templates

88 3.4. Description of the architecture

1. Remote invocation technologies and interfaces de�nition. VLE adapters invoke the

GLUElet Manager in order to request the creation, con�guration, retrieval, update and

deletion of tool instances. These requests must be sent using some form of remote invoca-

tion. Here, it is important to put forward that the GLUElet Manager has been designed

as a REST service, aimed at promoting a loosely-coupled integration, and facilitating the

implementation of the CRUD-like methods in charge of the tool life cycle, as later discussed

in section 3.4.4.

Therefore, VLE adapters must be able to invoke the RESTful interface o�ered

by the GLUElet Manager. The speci�c resources and methods that can be invoked by

VLE adapters are presented later in this section. It is noteworthy that VLE adapters do not

need to be implemented as REST services, nor to o�er RESTful interfaces. The reason is

that VLE adapters are not designed as services for other elements of the architecture; they

just extend the behavior of VLEs and communicate with them through internal processes.

Signi�cantly, the GLUE! integration contract for VLEs does not impose the de�nition of any

interfaces on VLEs adapters. This clari�cation is pertinent, since most of the requirements

for the development of VLE adapters come from VLE contracts and not from the GLUE!

contract for VLEs.

2. Requests and responses representation format. The REST interface that must invoked by

VLE adapters does not impose any speci�c data exchange format. Here, Atom is also

agreed as the format in which VLE adapters must exchange information with the GLUElet

Manager, due to the same reasons that were discussed in the previous section. Besides,

this decision is consistent with the selection of Atom for the communication between the

GLUElet Manager and tool adapters. Signi�cantly, those requests or responses that the

GLUElet Manager do not need to process can be redirected to VLE or tool adapters, since

they all share the same data exchange format.

Therefore, VLE adapters must be prepared to process requests and responses in

the Atom format. More speci�cally, they must use the aforementioned specialization of

the Atom format for the GLUE! architecture. Examples with these requests and responses

for VLE adapters can be consulted in the documentation of the GLUE! data format, which

is available in the Appendix B of this dissertation.

3. Con�guration templates representation format. VLE adapters must show educators the

con�guration templates, so they can set the values for each external tool instance. Signi�-

cantly, these con�guration templates can be formatted in XForms or HTML5 �les, which are

two well-known speci�cations supported by some web browsers. Therefore, VLE adapters

must be able to process XForms or HTML5 templates in those cases where web

browsers cannot directly process the content of these con�guration templates.

Chapter 3. The GLUE! architecture 89

Behavior expected by VLE adapters

The GLUE! integration contract for VLEs is also designed to impose few restrictions with a

widespread adoption, and to support a low degree of coupling in order to reduce the development

e�ort. Therefore, and due to these premises, the degree of functionality that the GLUElet

Manager can o�er to VLE adapters is quite limited. Nevertheless, this functionality is enough to

support the management of external tool instances, as well as the retrieval of information about

the available external tools. VLE adapters may then expect the GLUElet Manager to expose

the needed functionality to satisfy the following demands:

1. The retrieval of the list of available external tools.

2. The retrieval of functional information about one speci�c external tool.

3. The retrieval of the con�guration template for one external tool.

4. The creation of external tool instances with some given con�guration values, and shared

among a list of end-users.

5. The retrieval of external tool instances, once created.

6. The update of the list of end-users sharing external tool instances, once created.

7. The deletion of external tool instances, once created.

VLE adapters can integrate external tools in VLEs making use of this behavior. Signi�-

cantly, those developers interested in the implementation of VLE adapters may design multiple

use cases over this functionality, as long as they meet the GLUE! contract for VLEs and the

contracts imposed by the own VLEs. Section 3.5 details the recommended use cases, although

they are not imposed. Obviously, the internal implementation of VLE adapters is a responsi-

bility of those developing these adapters. Table 3.8 presents the coarse-grained actions advised

for VLE adapters. Besides, this table summarizes the REST resources and HTTP methods that

VLE adapters should use, the information that should be included in HTTP requests, and the

responses that should be returned by the GLUElet Manager in case of success. Noticeably, the

same clari�cations presented in section 3.4.2 for the equivalent table in the case of tool adapters

can be applied here. In this case, two kinds of REST resources (tool and instance) are de�ned to

manage the generic information about the available external tools, and the speci�c information

concerning the tool instances that are created. It is noteworthy that Table 3.8 includes informa-

tion about the GLUElet Manager that is further explained next. Thereby, it is recommended to

check also section 3.4.4 for a better understanding.

90 3.4. Description of the architecture

Table 3.8: Behavior expected by VLE adapters. Resources and methods that are o�ered by the GLUElet
Manager, and that can be invoked by VLE adapters; coarse-grained actions advised from
VLE adapters in order to send each request.

Coarse-grained actions
advised

REST
resource
invoked

HTTP
method
in-
voked

Information that
is expected in
the HTTP re-
quest

Returned response

1
Request the list of available
external tools.

/tools GET
List of available external tools
in the internal tool registry

2
Request additional func-
tional information about a
tool.

/tools/

{toolId}
GET

Functional information about
one speci�c external tool

3
Request the con�guration
template for a tool.

/tools/

{toolId}/

configuration

GET Con�guration template

4
Request the creation and
con�guration of a new tool
instance.

/instance POST

Atom containing:
�tool�, �con�gu-
ration�, �users�,
�callerUser �

URI of the /instance/

{instanceId} resource, which
contains a reference to the
external tool instance, in the
GLUElet Manager

5
Request an external tool
instance.

/instance/

{instanceId}
GET

�callerUser � at-
tached to the URI
of the request

URL representing an external
tool instance

6

Request the update of
users sharing an instance
after a modi�cation in a
group con�guration.

/instance/

{instanceId}
POST

Atom containing:
�tool�, �users�,
�callerUser �

URI of the /instance/

{instanceId} resource in the
GLUElet Manager

7
Requests the deletion of an
external tool instance.

/instance/

{instanceId}
DELETE Ok

3.4.4. Technologies and behavior of the GLUElet Manager

The GLUElet Manager is the processing element of the GLUE! core in the GLUE! archi-

tecture. It manages the requests and responses related to the life cycle of external tools. These

requests come from VLE adapters (after end-users' actions in VLEs) and are propagated to tool

adapters through the GLUElet Manager. Besides, this element also manages the responses from

tool adapters, returning them to VLE adapters. The GLUElet Manager employs an internal

tool registry to store persistent information about the available external tools, and about the

available tool adapters, thus knowing where to send each request. Signi�cantly, the GLUE! in-

tegration contract for VLEs and the GLUE! integration contract for tools are de�ned according

to the behavior of the GLUElet Manager. The behavior of the GLUElet Manager, including

the resources and methods o�ered to VLE adapters, the resources and methods invoked on tool

adapters, and the coarse-grained actions internally performed, are summarized in Table 3.9. The

clari�cations explained in section 3.4.2 for the equivalent table in the case of tool adapters should

also be considered here.

/tools
/tools/{toolId}
/tools/{toolId}
/tools/{toolId}/configuration
/tools/{toolId}/configuration
/tools/{toolId}/configuration
/instance
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}

Chapter 3. The GLUE! architecture 91

Table 3.9: Behavior of the GLUElet Manager. Resources and methods o�ered by the GLUElet Manager
are expected to be invoked by VLE adapters. Resources and methods invoked by the
GLUElet Manager are expected to be o�ered by tool adapters.

REST
resource
o�ered

HTTP
method
o�ered

Coarse-grained actions
REST
resource
invoked

HTTP
method
invoked

1 /tools GET
Search the list of available external tools in the internal
tool registry. Return the list of available tools.

2
/tools/

{toolId}
GET

Search the information about one speci�c external tool
in the internal tool registry. Return the information
about that tool.

3
/tools/

{toolId}/

configuration

GET

Search the tool adapter for that external tool in the
internal tool registry. Propagate another GET to the
/configuration resource in that tool adapter. Return
the con�guration template, after the response of the
tool adapter.

/configuration GET

4 /instance POST

Create a new resource (/instance/{instanceId}).
Search the tool adapter for that external tool in the
internal tool registry. Propagate another POST to the
/instance resource in that tool adapter. Add the
parameters �eld in the Atom of the request. Store
the URI returned by this adapter in the /instance/

{instanceId} resource, after the response of the tool
adapter. Return the URI of this resource.

/instance POST

5
/instance/

{instanceId}
GET

Propagate another GET to the /instance/

{instanceId} resource in the tool adapter. Re-
turn the URL of the external tool instance, after the
response of the tool adapter.

/instance/

{instanceId}
GET

6
/instance/

{instanceId}
POST

Propagate another POST to the /instance/

{instanceId} resource in the tool adapter. Add the
parameters �eld in the Atom of the request. Return
the URI of the /instance/{instanceId} resource,
after the response of the tool adapter.

/instance/

{instanceId}
POST

7
/instance/

{instanceId}
DELETE

Propagate another DELETE to the /instance/

{instanceId} resource in the tool adapter. Attach
the parameters �eld to that URI. Return Ok, after
the response of the tool adapter.

/instance/

{instanceId}
DELETE

Regarding technologies, the GLUElet Manager is designed as a REST service with a REST

interface that follows the guidelines presented in [Fie00]. Therefore, the GLUElet Manager

exposes a set of resources identi�ed by URIs that may be used by VLE adapters to access to the

information and functionality o�ered by this element. Besides, the GLUElet Manager uses a set

of resources, also identi�ed by URIs, that must be exposed by tool adapters. That design decision

facilitates the propagation of requests along the architecture, since the GLUElet Manager does

not need to make technological changes in these requests to propagate them.

Requests and responses to and from the GLUElet Manager are formatted in the specializa-

tion of the Atom data format that was previously characterized in the de�nition of the GLUE!

integration contracts. It is noteworthy that Atom feeds from VLE adapters are propagated to

/tools
/tools/{toolId}
/tools/{toolId}
/tools/{toolId}/configuration
/tools/{toolId}/configuration
/tools/{toolId}/configuration
/configuration
/configuration
/instance
/instance/{instanceId}
/instance
/instance/{instanceId}
/instance/{instanceId}
/instance
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}

92 3.5. Overall behavior of the architecture

tool adapters with no (or minor) changes in many requests (e.g. adding the parameters �eld).

Signi�cantly, the GLUElet Manager does not need to process con�guration templates, nor URLs,

insofar as both are transparently propagated along the architecture.

3.5. Overall behavior of the architecture

The elements of the architecture were individually explained in the previous section, de-

tailing the behavior o�ered by the GLUElet Manager, and the behavior that is expected to be

o�ered by VLE and tool adapters. This section presents the overall behavior of the GLUE!

architecture, exempli�ed through the typical use cases that may occur during the instantiation

and enactment of collaborative learning situations that require the integration of external tools.

Obviously, these use cases are oriented to support the tool life cycle within VLEs in its four

phases: creation, con�guration and assignment of external tool instances; use of external tool

instances; update of users sharing external tool instances; and deletion of external tool instances.

It is noteworthy that these are illustrative examples of the behavior of the architecture, and that

new use cases (or modi�cations on these ones) may be made, as long as these new use cases meet

the GLUE! integration contracts for VLEs and tools. Examples of use cases built on top of these

can be seen in the implementation chapter.

3.5.1. Use case 1: creation, con�guration and assignment of external tool

instances

The �rst use case is the most complex of the four. It supports the functionality to create

and con�gure external tool instances within VLEs, and to assign them to VLE users depending

on the group they belong to. Figure 3.2 shows the sequence diagram of this use case. Someone

playing a role that can carry out the instantiation of a collaborative learning situation in the

VLE (most likely the educator or, in some settings, an instructional designer) may be the actor

of this use case. This use case starts with the educator adding a tool to a new activity in his

commonly used VLE. The educator can add a VLE built-in tool as usual, or an external tool

(interaction 1.1). In the second case, the VLE adapter retrieves the list of available external tools

from the GLUElet Manager through a GET to the /tools resource (1.2-1.4). Each tool listed

includes some extra information (e.g. the tool provider) that may help the educator in their

choice. After making a decision, the educator selects one of the available external tools (2.1).

Then, the VLE adapter retrieves and render the con�guration template for this tool, querying

the GLUElet Manager through another GET to the /tools/{toolId}/configuration resource

(2.2). This GET is propagated to the /configuration resource in the tool adapter (2.3), which

/tools
/tools/{toolId}/configuration
/configuration

Chapter 3. The GLUE! architecture 93

Figure 3.2: Sequence diagram representing the successful creation, con�guration and assignment of
external tool instances: interactions numbered 1.x enable the retrieval of the list of available
external tools; interactions numbered 2.x enable the retrieval of the con�guration template;
interactions numbered 3.x enable the creation, con�guration and assignment of external
tool instances. It should be noted that multiple instances (one for each group) can be
transparently created in a single educators' request.

94 3.5. Overall behavior of the architecture

actually stores the con�guration template for the selected tool, returning it back to the VLE

adapter (2.4-2.6).

After that, the educator �lls out the template, and requests the creation and con�guration

of tool instances for all the groups de�ned in that activity (3.1); in this step, the educator might

also set di�erent con�gurations for each group, requesting the creation of instances one by one. A

POST to the /instance resource in the GLUElet Manager is sent for each of the groups with some

additional data required to accomplish the creation of tool instances (3.2). This data includes

the tool name (�tool �), the con�guration �lled out by the educator (�con�guration�), the list

of users belonging to the group the instance must be assigned to (�users�), and the VLE user

that makes the request (�callerUser �). The POST is propagated by the GLUElet Manager to the

corresponding tool adapter (3.3), including some extra parameters that may be required for the

creation of the tool instance, such as the tool provider or credentials (in the �parameters� �eld).

The tool adapter actually creates the instance as established in the tool contract (3.4-3.5), and

generates a URL for end-users to access this instance (if the tool does not provide this URL).

The URL is stored in a new resource (/instance/{instanceId}) to be later retrieved in the

enactment phase (3.6). Finally, the successful response from the tool adapter to the GLUElet

Manager includes the instanceId8, which is stored (3.7-3.8), returning another local instanceId to

the VLE adapter (3.9-3.10). Calls 3.2 to 3.9 are repeated for every group de�ned in the learning

activity. Signi�cantly, while educators explicitly create and con�gure external tool instances

within VLEs, the assignment of these instances to VLE users is automatically made.

3.5.2. Use case 2: use of external tool instances

The second use case includes the functionality to retrieve and use external tool instances

within VLEs. Figure 3.3 shows the sequence diagram of this use case. Once instances are

created, those participating in the collaborative learning situation can retrieve, visualize and

use them during the enactment phase. Though this use case is normally started by students

or learners, educators could also retrieve, visualize and use external tool instances, in order to

monitor students' work, give feedback to students, or mediate to facilitate the collaboration

among participants. Therefore, external tool instances are shared among the members of a

group, plus the educators or monitors supervising the activities, as it generally happens with

VLE built-in tools.

This use case starts with the selection of an activity in which an external tool is intended to

be used within the VLE interface (interaction 1.1). Then, the VLE adapter internally matches the

activity, tool, and group identi�er of the VLE user with an /instance/{instanceId} resource

8It should be noted that the values of instanceId are local and unique to the element generating them, but
need not coincide with the values given in other elements of the GLUE! architecture.

/instance
/instance/{instanceId}
/instance/{instanceId}

Chapter 3. The GLUE! architecture 95

Figure 3.3: Sequence diagram representing the use of external tool instances.

96 3.5. Overall behavior of the architecture

in the GLUElet Manager. A GET request is then sent to this resource in the GLUElet Manager

(1.2), which propagates another GET to the corresponding /instance/{instanceId} resource

in the tool adapter (1.3). Both requests include the �callerUser � parameter attached to the

URL, so that the external tool and the tool adapter may identify the user that requests the

instance. After that, the tool adapter returns the URL representing the external tool instance

(1.4-1.5), which is embedded in a web page within the VLE graphical interface (1.6). Finally,

the participant can use the tool instance (2.1) in collaboration with other group members. It

is noteworthy that there is no further communication between VLEs and external tools, once

instances are retrieved.

3.5.3. Use case 3: update of users sharing external tool instances

The third use case includes the functionality to update the list of users sharing instances, as

a result of group modi�cations within VLEs. Figure 3.4 presents the sequence diagram of this use

case. Educators may decide to modify some of the groups after the instantiation of a learning

design, for instance to react to common events that may occur in real educational scenarios

(e.g. participants' absences or latecomers). Therefore, this use case can be considered useful

to recon�gure the group structure and the components of each group. The GLUE! architecture

enables the update of users, which, depending on the particular tool contract, may require an

extra interaction with external tools. However, in some cases, tool adapters can manage the

update of users without requiring an additional communication with external tools, as it is

detailed with examples in the implementation chapter.

This use case starts with the educator modifying one or more groups within the VLE

interface (interaction 1.1). The VLE adapter must be aware of these modi�cations through

its internal noti�cation mechanism with the VLE (1.2), so that the requests for the update of

users can eventually start. The VLE adapters internally matches the groups that are modi�ed

and the instances a�ected (i.e. a set of /instance/{instanceId} resources in the GLUElet

Manager). Next, and for each of these resources, a POST request is sent, including the new

list of users (�users�), the tool name (�tool �) and the caller user (�callerUser �) (1.3), as it also

happens in the creation use case. The GLUElet Manager propagates this POST to the equivalent

/instance/{instanceId} resource in the tool adapter (1.4), but adding the parameters needed

for the communication with the external tool (i.e. the �parameters� �eld). The tool adapter

updates the list of users sharing that instance, sometimes through an additional interaction with

the external tool (1.5-1.6), and sometimes by updating the information they store associated to

that tool instance. The response to this process is the same as in the creation use case, in order

to facilitate its implementation (1.7-1.8). There is a �nal con�rmation to end-users after all the

instances are updated (1.9-1.10).

/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}

Chapter 3. The GLUE! architecture 97

Figure 3.4: Sequence diagram representing the update of users sharing external tool instances.

98 3.6. Security issues

3.5.4. Use case 4: deletion of external tool instances

The last use case includes the functionality to delete external tool instances within VLEs.

Figure 3.5 depicts the sequence diagram of this use case. Educators may need to delete the

external tool instances created for a learning activity, once this activity (or the entire collaborative

learning situation) is �nished. The GLUE! architecture enables the deletion of these instances

at any moment after their creation, as well as the deletion of all the resources generated during

the creation process.

This use case starts with the deletion of an activity or tool in a VLE (interaction

1.1). Then, the VLE adapter internally matches this activity or tool with one or more

/instance/{instanceId} resources in the GLUElet Manager. Next, a DELETE request is sent

to each resource (1.2) indicating who is the VLE user that makes the request (�callerUser �).

For each request received by the GLUElet Manager, another DELETE request is propagated to

the equivalent /instance/{instanceId} resource in the corresponding tool adapter (1.3), but

adding the additional information (�parameters�) that may be required to delete the external tool

instance (e.g. the tool provider or credentials). The tool adapter actually deletes the external

tool instance (1.4-1.5), and after that, the tool adapter and the GLUElet Manager delete the

resources associated to that instance (1.6-1.7). This process is repeated for every group de�ned

in the learning activity. Finally, the educator receives a con�rmation of the �nalization of the

process (1.8).

3.6. Security issues

There are several security issues that should be taken into account when tackling the inte-

gration problem; these issues typically arise as a consequence of managing the data and resources

belonging to integrated tools within external systems (VLEs). Besides, in this particular work,

some additional security issues appear as a result of designing the GLUE! architecture as a set of

distributed software elements, which may run on di�erent premises, being communicated through

computer networks. Besides, VLEs and tools are also involved in these issues, as usual. Figure

3.6 shows an overview of the six security issues detected in this work. Here, it is important to

point out that dealing with these security issues is out of the main scope of this research, although

solutions for all of them have been agreed. However, instead of proposing new approaches to

tackle these issues, this dissertation relies on well-known mechanisms provided by VLEs, tools,

or by other similar works in the literature.

1. User level authorization for the use of VLEs. VLEs normally allow the management of

learning activities to a list of users that have been previously registered in that VLE. VLE

/instance/{instanceId}
/instance/{instanceId}

Chapter 3. The GLUE! architecture 99

Figure 3.5: Sequence diagram representing the deletion of external tool instances.

100 3.6. Security issues

Figure 3.6: Overview of the security issues in the GLUE! architecture: 1. User level authorization
for the use of VLEs; 2. VLE level authorization for the use of the GLUElet Manager; 3.
GLUElet Manager level authorization for the use of tool adapters; 4. Tool adapter level
authorization for the management of external tool instances; 5. User level authorization
for the access to external tool instances; 6. Privacy and integrity along the communication
channels

administrators are typically in charge of registering these end-users, assigning them di�erent

permissions (e.g. educators can instantiate learning activities, while students can enact

them). In order to identify authorized users, VLEs normally implement some authentica-

tion mechanisms. For instance, Moodle reports more than �fteen ways for authentication9.

Some of these mechanisms rely on internal or external servers, such as LDAP (Lightweight

Directory Access Protocol) [How03] or CAS (Central Authentication Service) [Maz05] to

get single-sign on (SSO), thus enabling end-users access to multiple platforms through a

single authentication process. Besides, Moodle also supports SSO by building a federation

with other systems, and using the Shibboleth infrastructure [Mor04]. Other VLEs, such as

LAMS or Sakai, only report compatibility with LDAP1011 and Shibboleth1213, apart from

the traditional manual authentication. All in all, this dissertation employs the native VLE

mechanisms for the authentication and authorization of end-users, as a premise to use the

GLUE! architecture.

9http://docs.moodle.org/22/en/Authentication. Last visited: June 2012.
10http://wiki.lamsfoundation.org/display/lamsdocs/LDAP+Configuration. Last visited: June 2012.
11https://confluence.sakaiproject.org/display/DOC/LDAP+Integration. Last visited: June 2012.
12http://wiki.lamsfoundation.org/display/lams/LAMS+as+Shibboleth+IdP. Last visited: June 2012.
13http://devel.it.su.se/pub/jsp/polopoly.jsp?d=2376&a=21472. Last visited June 2012.

http://docs.moodle.org/22/en/Authentication
http://wiki.lamsfoundation.org/display/lamsdocs/LDAP+Configuration
https://confluence.sakaiproject.org/display/DOC/LDAP+Integration
http://wiki.lamsfoundation.org/display/lams/LAMS+as+Shibboleth+IdP
http://devel.it.su.se/pub/jsp/polopoly.jsp?d=2376&a=21472

Chapter 3. The GLUE! architecture 101

2. VLE level authorization for the use of the GLUElet Manager. This issue arises when

end-users call the GLUElet Manager within their commonly used VLEs, as explained in

section 3.5. This issue could be easily solved if the GLUElet Manager had a list with the

VLEs for which requests are accepted. That would avoid misuses of the GLUElet Manager,

rejecting requests from undesired or malicious clients. Besides, this solution could be useful

to control the number of calls made from each VLE. In order to implement this solution,

the GLUElet Manager could check the IP of the client that makes the request, comparing

this IP with those registered in the list of authorized systems. Nevertheless, IP addresses

can be falsi�ed without much di�culty. Better solutions have been implemented in other

integration works. For instance, Apache Wookie clients are granted with a unique API key,

which must be included in every call to an Apache Wookie server. An analogous approach

can be thus implemented here for the identi�cation of authorized VLEs. Therefore, VLEs

should register themselves in the GLUElet Manager, receiving a key that should be included

in every call from VLE adapters to the GLUElet Manager.

3. GLUElet Manager level authorization for the use of tool adapters. This issue appears when

a GLUElet Manager invokes a tool adapter as part of the four use cases explained in

section 3.5. Implementing some kind of authorization mechanism would also avoid misuses

of tool adapters, serving also to control the number of calls received by each of these

adapters. Remarkably, several GLUElet Managers installed in di�erent domains may use

the same tool adapter. Therefore, a solution like the one presented for the second issue

could be applied here too. In this case, each GLUElet Manager should register itself in

tool adapters, which would give them a key that should be included in every call from the

GLUElet Manager to that tool adapter.

4. Tool adapter level authorization for the management of external tool instances. This secu-

rity issue occurs when tool adapters need to create, delete, and sometimes update, external

tool instances. Many external tools require end-users (or other systems) to be authorized

in order to create and manage external tool instances. In the context of tool integration,

these actions are normally the consequences of educators' behavior within VLEs during

the instantiation of learning situations, as previously explained in this chapter. Educators

may thus be the ones authorized in external tools, rather than tool adapters, especially

if these educators prefer to own the instances they create, so that these instances can oc-

casionally be used (if possible) without VLE or GLUE! mediation. This is an important

novelty compared to the second and third security issues, and so, a new issue stems from

this one: the user level authorization for the management of tool instances. All in all, this

is a quite complex problem, since the creation, deletion and update of tools instances need

to be delegated to tool adapters on educators' behalf. A more complex solution to tackle

this emerging issue is separately proposed and explained in section 3.6.1.

102 3.6. Security issues

5. User level authorization for the access to external tool instances. This security issue arises

when end-users retrieve and access to external tool instances. Once instances are retrieved,

users directly interact with external tools without the mediation of VLEs or GLUE!. This

is because of the fact that the elements of the GLUE! architecture only retrieve URLs

representing external tool instances from tool adapters. Once a URL reaches the user's

browser, it is this browser that opens a connection to the tool. At this point, participants

need to be authorized to use these instances. Typically, end-users register themselves in

external tools (for example, by creating a user account) in order to access to their data and

resources. To identify authorized users, external tools usually implement some authentica-

tion mechanisms. As an example, most tools support a manual authentication employing

user credentials. Besides, some external tools support OpenID [Har07a], which is a popular

delegated authentication mechanism that enables end-users to authenticate with the cre-

dentials of an OpenID identity provider (e.g. Facebook, Google, Yahoo! or MyOpenID14).

It is noteworthy that, since URLs are used to access to external tool instances, then web

browsers may maintain sessions with external tools, and so, end-users would not need to

set credentials every time they access to an instance of the same tool in the same session.

Signi�cantly, tools may implement di�erent authorization levels, which can be o�ered to

end-users depending on the implementation of tool adapters. An illustrative example is

Google Docs, which enables three authorization levels for sharing instances. With the basic

mechanism, instances are publicly o�ered on the Web, and anyone can �nd and use them.

A more elaborated mechanism publicly o�ers instances too, but only those that have the

link (URL) can use them. Finally, there is an option in which the owner of the instances

decides who is authorized to use them. All in all, this dissertation relies on the native

tool mechanisms for the authentication and authorization of end-users (once they retrieve

external tool instances and want to use them embedded with the VLE interface).

6. Privacy and integrity along the communication channels. HTTP requests and responses

are sent throughout the elements of the architecture using computer networks. Therefore,

some policies should be adopted to prevent third-parties from eavesdropping. Classical

solutions include the encryption of HTTP requests and responses using asymmetric-key

algorithms (public/private key algorithms) [Fer03]. As an example, Basic LTI employs a

simple encryption based on a symmetric-key algorithm, namely 2-legged OAuth [IET10], in

order to encrypt the POST messages sent from tool consumers (VLE side) to tool providers

(tool side). Similarly, two-legged OAuth could be employed here to encrypt the communi-

cation between VLE adapters and the GLUElet Manager, and also between the GLUElet

Manager and tool adapters.

14http://myopenid.com. Last visited: June 2012.

http://myopenid.com

Chapter 3. The GLUE! architecture 103

3.6.1. User level authorization for the management of external tool instances

The user level authorization for the management of external tool instances is a quite

complex security issue that requires a well thought-out solution, and so, this issue, unlike the

others, needs a further explanation. This issue refers to educators delegating the creation, dele-

tion and update of tool instances to tool adapters. That entails trusting, at least, in these

elements of the architecture, which are the ones that actually execute these actions. Thus, trust

risks may appear, since tool adapters are typically o�ered as distributed systems, being installed

and maintained by di�erent providers. There are several delegation mechanism supported by

external tools (e.g. the proprietary AuthSub15 from Google). Fortunately, OAuth [IET10] is

gaining momentum as a popular delegation mechanism that enables third-party applications to

access data and information in di�erent systems on users' behalf (receiving these applications

access tokens to be used when they send requests to OAuth compliant systems). OAuth is

currently implemented in several important tools like Google Docs or Twitter. OAuth 1.0 is

the reference protocol, although there is a new version in draft, OAuth 2.0 [NWG11], and some

providers like Google have started to support both versions.

Remarkably, security issues are out of the main scope of this dissertation, although two

compromise solutions with di�erent levels of complexity, coupling, and security risks are intro-

duced here. The �rst one is a weak approach based on centralized institutional credentials.

These credentials are obtained from external tools by the GLUE! administrator, and allow VLE

users to manage tool instances. The GLUE! administrator registers these credentials in the

internal tool registry, associating them to speci�c external tools. From then on, the GLUElet

Manager includes these credentials in the Atom feed (in the �parameters� �eld), every time a

creation, update or deletion request is sent to tool adapters. Tool adapters use these credentials,

as determined by tool contracts, when needed. This �rst approach has two limitations. First,

institutions own external tool instances (i.e. instances are created with institutional credentials),

instead of the educators that request their creation. Besides, some tool providers may disagree

with this policy, if they consider that credentials must belong to individual end-users, rather than

to institutions. Therefore, this approach is intended for small institutions with few educators

(and usually with their own GLUE! installation). Besides, this �rst approach is also recommend-

able for those educators that do not want to be aware of security issues, insofar as this approach

grants SSO once educators are logged in VLEs.

The second is a stronger solution in which educators need to be individually authorized in

each external tool (typically educators create an account in external tools, receiving their own

personal credentials). This solution relies on the main delegated authorization mechanism at

writing time, OAuth, so that authorized educators delegate the creation, deletion and update

15http://code.google.com/apis/accounts/docs/AuthSub.html. Last visited: June 2012.

http://code.google.com/apis/accounts/docs/AuthSub.html

104 3.6. Security issues

of tool instances to tool adapters using this mechanism. Besides, and in order to avoid the impo-

sition of being an OAuth server to external tools, this approach also supports the management

of tool instances using native tool credentials and OpenID credentials. In both cases, edu-

cators need to share their credentials with tool adapters, delegating the actual creation, deletion

or update of instances to them. In order to implement this second approach, a new element

is de�ned as part of the GLUE! core. This element, called GLUE! security component (GSC),

helps in the management of these three mechanisms. Besides, the GSC may temporarily store

educators' credentials (OpenID or native) or access tokens (obtained with OAuth), to speed up

the management of multiple tool instances. The novelties this second approach adds, exempli-

�ed in the �rst use case presented in section 3.5.1 (creation and con�guration of external tool

instances within VLEs), are the following:

When implementing tool adapters, developers must indicate in the con�guration template

one or more mechanisms supported (OAuth, OpenID and/or native tool credentials).

In the response to the GET /configuration (2.4), the GLUElet Manager queries the GSC,

which checks whether valid credentials or tokens have been previously stored associated to

the educator that wants to create instances (new interaction 2.4.1).

If the educator has valid credentials or tokens the process goes on as usual. Otherwise, the

creation of instances (3.2) is stopped until the educator solves the security dependencies.

The VLE adapter warns the educator (new interaction 3.1.1), forcing him to click on a

new solve security dependencies option, which is collected by the VLE adapter. The VLE

adapter queries the GSC (3.1.2), which provides the OAuth interface (3.1.3a), so that the

educator allows the tool adapter to access the external tool on his behalf (3.1.4a), or a

generic authentication interface (3.1.3b) in which the educator sets his OpenID or native

credentials (3.1.4b). Both interfaces are exposed as URLs, thus being embedded in the

VLE user interface.

At this point, credentials or tokens may be stored in the GSC at educators' choice. To

reduce security leaks tokens expire after a certain time. The same policy can be applied to

native or OpenID credentials stored in the GSC.

Once the dependencies are solved, the process goes on as usual (3.2), although in the POST

or DELETE requests, the GLUElet Manager queries the GSC (new interaction 3.2.1) to

obtain the credentials or tokens that may be used.

This second solution requires minor changes in the GLUE! contracts (to include the secu-

rity mechanisms supported in the con�guration templates, to pass the �callerUser � in the GET

/configuration request, and to embed new URLs in VLE adapters). Therefore, this approach

/configuration
/configuration

Chapter 3. The GLUE! architecture 105

preserves the loosely-coupling in GLUE!, and overcomes the limitations of the �rst solution,

although it does not grant SSO. This solution is intended for bigger institutions with many

educators, or where the security in the management of instances is a key issue.

These are two compromise solutions for this security issue. The idea is to let practitioners

and institutions choose which of them to employ. They must consider that the �rst is a weaker

solution that hides the security to end-users, at the cost of requiring GLUE! administrators to

take care of institutional credentials. The second is a stronger solution that requires end-users to

manually solve security dependencies. Developers may incrementally implement their adapters

to �rst meet the weak approach, and then improve their tool adapters to support OAuth, and

their VLE adapters to embed the new security interfaces (i.e. the OAuth interface and the

generic authentication interface that collects native or OpenID credentials).

Nevertheless, these solutions are not without problems. Practitioners need to trust in some

of the GLUE! elements in both cases (the GLUElet Manager, tool adapters, and even the GSC

in the second solution). Risks concerning these elements can be reduced by using OAuth, by

installing the whole architecture in the institution that is intended to use it, or by trusting only

in o�cial GLUE! partners. These partners could be listed in the GLUE! o�cial registry, being

certi�ed by external certi�cation authorities [Ala10b]. Despite these risks, it is noteworthy that

these are compromise solutions aimed at minimizing the restrictions imposed on VLEs and tools,

and the requirements needed for the development of VLE and tool adapters.

3.7. Discussion

The GLUE! architecture aims at meeting the six stakeholders' requirements that were

introduced in chapter 2. Now that GLUE! has been presented, a theoretical discussion analyzing

which of the decisions taken in the design of GLUE! foster the compliance to each of these

requirements can be performed. Remarkably, this is only a theoretical discussion, and evidences

backing up the actual compliance to the stakeholders' requirements are provided in chapter 5 of

this dissertation.

3.7.1. Compliance to the stakeholders' requirements

The GLUE! architecture is designed to support the life cycle of external tools, including

the four typical use cases detailed in section 3.5. The most outstanding features of these use cases

are the creation of separated instances for di�erent groups, and the update of the group members

allowed to access these instances. As a result of GLUE! supporting this life, educators can easily

create and manage tool instances within a single environment, as part of the instantiation of

their collaborative learning situations, thus saving a lot of time and e�ort. As an example, an

106 3.7. Discussion

educator that does not use GLUE!, but still want their students to use an external tool like

Google Documents in a learning activity de�ned in a VLE like Moodle, must follow several

manual steps: go to Google Documents; set valid credentials; create a new instance; con�gure

the instance (e.g. uploading an initial �le); modify the access and edition settings; copy the URL

of the instance; paste the URL of the instance in Moodle; repeat the last �ve steps for each group

de�ned in the Moodle activity. Therefore, this educator has to assume an important burden,

which increases as the number of students, groups, activities and tools do. Without GLUE!, the

educator would probably consider that this burden is not worthwhile, thus simplifying the original

learning design to be able to instantiate it with the existing VLE built-in tools. Moreover, this

manual management of external tool instances is not always possible because not all the tools

are web tools to provide URLs identifying tool instances, as explained in chapter 2. Thus, the

overall behavior considered in the design of the GLUE! architecture is intended to meet REQ1,

to enable the instantiation of individual and collaborative activities that require

the integration of external tools with an attainable e�ort for educators. Besides, by

supporting this life cycle, students can �nd all the external tool instances they need, in order to

work in groups within a single and centralized platform, and so, they can focus on achieving the

learning objectives, rather than on spending time in searching tools and �nding ways to share

their contributions with their group partners. Therefore, the behavior considered in the design

of GLUE! also fosters the compliance to REQ2, to enable the enactment of collaborative

activities that require the integration of external tools, facilitating the collaboration

among participants.

Both the GLUE! integration contracts for VLEs and tools are designed to impose few

restrictions with a widespread adoption to VLE and tool providers. Due to this widespread

adoption, VLEs and tools are, in general, likely to meet these restrictions, and so, they could

eventually be integrated through the GLUE! architecture. Sections 3.4.2 and 3.4.3 show with

outstanding examples in Tables 3.3 and 3.6 that the architecture is designed to foster the com-

pliance to REQ 3, to support the integration of existing and popular VLEs and tools.

Actually, both mandatory and optional restrictions are met by the seven main VLEs and the

seven main tools for education, except for Prezi, which, at the moment, does not meet the op-

tional restriction for tools. Besides, not only these seven tools could eventually be integrated,

but also most of those listed in the Top 100 Tools for Learning, as explained in section 3.4.2, thus

also promoting the compliance to REQ 4, to support the integration of many external

tools.

The GLUE! integration contracts for VLEs and tools promote the loosely-coupling through

the use of web technologies and popular standards (REST, Atom, XForms and URLs), with

the exception of HTML5 which is not a standard yet (although XForms can alternatively be

employed). Besides, the GLUE! core acts as an intermediate software layer, partially assuming

Chapter 3. The GLUE! architecture 107

the integration functionality and fostering a many-to-many integration of external tools in VLEs.

These design decisions aim at facilitating the development of VLE and tool adapters, and thus,

they are intended to meet REQ 5, to demand an attainable development e�ort for the

integration of tools and VLEs. Remarkably, VLE and tool adapters wrap VLEs and tools

by means of the adapter pattern, which bene�ts the compliance to REQ 6, to be built over

existing VLEs and tools, rather than modifying their implementations.

A further discussion about the compromise between the development e�ort and the func-

tionality o�ered could be argued, taking positions for a higher degree of functionality o�ered,

at the cost of an additional e�ort. Here, two clari�cations can be made. First, GLUE! o�ers

more functionality (in particular the support of the tool life cycle) than other loosely-coupled

integration works like Basic LTI. Actually, GLUE! could act as a middleware architecture for

loosely-coupled approaches, allowing the integration of Basic LTI compliant tools and W3C wid-

gets in VLEs. Second, GLUE! is designed as a modular architecture. Thus, extra elements

could be added to the GLUE! core, imposing new requirements on the adapters and making

them thicker. Of course, external developers may decide to implement the current integration

contract, or the one that considers the extra functionality. For instance, an extra module could

be designed to retrieve and manage outcomes from students' work, but that would probably

require tool adapters to expose new REST resources, and VLE adapters to enable educators to

collect and visualize those evidences within VLEs.

3.7.2. GLUE! interoperability with other loosely-coupled integration

approaches

The GLUE! architecture presents important advantages for the generic integration of

external tools in VLEs, compared to other tighter integration approaches in the literature, as

previously explained. Besides, GLUE! also presents two important advantages compared to

loosely-coupled integration works like Apache Wookie and Basic LTI. These advantages are the

imposition of few restrictions with a widespread adoption (as opposed to Apache Wookie), so

that a wider range of external tools can be integrated, and the support of the tool life cycle

(as opposed to Basic LTI), so that the instantiation and enactment of collaborative learning

situations within VLEs is facilitated.

Nevertheless, the GLUE! architecture should not be seen as a competitor of other loosely-

coupled integration approaches. Actually, GLUE! may work as a middleware architecture for

Apache Wookie and Basic LTI. The reason is that they all impose similar technical require-

ments; in particular, the de�nition of REST interfaces. Besides, the functionality o�ered by

both Apache Wookie and Basic LTI can be included in the tool life cycle supported by the

GLUE! architecture. More speci�cally, Apache Wookie supports the creation and con�guration

108 3.7. Discussion

of W3C widget instances, which can later be used and deleted through REST requests to the

resources o�ered by a widget server16. Signi�cantly, Apache Wookie also supports the update of

users sharing instances. On the other hand, Basic LTI only supports the use of instances [IMS10b]

through a POST request to a Basic LTI compliant tool.

Figure 3.7 presents how interoperability between GLUE! and other loosely-coupled inte-

gration approaches could be achieved. W3C widgets could be integrated in VLEs by developing

an Apache Wookie adapter (plug-in in the Apache Wookie terminology [Wil08]), which connects

the GLUElet Manager and a widget server, in which W3C widgets are deployed. According to

Wilson's design [Wil08], the widget server provides a homogeneous interface that enables the

creation and con�guration of W3C widgets, whose data and user preferences (con�gurations) are

stored in this server. New widgets might be deployed in the widget server, and they could be

integrated in VLEs through GLUE! using the same Apache Wookie adapter. Similarly, Basic LTI

compliant tools could be integrated in VLEs by developing a Basic LTI adapter (consumer in the

Basic LTI terminology [IMS10b]). This adapter would connect the GLUElet Manager and Basic

LTI providers, which wrap external tools, so that these tools may meet the homogeneous Basic

LTI integration contract; new Basic LTI compliant tools could also make use of the same generic

Basic LTI adapter. The concept of GLUE! as a middleware architecture might be extended to

other similar loosely-coupled integration approaches that follow similar technical requirements,

and whose functionality �ts within the tool life cycle supported by GLUE!.

Figure 3.7: GLUE! interoperability with other loosely-coupled integration approaches: Apache Wookie
and Basic LTI.

The use of GLUE! as a middleware architecture presents several advantages compared to

the direct integration of W3C widgets and Basic LTI compliant tools. First, the development

e�ort is reduced, since the code required for the development of the Apache Wookie and Basic LTI

adapters for GLUE! is typically lower (compared, for instance, to the e�ort required to develop an

16https://cwiki.apache.org/WOOKIE/wookie-rest-api.html. Last visited: June 2012.

https://cwiki.apache.org/WOOKIE/wookie-rest-api.html

Chapter 3. The GLUE! architecture 109

Apache Wookie plug-in for Moodle or a Basic LTI consumer for Blackboard), since the graphical

integration with VLEs is assumed by VLE adapters, and the management of instances is partially

covered by the GLUElet Manager. Besides, once these two adapters are developed, W3C widgets

and Basic LTI compliant tools become available in multiple VLEs, taking advantage of the many-

to-many integration. Another advantage is that the information of the available external tools

is centralized in the internal tool registry, and so, VLE administrators do not need to add and

con�gure every Basic LTI compliant tool in each VLE (as it currently occurs), thus reducing

their administrative burden. Finally, the interoperability of GLUE! with other loosely-coupled

approaches increases the range of available tools for educators and students in the instantiation

and enactment of collaborative learning situations.

3.7.3. GLUE! for the integration of external tools in other contexts

The decisions taken in the design of the GLUE! architecture can also be applied to achieve

interoperability among software systems in other contexts where collaboration and integration

are key issues. These systems may belong to the educational domain, but also to others where

an integration solution should be built upon similar requirements to those presented in section

3.3.

For instance, wikis are software platforms used in education to support collaboration and

groupwork, although they can also be employed in other domains like CSCW [Ell91], in order to

achieve a common understanding within a group or community. MediaWiki, the software appli-

cation used in most wikis, was designed to support collaboration and the integration of external

applications, and so, it could bene�t from the design decisions behind the GLUE! architecture.

Moreover, MediaWiki meets the mandatory restrictions of GLUE!, as it can be seen in Table

3.10. Therefore, a MediaWiki VLE adapter could be developed to integrate external tools in

MediaWiki through the GLUE! architecture. As an example, the integration of Text2MindMap

in a MediaWiki page to promote the collaborative organization of ideas over a certain topic

would be feasible through the GLUE! architecture. Nevertheless, MediaWiki lacks support to

the creation and management of groups, thus limiting the functionality that might be o�ered,

as it will be later discussed in the implementation chapter.

Other examples are social networking sites, which are mainly used for social interactions.

Nevertheless, they have also been used to support collaboration and communication in the edu-

cational domain [Loc08]. Facebook, the most widespread social networking site, was designed

to be extended through the development of third-party plugins, as many other of these sites do,

and so, it could bene�t from the design decisions behind the GLUE! architecture. Furthermore,

Facebook meets the mandatory restrictions of GLUE!, as it can be seen in Table 3.10, and thus,

a Facebook VLE adapter to integrate external tools in Facebook through GLUE! could be de-

110 3.8. Conclusions

Table 3.10: Restrictions imposed on other platforms used for learning and degree of adoption. Manda-
tory restrictions are marked in bold, while optional restrictions are marked in italics.

Restrictions MediaWiki Facebook SLE

Render web contents 4 4 4

Extension interface 4 4 4

Concept of tool 4 4 4

Concept of group 8 4 4

Concept of role 4 8 8

veloped. As an example, the use of Doodle as a poll tool within Facebook in order to schedule a

meeting with old friends would be feasible through the GLUE! architecture. Nonetheless, Face-

book lacks support to the de�nition of roles, and so, the integration of tools would occur in

informal and non-hierarchical contexts, where the life cycle of collaborative learning situations

is blurred, and users arrange the integrated tools by themselves.

Similarly to social networking sites, PLEs are designed to support informal education where

learners aggregate and con�gure tools and resources by themselves. PLEs are intended to support

collaboration and communication too, and so, they could bene�t from the design decisions in the

GLUE! architecture. Actually, the SLE [Whi11], which is one of the most remarkable examples

of PLE, meets the mandatory restrictions of GLUE!, as presented in Table 3.10. Therefore, a

SLE VLE adapter could also be developed to promote the integration of external tools in this

PLE. As an example, Google Presentations could be integrated in SLE through GLUE! in order

to promote the realization of a collaborative presentation among a set of students freely arranged

according to their common interests.

Regarding the applicability of the ideas behind the GLUE! architecture in domains other

than education, they can also be useful in the Business Process Modeling domain [Geo95], where

many research e�orts have been devoted to the proposal of work�ow engines, such us Bonita17,

Together Work�ow Server18, or Joget19. These engines can interact with processes and tools

[Pal07], which are currently integrated following a rather ad hoc approach, and so, they could

bene�t from an integration architecture similar to that proposed in this dissertation.

3.8. Conclusions

The GLUE! architecture is designed to enable the integration of multiple existing external

tools in multiple existing VLEs, imposing few restrictions that most VLE and tool providers
17http://bonitasoft.com. Last visited: June 2012.
18http://www.together.at/prod/workflow/tws. Last visited: June 2012.
19http://joget.org. Last visited: June 2012.

http://bonitasoft.com
http://www.together.at/prod/workflow/tws
http://joget.org

Chapter 3. The GLUE! architecture 111

currently meet, reducing the development e�ort required to integrate new VLEs and tools, and

supporting the life cycle of external tools within VLEs. The decisions made during the design of

GLUE! consider the issues and alternatives analyzed in the integration problem, as well as the

limitations found in previous related works.

The support that GLUE! provides for the management of the life cycle of external tools

is intended to allow the e�cient and successful instantiation (REQ1) and enactment (REQ2)

of collaborative learning activities in which such tools are employed. The imposition of few

and popular restrictions to VLE and tool providers (three mandatory restrictions on VLEs and

one mandatory restriction on tools, plus two optional restrictions on VLEs and one optional

restriction on tools) try to facilitate the integration of many (REQ4) existing and popular external

tools in the main VLEs (REQ3). Besides, the de�nition of loosely-coupled integration contracts,

which combine REST interfaces, Atom data format, XForm or HTML5 con�guration templates,

and URL representations, the proposal of an intermediate software layer that partially undertakes

the integration functionality, and the fostering of a many-to-many integration are oriented to

reduce the development e�ort (REQ5). Finally, by means of the adapter pattern existing VLEs

and tools can be wrapped without modifying their code (REQ6). Signi�cantly, security issues,

which entail an additional problem in generic integration approaches in this context due to the

heterogeneity of VLEs and tool, have been analyzed proposing a compromise solution based on

widely accepted standards too. Figure 3.8 summarizes the requirements, the design decisions

and the consequence these decisions have in the GLUE! architecture.

The GLUE! architecture can clearly be seen as an integration alternative to tighter inte-

gration works that require a much higher development e�ort. Nevertheless, it can also comple-

ment loosely-coupled integration works, like Apache Wookie or Basic LTI. Actually, the GLUE!

architecture could complement other loosely-coupled integration works that employ similar tech-

nologies, and whose functionality o�ered �ts in the life cycle of external tools. Though GLUE!

is an integration solution for the context of software tools and VLEs, it could also be applied to

other platforms used for collaborative learning like wikis, social networking sites or PLEs, and

in other domains apart from education, such as Business Process Modeling or CSCW.

It is noteworthy that the global objective of this dissertation is the design, development and

evaluation of a middleware architecture that enables the integration of multiple existing external

tools in multiple existing VLEs, overcoming the limitations of previous related works. This

chapter has presented the �rst step, which is the design of the architecture. Next chapters deal

with the development of a reference implementation and with the evaluation of the architecture

using this reference implementation.

112 3.8. Conclusions

Figure 3.8: Overview of the proposed architecture within the integration problem.

Chapter 4

GLUE!-RI: Reference implementation

of the architecture

This chapter presents the reference implementation of the GLUE! architecture, which includes a

reference implementation of the GLUE! core and several VLE and tool adapters. This reference

implementation shows that the GLUE! architecture can actually be implemented. Besides, it is

useful to formally evaluate whether GLUE! meets the stakeholders' requirements, and overcomes

the limitations of the related works. Furthermore, it starts up a collection of VLE and tool adapters

that may grow with external contributions. In order to properly organize this chapter, section 4.2

introduces the methodology employed for the development of the reference implementation. Then,

section 4.3 overviews the elements that compose the reference implementation of the GLUE! core

and the available adapters. After that, section 4.4 provides instructions for third-party developers

that want to integrate new tools or VLEs through the GLUE! architecture. Additionally, section

4.5 explains the steps for installing and con�guring this reference implementation, while section 4.6

illustrates its usage from end-users' perspective. Finally, the chapter concludes with section 4.7.

The reference implementation of the GLUE! architecture is �rst mentioned in [Ala12a]. The code of

the GLUE! core and the available adapters can be found at http://gsic.uva.es/glue, being this

set of adapters continuously growing. Besides, the particular challenges involved in the development

of a LAMS adapter (considering the LAMS distinctive features) have been published in the spe-

ci�c international conference of this VLE [Ala11b], while [Ala12c] illustrates the instantiation and

enactment of an authentic collaborative learning situation in both Moodle and LAMS.

4.1. Introduction

Once the GLUE! architecture has been fully speci�ed, any developer could proceed to

implement it. Nevertheless, to facilitate this work, and in order to assess GLUE! in real practice,

a reference implementation of GLUE!, called GLUE!-RI (GLUE! Reference Implementation),

has been developed in the context of this doctoral research; GLUE!-RI is the generic term for

a software distribution that includes a reference implementation of the GLUE! core and a few

113

http://gsic.uva.es/glue

114 4.1. Introduction

examples of VLE and tool adapters; all these elements are further detailed in this chapter. A

reference implementation is by de�nition a complete and usable implementation of a speci�cation

or architecture, �which is warranted to give the authors' intended answers in a moderately-

sized problem� [Rip02]. In the case of speci�cations, a reference implementation should be

a precise and unambiguous interpretation of the speci�cation [Pos00]. Signi�cantly, reference

implementations of speci�cations are normally thought for developers, and not so much for end-

users. As an example, IMS provides a reference implementation for Basic LTI in PHP, Python

and Java1, aimed at supporting developers working in Basic LTI, and also at promoting the

integration of this speci�cation in other applications. In the case of software architectures, a

reference implementation should be a fully functional system intended for developers, but also

for end-users, so that they can use the proposed system in authentic scenarios. As an example,

Apache Wookie (Incubating)2 is the open source reference implementation of the architecture

presented in [Wil08]. In both cases, reference implementations could be useful as models for

further comparisons and evaluations with other implementations of the same speci�cation or

architecture. In summary, reference implementations o�er some straightforward code, which

should be available to everyone intended to study, develop, use or evaluate a speci�cation or

architecture.

The development of the reference implementation of the GLUE! architecture at this point

is highly advisable for several reasons. First, it shows that GLUE! can actually be implemented.

Second, it can be tested and evaluated to study whether GLUE! overcomes the limitations of

previous works. Third, it can be used by real practitioners to support collaborative learning

situations within VLEs, which is the �nal purpose intended for this architecture. Finally, it

can be used to start up a collection of VLE and tool adapters that grows through the contri-

butions of external developers, who may implement new adapters. This is a key issue, since

generic integration works normally rely on the creation of communities of developers, who share

their implementations, thus working to increase the number of integrated systems. In this case,

these contributions may help practitioners to choose from a wider variety of tools during the

instantiation of their learning designs, no matter the VLEs they are used to.

Being GLUE!-RI just the reference implementation, other implementations are feasible

too. Actually, each of the tiers of GLUE!-RI (GLUE! core, VLE adapters, tool adapters) could

be improved by supporting new use cases built on the top of the existing ones, and new tools

and VLEs could be integrated by developing new adapters; as long as these elements meet the

GLUE! integration contracts (and the VLE or tool contracts), they would interoperate with the

other elements developed as part of GLUE!-RI. The code of GLUE!-RI is available at http:

//gsic.uva.es/glue for its improvement, or to be reused when programming new adapters.

1http://code.google.com/p/ims-dev. Last visited: June 2012.
2http://incubator.apache.org/wookie. Last visited: June 2012.

http://gsic.uva.es/glue
http://gsic.uva.es/glue
http://code.google.com/p/ims-dev
http://incubator.apache.org/wookie

Chapter 4. GLUE!-RI: Reference implementation of the architecture 115

The remainder of this chapter presents the reference implementation of the GLUE! archi-

tecture, focusing on each of the elements that were developed so far. Besides, this implementation

is analyzed from the perspectives of three di�erent kinds of users: developers that may want to

contribute to the current implementation; administrators that may want to install and con�gure

GLUE!-RI; and practitioners that may want to use GLUE!-RI to integrate external tools in their

collaborative learning situations.

4.2. Methodology

The overall methodology followed to de�ne the requirements, design, implement, test and

deploy the GLUE! architecture is the UP [Lar02], as mentioned in the previous chapter. However,

the activities related to the development of GLUE!-RI only include: implementation, testing and

deployment. The components of GLUE!-RI are separately developed, as recommended in the UP,

being later tested and deployed altogether in order to check whether the di�erent elements meet

the initial requirements and the expected behavior. Besides, since the UP is the methodology

employed, then GLUE!-RI is incrementally and iteratively developed, adding new use cases and

functionality in each iteration, as it is detailed in section 4.3. Signi�cantly, the number of VLEs

and tools that are integrated through GLUE! is also incrementally augmented by developing new

adapters.

Besides, the Scrum framework [Kni06] for project management and agile software de-

velopment in its variant for small teams [Ris00] is employed in order to facilitate the activities

related to the implementation, testing and deployment of GLUE!-RI. Scrum is a framework

intended for the management of complex software development projects, as it is the case of

GLUE!-RI, which involves multiple technologies, contracts and systems. According to Scrum,

complex projects should be divided in short and homogeneous periods of time, called sprints,

which may last from one week to a few months. Each sprint contains a list of tasks to be tackled.

These tasks are prioritized in an earlier meeting, being formally arranged in backlogs (one for

each sprint, and one for the whole project). Each sprint ends with another meeting in which

the degree of accomplishment of each of these tasks is presented, and the backlogs are updated.

In the particular context of GLUE!-RI, three people constitute the development team, includ-

ing the author of this dissertation. Furthermore, in this case, the duration established for the

sprints is one week, and di�erent project backlogs are annotated: one for the GLUElet Manager,

one for each VLE adapter, and one for the whole set of tool adapters. The use of a popular

framework like Scrum promotes a better identi�cation of priorities depending on the expected

research interests and evaluation outcomes, reduces overtime, and facilitates the coordination

among researchers and the members of the development team (and any other external developer

that may later join).

116 4.3. Reference implementation

4.3. Reference implementation

GLUE!-RI includes a reference implementation of the GLUE! core and several examples

of VLE adapters and tool adapters. The technologies employed for the development of these

elements are �rst introduced in this section. Then, a global overview of GLUE!-RI is o�ered,

detailing later each of the available elements.

4.3.1. Technologies

The GLUElet Manager and the tool adapters are designed as REST services, exposing a set

of resources through uniform interfaces, as studied in the previous chapter. In order to develop

these REST services, a RESTful web framework for Java, called Restlet3, is employed. Restlet

was selected because it is open source, and one of the main frameworks used nowadays for the

development of RESTful web services [Lou12]. Besides, Restlet includes a package to support

the Atom syndication format4, thus facilitating, not only the management of resources and

URIs, but also the communication and transmission of data among the elements of the GLUE!

architecture. Furthermore, due to the use of the Java programming language, con�guration

templates can be easily processed using the standard Java package for parsing XML documents5.

The use of Restlet facilitates the development of GLUE!-RI, but also the development of new

adapters, since much of the code is included in this framework. Moreover, the use of Restlet

also promotes the robustness and standardization of the reference implementation because this

is a leading framework. Nonetheless, it is convenient to remark that these REST services could

be developed using alternative frameworks and languages, as long as they meet the GLUE!

integration contracts.

VLE adapters, however, are not REST services, although they are expected to invoke the

RESTful interface of the GLUElet Manager. Besides, VLE adapters are normally developed in

the same language that the VLE they wrap, since these adapter normally run in the VLE server,

extending the VLE functionality, and possibly modifying its graphical user interface. Therefore,

only those VLE adapters wrapping VLEs developed in Java, like LAMS or Sakai, can use the

Restlet framework. Nevertheless, other frameworks, like the Recess framework6, which is an

outstanding RESTful PHP framework, could be employed to facilitate the development of some

other VLE adapters, like those for Moodle or Claroline.

3http://restlet.org. Last visited: June 2012.
4http://restlet.org/documentation/snapshot/jse/ext/org/restlet/ext/atom/package-summary.html.

Last visited: June 2012.
5http://docs.oracle.com/javase/1.4.2/docs/api/javax/xml/parsers/package-summary.html. Last

visited: June 2012.
6http://recessframework.org. Last visited: June 2012.

http://restlet.org
http://restlet.org/documentation/snapshot/jse/ext/org/restlet/ext/atom/package-summary.html
http://docs.oracle.com/javase/1.4.2/docs/api/javax/xml/parsers/package-summary.html
http://recessframework.org

Chapter 4. GLUE!-RI: Reference implementation of the architecture 117

4.3.2. Overview

The reference implementation of the GLUE! core and the available set of VLE and tool

adapters at the time of writing this document are shown in Figure 4.1. As it can be seen, three

VLE adapters and nine tool adapters have been implemented. The three VLE adapters enable

the integration of external tools in Moodle, LAMS and MediaWiki. The nine tool adapters

enable the integration in VLEs of Google Docs (Documents, Spreadsheets and Presentations),

MediaWiki, Dabbleboard, W3C widgets deployed in Apache Wookie servers, Doodle, Facebook

Live Stream7 (a forum for Facebook users), Kaltura, Note�ight8 and any URL representing a

web content.

Figure 4.1: Overview of GLUE!-RI including: the GLUElet Manager, three VLE adapters (Moodle,
LAMS, MediaWiki) and nine tool adapters (Google Docs, MediaWiki, Dabbleboard, Apache
Wookie, Doodle, Facebook Live Stream, Kaltura, Note�ight, web content).

7http://developers.facebook.com/docs/reference/plugins/live-stream. Last visited: June 2012.
8http://noteflight.com. Last visited: June 2012.

http://developers.facebook.com/docs/reference/plugins/live-stream
http://noteflight.com

118 4.3. Reference implementation

GLUE!-RI is incrementally and iteratively developed. Actually, Table 4.1 shows the �ve it-

erations that have been carried out on GLUE!-RI. The �rst iteration included the development of

the GLUElet Manager, the Moodle adapter and three tool adapters (Google Docs, Dabbleboard

and web content), and was able to support the basic tool life cycle that was originally presented

in section 2.4.2, using the �rst solution for the user level authorization in the management of

external tool instances (i.e. weak solution based on institutional credentials). The second it-

eration added one new VLE adapter (MediaWiki) and two new tool adapters (MediaWiki and

Apache Wookie), and also implemented the use case concerning the update of users, which

stemmed from the results of a �rst evaluation experiment with real practitioners. The third iter-

ation added a new tool adapter (Doodle) and implemented a new use case to support the reuse

of instances in di�erent activities of a collaborative learning situation instantiated in Moodle or

MediaWiki. The lack of functionality to reuse instances was also detected in the �rst evaluation

experiment with real practitioners. This new use case relies on VLE adapters and the behavior

supported by the GLUElet Manager and tool adapters, and so, it does not modify the design of

the architecture, nor the integration contracts, as it is further explained in section 4.3.4. The

fourth iteration included the development of a new VLE adapter (LAMS) and three new tool

adapters (Facebook Live Stream, Kaltura and Note�ight). Finally, the �fth iteration imple-

mented the second solution for the user level authorization in the management of external tool

instances (i.e. strong solution supporting OAuth, OpenID, and native credentials). With the

�fth iteration GLUE!-RI achieves the status it was intended for. Nevertheless, new VLE and tool

adapters may be developed in subsequent iterations, as well as new use cases or other proposals

regarding, for instance, security issues. Actually, the solutions presented in chapter 3 for the VLE

level authorization in the use of the GLUElet Manager, for the GLUElet Manager level autho-

rization in the use of tool adapters, and for the privacy and integrity along the communication

channels, are pending for implementation, but with a lower priority.

Table 4.1: Iterations in the development of GLUE!-RI.

Number
of itera-
tion

New VLE
adapters

New tool adapters
New use cases imple-
mented

User level authoriza-
tion for the manage-
ment of instances

End date

1 1 (Moodle)
3 (Google Docs, Dab-
bleboard, web con-
tent)

3 (creation and con-
�guration, use, and
deletion of external
tool instances)

Weak solution October 2010

2 1 (MediaWiki)
2 (MediaWiki,
Apache Wookie)

1 (update of users) Weak solution April 2011

3 - 1 (Doodle) 1 (reuse of instances) Weak solution July 2011

4 1 (LAMS)
3 (Facebook Live
Stream, Kaltura,
Note�ight)

- Weak solution November 2011

5 - - - Strong solution June 2012

Chapter 4. GLUE!-RI: Reference implementation of the architecture 119

The duration of each of the �ve iterations is quite variable, as it can be seen in the end date

associated to each iteration in Table 4.1. The product obtained after the end of each iteration

is then tested and deployed by the development team, and later used by real practitioners in a

di�erent experiment, as detailed in chapter 5. Once each product is tested, deployed and used,

the elements belonging to that product are improved to address the problems identi�ed. Some

of these problems may require further changes in the design of the architecture, as it happened

with the update of users, thus iterating over the phases of the overall research methodology and

the UP.

GLUE!-RI is licensed under the GNU General Public License (GPL)9 for non-commercial

uses. Therefore, the reference implementations of the GLUE! core and the available adapters can

be redistributed and modi�ed under the terms established in the GPL license. Those interested

in employing some of these elements for commercial purposes should contact the GSIC-EMIC

research group, which is the proprietary of GLUE!-RI. The information regarding the installation,

con�guration and usage of GLUE!-RI is detailed in sections 4.5 and 4.6.

4.3.3. GLUE! core

The reference implementation of the GLUE! core includes one single processing element

in the business logic layer, the GLUElet Manager), and two databases in the data layer. The

�rst database is the internal tool registry, which was considered in the design of the architec-

ture. This database stores persistent information about the available external tools. The second

database is the gluelets repository, which is implemented in this reference implementation to

locally support the storage and management of information about the external tool instances

that are created. Signi�cantly, no presentation tier is available for practitioners, since they make

use of the GLUE! core from their commonly used VLEs. However, a presentation tier may be

considered in the future to help GLUE! administrators in the process of creating and updating

the information in the internal tool registry (registries can currently be queried or updated by

GLUE! administrators using existing database management applications).

The GLUElet Manager is implemented as a REST service, employing the Restlet frame-

work for Java. The GLUElet Manager exposes the resources detailed in section 3.4.4, and

supports the four use cases detailed in section 3.5. Besides, it uses the JDBC (Java Database

Connectivity) API10 for accessing the two aforementioned databases.

The internal tool registry is a MySQL database that collects the information regarding

the available set of external tools. This database must be populated during the installation of

GLUE!, and later updated to include more external tools, for example if new tool adapters are

9http://www.gnu.org/licenses/gpl.html. Last visited: June 2012.
10http://docs.oracle.com/javase/tutorial/jdbc. Last visited: June 2012.

http://www.gnu.org/licenses/gpl.html
http://docs.oracle.com/javase/tutorial/jdbc

120 4.3. Reference implementation

developed. Several SQL scripts are available to facilitate the initial population of the internal

tool registry. The �elds in this registry are arranged as explained in Table 4.2.

Table 4.2: Fields in the internal tool registry.

Name Purpose

Tool identi�er
Integer that uniquely identi�es the external tool, and also the REST resource containing the
information about this tool. The GLUElet Manager exposes this REST resource under the form
of /tools/{tool_identifier}. The tool identi�er is for the internal use of the architecture only.

Tool name O�cial name of the tool (e.g. Doodle) to be displayed to educators and students.

Tool type

Description of the tool using educational abstractions, modeled according to the Ontoolcole
ontology [Veg08]. Examples of these descriptions are: �communication tool� and �synchronous
text editor�. Educators could perform semantic searches of educational tools using these de-
scriptions. These searches turn out especially useful as the number of available external tools in
the internal tool registry increases. The semantic search of tools is not available in the current
implementation yet, although it is listed for future work.

Tool provider

URL of the company or institution providing the external tool. Some tools are o�ered by one
single vendor (e.g. Facebook or Google Docs), while others can be installed and o�ered from
di�erent domains (e.g. MediaWiki or the widget server). This information is intended for
educators when adding external tools, so that they can choose their preferred tool provider.

Tool adapter
URL of the adapter that wraps the external tool. The GLUElet Manager uses this information
to address its requests to the correct tool adapter. This information is never displayed to
end-users.

Tool parameters

Extra information required to manage external tool instances. These parameters may contain,
for instance, the addressing of the tool interface, or credentials for the authentication with
external tools in the weak security mechanism described in the previous chapter. This informa-
tion is stored in the internal tool registry, rather than in tool adapters, so that a minor change
(e.g. the IP of the server that provides the tool) does not require a modi�cation in the tool
adapter, but an update in this centralized registry. These parameters are for internal use of
tool adapters, and so, tool adapters need to know how to manage them.

The gluelets repository is the database that collects the information of the external tool

instances that are created. This database is initially empty, and it is automatically populated

by the GLUElet Manager as instances are created. Each entry in this repository is called gluelet,

and typically represents one external tool instance in the GLUElet Manager. The �elds in this

repository are described in Table 4.3.

Table 4.3: Fields in the gluelets repository.

Name Purpose

Gluelet identi�er

Integer that uniquely identi�es the REST resource containing the information of the external
tool instance in the GLUElet Manager. The GLUElet Manager o�ers this REST resource under
the form of /instance/{instance_identifier}. This information is for the internal use of the
architecture only.

Instance URI
URI that identi�es the external tool instance in a REST resource exposed by a tool adapter.
The GLUElet Manager uses this information to retrieve, update, or delete the tool instance.

Tool identi�er
This is the identi�er of the tool that created the instance. This information may be used by the
GLUElet Manager to extract the corresponding tool parameters from the internal tool registry,
in case they are needed for the update or deletion of the tool instance.

/tools/{tool_identifier}
/instance/{instance_identifier}

Chapter 4. GLUE!-RI: Reference implementation of the architecture 121

This is the reference implementation of the GLUE! core, although other implementations

for the GLUElet Manager and the databases could be developed. Besides, this reference im-

plementation could be improved to add some extra features. For instance, several GLUElet

Managers hosted by di�erent institutions could be federated, sharing one single internal tool

registry (although each GLUElet Manager may have its own gluelets repository). This way, the

information regarding external tools would be centralized, and it could be more easily updated

by one single administrator.

4.3.4. VLE Adapters

Three VLE adapters for Moodle, LAMS and MediaWiki are available in GLUE!-RI as

of this writing. These adapters are �rst called by the VLE when the user wants to create a

new gluelet (how this is commanded by the user is VLE-dependent). After that, VLE adapters

must interact with the user (to show con�guration information or to report the result of the

creation), with the VLE (to query the permissions of the user, to retrieve the list of users that

must share this instance, or to other VLE-speci�c needs to be checked upon the creation of an

activity or a tool instance) and with the GLUElet Manager. Besides, VLE adapters must store

information that map VLE-speci�c identi�ers, such as activity, group, course or tool identi�ers

(or a combination of some of them) to GLUE! identi�ers, namely gluelet identi�ers (see Table

4.3). Other information concerning the current status of users allowed to access an instance may

be persisted too, in order to facilitate their modi�cation and update. All this results in four

commonalities of the otherwise di�erent adapters.

VLE adapters must provide a graphical user interface that is integrated with that of the

VLE, preferably keeping the same look-and-feel.

VLE adapters must meet the integration contract imposed by the VLE they wrap.

VLE adapters must meet the GLUE! integration contract for VLEs.

VLE adapters must persist, in the VLE database or in a separate one, the aforementioned

information to connect VLE concepts to those of GLUE!.

Signi�cantly, new speci�c use cases can be built upon these four commonalities without

modifying the design of the GLUE! architecture, or the GLUE! integration contracts. As an

example, the LAMS adapter supports the export of learning designs that include built-in and

external tools in the authoring environment, as later detailed. The export of learning designs is a

LAMS distinctive feature, aimed at promoting the sharing of these designs among practitioners,

and so, it was considered when designing and developing the LAMS adapter. Signi�cantly, no

122 4.3. Reference implementation

extra code (apart from the one required by the LAMS contract) was speci�cally programmed in

the LAMS adapter to support this use case.

Nevertheless, in other situations, some code could be added to VLE adapters to support

additional use cases that may be of interest for practitioners. An example is the reuse of instances

(also reload of instances) in di�erent activities within the same course or lesson, which is currently

included in the VLE adapters for Moodle and MediaWiki. This functionality allows educators to

indicate that the same tool instance used in an earlier activity of the learning design is intended

to be used again in a later activity. As instances involve a state of a resource in the tool (e.g. the

state of a document), this can also be seen as stating that the output of one activity becomes

the input of a later one (though only if both employ the same external tool).

This use case is useful to instantiate those learning designs where students need to reuse

previous results to perform a certain activity. For example, in a peer review, the documents

generated by a group of students must be reviewed by another group in a subsequent activity.

Many works have researched the so-called data �ow problem [Pal08], which studies the �ow of

artifacts among learning activities. Nonetheless, the solutions to this problem normally entail the

addition of much extra ad hoc code to process the output and input artifacts. On the contrary,

a simpler and more generic approach can be implemented in VLE adapters to achieve instance

reuse in VLEs: each time the user requires to create a new activity or tool backed up by a gluelet,

two options are available: the creation of a new instance or the reuse of an existing one. The

use case for creating an instance was detailed in section 3.5.1. If the educator prefers to reuse

an instance, the VLE adapter shows a list of the existing ones for this tool and VLE, and the

educator chooses the one he �nds appropriate. Then, the VLE adapter stores in its repository

a mapping between a new VLE activity or tool and an already existing gluelet identi�er. The

GLUElet Manager is not invoked in this use case, since no instance is actually created or modi�ed.

Thus, this solution preserves the loosely-coupling of the GLUE! architecture.

Interestingly, sometimes the reuse of instances can be further exploited together with the

ability of GLUE! to update the users allowed to access an instance at a given time (e.g. to let

the members of a group consume a document generated by another group in a previous activity).

The reuse of instances is especially indicated in those designs that follow a logical structure or

sequence, and where users do not need to make changes in the activities that are �nished.

The VLE adapters for Moodle, LAMS and MediaWiki are detailed next. As usual, other

implementations for these adapters, which may include extra use cases, are feasible, as long as

they meet the GLUE! integration contract for VLEs and the contracts of the VLEs they wrap.

Besides, improvements on these adapters, and updates due to changes in the version of VLEs,

can also be made. In particular, and besides the speci�c issues discussed for each of the adapter,

all of them process XForms con�guration templates (mostly because of the limitations on their

rendering by current web browsers), but they have not been evaluated with HTML5 templates.

Chapter 4. GLUE!-RI: Reference implementation of the architecture 123

Moodle Adapter

The Moodle adapter is available for the version 1.9 of Moodle, although a new implemen-

tation is planned for the version 2.2 onwards. The code of this adapter is in PHP, and the cURL

library for PHP11 is employed to make the HTTP requests to the REST resources exposed by

the GLUElet Manager.

Moodle manages built-in tools in the form of Moodle activities, as explained in section

2.3.1. Therefore, the VLE adapter associates the concept of Moodle activity to that of a gluelet.

The Moodle adapter makes use of the Moodle internal MySQL database, adding new tables to

store speci�c information about the gluelets that are created. These tables are similar to those in

other modules that extend the functionality and built-in tools in Moodle, and contain the �elds

detailed in Table 4.4.

Table 4.4: Fields in the tables added by the Moodle adapter to the Moodle database.

Name Purpose

Local identi�er
Integer that uniquely identi�es each combination of course, activity, tool, group and gluelet
(gluelet identi�er). This identi�er is generated and managed by the Moodle adapter.

Course identi�er
Integer that uniquely identi�es the course in Moodle. The course identi�er is automatically
generated and managed by Moodle.

Activity identi�er
Integer that uniquely identi�es the activity in Moodle. The activity identi�er is automatically
generated and managed by Moodle, and it is independent of the course identi�er, even though
Moodle activities are normally arranged in courses.

Name of the activity
Name of the Moodle activity. This name is set by the educator when creating the Moodle
activity, and it is later shown to end-users when carrying out that activity.

Description of the ac-
tivity

Description of the Moodle activity. This description is also set by the educator, and it is
later shown to end-users when carrying out that activity too.

Name of the tool
Name of the external tool. This information is retrieved from the internal tool registry (query-
ing the GLUElet Manager), and corresponds to the external tool selected by the educator.
The name of the tool is also shown to end-users when enacting the activity.

Tool identi�er

Identi�er of the tool in the internal tool registry for which that gluelet is created (e.g.
/tools/{tool_identifier}). This information is retrieved from the internal tool registry,
and corresponds to the external tool selected by the educator. The tool identi�er may be
internally used by the Moodle adapter (e.g. to reuse instances of the same tool in di�erent
Moodle activities).

Group identi�er

Integer that uniquely identi�es the Moodle group that is expected to share that gluelet. The
group identi�er is automatically generated and managed by Moodle. In those cases where
educators do not de�ne groups in an activity, the value of this integer is -1, and the gluelet
is shared among all the participants belonging to the Moodle course.

Gluelet identi�er
Identi�er of the gluelet in the gluelets repository (e.g. /instance/{instance_identifier}).
This information is used by the Moodle adapter to retrieve, delete or update this instance.

The Moodle adapter implements the four use cases supported by the GLUE! architecture,

plus the reuse of instances in di�erent activities of the same course. For the latter, the gluelet

identi�er reused is copied to a new entry in the aforementioned table, and a call to the GLUElet

11http://php.net/manual/en/book.curl.php. Last visited: June 2012.

/tools/{tool_identifier}
/instance/{instance_identifier}
http://php.net/manual/en/book.curl.php

124 4.3. Reference implementation

Manager, in order to update the users sharing that instance, is sent. Therefore, with this

adapter, educators can create and manage external tool instances within Moodle during the

instantiation of their learning designs, while students can later use these instances to enact the

individual and collaborative learning activities. It is noteworthy that educators can also monitor

the students' work at any moment during the enactment of the collaborative learning situation,

by visualizing the available external tool instances for each group within the Moodle interface.

Furthermore, educators can annotate the content of these instance, giving, in most cases, a

synchronous feedback to the students. The usage of the Moodle adapter for educators and

students, as well as its installation and con�guration processes are further detailed in sections

4.5 and 4.6. Among the limitations found in the Moodle adapter, it must be highlighted that

the backup option, which enables the creation of backups of Moodle courses, is not implemented

in the current version of this adapter. This is an important Moodle feature in order to recover

from failures, and so, it is listed for further versions of the Moodle adapter.

LAMS Adapter

The LAMS adapter is developed and tested for the version 2.3 of LAMS. The code of this

adapter is in Java, and it uses the Apache Struts and Spring frameworks. Besides, the access to

the MySQL database is made through Hibernate libraries. The LAMS adapter also adds speci�c

tables to this database in order to manage the speci�c information about gluelets. These tables

follow a similar structure compared to the ones presented in the case of the Moodle adapter, and

so, they are not replicated here. The Restlet framework for Java is employed to send the HTTP

requests to the REST resources exposed by the GLUElet Manager.

The LAMS adapter implements the four use cases supported by the GLUE! architecture.

Besides, the LAMS adapter has been developed to support the three main LAMS distinctive

features according to educators [Bow11] and vendors [Dal07]. These features are: the monitoring

of students' performance, the use of learning sequences and pathways, and the management of

learning designs [Ala11b]. The support of these three features by the LAMS adapter is detailed

next.

LAMS enables educators (also referred to as monitors in the LAMS terminology) to monitor

students' performance in the monitoring environment, including also some built-in tracking fea-

tures, such as time charts or sequence status. The GLUE! contract for VLEs requires that the list

of VLE users sharing each tool instance, which may include the full course list or just the subset

of students in a certain group, is sent in creation requests. Educators that assess students' work

are also included in this list, as it happens in other VLE adapters too. Therefore, the LAMS

adapter includes the educators delivering a course as extra users in every tool instance that is

created. Once instances are actually created, educators can visualize their content and annotate

Chapter 4. GLUE!-RI: Reference implementation of the architecture 125

them, thus monitoring students' performance and giving them feedback. The remaining LAMS

functionality for monitoring is also achieved just by following the LAMS contract.

LAMS enables the creation of sequences of activities in the authoring environment. On the

other side, the GLUE! architecture independently manages each external tool and instance. The

LAMS adapter takes advantage of this lack of correlation among tools and instances, in order

to generate isolated activities that include external tools, and that may become sequences of

activities through the LAMS own authoring logic for the management of transitions and branches.

These sequences are supported by the LAMS adapter if students or educators manually decide

to move forward or backwards. That happens in the LAMS monitoring environment when

students click on the �next activity� button, or return to previous activities using the LAMS

activity diagram. Likewise, branchings are supported if decisions are based on �teacher's choice�

(the educator decides which group follows each branch) or �group-based � (each group follows

a di�erent branch). Nevertheless, the loosely-coupling of both the GLUE! architecture and its

reference implementation precludes from using decisions based on � learner's output�, since no

mechanisms are implemented to retrieve outcomes from external tools. Few LAMS built-in tools,

however, can take decisions based on this � learner's output� option.

LAMS was designed to facilitate the import/export of learning designs and their sharing

among practitioners. Therefore, the LAMS adapter complies with the LAMS contract to allow

the reuse of the same learning design in di�erent LAMS courses. Designs including external

tools can be imported and deployed in the same LAMS installation, as usual. The same applies

to other LAMS installations, provided that they are connected to the same GLUElet Manager,

or at least, to another GLUE! installation that integrates all the external tools included in the

learning design.

Nevertheless, the current implementation of the LAMS adapter has two limitations com-

pared to the Moodle adapter. First, the LAMS adapter does not support di�erent con�gurations

for di�erent groups in the same LAMS activity. The reason is that the con�guration of LAMS

activities and the selection of the number of groups for each of these activities are independent

actions in the LAMS authoring environment. This limitation also occurs with LAMS built-in

tools, since LAMS only enables one single con�guration for each activity. A simple solution

to overcome this limitation is to use branchings in order to de�ne di�erent activities for each

group; these activities can eventually be con�gured in di�erent ways. The second limitation

is that the functionality to reuse instances in di�erent activities of the same LAMS lesson is

not implemented in the current version of the LAMS adapter, although it is planned for future

improvements. The usage of the LAMS adapter, as well as its installation and con�guration

processes are further detailed in sections 4.5 and 4.6.

126 4.3. Reference implementation

MediaWiki Adapter

MediaWiki is not a VLE, as discussed in section 2.3.1, although it was designed to support

collaboration and integration of external applications. Besides, MediaWiki is frequently used by

practitioners as a centralized environment for the delivery of courses [Ala11a,Mar08a]. Signi�-

cantly, MediaWiki meets the mandatory restrictions imposed in the GLUE! integration contract

for VLEs. Therefore, the development of a VLE adapter for MediaWiki was considered feasible

and convenient.

The MediaWiki adapter is developed and tested for the version 1.16 of MediaWiki. The

code of this adapter is in PHP and JavaScript. PHP is employed for the processing and execution

code, while JavaScript is employed for the generation of dynamic content in the graphical user

interface. The MediaWiki adapter uses the cURL library for PHP to make HTTP requests to

the REST resources exposed by the GLUElet Manager. Actually, the code for making requests

and processing responses was reused from the one in the Moodle adapter. In a similar way, the

code for processing con�guration templates and representing them in the graphical interface was

also reused.

The MediaWiki adapter adds a speci�c MySQL table to the MediaWiki database in order

to manage the information about gluelets. Nevertheless, in this case, the number of �elds in

this table is much lower, since MediaWiki does not include features for the de�nition of courses,

activities or groups. In fact, this table only stores a list of gluelet identi�ers. Besides, MediaWiki

pages (articles) locally store the gluelet identi�ers for all the instances that are created within

those pages too, under <gluelet> tags. These tags are generated by the own MediaWiki adapter,

following the MediaWiki contract for the de�nition of new tags. These tags support one speci�c

parameter, which is the title for the instance. Of course, additional text or resources can be

included, as usual, in those MediaWiki pages in which instances are created. Despite the lack of

support of courses, activities and groups in MediaWiki, educators may manually de�ne courses

by linking di�erent articles, adding in each of these articles the activities that each group must

carry out. Nevertheless, an important caution should be taken into account here, since every

user registered in MediaWiki could access any instance. This limitation is a consequence of using

MediaWiki as if it was a VLE, as explained in chapter 3, and is coherent with MediaWiki general

policy of not using access control lists on a per-article basis. Remarkably, the MediaWiki adapter

demonstrates that MediaWiki can integrate external tools using the GLUE! architecture, even

though limited by its lack of pedagogical features for the de�nition and management of groups.

In any case, the MediaWiki adapter implements the four use cases supported by the GLUE!

architecture. Besides, it easily supports the reuse of instances in di�erent articles. The reason

is that references to gluelet identi�ers are stored in the MediaWiki database, but they are not

associated to any speci�c article. Therefore, end-users can copy and paste the content of the

Chapter 4. GLUE!-RI: Reference implementation of the architecture 127

<gluelet> tag from one article to another. Interestingly, in the current MediaWiki adapter, the

registration of new users in MediaWiki automatically launches a request for the update of users

in external tool instances. The usage of the MediaWiki adapter, as well as the installation and

con�guration processes are further detailed in sections 4.5 and 4.6.

Other VLE Adapters

Other VLE adapters are being implemented or are planned to be implemented. For

example, a VLE adapter for SharePoint LMS is currently under development, as part of a Spanish

National project in partnership with the e-learning company élogos12. At the moment, a web

part developed in ASP.NET is available for Microsoft SharePoint Server 2010. Nevertheless,

this web part needs to be improved to incorporate the main Sharepoint LMS features in order

to manage courses and users when integrating external tools. Besides, other VLE adapters are

planned for Sakai and Drupal13, which is another content management system that also supports

collaboration and integration of external applications.

4.3.5. Tool Adapters

Nine tool adapters for Google Docs, MediaWiki, Dabbleboard, Apache Wookie, Doodle,

Facebook Live Stream, Kaltura, Note�ight and any URL representing a web content are currently

available in GLUE!-RI. All these adapters are called by the GLUElet Manager in order to create

and con�gure, retrieve, update or delete external tool instances, as well as to retrieve the con-

�guration templates of a given tool. After some of these calls, tool adapters need to interact

with external tools to actually create (and con�gure), update or delete instances. Besides, tool

adapters store some information about the instances they create to enable further actions (re-

stricted to the four CRUD-like methods) over these instances. That information is locally stored

in all the tool adapters developed, rather than in the own external tools, as a manner to reduce

coupling. All this results in three commonalities of the available tool adapters.

Tool adapters must meet the GLUE! integration contract for tools.

Tool adapters must meet the integration contract imposed by the tools they wrap.

Tool adapters must persist information about the instances they create.

The nine tool adapters have been developed in Java as REST services, employing the Rest-

let framework for Java. Therefore, these adapters expose the resources de�ned in section 3.4.2,

12http://elogos.es. Last visited: June 2012.
13http://drupal.org. Last visited: June 2012.

http://elogos.es
http://drupal.org

128 4.3. Reference implementation

and support the four use cases detailed in section 3.5. Besides, these adapters need to persist

some information about the created instances. This information is stored in a local �le, rather

than in a database. This implementation decision reduces the need for extra code in order to

manage the access to databases, and also reduces the installation and con�guration requirements

for these adapters. The information stored for each external tool instance is represented in Table

4.5. Once again, this is just an option; di�erent, and of course, more complex alternatives could

be implemented to provide persistence, as long as they meet the GLUE! integration contract for

tools.

Table 4.5: Information persisted in tool adapters.

Name Purpose

Instance identi�er
Integer that uniquely identi�es the instance. This identi�er is assigned to the REST resource exposed
by the tool adapter to represent that instance under the form of /instance/{instance_identifier}.

Instance title
Title of the instance. Educators may set a title when con�guring external tool instances. This title
is stored here because it is a mandatory parameter that must be sent in Atom entries. If no title is
set, then a prede�ned title is employed.

Instance date
Last modi�ed date for the instance. That date can correspond to the creation date or to the last
update of users. The date is stored here because it is also a mandatory parameter that must be sent
in Atom entries.

Instance URL

URL representing the external tool instance. Signi�cantly, some tools like Dabbleboard or Apache
Wookie provide a speci�c URL for each user sharing the instance. In those cases, tool adapters store
here a list of pairs with the username in the VLE and the URL of the instance. Afterwards, when
retrieving instances, the �callerUser � parameter, which corresponds to the username that requests
the instance in the VLE, is matched here in order to return the appropriate URL.

Current tool adapters

The nine available tool adapters at writing time are wrapping web-based tools, although

the architecture is not restricted to this technology, as it is later discussed and exempli�ed.

Besides, all these web-based tools provide REST-like interfaces, where some of the four well-

known HTTP methods (i.e. POST, GET, PUT and DELETE) can be applied on di�erent URIs.

These kind of interfaces highly simplify the development of tool adapters, since they require

very few lines of code for the communication with external tools, as it is demonstrated in the

evaluation chapter.

The Google Docs adapter enables the creation, con�guration (indicating a title and an ini-

tial �le), and management of Google Documents, Google Spreadsheets, and Google Presentations

instances. Each document, spreadsheet of presentation is considered a di�erent instance. These

tools de�ne di�erent contracts (e.g. Google Documents List API14 and Google Spreadsheets

API15) and support di�erent con�gurations, although the interactions required for the creation

14http://code.google.com/apis/documents. Last visited: June 2012.
15http://code.google.com/apis/spreadsheets. Last visited: June 2012.

/instance/{instance_identifier}
http://code.google.com/apis/documents
http://code.google.com/apis/spreadsheets

Chapter 4. GLUE!-RI: Reference implementation of the architecture 129

and management of tool instances are common, being they de�ned in the Google Documents List

API. Despite the fact that this is a good example of a tool adapter that integrates several tools

with similar contracts, other implementations of the Google Docs adapter could be developed to

speci�cally integrate each of these three tools.

The MediaWiki adapter enables the creation, con�guration (indicating a title and an ini-

tial content), and management of MediaWiki instances. Each MediaWiki page is considered a

di�erent instance. Although a VLE adapter was also developed to integrate external tools in

MediaWiki, this platform is frequently employed as a collaborative text editor to generate and

share content (e.g. Wikipedia), and so, it can be integrated as an external tool in VLEs to

support collaborative writing activities.

The Dabbleboard adapter enables the creation and management of Dabbleboard instances.

Each Dabbleboard drawing is considered as a di�erent instance by this adapter. Signi�cantly,

Dabbleboard does not support the con�guration of a drawing through its programmatic API16.

The Dabbleboard adapter uses the list of VLE usernames, mapping them as Dabbleboard users

in the Dabbleboard chat, indicating besides which of these users made the last change in the

drawing.

The Wookie widgets adapter enables the creation and management of W3C widgets de-

ployed in Apache Wookie servers. Therefore, this is a good example of GLUE! employed as a

middleware architecture for other loosely-coupled integration approaches, as discussed in section

3.7.2. The concept of instance is de�ned by the own widgets, being that concept considered in

Apache Wookie servers too. The current Wookie widgets adapter supports the con�guration of

some widgets like the YouDecide widget, which can be con�gured with an initial question and

several prede�ned answers to choose from. VLE usernames are also mapped by this adapter in

some widgets, such as the Natter chat.

The Doodle adapter enables the creation, con�guration and management of Doodle in-

stances. Each Doodle poll is considered a di�erent instance. Besides, this adapter supports the

initial con�guration of Doodle polls by including the name of the poll, a description, and a set

of possible answers.

The Facebook Live Stream adapter enables the creation, con�guration and management of

instances of this tool, which acts as a forum for Facebook users. This adapter allows to con�gure

of the height and width of this forum when embedded in the VLE graphical interface. Besides,

comments can be shared with everyone watching this instance, and also with end-users' friends

on Facebook.

The Kaltura adapter enables the creation, con�guration and management of Kaltura in-

stances. Each Kaltura video is considered a di�erent instance. This adapter supports the con-

16http://dabbleboard.com/developer. Last visited: June 2012.

http://dabbleboard.com/developer

130 4.3. Reference implementation

�guration of an initial title, as well as the upload of a �le in a video format, which actually

represents the tool instance.

The Note�ight adapter enables the creation and management of Note�ight instances. Each

Note�ight score is considered a di�erent instance for this adapter. The Note�ight adapter does

not support the initial con�guration of Note�ight instances.

Finally, a tool adapter was implemented for the integration of web contents represented as

URLs (web content adapter), even though VLEs usually enable the attachment of URLs as part

of learning activities. Nevertheless, the web content adapter aims at overcoming the limitations

found in VLEs like Moodle, regarding the management of groups when attaching URLs. More

speci�cally, Moodle does not allow the use of groups when including URLs and other resources in

learning activities. This precludes from particularizing the web content intended for each group

in each activity. An example of such activities occurs when two groups must read di�erent texts

on the web with di�erent points of view regarding a certain topic. Obviously, this adapter does

not create, nor delete, instances, although the URL pointing at the web content must be set as

a con�guration parameter.

Other tool adapters

More tool adapters are being implemented or are planned to be implemented. For instance,

a tool adapter for PiratePad17, a web-based collaborative text editor, is under development.

PiratePad is based on the open source and well-known EtherPad software18, which was acquired

by Google in 2009. Therefore, a tool adapter for PiratePad could also serve to wrap other similar

tools based on the EtherPad software too, like PrimaryPad19, TitanPad20, or Sync.in21

Besides, other adapters are planned to be developed in collaboration with the owners.

This is the case of the Video Learning Environment EVA3 (Educational Video with Analysis,

Annotation & Assessment)22, which was developed in the University of Sydney. EVA3 would be

useful as an alternative to Kaltura, which is one of the external tools currently integrated.

Nevertheless, even though GLUE! can support the integration of tools developed with

multiple technologies, all the aforementioned tools are web-based tools. A somewhat di�erent

example is the case of Synergo [Avo04], a Java standalone collaborative mapping environment

developed by the University of Patras. A tool adapter for Synergo was partially implemented

in collaboration with researchers from this University. This adapter wraps the Synergo Java

17http://piratepad.net. Last visited: June 2012.
18http://code.google.com/p/etherpad. Last visited: June 2012.
19http://primarypad.com. Last visited: June 2012.
20http://titanpad.com. Last visited: June 2012.
21http://sync.in. Last visited: June 2012.
22http://sydney.edu.au/education_social_work/coco/research/projects/video. Last visited: June 2012.

http://piratepad.net
http://code.google.com/p/etherpad
http://primarypad.com
http://titanpad.com
http://sync.in
http://sydney.edu.au/education_social_work/coco/research/projects/video

Chapter 4. GLUE!-RI: Reference implementation of the architecture 131

standalone tool, creating a JNLP (Java Network Launching Protocol) �le [Jav11] with an instance

of Synergo. This JNLP �le is distributed within a web page that is locally stored in the tool

adapter, returning its URL with the JNLP �le attached, when learners request a Synergo instance

within VLEs. The JNLP �le is then downloaded and launched in a Java Web Start (JWS)

container23, which must be installed in end-users' systems. This is an important restriction for

the integration of Java standalone tools within VLEs. Fortunately, JWS is included in the Java

Runtime Environment, which is usually available in most computers and laptops. The Synergo

adapter is not ready yet, since the personalization and con�guration of instances have not been

developed so far.

A similar approach, where tool adapters wrap, store and return the client of distributed

applications within URLs could be useful to integrate tools developed with other technologies.

For example, grid services like the DNSE [Bot10] or the Benchmarking Tool [Ala09] also provide

Java standalone clients that could be wrapped and distributed into JNLP �les. Tools with Java

clients using other mechanisms, such as Java RMI24 could be integrated under the same idea.

Even applets could be easily added to HTML pages, which may be stored and distributed by

tool adapters.

4.4. Developing new VLE and tool adapters

New adapters can be added to the existing ones by anybody interested in the integration

of new tools and VLEs through the GLUE! architecture. VLE providers, tool providers, or any

external developer may undertake the implementation of new adapters, or even the improvement

of the existing ones. Those interested in contributing to the GLUE! architecture should read the

GLUE! integration contracts for VLEs and tools, taking them as the theoretical grounding for

the development of new adapters.

Particularly, the development of new tool adapters is supported by a special library called

GLUEcommon, which was implemented for Java-based adapters. This library collects the code

needed to expose the REST resources and methods de�ned in the GLUE! integration contract

for tools. This library also gathers the code required to process the requests from the GLUElet

Manager, to prepare the responses that must be returned, as well as to persist the information

concerning the created instances. The process of implementing new tool adapters making use

of the GLUEcommon library is well-de�ned, and typically requires only three steps. First, the

con�guration templates must be de�ned in XHTML �les (XForms or HTML5), following the

structure that can be found in the templates of other tool adapters. Second, the values of the

template, once set by educators, must be retrieved following the code programmed for other

23http://docs.oracle.com/javase/7/docs/technotes/guides/javaws. Last visited: June 2012.
24http://oracle.com/technetwork/java/javase/tech/index-jsp-136424.html. Last visited: June 2012.

http://docs.oracle.com/javase/7/docs/technotes/guides/javaws
http://oracle.com/technetwork/java/javase/tech/index-jsp-136424.html

132 4.5. Installation and con�guration of GLUE!-RI

existing tool adapters. Then, three speci�c methods must be implemented: one for the creation

and con�guration of external tools; one for the update of users sharing external tools; and one

for the deletion of external tools. These methods can be more or less complex depending on the

speci�c tool contract. For instance, in non-web tools, the tool adapter is also responsible for

the generation of URLs, as exempli�ed in section 4.3.5. These steps can be considered simpler

compared to tighter integration approaches. Interestingly, the required code for the integration

of external tools is similar to that in other approaches that also promote a loosely-coupled

integration, as it is illustrated in the evaluation chapter. The Appendix C of this dissertation

provides further information about the development of new tool adapters in Java using the

GLUEcommon library.

The process of implementing new VLE adapters for GLUE!-RI is well-de�ned too, although

it is much dependent on the speci�c VLE. Those implementing new VLE adapters are advised

to start their developments from the existing extension modules that are normally given by the

VLE providers. Then, developers need to map the educational concepts supported by VLEs (e.g.

group, role, course, activity, etc.) with the concept of tool instances. After that, the requests to

the GLUElet Manager must be added to the VLE adapter, taking into account the PHP or Java

code from other existing VLE adapters. In any case, the use of a REST framework for these

and other programming languages is highly recommended. Finally, the graphical user interface

should be modi�ed to include the selection of external tools and the con�guration of instances

by educators, as well as the subsequent visualization of these instances. These steps are more

complex than in tool adapters, since they stem from the speci�c behavior of VLEs.

4.5. Installation and con�guration of GLUE!-RI

The reference implementation of the GLUE! core and the available adapters are distributed

in two di�erent formats. The �rst format is a full package containing the GLUE! core, the three

VLE adapters, and the nine tool adapters. The second format includes individual packages of

the GLUE! core, and each of the adapters. In both cases, a binary distribution and a source code

distribution are available for each of these packages. For the purposes of installing, con�guring

and using the code provided it is strongly recommended to download only the binary distribution.

The manuals that must be followed in order to properly install and con�gure the reference

implementation of the GLUE! core and the available adapters can be consulted in Appendix D,

as well as in the README.txt �le included in each of these packages.

It is noteworthy that the three available VLE adapters are installed as any other VLE

module or extension. Therefore, VLE administrators just need to follow the documentation

given by VLE providers for that purpose, in order to install VLE adapters. After that, VLE

administrators need to con�gure two parameters for the communication between VLE adapters

Chapter 4. GLUE!-RI: Reference implementation of the architecture 133

and the GLUElet Manager. These parameters are the URI of the GLUElet Manager (to address

the requests), and a timeout (to prevent VLEs from hanging up if external problems occur in

a request). MediaWiki exceptionally requires a third parameter, which is a default username.

This default username is employed as the �callerUser � when end-users do not need to register in

a MediaWiki installation to edit its pages. All in all, the process of installing VLE adapters is

pretty simple, since normally no extra knowledge is required to VLE administrators.

On the other side, the GLUElet Manager and the available tool adapters must be installed

and con�gured following a slightly more complex process, which is detailed in the Appendix D

of this dissertation for both Linux and Windows systems. The GLUElet Manager and these tool

adapters run as independent services, using a port to listen to requests for the management of

external tools. Cautions must be taken, because di�erent element of the architecture installed in

the same system must use di�erent ports. Besides, the GLUElet Manager employs two databases

for the management of information about the external tools (internal tool registry) and the

instances created (gluelets repository), and so, a JDBC connector must be available in the system

where the GLUElet Manager is installed. Details about how this JDBC connector must be set as

part of the con�guration of the GLUElet Manager are also explained in Appendix D. To facilitate

the population of the internal tool registry, SQL scripts are provided in each of the packages that

can be downloaded.

It is remarkable that the elements of GLUE!-RI can be o�ered by third-parties, except

for VLE adapters that need to be installed together with VLEs. Therefore, the installation and

con�guration of the GLUElet Manager and the set of tool adapters is not always required, insofar

as other providers running these elements may be used instead. This feature highly simpli�es

the setting process for VLE administrators that want their practitioners to use GLUE!-RI.

4.6. Usage of GLUE!-RI

The usage of GLUE!-RI is based on the four use cases detailed in section 3.5, as part of

the overall behavior of the architecture. These four use cases are: the creation, con�guration

and assignment of external tool instances; the use of external tool instances; the update of users

sharing external tool instances; and the deletion of external tools instances. Nevertheless, each

VLE adapter and each tool adapter may provide its own implementation for these use cases. For

example, the LAMS adapter requests educators the con�gurations for external tools within the

authoring environment, although these con�gurations are not actually used until the creation of

external tool instances in the monitoring environment. On the other side, some tool adapters, like

those for Dabbleboard or Note�ight, do not support the con�guration of external tool instances

in their current implementations.

134 4.6. Usage of GLUE!-RI

It is important to note that the available VLE adapters are intended to o�er a seamless

integration of external tools (as compared to built-in tools). Therefore, most of the steps followed

for the management of external tools are common with those in built-in tools. For example,

typical steps for the creation of external tools are as follows.

1. In the VLE menu where a list of built-in tools is shown to educators, a new option, namely

gluelet, appears. Built-in tools are usually associated to learning activities, and so does the

gluelet option. The �rst step for educators consists on selecting the gluelet option, instead

of any other built-in tools.

2. The list with the available external tools that can be integrated as gluelets is then shown to

educators. This step is obviously new, and it does not appear when selecting one built-in

tool. The following step is the selection of one external tool by an educator.

3. The generic con�guration of the tool (or activity) is requested to educators in one or more

screens. This step is common with the case of built-in tools.

4. The speci�c con�guration of tool instances is then requested to educators in one or more

screens. This step also appears in most built-in tools. Signi�cantly, in the case of Moodle,

di�erent con�gurations may be provided for each group, and even the reuse of instances

from previous activities can be set in this step. Both features are new, and they are not

o�ered with built-in tools.

5. External tool instances are created. These instances are automatically assigned to VLE

users depending on their groups and roles. This step also happens with built-in tools.

Once the creation of external tools is accomplished, students logged in the VLE can perform

the activities designed, by retrieving, visualizing and using their corresponding tool instances

(either built-in and external), while educators may monitor their performance. Signi�cantly,

GLUE! aims at introducing minimum novelties in the instantiation and enactment of learning

activities that require the integration of external tools.

GLUE!-RI has been tested by accessing VLEs from di�erent web browsers. Most major

browsers, like Firefox, Opera, Safari, or Chrome, do not present any problems to support this

reference implementation. Nevertheless, Internet Explorer does not properly represent IFrames,

and so, since URLs with external tools are normally embedded in IFrames, then the use of Internet

Explorer with GLUE!-RI is not advised. A further explanation of the usage of GLUE!-RI can

be consulted in Appendix E, where some screenshots exemplifying the usage of GLUE! within

Moodle, LAMS and MediaWiki are provided. Additional videos with the usage of GLUE!-RI are

also available at http://www.youtube.com/user/gsicemic. Besides, the steps for instantiating

and enacting an authentic collaborative learning situation in Moodle and LAMS are documented

in [Ala12c].

http://www.youtube.com/user/gsicemic

Chapter 4. GLUE!-RI: Reference implementation of the architecture 135

4.7. Conclusions

GLUE!-RI, the reference implementation of the GLUE! architecture, has been developed

following the design decisions presented in the previous chapter. Remarkably, the examples of

VLE and tool adapters included in GLUE!-RI respectively meet the GLUE! integration contracts

for VLEs and the GLUE! integration contract for tools. Therefore, GLUE!-RI demonstrates that

the architecture proposed in this dissertation can actually be implemented. Besides, it serves as

a start up of VLE and tool adapters.

GLUE!-RI contains a reference implementation of the GLUE! core, three VLE adapters and

nine tool adapters, although new VLE and tool adapters may be developed by anyone interested

in contributing to the architecture. Besides, improvements on the elements distributed as part of

GLUE!-RI can be made too, resulting sometimes in the support of new functionality (but taking

into account the contracts de�ned by the architecture). As an example, the Moodle adapter

was e�ciently improved to promote the data �ow among activities in which the same tool is

employed, by supporting the reuse of instances. This new use case was easily implemented due

to the loosely-coupling of the architecture.

GLUE!-RI is useful to demonstrate three important assertions made in this dissertation

about the GLUE! architecture. The �rst one is that GLUE! can integrate external tools in

other platforms where collaboration and integration are key issues, provided that these plat-

forms meet the restrictions imposed in the GLUE! contract for VLEs. A clear example for that

is the development of a VLE adapter for MediaWiki. The second assertion is that GLUE! can

integrate external tools developed with multiple technologies, provided that these tools meet the

restrictions imposed in the GLUE! contract for tools. Here, the example is the aforementioned

integration of the Java standalone Synergo. The last one is that GLUE! can be used as a middle-

ware architecture to achieve interoperability with other loosely-coupled integration approaches.

The integration in VLEs of W3C widgets deployed in Apache Wookie servers through the GLUE!

architecture exempli�es this assertion.

The process of developing new adapters has been simpli�ed by providing the code of

existing adapters as examples, and by detailing the steps that must be followed. Moreover, the

GLUEcommon library is available for external developers. This library contains most of the

code needed for the development of new adapters in Java, thus fostering the reuse of code. The

installation and con�guration of the elements distributed as part of GLUE!-RI have also been

simpli�ed, especially regarding VLE adapters, which are typically installed as any other VLE

extension. Remarkably, the modularity of the architecture allows that di�erent providers may

o�er di�erent components of these elements. Thus, VLE administrators can easily con�gure their

VLE adapters to use the GLUElet Manager (or some of the tool adapters) o�ered by external

providers. The usage of GLUE!-RI requires a minimum extra knowledge to practitioners, since

136 4.7. Conclusions

the instantiation and enactment of collaborative learning situations that require integrated tools

is very similar as compared to those situations in which only VLE built-in tools are employed.

Finally, it is noteworthy that the development of a reference implementation is useful to

carry out the evaluation of the GLUE! architecture. The next chapter presents the methodology

employed, the experiments realized, and the results obtained as part of this evaluation.

Chapter 5

Evaluation

The previous chapters have presented the design and implementation of the GLUE! architecture.

This chapter delves into the evaluation of the proposed architecture. This evaluation has been

carried out with the help of the reference implementation (GLUE!-RI), and is intended to assess

whether GLUE! meets the stakeholders' requirements, and thus overcomes the limitations found

in previous related works. Section 5.2 explains the methodology that has been followed for this

purpose. Most of this evaluation is based on four authentic experiments, in which real educators

and students used a di�erent iteration of GLUE!-RI. Section 5.3 details the four experiments, which

involve the instantiation and enactment of three collaborative learning situations that were designed

by di�erent educators in order to support their learning practices in several higher education courses.

Section 5.4 discusses the compliance to the stakeholders' requirements with the data obtained from

these experiments, distilling some conclusions about the GLUE! evaluation. Besides, this section also

highlights other remarkable �ndings that came out during the realization of the experiments. Section

5.5 complements the evaluation by means of a comparison between GLUE! and other loosely-coupled

integration approaches. This comparison analyzes the features they all provide for the integration

of external tools in VLEs, and the development e�ort they demand to carry out this integration.

Finally, the chapter ends in section 5.6 with the conclusions.

The evaluation of the GLUE! architecture, including the methodology employed, the four experi-

ments, and the compliance to the main stakeholders' requirements has been published in [Ala12a].

More details about the �ndings obtained from the two experiments realized in the context of the

Advanced Networking course can be found in [Ala12b]. Readers interested in the particular data

collected during the evaluation process may consult them at http://gsic.uva.es/glue.

5.1. Introduction

The problem of integrating external tools in VLEs was discussed in chapter 2, identifying

the requirements of the three main stakeholders interested in the accomplishment of that inte-

gration: practitioners, developers and VLE and tool providers. Besides, the main design issues

that should be taken into account when tackling the integration problem were also identi�ed

137

http://gsic.uva.es/glue

138 5.2. Evaluation methodology

and analyzed in this chapter, pointing out the alternatives chosen by previous integrating works,

as well as their limitations. These requirements, design issues and limitations were distilled as

guidelines to propose a new integration architecture, called GLUE!, whose design and develop-

ment were discussed and detailed in chapters 3 and 4. Nevertheless, in order to complete the

research work, this integration architecture must be evaluated.

According to the overall research methodology followed in this dissertation [Gla95], which

combines Adrion's engineering method [Adr93] and the empirical method [Big82], the evaluative

phase must assess whether this architecture meets the objectives it was designed for; that is

to say, the compliance to the stakeholders' requirements and the overcoming of the limitations

found in previous related works. Besides, Glass [Gla95] suggests that the conclusions about the

evaluation should stem from experimentation or observation, and might be achieved with the help

of those systems or application developed for this purpose. Therefore, GLUE!-RI could be used

by real practitioners in di�erent experiments in order to obtain data and �ndings that support the

evaluation of the GLUE! architecture. Signi�cantly, since the objectives and contributions of this

research belong to both software integration and CSCL domains, then both the technological and

educational dimensions of this problem should be taken into account within these experiments

[Zel02]. The particular methodology employed for the evaluation of the GLUE! architecture is

presented next.

5.2. Evaluation methodology

The evaluation of the GLUE! architecture has been supported by the CSCL-EREM (Com-

puter Supported Collaborative Learning Evaluand - oriented Responsive Evaluation Model)

[Jor09] framework, which is especially indicated for the evaluation of systems and tools that

promote collaborative learning. This framework allows to de�ne an evaluand, and formalize mul-

tiple authentic experiments [Dew01] aimed at assessing this evaluand. Here, the evaluand is the

compliance to the stakeholders' requirements by the GLUE! architecture. These requirements

stem from di�erent actors and cover di�erent �elds, and so, several methods and data sources

were selected to obtain evidences and data about the compliance to these requirements during

the experiments.

5.2.1. Evaluation framework and experiments

The CSCL-EREM is a framework that facilitates researchers and practitioners the formal

evaluation of courses, resources, teaching strategies and software systems in CSCL settings

[Jor09]. This framework is focused on an element, called evaluand (what is evaluated), and

it is useful to de�ne and formalize experiments whose purpose is to assess that evaluand. The

Chapter 5. Evaluation 139

CSCL-EREM was the framework chosen to carry out the evaluation of this research work, since

GLUE! is a software system intended for CSCL scenarios in which practitioners instantiate and

enact di�erent collaborative learning situation. In this case, the evaluand is de�ned as the

compliance of GLUE! to the stakeholders' requirements.

The CSCL-EREM allows to classify the information about the di�erent experiments into

three di�erent facets: ground (where the evaluand is evaluated), gathering the information about

the context and the participants; perspective (why the evaluand is evaluated), covering the main

goal pursued and other signi�cant open questions; and method (how the evaluand is evaluated),

indicating the data gathering techniques and the documents that support the conclusions. Figure

5.1 shows a generic representation of the CSCL-EREM framework including the evaluand (in the

center of the �gure) and the three di�erent facets around the evaluand.

Figure 5.1: CSCL-EREM components. Figure taken from [Jor09].

Besides, the CSCL-EREM proposes four di�erent courses (or itineraries), depending on

the particular kind of evaluand [Jor09]: evaluation of CSCL programs, innovations or courses;

evaluation of CSCL tools; evaluation of teaching strategies/learning resources to promote col-

laboration; and evaluation of CSCL projects. In this case, the second course (evaluation of

CSCL tools) was found to be the most appropriate itinerary considering the evaluand de�ned

140 5.2. Evaluation methodology

here. The CSCL-EREM also de�nes recommendations to make evaluation reports and a graphical

representation to easily show all the information concerning a certain evaluation. Both the recom-

mendations and the graphical representation were followed in order to organize and present the

data obtained during this evaluation.

With the aim of assessing the evaluand (i.e. whether GLUE! complies with the stake-

holders' requirements), multiple authentic experiments [Dew01] were de�ned. These experiments

were formalized using the CSCL-EREM, and involved real end-users, like educators and students,

and also developers, as suggested in [Dew01]. Signi�cantly, the realization of authentic experi-

ments involving di�erent kinds of actors is a recurrently applied strategy for the evaluation of

collaborative systems [Bot08,Iso10]. The need of involving human subjects entails an additional

di�culty because the opportunities to organize and set authentic experiments are normally quite

limited. For example, in this evaluation the experiments were carried out during several face-to-

face and remote activities performed as part of di�erent higher education courses, and so, the

timeline of the evaluation had to be adapted to the program and schedules of these courses.

Particularly, four main experiments instantiating and enacting three di�erent collaborative

learning situations were carried out within three di�erent courses (more details about these

experiments and situations are later given in section 5.3). Besides, two secondary experiments

without real practitioners were performed in order to replicate the instantiation processes in the

four main experiments with and without GLUE!. Apart from providing evaluation results, these

experiments also served to receive useful feedback from educators and students; this feedback

was employed to improve the design and development of the proposed architecture. This idea

perfectly �ts within the overall research methodology [Gla95], which is iteratively developed, as

it is the implementation of GLUE!-RI. The use of authentic experiments is not without problems

though, insofar as the replicability of the experiments is rather limited, and results may be biased

by speci�c participants. Nevertheless these experiments show that the GLUE! architecture can be

used by real educators and students to support learning activities, and allow to detect the bene�ts

and limitations of using this architecture. Here, it is convenient to note that most integration

works, such as Apache Wookie [Wil08] or Basic LTI [IMS10b], do not provide evaluation results

of their use by real practitioners, even though these approaches, like GLUE!, are intended to

solve an important research problem in the education �eld.

Finally, it is important to remark that the stakeholders' requirements, and by extension

the evaluand, cover both the technological and educational �elds, as already discussed. Thus,

several methods and data gathering techniques were combined to collect and analyze the data

obtained from these experiments.

Chapter 5. Evaluation 141

5.2.2. Evaluation methods and data sources

Di�erent methods and data sources were employed to assess the compliance to each of

the six stakeholders' requirements, and to compare GLUE! and other related works. Table 5.1

summarizes these requirements, as well as the evaluation methods and data sources employed to

assess each of them.

Table 5.1: Stakeholders' requirements, methods and data sources employed for their evaluation.

Stakeholder Tag Requirement Evaluation methods Data sources

Practitioners REQ1

GLUE! should enable the instantiation of
individual and collaborative activities that
require the integration of external tools
with an attainable e�ort for educators.

Multiple experiments;
mixed method

Likert scales; open
text questionnaires;
interviews; time and
complexity measure-
ments

REQ2

GLUE! should enable the enactment of col-
laborative activities that require the inte-
gration of external tools, facilitating the
collaboration among participants.

Multiple experiments;
mixed method

Likert scales; open text
questionnaires; focus
groups

REQ3
GLUE! should support the integration of
existing and popular VLEs and tools.

Multiple experiments;
feature analysis
(formal experiment)

Reference implementa-
tion of GLUE!

REQ4
GLUE! should support the integration of
many external tools.

Multiple experiments;
feature analysis
(formal experiment)

Reference implementa-
tion of GLUE!

Developers REQ5
GLUE! should demand an attainable de-
velopment e�ort for the integration of new
tools and VLEs.

Multiple experiments;
new SLOC and time
invested

Reference implementa-
tion of GLUE!

VLE and tool

providers
REQ6

GLUE! should be built over existing VLEs
and tools, rather than modifying their im-
plementations.

Multiple experiments;
feature analysis
(screening mode)

Reference implementa-
tion of GLUE!

Findings concerning REQ1 and REQ2 were obtained from the experiments, using the

particularmixed method proposed in [Mar03]. This mixed method has successfully been employed

for the educational evaluation of other systems that also promote collaboration [Bot08,Nav11].

The �rst step, according to this mixed method, is the creation of a set of categories with the

di�erent concepts to be analyzed in the experiments. For the assessment of REQ1 and REQ2

these categories were: the previous experience of end-users with the VLE and the tools; the

easiness of use of the VLE and the tools; the usefulness of the VLE and the tools to support the

proposed activities; the support of the overall system to the collaboration and groupwork; the

adequation of the experiment to the course program; the problems found; and the suggestions

for improvement.

The second step is the collection of data. According to this method, data from di�erent

quantitative and qualitative sources should be obtained to reinforce the conclusions. In this case,

quantitative data were collected from optional Likert scales [Lik32] passed to the participants,

142 5.2. Evaluation methodology

while qualitative data came from open text questionnaires in optional forms �lled out by the

participants, individual interviews with the educators, focus groups with the students [Mor98],

monitoring reports of the students' performance, and observations of the instantiation and enact-

ment processes. Besides, additional quantitative data from the instantiation time and complexity

were harvested using the two secondary experiments replicating the instantiation of the activities

with and without GLUE!, in order to back up the conclusions concerning the �rst requirement.

Finally, in the last step data from these varied sources should be triangulated as suggested

in [Mar03]. Signi�cantly, quantitative techniques do not aim at demonstrating hypothesis, but

at gaining insight and detecting tendencies, which are afterwards con�rmed or discarded using

qualitative techniques. Examples of the triangulation of quantitative and qualitative data sources

are later given in section 5.4, when discussing the �ndings for REQ1 and REQ2.

REQ3 and REQ4 were researched using a feature analysis method in its formal experi-

ment approach [Kit97b]. A feature analysis is a qualitative evaluation method, in which the

requirements that users expect for a particular situation are mapped to those features that a

tool or system (intended to support that situation) should possess [Kit96b]. In the formal experi-

ment approach, these features are evaluated by means of experiments with end-users. That helps

increasing the con�dence in the results, and also reducing the risk of systematic bias; however,

as in any feature analysis, obtained results still have a certain degree of subjectivity [Kit97a].

The four aforementioned experiments and the reference implementation of GLUE! supported the

discussion concerning REQ3 and REQ4.

The compliance to REQ6 was also researched by means of a feature analysis method, but

this time in its screening mode approach. This kind of feature analysis is performed by one

person, and so, the evaluation criteria are subjective. Nevertheless, this approach is particularly

suitable to survey a large number of software components, being thus very useful to screen all

the available VLE and tool adapters in GLUE!-RI. Apart from the code of those VLE and

tool adapters employed in the four authentic experiments, the code of the remaining available

elements in GLUE!-RI was also surveyed. Besides, this kind of feature analysis was also employed

to compare the contracts of GLUE! and those in other loosely-coupled approaches.

Finally, the satisfaction for REQ5 was assessed by studying the incremental develop-

ment e�ort required to enact the four experiments supporting this evaluation. Two quantitative

metrics that are commonly used as indicators of software complexity [Pen07] were employed to

obtain indirect measures of the e�ort required to integrate new external tools and VLEs with

GLUE!. These metrics are the new source lines of code (SLOC) that must be developed to

accomplish a certain integration [Alb83], and the time invested in that task. The code from

GLUE!-RI was analyzed using these two metrics, as well as compared to that in other loosely-

coupled approaches. These metrics provide simple empirical estimations of quantitative rela-

tionships among e�orts, although cautions should be taken because they do not address issues

Chapter 5. Evaluation 143

like language di�culty or developers' skills. Therefore, if di�erent languages and developers are

involved, only gross di�erences (e.g. changes in the order of magnitude) should be considered in

order to draw conclusions on these data. Other classical metrics of software complexity, such as

Function Points (FP) [Alb83] or Use Case Points (UCP) [Kus04] were discarded here, since they

do not consider the amount of code reused, which is signi�cantly higher in GLUE!, due to the

promotion of a many-to-many approach and the use of well-de�ned loosely-coupled integration

contracts based on popular standards.

5.3. Collaborative learning situations

Three authentic collaborative learning situations were instantiated and enacted in four

occasions by di�erent practitioners in higher education courses, being these the four experiments

supporting most of the GLUE! evaluation. The three situations were designed covering various

knowledge domains, collaborative strategies and durations. Besides, di�erent VLEs and external

tools were employed in the four experiments associated to these three situations. Interestingly,

each of these experiments also served to test a di�erent GLUE!-RI iteration (see section 4.3.2) in a

real setting, thus helping to the incremental improvement of the architecture and its implemented

elements. Tables 5.2 and 5.3 respectively summarize the three collaborative learning situations

designed, and the four experiments that were carried out for the GLUE! evaluation.

Table 5.2: Summary of the three collaborative learning situations.

Collaborative

learning situation
Situation I Situation II Situation III

Course Advanced Networking (AN) Software Engineering (SE)
Information and Communi-
cation Technologies Applied
to Education (ICTE)

Degree
Telecommunication Engi-
neering

Telecommunication Engi-
neering

Early Childhood Education

Year Third out of �ve Third out of �ve First out of four

Kind of situation
blended collaborative
learning situation

face-to-face collaborative
learning situation

blended collaborative
learning situation

Main learning objec-

tive

Re�ect and discuss about the
design of a message server

Review and discuss the main
concepts in UML class dia-
grams

Analyze and discuss the role
of technology in Spanish
schools

Number and kind of

activities
5 collaborative activities

1 individual activity; 2 col-
laborative activities

1 individual activity; 4 col-
laborative activities

Duration 1 week 3 hours 1 week

Collaborative

learning �ow

pattern

pyramid pyramid no pattern

144 5.3. Collaborative learning situations

Table 5.3: Summary of the four authentic experiments.

Tag AN-2010 SE-2011 AN-2011 ICTE-2012

Collaborative learning

situation
Situation I Situation II Situation I Situation III

Date November 2010 May 2011 November 2011 February 2012

Number of educators
2 (technological
background)

1 (technological
background)

2 (technological
background)

1 (pedagogical back-
ground)

Number of students 47 10 51 25

Group settings

24 pairs (1-2
students); 7 su-
pergroups (6-8
students)

2 groups of �ve stu-
dents

28 pairs (1-2
students); 8 su-
pergroups (6-8
students)

12 pairs (2-3
students); 5 super-
groups (5 students)

VLE Moodle MediaWiki Moodle LAMS

Built-in tools - - - forum, mind map

External tools (in-

stances)

Dabbleboard (31);
Google Docu-
ments (24); Google
Presentations (7)

Google Documents
(12); You Decide
W3C widget (40)

Dabbleboard (36);
Google Docu-
ments (28); Google
Presentations (8)

Google Presenta-
tions (5); Doodle
(1)

GLUE!-RI iteration 1 2 3 4

5.3.1. Collaborative learning situation I

Advanced Networking (AN) is a third-year course (out of �ve) in Telecommunication Engi-

neering at the University of Valladolid, Spain. One of the main AN objectives is to get students

to study, understand and use several alternatives for the development of distributed applica-

tions, complementing also the overview of telecommunication services and networks acquired in

previous telematics courses. In one of the core practical exercises, AN students must develop a

message server, as a representative example of a distributed application in the network layer of

computer networking. Before the students start the generation of code, educators want them to

re�ect and discuss about how the message server should be designed. AN educators designed a

blended collaborative learning situation to help students to achieve these objectives. This situ-

ation follows a well-known collaborative learning �ow pattern called pyramid [Her06a], which

favors reaching a gradual consensus among students working on the same leaning objectives.

The situation includes �ve collaborative activities in two levels of the pyramid. In the �rst

level, students draw the time sequence diagram and the �owchart of the message server in pairs,

justifying the main decisions taken. A shared whiteboard and a collaborative text editor could

be provided to support these activities. Then, students are gathered in supergroups (groups of

6-8 participants), and review the diagrams of the other pairs belonging to their supergroup, by

means of, for instance, a collaborative text editor. Finally, each supergroup agrees on the �nal

diagrams and makes a presentation explaining the challenges and conclusions of the experiment.

A shared whiteboard and a collaborative presentation tool may serve for this purpose.

Chapter 5. Evaluation 145

The situation designed for AN was instantiated and enacted in two di�erent experiments in

consecutive years: 2010 (AN-2010) and 2011 (AN-2011) [Ala12b]. The technological support

for this situation was Moodle in both experiments, since this was the institutional VLE at the

University of Valladolid. This VLE natively supports the instantiation and enactment of col-

laborative learning situations by creating and managing users, groups and learning activities

arranged in Moodle courses. Nevertheless, Moodle built-in tools do not include shared white-

boards, nor presentation tools, while collaborative text editors (e.g. wiki tool) are quite limited.

So, AN educators employed GLUE! to integrate some external tools that could support the

aforementioned activities. In both experiments the integrated tools were Dabbleboard, Google

Documents and Google Presentations. The �rst GLUE!-RI iteration was used in AN-2010, while

the third GLUE!-RI iteration supported AN-2011. Figure 5.2 depicts the CSCL-EREM diagram

for the AN-2011 experiment; the only changes between the diagrams in AN-2010 and AN-2011

were the number of students (47 and 51 in the given order) and the date in which the happen-

ings occurred (face-to-face sessions). Further details on the number of groups, and external tool

instances created within these two experiments are summarized in Table 5.3.

5.3.2. Collaborative learning situation II

Software Engineering (SE) is a third-year course (out of �ve) in Telecommunication En-

gineering at the University of Valladolid. Students participating in SE learn that developing

software is a very complex process that involves many other activities apart from writing code.

Educators delivering SE encourage students to work in medium-size groups (5 members) through-

out the course, since the development of software is generally a collaborative process that may

involve people playing di�erent roles (e.g. commercial, analyst, developer, etc.). During the

SE laboratory assignments, students work in the capture of requirements, analysis, design and

implementation of a realistic software project, following the Uni�ed Process (UP) [Lar02], and

generating, among other artifacts, UML (Uni�ed Modeling Language) diagrams [Boo99] (e.g.

use case diagrams, class diagrams, sequence diagrams, etc.). After �nishing the project, the last

two sessions of SE serve to summarize the whole course, and to prepare the students for the �nal

exam. One recurrent exercise in these exams is a true or false quiz about a given class diagram.

This kind of exercise helps students review the main concepts of object oriented programming,

such as inheritance, overriding, or polymorphism [Lar02]. In this context, a face-to-face collabo-

rative learning situation that also employs the pyramid pattern with three levels is designed to

help students re�ect on this kind of exercise.

This situation involves one individual and two collaborative activities. In the �rst level of

the pyramid, students individually answer a twenty-question quiz about a given class diagram,

with the aid of, for instance, a poll tool (to collect responses) and a text editor (to write justi�-

cations). In the second level, students are arranged in groups of �ve, see the responses given by

146 5.3. Collaborative learning situations

Figure 5.2: CSCL-EREM representation diagram for the GLUE! evaluation in AN-2011.

their group partners, and agree on a single response for each of the questions. The same tools

would be needed, although here the text editor should be collaborative. The third stage occurs

at class level, where a �nal consensus is reached mediated by the educator.

This situation was enacted in 2011 (SE-2011) using MediaWiki as a learning platform

(see Table 5.3). MediaWiki was the learning platform employed throughout the SE course, and

so, educators also chose it for this experiment. Unlike Moodle, MediaWiki does not support

the management of groups and activities, although they can be manually mapped in the form

of di�erent MediaWiki pages (each page for each activity of each group). Besides, MediaWiki

includes very few built-in tools, and so, SE educators used GLUE! to integrate Google Documents

(as a collaborative text editor) and the You Decide W3C widget (as a poll tool). The CSCL-

EREM diagram representing the experiment is shown in Figure 5.3.

Chapter 5. Evaluation 147

Figure 5.3: CSCL-EREM representation diagram for the GLUE! evaluation in SE-2011.

5.3.3. Collaborative learning situation III

Information and Communication Technologies applied to Education (ICTE) is a �rst-year

course (out of four) in the Degree of Early Childhood Education at the University of Valladolid.

The main purpose of this course is to introduce future educators in new technologies and media.

Therefore, this course covers the role of ICT in the current society, exempli�ed through the use

of several software tools and learning platforms, such as blogs, wikis, social networks and VLEs.

In one of the practical exercises, ICTE students must study and discuss the role that technology

currently plays in Spanish schools. In order to help students discuss about this subject, a blended

collaborative learning situation is designed for this exercise.

This situation includes a series of individual and collaborative activities that need to be

enacted in a certain order. First, students individually read two o�cial online reports about this

148 5.4. Compliance to the requirements

subject. Then, they answer a brief questionnaire in pairs; a communication tool may be provided

for this activity. After that, they are arranged in groups of �ve, in order to organize the concepts

extracted from the previous reports using, for instance, a collaborative concept map tool. Then,

working in the same groups of �ve, they make a presentation containing the conclusions of their

work; this activity could be supported by a collaborative presentation tool. Finally, students

individually vote the best of the presentations; a voting tool might serve for this purpose.

This situation was enacted in 2012 (ICTE-2012) using LAMS (see Table 5.3). The ex-

periment, represented in the CSCL-EREM depicted in Figure 5.4, mixed built-in and external

tools. The LAMS built-in forum and mind map tool were employed for the �rst two activities.

Nevertheless, LAMS does not include presentation nor voting tools, and so, Google Presentations

and Doodle were integrated using GLUE! for the last two activities. Signi�cantly, ICTE students

used several VLEs during the course to perform their regular activities, so that they also get

trained on the usage of VLEs, and develop an opinion on several alternatives (useful when they

become teachers); it is relevant to note that this was the �rst time they worked with LAMS.

5.4. Compliance to the requirements

The four experiments were instantiated and enacted by real educators and students between

November 2010 and February 2012. Findings from these experiments were collected to show

whether the GLUE! architecture meets the stakeholders' requirements (see Table 5.1). For a

better understanding, these �ndings are organized following the sequence of requirements from

REQ1 to REQ6. Besides, some other interesting �ndings that came out during the instantiation

and enactment of these experiments are discussed at the end of this section.

5.4.1. Instantiation of individual and collaborative activities (REQ1)

The fact that the di�erent collaborative learning situations presented in section 5.3 could

be actually put into practice demonstrates that GLUE! allowed di�erent educators to instantiate

their desired individual and collaborative activities. In order to assess whether the e�ort put

by these educators was attainable, the approximate instantiation time with and without GLUE!

was employed as an indirect measure of that e�ort.

Table 5.4 shows the approximate instantiation time employed for the creation, con�guration

and assignment of the external tool instances required in the four experiments; supplementary

details are provided for AN-2011, since this is the experiment in which a higher number of

instances were managed. ICTE-2012 is a good example in which educators obtained a high bene�t

by using GLUE!, saving an 84,6% of the instantiation time in the LAMS authoring environment;

the deployment of the lesson in the LAMS monitoring environment, however, was accomplished

Chapter 5. Evaluation 149

Figure 5.4: CSCL-EREM representation diagram for the GLUE! evaluation in ICTE-2012.

in less than in minute both with and without GLUE!. The saving was also representative in

SE-2011, where using GLUE! took a 35% less of the instantiation time. The lesser saving was

due to the fact that MediaWiki does not support the management of groups and activities, so

that even with GLUE!, instances for di�erent groups must be created in di�erent steps.

Besides, it can be seen that in those cases where many external tool instances had to be

created (AN-2010 and AN-2011), a great reduction in the instantiation time was obtained (more

than 82%). The case of Google Documents is quite representative, since the 28 instances were

created, con�gured and assigned at once within the same Moodle activity thanks to GLUE!,

thus reducing a lot the e�ort and the time (about 93%). Google Presentations supported one of

the activities in the supergroup level of the pyramid, being the saving lower as compared to the

case of Google Documents, but still very signi�cant (more than 71%). This is due to the fact

that learning activities involving supergroups require the creation of a di�erent Moodle activity

150 5.4. Compliance to the requirements

Table 5.4: Approximate instantiation time for the creation, con�guration and assignment of external
tool instances with and without GLUE! in the four experiments, with details for AN-2011.

Experiment
Number of external

tool instances

Time with GLUE!

(minutes)

Time without GLUE!

(minutes)

ICTE-2012 6 1 6.5

SE-2011 12 4.5 7

AN-2010 62 6.5 37.5

AN-2011 72 7.5 42.5

Dabbleboard instances 36 4 13.5

Google Documents instances 28 1.5 22

Google Presentation instances 8 2 7

for each of them. Interestingly, the time needed to delete external tool instances, although less

signi�cant, also presented better results with GLUE! (e.g. 37 seconds to delete the 28 Google

Documents instances with GLUE! versus about 1.5 minutes without GLUE!).

It is important to point out that the instantiation of these four experiments without GLUE!

was feasible because the tools employed were all web applications whose instances could be

represented as URLs. Thus, for each tool, new instances could be created using its web graphical

interface, and then these URLs could be copied and pasted in some of the VLE activities. The

You Decide W3C widget (employed in SE-2011) was an exception to this, and despite being a

web tool, di�erent instances of this widget could not be created directly using the Apache Wookie

graphical interface.

Remarkably, GLUE! not only reduces the instantiation time, but also the instantiation

complexity, since the creation, con�guration and assignment of external tool instances can semi-

automatically be made as part of a single VLE activity (i.e. the educator decides when to create

and con�gure instances within the VLE interface, but these instances are transparently assigned

to VLE groups). As an example, with GLUE! the creation, con�guration and assignment of

the 28 Google Documents instances in AN-2011 for the prede�ned groups in the �rst level of

the pyramid demanded educators only 10 interactions with the Moodle interface: to add a new

Moodle activity, namely gluelet ; to set a name for the activity; to set a description for the activity;

to select the external tool (Google Documents) from a list; to select the group mode (�separate

groups�); to click on the �save and continue� button; to set the title for the Google Documents

instances; to click on �upload �le�; to actually select an initial �le; and to click on the �apply

to all � button. Extended details about the instantiation process of this collaborative learning

situation with GLUE! are provided in [Ala12c]. In contrast, without GLUE!, 11 interactions

with Google Documents (two to upload a �le, three to set a title, �ve to change the sharing

permissions, and one to copy the URL) and 6 interactions with Moodle (to add a new � link to a

Chapter 5. Evaluation 151

�le or web site� resource; to set the name; to set the description; to paste the URL; to select a

grouping; and to click on �save and display�), were required for each of the 28 instances, yielding

a total of 476 interactions. Therefore, without GLUE!, the instantiation of this collaborative

activity becomes a very cumbersome and error prone process.

To contrast this quantitative data with educators' perceptions, results from the question-

naires �lled out by the educators were analyzed (see Table 5.5), discovering that 3 out of 4 agreed

or completely agreed that the e�ort they needed to instantiate the learning activities with GLUE!

was attainable. The other, which was an AN educator, somewhat agreed on this statement. In-

terestingly, they all agreed or completely agreed that the bene�t obtained was worth the e�ort.

Moreover, they all agreed or completely agreed that GLUE! facilitated the instantiation of their

collaborative learning situation.

Table 5.5: Aggregated answers obtained from the educators that instantiated the experiments. State-
ment 1 (S1): �The instantiation e�ort is attainable�; Statement 2 (S2): �The bene�t obtained
was worth the instantiation e�ort�; Statement 3 (S3): �GLUE! facilitated the instantiation
of the collaborative learning situation.�

Options S1 S2 S3

Completely agree 1/4 (25%) 1/4 (25%) 2/4 (50%)

Agree 2/4 (50%) 3/4 (75%) 2/4 (50%)

Somewhat agree 1/4 (25%) 0/4 (0%) 0/4 (0%)

Somewhat disagree 0/4 (0%) 0/4 (0%) 0/4 (0%)

Disagree 0/4 (0%) 0/4 (0%) 0/4 (0%)

Completely disagree 0/4 (0%) 0/4 (0%) 0/4 (0%)

No answer 0/4 (0%) 0/4 (0%) 0/4 (0%)

Interviews with the educators supported these results, and also served to discover that

the AN educator that somewhat agreed with the �rst statement found some di�culties when

creating new activities in Moodle that were due to the built-in management of group settings

(groups and groupings) in this VLE. Though this problem can be attributed to Moodle, it a�ects

the performance of GLUE!, which relies on the speci�c usage of the group settings in each VLE

to facilitate the instantiation of collaborative learning situations. Actions taken to tackle this

problem included enforcing clari�cations in the GLUE! user manuals regarding the usage of

group settings in this and other VLEs, and the generation of supplementary videos illustrating

the steps for instantiating di�erent learning activities1.

All in all, evaluation results showed that GLUE! enabled the instantiation of these four

experiments, demanding an attainable e�ort to educators. Analogous results could be expected

in other collaborative learning situations with activities of similar complexity. Thus, it can

1http://www.youtube.com/user/gsicemic. Last visited: June 2012.

http://www.youtube.com/user/gsicemic

152 5.4. Compliance to the requirements

be concluded that GLUE! meets REQ1. The compliance to this requirement stems from the

support of the life cycle of external tools within VLEs. Even though sometimes the instantiation

of individual and collaborative activities could be made without GLUE!, the time and complexity

that process would require may easily become unattainable, especially as the number of groups,

activities and tools grows, as illustrated with examples in this section.

5.4.2. Enactment of collaborative activities (REQ2)

The four experiments were enacted by 133 real students in total with di�erent backgrounds

on engineering and pedagogy, although only some of them decided to answer the optional ques-

tionnaires and participate in the focus group. Data collected is still very signi�cant because

those with positive or negative opinions are more likely to participate in research studies, thus

stressing the bene�ts and limitations of the use of GLUE! during the experiments. Table 5.6

collects the aggregated results from those questions showing evidences of the support of GLUE!

to collaboration and groupwork.

Table 5.6: Aggregated answers obtained from the students that enacted the experiments. Question 1
(Q1): �How much did you collaborate with your partners? �; Question 2 (Q2): �How much
did the technological support facilitate the performance of the activities in collaboration with
your partners? �; Question 3 (Q3): �How easy/di�cult was to see your partners' contributions
along the activities? �

Options Q1 Q2 Options Q3

Very much 11/61 (18.03%) 24/61 (39.34%) Very easy 19/61 (31.15%)

Much 44/61 (72.13%) 23/61 (37.70%) Easy 25/61 (40.98%)

Some 5/61 (8.20%) 10/61 (16.40%) A bit easy 12/61 (19.67%)

A Little 0/61 (0%) 3/61 (4.92%) A bit di�cult 2/61 (3.28%)

Little 0/61 (0%) 0/61 (0%) Di�cult 0/61 (0%)

Very little 0/61 (0%) 1/61 (1.64%) Very di�cult 2/61 (3.28%)

No answer 1/61 (1.64%) 0/61 (0%) No answer 1/61 (1.64%)

Results to these questions show that: 90.16% of students thought that they collaborated

much or very much with their partners during the proposed activities; 77.04% considered that

the technological support (which included a VLE, some built-in tools �only in ICTE-2012�, some

external tools, and GLUE!) facilitated much or very much this collaboration; and 72.13% agreed

that seeing the contributions from their partners was easy or very easy. Interestingly, they all

agreed or completely agreed that having all the tools integrated in a single graphical interface

facilitated the enactment of the proposed activities. This agreement was particularly remarkable

in those students without a technical background (ICTE-2012).

Chapter 5. Evaluation 153

These results were con�rmed by comments from students (in the open text questions and

in the focus group), which also highlighted the bene�ts of having the necessary tools integrated

in the VLE, and the usefulness of the whole technological support to facilitate the collaboration

and groupwork: �Everything is integrated in the platform in a convenient and very simple way�

(ICTE-2012); �It saves time because everything is integrated in the platform� (SE-2011); �It is

fantastic to collaborate because you can easily see the answers of your group partners� (ICTE-

2012); �It was very easy to see the contributions of my group partners, just by logging into Moodle�

(AN-2010); �I think it [the performance of the activities in collaboration] was facilitated because

of the ease with which we could share and visualize our partners' work � (AN-2011).

These comments also served to detect that the negative answers in Table 5.6 mainly came

from a pair of students enrolled in the AN-2010 course, who were not able to �nd the built-in

Moodle option to visualize the instances of their supergroup partners in the review activity: �We

did not see our partners' work because we did not know there was an option to change the group

displayed �. Besides, some other negative comments were due to the particular tools employed to

carry out the learning activities. For example, some AN-2010 and AN-2011 students complained

about the limitations of Dabbleboard for drawing the sequence diagram and the �owchart of the

message server (e.g. �the size of the canvas in the shared whiteboard was sometimes insu�cient

to draw the diagrams�). Besides, some ICTE-2012 students found technical problems when

working with the LAMS built-in mind map tool, which did not correctly save the synchronous

modi�cations (e.g. �everything worked �ne, except for the mind map tool �).

With these �ndings, it can be concluded that GLUE!, together with the VLEs and the

external tools, facilitated the collaboration among students during the enactment of the four

representative experiments presented here. It seems reasonable to think that suchlike results

would be obtained in other similar collaborative learning situations that require the integration

of external tools, and so, it can be concluded that GLUE! meets REQ2. Finally, it is noteworthy

that external tools integrated through GLUE! can overcome the limitations of built-in ones, such

as the LAMS built-in mind map tool. Besides, practitioners can bene�t from an even broader

variety of tools, thus enriching the individual and collaborative activities that can be enacted.

5.4.3. Integration of existing and popular VLEs and external tools (REQ3)

Five di�erent existing external tools, namely Google Documents, Google Presentations,

Dabbleboard, Doodle and You Decide widget were integrated with GLUE! in two of the most

popular VLEs, namely Moodle (more than 66,000 installations in 216 counties at the time of

writing this dissertation2) and LAMS (more than 6,700 members in the LAMS community across

2http://moodle.org/stats

http://moodle.org/stats

154 5.4. Compliance to the requirements

80 countries in April 20113), and in one well-known platform, MediaWiki, as part of the four

experiments presented in this evaluation. Interestingly, tools like Google Documents and Google

Presentations are among the most valued by educators, according to the Top 100 Tools for

Learning list4. Remarkably, at least 69% of the tools listed there meet the mandatory restriction

de�ned in the GLUE! contract for tools, and so, they could eventually be integrated in VLEs

through the GLUE! architecture, as discussed in section 3.4.2. Besides, other popular tools, such

as Facebook (in its Live Stream version), Doodle or Kaltura are currently available for integration

with GLUE! too (see chapter 4).

Therefore, it can be concluded that GLUE! supports the integration of existing and popular

VLEs and tools, which could be employed in these and many other similar collaborative learning

situations, thus complying with REQ3. The few and widespread restrictions imposed to VLE

and tool providers are mainly responsible for the compliance to this requirement. But that is

not all, just by developing the appropriate adapters, newly developed VLEs might also integrate

existing tools, while newly developed tools might also be integrated in existing VLEs, through

the GLUE! architecture.

5.4.4. Integration of many external tools (REQ4)

The educators that instantiated the four experiments could choose among up to 17 external

tools (in addition to the regular built-in tools), no matter the VLE they were employing. Sig-

ni�cantly, this number, per se, is even higher that the number of built-in tools included in most

VLE distributions, like those currently o�ered by Moodle (14), Blackboard (16) or Claroline

(8). Eight of these tools were W3C widgets deployed in an Apache Wookie server installed in

the GSIC-EMIC premises, although any other Apache Wookie server could have been employed

instead, just by registering it in the internal tool registry. Here, it is convenient to point out that

any other W3C widget could have been integrated without developing any extra integration code,

just by deploying the intended widget in the Apache Wookie server. This is a consequence of

using GLUE! as a middleware architecture to achieve interoperability with other loosely-coupled

approaches, as explained in 3.7.2. Interestingly, the remaining external tools were hosted by

third-parties, except for MediaWiki, which was also o�ered by the GSIC-EMIC.

Educators highlighted the considerable number of newly available external tools, which

opened the opportunity to put into practice new individual and collaborative activities. This is

supported, for instance, by comments from the interviews with AN educators, who expressed,

their satisfaction for �the opportunity to use many tools that were not available before�. The

number of available external tools in GLUE! is expected to keep growing with the development

3http://lamscommunity.org/dotlrn/clubs/educationalcommunity/forums/message-view?message_id=

1261220. Last visited: June 2012.
4http://c4lpt.co.uk/top-tools/top-100-tools-for-learning-2011. Last visited: June 2012.

http://lamscommunity.org/dotlrn/clubs/educationalcommunity/forums/message-view?message_id=1261220
http://lamscommunity.org/dotlrn/clubs/educationalcommunity/forums/message-view?message_id=1261220
http://c4lpt.co.uk/top-tools/top-100-tools-for-learning-2011

Chapter 5. Evaluation 155

of new tool adapters. This is fostered by the few restrictions imposed in the GLUE! contract for

tools, which facilitates the eventual implementation of adapters for many other tools (like most

of those listed in the Top 100 tools for Learning).

GLUE! supports the integration of many external tools, as compared with the number of

available built-in tools typically found in most VLEs, and so, it can be concluded that GLUE!

satis�es REQ4. These external tools could be employed in a large number of collaborative

learning situations like those presented in the experiments supporting this evaluation, or other

similar situations. Besides, due to the promotion of a many-to-many integration, every new

integrated tool will be available, at least, in Moodle, LAMS and MediaWiki.

5.4.5. Development e�ort (REQ5)

The four experiments presented in this evaluation required the integration of �ve external

tools in three VLEs. That integration was carried out by three di�erent developers, who inde-

pendently programmed the code of three VLE adapters (Moodle, LAMS and MediaWiki) and

four tool adapters (Google Docs, Dabbleboard, Apache Wookie and Doodle). These developers

had di�erent backgrounds and programming skills, and so, there may exist some variations in the

new SLOC and time invested in the development of these adapters due to these issues. Never-

theless, it is important to remark that the GLUE! architecture has been designed to facilitate the

implementation of new adapters to external developers, who may also have di�erent backgrounds

and programming skills, and that these are empirical estimations of the development e�ort for

the particular case of these external developers. Table 5.7 shows the new SLOC and the time

invested for the VLE and tool adapters used in the experiments (marked in italics), and for all

the remaining adapters that are currently available, indicating who implemented each of them.

The �rst two adapters developed for the GLUE! architecture (marked in bold) enabled

the integration of Google Docs in Moodle, and were implemented from scratch. From then on,

the e�ort required to develop new tool adapters was signi�cantly reduced. For instance, while

the tool adapter for Google Docs took 487 lines of code and 83 man-hours, the tool adapter for

Dabbleboard only took about a quarter of the new SLOC and about ten times less time. The tool

adapter to integrate any web content was very easily implemented, just by cloning the project

of other adapters, deleting some code and adding three new lines (the invested time is rounded

up). Others, however, took among 4 to 8 man-hours to be developed (e.g. Doodle and Kaltura

adapters). The e�ort to develop new VLE adapters was also lower taking the Moodle adapter as

a reference. However, in this case, an important programming burden was unavoidable due to

the graphical interoperability between the VLE and the VLE adapter. Besides, less code could

be reused, in this case from the Moodle adapter, due to the di�erent programming languages

imposed by VLE contracts. It should be note that only those lines that were explicitly developed

156 5.4. Compliance to the requirements

Table 5.7: Study of the new SLOC and the time invested. The �rst VLE and tool adapters are marked
in bold. Those adapters used in the experiments are marked in italics.

Adapter (programming language) New SLOC Invested time (man-hours) Developer

VLE adapter for Moodle (PHP) 1863 415 developer1

VLE adapter for LAMS (Java) 909 373 developer1

VLE adapter for MediaWiki (PHP and Javascript) 1936 202 developer3

Tool adapter for Google Docs (Java) 487 83 developer1

Tool adapter for MediaWiki (Java) 83 8 developer2

Tool adapter for Dabbleboard (Java) 125 8 developer2

Tool adapter for Apache Wookie (Java) 92 8 developer2

Tool adapter for Doodle (Java) 84 4 developer2

Tool adapter for web content (Java) 3 1 developer2

Tool adapter for Note�ight (Java) 86 6 developer3

Tool adapter for Kaltura Video (Java) 97 5 developer3

Tool adapter for Facebook Live Stream (Java) 47 4 developer3

for a new adapter are shown in Table 5.7. This consideration is very important in the case of

GLUE! because most of the code demanded to integrate a tool in a VLE can be reused from

previous integrations, due to the promotion of a many-to-many integration, the de�nition of an

intermediate software layer, and the establishment of well-de�ned and loosely-coupled contracts

between the GLUE! core and VLE and tool adapters. Further details about the calculation of

the new SLOC are provided in the Appendix A of this dissertation.

The incremental development e�ort required to enact the four experiments with GLUE!

also decreased progressively, taking AN-2010 as a reference, even though di�erent VLEs were

employed. For example, AN-2010 needed 2475 new SLOC and 506 man-hour; SE-2011 demanded

2028 new SLOC and 210 hours; and ICTE-2012 necessitated 993 new SLOC and 377 hours.

Interestingly, once the main VLE adapters are developed and only some new tools need to be

integrated, the e�ort is greatly reduced. For example, if after these situations a new one that

employs Moodle, some W3C widgets, Doodle and Note�ight had been devised, then the required

development e�ort to provide computational support for such situation would only have been 86

new SLOC and 6 man-hours. Besides, if after instantiating this situation educators decided to

move to LAMS, no additional development e�ort would be needed (see Figure 5.5b), as opposed

to the case in which one-to-one (ad hoc) integration approaches are employed (Figure 5.5a).

Considering the data presented here, it can be asserted that GLUE! facilitates the integra-

tion of external tools in VLEs, reducing the e�ort required to develop new VLE and tool adapters,

to be used in these and in other similar collaborative learning situations. In the particular case

of tools this e�ort has turned out to be low (about 100 new SLOC and 6-8 man-hours), while in

the case of VLEs this e�ort has been found to be higher, although comparable to that in other

Chapter 5. Evaluation 157

Figure 5.5: Examples of the new SLOC in the integration of Note�ight in Moodle and LAMS: a) with-
out GLUE!; b) with GLUE!. The lower e�ort demanded with GLUE! is due to: (1) a
three-layer architecture that promotes a many-to-many integration, allowing to reuse all
the VLE-speci�c integration code encapsulated in VLE adapters; (2) a three-layer archi-
tecture that allocates most of the integration logic in a central element, which is reused for
any integration; (3) standardized, simple and loosely-coupled contracts, which allow tool
adapters to reuse the code that implements the communication with the GLUElet Manager.
Only (4), the part of the tool adapter that implements the tool-speci�c contract, must be
developed.

158 5.4. Compliance to the requirements

similar loosely-coupled integration approaches, as it is later discussed in section 5.5.2. Besides,

evidences taken from the experiments suggest that the development e�ort GLUE! requires to

enact collaborative learning situations is progressively reduced. For all these reasons, it can be

concluded that GLUE! meets REQ5.

5.4.6. Built over VLEs and tools (REQ6)

Three VLE adapters (Moodle, LAMS and MediaWiki) and four tool adapters (Google

Docs, Dabbleboard, Apache Wookie and Doodle) were employed in the four experiments sup-

porting this evaluation; all these adapters were developed using the interfaces provided by existing

VLEs and tools, without modifying a single line of the original code. Besides, other �ve tool

adapters are currently available, being all of them built over existing tools too.

Any VLE administrator can download the appropriate VLE adapter, and install it like

any other VLE extension, indicating in a con�guration parameter the GLUElet Manager that is

expected to receive the requests from this adapter. Any GLUE! administrator can download and

install any of the available tool adapters, registering it (and the tools it wraps) in the internal

tool registry. Besides, the GLUE! administrator may decide to use some tool adapters provided

by third-parties, di�erent from those providing the GLUE! core and the external tools.

After surveying all the available adapters, it is possible to con�rm that GLUE! is built

over VLEs and tools, rather than modifying their code; thus complying with REQ6. The few

restrictions on VLEs and tools, and the use of the adapter pattern are mainly responsible for the

compliance to this requirement.

5.4.7. Other �ndings

Some other interesting �ndings came out from the qualitative and quantitative data ob-

tained from practitioners as part of four experiments. One of these �ndings concerns the �exibility

of the architecture to support changes in the group settings after the instantiation of the activities.

Both AN educators completely agreed that GLUE! was able to support the recon�gurations they

needed in the social distribution of learners. The reorganization of groups and supergroups was

the action taken by AN educators in response to some students' absences, which otherwise would

have somewhat precluded from drawing the sequence diagram and �owchart in collaboration, as

well as from reviewing and getting feedback from the designated supergroup's partners. This

assertion was also pointed out in the interview with the ICTE educator, who also needed to

reorganize some of the groups of �ve. Therefore, it can be seen that the update of users sharing

external tool instances, which was added to the tool life cycle, turned out to be very useful in

real contexts.

Chapter 5. Evaluation 159

Other interesting �nding was the perception of a seamless integration of external tools by

many students. Particularly, ICTE-2012 students, which had never used LAMS before, were

asked about whether the tools they employed (both built-in and external) were perceived as

integrated in LAMS. Surprisingly, external tools obtained similar results as compared to LAMS

built-in tools with, for instance, 82.6% of students in agreement or complete agreement that

Google Presentations was perceived as integrated (see Table 5.8). Qualitative comments also

supported this �nding: �All the tools are shown within the platform; I did not feel like moving to

another web site at any moment�; �All the activities are as a whole in LAMS �; �In my opinion,

everything is integrated in the platform in a smoothly and very simple way�. Signi�cantly, a

seamless integration reduces the learning curve, facilitating that students focus on achieving the

learning objectives, rather than on getting used to new software. In GLUE!, this seamless inte-

gration is the consequence of transparently managing the retrieval and visualization of external

tools instances, keeping the look and feel of both VLEs and tools.

Table 5.8: Answers obtained from the ICTE students to the question about the seamless integration.
Statement: �The x tool is perceived as integrated in the platform employed (LAMS)�, where
x could be: forum (built-in), mind map (built-in), presentation (external), voting (external).

Options forum mind map presentation voting

Completely agree 5/23 (21.74%) 5/23 (21.74%) 7/23 (30.43%) 4/23 (17.39%)

Agree 15/23 (65.22%) 15/23 (65.22%) 12/23 (52.17%) 11/23 (47.83%)

Somewhat agree 3/23 (13.04%) 2/23 (8.70%) 4/23 (17.39%) 5/23 (21.74%)

Somewhat disagree 0/23 (0%) 1/23 (4.35%) 0/23 (0%) 2/23 (8.70%)

Disagree 0/23 (0%) 0/23 (0%) 0/23 (0%) 0/23 (0%)

Completely disagree 0/23 (0%) 0/23 (0%) 0/23 (0%) 0/23 (0%)

No answer 0/23 (0%) 0/23 (0%) 0/23 (0%) 1/23 (4.35%)

Findings regarding limitations in GLUE! also appeared during these experiments. For

example, AN educators complained in AN-2011 about having to instantiate the collaborative

learning situation again, even though the design was exactly the same that in AN-2010: �I

would have liked to reuse some of the instantiation work done in the last year �. This was actu-

ally a limitation in Moodle, which unlike other VLEs like LAMS, does not support the design

of generic structures of activities to be instantiated in di�erent courses, and eventually, with

di�erent students. However, ongoing research aims at proposing a new independent element

in the GLUE! core, called GLUE!-PS (GLUE!-Pedagogical Scripting), which could interoper-

ate with the GLUElet Manager to enable the batch deployment of generic learning designs in

di�erent VLEs [Mun12b,Pri11]; these designs could be created outside of VLEs and could also

include external tools integrated through the GLUE! architecture. This new module could be

employed to enable the instantiation of the same design in di�erent courses, and even in di�erent

VLEs, thus fostering the reciprocal sharing of learning designs among practitioners.

160 5.5. Comparison with other loosely-coupled integration works

Another limitation that appeared during the experiments was the dependence on tool

providers. Those works that, like GLUE!, tackle the integration of external tools in VLEs rely

on the fact that tool contracts have been thoughtfully designed, and so, they are not very likely

to change (at least without prior notice). Nevertheless, on February 23, 2012, during the ICTE-

2012 experiment, Google modi�ed the API of Google Presentations5 in a way that the retrieval

and visualization of created instances through the Google Docs adapter stopped working. This

was an important setback that precluded half of the 51 original ICTE-2012 students from enact-

ing this and the subsequent activities. Fortunately, due the loosely-coupling of the architecture

and the independent implementation of adapters, developer 1 �xed this problem in less than

one hour, modifying the Google Docs adapter to meet the new Google Presentations contract.

The remaining 25 ICTE-2012 students were able to accomplish all the activities designed for

this experiment without any problems in their corresponding face-to-face session (February 27),

providing useful evaluation data. In any case, it is convenient to be aware of this dependence in

those approaches integrating external tools in VLEs. Nevertheless, the alternative of integrating

just ad hoc developed tools and VLEs, which could overcome this limitation, faces other impor-

tant shortcomings, as discussed in the introduction of this dissertation, hindering its adoption

by real practitioners.

5.5. Comparison with other loosely-coupled integration works

After the analysis of the compliance to the stakeholders' requirements, this section presents

a feature analysis and a comparison of the development e�ort in GLUE! and in other many-to-

many approaches with a similar degree of integration [Ala10c]. Here, the objective is to discuss

the compromises between the kind of tools that can be integrated, the degree of functionality

that is supported and the development e�ort that is demanded. Tight approaches are out of the

scope of this comparison for several reasons. First, current trends in software interoperability

are moving towards a low degree of coupling, especially with the rise of web technologies and

SaaS applications in the last few years. Besides, although a tight approach may be useful to

accomplish the particular integration of one tool in one VLE, the literature shows that those

tight approaches intended for the generic integration of di�erent tools in di�erent VLEs have few

chances to succeed due to the high development e�ort demanded. In fact, and as an illustrative

example, two ad hoc loosely-coupled approaches that o�er a low degree of functionality are also

included in the comparison of the development e�ort, just to help readers to get an idea on the

amount of e�ort demanded.

5http://googleappsupdates.blogspot.com.es/2012/02/new-presentations-editor-is-now-default.

html. Last visited: June 2012.

http://googleappsupdates.blogspot.com.es/2012/02/new-presentations-editor-is-now-default.html
http://googleappsupdates.blogspot.com.es/2012/02/new-presentations-editor-is-now-default.html

Chapter 5. Evaluation 161

5.5.1. Feature analysis

GLUE!, Apache Wookie and Basic LTI are the three main loosely-coupled approaches

that foster the many-to-many integration of external tools in VLEs [Ala10c]. They all enable

the communication between VLEs and tools by means of adapters that meet the contracts

de�ned by their corresponding approaches: GLUE! integration contracts (see sections 3.4.2 and

3.4.3), Wookie REST API6 and IMS Basic LTI speci�cation [IMS10b]. These contracts detail

the functionality supported, and so, they can be taken as a reference for the feature analysis

performed in this section. Nevertheless, it is important to note that not all the adapters developed

for these approaches fully implement these contracts (e.g. the Wookie block for Moodle7 only

implements a part of the Wookie REST API). Table 5.9 analyzes the compliance to the most

representative features supported by either of these approaches.

Table 5.9: Feature analysis comparing the three main loosely-coupled integration approaches.

Tag Feature GLUE!
Apache

Wookie

Basic

LTI

F1 Creation of external tool instances 4 4 8

F2 Deletion of external tool instances 4 8 8

F3 Retrieval of external tool instances 4 4 4

F4 Clone of external tool instances 8 4 8

F5 Con�guration of external tool instances 4 4 8

F6 Update of con�gurations in external tool instances 8 4 8

F7 Update of users sharing external tool instances 4 4 8

F8 Authorization for the management of external tool instances 4 8 8

The Wookie server and GLUE! have been designed to allow the creation of multiple in-

stances of external tools (F1). This feature can be combined with the VLE functionality to

manage di�erent group structures, so that each of these instances may be assigned to one single

learner or to a group of learners. As these instances are created, they should also be destroyed,

and so, GLUE! features the deletion of tool instances (F2). The Apache Wookie contract does

not explicitly support the deletion of individual instances; however, when a widget is deleted

from a Wookie server all its instances are destroyed. Of course, the instances that are created

can be retrieved at any moment with these two approaches, complying with F3. Finally, Apache

Wookie adds an extra feature (F4) to clone external tool instances. This feature can be o�ered

without much di�culty by Apache Wookie, since it integrates simple and homogeneous widgets.

Basic LTI de�nes the concept of address, instead of the concept of instance. Every Basic

LTI provider typically exposes one address that allows to access some of the tool functionality.

6https://cwiki.apache.org/WOOKIE/wookie-rest-api.html. Last visited: June 2012.
7http://moodle.org/mod/data/view.php?rid=3319. Last visited: June 2012.

https://cwiki.apache.org/WOOKIE/wookie-rest-api.html
http://moodle.org/mod/data/view.php?rid=3319

162 5.5. Comparison with other loosely-coupled integration works

Thus, Basic LTI does not support the creation, nor deletion, nor cloning of external tool instances,

and all the learners access the same abstraction of the external tool with this approach. That

access (called launch in Basic LTI) is the only request that can be sent from consumers to

providers, and it is the equivalent to the retrieval of external tool instances (F3).

Apache Wookie and GLUE! feature the con�guration of external tool instances, thus

meeting F5. This feature allows educators to con�gure external tool instances within VLEs.

Besides, the combination of F5 with F1 enables the con�guration of instances of the same

tool in a di�erent way for each group de�ned in the VLE. Both integration approaches support

di�erent parameters (or properties in the Apache Wookie terminology) for every tool. In the

case of GLUE!, the parameters that can be con�gured are prede�ned in the XForms or HTML5

templates, while in the case of Apache Wookie these parameters are prede�ned in the code of

each W3C widget. On the contrary, Basic LTI does not allow the particular con�guration of a

tool. Though some parameters are characterized in the Basic LTI request between the consumer

and the provider8, these are very generic and are only intended for administrative purposes (e.g.

information regarding the user, the course, or the organization).

With GLUE!, the con�guration values need to be set before the actual creation of tool

instances (early-binding), since only one request is sent to the GLUElet Manager for the creation

and con�guration of each tool instance. This is more e�cient in terms of communication, but less

�exible, precluding from updating the con�guration once the tool instances are created (failing in

F6); however users can generally retrieve the instances and graphically manipulate their content

and appearance. In contrast, Apache Wookie supports a late-binding, �rst creating and then

con�guring the instances of W3C widgets (complying with F6). That was easy to implement

here, because unlike in the case of GLUE!, an homogeneous contract is imposed to the external

tools that can be deployed in Apache Wookie.

Both Apache Wookie and GLUE! support the update of users sharing external tool in-

stances (F7). Therefore, modi�cations in the structure of VLE groups can be propagated to the

external tool instances that have been previously created, so that these instances are updated to

be shared according to the new distribution of VLE users. Basic LTI only retrieves one instance

for any user in any activity without taking into account the group settings. Changes in these

settings do not have any consequences in the integrated tools, and so F7 does not apply for Basic

LTI.

Some external tools require end-users, or the applications that interact with these tools,

to be authorized. The GLUE! architecture provides two generic compromise solutions for this

purpose, thus featuring F8. The �rst one is a weaker solution that uses centralized institutional

credentials and is transparent to end-users. In the second one, users have to manually solve

8http://simplelti.appspot.com/dotest. Last visited: June 2012.

http://simplelti.appspot.com/dotest

Chapter 5. Evaluation 163

the security dependencies imposed by external tools using either OAuth, OpenID or native tool

credentials. Unlike GLUE!, Apache Wookie does not need to implement any special software to

grant the authorized management of widget instances, since security issues are not considered

in the homogeneous contract de�ned for these widgets. Basic LTI uses the OAuth protocol in

the requests from Basic LTI consumers to Basic LTI providers, but just to sign the messages

(two-legged OAuth). Therefore, the authorization for the management of external tool instances

is not taken into account in this approach.

All in all, it can be concluded that GLUE! o�ers a higher degree of functionality as com-

pared to IMS Basic LTI, enabling also the integration of heterogeneous external tools, unlike

Apache Wookie (which requires all of them to meet the W3C speci�cation). In this point, it is

convenient to assess the consequences of o�ering this higher degree of functionality and support-

ing the integration of a wider set of external tools in the development e�ort, since these are all

interrelated issues. Remarkably, GLUE! can complement Apache Wookie and Basic LTI rather

than compete with them, leveraging these other loosely-coupled approaches the a�ordances of

the GLUE! architecture.

5.5.2. Development e�ort

Figure 5.6 compares the new SLOC in the three main loosely-coupled integration

approaches that also foster a many-to-many integration, namely GLUE!, Basic LTI and Apache

Wookie, and in some examples of ad hoc (one-to-one) approaches, which integrate Facebook Live

Stream9 and Kaltura10 in Moodle with a similar degree of functionality and coupling than the

GLUE! architecture. The elements of Basic LTI and Apache Wookie that have been selected to

illustrate this comparison are: the Basic LTI consumer for Moodle11, the Basic LTI provider for

Apache Wookie12, the Basic LTI provider for MediaWiki13, the Basic LTI provider for Note�ight,

and the Wookie block for Moodle. Data regarding the new SLOC in these software elements

could be obtained without much di�culty, since they are all open source projects, except for

the Basic LTI provider for Note�ight. In this particular case, the President of Note�ight LLC,

Joseph Berkovitz, which was also the developer of the Basic LTI provider for this tool, was

queried about its development e�ort14: �I actually did the implementation myself, and I would

estimate it took about 150 lines of code�. This value was taken as the new SLOC for the Basic

LTI provider for Note�ight.

9http://moodle.org/mod/data/view.php?d=13&rid=3316. Last visited: June 2012.
10http://kaltura.org/moodle-kaltura-plugin. Last visited: June 2012.
11http://code.google.com/p/basiclti4moodle. Last visited: June 2012.
12http://code.google.com/p/basiclti4wookie. Last visited: June 2012.
13http://code.google.com/p/basiclti4mediawiki. Last visited: June 2012.
14Private communication.

http://moodle.org/mod/data/view.php?d=13&rid=3316
http://kaltura.org/moodle-kaltura-plugin
http://code.google.com/p/basiclti4moodle
http://code.google.com/p/basiclti4wookie
http://code.google.com/p/basiclti4mediawiki

164 5.5. Comparison with other loosely-coupled integration works

Figure 5.6: Examples of the new SLOC in loosely-coupled integration approaches: GLUE!, Basic LTI,
Apache Wookie and Moodle plugins.

Chapter 5. Evaluation 165

Interestingly, the Basic LTI consumers/providers, the Wookie block, the Moodle plugins

and the GLUE! VLE adapter for Moodle were developed in PHP. In contrast, the GLUElet

Manager and all the GLUE! tool adapters were implemented in Java. This is emphasized here,

since PHP projects tend to require fewer lines to implement the same functionality as compared

to Java projects [Wal10]. Besides, due to the di�erent features supported by each integration

approach and the limitations of this metric (mentioned in section 5.2.2), among which the lack

of consideration to developers' skills outstands, only di�erent orders of magnitude should be

compared when drawing conclusions about the data shown in Figure 5.6.

First of all, it is convenient to distinguish the distribution of the responsibilities in the

examples provided. GLUE! is a three-tier architecture in which the GLUElet Manager partially

supports the features analyzed in section 5.5.1, de�ning also one integration contract that VLE

adapters must meet, and another integration contract that tool adapters have to comply with.

Those that want to integrate tools in VLEs with GLUE! need to develop either tool adapters or

VLE adapters. Basic LTI proposes a two-tier architecture in which the integration contract that

consumers and providers must meet is given by the own IMS Basic LTI speci�cation. In the same

way that in GLUE!, those integrating tools in VLEs with Basic LTI need to develop software

to meet this speci�cation in either the consumer or the provider side. Apache Wookie is also a

two-tier approach in which most of the features supported are in the Apache Wookie server, while

VLE blocks or modules query this server to make use of these features; those integrating tools

in VLEs with Apache Wookie need to develop VLE blocks and, if tools do not meet the W3C

Widgets speci�cation, redevelop or adapt them. Finally, ad hoc plugins are typically one-tier

approaches in which all the functionality to integrate tools in VLEs is implemented in one single

software component. Therefore, when comparing the new SLOC in di�erent approaches, it is

important to take into account all the elements that must be developed.

For instance, the new SLOC in the GLUE! VLE adapter for Moodle (1863) and in the

equivalent for Basic LTI (1410) were of the same order of magnitude, although the latter o�ers

a much more limited functionality, as discussed in section 5.5.1. Interestingly, the development

e�ort in the case of tool adapters was also similar for both approaches, as it can be argued after

comparing, for instance, the GLUE! tool adapter for MediaWiki (83) and the corresponding

Basic LTI provider (127). That also includes the integration of W3C widgets through GLUE!

(92) and Basic LTI (116) in any supported VLE, which otherwise was feasible only for Moodle

through a block that does not implement the full Apache Wookie contract, and demanded a few

more code lines (244), although in the same order of magnitude.

Once VLE adapters are implemented, trying to develop ad hoc plugins typically demands

a signi�cantly higher development e�ort. For example, after the development of the Moodle

adapter, Kaltura was integrated in Moodle (and in any other supported VLE) with about 100

new SLOC. However, the equivalent Moodle Module for Kaltura needed one order of magnitude

166 5.6. Conclusions

higher, and only for one VLE (1898). The same comparison can be made between the GLUE!

tool adapter for Facebook Live Stream (47) and the Facebook Live Stream plugin (1156). Signi�-

cantly, the initial e�ort on a GLUE! adapter for Moodle is worth after integrating two external

tools like Kaltura and Facebook Live Stream with ad hoc plugins.

All in all, it can be seen that the development e�ort in GLUE! is similar to that in Basic LTI,

although the latter o�ers much less functionality and features. Besides, that e�ort is typically

much lower than in the case of ad hoc approaches with a similar degree of functionality, especially

in those cases where multiple tools need to be integrated, or where the VLE intended for these

ad hoc works is already available with GLUE!. Finally, Apache Wookie seems to demand less

e�ort than GLUE!. Nevertheless, Apache Wookie forces tool providers to develop their tools

following the W3C speci�cation. Most valued tools for education do not meet this speci�cation,

as previously discussed in this dissertation, and so, trying to integrate popular tools like Google

Docs with Apache Wookie would entail a signi�cant extra e�ort to adapt these tools (if possible)

to the W3C Widgets speci�cation.

5.6. Conclusions

The evaluation of the GLUE! architecture was designed to cover the technological and

educational dimensions involved in this research. This evaluation was supported by the CSCL-

EREM framework and by four authentic experiments that were instantiated and enacted by

real practitioners in higher education courses. An evaluation based on authentic experiments

was chosen here to show that GLUE! can regularly be employed to support true collaborative

learning situations that require the integration of external tools in VLEs. The educational

dimension of this research was mainly covered by means of a particularization of the mixed

method, which served to collect and analyze the data obtained from these experiments. In

contrast, the technological properties were assessed using a feature analysis supplemented with

empirical evidences of software complexity.

Evaluation data from these experiments helped to conclude that GLUE! meets the stake-

holders' requirements. GLUE! reduced the instantiation time in more than 80% when combined

with VLEs like Moodle or LAMS, thus facilitating the instantiation of individual and collabo-

rative activities that require the integration of external tools, as corroborated by the educators

involved in the experiments. GLUE! also facilitated the enactment of the collaborative activi-

ties, getting, for example, that the visualization of the work done by other group members was

easy or very easy for more than 72% of learners. Besides, educators could pick from up to new

17 external tools in the experiments, some of which were among the highest rated for learning

purposes. These tools were integrated just by programming about 100 new lines of code and

without modifying the implementation given by their providers.

Chapter 5. Evaluation 167

After comparing the GLUE! architecture with other loosely-coupled approaches, it can

be concluded that GLUE! o�ers more functionality and features than Basic LTI, with minor

di�erences regarding the development e�ort. Apache Wookie, however, initially demands less

e�ort than GLUE!, but it only allows the integration of W3C widgets. Nevertheless, if these

widget are intended to be used within one of the VLEs available for GLUE!, it may be worthy

to integrate them through the GLUE! architecture. In fact, this was already done, being W3C

widgets currently available for Moodle, LAMS and MediaWiki through GLUE!. This reinforces

the idea of GLUE! as a middleware architecture for loosely-coupled approaches. Finally, evidences

of the development e�ort indicate that a loosely-coupled ad hoc integration is the worst option,

especially if the tool is intended to be used within di�erent VLEs.

The evaluation of GLUE! was the fourth and last partial objective of this research. There-

fore, after the accomplishment of this evaluation the global objective presented in the introduction

of this document is reached. Next chapter summarizes the main conclusions and the challenges

in the form of future work related to the proposal presented in this dissertation.

168 5.6. Conclusions

Chapter 6

Conclusions and future work

This chapter harvests the main conclusions of the dissertation, summarizing also the contributions

of this research work. It does so in section 6.1, while identifying the main directions of future work

in section 6.2, some of which have already been mentioned along this document.

6.1. Conclusions of the dissertation

This dissertation has tackled the limitation regarding the restricted set of built-in tools in-

cluded in VLEs (e.g. Moodle or LAMS) for the support of collaborative learning situations. This

limitation is recurrently reported in the literature, and hinders the instantiation and enactment

of many individual and collaborative activities. Pioneering research works tried to overcome this

limitation by designing and developing more �exible and tailorable VLEs and tools. Neverthe-

less, this type of solution has barely been adopted by practitioners, mainly due to the learning

e�ort they needed to master new VLEs or tools, and sometimes because of the impositions of

their own institutions, which had already adopted certain VLEs and tools.

The integration of existing external tools in existing VLEs positioned as an alternative to

these pioneering works. Nevertheless, those works in the literature tackling such integration are

not without problems. One of the most important problems is the high development e�ort re-

quired to integrate new VLEs and tools. This e�ort, necessary to interoperate the heterogeneous

integration contracts de�ned by VLEs and tools, is signi�cantly high in most approaches due to

the promotion of a tight integration, and the adoption of a one-to-one multiplicity (ad hoc inte-

gration). Another problem worth mentioning is the strict restrictions imposed to VLE and tool

providers, which preclude many popular VLEs and tools from being integrated. Finally, some

works do not take into account how external tools should be managed when instantiating and

enacting collaborative learning situations, thus precluding practitioners from taking advantage

of the collaborative features provided by VLEs.

169

170 6.1. Conclusions of the dissertation

The limitations found in related integration works were further studied in chapter 2 of this

document, as part of the analysis of the integration problem particularized for a representative set

of popular VLEs and tools, being this the �rst partial objective of the dissertation. The analysis of

the integration problem resulted in the identi�cation of the six main stakeholders' requirements,

which were formulated considering the perspectives of three di�erent actors. Practitioners want

to instantiate individual and collaborative activities with and attainable e�ort, and enact them

in collaboration with their peers. Also, practitioners want to choose from a wide set of integrated

tools when instantiating and enacting these activities, but without having to give up the VLEs

and tools they are used to. Developers may be interested in the integration of new tools and

VLEs, as long as it does not take much development e�ort. This integration should be built

without modifying the code of existing VLEs and tools, as required by providers.

The analysis of the integration problem also brought the identi�cation and discussion of the

main design issues and alternatives that should be considered when proposing new integration

approaches. Interestingly, these design issues are interrelated, thus requiring a trade-o� on the

technical and functional alternatives chosen in order to meet all the stakeholders' requirements.

The recommended alternatives suggested in this dissertation to meet all these requirements,

overcoming this way the limitations of previous related works in this context, are: to impose

few and popular restrictions on VLE and tool providers; to foster a many-to-many and loosely-

coupled integration to reduce the development e�ort; and to o�er enough functionality to, at

least, facilitate the management of the life cycle of external tools (i.e. creation, con�guration,

retrieval, deletion and update of external tool instances). The identi�cation of the main stake-

holders' requirements and design issues is an original contribution of this dissertation, and can

be found in [Ala10a,Ala10c,Ala12a].

On this basis, and in order to achieve the second partial objective of this dissertation,

a middleware architecture called GLUE!, was proposed in chapter 3. GLUE! is a three-tier

loosely-coupled architecture composed by an intermediate element (GLUElet Manager), and two

sets of adapters (VLE adapters and tool adapters). GLUE! fosters the many-to-many integra-

tion of existing external tools in existing VLEs, imposing few restrictions that main VLE and

tool providers currently comply with. Besides, this architecture is designed so that external

developers may contribute to extend the integrated VLEs and tools by developing new VLE or

tool adapters. Regarding the functionality o�ered, GLUE! mediates in the management of the

tool life cycle, thus facilitating practitioners the instantiation and enactment of both individual

and collaborative activities that require the integration of external tools within the VLE inter-

face. The GLUE! architecture, including the elements and their responsibilities, the integration

contracts, and the restrictions on VLE and tool providers has been published in [Ala10a], being

the main original contribution of this dissertation.

Chapter 6. Conclusions and future work 171

The GLUE! architecture has been implemented in the form of a reference implementation,

called GLUE!-RI (see chapter 4), as established in the third partial objective of this dissertation.

GLUE!-RI is a software distribution that includes a reference implementation of the GLUElet

Manager, and a set of examples of VLE and tool adapters. GLUE!-RI demonstrates that the

GLUE! architecture is not only a theoretical proposal, but also an actual software system that can

be used by practitioners in real educational scenarios. Remarkably, GLUE!-RI is just a reference

implementation, and so, other developers may decide to add new elements (e.g. new VLE

and tool adapters) or to redevelop the existing ones. Nevertheless, as long as these developers

preserve the ideas under the GLUE! proposal (e.g. meeting the integration contracts de�ned

by the architecture), these new elements could interoperate with the ones currently available

for GLUE!-RI. The code of the GLUE!-RI elements (available at http://gsic.uva.es/glue)

can be downloaded and installed by anyone interested in using GLUE! for the integration of

external tools in VLEs. Besides, the source code is available under a GPL license to be reused

for the development of new elements for the GLUE! architecture. GLUE!-RI is the third original

contribution of this work, being �rst mentioned in [Ala12a], and reviewed for the particular cases

of Moodle and LAMS in [Ala11b,Ala12c].

The evaluation of this dissertation aimed at showing that GLUE! meets the six stake-

holders' requirements, overcoming the limitations of previous related works (see chapter 5). This

evaluation was supported by the CSCL-EREM, which is a highly advisable framework for the

systematic evaluation of systems and tools that promote collaborative learning. Four authentic

experiments involving real university-level educators and students were formalized, and served

to collect data and evidences to support this evaluation. The preparation and realization of

the four experiments spanned approximately seventeen months, from October 2010 to Febru-

ary 2012, and corresponded to the instantiation and enactment of three di�erent collaborative

learning situations in two school years. These situations were designed by educators with di�erent

backgrounds on engineering and pedagogy, and met the needs of some of the courses delivered at

the University of Valladolid. Apart from di�erent knowledge domains, these situations covered

several collaborative strategies, durations, VLEs and external tools, thus making the experiments

associated to these situations a set of representative scenarios of real higher education practices.

The results collected from the four authentic experiments served to assert that GLUE!

meets the six stakeholders' requirements, what is expected to foster the adoption of this archi-

tecture by di�erent actors. These experiments allowed to observe, for instance, that GLUE! can

facilitate the instantiation and enactment of individual and collaborative activities, reducing the

instantiation time in more than 80% (when combined with VLEs like Moodle or LAMS). Besides,

GLUE! can integrate many tools (at least 17 as of this writing) and does not require practitioners

to change their commonly used VLEs. These important advantages are expected to motivate

practitioners in the adoption of this architecture. Concerning other actors, GLUE! is intended

http://gsic.uva.es/glue

172 6.1. Conclusions of the dissertation

to encourage the contributions from developers, since it reduces the development e�ort and fa-

cilitates the independent development of adapters, due to its loosely-coupling, its intermediate

software layer and its many-to-many integration approach. Signi�cantly, these contributions can

be made without modifying the original VLE or tool code, as expected by providers.

In order to complete the evaluation, the features o�ered by GLUE! and the development

e�ort demanded to integrate new tools and VLEs were compared with those in other loosely-

coupled approaches that also foster a many-to-many integration: Apache Wookie and Basic LTI.

This comparison led to the conclusion that GLUE! o�ers more features than Basic LTI, but

without signi�cant di�erences regarding the development e�ort. This e�ort is lower in the case

of Apache Wookie, but at the cost of enabling only the integration of those tools developed as

W3C widgets. In any case, practitioners should not only see GLUE! as a competitor of Apache

Wookie and Basic LTI, but also as an alternative to integrate W3C widgets, Basic LTI compliant

tools, as well as many other tools that cannot be integrated through Apache Wookie or Basic

LTI. Remarkably, GLUE! can interoperate with these two other loosely-coupled integration works

because they all share similar technologies, and the functionality o�ered by Apache Wookie and

Basic LTI �ts in the life cycle of external tools supported by the GLUE! architecture.

The evaluation of the GLUE! architecture and GLUE!-RI has been published in [Ala12a,

Ala12b] and completes the last partial objective of this dissertation. Overall, it is possible

to state that this dissertation has designed, developed and evaluated a middleware architecture,

showing that it enables the integration of multiple existing external tools in multiple existing

VLEs, demanding an attainable development e�ort to integrate new VLEs and tools, imposing

only basic restrictions that most VLE and tool providers already meet, and supporting enough

functionality to facilitate the instantiation and enactment of collaborative learning situations.

Therefore, the global objective intended for this dissertation has been achieved.

Finally, and although the GLUE! architecture is intended for the particular context of

integrating tools in VLEs, the ideas underlying the proposal of the GLUE! architecture can be

relevant to address the problem of integrating external applications to support collaboration

in other platforms, such as wikis, social networking sites or PLEs. Actually, a VLE adapter

for MediaWiki is available, thus enabling the integration of external tools within this platform,

even though MediaWiki was not designed for the educational domain, and lacks important VLE

features, like the management of groups and activities. This is an interesting emergent property

of this research that was not included among the expected contributions, but that deserves a

special mention.

Chapter 6. Conclusions and future work 173

6.2. Future work

During the realization of this work some new issues emerged, being listed for future reviews

of this proposal. Besides, some other issues were out of the main scope of this research, and so

they were marked with a lower priority. This section suggests a number of lines that could extend

and improve the research work presented here, and that include work on these issues. Some of

these lines have been mentioned throughout this document, and a few of them are already being

addressed in ongoing research. For better understanding these lines, they are classi�ed in four

categories: integration of new systems, improvement of integrated systems; integration with

other systems in the life cycle of collaborative learning situations; and transfer programs.

The main contribution of this dissertation, the GLUE! architecture, enables the integra-

tion of external tools in VLEs. Three VLEs and at least 17 external tools (any W3C widget

integrated through Apache Wookie could be used through GLUE! too) are currently available for

practitioners. These numbers are expected to keep growing with the integration of new systems:

Integration of new learning platforms. Other VLEs are planned to be interoperable

with GLUE! thanks to the development of new VLE adapters. These are the cases of

Sharepoint LMS (for which some e�orts have been put, as part of a Spanish National

research project in partnership with the élogos company) and Sakai. Besides, there are

plans for the migration to new VLE versions, in order to keep the set of VLE adapters

updated. This migration is prioritized in the case of Moodle, for which the 2.2 version is

already available (being the corresponding VLE adapter working for the 1.9 version). It is

noteworthy that the development e�ort estimated for this migration is low, since most of

the integration code can be reused. Apart from VLEs, other learning platforms for which

the development of a VLE adapter is under consideration are: the CMS Drupal, and the

PLE Southampton Learning Environment. However, in these platforms there is further

research to make due to the conceptual di�erences as compared to VLEs, regarding, for

instance, the management of roles, groups and activities.

Integration of new tools. Some other tools, e.g. the PiratePad web-based collaborative

text editor, are planned for the GLUE!-mediated integration in VLEs through the develop-

ment of new tool adapters. Nevertheless, these adapters are expected to be developed

without demanding much time and e�ort, and so, they will be prioritized upon request of

those educators using GLUE! for the integration of external tools. Apart from tool adapters

developed for the integration of concrete tools, there are also plans for the implementation

of a tool adapter acting as a Basic LTI consumer, in order to integrate Basic LTI compliant

tools in VLEs through the GLUE! architecture. This corresponds to the idea of GLUE!

seen as a middleware architecture of loosely-coupled integration approaches, in the same

way that now happens with Apache Wookie.

174 6.2. Future work

External developments. All the available VLE and tool adapters were implemented

by developers belonging to the research group in which this dissertation has been carried

out. Nevertheless, external developers are expected to contribute to the integration of new

VLEs and tools, due to the attainable e�ort demanded and the many-to-many integra-

tion fostered. Regarding VLEs, contacts were maintained with élogos, a distance learning

private company, for the development of the Sharepoint LMS VLE adapter. In the tool

side, two tool providers have shown interest in developing tool adapters: the University of

Patras (to integrate the Synergo mapping environment); and the University of Sydney (to

integrate the EVA3 video learning environment).

Future work also includes some issues that were out of the scope of this dissertation, and

thus need to be more thoroughly studied. The clearest examples are the security issues, which

were succinctly studied in this document, showing that they can be tackled, although they may

need a further analysis and more elaborated solutions. Besides, there are several implementation

tasks that could not be completed as of this writing due to time restrictions, and so, they need

to be reorganized and prioritized. All these lines of work are classi�ed as the improvement of

integrated systems:

Review the proposals addresing the user level authorization for the manage-

ment of external tools. Two compromise solutions advised for di�erent contexts were

proposed to address this particular security issue: a weak solution in which institutional

credentials are centralized in the internal tool registry; and a stronger distributed solution

in which educators need to explicitly grant access to data in external tools to tool adapters.

Nonetheless, the �rst solution is limited by tool providers that may disagree with the policy

of sharing institutional credentials among a large number of users. The second solution,

however, may cause errors in those cases where tokens or credentials expire and the requests

in which these tokens or credentials should be renewed do not begin with actions of the

educator in the VLE user interface. An example is the update of users sharing instances;

although the educator modi�es the groups in the VLE, the requests for the actual update

of users are not launched until one of the users try to access the tool instance for the �rst

time after the group changes (according to the implementation of current VLE adapters).

If tokens or credentials are expired, students may need to contact to the educator so that

he updates the instances (and also renews the tokens or credentials). In order to overcome

this limitation, one of the most appealing solutions would consist on the de�nition of a

security management console, where educators could set, update or remove tokens and

credentials; but also where they could see the actions pending due to expired tokens or

credentials.

Chapter 6. Conclusions and future work 175

Implementation of the remaining security issues. Apart from the user level autho-

rization for the management of tool instances, the analysis of the security problem helped

to detect �ve more security issues in the GLUE! architecture. The user level authoriza-

tion for the use of VLEs, and the user level authorization for the access to external tool

instances exclusively concerns VLEs and tools (in the given order). Nevertheless, there

are three more issues whose particular solutions were outlined, but still need to be con-

creted and implemented. These are the cases of the VLE level authorization for the use

of the GLUElet Manager and the GLUElet Manager level authorization for the use of

tool adapters; both can be addressed by respectively registering the VLEs in the GLUElet

Manager and the GLUElet Manager in the tool adapters, receiving in both cases a di�erent

token that should be included in every request. Finally, the privacy and integrity along the

communication channels could be solved by signing all the requests using a public/private

key algorithm.

Migration to OAuth 2.0. The stronger distributed solution proposed to address the user

level authorization for the management of tool instances supports the OAuth delegated

authorization mechanism to enable tool adapters the access to data in external tools, on

educators' behalf. The current implementation of the GLUE! security component (GSC)

and the available tool adapters are compatible with OAuth 1.0. However, OAuth 2.0 has

recently been released as an Internet-draft, and some providers like Google are currently

compatible with both versions; others like Twitter still work only with OAuth 1.0. New

versions of the GSC and tool adapters intended for OAuth compliant tools should thus

support OAuth 2.0 too. No changes should be made in the GLUElet Manager, nor in the

GLUE! contracts, due to this migration.

Administration client for the internal tool registry. The internal tool registry

stores the information of the available external tools and tool adapters, being queried by

the GLUElet Manager. The persisted information must be manually set by the GLUE!

administrator when installing and con�guring the GLUElet Manager. Some scripts are

provided with the reference implementation of the GLUElet Manager to help the GLUE!

administrator in this burdensome task. An administration web client is planned to be

developed to help GLUE! administrators to populate the internal tool registry, and to

update it with new tools.

Adoption of HTML5. According to the GLUE! contracts, the con�guration templates

provided by tool adapters can follow either the XForms or the HTML5 data format. Never-

theless, the available VLE adapters can only process those templates that comply with the

XForms speci�cation. Future improvements in the Moodle, LAMS and MediaWiki VLE

adapters are expected to include the actual support to HTML5.

176 6.2. Future work

Support of Moodle backups. The Moodle VLE adapter does not meet the Moodle

contract regarding the generation of course backups. Thus, at this time, those activities

supported by external tools are excluded from these backups, precluding educators from

restoring or cloning those Moodle courses in which external tool instances need to be

employed. This is an implementation issue that only a�ects the Moodle adapter, and that

is listed for future improvements in this particular adapter.

Reuse of instances within LAMS. The LAMS VLE adapter, unlike the Moodle and

MediaWiki adapters, does not currently support the reuse of external tool instances in

di�erent activities. Therefore, this is a pending implementation task according to which,

the LAMS adapter should be able to o�er educators the opportunity to reuse instances

from previous activities (in the same LAMS lesson). Interestingly, in LAMS, instances are

not created until the deployment of the lesson in the monitoring environment, and so, this

adapter should manage a set of references to the instances that are to be created.

It is noteworthy that this dissertation contributes to the instantiation and enactment phases

of the life cycle of collaborative learning situations, which was presented in section 2.2.1. Never-

theless, this life cycle includes two other phases, design and evaluation, in which practitioners and

other di�erent actors may set additional requirements. Some of the future lines should include

the integration of the GLUE! architecture with other systems in the life cycle of collaborative

learning situations intended to meet these requirements:

Deployment of learning designs. VLEs do not generally allow educators to create

abstract non-particularized learning designs to be instantiated in di�erent courses or

lessons. On the contrary, authoring tools (e.g. Collage [Her06b]) and learning design

languages (e.g. IMS LD [IMS03]) are explicitly proposed to facilitate educators and in-

structional designers the creation and management of abstract learning designs, especially

in collaborative contexts where non-trivial structures of groups and activities need to be de-

�ned. These abstract learning designs can be shared among practitioners, and also reused

in di�erent contexts. Unfortunately, major VLEs like Moodle, Sakai or Blackboard, cannot

interoperate with the most popular authoring tools and learning design languages. LAMS

is an exception to this, providing its own integrated environment to design and deploy

learning designs, although these designs cannot generally be deployed in other VLEs.

Ongoing research on this issue, which a�ects the design and instantiation phases, aims

at proposing a new element in the GLUE! core, called GLUE!-PS (GLUE!-Pedagogical

Scripting) [Mun12b, Pri11], to enable the deployment of abstract learning designs gen-

erated with multiple authoring tools and learning design languages into multiple VLEs.

GLUE!-PS follows the many-to-many and low coupling principles that stem from the re-

search done in this dissertation, and employs similar technologies (e.g. REST services).

Chapter 6. Conclusions and future work 177

Besides, GLUE!-PS has been designed to meet the GLUE! integration contract for VLEs.

Therefore, GLUE!-PS can request the creation and management of external tool instances

to the GLUElet Manager, in order to particularize the learning designs with external tools

before deploying them in VLEs. Using the GLUE! - GLUE!-PS partnership educators may

decide to instantiate within the GLUE!-PS graphical interface before deploying in VLEs, or

to instantiate directly within the VLE interface. Signi�cantly, no changes were done in any

of the GLUE! elements, nor in the GLUE! contracts, to be used by GLUE!-PS. The �rst

experiments with educators using the GLUE! - GLUE!-PS partnership have already been

made with results hinting that educators appreciate the value in this partnership [Ala12d].

Semantic search of external tools. The internal tool registry persists information

about the available external tools. Part of this information (e.g. the tool name, the

description, the provider and the tasks supported) is retrieved by the GLUElet Manager,

being shown to educators within the VLE interface when they want to add a new tool

to a learning activity. Nevertheless, as the number of available tool increases, educators

demand some kind of search �lter to select the appropriate tools they are looking for (e.g.

indicating the intended tasks). Moreover, the information shown to educators might be

extended by the GLUE! administrator in order to provide more accurate details (e.g. the

last version of the tool, system requirements, opinions of other peers, etc.). Therefore,

the GLUE! administrator, who is in charge of the burdensome creation and update of all

this information, also su�ers the problem of a large number of integrated tools. There

exist a research work aimed at overcoming these two problems with di�erent proposals

related to semantics. First, this work leverages the advantages of the semantic search

of tools to facilitate educators the selection of external tools within the VLE interface.

This, however, would require to enrich the GLUE! contract for VLEs (in order to support

these semantic searches), and also to modify the existing VLE adapters. Additionally,

this work proposes a linked data [Biz09] infrastructure, called SEEK-AT-WD1 (Support

for Educational External Knowledge About Tools in the Web of Data), for the automatic

retrieval of information about educational tools [Rui12a,Rui12b]. This infrastructure could

be useful to populate and maintain the internal tool registry. The adoption of SEEK-AT-

WD would only require to modify the information stored in the internal tool registry so that

this information meets the four main linked data principles [Ber06], although no further

changes would be needed in the GLUElet Manager, nor in the GLUE! contracts.

Monitoring collaboration among students. The GLUE! architecture does not pro-

vide educators with information about interaction analysis (i.e. how students collaborate

throughout the technology-mediated learning activities) [Sol05]. Interaction analysis is

not supported by GLUE! due to the trade-o� between the development e�ort demanded

1http://gsic.uva.es/seek. Last visited: June 2012.

http://gsic.uva.es/seek

178 6.2. Future work

and the functionality that can be o�ered. VLEs do not provide much data about how

students collaborate either, although some tools may allow to inspect, for instance, the

conversation of a group of students in a forum thread, or a summary with the changes

each participant introduces in a shared document. This information could be arranged

and formatted using �gures, and might be used by educators when evaluating students'

performance. The proposal of an extension of the GLUE! architecture, called GLUE!-CAS

(Collaboration Analysis Support for GLUE!) [Rod11, Rod12], aimed at gathering infor-

mation about the collaboration among students during the enactment phase, is currently

under research. GLUE!-CAS also relies on the many-to-many and low coupling principles

of GLUE!, harvesting information from multiple data sources (e.g. logs from the GLUElet

Manager, history of changes in the content of external tool instances, events in VLEs).

Nevertheless, this approach would require some changes in the GLUElet Manager and

would impose new requirements on VLE and tool adapters. For instance, in every creation

or update request the GLUElet Manager should register in GLUE!-CAS the context for

the analysis (indicating the VLE users, their associated instances, and the corresponding

external tools). Besides, VLE and tool adapters should be able to reply to periodic queries

from GLUE!-CAS reporting events in the VLEs and changes in the content of instances.

Integration of geolocated tools. Some of the current research lines on CSCL are ana-

lyzing the challenges involved in the instantiation and enactment of collaborative activities

in both the physical and virtual worlds [Iba11]. An ongoing research is studying how

the GLUE! architecture could be enhanced by means of augmented reality [Dun09] and

geopositioning [Rob11], so that students may interact with the physical world by means

of the integration of geolocated tools [Mun12a]. In geolocated tools, a geoposition (lati-

tude and longitude coordinates) would be associated to each external tool instance (in the

same way that other con�guration parameters). Students using a mobile device should

approach these coordinates, and once they reach the intended location they would use an

augmented reality browser (e.g. Junaio2) installed in their smartphones or tablets to access

their tool instances. This scenario could be useful, for example, in an activity in which

students must write a collaborative document about a given monument in situ. There

is an exploratory prototype on this line working with the GLUE! - GLUE!-PS partner-

ship [Mun12a]. However, the associations between external tool instances and geopositions

are de�ned in GLUE!-PS, which is also in charge of deploying these instances in Junaio.

Therefore, this prototype did not required any modi�cations in the GLUE! elements, nor in

the GLUE! contracts. Nevertheless, this approach does not work when the educator designs

and instantiates directly on the VLE user interface; that would require more research, and

probably some changes in the GLUE! architecture.

2http://junaio.com. Last visited: June 2012.

http://junaio.com

Chapter 6. Conclusions and future work 179

Finally, it is noteworthy that this is a very applied research work, which is intended to en-

hance educational practices, especially in the CSCL �eld. Therefore, a very important future line

is the de�nition of a transfer program, in which the contributions generated in this dissertation

(in the form of a middleware architecture that enables the integration of external tools in VLEs)

are adopted by real practitioners and institutions. The �rst step in this direction has already been

made: the implementation of a usable and useful reference implementation of the architecture

that anybody can download and install from the GLUE! website (http://gsic.uva.es/glue).

Besides, user manuals and videos have been created to explain the innovations introduced by

the architecture in the normal operation of the VLEs supported. Finally, negotiations have

been conducted for the adoption of this proposal in several institutions, such as the University of

Valladolid, the Institute of Applied Ophtalmobiology (associated to the University of Valladolid),

and the University of Mondragón.

http://gsic.uva.es/glue

180 6.2. Future work

Appendix A: Study of the development

e�ort

The study of the development e�ort is supported by two quantitative metrics of software

complexity, the new source lines of code (new SLOC) developed for an adapter and the time

invested by a developer in the programming of the code. Measurements of these two metrics

were obtained employing the source �les of the GLUE!-RI 0.8 version. Besides, measurements

of the new SLOC for those software elements following other integration approaches were taken

using the code that can be downloaded from the references footnoted in chapter 5. The Basic

LTI (Tool) provider for Note�ight was an exception to this; data regarding the new SLOC in

this example was directly given by its developer, Joseph Berkovitz.

The time invested in the development of VLE and tool adapters was calculated by the own

developers, adding up the hours listed in their SCRUM backlogs devoted to programming tasks.

That excludes, for instance, the time needed to study and understand the VLE or tool contracts,

or the time to generate the documentation of the developed code. Measurements obtained from

this metric aim at providing empirical data that may be particularly interesting for those VLE

and tool providers that want to implement a fully functional version of an adapter, estimating a

priori how much time it might take.

The new SLOC was calculated using the GeroneSoft Code Counter Pro v.1.323, which

allows to count the lines in source �les implemented in languages like Java, PHP or C/C++

among many others. Therefore, the individual packages containing the source code of VLE

and tool adapters were scanned using this program, obtaining two di�erent measures: the total

number of lines in the package (including comments, headers and blank lines) and the source

lines of code (without comments, headers or blank lines). After that, the code of VLE and tool

adapters was carefully checked, discarding those lines that were completely or mostly reused

(e.g. lines where the only changes were attributes or parameters renamed/refactored), thus

obtaining the new SLOC. Interestingly, despite the fact that comments, headers and blank lines

are sometimes considered in the SLOC, they were excluded from this calculation, since the
3http://www.geronesoft.com. Last visited: June 2012.

181

http://www.geronesoft.com

182 Appendix A

purpose of this study is to o�er empirical data about how many lines a developer should program

to actually accomplish the implementation of an adapter. Table 1 replicates the same table

presented in chapter 5 when analyzing the development e�ort, indicating the new SLOC, but

also the source lines of code, and the total number of lines in the di�erent adapters.

Table 1: Study of the new SLOC. First VLE and tool adapters are marked in bold.

Adapter (programming language) new SLOC SLOC total lines

VLE adapter for Moodle (PHP) 1863 2046 3870

VLE adapter for LAMS (Java) 909 10205 15459

VLE adapter for MediaWiki (PHP and Javascript) 1936 8947 12737

Tool adapter for Google Docs (Java) 487 487 953

Tool adapter for MediaWiki (Java) 83 313 598

Tool adapter for Dabbleboard (Java) 125 336 785

Tool adapter for Apache Wookie (Java) 92 335 592

Tool adapter for Doodle (Java) 84 289 542

Tool adapter for web content (Java) 3 159 353

Tool adapter for Note�ight (Java) 86 348 981

Tool adapter for Kaltura Video (Java) 97 400 804

Tool adapter for Facebook Live Stream (Java) 47 405 827

Although the Moodle adapter was taken as a reference for the creation of the other VLE

adapters, it was not completely implemented from scratch. This was due to the fact that Moodle

providers o�er a base template with the structure and some of the code for the development of

new activity modules4, and so, the Moodle adapter was implemented using this template. Figure

1 shows the total lines (3870) in the Moodle adapter and the SLOC (2046), which includes the

source lines, plus those tagged as both (i.e. source + comment). Signi�cantly, almost 98% of the

code is in PHP �les, although there are a few lines in an XML �le.

In the cases of the VLE adapters for LAMS and MediaWiki, developers also started from

existing code given by the VLE providers. In LAMS, the forum tool served as the basis for the

development of the LAMS adapter, while in MediaWiki the Editforms extension5 was employed.

In LAMS, most of the new code was developed in Java �les and in Java Server Pages (JSP), being

about 16% of the new SLOC in XML �les. In MediaWiki, however, most of the new code was

in PHP, being about the 25% of the new SLOC in JavaScript �les. It is important to note that

quite of the code developed to establish the communication between the Moodle adapter and the

GLUE! core could be reused in the LAMS and MediaWiki adapters, specially in the latter which

also employs PHP. Unlike in Moodle, the new code in the LAMS and MediaWiki adapters is

distributed among an important number of �les developed with di�erent programming languages,

4http://docs.moodle.org/dev/Modules. Last visited: June 2012.
5http://mediawiki.org/wiki/Extension:EditPageMultipleInputTextAreas. Last visited: June 2012.

http://docs.moodle.org/dev/Modules
http://mediawiki.org/wiki/Extension:EditPageMultipleInputTextAreas

Appendix A 183

Figure 1: GeroneSoft Code Counter Pro screenshot showing the SLOC (source + both) and the total
lines (total) for the Moodle adapter.

and so, the values that appear in Table 1 for these two adapters are a rather reliable estimation

of the new SLOC, but it cannot be assured that these are accurate values.

Tool adapters were developed taking the Google Docs adapter as a reference, which was

completely implemented from scratch. All the new code developed for these adapters is in Java

�les, as it is exempli�ed with the Dabbleboard adapter in Figure 2. The package containing this

adapter has 785 total lines (336 excluding comments, headers and blank lines), although only

125 of them needed to be programmed when developing this adapter. Signi�cantly, the code

of the external libraries used by the adapters (e.g. GLUEcommon or RESTlet) is not included

here, since these libraries are not packaged together with the individual adapters.

Figure 2: GeroneSoft Code Counter Pro screenshot showing the SLOC (source + both) and the total
lines (total) for the Dabbleboard adapter.

184 Appendix A

Appendix B: GLUE! data format

The GLUE! integration contracts for VLEs and tools report that the data exchanged among

the elements of the architecture must be formatted following an Atom extension, namely the

GLUE! data format. This Atom extension adds some minor elements needed by the architecture

(e.g. the tool provider or the tool type). This appendix describes and exempli�es the GLUE!

data format in di�erent requests and responses among the GLUE! elements.

B.1 Data format overview

The GLUE! data format is a specialization of the Atom data format, built using the Atom

extension mechanism. The GLUE! data format can be applied to:

HTTP entities returned to a method request that are not just an HTTP status code.

Call parameters sent in a POST request.

Signi�cantly, call parameters in other methods like GET or DELETE are not formatted because

the HTTP entity in these methods must be empty. In these cases, call parameters are serialized

in the URL addressed by the method.

As a general rule, the data required by GLUE! follow the semantic established by the

Atom protocol. Nevertheless there are some cases in which new XML elements must be de�ned.

These elements use the speci�c namespace http://gsic.uva.es/glue/1.0, as it is de�ned by

the Atom extension mechanism. Signi�cantly, the Atom speci�cation forces the inclusion of

some speci�c elements, typically the title and the last update date, in order to validate an Atom

document. This sometimes causes the redundancy of the data included in such elements (and in

other elements), due to the lack of more appropriate information to be transmitted.

185

http://gsic.uva.es/glue/1.0

186 Appendix B

B.2 Methods of the GLUE! contract for tool adapters

GET /configuration (response)

The response a tool adapter returns to a GET /configuration call consists of a single

atom:entry element, containing a con�guration template, which follows the XForms or the

HTML5 format. The atom:entry descendant elements are detailed in Table 2. Besides, an

example of response sent by the Google Docs adapter can be seen next:

Table 2: atom:entry assignments for GET /configuration responses to the GLUElet Manager.

Element Value that must be assigned

atom:id URI of the /configuration resource in the tool adapter.

atom:content

Con�guration template. This is represented as an html:div

element containing an XHTML structure that embeds XForms
or HTML5 elements.

atom:author

Information about the tool adapter or about its developer. GLUE! built-
in adapters include an atom:author with the string �Group of Intelligent
and Cooperative Systems (GSIC)�.

atom:title

Textual descriptor that brie�y describes the con�guration, indicating, for
instance, whether it is a default con�guration or not. Each tool adapter
de�nes the value of this element.

atom:updated Date of the last modi�cation of the con�guration de�nition.

<?xml version="1.0" encoding="UTF-8"?>

<entry xmlns="http://www.w3.org/2005/Atom"

xmlns:glue="http://gsic.uva.es/glue/1.0">

<author>

<name>Group of Intelligent and Cooperative Systems (GSIC)</name>

</author>

<id>http://localhost:8186/ToolAdaptor/GData/configuration?tool=Google+Documents</id>

<title type="text">Default configuration definition</title>

<updated>2010-05-12T06:55:39.26Z</updated>

<content type="xhtml">

<div

xmlns="http://www.w3.org/1999/xhtml"

xmlns:ev="http://www.w3.org/2001/xml-events"

xmlns:xf="http://www.w3.org/2002/xforms"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ins="http://gsic.uva.es/glue/adaptors/implementation/gdata/1.0">

<!-- model -->

<xf:model>

<xf:instance id="input-file">

<ins:data>

<ins:file xsi:type="xs:hexBinary"/>

<ins:title xsi:type="xs:string">Default title</ins:title>

</ins:data>

</xf:instance>

/configuration
/configuration
/configuration
/configuration

Appendix B 187

<xf:submission action="http://inapropiate.url.com/send" id="s"

method="post"/>

</xf:model>

<!-- user interface control in body; only 'ref' bindings are used -->

<p>

<xf:input ref="/ins:data/ins:title">

<xf:label>Title:</xf:label>

</xf:input>

</p>

<p>

<xf:upload ref="/ins:data/ins:file">

<xf:label>Select file:</xf:label>

<xf:filename ref="@filename"/>

<xf:mediatype ref="@mediatype"/>

</xf:upload>

</p>

<p>

<xf:submit submission="s"><xf:label>Submit</xf:label></xf:submit>

</p>

</div>

</content>

</entry>

This response can be employed in the context of the creation of an external tool instance

(see section 3.5.1). More speci�cally, it corresponds to the interaction 2.4 in Figure 3.2.

POST /instance (request)

The HTTP entity that is sent in the request from the GLUElet Manager to tool adapters for

the creation of instances (POST /instance) must contain an atom:entry element, that includes,

as the most relevant �elds, the con�guration for the particular instance and the list of users that

are intended to access that instance. Table 3 shows the descendant elements of this atom:entry.

Besides, an example of this request for the Google Docs adapter is shown next:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<entry xmlns="http://www.w3.org/2005/Atom"

xmlns:glue="http://gsic.uva.es/glue/1.0">

<glue:toolName>Google Documents</glue:toolName>

<glue:configuration>

<ins:data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ins="http://gsic.uva.es/glue/adaptors/implementation/gdata/1.0">

<ins:file filename="test.odt" xsi:type="xs:hexBinary">

504(...)3600000000

</ins:file>

<ins:title xsi:type="xs:string">My first document</title>

</ins:data>

</glue:configuration>

<glue:users>

/instance
/instance

188 Appendix B

Table 3: atom:entry assignments for POST /instance requests from the GLUElet Manager.

Element Value that must be assigned

glue:toolName
Parameter �tool� indicating the tool name as a human-readable
string.

glue:configuration

Parameter �con�guration� as an XML composed-element. Its
content includes the con�guration values provided by the edu-
cator, once validated.

glue:parameters

Text string with other �parameters� that the tool adapter may
need. Its value comes from the internal tool registry, and must
be set when registering a new tool.

glue:users

Parameter �users� as a list of glue:user elements. Each of these
elements contains a textual identi�er of a user (VLE username)
that shares the external tool instance, once created.

glue:callerUser

Parameter �callerUser� containing a textual identi�er (VLE
username) of the user that requests the creation of the tool
instance.

<glue:user>

student1

</glue:user>

<glue:user>

student2

</glue:user>

<glue:user>

student3

</glue:user>

<glue:user>

student4

</glue:user>

</glue:users>

<glue:callerUser>

teacher

</glue:callerUser>

<glue:parameters>feedURL=http%3A%2F%2Fdocs.google.com%2Ffeeds%2Fdocuments%2Fprivate%2Ffull%2F

</glue:parameters>

</entry>

This request can be employed in the context of the creation of an external tool instance

(see section 3.5.1). It corresponds to the interaction 3.3 in Figure 3.2.

POST /instance (response)

The response from tool adapters to a POST /instance consists on an atom:entry element

with information of the tool instance that is created, being the most relevant item the URL that

identi�es the instance. Table 4 shows the descendants elements of this atom:entry. An example

/instance
/instance
/instance

Appendix B 189

of this response returned by the Google Docs adapter after the successful creation of a Google

Documents instance is shown next:

Table 4: atom:entry assignments for POST /instance responses to the GLUElet Manager.

Element Value that must be assigned

atom:id
URI of the /instance/{instanceId} resource that has been created in
the tool adapter.

atom:link, with rel=�alternate�
URL of the real resource that has been created. It must be
accessible from a web browser.

atom:author

Information about the tool adapter or about its developer. GLUE! built-
in adapters include an atom:author/atom:name element with the string
�Group of Intelligent and Cooperative Systems (GSIC)�.

atom:title
Textual descriptor of the instance that is created. Its representation de-
pends on the speci�c tool or tool adapter.

atom:updated Date of the creation of the instance.

<?xml version="1.0" encoding="UTF-8"?>

<entry xmlns="http://www.w3.org/2005/Atom"

xmlns:glue="http://gsic.uva.es/glue/1.0">

<author>

<name>Group of Intelligent and Cooperative Systems (GSIC)</name>

</author>

<id>http://localhost:8186/ToolAdapter/GData/instance/1</id>

<link

href="http://docs.google.com/Doc?docid=0AUMiWAp0au_cZGdmend4cl8yNjFjNjcydGdmaA&hl=en"

rel="alternate" title="HTML accesible URL"/>

<title type="text">My first document</title>

<updated>2010-05-19T08:43:33Z</updated>

</entry>

This response can be used in the context of the creation of an external tool instance (section

3.5.1). It corresponds to the interaction 3.7 in Figure 3.2.

GET /instance/{instanceId} (response)

Responses to a GET /instance/{instanceId} call on a tool adapter have the same struc-

ture as responses to successful POST /instance requests. The only possible di�erence is the

content of the atom:updated element, which should contain the date of the last modi�cation

of the resource. This date could be thus later than the creation date. This response can be

employed in the context of the retrieval (use) of an external tool instance (section 3.5.2). It

corresponds to the interaction 1.4 in Figure 3.3.

/instance
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance

190 Appendix B

B.3 Methods of the GLUE! contract for VLE adapters

GET /tools (response)

The response to a GET /tools request issued by a VLE adapter includes a list of entries

with information about the tools that are registered in the GLUElet Manager. This list is

formatted in an atom:feed element, which contains an atom:entry element for each external

tool. This atom:entry element includes information concerning the particular tool; information

that is distributed in various parameters. Among these parameters, it is important to note the

unique identi�er representing the tool. This identi�er is employed in subsequent requests, for

instance to retrieve the con�guration template, or to create instances of that tool. Table 5 shows

the values that must be assigned to the direct descendants of the atom:feed element. The values

of the atom:entry element are not speci�ed in this table, but in Table 6, where signi�cant GLUE!

elements are marked in bold. An example of response sent by the GLUElet Manager is presented

next:

Table 5: atom:feed assignments for GET /tools responses from the GLUElet Manager.

Element Value that must be assigned

atom:author/atom:name Fixed string �Group of Intelligent and Cooperative Systems (GSIC)�.

atom:id URI of the /tools resource in the GLUElet Manager.

atom:link, with rel=�self� Same value as in atom:id, as recommended in the Atom data format.

atom:title Fixed string �List of tools (tool implementations)�.

atom:updated
Date of the last modi�cation of the information about external tools in
the internal tool registry.

Table 6: atom:entry assignments for GET /tools responses from the GLUElet Manager.

Element Value that must be assigned

atom:author/atom:name Fixed string �Group of Intelligent and Cooperative Systems (GSIC)�.

atom:id URI of the /tools/{toolId} resource in the GLUElet Manager.

atom:link, with rel=�alternate�6 Same value as in atom:id.

atom:title Tool name.

atom:updated Date of the last update of this tool in the internal tool registry.

glue:impName
Kind of implementation under which the external tool is pro-
vided.

glue:toolProvider Name of the provider of this tool.

atom:link, with rel=�related� Contact URL of the provider of this tool.

6This element will be substituted in the near future by an atom:content element, which should include a
textual description of the tool

/tools
/tools
/tools
/tools
/tools
/tools/{toolId}

Appendix B 191

<?xml version="1.0" encoding="UTF-8"?>

<feed xmlns="http://www.w3.org/2005/Atom"

xmlns:glue="http://gsic.uva.es/glue/1.0">

<author>

<name>Group of Intelligent and Cooperative Systems (GSIC)</name>

</author>

<id>http://localhost:8185/GLUEletManager/tools</id>

<link href="http://localhost:8185/GLUEletManager/tools" rel="alternate" title=""/>

<title type="text">List of tools (tool implementations)</title>

<updated>2010-05-12T06:55:10.37Z</updated>

<entry>

<author>

<name>Group of Intelligent and Cooperative Systems (GSIC)</name>

</author>

<id>http://localhost:8185/GLUEletManager/tools/1</id>

<link href="http://localhost:8185/GLUEletManager/tools/1" rel="alternate"

title="Description of Google Documents"/>

<link href="http://docs.google.com/" rel="related" title="Provider"/>

<title type="text">Google Documents</title>

<updated>2010-04-20T09:15:00Z</updated>

<glue:impName>GData</glue:impName>

<glue:toolProvider>http://docs.google.com/</glue:toolProvider>

</entry>

(...)

</feed>

This response can be used in the context of the creation of an external tool instance (section

3.5.1). It corresponds to the interaction 1.3 in Figure 3.2.

GET /configuration (response)

The response to a GET /configuration call on the GLUElet Manager consists of a single

atom:entry element, containing a con�guration template following either the XForms or the

HTML5 format. The values that must be assigned to each element in this response are the same

that in the GET /configuration response given to the GLUElet Manager from a tool adapter.

Only one element is changed by the GLUElet Manager. This element is atom:id, which must

point at the URI of the /tools/{toolId}/con�guration resource in the GLUElet Manager domain.

An example of the response sent by the GLUElet Manager is provided next:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<entry xmlns="http://www.w3.org/2005/Atom"

xmlns:glue="http://gsic.uva.es/glue/1.0">

<author>

<name>Group of Intelligent and Cooperative Systems (GSIC)</name>

</author>

/configuration
/configuration
/configuration

192 Appendix B

<id>http://localhost:8185/GLUEletManager/tools/1/configuration</id>

<title type="text">Default configuration definition</title>

<updated>2010-05-12T06:55:39.26Z</updated>

<content type="xhtml">

<div xmlns="http://www.w3.org/1999/xhtml"

xmlns:ev="http://www.w3.org/2001/xml-events"

xmlns:xf="http://www.w3.org/2002/xforms"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ins="http://gsic.uva.es/glue/adaptors/implementation/gdata/1.0">

<!-- model -->

<xf:model>

<xf:instance xmlns="" id="input-file">

<ins:data>

<ins:file xsi:type="xs:hexBinary"/>

<ins:title xsi:type="xs:string">Default title</ins:title>

</ins:data>

</xf:instance>

<xf:submission action="http://inapropiate.url.com/send" id="s"

method="post"/>

</xf:model>

<!-- user interface control in body; only 'ref' bindings are used -->

<p>

<xf:input ref="/data/title">

<xf:label>Title:</xf:label>

</xf:input>

</p>

<p>

<xf:upload ref="/data/file">

<xf:label>Select file:</xf:label>

<xf:filename ref="@filename"/>

<xf:mediatype ref="@mediatype"/>

</xf:upload>

</p>

<p>

<xf:submit submission="s">

<xf:label>Submit</xf:label>

</xf:submit>

</p>

</div>

</content>

</entry>

This response can be used in the context of the creation of an external tool instance (section

3.5.1). It corresponds to the interaction 2.5 in Figure 3.2.

POST /instance (request)

The HTTP entity that is sent in the requests to the GLUElet Manager for the creation of

instances must contain an atom:entry element that includes, among other items, the con�gura-

/instance

Appendix B 193

tion values provided by the educator and the list of users. Table 7 shows the descendant elements

of the atom:entry. Signi�cantly, these elements are the same than in those requests from the

GLUElet Manager to tool adapters except for the �parameters� element, which is generated by

the GLUElet Manager. Besides, an example of this request can be seen next:

Table 7: atom:entry assignments for POST /instance requests to the GLUElet Manager.

Element Value that must be assigned

glue:tool
Parameter �tool�, pointing at a URI in the GLUElet Manager. This
URI indicates the tool for which the instance is created.

glue:configuration

Parameter �con�guration�, as an XML composed-element. Its con-
tent includes the con�guration values provided by the educator,
once validated.

glue:users

Parameter �users�, as a list of glue:user elements. Each of these
elements contains a textual identi�er of a user (VLE username)
that shares the external tool instance, once created.

glue:callerUser
Parameter �callerUser� containing a textual identi�er (VLE user-
name) of the user that requests the creation of the tool instance.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<entry xmlns="http://www.w3.org/2005/Atom"

xmlns:glue="http://gsic.uva.es/glue/1.0">

<glue:tool>http://localhost:8185/GLUEletManager/tools/1</glue:tool>

<glue:configuration>

<ins:data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ins="http://gsic.uva.es/glue/adaptors/implementation/gdata/1.0">

<ins:file filename="prueba.odt" xsi:type="xs:hexBinary">

504(...)3600000000

</ins:file>

<ins:title xsi:type="xs:string">My first document</title>

</ins:data>

</glue:configuration>

<glue:users>

<glue:user>

student1

</glue:user>

<glue:user>

student2

</glue:user>

<glue:user>

student3

</glue:user>

<glue:user>

student4

</glue:user>

</glue:users>

<glue:callerUser>

teacher

</glue:callerUser>

</entry>

/instance

194 Appendix B

This response can be employed in the context of the creation of an external tool instance (section

3.5.1). It corresponds to the interaction 3.2 in Figure 3.2.

POST /instance (response)

The response to a POST /instance returned by the GLUElet Manager consists on an

atom:entry element with information of the tool instance that is created. Table 8 shows the

descendants elements of this atom:entry. It is noteworthy that this response is originally gen-

erated by a tool adapter, and the GLUElet Manager only updates the atom:id. An example of

this response after the creation of a Google Documents instances is shown next:

Table 8: atom:entry assignments for POST /instance responses from the GLUElet Manager.

Element Value that must be assigned

atom:id
URI of the /instance/{instanceId} resource that has been created in
the GLUElet Manager.

atom:link, with rel=�alternate�

URL of the real resource that has been created. It must be ac-
cessible from a web browser. The VLE adapter may use this pa-
rameter to show the instance that has been successfully created
to the educator that requested its creation. This URL should
not be stored by the VLE adapter, which should send a new
request to the GLUElet Manager when a particular end-user
need to access that instance.

atom:author

Information about the tool adapter or about its developer. GLUE! built-
in adapters include an atom:author/atom:name element with the string
�Group of Intelligent and Cooperative Systems (GSIC)�.

atom:title
Textual descriptor of the instance that is created. Its representation de-
pends on the speci�c tool or tool adapter.

atom:updated Date with the creation of the instance.

<?xml version="1.0" encoding="UTF-8"?>

<entry xmlns="http://www.w3.org/2005/Atom"

xmlns:glue="http://gsic.uva.es/glue/1.0">

<author>

<name>Group of Intelligent and Cooperative Systems (GSIC)</name>

</author>

<id>http://localhost:8185/GLUEletManager/instance/1</id>

<link

href="http://docs.google.com/Doc?docid=0AUMiWAp0au_cZGdmend4cl8yNjFjNjcydGdmaA&hl=en"

rel="alternate" title="HTML accesible URL"/>

<title type="text">Title for this instance</title>

<updated>2010-05-19T08:43:33Z</updated>

</entry>

This response can be employed in the context of the creation of an external tool instance

(section 3.5.1). It corresponds to the interaction 3.9 in Figure 3.2.

/instance
/instance
/instance
/instance/{instanceId}

Appendix B 195

GET /instance/{instanceId} (response)

Responses to a GET /instance/{instanceId} call on the GLUElet Manager have the same

structure as responses to successful POST /instance requests. There is only one di�erence in

the content of the atom:updated element. In this case, this element must contain the date of

the last modi�cation of the instance, and so, this date could be later than the creation date.

This response can be employed in the context of the retrieval (use) of an external tool instance

(section 3.5.2). It corresponds to the interaction 1.5 in Figure 3.3.

/instance/{instanceId}
/instance/{instanceId}
/instance

196 Appendix B

Appendix C: Developing tool adapters

in Java

In order to facilitate the development of new tool adapters in Java, a library is provided to

be used by anyone interested in contributing to the GLUE! architecture. This library, called

GLUEcommon, helps developers to focus on the implementation of the code required for

the communication with external tools, rather than on the HTTP messages received from the

GLUElet Manager.

C.1 The GLUEcommon library

GLUEcommon is a library for Java programmers developed by the GSIC-EMIC research

group. The structure of this library is as follows:

1. Package glue.common.entities.configuration. This package contains classes respon-

sible for handling the con�guration forms that must be provided by tool adapters. Besides,

these classes also retrieve the values provided by educators after �lling out these forms.

BasicConfigurationRepository: class providing access to all the con�guration forms

available in the tool adapter classpath as XHTML �les.

Configuration: class representing con�guration forms.

ConfigurationRepository: interface that allows developers to create their own

mechanisms to access con�guration forms. This interface is implemented by

BasicConfigurationRepository.

2. Package glue.common.format. This package contains helper classes employed in format-

ting tasks. Nevertheless, those developing tool adapters do not need to know further details

on these classes, since they are not directly used.

197

198 Appendix C

3. Package glue.common.entities.instance. This package contains several interfaces that

must be implemented by those developing tool adapters, in order to provide the data

concerning to the tool instances that are created. This package also includes mechanisms

for the creation, access and persistence of instances.

BasicInstanceEntityRepository: class providing a basic persistence system for the

data related to external tool instances.

InstanceEntity: interface to be implemented by instance representations.

InstanceEntityFactory: interface to be implemented in order to provide mechanisms

for the creation of instances.

InstanceEntityRepository: interface that allows developers to create more

sophisticated persistence mechanisms. This interface is implemented by

BasicInstanceEntityRepository.

4. Package glue.common.resources. This is a package that includes several classes respon-

sible for the reception and processing of requests from the GLUElet Manager.

ConfigurationResource: class processing requests related to con�guration forms.

GLUEResource: ancestor class of all the other resource classes.

InstanceFactoryResource: abstract class processing requests for the creation of new

tool instances.

InstanceResource: abstract class processing requests for the access, update and

deletion of created instances.

5. Package glue.common.server. This package contains the classes in charge of the ini-

tialization of the tool adapter.

Application: abstract class to be implemented in order to map the resource classes

responsible for processing the requests from the GLUElet Manager to the URL paths

where each request is served.

Server: class in charge of the initial con�guration of the server. It also starts the

server process.

Figure 3 presents a class diagram that summarizes the main relationships between the

di�erent classes and interfaces in the GLUEcommon library.

Appendix C 199

Figure 3: Class diagram representing the classes and interfaces in the GLUEcommon library.

C.2 Con�gurations

The GLUE! contract for tools assumes that the creation of tool instances may require

the provision of speci�c values for certain con�guration parameters that cannot be predicted by

the contract itself. Some of these parameters are tied to the tool, and so they are common for

every instance created (e.g. a parameter indicating if the instances of that tool can be reused

in di�erent learning activities). However, some other parameters may present di�erent values

for every instance created (e.g. a parameter to con�gure the title of the instance); these speci�c

parameters should be provided by the educator during the creation of instances.

200 Appendix C

A con�guration is thus de�ned as the set of generic and speci�c parameters, whose values

need to be provided to succeed in the creation of a particular external tool instance. The de�ni-

tion of these parameters must be done by tool adapters, employing con�guration templates. A

con�guration template is an XForms-in-XHTML form containing the names, types, and possibly

default values for the generic and speci�c parameters that must be provided in order to create

instances of a certain tool. Alternatively, HTML5 can be used for the de�nition of con�guration

forms, instead of XForms, as established in the GLUE! integration contracts.

The GLUEcommon library includes the classes ConfigurationResource, Configuration

and BasicConfigurationRepository to implement the GET /configuration method de�ned

in the GLUE! contract for tools. Developers implementing new adapters in Java only need to

write the XForms-in-XHTML �le for each intended con�guration template (each tool may have

a di�erent con�guration template, although several tools wrapped by the same tool adapter may

share the same con�guration template too). Files with con�guration templates must be set in

a directory included in the classpath of the tool adapter. All the tool adapters provided as

examples have a conf/ directory containing the con�guration forms. Some minor changes must

be made in the source code to access the con�guration templates. These changes should be in

the class with the main method, and are later detailed in this appendix.

XForms-in-XHTML �les: example, details and limitations

Tool adapters must provide con�guration templates using the XForms speci�cation (or

HTML5). VLE adapters must be able to process these con�guration templates in those cases

where web browsers cannot directly show their content. The next example should be taken

as a model for the de�nition of XForms con�guration templates in new tool adapters. This

example corresponds to the tool adapter that enables the integration of Google Docs (Documents,

Spreadsheets and Presentations) in VLEs. In this case, a title and an initial �le are the speci�c

parameters that can be con�gured when creating instances of these tools.

<div xmlns="http://www.w3.org/1999/xhtml"

xmlns:xf="http://www.w3.org/2002/xforms"

xmlns:ev="http://www.w3.org/2001/xml-events"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:ins="http://gsic.uva.es/glue/adaptors/implementation/gdata/1.0"

xmlns:glue="http://gsic.uva.es/glue">

<!-- model -->

<xf:model>

<xf:instance id="input-file">

<ins:data>

<glue:reusable xsi:type="xs:boolean">true</glue:reusable>

<ins:file xsi:type="xs:base64Binary" ins:filename="" ins:mediatype=""/>

/configuration

Appendix C 201

<ins:title xsi:type="xs:string">Your title here</ins:title>

</ins:data>

</xf:instance>

</xf:model>

<!-- user interface control in body; only 'ref' bindings are used -->

<p>

<xf:input ref="/ins:data/ins:title">

<xf:label>Title:</xf:label>

</xf:input>

</p>

<p>

<xf:upload ref="/ins:data/ins:file">

<xf:label>Select file:</xf:label>

<xf:filename ref="@ins:filename" />

<xf:mediatype ref="@ins:mediatype" />

</xf:upload>

</p>

</div>

There are three important parts in the example: the de�nition of XML namespaces in

the root <div> element; the data model where the con�guration parameters are speci�ed; and

the user interface elements that must be shown to the teacher in the VLE interface. Every

con�guration �le de�ned using the GLUEcommon library must be contained in a root <div>

XHTML element. The previous example presents in the <div> attributes all the namespace

de�nitions that should normally included. It is important to copy these attributes (including

the pre�xes associated to every namespace), in order to ensure the compatibility with VLE

adapters. The only namespace that must be replaced is the value of xmlns:ins, which indicates

the location of the parameters. Any URL representing the developer's organization or the tool

(or tools) supported by the con�guration form may be used.

In order to de�ne the con�guration parameters, <xf:model>, <xf:instance> and

<ins:data> should be kept as in the example. The XForms speci�cation allows to de�ne more

than one model, instance or data. Nevertheless, due to compatibility reasons with other existing

adapters, only one of each kind is advised. On the contrary, the content of <ins:data> supports

as many XML elements as needed. Each XML element represents a parameter that can be con-

�gured in each tool instance. Remarkably, the ins pre�x must be used in these elements. Also,

the xsi:type de�nes the type of attribute. Apart from those attributes illustrated here, other

non-standard attributes may be freely added and bound to user interface elements.

There is a special prede�ned element that can be included in the content of <ins:data>.

This element is the <glue:reusable> boolean �ag, which indicates that the instances of this

tool can be reused in di�erent activities (i.e. the external tool supports the update of users

sharing instances). This is one generic con�guration element for all the instances created with

202 Appendix C

this adapter, and so, it must not be bound to the user interface (this value is not determined by

the educator, but by the developer of the tool adapter).

The user interface elements are de�ned using XHTML. Though browsers may render all the

elements de�ned in the XHTML speci�cation, current VLE adapters only process two kinds of

XHTML elements: <xforms:input> (text �eld) and <xforms:upload> (�le attachment). Future

improvements of VLE adapters are intended to process additional XHTML elements. The data

type in the <xforms:input> elements is not validated in VLEs as of this writing. Therefore, the

parsing of the values under this element corresponds to the tool adapter (as part of the process

of creating instances). Regarding the <xforms:upload> elements, only text codi�cations are

currently supported. In order to associate the user interface elements and the data model, the

ref attribute should be included in the input elements, specifying a path that follows the XML

Path Language (XPath) inside the <xf:instance>.

C.3 Instances

The interfaces InstanceEntityFactory and InstanceEntity must be implemented in

di�erent classes to manage external tool instances. InstanceEntityFactory aims at creating

InstanceEntity objects, which are the local representation of actual instances in the memory

space of the tool adapter.

The InstanceEntity interface is detailed next:

public interface InstanceEntity {

public void create(String callerUser, Map<String,String> specificParams)

throws ResourceException;

public String getAccessParams(String callerUser, Map<String,String> specificParams);

public String getHtmlURL(String callerUser, Map<String,String> specificParams);

public String delete(Map<String, String> specificParms) throws ResourceException;

public void setUsers(List<String> users, String callerUser,Map<String, String> specificParams);

public int getIndex();

public Date getUpdated();

public String getTitle();

public void setIndex(int index);

public void saveSpecificState(PrintStream out);

public void loadSpecificState(BufferedReader in) throws IOException;

}

The InstanceEntityFactory de�nes the following methods to be implemented:

public interface InstanceEntityFactory {

public InstanceEntity createNewInstanceEntity(String toolName, List<String> users,

String callerUser, Map<String,String> specificParams, Element configuration);

public InstanceEntity createLoadedInstanceEntity(int index, String title, Date updated);

}

Appendix C 203

Instance creation

The creation of new instances should be done in two di�erent steps and involves several

methods. These two steps are detailed next including a description of the following methods:

1. InstanceEntityFactory.createNewInstanceEntity(...). The �rst step is the

creation of a new class that implements the InstanceEntityFactory interface

(let it be MyInstanceEntityFactory). The �rst method that must be provided,

createNewInstanceEntity(...), is called when the tool adapter receives a POST

/instance request from the GLUElet Manager. The parameters of this method are

described next:

public InstanceEntity createNewInstanceEntity(String toolName, List<String> users,

String callerUser, Map<String,String> specificParams, Element configuration);

toolName. This is the name of the tool for which a new instance is requested.

The string value that identi�es this tool is established by the developer of the tool

adapter. This value must be documented, and should also be reported to the GLUElet

Managers employed as clients of this tool adapter.

users. This is the list of users (VLE usernames) that can access the new instance.

There are two ways of dealing with this parameter: if the external tool has no knowl-

edge about users or access control, then this parameter should be avoided; if the

external tool can support di�erent users or access control, then this list of users

should be used in the communication between the tool adapter and the external tool

to indicate that all these users should share the same instance.

callerUser. This parameter refers to the user that requests the creation of a new

instance. The callerUser is also included in the users parameter (list of users sharing

the same external tool instance) in creation requests.

speci�cParams. This parameter represents a list of key-value pairs where the in-

formation required for the creation of tool instances is received as part of a GLUElet

Manager request. The kind of information that is expected here must be documented

by the developer implementing the tool adapter, including the keys and values. These

values are always the same for every GLUElet Manager that requests the creation of

external tool instances. As an example, a common parameter that may be documented

here is the URL of the service where the external tool provides its programmatic in-

terface. Remarkably, those parameters that are speci�c for each instance should not

be de�ned here, but in the con�guration templates.

/instance

204 Appendix C

con�guration. This is the set of values established by the educator after �lling out

the con�guration form. These values are org.w3c.dom.Element objects included as

children of the <ins:data> element from the XML formatted answer. Other libraries

apart from the org.w3c.dom API may be used here in order to retrieve the values

provided by the educator from the XML tree.

The �nal target of this method is the creation of an object of a new class that imple-

ments the InstanceEntity interface (let this class be MyInstanceEntity). The attributes

and the structure of this class can be freely speci�ed. A di�erent MyInstanceEntity

class might be de�ned for each external tool supported by the tool adapter, or a common

MyInstanceEntity class might wrap all these tools. Di�erent constructor methods can be

de�ned in each class to be requested depending on the values sent by the educator in the

con�guration form.

2. InstanceEntityFactory.create(...). The second step for the creation of a new instance

is the call to the create(...) method of MyInstanceEntity. The implementation pro-

vided for this method must support the actual creation of new instances, and so, the com-

munication between the tool adapter and the external tool for this purpose. This method

should save the URLs representing the instances that are created. These URLs will later

be retrieved by the GLUElet Manager when some of the VLE users want to access these

instances. These URLs are returned by invoking the MyInstanceEntity.getHtmlURL(...)

method, showing that the creation process has been accomplished. It is noteworthy that if

the external tool does not return URLs representing tool instances, then the tool adapter

must wrap these instances to provide that URLs itself (e.g. hosting these instances in its

domain).

public void create(String callerUser, Map<String, String> specificParams)

throws ResourceException;

3. InstanceEntityFactory.getHtmlURL(...). When the creation of an instance is accom-

plished, the InstanceEntity.getHtmlURL(...) method is called in order to return the

URL representing the corresponding external tools instance. The class MyInstanceEntity

must thus provide an implementation of this method, whose response includes such URL.

This URL can be saved as part of the MyInstanceEntity state, but it can also be stored

in a local �le of database. Rarely, it might be retrieved from the tool with each call to this

method, although that would be less e�cient.

public String getHtmlURL(String callerUser, Map<String,String> specificParams);

Appendix C 205

4. InstanceEntityFactory.getAccessParams(...). This method returns to the GLUElet

Manager the information that must be saved for future accesses to each external tool

instance. This information could be a subset of the speci�cParams parameter, or could

be new values generated for every new instance that are returned as keys to authorize the

access in future requests.

public String getAccessParams(String callerUser, Map<String, String> specificParams);

Retrieval, update and deletion of instances

Once the creation of external tool instances is completed, tool adapters can receive

other requests from the GLUElet Manager (as established in the GLUE! contract for tools)

in order to retrieve, update or delete these instances. These requests are �rst processed by an

InstanceResource object that deals with the details of the HTTP communications, translating

these requests into calls to the methods de�ned in the InstanceEntity interface:

1. InstanceEntityFactory.getHtmlURL(...). Requests to this method are triggered as the

result of a GET /instance/{instanceId}, request. The implementation of this method has

already been detailed in this section.

2. InstanceEntityFactory.delete(...). When the tool adapter receives a DELETE

/instance/{instanceId} request, then a request to the InstanceEntity.delete(...)

method is sent. The class MyInstanceEntity must provide an implementation of this

method that performs an interaction with the tool to destroy the instance. The dele-

tion of the persisted data related to this instance is automatically done after the suc-

cessful termination of this method. This method receives one parameter speci�cParams,

which is a list of key-value pairs, in which the values returned at creation time by the

getAccessParams(...) method regarding such instance are included.

public String delete(Map<String, String> specificParams) throws ResourceException;

3. InstanceEntityFactory.setUsers(...). The reception of a POST /instance/

{instanceId} triggers a request to the InstanceEntity.setUsers(...) method in the

tool adapter. The class MyInstanceEntity must provide an implementation of this method

that performs all the actions required to update the list of users sharing the instances re-

presented by objects of this class. This could include interactions with the external tool,

updating the state of the instance in the tool adapter, or both, depending upon the con-

tract of the corresponding tool. The local state of the instance is automatically updated

/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}
/instance/{instanceId}

206 Appendix C

after a successful completion of the setUsers(...) method. This method receives some

parameters that may need a further explanation:

public void setUsers(List<String> users, String callerUser,

Map<String, String> specificParams);

users. This is the new list of VLE usernames authorized to access the tool instance.

This list also includes the callerUser as an additional element. Remarkably, those

developing tool adapters are not required to provide a full authorization mechanism

based on the list of users, but they must, at least, guarantee that the users in this list

will not get a denial of access when trying to reach the tool instance later.

callerUser. This is the VLE-context name of the user trying to access the instance.

speci�cParams. This is a list of key-value pairs that includes the values returned at

creation time by the getAccessParams(...) method of the same instance.

Instances data persistence

This section deals with the information about the instances that tool adapters need to

permanently save in their local scope. Of course, those developing tool adapters can save all the

data they need to manipulate tool instances, although some of these data must always be kept.

1. Mandatory data �elds. The format applied to the data included as parameters or results of

the GLUE! contract operations establishes some mandatory �elds that must be included in

the attributes of every tool instance. These �elds are: an identi�er, a title and an update

date. The identi�er is a URL, which is generated by the GLUECommon library. This

URL is built using the domain and the port where the tool adapter listens to requests,

the structure of resources de�ned by the GLUE! contract, and an index generated by the

persistence system to identify the new instance that is created. This index must be saved

as an attribute of the class implementing the InstanceEntity interface. The methods

getIndex() and setIndex(...) must also be implemented in this class to retrieve and

assign this index. The title is a text string that must be returned as a result of the

getTitle() method. An attribute containing a title makes sense for many tool instances,

and so it should be returned by this method. In those instances where a title is not de�ned,

any text string could �t. The update date should be created by every constructor method of

the InstanceEntity implementation class, being kept as an object attribute. The value of

this attribute should be updated after a successful request to the setUsers(...) method.

The accuracy of the value for the update date is not critical at all. Nevertheless, an

implementation must be provided to the getUpdated() method of InstanceEntity that

returns a value representing the update date.

Appendix C 207

2. Saving other data. The mandatory data described in the previous paragraphs are au-

tomatically handled by the InstanceEntityRepository object when persistence is re-

quired. Nevertheless, tool adapters might need to store additional data to carry out

di�erent operations with the external tools. The methods saveSpecificState(...) and

loadSpecificState() are provided in the InstanceEntity interface to store and retrieve

this special data. Both methods receive a single parameter (a java.lang.PrintStream to

save or a java.io.BufferedReader to load) indicating the data that must be stored or

retrieved. Developers should carefully implement these two methods to guarantee that the

same values, formats, and order are consistently applied.

3. Other methods. The InstanceEntiyFactory interface includes a method,

createLoadedInstanceEntity(...), which has not been addressed yet. This method

connects the entity repository handler with the constructor required to load the created

and stored tool instances (if any) when the tool adapter is started. This method includes

as parameters the aforementioned mandatory data �elds (index, title, updated). The only

operation expected from those implementing this method is a call to a constructor of the

MyInstanceEntity class, passing the three mandatory data �elds in the same way that

they are received, as illustrated in this piece of code:

public InstanceEntity createLoadedInstanceEntity(int index, String title, Date updated) {

return MyInstanceEntity(index, title, updated);

}

C.4 Resources and server

Most of the code required to listen and process requests from the GLUElet Manager is

covered by the GLUEcommon package. Even so, some new code must be added to complete the

server life cycle. Developers are strongly recommended to review the code of the existing tool

adapters to get detailed examples for the next subsections.

1. Checking speci�c parameters. Several methods at InstanceEntity and

InstanceEntityResource need a speci�cParams parameter containing key-value pairs of

string type. The values for these pairs are not de�ned in the GLUE! contract, and so,

each new tool adapter can de�ne their owns. The documentation of a new tool adapter

should include a list of keys and expected values, so that the GLUE! administrator can

properly con�gure the internal tool registry. The checking of these parameters can be

performed by the classes implementing the InstanceEntity and InstanceEntityFactory

interfaces. Nevertheless, an early checking is preferred and better �ts in the GLUEcommon

208 Appendix C

operation sequence. Several abstract methods are provided for this purpose, like the

checkMissingParameters(...) in the InstanceFactoryResource class.

protected abstract String checkMissingParameters(String toolName,

List<String> users, String callerUser,

Map<String,String> specificParams);

Therefore, developers must create a class extending InstanceFactoryResource to provide

the implementation for this method. The parameters received must contain the same values

that those in the InstanceEntityFactory.createNewInstanceEntity(...) method, pre-

viously explained here. The expected result is a text string with a comma separated list

with the names of wrong or missed parameters inside speci�cParams (or null in case of a

successful checking). The InstanceEntityFactory object generates an HTTP 400 response

in the event that the returned value is not null.

Two other abstract methods with an equivalent return value are provided

in the InstanceResource class, checkMissingParametersInDelete(...) and

checkMissingParametersInPost(...).

protected abstract String checkMissingParametersInDelete(

Map<String, String> specificParams);

protected abstract String checkMissingParametersInPost(String callerUser,

List<String> users, Map<String, String> specificParams);

Other resource classes extending InstanceResource must be created to provide

implementations of both checking methods. The �rst one is called before

InstanceEntity.delete(...), while processing a DELETE /instance/{instanceId} re-

quest; the second one is executed just before InstanceEntity.setUsers(...), while pro-

cessing a POST /instance/{instanceId} message. It is noteworthy that, in both cases,

the values in speci�cParams must match with those returned by the method implementing

InstanceEntity.getAccessParams(...) in the tool adapter.

2. Map resources to URLs. The classes extending InstanceFactoryResource and

InstanceResource described in the previous paragraphs must be associated with the URLs

of the resources they implement, as described in the GLUE! contract. To do so, a new

class extending the Application abstract class in the GLUEcommon package must be

de�ned. This new class must provide an implementation for the attachResources(...)

method. The implementation is really simple and only requires the replacement of the

MyInstanceFactoryResource, MyInstanceResource, and MyApplication class names in

the next piece of code. It is very important to avoid any modi�cation in the �rst parameter

passed in the attach(...) calls, in order to meet the GLUE! contract for tools.

/instance/{instanceId}
/instance/{instanceId}

Appendix C 209

public class MyApplication extends Application {

@Override

protected void attachResources(Router router) {

// Defines a route for the resource instance factory

router.attach("/instance", MyInstanceFactoryResource.class);

// Defines a route for the resource instance

router.attach("/instance/{instanceId}", MyInstanceResource.class);

// Defines a route for the resource configuration (default one)

router.attach("/configuration", ConfigurationResource.class);

// Defines a route for the resource configuration (required one)

router.attach("/configuration/{configId}", ConfigurationResource.class);

}

}

3. Main class. The last class that must be created is the �rst to be executed. This class must

include a static main(...) method to initialize the application scope objects and to start

listening requests from the GLUElet Manager. The next piece of code illustrates the steps

to be included in the main(...) sequence.

public class MyApplication extends Application {

ConfigurationRepository configurationRepository =

new BasicConfigurationRepository(

toolImplementationNames, configurationIds,

configurationFileNames); // step 1

InstanceEntityFactory instanceEntityFactory =

new MyInstanceEntityFactory(); // step 2

instanceEntityRepository =

new BasicInstanceEntityRepository(

instanceEntityFactory, "instances.txt");// step 3

server = Server.initInstance(

APP_NAME, AUTHOR_NAME, new MyApplication(),

BASE_URL, CFG_FILENAME, INSTANCE_NAMESPACE,

configurationRepository, instanceEntityFactory,

instanceEntityRepository); // step 4

server.start(); // step 5

}

The �rst step in the sample code is the initialization of the basic implementation

for ConfigurationRepository, BasicConfigurationRepository. This object keeps in

memory a list of triples, each of them containing the name of an external tool wrapped by

the tool adapter, a numeric identi�er (formatted as a decimal text string), and the name

of an XForms-in-XHTML �le contained in the classpath de�ning the con�guration form

for this external tool. This list is used to access the appropriate con�guration form when

210 Appendix C

a GET /configuration request is received by the tool adapter. The parameters passed

to the BasicConfigurationRepository are three vectors with the same number of text

string elements, containing tool names, identi�ers and con�guration �les.

The second step is the creation of an object of the MyInstanceEntityFactory class.

This object is later employed for the creation of tool instances as the result of re-

ceiving POST /instance requests. The step three shows the creation of a global-scope

entity repository handler. This handler must be an object of the class implement-

ing the InstanceEntityRepository interface. This object is responsible for persist-

ing the data of the instances, locally stored by the tool adapter. In this example,

an object of the BasicInstanceEntityRepository class (included in GLUEcommon)

is created for this purpose. Two arguments are passed to its constructor: a refer-

ence to the InstanceEntityFactory object created in the second step, and the name

of a text �le used to keep the data stored in the �le system. Interestingly, the

BasicInstanceEntityRepository is provided as a very simple solution, although more

advanced entity repository classes might be developed for other tool adapters.

A Server object is created in the fourth step, being started in the last step

(server.start()). This object is initialized with references to the objects instantiated

in the steps one to three, a new MyApplication object, and some text values that can be

customized for each tool adapter:

APP_NAME. A name for the tool adapter; for example, �GSIC Tool Adapter �.

AUTHOR_NAME. A name identifying the author of the adapter; for example,

�Group of Intelligent and Cooperative Systems (GSIC)�.

BASE_URL. A URL segment, common to all the resources in the tool adapter.

This URL must start with /ToolAdapter plus any valid URL segment to complete

the string. The BASE_URL segment is inserted in the structure http://[host]

[BASE_URL]/[RESOURCE_SEGMENT]. An example of a URL to an instance resource in

a tool adapter with BASE_URL = �GSICAdapter � could be: http://localhost:

8888/ToolAdapter/GSICAdapter/instance/15.

CFG_FILENAME. The name (without the .properties extension) of a Java prop-

erties �le where the tool adapter searches for property values at start time. The

properties �le must be in the tool adapter classpath to be found by the Server ob-

ject. A property port with an integer value for the port where the adapter listens to

requests must be included in the properties �le. As an example, the tool adapters

developed by the GSIC group use the app name to locate the app.properties �les

contained in the conf/ directory.

/configuration
/instance
/ToolAdapter
http://[host][BASE_URL]/[RESOURCE_SEGMENT]
http://[host][BASE_URL]/[RESOURCE_SEGMENT]
http://localhost:8888/ToolAdapter/GSICAdapter/instance/15
http://localhost:8888/ToolAdapter/GSICAdapter/instance/15

Appendix C 211

INSTANCE_NAMESPACE. An XML namespace that must coincide with the

namespace used for the <data> element in the con�guration forms returned by the

tool adapter as the result of GET /configuration requests. For example, http://

gsic.uva.es/glue/adapters/implementation/dabbleboard/1.0. The namespace

does not need to match with any speci�c structure, but namespaces starting with

http://gsic.uva.es should be avoided.

/configuration
http://gsic.uva.es/glue/adapters/implementation/dabbleboard/1.0
http://gsic.uva.es/glue/adapters/implementation/dabbleboard/1.0
http://gsic.uva.es

212 Appendix C

Appendix D: Installation and

con�guration manuals

GLUE!-RI, the reference implementation of the GLUE! architecture has been presented in

chapter 4. GLUE!-RI includes a reference implementation of the GLUE! core, nine tool adapters

and three VLE adapters. This appendix presents the installation and con�guration manuals for

all this elements.

D.1 Installation and con�guration of the GLUE! core

Preliminary notes

The binary distribution of the GLUElet Manager reference implementation has been pack-

aged and tested for its use in GNU/Linux and Windows (XP, Vista or 7) systems. However, as

a Java Standard Edition 6 (JSE6) program, it could probably run in other operating systems

where a JSE6 runtime platform is available. Even so, this document describes the installation

and con�guration processes just for Linux and Windows systems, highlighting their di�erences

when needed. Administration permissions are required to install and con�gure the GLUElet

Manager in any operating system. In Windows Vista and Windows 7, the command console

must be started in administrator mode (right click, then �Execute as administrator �).

It is noteworthy that the contents of the GLUElet Manager binary distribution are designed

to coexist with other GLUE! components developed as JSE6 programs. In this section, the term

$GLUE_HOME is used to refer to the base directory where all the JSE6 GLUE! components are

to be located. Despite this, there are no real dependencies between the di�erent components at

the �le system level. Therefore, �les could be moved to other locations if needed, checking the

runnable scripts in $GLUE_HOME/bin and $GLUE_HOME/[component]/bin directories to �nd out

how each component should be started7.

7It should be noted that the character �/� is used as a directory separator independently of the operating
system.

213

214 Appendix D

Dependencies

The GLUElet Manager is a JSE6 program, and so, a JSE6 runtime context must be

installed in the system where the GLUElet Manager is intended to run. Besides, the GLUElet

Manager needs a SQL database system to keep information about the external tools that are

integrated, and to provide persistence for the created instances. Any common database system

with a JDBC driver available should be suitable. The JDBC driver must be obtained from the

database system provider to grant the GLUElet Manager access to its databases. Additionally,

the GLUElet Manager has the following dependencies:

GLUEcommon 0.8. This is the library with the common code for GLUE! Java components.

This library is located at $GLUE_HOME/lib.

RESTlet 2.0RC4 for Java Standard Edition (only org.restlet.jar, org.restlet.ext.atom.jar

and org.restlet.ext.xml.jar �les). This is the Restlet library. By now, we discourage ad-

ministrators from using any other di�erent Restlet version here. This library is located at

$GLUE_HOME/lib/dep/restlet-jse-2.0.4.

API and implementation of Java Persistence API 2 (JPA2). The EclipseLink 2.0.0 is

provided for persistence, although any other JPA2 implementation could be used instead.

This library is located at $GLUE_HOME/lib/dep/eclipselink.

All these dependencies are included in the GLUElet Manager binary distribution as jar �les

in di�erent subdirectories. The README.txt �le contains more information about each library

and its original provider.

Installation

The steps that must be followed in order to install the GLUElet Manager are:

1. Choose and create the $GLUE_HOME directory. For instance, in Linux, the directory

/usr/share/glue could be a suitable path for $GLUE_HOME.

2. De�ne the system variable $GLUE_HOME containing the full path pointing at the chosen

$GLUE_HOME directory: in Windows, click on �Start� button, �Control Panel �, �System and

Maintenance�, �System�, �Advanced system� settings, �Advanced � tab, �Environment Vari-

ables� button; in Linux, add export $GLUE_HOME=/usr/share/glue in /etc/bash.bashrc

or /etc/profile.

3. Extract the �les from the binary package at $GLUE_HOME. Then, the �les presented in Table

9 are added in $GLUE_HOME.

Appendix D 215

Table 9: Content extracted from the binary package in the GLUElet Manager.

Directory under $GLUE_HOME File Purpose

bin/ ServiceInstaller.exe
Apache Foundation helper to register Win-
dows services

lib/ glue-common.jar
Common elements for GLUE! Java compo-
nents

lib/dep/eclispselink/ eclipselink.jar
JPA2 implementation by Eclipse Founda-
tion

lib/dep/eclispselink/ javax.persistence_2.0.0.v200911271158.jar
JPA2 implementation by Eclipse Founda-
tion

lib/dep/restlet-jse-2.0rc4/ org.restlet.ext.atom.jar RESTlet selected �les

lib/dep/restlet-jse-2.0rc4/ org.restlet.ext.xml.jar RESTlet selected �les

lib/dep/restlet-jse-2.0rc4/ org.restlet.jar RESTlet selected �les

manager/bin/ install-gm.sh Installs the GLUElet Manager in Linux

manager/bin/ install-gm.bat
Registers the GLUElet Manager as a Win-
dows service

manager/bin/ start-gm.sh Starts the GLUElet Manager in Linux

manager/bin/ stop-gm.sh Stops the GLUElet Manager in Linux

manager/bin/ uninstall-gm.sh
Cleans the GLUElet Manager installation
in Linux

manager/bin/ uninstall-gm.bat
Removes the GLUElet Manager from the
Windows services register

manager/conf/ app.properties Runtime con�guration �le

manager/conf/db create_GLUE_databases.sql Database helper script

manager/conf/db drop_GLUE_databases.sql Database helper script

manager/conf/db SQL-2003-notes.txt Database helper script

manager/conf/META-INF/ persistence.xml Database access �le

manager/lib/ gluelet-manager.jar GLUElet Manager binary �les

manager/log/ *.log Log �les

manager/ COPYING.txt GNU GPL license

manager/ INSTALL.txt Installation manual

manager/ README.txt
GLUElet Manager license and third-party
notices

4. In Linux, set execution permissions to the *.sh �les in $GLUE_HOME/manager/bin. To do

so, the following command must be executed: chmod +x $GLUE_HOME/manager/bin/*.sh.

5. Place a copy of the JDBC drivers of the system in $GLUE_HOME/lib/dep/jdbc-connector/

(as one or multiple jar �les).

6. In Linux, run $GLUE_HOME/manager/bin/install-gm.sh. The execution of that �le:

creates the empty log �le /var/log/glue/manager.log, and a symbolic link pointing at

this �le in $GLUE_HOME/manager/log; and creates symbolic links at /usr/bin pointing

at $GLUE_HOME/manager/bin/start-gm.sh and $GLUE_HOME/manager/bin/stop-gm.sh.

216 Appendix D

In Windows, run $GLUE_HOME/manager/bin/install-gm.bat. The execution of

that �le: registers the GLUElet Manager as a Windows service; and de�nes

$GLUE_HOME/manager/log/manager.log as the log �le (it is created with the �rst start

of the GLUElet Manager). By default, the GLUElet Manager is registered to be started at

system boot time. The parameter manual should be passed to install-gm.bat in order

to force the manual start of the GLUElet Manager.

Creation, con�guration and access to databases

The GLUElet Manager requires the existence of two separate databases. The directory

$GLUE_HOME/manager/conf/db contains a SQL script �le, create_GLUE_databases.sql, which

de�nes the structure of both databases. The �rst database, the internal tool registry, keeps

the information needed to integrate every available external tool in GLUElet Manager clients

(typically VLEs or other platforms). The system administrator must populate the internal tool

registry with proper values for each tool. The �Internal Registry� section in the INSTALL.txt

�le of each existing tool adapter gives more information about these values. Otherwise, further

details about these values should be requested to those developing or providing (if externally

hosted) tool adapters. The second database is the gluelets repository. The GLUElet Manager

stores in the gluelets repository the data about the instances of the registered tools created from

its clients.

The $GLUE_HOME/manager/conf/db/create_GLUE_databases.sql must be executed in

the management console of the database system in order to create both databases. The

�le $GLUE_HOME/manager/conf/db/drop_GLUE_databases.sql executes the operations to erase

both databases. It is important to note that this operation destroys all the objects that are

created by the GLUElet Manager.

Finally, the �le $GLUE_HOME/manager/conf/META-INF/persistence.xml must be edited,

in order to provide the details of the JDBC connection with the database system. More speci�-

cally, the �value� attribute of the following properties must be edited as required (it should be

noted that all these properties appear twice in the persistence.xml �le):

<property name=�javax.persistence.jdbc.url� value=�jdbc:mysql://localhost:

3306/InternalRegistry�/>. This is the URL to access each database. It includes the

name of the database at the end (InternalRegistry or GLUEletsRepository).

<property name=�javax.persistence.jdbc.user� value=�glue�/>. This is an autho-

rized database user.

<property name=�javax.persistence.jdbc.password� value=�glue�/>. This is the

password of the authorized database user.

Appendix D 217

<property name=�javax.persistence.jdbc.driver� value=�com.mysql.jdbc.Driver�/>.

This is the name of the JDBC driver class in the documentation of that system.

Signi�cantly, the password is saved in plain text. Thus, it is strongly recommended to

create a speci�c user for the sole purpose of the GLUElet Manager operation. This user needs, at

least, read permissions over all the internal tool registry tables, and read and insertion permissions

over the gluelets repository tables.

Operation

Before starting the GLUElet Manager, the �le $GLUE_HOME/manager/conf/app.properties

can be edited to change some runtime properties:

port. This is the number of the port where the GLUElet Manager listens for requests from

VLE adapters.

logging. This parameter must be �on� to save information in the log �le about each request

processed by the GLUElet Manager.

Besides, to manually start and stop the GLUElet Manager, it is recommended to follow

these instructions:

In Linux, use the commands start-gm and stop-gm.

In Windows, access to the service management panel (�Start� button, �Control Panel �,

�System and Maintenance�, �Administration Tools�, �Services�), search and select the ser-

vice with the name �GLUEletManager � in the service list, and then click the �Init� or

�Stop� links at the top left corner of the list.

After that, the content of the $GLUE_HOME/manager/log/manager.log can be checked to

see if the GLUElet Manager started without problems. In that case, a couple of messages should

appear similar to the following:

24-oct-2011 10:16:09 org.restlet.engine.http.connector.HttpClientHelper

start INFO: Starting the default HTTP client

24-oct-2011 10:16:14 org.restlet.engine.http.connector.HttpServerHelper

start INFO: Starting the default [HTTP/1.1] server on port 8185

218 Appendix D

Final notes

Some �nal notes must be taken into account when installing and con�guring the GLUElet

Manager:

1. If the access to the GLUElet Manager must be restricted to a limited set of

system users for its start/stop, then it is important to keep in mind that au-

thorized users need: execution permission on $GLUE_HOME/manager/bin/*.sh;

read permissions on $GLUE_HOME/manager/conf/app.properties,

$GLUE_HOME/manager/conf/META-INF/persistence.xml and all the jar �les; and

write permissions on /var/log/glue/manager.log.

2. The GLUElet Manager databases may be hosted by di�erent providers, rather than only

by the one in which the GLUElet Manager is installed. Nevertheless, the two databases

need to be in the same database management system.

3. In Windows systems, every time the GLUElet Manager is started, the log �le is erased.

D.2 Installation and con�guration of tool adapters

This section presents the generic installation and con�guration process for tool adapters.

The speci�c particularities of tool adapters should be checked in the INSTALL.txt �le of each

adapter, which is located at $GLUE_HOME/tool_adapters/{adapter}/log. Signi�cantly, the

parameter {adapter} is used along this section to embrace any of the available tool adapters.

This parameter must be replaced by the correspondent name of the tool adapter in each case,

e.g. dabbleboard, doodle or mediawiki.

Preliminary notes

The binary distribution of the nine tool adapters in the reference implementation (Google

Docs, MediaWiki, Dabbleboard, Apache Wookie, Doodle, Facebook Live Stream, Kaltura, Note-

�ight and web content) has been packaged and tested for their use in GNU/Linux and Windows

(XP, Vista or 7) systems. However, as Java Standard Edition 6 (JSE6) programs, they will

probably run in other operating systems where a JSE6 runtime platform is available. This

document only describes the generic installation and con�guration processes of tool adapters for

Linux and Windows systems, highlighting their di�erences when needed. Administration per-

missions are required to install and con�gure tool adapters in any system. In Windows Vista

and Windows 7, the command console must be started in administrator mode (right click, then

�Execute as administrator �).

Appendix D 219

It is noteworthy that the contents of tool adapter binary distributions are designed to

coexist with other GLUE! components developed as JSE6 programs. As in the previous section,

the term $GLUE_HOME is employed to refer to the base directory where all the JSE6 GLUE!

components are to be located, although �les could be moved to other locations if needed (see

the previous section for further details).

Dependencies

The nine tool adapters in GLUE!-RI are JSE6 programs, and so, a JSE6 runtime context

must be installed in the system where each of them is going to be installed. Besides, the nine

tool adapters have the following dependencies:

GLUEcommon 0.8. This is the library with the common code for GLUE! Java components.

This library is located at $GLUE_HOME/lib.

RESTlet 2.0RC4 for Java Standard Edition (only org.restlet.jar, org.restlet.ext.atom.jar

and org.restlet.ext.xml.jar �les). This is the Restlet library. The use of di�erent

Restlet versions is not recommended as of this writing. This library is located at

$GLUE_HOME/lib/dep/restlet-jse-2.0.4.

In addition, there exist other dependencies in some of the adapters:

Wookie Connector Framework (Apache Wookie adapter). This library

is provided to get access to Apache Wookie servers. It is located at

$GLUE_HOME/tool_adapters/wookiewidgets/lib/dep/wookie-connector-framework.

Google Data Client Library for Java 1.41.1 (Google Docs adapter). This library is

provided to get access to Google Documents, Spreadsheets and Presentations. It is located

at $GLUE_HOME/tool_adapters/gdata/lib/dep/gdata-1.41.1.

Java Mail API 1.4.3 (Google Docs adapter). The Google Data

Client Library for Java 1.41.1 uses this library, which is located at

$GLUE_HOME/tool_adapters/gdata/lib/dep/javamail-1.4.3.

Generic dependencies are included in each tool adapter binary distribution as jar �les

in di�erent subdirectories. Speci�c dependencies are only included in the subdirectories of the

corresponding tool adapters (also as jar �les). The README.txt �le of each tool adapter gives

further information about each library and its original provider. The README.txt �le also details

the information that must be set in the internal tool registry, regarding the external tools wrapped

by each adapter.

220 Appendix D

Installation

The steps that must be followed in order to install the any tool adapter are:

1. Choose and create the $GLUE_HOME directory (e.g. /usr/share/glue in Linux).

2. De�ne the system variable $GLUE_HOME containing the full path pointing at the chosen

$GLUE_HOME directory. The steps to de�ne a system variable in both Windows and Linux

have already been described in this appendix.

3. Extract the �les from the binary package of the tool adapter at $GLUE_HOME. Then, the

�les presented in Table 10 are added in $GLUE_HOME.

Table 10: Content extracted from the binary package in tool adapters.

Directory under $GLUE_HOME File Purpose

bin/ ServiceInstaller.exe
Apache Foundation helper to register Win-
dows services

lib/ glue-common.jar
Common elements for GLUE! Java compo-
nents

lib/dep/restlet-jse-2.0rc4/ org.restlet.ext.atom.jar RESTlet selected �les

lib/dep/restlet-jse-2.0rc4/ org.restlet.ext.xml.jar RESTlet selected �les

lib/dep/restlet-jse-2.0rc4/ org.restlet.jar RESTlet selected �les

tool_adapter/{adapter}/bin/ install-{adapter}.sh Installs the tool adapter in Linux

tool_adapter/{adapter}/bin/ install-{adapter}.bat
Registers the tool adapter as a Windows
service

tool_adapter/{adapter}/bin/ start-{adapter}.sh Starts the tool adapter in Linux

tool_adapter/{adapter}/bin/ stop-{adapter}.sh Stops the tool adapter in Linux

tool_adapter/{adapter}/bin/ uninstall-{adapter}.sh
Cleans the tool adapter installation in
Linux

tool_adapter/{adapter}/bin/ uninstall-{adapter}.bat
Removes the tool adapter from the Win-
dows services register

tool_adapter/{adapter}/conf/ app.properties Runtime con�guration �le

tool_adapter/{adapter}/conf/ {adapter}Configuration.xhtml
Con�guration template. Several con�gu-
ration templates may appear here.

tool_adapter/{adapter}/conf/db/ fill_Internal_Registry.sql
File to facilitate the registration of external
tools in the internal tool registry

tool_adapter/{adapter}/lib/ {adapter}.jar Tool adapter binary �les

tool_adapter/{adapter}/lib/ *.jar Other speci�c libraries

tool_adapter/{adapter}/log/ *.log Log �les

tool_adapter/{adapter} COPYING.txt GNU GPL license

tool_adapter/{adapter} INSTALL.txt Installation manual

tool_adapter/{adapter} README.txt
Tool adapter license and third-party no-
tices

Appendix D 221

4. In Linux, grant execution permissions to the *.sh

�les in $GLUE_HOME/tool_adapters/{adapter}/bin (chmod +x

$GLUE_HOME/tool_adapters/{adapter}/bin/*.sh).

5. In Linux, run $GLUE_HOME/tool_adapters/{adapter}/bin/install-{adapter}.sh. The

execution of that �le: creates the �le to provide persistence to the instances created

with this adapter in /srv/glue/tool_adapters/{adapter}/instances.txt, and a sym-

bolic link in $GLUE_HOME/tool_adapters/{adapter}/data pointing at this �le; creates

the empty log �le /var/log/glue/{adapter}.log, and a symbolic link pointing

at it in $GLUE_HOME/tool_adapters/{adapter}/log; and creates symbolic links at

/usr/bin pointing at $GLUE_HOME/tool_adapters/{adapter}/bin/start-{adapter}.sh

and $GLUE_HOME/tool_adapters/{adapter}/bin/stop-{adapter}.sh. In Windows, run

$GLUE_HOME/tool_adapters/{adapter}/bin/install-{adapter}.bat. The execution of

that �le: creates the �le $GLUE_HOME/tool_adapters/{adapter}/data/instances.txt to

provide persistence to the instances created with this adapter; registers this adapter as a

Windows service; and de�nes $GLUE_HOME/tool_adapters/{adapter}/log/manager.log

as the log �le (it is created the �rst time the adapter is started). By default, tool adapters

are registered to be started at system boot time. The parameter manual should be passed

to install-{adapter}.bat in order to force the manual start of the adapter.

Information for the internal tool registry

Every tool adapter must be registered in the internal tool registry to be invoked by the

GLUElet Manager. In order to facilitate the registration process, tool adapters include the

�le $GLUE_HOME/tool_adapters/{adapter}/conf/db/fill_Internal_Registry.sql. Never-

theless, cautions must be taken on this �le, since it is just a template. Therefore, several variables

marked with square brackets must be replaced with suitable values according to the particular

environment in which the tool adapter is deployed. After these modi�cations are made, the

�le can be executed in the SQL compliant database management console where the internal tool

registry is located, in order to register the tools this adapter wraps. Signi�cantly, if tool adapters

are installed as part of the full GLUE! distribution package, rather than from individual pack-

ages, then, the $GLUE_HOME/manager/conf/db/fill_Internal_Registry.sql �le may be used

instead, in order to register all the tool adapters at once, as further explained in the INSTALL.txt

�le at $GLUE_HOME.

The �rst column in all the tables set by fill_Internal_Registry.sql is an integer that

works as a primary key for every new row added. A value not used in previous rows must be

selected for this integer. A careful check is advised, since all the identi�ers but [TOOL_IMP_ID_x]

are repeated in the fill_Internal_Registry.sql �le as references in other tables apart from

222 Appendix D

those where they are primary keys. Therefore, the value of each identi�er must be consistent

throughout the �le. Apart from these identi�ers, some other values must be set in two tables:

InternalRegistry.ImplementationAdapters. This is the URL where the tool adapter

listens for requests. Signi�cantly, the su�x /ToolAdapter/{adapter} cannot be

changed. If several tool adapters and the GLUElet Manager are installed in the

same host, then an example for the full URL in one of the tool adapters might be:

http://localhost:8186/ToolAdapter/{adapter}. It is noteworthy that the port (8186)

must be di�erent for each tool adapter.

InternalRegistry.ToolImplementations. This is the �eld in which the speci�c parame-

ters required by each tool must be set. These parameters must be represented as a string

containing the list of values for the parameters, following the URL encoding format. For

instance, if institutional credentials are used for the management of external tool instances,

these credentials must be set here.

Operation

Before starting a tool adapter, some runtime properties may be modi�ed in its correspond-

ing $GLUE_HOME/tool_adapter/{adapter}/conf/app.properties �le:

port. This is the number of the port where the tool adapter listens for requests from the

GLUElet Manager.

logging. This parameter must be �on� to save information in the log �le about each request

processed by the tool adapter.

Besides, to manually start and stop the tool adapters, it is recommended to follow these

instructions:

In Linux, use the commands start-{adapter} and stop-{adapter}.

In Windows, access to the service management panel (�Start� button, �Control Panel �,

�System and Maintenance�, �Administration Tools�, �Services�), search and select the ser-

vice with the name �{Adapter}� in the service list, and click the �Init� or �Stop� links at

the top left corner of the list.

After that, the content of the $GLUE_HOME/tool_adapter/{adapter}/log/{adapter}.log

can be checked to see if the tool adapter started without problems. In that case, a message like

this should appear:

24-oct-2011 19:58:02 org.restlet.engine.http.connector.HttpServerHelper

start INFO: Starting the default [HTTP/1.1] server on port 8186

Appendix D 223

Final notes

Some �nal notes must be considered when installing and con�guring tool adapters:

1. If the access to the tool adapter must be restricted to a limited set of system users for

its start/stop, then it is important to keep in mind that authorized users need: execu-

tion permission on $GLUE_HOME/tool_adapter/{adapter}/bin/*.sh; read permissions on

$GLUE_HOME/tool_adapter/{adapter}/conf/app.properties, and all the jar �les; and

write permissions on /var/log/glue/{adapter}.log.

2. In Windows systems, every time an adapter is started, its log �le is erased.

D.3 Installation and con�guration of VLE adapters

The Moodle adapter

The Moodle adapter, which has been developed for the Moodle 1.9 version, is installed as

any other Moodle module8. Once installed, the Moodle administrator must con�gure the Moodle

adapter, so this adapter can send requests to the GLUElet Manager. In order to con�gure the

Moodle adapter, the Moodle administrator must go to �Noti�cations�, �Modules�, �Activities�,

�GLUElet�. Two parameters must be set in this screen: the URL of the GLUElet Manager; and

a timeout. This timeout prevents the Moodle adapter from hanging up if the connection with

the GLUElet Manager or with the external tools cannot be successfully accomplished. Figure 4

depicts a screenshot of Moodle showing examples for these two parameters.

The LAMS adapter

The LAMS adapter, which has been developed for the LAMS 2.2 version, is installed as

any other LAMS add-on9. Once installed, the LAMS administrator must con�gure the LAMS

adapter, so this adapter can establish a communication with the GLUElet Manager. In order

to con�gure the LAMS adapter, the LAMS administrator must go to �Sys Admin�, �Tool Man-

agement�, �GLUElet�, �Tool Management�, and set the URL of the GLUElet Manager, and the

timeout for each request. Figure 5 depicts a screenshot of LAMS showing examples for these two

parameters.

8http://docs.moodle.org/en/Installing_contributed_modules_or_plugins. Last visited: January 2012
9http://wiki.lamsfoundation.org/display/lams/Downloads. Last visited: June 2012.

http://docs.moodle.org/en/Installing_contributed_modules_or_plugins
http://wiki.lamsfoundation.org/display/lams/Downloads

224 Appendix D

Figure 4: Moodle screenshot illustrating the con�guration of the Moodle adapter. The Moodle admin-
istrator must specify the URL of the GLUElet Manager and a timeout in seconds to wait for
every single call to the GLUElet Manager.

Figure 5: LAMS screenshot showing the con�guration of the LAMS adapter. The LAMS administrator
must determine the URL of the GLUElet Manager and a timeout in seconds to wait for every
single call to the GLUElet Manager.

Appendix D 225

The MediaWiki adapter

The MediaWiki adapter, which has been developed for the MediaWiki 1.16 version, is

installed as any other MediaWiki extension10. MediaWiki administrators do not have a user

interface in MediaWiki to con�gure this adapter, as it happens in other VLEs like Moodle or

LAMS. Instead, they need to manually edit the localsettings.php �le in their MediaWiki

installation, and add the following code:

require_once("$IP/extensions/MediaWikiVLEGlueExtension/MediaWikiVLEGlueExtension.php");

$wgGlueExtensionDefaultUser = "GlueForMediaWikiDefaultUser";

$wgNewGlueExtensionGlueletManagerURL = "http://localhost:8185/GLUEletManager";

The �rst statement indicates the path of the main .php �le in the MediaWiki adapter.

The second sentence designates the default user in MediaWiki. The third sentence points at the

URI of the GLUElet Manager.

10http://mediawiki.org/wiki/Manual:Extensions. Last visited: June 2012.

http://mediawiki.org/wiki/Manual:Extensions

226 Appendix D

Appendix E: Examples of usage

The reference implementation of the GLUE! architecture, GLUE!-RI, has been introduced

in chapter 4. GLUE!-RI includes the GLUE! core, nine tool adapter, and three VLE adapters for

Moodle, LAMS and MediaWiki. Therefore, end-users can use GLUE!-RI for the integration of

external tools in Moodle, LAMS, and MediaWiki. This appendix illustrates with some examples

the usage for each of these environments.

E.1 User manual for Moodle

This manual is oriented to end-users that employ GLUE! for the integration of external

tools in the VLE Moodle. Screenshots depict the steps for educators using Moodle, as well as

for students participating in a Moodle course.

Educator view

Educators can integrate external tools in a Moodle course with GLUE! by managing the

tool life cycle within this VLE interface. Figures 6 to 9 show the four steps that educators

must follow in order to create and con�gure tool instances of Google Documents for the users

and groups de�ned in a Moodle course. In this example, two groups (group1 and group2) have

previously been de�ned. Besides, student1 joined group1, and student2 joined group2.

Figure 6 shows the overview of the course, including a previously created �GLUElet� activ-

ity. In order to create new instances (gluelets), the educator must click on the �Add an activity�

drop-down menu in the course homepage, and select the GLUElet option. Then, educators can

con�gure the Moodle activity (as usual) in a new screen, indicating, for instance, a name and a

description. Besides, in this screen a new drop-down menu appears (�Tool �) with the list of avail-

able external tools. Figure 7 shows this screen, including the selection of Google Documents, and

also the �Group mode�: the option �no groups� creates one single external tool instance, which

is shared among all the students registered in that course; the option �separate groups� creates

one external tool instance for each group de�ned in the course, and students can only access the

227

228 Appendix E

instances of the group they belong to; the option �visible groups� creates one instance for each

group de�ned in the course, although students can access their partners' instances too. This also

happens with Moodle built-in tools.

After that, a new screen shows up allowing the con�guration of each of the external tool

instances that are going to be created. Besides, in this step, educators may also decide to reuse

other instances of the same tool that were created earlier in the course. Figure 8 presents this

screen, which is added by the Moodle adapter. In the case of Google Documents a title and an

initial �le can be set. Finally, Figures 9 to 12 show the visualization of di�erent external tool

instances embedded in Moodle, once created. Remarkably, the educator can modify the group

mode or the members of each group at any time, and the architecture will automatically update

the students that share each external tool instance.

Student view

After the educator creates the activities, which may include both built-in and external tools,

students log in Moodle to enact a collaborative learning situation (e.g. Figure 13). Student can

only see the tool instances shared with their group partners, unless the educator had selected

�visible groups�, when creating a Moodle activity.

Figure 6: Moodle screenshot showing the creation of a new �GLUElet� activity. The educator can select
a built-in tool or an external tool (GLUElet option in the drop-down activity menu).

Appendix E 229

Figure 7: Moodle screenshot showing the con�guration of the activity. Here, the educator selects the
external tool (Google Documents), and the group mode (�separate groups�) from two di�erent
drop-down menus.

Figure 8: Moodle screenshot showing the con�guration of external tool instances. The educator can
provide an initial con�guration for each instance (group). In this case, a title and an initial
�le can be set for Google Documents instances. The educator can also reuse existing instances
of this tool in the same Moodle course.

230 Appendix E

Figure 9: Moodle screenshot showing the visualization of tool instances for Google Documents. These
instances are embedded in the Moodle interface and have been con�gured with di�erent titles
and initial documents for each group.

Appendix E 231

Figure 10: Moodle screenshot showing the visualization of tool instances for Google Spreadsheets. Tool
instance for group1 has been con�gured with a title (�Title for group 1 �) and an initial �le.
Tool instance for group2 has been con�gured with a di�erent title (�Title for group 2 in
Google Spreadsheets�) but it shows a blank spreadsheet, since no initial �le was provided.

232 Appendix E

Figure 11: Moodle screenshot showing the visualization of tool instances for the Natter Chat widget.
These instances have not been con�gured during the instantiation of the corresponding
activity. Nevertheless, instance for group1 shows a message that the Moodle administrator
(playing the role of the educator in this course) left to the students belonging to this group.
Instance for group2 shows the list of users that are sharing it: student2 and admin.

Appendix E 233

Figure 12: Moodle screenshot showing the visualization of tool instances for MediaWiki. These in-
stances have been con�gured with di�erent titles and initial contents for each group.

Figure 13: Moodle screenshot showing the visualization of a Google Document instance for a member
of group1 (student1). The option �separate groups� was chosen when creating the instances
for this activity.

234 Appendix E

E.2 User manual for LAMS

This manual is oriented to end-users that use GLUE! for the integration of external tools in

LAMS. Screenshots depict the steps for authors designing lessons in LAMS, monitors deploying

lessons in LAMS courses, and students (learners) participating in the enactment of LAMS lessons.

Author view

Authors can add external tools in a LAMS lesson with GLUE! in the authoring environ-

ment. Figures 14 to 16 show the steps that authors must follow to add Google Documents

in a learning sequence. Figure 14 shows the set of LAMS tools on the left side, including the

�Gluelet� activity. This screenshot also shows a sequence of activities with four external tools

and two di�erent group settings. Signi�cantly, the use of LAMS pathways, branching and stop

signs is also supported when adding external tools. Once the �Gluelet� activity is added to the se-

quence, it can be con�gured as any other LAMS built-in tool (see Figure 15). That con�guration

includes basic parameters, like the name or the description of the activity, but also a drop-down

menu to select the external tool. Once selected, the con�guration template is rendered in the

same screen, to be �lled out by the author. Figure 16 shows the result of con�guring a Gluelet

activity that adds the Google Documents tool to a LAMS lesson. When everything is set, the

lesson can be saved and deployed in the monitoring environment. Furthermore, this lesson can

be exported to be reused by other authors using LAMS. It is noteworthy that the authoring

environment enables the creation of abstract designs, which must be later particularized in the

monitoring environment, considering the actual learners registered in the LAMS course.

Monitor view

Monitors can deploy LAMS lessons that include external tools in their courses as usual.

External tool instances are created after the groups de�ned in the authoring environment are

populated, and just at the moment a student �rst access an activity. Monitors can modify group

members in those activities that have not started, and even add more students to a group in

those activities that are running. In both cases, GLUE! automatically updates the students that

share each external tool instance.

Learner view

Once learners log in LAMS, they can realize the learning sequence using both built-in tools

and external tools. Each learner can only see the tool instances intended for his group in each

activity. Examples for Dabbleboard and Google Documents are shown in Figures 17 and 18.

Appendix E 235

Figure 14: LAMS screenshot showing a sequence of activities that includes four external tools (�Gluelet�
activities) and two group settings.

Figure 15: LAMS screenshot showing the con�guration of a �Gluelet� activity. Apart from the basic
settings, like the name or the description of the activity, an external tool can be selected
and later con�gured.

236 Appendix E

Figure 16: LAMS screenshot showing the �nal settings of a �Gluelet� activity that adds Google
Document to the learning design.

Figure 17: LAMS screenshot showing the visualization of a Dabbleboard tool instance.

Appendix E 237

Figure 18: LAMS screenshot showing the visualization of a Google Documents tool instance.

238 Appendix E

E.3 User manual for MediaWiki

This manual is oriented to end-users that use GLUE! for the integration of external tools

in MediaWiki. MediaWiki does not support the de�nition of di�erent roles for educators and

students, and so, screenshots depict the steps to integrate external tools for any end-user that

can edit the content in a MediaWiki installation.

User view

The MediaWiki adapter allows any user that can edit a MediaWiki page to manage the

life cycle of external tools within the MediaWiki interface. External tool instances are added to

a MediaWiki page associated to <gluelet> tags. These instances (and tags) can be copied and

pasted to any other page in the same MediaWiki installation, in order to reuse them in di�erent

contexts or activities. Nevertheless, users should be careful when deleting instances, since they

may be on use in several pages.

MediaWiki is not a VLE, and so, it does not support the concepts of course, activity or

group. However, di�erent courses and activities can be created in a hierarchical structure of

MediaWiki pages. Nevertheless, any user that can access a MediaWiki content, would be able

to access any tool instance, insofar as di�erent group con�gurations and permissions are not

supported.

Figures 19 to 26 illustrate the steps that end-users must follow to create and con�gure tool

instances of Google Documents in a MediaWiki page. Figure 19 shows the login of a registered

user in MediaWiki. Figure 20 shows the edition of a MediaWiki page. Here, users can create tool

instances by clicking on �new gluelet�. They can also edit the content of the MediaWiki page as

usual, adding text, images, hyperlinks, etc. If the user decides to add a new gluelet, a window

for the selection of the external tool (e.g. Google Documents) appears, as it is shown in Figure

21. Figure 22 shows the con�guration allowed for this tool. In the case of Google Documents,

the title and an initial �le can be set. Figure 23 shows a message con�rming the creation of

the Google Documents instance and an optional �eld to name the instance in the MediaWiki

page (this is a local name shown when visualizing the instance). Figure 24 shows the <gluelet>

tag (including a glueletId for this tool instance and the name previously assigned). This tag

is automatically generated by the MediaWiki adapter. Besides, a message has been manually

added after the <gluelet> tag. Figure 25 shows the visualization of the MediaWiki page, which

includes the instance of Google Documents. Figure 26 shows the edition of the same page. Once

the page is saved, tool instances can be deleted by clicking on their correspondent icon on the

top left. Besides, the content of an instance (e.g. <gluelet>/instance/210/</gluelet>) can

be copied and pasted to any other page in the same Mediawiki installation.

Appendix E 239

Figure 19: MediaWiki screenshot showing the authentication of a user in this platform.

Figure 20: MediaWiki screenshot showing the edition of a MediaWiki page. Two buttons are added by
the MediaWiki adapter. The �new gluelet� button enables end-users to create and con�gure
external tool instances. The �hide gluelets� button enables users to hide the list of created
gluelets in this page.

240 Appendix E

Figure 21: MediaWiki screenshot showing the creation of external tool instances. The �rst step is the
selection of the external tool from a drop-down menu.

Figure 22: MediaWiki screenshot showing the con�guration of a new Google Document. A title and an
initial �le can be set for this tool.

Appendix E 241

Figure 23: MediaWiki screenshot showing a message reporting that the external tool instance has suc-
cessfully been created.

Figure 24: MediaWiki screenshot showing the edition of a MediaWiki page after the creation of an
external tool instance. The <gluelet> tag includes a reference to this instance.

242 Appendix E

Figure 25: MediaWiki screenshot showing the visualization of the MediaWiki page including a Google
Document.

Figure 26: MediaWiki screenshot showing the edition of the same page, after it has been saved. A
deletion icon appears on the top left for each tool instance that has been created.

References

[Abb01] C. Abbott. ICT: Changing Education. Routledge Falmer, London, UK, 2001.

[ADL04] ADL, Advanced Distributed Learning. SCORM 2004 4th Edition, 2009. URL:

http://adlnet.gov/capabilities/scorm/scorm-2004-4th, last visited: June 2012.

[Adr93] W.R. Adrion. Research Methodology in Software Engineering: Summary of the

Dagstuhl Workshop on Future Directions in Software Engineering. ACM SIGSOFT

Software Engineering Notes, 18(1):36�37, 1993.

[Ajj08] H. Ajjan and R. Hartshorne. Investigating faculty decisions to adopt Web 2.0 tech-

nologies: Theory and Empirical Tests. The Internet and Higher Education, 11(2):71�

80, 2008.

[Ala09] C. Alario-Hoyos, E. Gómez-Sánchez, M. Bote-Lorenzo, G. Vega-Gorgojo, and J.I.

Asensio-Pérez. Grid Service-Based Benchmarking Tool for Computer Architecture

Courses. In Proceedings of the 4th European Conference on Technology Enhanced

Learning, ECTEL 2009, pages 621�626, Nice, France, September-October 2009.

Springer-Verlag, LNCS 5794.

[Ala10a] C. Alario-Hoyos, J.I. Asensio-Pérez, M.L. Bote-Lorenzo, E. Gómez Sánchez, G. Vega-

Gorgojo, and A. Ruiz-Calleja. Integration of external tools in Virtual Learning

Environments: main design issues and alternatives. In Proceedings of the 10th IEEE

International Conference on Advanced Learning Technologies, ICALT 2010, pages

384�388, Sousse, Tunisia, July 2010. IEEE Computer Society.

[Ala10b] C. Alario-Hoyos, E. Gómez-Sánchez, M.L. Bote-Lorenzo, J.I. Asensio-Pérez, A. Ruiz-

Calleja, and G. Vega-Gorgojo. Towards single sign-on in the integration of external

tools in Virtual Learning Environments. In Proceedings of the 9th Workshop on

Telematic Engineering, JITEL 2010, pages 285�288, Valladolid, Spain, September

2010. In Spanish.

243

244 REFERENCES

[Ala10c] C. Alario-Hoyos and S. Wilson. Comparison of the main alternatives to the inte-

gration of external tools in di�erent platforms. In Proceedings of the International

Conference of Education, Research and Innovation, ICERI 2010, pages 3466�3476,

Madrid, Spain, November 2010. IATED.

[Ala11a] C. Alario-Hoyos, O. García-García, and E. Gómez-Sánchez. Problem-based learning

supported by web platforms and tools in a Software Engineering course. In Pro-

ceedings of the 2nd Workshop on Educational Innovation, JIE 2011, pages 26�33,

Santander, Spain, September 2011. In Spanish.

[Ala11b] C. Alario-Hoyos, M.L. Bote-Lorenzo, E. Gómez-Sánchez, D.A. Velasco-Villanueva,

J.I. Asensio-Pérez, G. Vega-Gorgojo, and A. Ruiz-Calleja. Integration of external

tools with GLUE! in LAMS: requirements, implementation and a case study. In

Proceedings of the 6th International LAMS and Learning Design Conference, LAMS

2011, pages 40�48, Sydney, Australia, December 2011.

[Ala12a] C. Alario-Hoyos, M.L. Bote-Lorenzo, E. Gómez-Sánchez, J.I. Asensio-Pérez, G. Vega-

Gorgojo, and A. Ruiz-Calleja. GLUE!: An Architecture for the Integration of

External Tools in Virtual Learning Environments. Computers & Education (sub-

mitted), 2012.

[Ala12b] C. Alario-Hoyos, M.L. Bote-Lorenzo, E. Gómez-Sánchez, J.I. Asensio-Pérez, G. Vega-

Gorgojo, and A. Ruiz-Calleja. Integration of external tools in VLEs with the GLUE!

architecture: A case study. In Proceedings of the 7th European Conference on Tech-

nology Enhanced Learning, ECTEL 2012 (submitted), 2012.

[Ala12c] C. Alario-Hoyos, M.L. Bote-Lorenzo, E. Gómez-Sánchez, J.I. Asensio-Pérez, G. Vega-

Gorgojo, and A. Ruiz-Calleja. Demonstration of the integration of external tools in

VLEs with the GLUE! architecture. In Proceedings of the 7th European Conference

on Technology Enhanced Learning, ECTEL 2012 (submitted), 2012.

[Ala12d] C. Alario-Hoyos, J.A. Muñoz-Critóbal, L.P. Prieto, M.L. Bote-Lorenzo, J.I. Asensio-

Pérez, and E. Gómez-Sánchez. GLUE! - GLUE!-PS: An approach to deploy non-

trivial collaborative learning situations that require the integration of external tools

in VLEs. In Proceedings of the 1st Moodle Research Conference (submitted), 2012.

[Alb83] A.J. Albretch and J.E. Ga�ney. Software Function, Source Lines of Code, and De-

velopment E�ort Prediction: A Software Science Validation. IEEE Transactions on

Software Engineering, 9(6):639�648, 1983.

[App99] W. Appelt and P. Mambrey. Experiences with the BSCW Shared Workspace System

as the Backbone of a Virtual Learning Environment for Students. In Proceedings of

REFERENCES 245

the World Conference on Educational Multimedia, Hypermedia and Telecommunica-

tions, ED-MEDIA 1999, pages 1710�1715, Seattle, WA, USA, June 1999. AACE.

[Arm05] V. Armstrong, S. Barnes, R. Sutherland, S. Curran, S. Mills, and I. Thompson.

Collaborative research methodology for investigating teaching and learning: the use

of interactive whiteboard technology. Educational Review, 57(4):455�469, 2005.

[Ase08] J.I. Asensio-Pérez, M.L. Bote-Lorenzo, G. Vega-Gorgojo, Y. Dimitriadis, E. Gómez-

Sánchez, and E.D. Villasclaras-Fernández. Adding mash-up based tailorability to

VLEs for scripted Collaborative Learning. In Proceedings of the 1st International

Workshop on Mashup Personal Learning Environments, MUPPLE 2008, pages 14�

17, Maastricht, The Netherlands, September 2008.

[Att07] G. Attwell. Personal Learning Environments - The Future

of eLearning? eLearning Papers, 2(1):1�8, 2007. URL:

http://elearningeuropa.info/en/download/�le/�d/19297, last visited: June 2012.

[Aug04] N. Augar, R. Raitman, and W. Zhou. Teaching and learning online with wikis. In

Proceedings of the 21st Australasian Society for Computers in Learning in Tertiary

Education, ASCILITE 2004, pages 95�104, Perth, Australia, December 2004.

[Avo04] N. Avouris, M. Margaritis, and V. Komis. Modelling interaction during small-groups

synchronous problem-solving activities: The Synergo approach. In Proceedings of the

the 2nd International Workshop on Designing Computational Models of Collaborative

Learning Interaction, pages 13�18, Maceió, Brazil, September 2004.

[Bak96] M. Baker and K. Lund. Flexibly structuring the interaction in a CSCL environment.

In Proceedings of the European Conference on Arti�cial Intelligence in Education,

EuroAIED 1996, pages 401�407, Lisbon, Portugal, September-October 1996.

[Bak97] M. Baker and K. Lund. Promoting re�ective interactions in a CSCL environment.

Journal of Computer Assisted Learning, 13(1):175�193, 1997.

[Bal09] N. Balache�, S. Ludvigsen, T. de Jong, A. Lazonder, and S. Barnes (eds.).

Technology-Enhanced Learning: Principles and Products. Springer, Berlin, Germany,

2009.

[Bat03] A.W. Bates and G. Poole. E�ective Teaching with Technology in Higher Education.

Jossey-Bass Publishers, San Francisco, CA, USA, 2003.

[Bav03] T. Baving, D. Cook, and T. Green. Integrating the Educational Enterprise. Technical

report, Department of Computer Science, University of Cape Town, South Africa,

246 REFERENCES

2003. URL: http://pubs.cs.uct.ac.za/archive/00000089/01/paper.pdf, last visited:

June 2012.

[Ber01] A. Berger, R. Moretti, P. Chastonay, P. Dillenbourg, A. Bchir, R. Baddoura, C. Ben-

gondo, D. Scherly, P. Ndumbe, P. Farah, and B. Kayser. Teaching Community Health

By Exploiting International Socio-Cultural and Economical Di�erences. In Proceed-

ings of the 1st European Conference on Computer Supported Collaborative Learning,

EuroCSCL 2001, pages 97�105, Maastricht, The Netherlands, March 2001.

[Ber05] A. Berggren, D. Burgos, J.M. Fontana, D. Hinkelman, V. Hung, A. Hursh, and

G. Tielemans. Practical and Pedagogical Issues for Teacher Adoption of IMS Learning

Design Standards in Moodle LMS. Journal of Interactive Media in Education,

2005(2):1�24, 2005.

[Ber06] T. Berners-Lee. Linked Data - Design issues, 2006. URL:

http://w3.org/DesignIssues/LinkedData, last visited: June 2012.

[Bet03] M.L. Betbeder and P. Tchounikine. SYMBA, a Tailorable Framework to support

Collective Activities in a Learning Context. In Proceedings of the 9th International

Workshop on Groupware, CRIWG 2003, pages 90�98, Grenoble, France, September

2003. Springer-Verlag, LNCS 2806.

[Big82] R. Bigdan and S.K. Biklen. Qualitative research for education: An introduction to

theory and methods. Allyn and Bacon, Inc., Boston, MA, USA, 1982.

[Biz09] C. Bizer, T. Heath, and T. Berners-Lee. Linked Data - The Story So Far. Interna-

tional Journal on Semantic Web and Information Systems, 5(3):1�22, 2009.

[Bla09] A. del Blanco, J. Torrente, P. Moreno-Ger, and B. Fernández-Manjón. A General

Architecture for the Integration of Educational Videogames in Standards-compliant

Virtual Learning Environments. In Proceedings of the 9th IEEE International Con-

ference on Advanced Learning Technologies, ICALT 2009, pages 53�55, Riga, Latvia,

July 2009. IEEE Computer Society.

[Bla10] A. del Blanco, J. Torrente, E.J. Marchiori, I. Martínez-Ortiz, P. Moreno-Ger,

and B. Fernández-Manjón. Easing Assessment of Game-based Learning with <e-

Adventure> and LAMS. In ACM International Workshop on Multimedia Technolo-

gies for Distance Learning, MTDL 2010, pages 25�30, Florence, Italy, October 2010.

ACM.

[Bol07] L. Bollen, A. Harrer, H.U. Hoppe, and W. van Joolingen. A broker Architecture for

Integration of Heterogeneous Applications for Inquiry Learning. In Proceedings of

REFERENCES 247

the 7th IEEE International Conference on Advanced Learning Technologies, ICALT

2007, pages 15�17, Niigata, Japan, July 2007. IEEE Computer Society.

[Boo99] G. Booch, J. Rumbaugh, and I. Jacobson. The Uni�ed Modeling Language User

Guide. Addison-Wesley, Reading, MA, USA, 1999.

[Boo09] A.G. Booth and B.P. Clark. A service-oriented Virtual Learning Environment. On

the Horizon, 17(3):232�244, 2009.

[Bot05] M.L. Bote-Lorenzo. Gridcole: A Tailorable Grid Service based System that supports

Scripted Collaborative Learning. PhD Thesis, School of Telecommunication Engi-

neering, Universidad de Valladolid, Spain, September 2005.

[Bot08] M.L. Bote-Lorenzo, E. Gómez-Sánchez, G. Vega-Gorgojo, Y.A. Dimitriadis, J.I.

Asensio-Pérez, and I.M. Jorrín-Abellán. Gridcole: A Tailorable Grid Service based

System that supports Scripted Collaborative Learning. Computers and Education,

51(1):155�172, 2008.

[Bot10] M.L. Bote-Lorenzo, J.I. Asensio-Pérez, E. Gómez-Sánchez, G. Vega-Gorgojo, and

C. Alario-Hoyos. A Grid Service-Based Distributed Network Simulation Environment

for Computer Networks Education. Computer Applications in Engineering Education,

pages 1�12, 2010. http://dx.doi.org/10.1002/cae.20435, last visited: June 2012.

[Bou01] G. Bourguin and A. Derycke. Integrating the CSCL Activities into Virtual Cam-

puses: Foundations of a new Infrastructure for Distributed Collective Activities. In

Proceedings of the 1st European Conference on Computer Supported Collaborative

Learning, EuroCSCL 2001, pages 123�130, March 2001.

[Bou06] M. Bourimi. Collaborative Design and Tailoring of Web Based Learning Environ-

ments in CURE. In Proceedings of the 12th International Workshop on Groupware,

CRIWG 2006, pages 421�436, Medina del Campo, Spain, September 2006. Springer-

Verlag, LNCS 4154.

[Bow11] M. Bower and M. Wittmann. A Comparison of LAMS and Moodle as Learning

Design Technologies - Teacher Education Students' Perspective. Teaching English

with Technology, Special Issue on LAMS and Learning Design, 11(1):62�80, 2011.

[Bri04] C. Britton and P. Bye. IT Architectures and Middleware: Strategies for Building

Large, Integrated Systems (2nd edition). Pearson Addison Wesley, London, UK,

2004.

[Bri06] S. Britain and O. Liber. A Framework for Pedagogical Evaluation of Virtual Learning

Environment. Technical report, University of Wales, Bangor, UK, 2006. URL:

http://www.leeds.ac.uk/educol/documents/00001237.htm, last visited: June 2012.

248 REFERENCES

[Bud08] J. Buder and D. Bodemer. Supporting controversial CSCL discussions with aug-

mented group awareness tools. International Journal of Computer-Supported Col-

laborative Learning, 3(2):122�139, 2008.

[Cae06a] M. Caeiro-Rodríguez, M. Llamas-Nistal, and L. Anido-Rifón. The PoEML Proposal

to Model Services in Educational Modeling Languages. In Proceedings of the 12th

International Workshop on Groupware, CRIWG 2006, pages 187�202, Medina del

Campo, Spain, September 2006. Springer-Verlag, LNCS 4154.

[Cae06b] M. Caeiro, M.J. Marcelino, M. Llamas, L. Anido, and A.J. Mendes. PoEML: A

Flexibility Approach for Models of Educational Practices. In Proceedings of the 8th

International Symposium on Computers in Education, pages 24�26, León, Spain,

October 2006.

[Cal03] R.A. Calvo, E. Ghiglione, and R.A. Ellis. The OpenACS E-Learning Infrastructure.

In Proceedings of the 9th Australian World Wide Web Conference, AUSWEB03, pages

175�183, Gold Coast, Australia, July 2003.

[Cay09] E. Cayirci, C. Rong, W. Huiskamp, and C. Verkoelen. Snow Leopard Cloud: A Multi-

national Education Training and Experimentation Cloud and Its Security Challenges.

In Proceedings of the 1st International Conference on Cloud Computing, CloudCom

2009, pages 57�68, Beijing, China, December 2009. Springer Verlag, LNCS 5931.

[Cha07] M.A. Chatti, M. Jarke, and D. Frosch-Wilke. The future of e-learning: a shift to

knowledge networking and social software. International Journal of Knowledge and

Learning, 3(4-5):404�420, 2007.

[Chi02] M-L. Chiu. An organizational view of design communication in design collaboration.

Design Studies, 23(2):187�210, 2002.

[Cho07] H. Cho, G. Gay, B. Davidson, and A. Ingra�ea. Social networks, communication

styles, and learning performance in a CSCL community. Computers & Education,

49(2):309�329, 2007.

[Col02] G. Collier and R. Robson. What is the Open Knowledge Initiative?

Technical report, Eduworks Corporation for O.K.I., USA, 2002. URL:

http://web.mit.edu/oki/learn/whtpapers/OKI_white_paper_120902.pdf, last

visited: June 2012.

[Col07] J. Cole and H. Foster. Using Moodle: Teaching with the Popular Open Source Course

Management System. O'Reilly Media, Inc., Sebastopol, CA, USA, 2007.

REFERENCES 249

[Con09] M.A. Conde-González, F.J. García-Peñalvo, M.J. Casany-Guerrero, and M. Alier-

Forment. Adapting LMS architecture to the SOA: an Architectural Approach. In

Proceedings of the 4th International Conference on Internet and Web Applications

and Services, ICIW 2009, pages 322�327, Venice/Mestre, Italy, May 2009. IEEE

Computer Society.

[Con10] M.A. Conde-González, F.J. García-Peñalvo, M.J. Casany-Guerrero, and M. Alier-

Forment. Open Integrated Personal Learning Environment: Towards a New Concep-

tion of the ICT-Based Learning Processes. In Proceedings of the 3rd World Summit

on the Knowledge Society, WSKS 2010, pages 115�124, Corfu, Greece, September

2010. Springer-Verlag.

[Cor05] S. Corich. Is it time to Moodle? In Proceedings of the 18th Annual Conference of

the National Advisory Committee on Computing Quali�cations, NACCQ 2005, pages

155�158, Tauranga, New Zealand, July 2005.

[Cur02] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. Un-

raveling the Web services web: an introduction to SOAP, WSDL, and UDDI. IEEE

Internet Computing, 6(2):86�93, 2002.

[Dag07] D. Dagger, A. O'Connor, S. Lawless, E. Walsh, and V.P. Wade. Service-Oriented

E-Learning Platforms: From monolithic Systems to Flexible Services. IEEE Internet

Computing, 11(3):28�35, 2007.

[Dal03] J. Dalziel. Implementing Learning Design: The Learning Activity Management

System (LAMS). In Proceedings of the Australasian Society for Computers in

Learning in Tertiary Education, ASCILITE 2003, pages 593�596, Adelaide, Aus-

tralia, December 2003.

[Dal05] J. Dalziel. LAMS Overview. Technical report, MELCOE, Australia, 2005. URL:

http://lamsinternational.com/CD/html/resources/summaries/LAMS_Overview.doc,

last visited: June 2012.

[Dal06] J. Dalziel. Lesson from LAMS for IMS Learning Design. In Proceedings of the 6th

IEEE International Conference on Advanced Learning Technologies, ICALT 2006,

pages 1101�1102, Kerkrade, The Netherlands, July 2006. IEEE Computer Society.

[Dal07] J. Dalziel. Imagining and developing a system for reusable learning designs: lessons

from LAMS. International Journal of Continuing Engineering Education and Life

Long Learning, 17(1):33�42, 2007.

[Dal10] J. Dalziel. Visualising Learning Design in LAMS: A Historical View. Teaching English

with Technology, Special Issue on LAMS and Learning Design, 11(1):19�34, 2010.

250 REFERENCES

[Dew01] P. Dewan. An integrated approach to designing and evaluating collaborative appli-

cations and infrastructures. Computer Supported Cooperative Work, 10(1):75�111,

2001.

[Dha95] H. Dhama. Quantitative models of cohesion and coupling in software. Journal of

Systems and Software, 29(1):65�74, 1995.

[Dil99] P. Dillenbourg. Collaborative Learning: cognitive and computational approaches. El-

sevier Science, Oxford, UK, 1999.

[Dil00] P. Dillenbourg. Virtual Learning Environments. In Proceedings of the EUN Con-

ference. Learning in The New Millennium: Building New Education Strategies for

Schools, pages 1�30, Brussels, Belgium, March 2000.

[Dil02a] P. Dillenbourg. Over-scripting CSCL: The risks of blending collaborative learning

with instructional design. In P.A. Kirschner (ed.), Three worlds of CSCL. Can we

support CSCL?. Open University of The Netherlands, Heerlen, The Netherlands,

pages 61-91, 2002.

[Dil02b] P Dillenbourg, D.K. Schneider, and P. Synteta. Virtual Learning Environments. In

Proceedings of the 3rd Hellenic Conference Information & Communication Technolo-

gies in Education, pages 3�18, Rhodes, Greece, September 2002.

[Dil07] P. Dillenbourg and P. Tchounikine. Flexibility in macro-scripts for CSCL. Journal

of Computer Assisted Learning, 23(1):1�13, 2007.

[Dil09] P. Dillenbourg, S. Järvelä, and F. Fischer. Technology-Enhanced Learning, chapter

1. The Evolution of Research on Computer-Supported Collaborative Learning: From

Design to Orchestration, pages 3�19. Springer Verlag, 2009.

[Dod08] J.M. Dodero and E. Ghiglione. ReST-Based Web Access to Learning Design Services.

IEEE Transactions on Learning Technologies, 1(3):190�195, 2008.

[Dou99] M. Dougiamas. Developing tools to foster online educational dialogue. In Proceedings

of the 8th Annual Teaching Learning Forum, pages 119�123, Perth, Australia, Febru-

ary 1999. URL: http://otl.curtin.edu.au/tlf/tlf1999/dougiamas.html, last visited:

June 2012.

[Dou00] M. Dougiamas. Improving the e�ectiveness of tools for Internet based education. In

Proceedings of the 9th Annual Teaching Learning Forum, Perth, Australia, February

2000. URL: http://lsn.curtin.edu.au/tlf/tlf2000/dougiamas.html, last visited: June

2012.

REFERENCES 251

[Dou03] M. Dougiamas and P.C. Taylor. Moodle: Using learning communities to create an

open source course management system. In Proceedings of the World Conference on

Educational Multimedia, Hypermedia and Telecommunications, ED-MEDIA 2003,

pages 171�178, Honolulu, HI, USA, June 2003. AACE.

[Dun03] S. Dunn. Return to SENDA? Implementing Accessibility for Disabled Students in

Virtual Learning Environments in UK further and higher education. Technical re-

port, City University, London, UK, 2003. URL: http://saradunn.net/VLEreport,

last visited: June 2012.

[Dun09] M. Dunleavy, C. Dede, and R. Mitchell. A�ordances and Limitations of Immersive

Participatory Augmented Reality Simulations for Teaching and Learning. Journal of

Science Education and Technology, 18(1):7�22, 2009.

[Duq05] P. Duquenoy. Ethics of computing. In J. Berleur, and C. Avgerou, (eds.), Perspectives

and policies on ICT in society. IFIP Advances in Information and Communication

Technology (179). International Federation for Information Processing, Boston, USA,

pages 159-170, 2005.

[Dvo11] R. Dvorak. Moodle for Dummies, chapter 1. Discovering Moodle and What You Can

Do, pages 11�22. Wiley Publishing, Inc., Hoboken, NJ, USA, 2011.

[Eck95] W.W. Eckerson. Three Tier Client/Server Architecture: Achieving Scalability, Per-

formance, and E�ciency in Client Server Applications. Open Information Systems,

10(3):1�20, 1995.

[Ele11] ElearningForce. Sharepoint LMS Feature List, version 2.1 / 3.0, 2011.

URL: http://sharepointlms.com/images/sharepointlms_featurelist_2.1and3.0.pdf,

last visited: June 2012.

[Ell91] C.A. Ellis, S.J. Gibbs, and G. Rein. Groupware: Some Issues and Experiences.

Communications of the ACM, 34(1):39�58, 1991.

[Era04] M. Eraut. Informal Learning in the Workplace. Studies in Continuing Education,

26(2):247�273, 2004.

[Far05] J. Farmer and I. Dolphin. Sakai: eLearning and More. In Proceedings of the 11th

European University Information Systems Congress, EUNIS 2005, pages 1�5, Man-

chester, UK, January 2005. Citeseer.

[Fer03] N. Ferguson and B. Schneier. Practical Cryptography. John Wiley & Sons, Inc., New

York, NY, USA, 2003.

252 REFERENCES

[Fie00] R.T. Fielding. Architectural Styles and the Design of Network-based Software Archi-

tectures. PhD Thesis, University of California, Irvine, CA, USA, 2000.

[Fie07] S. Fiedler. Getting beyond centralized technologies in higher education, Part 1. In

Proceedings of the World Conference on Educational Multimedia, Hypermedia and

Telecommunications, ED-MEDIA 2007, pages 1340�1346, Chesapeake, VA, USA,

June 2007. AACE.

[Fol06] G. Folkestad. Formal and informal learning situations or practices vs formal and

informal ways of learning. British Journal of Music Education, 23(2):135�145, 2006.

[Fon09] J. Fontenla-González, M. Caeiro-Rodríguez, and M. Llamas-Nistal. Towards a Gen-

eralized Architecture for the Integration of Tools in LMSs. International Journal of

Emerging Technologies in Learning (iJET), 4(S1):6�11, 2009.

[Fos98] I. Foster and C. Kesselman. The Grid: Blueprint for a New Computing Infrastructure.

Morgan Kaufmann Publishers, San Francisco, CA, USA, 1998.

[Fue08] L. de la Fuente-Valentín, Y. Miao, A. Pardo, and C. Delgado-Kloos. A Support-

ing Architecture for Generic Service Integration in IMS Learning Design. In Pro-

ceedings of the 3rd European conference on Technology Enhanced Learning, ECTEL

2008, pages 467�473, Maastricht, The Netherlands, September 2008. Springer-Verlag,

LNCS 5192.

[Fue11] L. de la Fuente-Valentín, A. Pardo, and C. Delgado-Kloos. Generic Service Integra-

tion in Adaptive Learning Experiences using IMS Learning Design. Computers &

Education, 57(1):1160�1170, 2011.

[Gam95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-oriented Software. Addison-Wesley, Reading, MA, USA, 1995.

[Gar05] J.J. Garrett. Ajax: A New Approach to Web Applications. Tech-

nical report, Adaptive Path, San Francisco, CA, USA, 2005. URL:

http://www.adaptivepath.com/ideas/ajax-new-approach-web-applications, last

visited: May 2012.

[Geo95] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of work�ow manage-

ment: From process modeling to work�ow automation infrastructure. Distributed

and Parallel Databases, 3(2):119�153, 1995.

[Ghi06] E. Ghiglione and J. Dalziel. Design principles for LAMS version 2 and the LAMS

�Tools Contract�. In Proceedings of the TenCompetence Conference Workshop, pages

1�15, Barcelona, Spain, June 2006.

REFERENCES 253

[Gif99] B.R. Gi�ord and N.D. Enyedy. Activity Centered Design: Towards a Theoreti-

cal Framework for CSCL. In Proceedings of the 3rd International Conference on

Computer-Supported Collaborative Learning, CSCL 1999, pages 189�196, Palo Alto,

CA, USA, December 1999. ISLS.

[Gla95] R.L. Glass. A Structure-Based Critique of Contemporary Computing Research.

Journal of Systems and Software, 28(1):3�7, 1995.

[Gom09] E. Gómez-Sánchez, M.L. Bote-Lorenzo, I.M. Jorrín-Abellán, G. Vega-Gorgojo, J.I.

Asensio-Pérez, and Y. Dimitriadis. Conceptual framework for design, technological

support and evaluation of collaborative learning. International Journal of Engineer-

ing Education, 25(3):557�568, 2009.

[Gre09] L. Grewe. OpenSocial Network Programming. Wrox Press Ltd., Birmingham, UK,

2009.

[Gru92] J. Grundin. Utility and usability: research issues and development context. Inter-

acting with Computers, 4(2):209�217, 1992.

[Gul08] S. Gulati. Technology-enhanced learning in developing nations: A review. Interna-

tional Review of Research in Open and Distance Learning, 9(1):1�16, 2008.

[Gut09] E. Gutiérrez, M.A. Trenas, J. Ramos, F. Corbera, and S. Romero. A new Moodle

module supporting automatic veri�cation of VHDL-based assignments. Computers

& Education, 54(2):562�577, 2009.

[Hak08] K. Hakkarainen. Three generations of technology-enhanced learning. British Journal

of Educational Technology, 40(5):879�888, 2008.

[Har06] M. van Harmelen. Personal Learning Environments. In Proceedings of the 6th IEEE

International Conference on Advanced Learning Technologies, ICALT 2006, pages

815�816, Kerkrade, The Netherlands, July 2006. IEEE Computer Society.

[Har07a] D. Hardt, J. Bufu, and J. Hoyt. OpenID Attribute Exchange 1.0 - Final, 2007. URL:

http://openid.net/specs/openid-attribute-exchange-1_0.html, last visited: June

2012.

[Har07b] A. Harrer, L. Kobbe, and N. Malzahn. Conceptual and Computational Issues in

the Formalization of Collaboration Scripts. In Proceedings of the 8th International

Conference on Computer-Supported Collaborative Learning, CSCL 2007, pages 280�

282, Rutgers, NJ, USA, July 2007. ISLS.

[Has09] M. Häsel and K. Rieke. OpenSocial. Informatik Spektrum, 32(3):255�259, 2009.

254 REFERENCES

[Has11] M. Häsel. OpenSocial: An Enabler for Social Applications on the Web. Communi-

cations of the ACM, 54(1):139�144, 2011.

[Her06a] D. Hernández-Leo, E.D. Villasclaras-Fernández, J.I. Asensio-Pérez, Y. Dimitriadis,

and S. Retalis. CSCL Scripting Patterns: Hierarchical Relationships and Applicabil-

ity. In Proceedings of the 6th IEEE International Conference on Advanced Learning

Technologies, ICALT 2006, pages 388�392, Kerkrade, The Netherlands, July 2006.

IEEE Computer Society.

[Her06b] D. Hernández Leo, E.D. Villasclaras Fernández, I.M. Jorrín Abellán, J.I. Asen-

sio Pérez, Y. Dimitriadis, I. Ruiz Requies, and B. Rubia Avi. Collage, a collaborative

learning design editor based on patterns. Educational Technology & Society, Special

Issue on Learning Design, 9(1):58�71, 2006.

[Her07a] D. Hernández-Leo, M.L. Bote-Lorenzo, J.I. Asensio-Pérez, E. Gómez-Sánchez, E.D.

Villasclaras-Fernández, I.M. Jorrín-Abellán, and Y.A. Dimitriadis. Free- and Open-

Source Software for a Course on Network Management: Authoring and Enactment

of Scripts Based on Collaborative Learning Strategies. IEEE Transactions on Edu-

cation, 50(4):292 �301, 2007.

[Her07b] D. Hernández-Leo. A pattern-based design process for the creation of CSCL macro-

scripts computationally represented with IMS LD. PhD Thesis, School of Telecom-

munications Engineering, Universidad de Valladolid, Spain, April 2007.

[Her11] D. Hernández-Leo, R. Nieves, E. Arroyo, A. Rosales, J. Melero, P. Moreno, and

J. Blat. Orchestration Signals in the Classroom: Managing the Jigsaw Collaborative

Learning Flow. In Proceedings of 6th European Conference on Technology Enhanced

Learning, ECTEL 2011, pages 153�165, Palermo, Italy, September 2011. Springer-

Verlag, LNCS 6964.

[How03] T.A. Howes, M.C. Smith, and G.S. Good. Understanding and Deploying LDAP

Directory Services. Addison-Wesley Longman Publishing Co., Boston, MA, USA,

2003.

[Iba11] M.B. Ibañez, C. Delgado-Kloos, D. Leony, J.J. García-Rueda, and D. Maroto.

Learning a Foreign Language in a Mixed-Reality Environment. IEEE Internet Com-

puting, 15(6):44�47, 2011.

[IET10] IETF, Internet Engineering Task Force. The OAuth 1.0 Protocol, 2010. URL:

http://tools.ietf.org/html/rfc5849, last visited: June 2012.

[IMS03] IMS Global Learning Consortium. IMS Learning Design speci�cation, 2003. URL:

http://imsglobal.org/learningdesign, last visited: June 2012.

REFERENCES 255

[IMS06a] IMS Global Learning Consortium. IMS Meta-data Best Practice Guide, 2006. URL:

http://imsglobal.org/metadata, last visited: June 2012.

[IMS06b] IMS Global Learning Consortium. IMS Question & Test Interoperability Spec-

i�cation. Version 2.1 Public Draft (revision 2) Speci�cation, 2006. URL:

http://imsglobal.org/question, last visited: June 2012.

[IMS06c] IMS Global Learning Consortium. IMS Tool Interoperability Guidelines. Versión 1.0,

2006. URL: http://imsglobal.org/ti, last visited: June 2012.

[IMS07] IMS Global Learning Consortium. IMS Content Packaging Speci�cation Primer.

Version 1.2 Public Draft v2.0, 2007. URL: http://imsglobal.org/content/packaging,

last visited: June 2012.

[IMS10a] IMS Global Learning Consortium. IMS GLC Learning Information Services Speci-

�cation Primer Version 2.0, 2010. URL: http://imsglobal.org/lis, last visited: June

2012.

[IMS10b] IMS, IMS Global Learning Consortium. IMS GLC Learning Tools Interoperabil-

ity Basic LTI Implementation Guide Version 1.0.1 Public Draft, 2010. URL:

http://imsglobal.org/lti, last visited: June 2012.

[IMS11] IMS Global Learning Consortium. IMS GLC Common Cartridge Pro�le. Version 1.1

Final Speci�cation, 2011. URL: http://imsglobal.org/cc, last visited: June 2012.

[IMS12] IMS Global Learning Consortium. IMS GLC Learning Tools Interoperability Imple-

mentation Guide. Final Version 1.1, 2012. URL: http://imsglobal.org/lti, last visited:

June 2012.

[Iso10] S. Isotani, R. Mizoguchi, A. Inaba, and M Ikeda. The foundations of a theory-aware

authoring tool for CSCL design. Computers & Education, 54(4):809�834, 2010.

[Jac99] I. Jacobson, G. Booch, and J. Rumbaugh. The Uni�ed Software Development Process.

Pearson Education Inc., Boston, MA, USA, 1999.

[Jav11] Java Community Process. Java Network Launching Protocol and API, 2011. URL:

http://jcp.org/aboutJava/communityprocess/maintenance/jsr056/index6.html, last

visited: June 2012.

[Joh04] P. John and R. Sutherland. Teaching and learning with ICT: new technology, new

pedagogy? Education and Communication and Information, 4(1):101�109, 2004.

[Jon99] D.H. Jonassen, W.S. Pfei�er, and B.G. Wilson. Learning with technology: A con-

structivist perspective. Prentice Hall, Upper Saddle River, NJ, USA, 1999.

256 REFERENCES

[Jon05] C. Jones, L. Dirckinck-Holmfeld, and B. Lindström. A relational, indirect, meso-level

approach to CSCL design in the next decade. International Journal of Computer-

Supported Collaborative Learning, 1(1):35�56, 2005.

[Jor07] I.M. Jorrín-Abellán and B. Rubia-Avi. What the eye doesn't see: An Inquiry (cowiki)

based learning case study. In Proceedings of the 3rd International Congress of Quali-

tative Inquiry, page 266, Urbana-Champaign, IL, USA, May 2007.

[Jor09] I.M. Jorrín-Abellán, R.E. Stake, and A. Martínez-Monés. The Needlework in eval-

uating a CSCL system: The Evaluand oriented Responsive Evaluation Model. In

Proceedings of the 9th International conference on Computer-Supported Collabora-

tive Learning, CSCL 2009, pages 68�72, Rhodes, Greece, June 2009. ISLS.

[Kat10] D. Katsi�i. The impact of Blackboard software on education globally over the past

10 years, with a focus on the measurable bene�ts from using Blackboard Learn soft-

ware and related technologies. Technical report, Blackboard Inc., USA, 2010. URL:

http://lms.unimelb.edu.au/elo/resources/The_impact_of_Blackboard_software-

_on_education_globally_(20100204W).pdf, last visited: June 2012.

[Kit96a] B. Kitchenham. DESMET: A method for evaluating Software Engineering methods

and tools. Technical report, Department of Computer Science, University of Keele,

UK, 1996. URL: http://www.osel.co.uk/desmet.pdf, last visited: June 2012.

[Kit96b] B. Kitchenham. Evaluating software engineering methods and tool part 1: The

evaluation context and evaluation methods. ACM SIGSOFT Software Engineering

Notes, 21(1):11�14, 1996.

[Kit97a] B. Kitchenham. Evaluating Software Engineering Methods and Tool Part 7: Planning

Feature Analysis Evaluation. ACM SIGSOFT Software Engineering Notes, 22(4):21�

24, 1997.

[Kit97b] B. Kitchenham, S. Linkman, and D. Law. DESMET: a methodology for evaluating

software engineering methods and tools. Computing & Control Engineering Journal,

8(3):120�126, 1997.

[Kni06] H. Kniberg. Scrum and XP from the Trenches. How we

do Scrum. Technical report, Crisp, Sweden, 2006. URL:

http://www.metaprog.com/csm/ScrumAndXpFromTheTrenches.pdf, last visited:

June 2012.

[Koe05] C. Koeber. Introducing Multimedia Presentations and a Course Website to an Intro-

ductory Sociology Course: How Technology A�ects Student Perceptions of Teaching

E�ectiveness. Teaching Sociology, 33(3):285�300, 2005.

REFERENCES 257

[Kop04] R. Koper and B. Olivier. Representing the Learning Design of Units of Learning.

Educational Technology & Society, 7(3):97�111, 2004.

[Kop05] R. Koper and C. Tattersall (eds.). Learning Design, a Handbook on Modelling and

Delivering Networked Education and Training. Springer, Heidelberg, Germany, 2005.

[Kos96] T. Koschmann. CSCL: theory and practice of an emerging paradigm. Lawrence

Erlbaum, Malwah, NJ, USA, 1996.

[Kra88] G.E. Krasner and S.T. Pope. A cookbook for using the model-view controller user

interface paradigm in Smalltalk-80. Journal of Object Oriented Program, 1(3):26�49,

1988.

[Kru04] P. Kruchten. The Rational Uni�ed Process: An Introduction (3rd edition). Pearson

Education Inc., Boston, MA, USA, 2004.

[Kus04] S. Kusumoto, F. Matukawa, K. Inoue, S. Hanabusa, and Y. Maegawa. Estimating

e�ort by use case points: method, tool and case study. In Proceedings of the 10th

IEEE International Symposium on Sofware Metrics, METRICS 2004, pages 292�299,

Chicago, IL, USA, September 2004. IEEE Computer Society.

[Lar02] C. Larman. Applying UML and patterns: An introduction to Object-Oriented Anal-

ysis and Design and the Uni�ed Process (2nd edition). Prentice Hall Professional,

Upper Saddle River, NJ, USA, 2002.

[Leb09] M. Lebrun, F. Docq, and D. Smidts. Claroline, an Internet Teaching and Learning

Platform to Foster Teachers' Professional Development and Improve Teaching

Quality: First Approaches. Association for the Advancement of Computing in Edu-

cation (AACE) Journal, 17(4):347�362, 2009.

[Len07] A. Lenhart and M. Madden. Social Networking Websites and Teens: An Overview.

Technical report, PEW Internet and American Life Project, USA, 2007. URL:

http://pewinternet.org/PPF/r/198/report_display.asp, last visited: June 2012.

[Leu01] B. Leuf and W. Cunningham. The Wiki Way: Quick Collaboration on the Web.

Addison-Wesley, London, UK, 2001.

[Lik32] R. Likert. A technique for the measurement of attitudes. Archives of Psychology,

22(140):1�55, 1932.

[Lip02] L. Lipponen. Exploring Foundations for Computer-Supported Collaborative

Learning. In Proceedings of the 5th Computer-Supported Collaborative Learning 2002

Conference, CSCL 2002, pages 72�81, Boulder, CO, USA, January 2002. Lawrence

Erlbaum Associates.

258 REFERENCES

[Liu10] C. Liu and X. Zhang. Building E-Learning Platform in Vocational and Higher

Training College with Claroline. In Proceedings of the 2010 International Confer-

ence on E-Business and E-Government, ICEE 2010, pages 3779�3782, Guangzhou,

China, May 2010. IEEE Computer Society.

[Liv08] D. Livingstone and J. Kemp. Integrating Web-Based and 3D Learning Environments:

Second Life Meets Moodle. UPGRADE: The European Journal for the Informatics

Professional, 9(3):8�14, 2008.

[Loc08] L. Lockyer and J. Patterson. Integrating Social Networking Technologies in Educa-

tion: A Case Study of a Formal Learning Environment. In Proceedings of the 8th

IEEE International Conference on Advanced Learning Technologies, ICALT 2008,

pages 529�533, Santander, Spain, July 2008. IEEE Computer Society.

[Lou12] J. Louvel, T. Templier, and T. Boileau. Restlet in Action. Manning Publications

Co., Greenwhich, CT, USA, 2012.

[Mad09] C. Madgea, J. Meekb, J. Wellensc, and T. Hooleyd. Facebook, social integration

and informal learning at university: �It is more for socialising and talking to friends

about work than for actually doing work�. Learning, Media and Technology, Special

Issue on Learning and social software, researching the realities, 34(2):141�155, 2009.

[Mar83] J. Martin. Managing the data-base environment. Prentice-Hall, Upper Saddle River,

NJ, USA, 1983.

[Mar03] A. Martínez-Monés, Y Dimiatriadis, B. Rubia-Aví, E. Gómez-Sánchez, and P. de la

Fuente. Combining qualitative evaluation and social network analysis for the study

of classroom social interactions. Computers & Education, 41(3):353�368, 2003.

[Mar04] C. Martel, C. Ferraris, B. Caron, T. Carron, G. Chabert, C. Courtin, L. Gagnière,

J.C. Marty, and L. Vignollet. A Model for CSCL Allowing Tailorability: Implemen-

tation in the Electronic Schoolbag Groupware. In Proceedings of the X International

Workshop on Groupware, CRIWG 2004, pages 322�338, San Carlos, Costa Rica,

September 2004. Springer, LNCS 3198.

[Mar08a] A. Martínez-Monés, S. Villagrá-Sobrino, R. Santos-Fernández, R. Anguita-Martínez,

and I.M. Jorrín-Abellán. Social network analysis support for an IBL wiki-based

course. In Proceedings of the Workshop on Real-Time methods at International Con-

ference of the Learning Sciences, ICLS 2008, pages 1�3, Utrecht, The Netherlands,

June 2008.

[Mar08b] M. Martínez and S. Jagannathan. Moodle: A Low-Cost Solution for Suc-

cessful e-Learning. Learning Solutions Magazine [Online], 2008. URL:

REFERENCES 259

http://www.learningsolutionsmag.com/articles/71/moodle-a-low-cost-solution-

for-successful-e-learning, last visited: June 2012.

[Mat97] Y. Matsubara, S. Toihara, Y. Tsukinari, and M. Nagamachi. Virtual Learning En-

vironment for Discovery Learning and Its Application on Operator Training. IEICE

Transactions on Information and Systems, E80-D(2):176�188, 1997.

[Maz05] D. Mazurek. CAS Protocol Version 1.0, 2005. URL: http://jasig.org/cas/protocol,

last visited: June 2012.

[Mia05] Y. Miao, K. Hoeksema, H.U. Hoppe, and A Harrer. CSCL scripts: Modelling features

and potential use. In Proceedings of the Computer-Supported Collaborative Learning

Conference 2005: CSCL 2005, pages 423�432, Taipei, Taiwan, May 2005. Lawrence

Erlbaum Associates.

[Mil11] D.E. Millard, H.C. Davis, Y. Howard, P. McSweeney, C. Yorke, H. Solheim, and

D. Morris. Towards an Institutional PLE. In Proceedings of the 2nd International

Conference of Personal Learning Environments, PLE 2011, pages 1�14, Southamp-

ton, UK, July 2011.

[Mon12] R. Mondéjar-Andreu, P. García-López, E. Fernández-Casado, and C. Pairot-Gavaldà.

TaKo: Providing transparent collaboration on single-user applications. Computer

Languages, Systems & Structures, 38(1):108�121, 2012.

[Mor95] A. Morch. Three levels of end-user tailoring: customization, integration and exten-

sion. In Proceedings of the 3rd Decennial Aarhus Conference, pages 41�45, Aarhus,

Denmark, August 1995.

[Mor98] D.L. Morgan. The Focus Group Guidebook. SAGE, Thousand Oaks, CA, USA, 1998.

[Mor00] A. Morch and N.D. Mehandjiev. Tailoring as collaboration: the mediating role of

multiple representations and application units. In Proceedings of the ACM 2000

Conference on Computer Supported Cooperative Work, CSCW 2000, pages 75�100,

Philadelphia, PA, USA, December 2000. ACM.

[Mor03] H. Morris and A. Rippin. Virtual Learning Environments in Business and Manage-

ment: A Review of Some Recent Developments. International Journal of Manage-

ment Education, 3(2):23�30, 2003.

[Mor04] R.L. Morgan, S. Cantor, S. Carmody, W. Hoehn, and K. Klingenstein. Federated

Security: The Shibboleth Approach. EDUCAUSE Quarterly, 27(4):12�17, 2004.

[Mue11] D. Mueller and S. Strohmeier. Design Characteristics of Virtual Learning Environ-

ments: State of Research. Computers & Education, 57(4):2505�2516, 2011.

260 REFERENCES

[Mun12a] J.A. Muñoz-Cristóbal, J.I. Asensio-Pérez, L.P. Prieto, I.M. Jorrín-Abellán,

Y. Dimitriadis, and A. Martínez-Monés. Helping educators to deploy CSCL scripts

into mainstream VLEs that integrate third-party Web and Augmented Reality Tools.

In Proceedings of the Workshop on Digital Ecosystems for Collaborative Learning 2012

held in conjunction with the International Conference of the Learning Sciences, ICLS

2012 (accepted), Sydney, Australia, June 2012.

[Mun12b] J.A. Muñoz-Cristóbal, L.P. Prieto, J.I. Asensio-Pérez, I.M. Jorrín-Abellán, and

Y. Dimitriadis. Lost in Translation from Abstract Learning Design to ICT Im-

plementation: A Study Using Moodle for CSCL. In Proceedings of the 7th European

Conference on Technology Enhanced Learning, ECTEL 2012 (submitted), 2012.

[Nav11] T. Navarrete, P. Santos, D. Hernández-Leo, and J. Blat. QTIMaps: A Model

to Enable Web Maps in Assessment. Educational Technology & Society Journal,

14(3):203�217, 2011.

[NWG99] NWG, Network Working Group. Hypertext Transfer Protocol � HTTP/1.1, 1999.

URL: http://ietf.org/rfc/rfc2616, last visited: June 2012.

[NWG05a] NWG, Network Working Group. The Atom Syndication Format, 2005. URL:

http://ietf.org/rfc/rfc4287, last visited: June 2012.

[NWG05b] NWG, Network Working Group. Uniform Resource Identi�er (URI): Generic Syntax,

2005. URL: http://tools.ietf.org/html/rfc3986, last visited: June 2012.

[NWG06] NWG, Network Working Group. Scripting Media Types, 2006. URL:

http://tools.ietf.org/html/rfc4329, last visited: June 2012.

[NWG11] NWG, Network Working Group. The OAuth 2.0 Authorization Protocol. Inter-

net Draft, 2011. URL: http://tools.ietf.org/html/draft-ietf-oauth-v2-25, last visited:

June 2012.

[OAS06] OASIS. Web Service Resource Framework (WSRF) - Primer v1.2. Committee Draft

02, 2006. URL: http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf,

last visited: June 2012.

[OLe02] R. O'Leary. Virtual Learning Environments. Technical report,

LTSN Generic Centre, University of Bristol, UK, 2002. URL:

ftp://www.bioscience.heacademy.ac.uk/Resources/gc/elearn2.pdf, last visited:

June 2012.

[ORe07] T. O'Reilly. What Is Web 2.0: Design Patterns and Business Models for the Next

Generation of Software. Technical report, O'Reilly Media Inc., Sebastopol, CA, USA,

REFERENCES 261

2007. URL: http://oreilly.com/web2/archive/what-is-web-20.html, last visited: June

2012.

[Ort90] J.D. Orton and K.E. Weick. Loosely Coupled Systems: A Reconceptualization.

Academy of Management Review, 15(2):203�223, 1990.

[Osg03] R.T. Osguthorpe and C.R. Graham. Blended Learning Environments: De�nitions

and Directions. Quarterly Review of Distance Education, 4(3):227�233, 2003.

[Osu99] C.A. Osuna-Gómez. DELFOS: An educational telematic framework based on levels

oriented to cooperative learning situations. PhD Thesis, School of Telecommunication

Engineering, Universidad de Valladolid, Spain, December 1999.

[Ous89] J.K. Ousterhout. Tcl: An Embeddable Command Language. University of California,

Computer Science Division, Berkeley, CA, USA, 1989.

[Pal07] L. Palomino-Ramírez, A. Martínez-Monés, M.L. Bote-Lorenzo, J.I. Asensio-Pérez,

and Y.A. Dimitriadis. Data Flow between Tools: Towards a Composition-Based So-

lution for Learning Design. In Proceedings of the 7th IEEE International Conference

on Advanced Learning Technologies, ICALT 2007, pages 354�358, Niigata, Japan,

July 2007. IEEE Computer Society.

[Pal08] L. Palomino-Ramírez, M.L. Bote-Lorenzo, J.I. Asensio-Pérez, and Y. Dimitriadis.

LeadFlow4LD: Learning and Data Flow Composition-based Solution for Learning

Design in CSCL. In Proceedings of the 14th International Workshop on Groupware,

CRIWG 2008, pages 266�280, Omaha, NE, USA, September 2008. Springer-Verlag,

LNCS 5411.

[Pap03] M.P. Papazoglou and D. Georgakopoulos. Service-Oriented Computing. Communi-

cations of the ACM, 10(46):24�28, 2003.

[Pat05] H. Patzold. Increasing value without increasing e�ort? The use of WebCT in accom-

panying face-to-face lectures under the constraint of low budget. Journal of Distance

Education, 20(2):78�84, 2005.

[Pau08] C. Pautasso, O. Zimmermann, and F. Leymann. RESTful Web Services vs. �Big�

Web Services: Making the Right Architectural Decision. In Proceeding of the 17th

international conference on World Wide Web, WWW 2008, pages 805�814, Beijing,

China, April 2008. ACM.

[Pau09] C. Pautasso and E. Wilde. Why is the Web Loosely Coupled?: A Multi-Faceted

Metric for Service Design. In Proceedings of the 18th international conference on

World Wide Web, WWW 2009, pages 911�920, Madrid, Spain, April 2009. ACM.

262 REFERENCES

[Pel01] W.J. Pelgrum. Obstacles to the Integration of ICT in Education: Results from a

Worldwide Education Assessment. Computers & Education, 37(2):163�178, 2001.

[Pen07] P.C. Pendharkar and J.A. Rodger. An empirical study of the impact of team size on

software development e�ort. Information Technology and Management, 8(4):253�262,

2007.

[Per10] R. Pérez-Rodríguez, M. Caeiro-Rodríguez, J. Fontela-González, and L.A. Anido-

Rifón. Orchestrating Groupware in Engineering Education. In Proceedings of the

40th IEEE Annual Frontiers in Education Conference, FIE 2010, pages F3D1�F3D6,

Washington DC, USA, October 2010. IEEE Computer Society.

[Per11] M. Pérez-Sanagustín. Operationalization of collaborative blended learning scripts: a

model, computational mechanisms and experiments. PhD Thesis, Universitat Pompeu

Fabra, Barcelona, Spain, July 2011.

[Pit03] M. Pittinsky. Blackboard Building Blocks 2003 Overview White

Paper. Technical report, Blackboard Inc., USA, 2003. URL:

http://library.blackboard.com/docs/developer/White_Paper_2003.pdf, last

visited: June 2012.

[Pos00] S. Poslad, P. Buckle, and R. Hadingham. Open Source, Standards and Scaleable

Agencies. In Proceedings of Autonomous Agents 2000 Workshop on Infrastructure for

Scalable Multi-agent Systems, pages 296�303, Barcelona, Spain, June 2000. Springer-

Verlag, LNCS 1887.

[Pri11] L.P. Prieto, S. Villagrá-Sobrino, I.M Jorrín-Abellán, A. Martínez-Monés, and

Y. Dimitriadis. Recurrent routines: Analyzing and supporting orchestration in

technology-enhanced primary classrooms. Computers & Education, 57(1):1214�1227,

2011.

[Reg09] L.M. Regueras, E. Verdú, J.P. de Castro, M.A. Pérez, and M.J. Verdú. A Proposal

of User Interface for a Distributed Asynchronous Remote Evaluation System: An

Evolution of the QUESTOURnament Tool. In Proceedings of the 9th IEEE Inter-

national Conference of Advanced Learning Technologies, ICALT 2009, pages 75�77,

Riga, Latvia, July 2009. IEEE Computer Society.

[Ric07] L. Richardson and S. Ruby. RESTful Web Services. O'Reilly Media, Inc., Sebastopol,

CA, USA, 2007.

[Ric10] W. Richardson. Blogs, Wikis, Podcasts, and Other Powerful Web Tools for Class-

rooms. Corwin Press, Thousand Oaks, CA, USA, 2010.

REFERENCES 263

[Rip02] B.D. Ripley. Statistical Methods Need Software: A View of Statistical Computing. In

International Conference of the Royal Statistical Society. Opening lecture, Plymouth,

UK, September 2002.

[Ris00] L. Rising and N.S. Jano�. The Scrum Software Development Process for Small

Teams. IEEE Software, 17(4):26�32, 2000.

[Rob97] M.D. Roblyer, J. Edwards, and M.A. Havriluk. Integrating educational technology

into teaching. Prentice Hall/Merrill College Publishing Company, Columbus, OH,

USA, 1997.

[Rob00] R. Robson. Report on Learning Technology Standards. In Proceedings of the World

Conference on Educational Multimedia, Hypermedia and Telecommunications, ED-

MEDIA 2000, pages 936�941, Montreal, Canada, June 2000. AACE.

[Rob11] G. Robles, J.M. González-Barahona, and J. Fernández-González. Implementing

gymkhanas with android smartphones: A multimedia m-learning game. In Proceed-

ings of the IEEE Global Engineering Education Conference, EDUCON 2011, pages

960�968, Amman, Jordan, April 2011. IEEE Computer Society.

[Rod11] M.J. Rodriguez-Triana, A. Martínez-Monés, and J.I. Asensio-Pérez. Monitoring Col-

laboration in Flexible and Personal Learning Environments. Interaction Design and

Architecture(s) Journal, 11-12:51�63, 2011.

[Rod12] M.J. Rodriguez-Triana, A. Martínez-Monés, J.I. Asensio-Pérez, and Y. Dimitriadis.

Towards a monitoring-aware learning design process. In Proceedings of the 18th

Conference on Collaboration and Technology, CRIWG 2012 (accepted), Duisburg,

Germany, September 2012.

[Ros11] M.J. Rosenberg. E-Learning: Strategies for Delivering Knowledge in the Digital Age.

McGraw Hill, Inc. New York, NY, USA, 2011.

[Rui12a] A. Ruiz-Calleja, G. Vega-Gorgojo, J.I. Asensio-Pérez, M.L. Bote-Lorenzo, E. Gómez-

Sánchez, and C. Alario-Hoyos. A linked data approach for the discovery of educa-

tional ICT tools in the Web of Data. Computers & Education (in press), 59(3):952-

962, 2012.

[Rui12b] A. Ruiz-Calleja, G. Vega-Gorgojo, E. Gómez-Sánchez, J.I. Asensio-Pérez, C. Alario-

Hoyos, and M.L. Bote-Lorenzo. Automatic retrieval of educational ICT tool descrip-

tions from theWeb of Data. In Proceedings of the 12th IEEE International Conference

on Advanced Learning Technologies, ICALT 2012 (accepted), Rome, Italy, July 2012.

IEEE Computer Society.

264 REFERENCES

[San07] O.C. Santos, J.G. Boticario, E. Ra�ene, and R. Pastor. Why using dotLRN? UNED

use cases. In Proceedings of the Free, Libre, Open Source Software International

Conference 2007, FLOSS 2007, pages 195�211, Xerez, Spain, March 2007.

[San11] M.J. Sánchez-Franco, A.F. Villarejo-Ramos, and F.A. Martín-Velicia. Social integra-

tion and post-adoption usage of Social Network Sites An analysis of e�ects on learning

performance. Procedia - Social and Behavioral Sciences, 15(1):256�262, 2011.

[Say05] R. Sayre. Atom: the standard in syndication. IEEE Internet Computing, 9(4):71�78,

2005.

[Sea09] J.M. Seaman. Online Learning as a Strategic Asset. Volume II: The Paradox

of Faculty Voices: Views and Experiences with Online Learning. Technical re-

port, Association of Public and Land-Grant Universities, ASUP, USA, 2009. URL:

http://www.aplu.org/document.doc?id=1879, last visited: June 2012.

[Sev08] C. Severance, J. Hardin, and A. Whyte. The coming functionality mash-up in Per-

sonal Learning Environments. Interactive Learning Environments, 16(1):47�62, 2008.

[Sha96a] M. Shaw and P. Clements. Toward boxology: preliminary classi�cation of archi-

tectural styles. In Joint Proceedings of the 2nd International Software Architecture

Workshop, and the International Workshop on Multiple Perspectives in Software De-

velopment on SIGSOFT '96 workshops, pages 50�54, San Francisco, CA, USA, Oc-

tober 1996. ACM.

[Sha96b] M. Shaw and D. Garland. Software Architecture: Perspectives on an Emerging Dis-

cipline. Prentice Hall, Upper Saddle River, NJ, USA, 1996.

[Sha00] M. Sharples. The design of personal mobile technologies for lifelong learning. Com-

puters & Education, 34(3-4):177�193, 2000.

[Sim07] M. Simonson. Course Management Systems. The Quarterly Review of Distance

Education, 8(1):7�9, 2007.

[Sol05] A. Soller, A. Martínez, P. Jermann, and M. Muehlenbrock. From Mirroring to

Guiding: A Review of the State of the Art Technology for Supporting Collaborative

Learning. International Journal on Arti�cial Intelligence in Education, 15(4):261�

290, 2005.

[Sol07] G. Solomon and L. Schrum. Web 2.0: new tools, new schools. International Society

for Technology in Education (ISTE), Washington DC, USA, 2007.

REFERENCES 265

[Sta06] G. Stahl, T. Koschmann, and D. Suthers. Computer-Supported Collaborative

Learning: An Historical Perspective. In R.K. Sawyer (ed.), Cambridge handbook

of the learning sciences, Cambridge University Press, Cambridge, UK, pages 409-

426, 2006.

[Sta10] G. Stahl and F. Hesse. The CSCL �eld matures. Computer-Supported Collaborative

Learning, 5(1):1�3, 2010.

[Sti00] M.J. Stiles. E�ective Learning and the Virtual Learning Environment. In Proceedings

of the 6th European University Information Systems Congress, EUNIS 2000, pages

171�180, Poznan, Poland, Abril 2000.

[Sti07] M. Stiles. Death of the VLE?: a challenge to a new orthodoxy. Journal for the

Serials Community, 20(1):31�36, 2007.

[StL01] S. St. Laurent, J. Johnston, and E. Dumbillt. Programming Web Services with XML-

RPC. O'Really Inc. Sebastopol, CA, USA, 2001.

[Sur09] P.K. Suri and N. Garg. Software Reuse Metrics: Measuring Component Independence

and its applicability in Software Reuse. International Journal of Computer Science

and Network Security, 9(5):237�248, 2009.

[Tho08] M. Thompson. ICT and development studies: Towards development 2.0. Journal of

International Development, 20(6):821�835, 2008.

[Tur03] T. Turner, D. Budgen, and P. Brereton. Turning Software into a Service. Computer,

36(10):38�44, 2003.

[Uzu06] H. Uzunboylu, F. Ozdamli, and Z. Ozcinar. An Evaluation of Open Source Learning

Management Systems According to Learners Tools. Current Developments in Tech-

nology Assisted Education, 1(1):8�12, 2006.

[Veg08] G. Vega-Gorgojo, M.L. Bote-Lorenzo, E. Gómez-Sánchez, J.I. Asensio-Pérez,

Y. Dimitriadis, and I.M. Jorrín-Abellán. Ontoolcole: Supporting Educators in the

Semantic Search of CSCL Tools. Journal of Universal Computer Science (JUCS),

14(1):27�58, 2008.

[Vel09] J. Vélez-Reyes. Pelican, a platform for the design and development of collaborative

learning scenarios. Support for dynamic aspects. PhD Thesis, UNED. Spain, 2009.

[Vig78] L.S. Vigotsky. Mind in Society: The Development of Higher Psychological Processes.

Harvard University Press, Cambridge, MA, USA, 1978.

266 REFERENCES

[Vig06] L. Vignollet, J-P. David, C. Ferraris, C. Martel, and A. Lejeune. Comparing Edu-

cational Modeling Languages on a Case Study. In Proceedings of the 6th IEEE

International Conference on Advanced Learning Technologies, ICALT 2006, pages

1149�1151, Kerkrade, The Netherlands, July 2006. IEEE Computer Society.

[Vig08] L. Vignollet, C. Ferraris, C. Martel, and D. Burgos. A Transversal Analysis of

Di�erent Learning Design Approaches. Journal of Interactive Media in Education,

pages 1�11, 2008. URL: http://jime.open.ac.uk/2008/26, last visited: June 2012.

[Vil09] E.D. Villasclaras-Fernández, D. Hernández-Leo, J.I. Asensio-Pérez, and

Y. Dimitriadis. Incorporating Assessment in a Pattern-based Design Process

for CSCL scripts. Computers in Human Behavior, 25(5):1028�1039, 2009.

[Vil10] E.D. Villasclaras-Fernández. A design process supported by software authoring tools

for the integration of assessment within CSCL scripts. PhD Thesis, School of

Telecommunication Engineering, Universidad de Valladolid, Spain, November 2010.

[Vin97] S. Vinoski. CORBA: Integrating diverse applications within distributed heteroge-

neous environments. IEEE Communications, 35(2):46�55, 1997.

[Vin02] S. Vinoski. Putting the �Web� into Web Services: Web Services interaction models,

part 2. IEEE Internet Computing, 6(4):90�92, 2002.

[Vin07] S. Vinoski. REST Eye for the SOA Guy. Internet Computing, IEEE, 11(1):82�84,

January 2007.

[Vog06] H. Vogten, H. Martens, R. Nadolski, C. Tattersall, P. van Rosmalen, and R. Koper.

CopperCore Service Integration - Integrating IMS Learning Design and IMS Question

and Test Interoperability. In Proceedings of the 6th IEEE International Conference

on Advanced Learning Technologies, ICALT 2006, pages 378�382, Kerkrade, The

Netherlands, July 2006. IEEE Computer Society.

[W3C99] W3C, World Wide Web Consortium. HTML 4.01 Speci�cation, W3C Recommenda-

tion, 1999. URL: http://w3.org/TR/html4, last visited: June 2012.

[W3C08] W3C, World Wide Web Consortium. Web Content Accessibility Guidelines (WCAG)

2.0, W3C Recommendation, 2008. URL: http://w3.org/TR/WCAG, last visited:

June 2012.

[W3C09a] W3C, World Wide Web Consortium. XForms 1.1, W3C Recommendation, 2009.

URL: http://w3.org/TR/xforms, last visited: June 2012.

[W3C09b] W3C, World Wide Web Consortium. Web Forms 2.0, 2009. URL:

http://w3.org/TR/web-forms-2, last visited: June 2012.

REFERENCES 267

[W3C11] W3C, World Wide Web Consortium. Widget Packaging and XML Con�guration.

W3C Recommendation, 2011. URL: http://w3.org/TR/widgets, last visited: June

2012.

[W3C12] W3C, World Wide Web Consortium. HTML5: A vocabulary and asso-

ciated APIs for HTML and XHTML, Editors' draft 2012, 2012. URL:

http://dev.w3.org/html5/spec/single-page.html, last visited: June 2012.

[Wal04] M. Walckiers and T. De Praetere. Online Collaborative learning, eight bene�ts that

make it a must. Distances et savoirs, 1(2):53�75, 2004. In French.

[Wal10] J. Walden, M. Doyle, R. Lenhof, and J. Murray. Idea: Java vs. PHP: Security

Implications of Language Choice for Web Applications. In Proceedings of the 2nd

International Symposium on Engineering Secure Software and Systems, ESSoS 2010,

pages 61�69, Pisa, Italy, February 2010.

[Wel91] J. Wellington. Newspaper science, school science, friends or enemies? International

Journal of Science Education, 13(4):363�372, 1991.

[Wel06] M. Weller. VLE 2.0 and future directions in learning environments. In Proceedings of

the 1st International LAMS Conference, pages 99�106, Sydney, Australia, December

2006.

[Wel07a] M. Weller. Virtual Learning Environments: Using, Choosing and Developing Your

VLE. Routledge, Oxford, UK, 2007.

[Wel07b] M. Weller and J. Dalziel. Bridging the gap between Web 2.0 and Higher Education.

In Proceedings of the 2nd International LAMS conference, pages 76�82, Sydney, Aus-

tralia, January 2007.

[Whi11] S. White and H.C. Davis. Making it Rich and Personal: crafting an institutional per-

sonal learning environment. International Journal of Virtual and Personal Learning

Environments (In Press), 2(4):23�39, 2011.

[Wil06] S. Wilson, O. Liber, P. Beauvoir, C. Milligan, M. Johnson, and P. Sharples. Personal

learning environments: Challenging the dominant design of educational systems. In

Proceedings of the 1st Joint International Workshop on Professional Learning, Com-

petence Development and Knowledge Management - LOKMOL and L3NCD, pages

68�77, Crete, Greece, October 2006. Springer-Verlag.

[Wil08] S. Wilson, P. Sharples, and D. Gri�ths. Distributing education services to personal

and institutional systems using Widgets. In Proceedings of the 1st International

268 REFERENCES

Workshop on Mashup Personal Learning Environments, MUPPLE 2008, pages 25�

32, Maastricht, The Netherlands, September 2008.

[Win93] L. Winner. Upon Opening the Black Box and Finding It Empty: Social Construc-

tivism and the Philosophy of Technology. Science, Technology, & Human Values,

18(3):362�378, 1993.

[Xu05] D. Xu, H. Wang, and M.Wang. A Conceptual Model of Personalized Virtual Learning

Environments. Expert Systems with Applications, 29(3):525�534, 2005.

[Zel02] M.V. Zelkowitz and D.R. Wallace. Experimental models for validating technology.

Computer, 31(5):23�31, 2002.

269

Summary in Spanish

Resumen en español

270

Preámbulo

El resto de este documento constituye el resumen en español de la tesis titulada GLUE!:

An Architecture for the Integration of External Tools in Virtual Learning Environments (GLUE!:

Una Arquitectura para la Integración de Herramientas Externas en Entornos de Aprendizaje

Virtual). En primer lugar, se presenta en este resumen el índice correspondiente a la versión en

inglés traducido al español, con el objetivo de facilitar la consulta y la ampliación de detalles en

las diferentes secciones de la tesis en su versión original. Posteriormente, se resume el contenido

de cada capítulo, haciendo especial énfasis en las contribuciones que de ellos se derivan. Es

importante tener en cuenta, que todas las referencias utilizadas en estos resúmenes se re�eren al

listado de referencias que aparece en la versión en inglés. Debido a su contenido más técnico, no

se incluye ningún resumen de los anexos que se presentan al �nal de la tesis.

El primer capítulo, que traduce prácticamente en su totalidad la versión en inglés, contex-

tualiza el problema de investigación que se aborda en la tesis, para luego de�nir los objetivos y

las contribuciones esperadas. Además, en este capítulo se describe brevemente la metodología de

investigación global seguida, la cual está compuesta por cuatro fases que se recorren de forma

iterativa. Finalmente, este capítulo introductorio ofrece al lector una estructura global del docu-

mento, resumiendo brevemente lo que puede esperar de cada uno de los capítulos restantes.

El segundo capítulo resume, de manera muy compacta, los requisitos de los principales

actores interesados en integrar herramientas externas en Entornos de Aprendizaje Virtual (VLE

- Virtual Learning Environments). A continuación, se repasan brevemente las alternativas que

pueden tomarse sobre diferentes decisiones de diseño, con el objetivo de cumplir dichos requisitos.

En la versión en inglés se ofrece una discusión más profunda sobre cómo se llega a estos requisitos,

a partir de una análisis pormenorizado del contexto en el que se enmarca la tesis. Además, en

la versión original, también se estudian las alternativas a las decisiones de diseño tomadas por

otras propuestas de integración.

El tercer capítulo ofrece una visión general de la arquitectura de integración propuesta,

y un breve resumen de los contratos de�nidos para esta arquitectura. Estos contratos son la

pieza clave para conseguir la interoperabilidad entre los VLE y las herramientas externas. La

arquitectura y sus contratos están pensados para cumplir los requisitos de los actores interesados,

tomando para ello compromisos sobre las decisiones de diseño identi�cadas en el capítulo previo.

La versión original de la tesis explica la arquitectura y sus contratos de forma mucho más

detallada, discutiendo también la aplicación de esta arquitectura a otros contextos distintos

del educativo.

El cuarto capítulo está dedicado a exponer muy brevemente la implementación de refe-

rencia que se ha desarrollado para la arquitectura. En él se mencionan los VLE y las herra-

mientas externas que son soportados actualmente, y la idea de que esta implementación de

272

referencia debe servir de base para aquellos que quieran contribuir a integrar nuevos VLE y

herramientas utilizando la arquitectura propuesta. La versión en inglés aporta más detalles sobre

la implementación de referencia indicando, entre otras cosas, las tecnologías y el proceso em-

pleados en su construcción. También se proporciona en la versión original información detallada

para desarrolladores, administradores y usuarios que deseen utilizar esta implementación de la

arquitectura.

El resumen del quinto capítulo se centra en los principales detalles de la evaluación de la

arquitectura. Este resumen destaca el cumplimiento de los requisitos de los actores interesados,

a partir de evidencias obtenidas de cuatro experiencias con usuarios reales. También se resumen

las principales conclusiones de la comparativa llevada a cabo con otros trabajos relacionados que,

al igual que la arquitectura propuesta en esta tesis, han sido diseñados para la integración poco

acoplada de múltiples herramientas en múltiples VLE. Detalles completos de la metodología de

evaluación seguida y de los resultados obtenidos pueden consultarse en la versión en inglés de la

tesis.

Para �nalizar, se presenta un resumen de las conclusiones de la tesis, recordando los obje-

tivos propuestos al principio de la misma, y también las contribuciones esperadas, indicando que

éstas han sido alcanzadas. Antes de dar por terminada la tesis, se esbozan algunas de las líneas

de trabajo futuro que surgen de la misma. Como en los capítulos anteriores, la versión extendida

de las conclusiones y del trabajo futuro puede encontrarse en la versión en inglés de la tesis.

Índice General

1 Introducción 1

1.1 Problema de investigación de la tesis . 5

1.2 Objetivos y contribuciones . 10

1.3 Metodología de investigación . 14

1.4 Estructura del documento . 15

2 Integración de herramientas externas en VLE 19

2.1 Introducción . 20

2.2 Aprendizaje colaborativo apoyado por ordenador 22

2.2.1 Ciclo de vida de las situaciones de aprendizaje colaborativo 24

2.3 Entornos de Aprendizaje Virtual (VLE) . 26

2.3.1 Ejemplos de VLE . 27

2.3.2 Ciclo de vida de los VLE en las situaciones de aprendizaje colaborativo . . 43

2.4 Herramientas software . 44

2.4.1 Ejemplos de herramientas software . 45

2.4.2 Ciclo de vida de las herramientas software en las situaciones de aprendizaje

colaborativo . 48

2.5 El problema de la integración . 51

2.5.1 Contratos de integración . 53

2.5.2 Requisitos de los principales actores interesados 55

2.5.3 Aproximaciones de integración . 56

2.5.4 Decisiones de diseño y alternativas . 59

2.6 Análisis de las aproximaciones existentes . 62

2.7 Conclusiones . 66

3 La arquitectura GLUE! 69

3.1 Introducción . 69

3.2 Metodología y proceso . 71

3.3 Requisitos iniciales y decisiones de diseño . 72

3.4 Descripción de la arquitectura . 74

273

274 ÍNDICE GENERAL

3.4.1 Visión general de la arquitectura . 74

3.4.2 Contrato de integración de GLUE! para herramientas 78

3.4.3 Contrato de integración de GLUE! para VLE 86

3.4.4 Tecnologías y comportamiento del GLUElet Manager 90

3.5 Comportamiento general de la arquitectura . 92

3.5.1 Caso de uso 1: creación, con�guración y asignación de instancias de herra-

mientas externas . 92

3.5.2 Caso de uso 2: uso de instancias de herramientas externas 94

3.5.3 Caso de uso 3: actualización de usuarios compartiendo instancias de herra-

mientas externas . 96

3.5.4 Caso de uso 4: eliminación de instancias de herramientas externas 98

3.6 Problemas de seguridad . 98

3.6.1 Autorización de nivel de usuario para la gestión de instancias de herra-

mientas externas . 103

3.7 Discusión . 105

3.7.1 Cumplimiento de los requisitos de los actores interesados 105

3.7.2 Interoperabilidad de GLUE! con otras aproximaciones de integración de

bajo acoplamiento . 107

3.7.3 GLUE! para la integración de herramientas externas en otros contextos . . 109

3.8 Conclusiones . 110

4 GLUE!-RI: Implementación de referencia de la arquitectura 113

4.1 Introducción . 113

4.2 Metodología . 115

4.3 Implementación de referencia . 116

4.3.1 Tecnologías . 116

4.3.2 Visión general . 117

4.3.3 Núcleo de GLUE! . 119

4.3.4 Adaptadores de VLE . 121

4.3.5 Adaptadores de herramientas . 127

4.4 Desarrollo de nuevos adaptadores de VLE y de herramientas 131

4.5 Instalación y con�guración de GLUE!-RI . 132

4.6 Utilización de GLUE!-RI . 133

4.7 Conclusiones . 135

5 Evaluación 137

5.1 Introducción . 137

5.2 Metodología de evaluación . 138

ÍNDICE GENERAL 275

5.2.1 Marco de evaluación y experiencias . 138

5.2.2 Métodos de evaluación y fuentes de datos 141

5.3 Situaciones de aprendizaje colaborativo . 143

5.3.1 Situación de aprendizaje colaborativo I . 144

5.3.2 Situación de aprendizaje colaborativo II 145

5.3.3 Situación de aprendizaje colaborativo III 147

5.4 Cumplimiento de los requisitos . 148

5.4.1 Instanciación de actividades individuales y colaborativas (REQ1) 148

5.4.2 Puesta en marcha de actividades colaborativas (REQ2) 152

5.4.3 Integración de VLE y herramientas existentes y populares (REQ3) 153

5.4.4 Integración de muchas herramientas externas (REQ4) 154

5.4.5 Esfuerzo de desarrollo (REQ5) . 155

5.4.6 Construcción sobre VLE y herramientas (REQ6) 158

5.4.7 Otras averiguaciones . 158

5.5 Comparación con otros trabajos de integración de bajo acoplamiento 160

5.5.1 Análisis de características . 161

5.5.2 Esfuerzo de desarrollo . 163

5.6 Conclusiones . 166

6 Conclusiones y trabajo futuro 169

6.1 Conclusiones de la tesis . 169

6.2 Trabajo futuro . 173

Apéndice A: Estudio del esfuerzo de desarrollo 181

Apéndice B: Formato de datos de GLUE! 185

Apéndice C: Desarrollo de adaptadores de herramientas en Java 197

Apéndice D: Manuales de instalación y con�guración 213

Apéndice E: Ejemplos de uso 227

276 ÍNDICE GENERAL

1. Introducción

El uso de las Tecnologías de la Información y las Comunicaciones (TIC) en diferentes áreas,

tales como medicina, industria o educación [Abb01] está cambiando la sociedad de una forma

que hace algunos años habría sido difícil de pronosticar [Duq05]. La rápida extensión de Internet,

las tecnologías web, las redes inalámbricas y los dispositivos móviles han llevado a la adopción

de las TIC, no sólo en el trabajo o en la escuela, sino también en nuestra vida cotidiana, en un

periodo muy corto de tiempo [Pel01]. Esto abre las puertas a una comunicación ubicua entre las

personas a lo largo del mundo, así como también a un acceso omnipresente a muchos servicios y

datos [Tho08].

La educación se aprovecha de estas tendencias relacionadas con las TIC en un campo

de estudio denominado Aprendizaje Mejorado por la Tecnología (TEL - Technology Enhanced

Learning) [Joh04], el cual ha sido investigado durante más de dos décadas [Gul08]. TEL estudia

cómo apoyar mediante tecnología las actividades de aprendizaje en diferentes niveles, desde la

escuela primaria hasta la educación superior [Bat03], y en diferentes contextos, incluyendo apren-

dizaje formal e informal [Era04,Fol06], pero considerando los desafíos involucrados en el proceso

del aprendizaje continuo (lifelong learning) [Sha00]. La investigación en TEL también cubre el

aprendizaje remoto (a veces llamado también e-learning) [Ros11], el aprendizaje presencial y

el aprendizaje semipresencial [Osg03], en el cual se combinan actividades tradicionales presen-

ciales y remotas. La importante comunidad de investigadores trabajando en TEL se ejempli�ca

mediante destacados proyectos, tales como STELLAR11 (con más de quince socios participando

en este proyecto a lo largo de Europa), convocatorias especí�cas sobre este tema en diversos pro-

gramas de �nanciación internacional, como el Séptimo Programa Marco12, así como numerosas

revistas, conferencias y publicaciones recientes en este campo [Bal09,Hak08].

Dentro de TEL, el Aprendizaje Colaborativo Apoyado por Ordenador (CSCL - Computer

Supported Collaborative Learning) [Kos96] constituye un paradigma multidisciplinar en el cual

las TIC se utilizan para facilitar las interacciones sociales y efectivas entre los participantes, y la

adquisición de conocimientos y habilidades [Dil99]. Profesionales de la educación con diferente for-

11http://stellarnet.eu. Última visita: junio 2012.
12http://cordis.europa.eu/fp7/home_en.html. Última visita: junio 2012.

277

http://stellarnet.eu
http://cordis.europa.eu/fp7/home_en.html

278

mación en psicología, educación o tecnología participan normalmente en el desarrollo de sistemas

CSCL, los cuales son aplicaciones software que apoyan el diseño, la instanciación, y la puesta

en marcha de situaciones de aprendizaje colaborativo [Her06b, Kop05]. Del mismo modo que

TEL, CSCL también presenta una importante comunidad de investigadores, como puede com-

probarse mediante los principales proyectos activos, tales como Euro-CAT-CSCL13, un proyecto

internacional con socios de tres países diferentes �nanciado por la Comisión Europea, así como

numerosas revistas, conferencias y publicaciones recientes sobre este tema [Bud08,Dil09].

De acuerdo con [Dil99], las situaciones de aprendizaje colaborativo son aquellas que con-

llevan el aprendizaje mediante la colaboración. Los autores de [Osu99] analizan cinco carac-

terísticas que describen las situaciones de aprendizaje colaborativo. La primera de ellas es la

con�guración social, la cual comprende la descripción de los participantes y sus roles (estu-

diante, educador, administrador, diseñador instruccional, etc.), así como la estructura de grupos,

la cual puede ser modi�cada y actualizada durante la puesta en marcha de la situación de apren-

dizaje [Mar04]. Los objetivos de aprendizaje expresan tanto los objetivos individuales como los

grupales que deben ser alcanzados durante la puesta en marcha de la situación de aprendizaje;

estos objetivos deben ser formalizados en el diseño de la situación de aprendizaje [Dil02a]. Dicha

situación tiene una estructura, la cual puede típicamente descomponerse en un conjunto de ac-

tividades [Gif99], cada una orientada a la realización de un conjunto de tareas [Dil02a]; esta

estructura puede, en ocasiones, organizarse siguiendo un cierto orden de actividades, compo-

niendo así una secuencia de actividades [Dal03]. Aquí es importante apuntar que las situaciones

de aprendizaje colaborativo pueden incluir tanto actividades individuales como actividades cola-

borativas [Osu99,Sta06]. En las actividades colaborativas estructuradas los participantes pueden

construir relaciones sólidas para alcanzar un objetivo común, al contrario de lo que ocurre en

las actividades colaborativas desestructuradas, en las cuales los participantes no comparten ob-

jetivos, y se necesita una mínima dependencia entre ellos [Chi02]. Otra característica que debe

de�nirse es el conjunto de recursos que apoyan cada actividad [Her06a]; estos recursos pueden ser

herramientas o artefactos [Pal08]. Finalmente, la situación se desarrolla en un entorno, en el cual

los participantes encuentran la estructura de actividades, herramientas y artefactos, y en el cual

los objetivos de aprendizaje y la con�guración social pueden ser explícitamente de�nidos [Bak97].

Con el propósito de conseguir unas interacciones más e�caces, estos entornos CSCL y sus recursos

deberían ser personalizados para cada participante, dependiendo de su rol y grupo en cada ac-

tividad, y de los objetivos que deban ser alcanzados [Ase08].

Históricamente, la evolución de los entornos CSCL (también denominados sistemas CSCL)

comenzó con herramientas y aplicaciones software pequeñas y aisladas, por ejemplo, de correo

electrónico, chat o mensajería instantánea, que fueron inicialmente diseñadas para facilitar la

comunicación entre usuarios [Sta06]. Estas herramientas se agruparon posteriormente en entornos

13http://cat-cscl.eu. Última visita: junio 2012.

http://cat-cscl.eu

RESUMEN EN ESPAÑOL 279

CSCL, los cuales proporcionaban varias formas de construcción pedagógica para aprendizaje co-

laborativo, e incluían herramientas compartidas adicionales como calendarios y editores. Como

ejemplo, C-CHENE [Bak96] fue uno de los primeros entornos CSCL; su propósito era promover

el aprendizaje de conceptos en física a través del modelado, e incluía algunas herramientas cola-

borativas especí�cas como un editor de cadenas de energía. Sin embargo, estos primeros sistemas

CSCL promovían la colaboración desestructurada entre usuarios, ya que ningún tutor podía

de�nir explícitamente los objetivos de aprendizaje, ni tampoco se permitía formalizar un guión

(script) con la secuencia de actividades que debía completarse y los objetivos compartidos que

debían alcanzarse en cada actividad [Dil02a]. El uso del guiado en situaciones de aprendizaje

colaborativo es una práctica común de colaboración estructurada, y se ha demostrado que in-

crementa la e�cacia de las interacciones y el aprendizaje entre estudiantes [Dil02a]. De acuerdo

con [Gom09,Her06a], el aprendizaje colaborativo guiado tiene un ciclo de vida compuesto por

cuatro fases: la fase de diseño, en la cual los educadores (o los diseñadores instruccionales) de�nen

el apoyo computacional, la estructura de actividades, los objetivos de aprendizaje, el número de

grupos (pero no los componentes especí�cos), y las tareas que las herramientas deberían apoyar

(p. ej. edición de texto síncrona) para cada actividad [Kop05,Mia05]; la fase de instanciación, en

la cual los educadores pueblan los grupos, seleccionan las herramientas especí�cas que se espera

utilicen los estudiantes [IMS03], crean las diferentes instancias de herramientas [Bot08, Per10]

para cada grupo en cada actividad, y personalizan el entorno, de acuerdo con las necesidades

de cada participante; la fase de puesta en marcha, en la que los estudiantes realizan las activi-

dades de la situación de aprendizaje colaborativo bajo la monitorización de los educadores (o

monitores) [Dil07], los cuales pueden mediar para potenciar el proceso de aprendizaje; y la fase

de evaluación en la que los educadores (o evaluadores) valoran el conocimiento y las habilidades

adquiridas por los estudiantes [Dil02a,Vil09].

La siguiente generación de entornos CSCL permitía la de�nición de diferentes roles (caracte-

rizando, por ejemplo, a los educadores y a los estudiantes con diferentes permisos en el entorno), y

facilitaba la estructuración de situaciones de aprendizaje colaborativo mediante guiones. Algunos

ejemplos de entornos CSCL que permitían el uso de roles y el guiado son Universanté [Ber01],

un sistema de propósito especí�co para aprender sobre problemas de salud pública, y Grid-

cole [Bot05], un sistema de propósito general que podía ser personalizado para ajustarse a las

necesidades de los educadores. En ese momento histórico el término Entorno de Aprendizaje Vir-

tual (VLE - Virtual Learning Environment) [App99,Dil00] fue acuñado para de�nir los sistemas

CSCL que, como Universanté o Gridcole, permitían de�nir una jerarquía de roles en la cual el

educador era el actor principal, y proporcionaban un entorno compartido personalizable para

la realización estructurada de actividades individuales y colaborativas. Sin embargo, todavía no

se ha acordado una de�nición formal de VLE en la comunidad y, en ocasiones, términos como

Sistema de Gestión del Aprendizaje (LMS - Learning Management System), Sistema de Gestión

de Contenidos (CMS - Content Management System), Sistema de Gestión de Contenidos de

280

Aprendizaje (LCMS - Learning Content Management System), Entorno de Aprendizaje Ges-

tionado (MLE - Managed Learning Environment), o simplemente Plataforma de Aprendizaje

(LP - Learning Platform), se utilizan como sinónimos de VLE. Curiosamente, algunos autores

apuntan diferencias menores entre estos términos. Por ejemplo, los autores de [Dvo11] ven VLE

y LMS como nombres intercambiables que se re�eren a sistemas software diseñados para facilitar

la enseñanza y el aprendizaje utilizando navegadores, y que incluyen herramientas tales como

cuestionarios, wikis o blogs, mientras CMS es el nombre empleado para designar a repositorios

de datos centralizados.

En esta tesis, un VLE se de�ne como un sistema centrado en el educador que permite el

diseño, la instanciación, la puesta en marcha y la evaluación de situaciones de aprendizaje cola-

borativo mediante un conjunto de actividades síncronas/asíncronas, presenciales/remotas, indi-

viduales/colaborativas, las cuales están apoyadas por una colección de recursos y herramientas

disponibles; esta de�nición es consistente con el uso mayoritario del término en la literatura

(véase por ejemplo [Dil02b,Sti07,Wel06,Xu05]). Hoy en día, el VLE más comúnmente utilizado

es Moodle 14 con más de 66.000 instalaciones en 216 países15 (en el momento de escritura), aunque

otros destacados ejemplos de VLE son LAMS16, .LRN17, Sakai18, Blackboard19, Claroline20 o

SharePoint LMS21.

En la última década, los VLE han llegado a ser la corriente dominante, especialmente para

el aprendizaje remoto y semipresencial, tanto en academia [Dun03,Wel06] como en industria

[Mor03]. Sin embargo, algunos profesionales consideran que los VLE están muy centrados en

cubrir las necesidades de las instituciones, en lugar de las de los propios estudiantes [Sev08]. Por

ello, una tendencia de investigación que propone alternativas software centradas en el estudiante,

las cuales pueden ser agrupadas bajo el término Entorno de Aprendizaje Personal (PLE - Personal

Learning Environment) [Att07,Har06,Wil06], ha surgido con fuerza en los últimos años. A pesar

de que el término es relativamente nuevo, algunos trabajos de investigación en este tema, como

Symba [Bet03], el cual promueve la personalización del entorno por los propios estudiantes,

fueron publicados hace casi una década. Por el contrario, algunos profesionales todavía consideran

que los educadores deben ser responsables de proporcionar a los estudiantes los recursos de

aprendizaje adecuados para desarrollar los conocimientos y las habilidades esperadas de forma

sistemática [Mue11,Wel07a], como sucede en los VLE. Sin embargo, todos ellos están de acuerdo

en que los PLE no reemplazarán a los VLE, ya que ambos pueden coexitir, e incluso fusionarse,

14http://moodle.org. Última visita: junio 2012.
15http://moodle.org/sites. Última visita: junio 2012.
16http://lamsinternational.com. Última visita: junio 2012.
17http://openacs.org/projects/dotlrn. Última visita: junio 2012.
18http://sakaiproject.org. Última visita: junio 2012.
19http://blackboard.com. Última visita: junio 2012.
20http://claroline.net. Última visita: junio 2012.
21http://sharepointlms.com. Última visita: junio 2012.

http://moodle.org
http://moodle.org/sites
http://lamsinternational.com
http://openacs.org/projects/dotlrn
http://sakaiproject.org
http://blackboard.com
http://claroline.net
http://sharepointlms.com

RESUMEN EN ESPAÑOL 281

dependiendo de los escenarios de aprendizaje y de los objetivos perseguidos. Por ejemplo, los

autores de [Wil06] sugieren que los PLE serán dominantes en aprendizaje informal y basado

en competencias, mientras que los VLE quedarán reservados para la educación formal. En este

punto, es importante notar que esta tesis centra su ámbito de investigación en los VLE, pero

que las contribuciones esperadas, que serán más tarde de�nidas, podrían aplicarse a los VLE, así

como a otros entornos que puedan ser empleados para el aprendizaje colaborativo, tales como

wikis [Aug04] o redes sociales [Lip02].

Problema de investigación de la tesis

Los VLE son actualmente uno de los sistemas más extendidos para el apoyo a las situaciones

de aprendizaje colaborativo [Wel07b]. La mayoría de VLE, como por ejemplo Moodle, LAMS,

Sakai o Blackboard incluyen las características descritas en [Osu99] para fomentar el aprendizaje

mediante la colaboración. En este sentido, los VLE permiten la de�nición de una con�guración

social de participantes basada en grupos y roles, su estructuración en actividades, cursos y/o

lecciones con objetivos de aprendizaje prede�nidos, y el uso de varias herramientas y recursos

en cada actividad. Además, los VLE dan típicamente apoyo a las cuatro fases originalmente

de�nidas para el ciclo de vida del aprendizaje colaborativo guiado, aunque sólo algunos de ellos,

como LAMS, permiten la formalización de guiones. Por tanto, los educadores pueden diseñar e

instanciar actividades de aprendizaje individuales y colaborativas en los VLE que los estudiantes

pueden poner en marcha posteriormente, siendo su conocimiento adquirido evaluado por los

educadores. La implementación de este ciclo de vida depende de la �losofía y la arquitectura del

VLE. Por ejemplo, Moodle no separa explícitamente diseño, instanciación y puesta en marcha,

ya que está basado en la �losofía del bricolaje pedagógico, permitiendo a los educadores re�nar

e iterar sobre el diseño de aprendizaje a medida que las actividades se van realizando [Ber05].

Por otro lado, LAMS separa explícitamente diseño, instanciación y puesta en marcha en tres

entornos diferentes: autoría, monitorización, y aprendizaje [Dal03]. Sin embargo, existe un cierto

solapamiento en la de�nición de estas fases en LAMS [Gom09,Her06a], debido a que parte de la

instanciación (la selección de herramientas) se lleva a cabo en el entorno de autoría.

Aquellos profesionales de la educación que diseñan e instancian situaciones de aprendizaje

colaborativo con la mediación de los VLE deben seleccionar el conjunto de herramientas que

quieren que los estudiantes utilicen para completar las actividades que componen la situación

de aprendizaje. Los VLE normalmente incluyen un limitado conjunto de entre diez y veinte

herramientas nativas para propósitos individuales y colaborativos, que pueden ser añadidas a

cada actividad. Algunos ejemplos de herramientas que aparecen en los principales VLE son

chats, foros, tablones de noticias, cuestionarios y encuestas [Col07, Dal03, Uzu06], aunque la

implementación y funcionalidad ofrecida por cada una de esas herramientas depende del VLE

282

concreto; por ejemplo la implementación del chat de Moodle es diferente a la del chat de LAMS.

Estas herramientas nativas se diseñaron en su mayoría para tareas de propósito especí�co, y por

tanto, pueden utilizarse en un variado conjunto de actividades de aprendizaje. A pesar de ello, el

conjunto reducido de herramientas nativas ha sido criticado frecuentemente, considerándolo una

importante limitación para el apoyo de actividades de aprendizaje [Bow11,Dag07,Fie07,Liv08].

El problema del conjunto reducido de herramientas disponibles en las plataformas de apren-

dizaje puede parecer reciente, aunque no es el caso. De hecho, tres alternativas diferentes se

han propuesto históricamente para superar este problema. Las investigaciones pioneras tenían

como objetivo diseñar y desarrollar nuevos VLE �exibles y extensibles que estuvieran especí�-

camente diseñados para facilitar la incorporación de herramientas externas. Este es el caso de

DARE [Bou01], Symba [Bet03] o Gridcole [Bot05,Bot08], y más recientemente Pelican [Vel09].

Sin embargo, la principal limitación de estos VLE es que habían sido concebidos para reem-

plazar otros VLE, y aquellos educadores y estudiantes que ya estaban acostumbrados a uno

diferente en sus clases eran reticentes a adoptar estos nuevos VLE, a veces por el esfuerzo de

aprendizaje y el tiempo de adaptación requeridos, y otras veces porque las propias instituciones

les obligaban a utilizar un VLE concreto [Ala10a]. Además, los mencionados VLE eran produc-

tos de proyectos de investigación que nunca llegaron a ser productos estables, di�cultando así

su adopción por aquellas instituciones potencialmente interesadas. Algunos otros autores deci-

dieron desarrollar desde cero herramientas para ciertos VLE. Este es el caso de muchos módulos

y plugins para Moodle22 [Gut09] o de los Bloques de Construcción para Blackboard (Blackboard

Building Blocks) [Pit03], los cuales extendían el conjunto de herramientas disponibles en Moodle

y Blackboard, respectivamente. Estas herramientas podían proporcionar la funcionalidad espe-

rada por algunos educadores, combinada con las características propias de los VLE y, en algunos

casos, fueron exitosamente adoptadas, e incluso empaquetadas en las sucesivas versiones o�ciales

de estos VLE. Sin embargo, los educadores que usaban otros VLE, como LAMS o Sakai, no

podían incluir estas herramientas para apoyar sus actividades de aprendizaje. Además, estas

herramientas podían estar también reemplazando a otras herramientas existentes similares, y

por tanto, de nuevo, los educadores y estudiantes debían asumir un esfuerzo de aprendizaje y

un periodo de adaptación extra. El resultado de estas dos alternativas fue una falta de adop-

ción de los trabajos relacionados, provocando el auge de una tercera opción: la integración de

herramientas externas existentes en VLE existentes [Fon09,Fue11,Sev08].

La integración de herramientas existentes en VLE existentes tiene como objetivo ofrecer a

los educadores un conjunto más extenso de herramientas disponibles en sus VLE habituales para

apoyar sus actividades de aprendizaje [Fue11]. Los investigadores y desarrolladores trabajando en

esta línea se han visto favorecidos por la reciente extensión de las tecnologías web [Pau08] y el auge

de la Web 2.0 [ORe07], los cuales han supuesto una explosión de herramientas software de terceros

22http://moodle.org/plugins. Última visita: junio 2012.

http://moodle.org/plugins

RESUMEN EN ESPAÑOL 283

utilizadas cada vez más por los profesionales de la educación, en principio, fuera de los VLE

[Wel07b]. Además, la mayoría de estas herramientas, como por ejemplo Google Apps23, Twitter24,

Wordpress25, Flickr26 o Doodle27, están disponibles de forma gratuita para educación (y algunas

de ellas para cualquier otro uso), lo que las convierte en alternativas muy interesantes para

escuelas, colegios o universidades que no pueden permitirse pagar múltiples licencias software por

aplicaciones comerciales. Una clara señal del éxito de las herramientas software en educación es la

publicación por parte de algunos centros educativos de listas con las herramientas más utilizadas

por los educadores en sus clases. Este es el caso del Centro de Tecnologías de Aprendizaje y

Rendimiento (C4LPT - Centre for Learning & Performance Technologies) y su lista con las 100

mejores herramientas para educación (Top 100 Tools for Learning)28 que se actualiza cada año

con las preferencias más destacadas de los educadores en lo que respecta a aplicaciones, sitios

web, plataformas de aprendizaje y dispositivos hardware. Como conclusión, el enorme número

de herramientas disponibles para educación, la popularidad de los VLE, y sus limitaciones con

respecto a las herramientas que ofrecen nativamente, han motivado que un signi�cativo número

de recientes trabajos de investigación estén abordando la integración de herramientas existentes

en VLE existentes [Bol07,Boo09,Bla09,Dod08,Fon09,Fue11, IMS06c,Sev08].

Sin embargo, la integración de una herramienta en un VLE no es una tarea sencilla, princi-

palmente por dos razones. Primero, cada VLE y cada herramienta típicamente impone diferentes

requisitos heterogéneos para permitir su extensión funcional e interoperabilidad tecnológica con

otros sistemas. Estos requisitos se de�nen en los contratos de integración [Ghi06, Lar02], sean

éstos explícitos o no. Un contrato de integración determina, al menos, las tecnologías, las in-

terfaces, y los modelos de datos que deben emplearse para permitir la comunicación entre un

sistema y otras aplicaciones [Ala12a]. Generalmente, cuantos más requisitos se de�nan en estos

contratos, más acoplada es la integración, y más rica es la comunicación que puede establecerse

entre los VLE y las herramientas, al contrario de lo que ocurre en aquellos contratos con pocos

requisitos que promueven el bajo acoplamiento, a cambio de una comunicación más pobre entre

los VLE y las herramientas [Pau09]. En segundo lugar, un desarrollador debe programar el código

necesario para permitir la comunicación entre un contrato de VLE y un contrato de herramienta,

completando así la integración de una herramienta en un VLE. El papel de desarrollador puede

desempeñarlo cualquiera que esté interesado en esa integración; esto incluye al proveedor de VLE,

al proveedor de herramienta, o a un tercero [Ala10a]. Los desarrolladores que asumen este esfuerzo

normalmente esperan un bene�cio a cambio, el cual puede ser reconocimiento, reputación, com-

pensaciones económicas, o la satisfacción de usar (o de dejar que otros usen) las herramientas

23http://google.com/apps/intl/en/edu. Última visita: junio 2012.
24http://twitter.com. Última visita: junio 2012.
25http://wordpress.org. Última visita: junio 2012.
26http://flickr.com. Última visita: junio 2012.
27http://doodle.com. Última visita: junio 2012.
28http://c4lpt.co.uk/recommended/2011.html. Última visita: junio 2012.

http://google.com/apps/intl/en/edu
http://twitter.com
http://wordpress.org
http://flickr.com
http://doodle.com
http://c4lpt.co.uk/recommended/2011.html

284

integradas. Los trabajos de investigaciones que tratan la integración de herramientas externas

en VLE deben considerar en sus propuestas los desarrolladores esperados; si no, podría suceder

que nadie quisiera desarrollar el código necesario.

El desarrollo del código que permite la interoperabilidad entre los diferentes contratos de

integración involucra un cierto esfuerzo de desarrollo [Alb83]. Sin embargo, este esfuerzo de

desarrollo es signi�cativamente alto en la mayoría de aproximaciones de integración, lo que se

debe principalmente a dos factores. Primero, muchas aproximaciones promueven una integración

uno a uno (one-to-one) entre los VLE y las herramientas. Esto implica que siempre debe desarro-

llarse código nuevo para cada integración, como ocurre con la mayoría de plugins para Moodle.

Por ejemplo, si un desarrollador asume el esfuerzo de integrar Flickr en Moodle utilizando su

propio mecanismo de extensión, prácticamente no podrá reutilizar nada del código generado, ni

del conocimiento adquirido, al integrar Flickr en LAMS, Sakai o Blackboard. Segundo, muchas

aproximaciones promueven una integración acoplada [Ort90] entre los VLE y las herramientas.

Esto requiere generar una cantidad signi�cativa de código extra dirigido a permitir interacciones

más ricas entre ellos, incluso aunque estas interacciones no sean necesarias para llevar a cabo la

mayoría de situaciones de aprendizaje. La especi�cación IMS Learning Tools Interoperability (IMS

LTI - Interoperabilidad de Herramientas de Aprendizaje) [IMS06c] (popularmente llamada Full

LTI) y el Servicio de Integración de CopperCore (CCSI - CopperCore Service Integration) [Vog06]

son dos ejemplos de propuestas de integración que conllevan un alto esfuerzo de desarrollo debido

a este segundo factor. La lección que puede aprenderse de estas y otras propuestas similares es

que un alto esfuerzo de desarrollo limita la adopción de las aproximaciones de integración, ya

que puede desanimar a los desarrolladores a contribuir a la integración de nuevas herramientas y

VLE, reduciendo por tanto, el interés de los profesionales de la educación y de las instituciones

en estas aproximaciones.

Con el objetivo de abordar estos problemas, se han propuesto recientemente dos trabajos

que tratan de reducir el esfuerzo de desarrollo, fomentando una integración muchos a muchos

(many-to-many) entre VLE y herramientas, y siguiendo una aproximación de bajo acoplamiento.

Es el caso de Apache Wookie (Incubating)29, una implementación de la arquitectura propuesta

en [Wil08], que permite la integración de pequeñas aplicaciones, siempre y cuando hayan sido

desarrolladas siguiendo la especi�cación W3C para widgets [W3C11]. Sin embargo, esta es una

restricción tecnológica muy estricta que di�culta la integración de muchas otras herra-

mientas existentes que no la cumplen (p. ej. Google Apps), aunque puedan ser de interés para

apoyar muchas actividades de aprendizaje. Por tanto, esta restricción reduce el conjunto de herra-

mientas externas que los educadores podrían integrar en sus situaciones de aprendizaje mediante

Apache Wookie. Además, la especi�cación W3C para widgets ha sido de�nida para estandarizar

herramientas simples o mash-ups, reduciendo por tanto la funcionalidad de las herramientas

29http://incubator.apache.org/wookie. Última visita: junio 2012.

http://incubator.apache.org/wookie

RESUMEN EN ESPAÑOL 285

disponibles que los educadores podrían utilizar en sus situaciones de aprendizaje. En este caso,

la conclusión es que la imposición de requisitos tecnológicos estrictos, como los de Apache Wookie,

puede desanimar a las instituciones y a los profesionales a la hora de tomar la decisión sobre la

adopción de esta y otras aproximaciones con una limitación similar.

Otro trabajo que también ha sido propuesto recientemente con el objetivo de reducir el

esfuerzo de desarrollo, fomentando la integración muchos a muchos y siguiendo una aproximación

de bajo acoplamiento, es IMS Basic LTI (Basic Learning Tools Interoperability - Interoperabi-

lidad de Herramientas de Aprendizaje Básica) [IMS10b], un subconjunto de la mencionada Full

LTI [IMS06c]. Basic LTI, el cual se ha fusionado este año junto con Full LTI en una especi�cación

única llamada simplemente LTI [IMS12], permite la integración sencilla de un conjunto amplio

de herramientas existentes en VLE. Sin embargo, Basic LTI también presenta una importante

limitación: no se responsabiliza de la gestión del acceso de usuarios y grupos a instancias de

herramientas, ya que sólo permite recuperar una única instancia genérica para cada herramienta

externa. Como consecuencia, Basic LTI no permite a los educadores solicitar la creación y con�-

guración de instancias separadas para cada grupo de�nido en las actividades de aprendizaje desde

los VLE, no siendo responsable de la gestión del acceso de grupos y usuarios a la funcionalidad

y contenido de las instancias de herramientas externas. Por tanto, Basic LTI no puede hacer

uso de las propiedades colaborativas proporcionadas por los VLE, tales como el uso de grupos,

para establecer la con�guración social durante la instanciación de situaciones de aprendizaje co-

laborativo [Mar04,Osu99]; ni tampoco permite la personalización de las herramientas integradas,

para favorecer la aparición de interacciones más e�caces entre los estudiantes durante la puesta

en marcha de estas situaciones [Ase08]. En otras palabras, Basic LTI es una aproximación muy

limitada para permitir la instanciación y puesta en marcha de situaciones de aprendi-

zaje colaborativo. Esta limitación puede motivar que muchos profesionales e instituciones que

promueven la colaboración entre los estudiantes en sus prácticas puedan descartar Basic LTI u

otras aproximaciones similares que también presenten esta limitación.

Con todo ello, los trabajos de integración existentes presentan tres importantes limitaciones

que di�cultan su adopción generalizada para el apoyo a las situaciones de aprendizaje colabora-

tivo. Una solución que podría superar estas limitaciones sería la de�nición e implementación de

una arquitectura middleware [Bri04] que: promueva la integración muchos a muchos y el bajo

acoplamiento para reducir el esfuerzo de desarrollo; imponga únicamente restricciones que la

mayoría de proveedores de VLE y herramientas ya cumplan; y facilite la instanciación y puesta

en marcha de actividades individuales y colaborativas que requieran la integración de herra-

mientas externas, apoyando la creación y con�guración de instancias de estas herramientas, de

acuerdo con la con�guración social de�nida en los VLE. Además, esta arquitectura debería ser

compatible con otras aproximaciones de integración de bajo acoplamiento, de tal forma que la

adopción de una de ellas no impida la utilización de las otras.

286

Objetivos y contribuciones

En la sección previa se han descrito las tres principales limitaciones de los trabajos de

investigación actuales que tratan la integración de herramientas externas en VLE. Estas limita-

ciones son las mayores responsables de la falta de adopción generalizada de las propuestas de

integración existentes. Para superar estas limitaciones, el objetivo global de esta tesis es:

Diseñar, desarrollar y evaluar una arquitecturamiddleware que permita la inte-

gración de múltiples herramientas externas existentes en múltiples VLE existentes,

requiriendo un esfuerzo de desarrollo asumible para integrar nuevas herramientas y

VLE, imponiendo sólo restricciones básicas que la mayoría de proveedores de VLE

y herramientas cumplan, y ofreciendo su�ciente funcionalidad para facilitar la ins-

tanciación y puesta en marcha de situaciones de aprendizaje colaborativo.

Para cumplir este objetivo global, se establecen varios objetivos parciales con sus corres-

pondientes contribuciones:

Analizar el problema de la integración de herramientas externas existentes en VLE exis-

tentes.

Las contribuciones de la tesis a este objetivo son: la identi�cación de los requisitos de

los principales actores interesados y la identi�cación de las principales decisiones

de diseño y alternativas a la hora de integrar herramientas externas en VLE.

Tanto los requisitos de los actores interesados como las alternativas a estas decisiones guían

el diseño y desarrollo de la arquitectura. Las conclusiones sobre este objetivo parcial y las

contribuciones han sido publicadas en [Ala10a], incluyendo la de�nición de las principales

decisiones de diseño y las propuestas de integración hasta 2009, siendo revisadas y actua-

lizadas en [Ala10c] para incluir trabajos de integración posteriores. Además, los requisitos

de los actores interesados se han plasmado formalmente en [Ala12a].

Proponer una arquitectura middleware que permita la integración de múltiples herramientas

externas existentes en múltiples VLE existentes y que supere las limitaciones de los trabajos

relacionados.

Teniendo en cuenta las limitaciones de los trabajos relacionados, se distinguen tres partes

en la propuesta de la arquitectura:

• De�nir y detallar las restricciones a imponer sobre VLE y herramientas, teniendo en

cuenta que deben ser cumplidas por la mayoría de proveedores.

• De�nir y detallar el contrato de integración de la arquitectura, teniendo en cuenta que

debe reducir el esfuerzo de desarrollo necesario para integrar herramientas existentes

en VLE existentes.

RESUMEN EN ESPAÑOL 287

• De�nir y detallar los elementos de la arquitectura y sus responsabilidades, considerando

que deben facilitar la instanciación y puesta en marcha de actividades de aprendizaje

colaborativo que requieran la integración de herramientas externas.

La contribución de la tesis a este objetivo es GLUE! (Group Learning Uniform En-

vironment - Entorno Uniforme de Aprendizaje en Grupo), una arquitectura

middleware que cumple con los objetivos deseados, superando por tanto, las limita-

ciones de los trabajos relacionados. La propuesta de esta arquitectura se detalla en [Ala12a].

Desarrollar una implementación de referencia de la arquitectura propuesta.

La contribución de la tesis a este objetivo parcial es GLUE!-RI (GLUE! Reference

Implementation - Implementación de referencia de GLUE!). Esta implementación

y su prototipo han sido publicados en [Ala12a], y con más detalles para la particularización

de LAMS en [Ala11b]. Además, [Ala12c] es un artículo de demostración de la utilización de

la implementación de referencia en Moodle y LAMS. El código de GLUE!-RI está disponible

para su descarga e instalación en http://gsic.uva.es/glue.

Evaluar la arquitectura y su implementación de referencia. Esta evaluación debe considerar

que los objetivos y contribuciones de esta tesis pertenecen al campo del CSCL y al de

la integración software y que, por tanto, las dimensiones educativa y tecnológica del pro-

blema deben abordarse en la evaluación [Zel02]. Con estas consideraciones, la evaluación

comprende:

• Cuatro experiencias con educadores y estudiantes reales [Dew01] en cursos de edu-

cación superior.

• Una comparación de GLUE! y otras aproximaciones de bajo acoplamiento.

Esta evaluación ha sido publicada parcialmente en [Ala12a], mostrando los resultados y

las conclusiones de las cuatro experiencias, así como la comparativa parcial de las aproxi-

maciones de bajo acoplamiento. Además, la evaluación extendida centrada en dos de las

experiencias puede consultarse en [Ala12b].

Metodología de investigación

Esta tesis se enmarca dentro de un campo multidisciplinar, ya que sus objetivos y con-

tribuciones están orientados al diseño y desarrollo de un sistema software, que se espera tenga

un cierto impacto en el dominio educativo. Por este motivo, la metodología de investigación de-

bería también combinar diferentes métodos para tener en cuenta la naturaleza multidisciplinar

de la investigación. En este sentido, el método de ingeniería de Adrion [Adr93] podría cubrir la

http://gsic.uva.es/glue

288

mayor parte de la metodología necesaria para esta tesis, iterando en los siguientes cuatro pasos:

observar las soluciones existentes, proponer una mejor solución, construir o desarrollar, medir y

analizar. Sin embargo, este método podría combinarse, especialmente en la parte de evaluación,

con el método empírico [Big82], debido al uso de experiencias [Dew01] como parte de la eva-

luación educativa. Glass [Gla95] formaliza la combinación de estos dos métodos, tomando el de

Adrion como referencia, en cuatro fases iterativas que ya han sido aplicadas a tesis recientes con

contribuciones tecnológicas en el campo del CSCL [Her07b,Per11,Vil10]:

Fase informativa. La primera fase tiene como objetivo la recogida de información sobre el

dominio en el que se lleva a cabo la investigación. Para ello, la primera tarea es la revisión y

análisis de la literatura existente y los trabajos previos para detectar posibles preguntas de

investigación. A continuación, es conveniente participar en eventos y proyectos cientí�cos

para valorar el potencial interés de esas preguntas de investigación y obtener realimentación

de la comunidad de investigadores en este campo. En esta tesis, esta fase incluye la revisión

de múltiples trabajos en TEL, CSCL, plataformas de aprendizaje, uso de herramientas para

propósitos educativos, tendencias tecnológicas, ingeniería de software, arquitecturas soft-

ware e integración software en múltiples contextos. Durante este proceso, la integración de

herramientas externas en VLE para facilitar la realización de un amplio rango de situa-

ciones de aprendizaje colaborativo surge como la principal pregunta de investigación para la

tesis. Además, esta fase también incluye la participación en proyectos europeos, nacionales

y regionales relacionados con el dominio, la asistencia a varias conferencias, y la realización

de estancias cortas con expertos en integración software y plataformas de aprendizaje.

Fase proposicional. La segunda fase tiene como objetivo proponer o formular hipótesis o

soluciones a las preguntas de investigación identi�cadas en la fase informativa. En este sen-

tido, la revisión de la literatura permite la identi�cación de las limitaciones de los trabajos

relacionados y el surgimiento de nuevas alternativas originales para abordar estas limita-

ciones. En esta tesis, esta fase comprende la identi�cación de los requisitos de los principales

actores interesados, el análisis de las principales decisiones de diseño que deberían conside-

rarse al enfrentarse al problema de integración, y la propuesta de una arquitectura de bajo

acoplamiento que tiene en cuenta estos requisitos y decisiones de diseño para superar las

limitaciones de aproximaciones previas.

Fase analítica. La tercera fase tiene como objetivo analizar y explorar las proposiciones

hechas en la fase previa para conseguir una demostración o formulación de principios.

Esto puede incluir el desarrollo de los sistemas o aplicaciones necesarios para facilitar esta

demostración. En el contexto de esta tesis, se desarrolla una implementación de referencia

de la arquitectura propuesta en la segunda fase, proporcionando así un prototipo que puede

ser probado y usado por profesionales. Esta implementación permite el análisis y evaluación

RESUMEN EN ESPAÑOL 289

de las contribuciones de la tesis, y puede ser mejorada a medida que las iteraciones a lo

largo de las fases de esta metodología se vayan sucediendo.

Fase evaluativa. La última fase tiene como objetivo evaluar las proposiciones por medio

de la experimentación o la observación, con la ayuda de los sistemas o aplicaciones desarro-

llados en la fase analítica (si se aplica al caso). En esta tesis, la arquitectura se evalúa por

medio de cuatro experiencias reales que tienen como objetivo demostrar si los requisitos

de los principales interesados se cumplen, y si se superan las limitaciones de los trabajos

previos. Una comparación con otras propuestas de bajo acoplamiento también se lleva a

cabo dentro de esta fase.

290

2. Integración de herramientas

externas en VLE

El aprendizaje colaborativo es un proceso en el que el conocimiento se construye a través

de las interacciones con otros compañeros y, en la mayoría de los casos, tiene como resultado

un aprendizaje más e�caz, en comparación con los procesos pedagógicos individuales o los com-

petitivos [Kos96]. El uso de tecnología para fomentar estas interacciones es abordado de forma

conjunta por profesionales de la educación, psicólogos y tecnólogos en el campo de investigación

denominado CSCL. Los VLE son sistemas que se han utilizado de forma destacada para el

apoyo a la educación y a la colaboración en todos los niveles educativos durante los últimos

años [Wel07b], ya que incluyen características colaborativas y pedagógicas signi�cativas, tales

como la gestión de grupos, roles, actividades y cursos. Los profesionales de la educación uti-

lizan los VLE de forma recurrente para el diseño, instanciación, puesta en marcha y evaluación

de situaciones de aprendizaje colaborativo. Sin embargo, el conjunto limitado de herramientas

nativas de los VLE di�culta, e incluso impide, la realización de muchas actividades de aprendi-

zaje [Con10,Dag07,Liv08]. En este punto, la popularidad creciente de las tecnologías y servicios

web [Pap03] ha causado un auge en el interés investigador hacia la integración de herramientas

externas en VLE, con el objetivo de permitir la realización de un mayor número de situaciones

de aprendizaje colaborativo. Esta línea de investigación reemplaza a tendencias anteriores, de

acuerdo con las cuales, el número de herramientas nativas de los VLE era aumentado por medio

del desarrollo de nuevos VLE y herramientas desde cero.

Sin embargo, la integración de herramientas externas en VLE es un problema muy com-

plejo, principalmente debido a la gran variedad de contratos de integración heterogéneos exis-

tentes [Ghi06], y ninguna de las aproximaciones actuales en este tema ofrece una solución genérica

con una adopción ampliamente extendida. De esta forma, se justi�ca la necesidad de plantear una

nueva aproximación para este problema. En este punto, se estudia el contexto que rodea al pro-

blema, identi�cando los requisitos de los principales actores interesados, así como las decisiones

de diseño y alternativas tomadas por otros trabajos de integración.

291

292

Requisitos de los principales actores interesados

Los profesionales de la educación, tanto los educadores como los estudiantes, son los actores

interesados que utilizan las herramientas externas. A ellos les gustaría emplear las herramientas

integradas de la misma forma que utilizan las herramientas nativas. Esto incluye bene�ciarse de

las principales características de los VLE, entre las cuales destacan el apoyo a la colaboración y

al trabajo en grupo [Bow11]. Por ello, las nuevas aproximaciones de integración deberían per-

mitir la instanciación de actividades individuales y colaborativas que requieran la

integración de herramientas externas con un esfuerzo asumible para los educadores

(REQ1); y permitir la puesta en marcha de estas actividades facilitando la cola-

boración entre los participantes (REQ2). Además, a los educadores y estudiantes no les

gustaría tener que dejar el VLE y las herramientas a los que ya están acostumbrados. Por ello,

las nuevas aproximaciones deberían permitir la integración de VLE y herramientas exis-

tentes y populares (REQ3). Finalmente, para dar apoyo al mayor número de actividades

posible, estas aproximaciones deberían permitir la integración de muchas herramientas

externas (REQ4).

Los desarrolladores escriben el código necesario para la integración de nuevas herramientas

y VLE. Los desarrolladores generalmente se comprometen a escribir ese código con una menor

probabilidad si deben asumir un esfuerzo de desarrollo alto. Por tanto, las nuevas aproximaciones

deberían demandar un esfuerzo de desarrollo asumible para la integración de nuevos

VLE y herramientas (REQ5).

Finalmente, los proveedores de VLE y herramientas raramente quieren modi�car sus sis-

temas para cumplir con una nueva aproximación de integración. Frecuentemente, desaprueban

también que otros modi�quen sus sistemas, ya que eso puede causar incompatibilidades con las

versiones o�ciales de VLE y herramientas. Por tanto, las nuevas aproximaciones de integración

deberían ser construidas sobre los VLE y las herramientas (REQ6), en lugar de modi�car

sus implementaciones.

Decisiones de diseño y alternativas

Las nuevas aproximaciones de integración deberían tener en cuenta varias decisiones de

diseño técnicas y funcionales, y sus alternativas. Sin embargo, varias de estas decisiones están

interrelacionados por lo que necesitan que se establezcan compromisos y prioridades.

Una decisión técnica importante es el número de restricciones impuestas a VLE y

herramientas. Ejemplos de estas restricciones son lenguajes de programación o modelos de

RESUMEN EN ESPAÑOL 293

intercambio de datos. Imponer muchas restricciones puede excluir herramientas y VLE intere-

santes. Imponer pocas restricciones reduce generalmente el esfuerzo de desarrollo y, por tanto,

las posibilidades de que algunas herramientas y VLE populares sean descartados.

Otra decisión relacionada es el grado de adopción de las restricciones. Cuanto más

extendidas sean las restricciones impuestas, más herramientas y VLE las cumplirán nativamente,

y como consecuencia, estas herramientas y VLE serán integrados típicamente con menor esfuerzo

y sin modi�car su implementación original. Por el contrario, las aproximaciones ad hoc pueden

imponer restricciones con menor adopción, ya que su objetivo habitual es fomentar la integración

de una herramienta especí�ca en un VLE especí�co.

Otra decisión importante es la multiplicidad de la integración. Las aproximaciones

genéricas están diseñadas para promover la integración de múltiples herramientas en múltiples

VLE (integración muchos a muchos). Estas aproximaciones pueden reducir el esfuerzo de desa-

rrollo al facilitar la reutilización de código, pero con la consecuencia de permitir sólo caracte-

rísticas y comportamientos limitados, debido a la heterogeneidad existente en lo que respecta

a VLE y herramientas. Las aproximaciones ad hoc fomentan típicamente la integración uno a

uno, permitiendo interacciones más ricas entre VLE y herramientas, aunque sólo sirven para

un caso concreto. De forma alternativa, otras aproximaciones pueden facilitar la integración de

múltiples herramientas en un VLE (uno a muchos) y, con menor frecuencia, la integración de

una herramienta en varios VLE (muchos a uno).

El grado de acoplamiento es otra decisión técnica importante relacionada con las res-

tricciones y la multiplicidad. Un acoplamiento fuerte (alto acoplamiento) permite controlar el

comportamiento de la herramienta desde el VLE en mayor medida, pero a cambio de un esfuerzo

de desarrollo extra. Un acoplamiento débil (bajo acoplamiento) permite un menor control sobre

las herramientas integradas, pero también sirve para reducir el esfuerzo de desarrollo.

El grado de funcionalidad ofrecido por una aproximación de integración es una impor-

tante decisión funcional relacionada con todas las decisiones técnicas presentadas. Ofrecer un alto

grado de funcionalidad normalmente requiere imponer más restricciones, un alto acoplamiento y,

posiblemente, una integración uno a uno. Por otro lado, ofrecer un bajo grado de funcionalidad

generalmente necesita menos esfuerzo de desarrollo y típicamente menos restricciones sobre VLE

y herramientas.

Además, en este contexto particular, la gestión del ciclo de vida de las herramientas

externas [Gom09] es una importante decisión funcional dentro del grado de funcionalidad ofre-

cido, ya que la mayoría de VLE (y muchas de las herramientas) han sido diseñados para apoyar

actividades de aprendizaje individuales y colaborativas. Esta decisión se re�ere a la creación,

con�guración y asignación de diferentes instancias de herramientas para cada usuario o grupo en

una actividad de aprendizaje, lo cual puede ser una carga importante si existen �ujos de colabo-

ración complejos con muchos grupos y herramientas. Las aproximaciones que permiten gestionar

294

este ciclo de vida facilitan la instanciación y puesta en marcha de las situaciones de aprendizaje

colaborativo. Por el contrario, las que no tienen en cuanta esta decisión de diseño, di�cultan los

procesos de instanciación y puesta en marcha de estas situaciones de aprendizaje, a pesar de su

interés educativo.

Conclusiones

Las diferentes propuestas de integración analizadas con detalle en la versión en inglés de este

documento han tomado diferentes alternativas sobre las decisiones de diseño. Algunas de estas

alternativas han tenido como consecuencia importantes limitaciones, las cuales pueden conside-

rarse lecciones aprendidas para otros investigadores que tratan el problema de la integración

multiplataforma de herramientas de terceros en el dominio educativo, o en otros dominios. Para

superar estas limitaciones el siguiente capítulo presenta la contribución central de la tesis, una

arquitectura que satisface los requisitos de los principales actores y que se caracteriza por: un

bajo número de restricciones ampliamente adoptadas, facilitando así la integración de

herramientas y VLE populares sin modi�car su código; una integración muchos a muchos

y poco acoplada, promoviendo la integración de muchos VLE y herramientas con un menor

esfuerzo de desarrollo; y un grado de funcionalidad su�ciente que permite, al menos, la

gestión del ciclo de vida de las herramientas externas. Estas decisiones funcionales son el

resultado del compromiso entre los requisitos de los actores interesados, y el resto de decisiones

tecnológicas.

3. La arquitectura GLUE!

La arquitectura GLUE! se diseña para permitir la integración de múltiples herramientas

externas existentes en múltiples VLE existentes, imponiendo pocas restricciones que los princi-

pales proveedores de VLE y herramientas cumplen, reduciendo el esfuerzo de desarrollo necesario

para integrar nuevos VLE y herramientas, y permitiendo la gestión del ciclo de vida de las herra-

mientas externas.

Visión general de la arquitectura

La Figura 1 presenta la visión general de la arquitectura GLUE!. GLUE! sigue una arqui-

tectura de tres capas compuesta por servicios distribuidos poco acoplados, donde diferentes

VLE y herramientas se comunican mediante una capa intermedia de software y un conjunto de

adaptadores. En los extremos izquierdo y derecho de la arquitectura se utiliza el conocido patrón

adaptador [Gam95] para envolver los VLE y las herramientas, adaptando sus contratos hete-

rogéneos especí�cos a dos nuevos contratos homogéneos intermedios: el contrato de GLUE!

para VLE y el contrato de GLUE! para herramientas. Este tipo de adaptadores, que

también han sido utilizados en algunas arquitecturas de dos capas [IMS10b,Fue11] para permitir

la integración de herramientas en VLE sin modi�car su código, se denominan adaptadores de

VLE y adaptadores de herramientas en la arquitectura GLUE!.

La arquitectura también incluye una capa intermedia de software denominada núcleo de

GLUE!, la cual ofrece los contratos de integración de GLUE!. Este núcleo de la arquitectura,

compuesto por un elemento de procesamiento (GLUElet Manager) y un elemento de almace-

namiento (registro interno de herramientas), desacopla los adaptadores de VLE y de herra-

mientas, y asume buena parte de la funcionalidad de integración. Esto facilita la implementación

independiente de los adaptadores y reduce su esfuerzo de desarrollo. Con ello, la arquitectura

GLUE! fomenta una integración muchos a muchos, debido a que cada nuevo adaptador de

herramienta desarrollado para una herramienta concreta (o para varias herramientas) permite

su integración en cualquier VLE con el correspondiente adaptador de VLE, y viceversa.

295

296

Figura 1: Visión general de la arquitectura GLUE!.

La arquitectura GLUE! proporciona la funcionalidad para crear, con�gurar, recuperar,

actualizar y eliminar instancias de herramientas externas, gestionando así el ciclo de vida de

las herramientas externas [Gom09], el cual es común a muchas de las herramientas software,

incluyendo las nativas de los VLE. Este ciclo de vida puede combinarse con las características

propias de los VLE para la gestión de grupos y actividades, con el objetivo de asociar cada

instancia de herramienta externa a cada grupo que participa en una actividad determinada; de

esta forma, los estudiantes que pertenecen al mismo grupo pueden colaborar, compartiendo la

misma instancia (como generalmente sucede con las herramientas nativas de los VLE). Gracias a

esta funcionalidad, se facilita en gran medida la instanciación y puesta en marcha de actividades

colaborativas e individuales.

Cada una de las tres capas de la arquitectura GLUE! tiene un rol concreto para apoyar la

gestión del ciclo de vida de las herramientas externas desde los VLE. Las peticiones de creación,

con�guración, recuperación, actualización y eliminación de instancias se inician en la interfaz

de usuario del VLE, y por tanto, los adaptadores de VLE deben procesarlas y enviarlas como

peticiones uniformes al núcleo de GLUE!. Éste las envía a los correspondientes adaptadores de

herramientas, los cuales las reciben y procesan, resultando en invocaciones sobre los proveedores

de herramientas, siguiendo los contratos establecidos por éstos.

Cada uno de los elementos de las tres capas de GLUE! puede ser ofrecido de forma inde-

pendiente, excepto los adaptadores de VLE, que normalmente se despliegan junto con los VLE.

RESUMEN EN ESPAÑOL 297

El motivo de esto es que los adaptadores de VLE necesitan ser implementados, en la mayoría

de casos, como extensiones de los VLE, embebiendo parcialmente la funcionalidad de dichos

adaptadores en la interfaz grá�ca de los VLE.

Finalmente, es importante mencionar que la arquitectura distingue tres roles: el adminis-

trador de la instalación de GLUE! que indica en el GLUE! core las herramientas disponibles

y sus correspondientes adaptadores; el educador que solicita la creación, con�guración, elimi-

nación y actualización de instancias de herramientas; y el participante que pide la recuperación

de las instancias creadas.

Contratos de integración

GLUE! de�ne un contrato de integración para la comunicación entre el núcleo de GLUE!

y los adaptadores de VLE y otro contrato de integración para la comunicación entre el núcleo de

GLUE! y los adaptadores de herramientas. Estos contratos se de�nen con el propósito de reducir

el esfuerzo de desarrollo y facilitar la adopción de la arquitectura. En estos contratos se incluyen

las restricciones impuestas a los proveedores de VLE y herramientas, las tecnologías que deben

implementar los adaptadores de VLE y de herramientas, y la funcionalidad ofrecida.

El contrato de GLUE! para VLE impone tres restricciones obligatorias sobre los

proveedores de VLE: los VLE deben ser capaces de interpretar contenidos web para embeber

fácilmente las instancias de herramientas en la interfaz web de los VLE; los VLE deben ofrecer

una interfaz de extensión, para que los adaptadores de VLE puedan comunicarse con los VLE

sin modi�car su código; los VLE deben entender el concepto de herramienta. Además, hay dos

requisitos opcionales: los VLE deberían entender el concepto de grupo, y también el concepto de

rol, para bene�ciarse en mayor medida de la funcionalidad ofrecida por la arquitectura GLUE!.

Los principales VLE cumplen tanto los requisitos obligatorios como los opcionales.

El contrato de GLUE! para herramientas solamente impone un requisito obligatorio

sobre los proveedores de herramientas: el código que las herramientas externas propor-

cionan para permitir el acceso a su funcionalidad debe poder distribuirse como un contenido

web. Además, se de�ne una restricción opcional: las herramientas deberían ofrecer una interfaz

programática que permita la creación de instancias con�guradas de forma distinta para dife-

rentes usuarios. Curiosamente, el 69% de las 100 herramientas más populares para educación

(Top 100 Tools for Learning)30 se distribuyen online, cumpliendo así el requisito obligatorio.

Además, muchas de estas herramientas cumplen también el requisito opcional. Estos números

son mayores si se excluyen los dispositivos hardware de esta lista.

30http://c4lpt.co.uk/recommended/2011.html. Última visita: junio 2012.

http://c4lpt.co.uk/recommended/2011.html

298

Los contratos de integración de GLUE! de�nen cuatro requisitos tecnológicos que los adap-

tadores de VLE y de herramientas deben considerar para poder ser interoperables con el núcleo

de GLUE!. Todos estos requisitos están basados en tecnologías populares y poco acopladas:

Los adaptadores de herramientas deben proporcionar una interfaz RESTful [Ric07] para

ser invocados por el núcleo de GLUE!, mientras que los adaptadores de VLE deben ser

capaces de invocar la interfaz RESTful ofrecida por el núcleo de GLUE!.

Los adaptadores de VLE y de herramientas deben ser capaces de procesar peticiones y

respuestas en el formato de datos Atom [NWG05a].

Los adaptadores de herramientas deben proporcionar plantillas de con�guración en el for-

mato XForms [W3C09a] o, en su defecto, en HTML5 [W3C12]. Además, los adaptadores

de VLE deben ser capaces de procesar las plantillas siguiendo estos formatos en los casos

en los que los navegadores web no sean capaces de procesar su contenido directamente.

Los adaptadores de herramientas deben permitir identi�car a las instancias de herramientas

externas siguiendo la representación URL, incluso para aquellas herramientas que no se

distribuyan como aplicaciones web.

Finalmente, los adaptadores de herramientas deben distribuir su funcionalidad en dos tipos

de recursos REST: con�guration, el cual permite la recuperación de plantillas de con�guración; e

instance el cual implementa los cuatro tipos de peticiones relacionadas con la gestión del ciclo de

vida de las herramientas externas (creación y con�guración, recuperación, actualización y elimi-

nación de instancias). Los adaptadores de VLE pueden enviar peticiones a los recursos expuestos

por el núcleo de GLUE!: instance, sobre el cual se implementan también las cuatro peticiones

antes mencionadas, para ser redireccionadas al correspondiente adaptador de herramienta; y tool,

el cual permite le recuperación de información sobre las herramientas disponibles, y también la

solicitud de plantillas de con�guración (solicitud redireccionada a su vez al adaptador de herra-

mientas correspondiente). Más información sobre los contratos de integración puede encontrarse

en la versión en inglés de este documento.

Conclusiones

El apoyo que GLUE! proporciona a la gestión del ciclo de vida de las herramientas externas

trata de facilitar la instanciación (REQ1) y puesta en marcha (REQ2) e�ciente de actividades

de aprendizaje colaborativo en las que se usan estas herramientas. La imposición de pocas res-

tricciones populares sobre VLE y herramientas externas trata de facilitar la integración de muchas

(REQ4) herramientas existentes, entre ellas las más populares (REQ3), en los principales VLE.

RESUMEN EN ESPAÑOL 299

Además, la de�nición de una propuesta de integración poco acoplada que combina interfaces

REST, formato de datos Atom, plantillas de con�guración XForms o HTML5 y representación

URL, la propuesta de una capa intermedia de software que asume parcialmente la funcionalidad

de la integración, y el fomento de una integración muchos a muchos tratan de reducir el esfuerzo

de desarrollo (REQ5). Finalmente, por medio del patrón adaptador, los VLE y las herramientas

existentes pueden ser adaptadas e integradas sin modi�car su código (REQ6).

La arquitectura GLUE! puede ser vista como una propuesta de integración alternativa a

aquellos trabajos de integración muy acoplados que requieren un esfuerzo de desarrollo elevado.

Sin embargo, GLUE! también puede combinarse con otros trabajos de integración poco acoplados,

como Apache Wookie y Basic LTI. El motivo es que estos trabajos utilizan tecnologías similares y

la funcionalidad que ofrecen encaja dentro del ciclo de vida de las herramientas externas apoyado

por GLUE!. Además, a pesar de que GLUE! es una solución de integración para el contexto de

las herramientas software y los VLE, también podría aplicarse sobre otras plataformas utilizadas

para al aprendizaje colaborativo, tales como wikis, redes sociales o PLE.

300

4. GLUE!-RI: Implementación de

referencia de la arquitectura

Una vez que la arquitectura GLUE! ha sido completamente especi�cada, cualquier desarro-

llador puede proceder a su implementación. Sin embargo, para facilitar este trabajo, y también

para poder evaluar GLUE! en escenarios reales, se ha desarrollado una implementación de refe-

rencia de GLUE!, denominada GLUE!-RI. GLUE!-RI es el término genérico de una distribución

software que incluye una implementación de referencia del núcleo de GLUE!, y varios ejemplos

de adaptadores de VLE y de herramientas.

El desarrollo de una implementación de referencia de GLUE! en este punto es altamente

recomendable por varios motivos. Primero, permite mostrar que la arquitectura puede ser imple-

mentada. Además, GLUE!-RI puede ser probada y evaluada para estudiar si GLUE! supera las

limitaciones de los trabajos relacionados y cumple con los requisitos de los principales actores

interesados. Igualmente, puede ser utilizada por educadores y estudiantes reales para soportar

situaciones de aprendizaje colaborativo, siendo éste el propósito �nal para la arquitectura. Por

último, puede servir para iniciar una colección de adaptadores de VLE y de herramientas que

crezca con las contribuciones de los desarrolladores externos. Esto es muy importante, ya que

los trabajos de integración genéricos normalmente confían en que se creen comunidades de de-

sarrolladores que compartan sus implementaciones, contribuyendo así a incrementar el número

de sistemas integrados.

Es importante destacar que GLUE!-RI es solamente la implementación de referencia y

que por tanto otras implementaciones son posibles. De hecho, cualquiera de las tres capas de

GLUE!-RI (núcleo de GLUE!, adaptadores de VLE, adaptadores de herramientas) podría ser

mejorada para permitir nuevos casos de uso, construidos sobre los ya existentes, así como para

integrar nuevos VLE y herramientas, mientras se cumpla con los contratos de integración de

GLUE!. El código de GLUE!-RI está disponible en http://gsic.uva.es/glue para su mejora

y reutilización a la hora de programar nuevos adaptadores.

301

http://gsic.uva.es/glue

302

Visión general de la implementación de referencia

GLUE!-RI se ha desarrollado de forma iterativa e incremental. En el momento de escritura,

están disponibles como parte de GLUE!-RI el núcleo de GLUE!, tres adaptadores de VLE y

nueve adaptadores de herramientas. Los tres adaptadores de VLE permiten la integración de

herramientas externas en Moodle, LAMS y MediaWiki31. Los nueve adaptadores de herramientas

permiten la integración en VLE de Google Docs32 (Documents, Spreadsheets and Presentations),

MediaWiki, Dabbleboard33, widgets W3C desplegados en servidores Apache Wookie, Doodle34,

Facebook Live Stream35 (un foro para usuarios de Facebook), Kaltura36, Note�ight37 y cualquier

URL representando a un contenido web.

GLUE!-RI tiene licencia GPL38 (GNU General Public License - Licencia Pública General

de GNU) para usos no comerciales. Por tanto, la implementación de referencia de los elementos

disponibles puede ser redistribuida y modi�cada bajo los términos establecidos por esta licencia.

Aquellos interesados en emplear alguno de estos elementos para usos comerciales deben contactar

con el Grupo de Sistemas Inteligentes y Cooperativos (GSIC), propietario de GLUE!-RI.

Conclusiones

En este punto, GLUE!-RI es útil para demostrar tres importantes a�rmaciones realizadas a

lo largo de la tesis sobre GLUE!. La primera es que GLUE! puede integrar herramientas externas

existentes en VLE existentes. La segunda es que GLUE! puede integrar herramientas externas en

otras plataformas en las que el apoyo a la colaboración es relevante; es el caso de MediaWiki con

su correspondiente adaptador de VLE. Finalmente, GLUE! puede ser utilizado como arquitectura

middleware para interoperar con otras aproximaciones de bajo acoplamiento; aquí el ejemplo es

el adaptador de herramienta para los widgets W3C desplegados en servidores Apache Wookie.

Finalmente, es importante destacar que esta implementación de referencia es útil para

llevar a cabo la evaluación de GLUE!, y ver si se cumplen los requisitos de los principales actores

interesados y se superan las limitaciones de trabajos previos. Para ello, a continuación se resume

brevemente la metodología empleada, las experiencias realizadas, y los resultados obtenidos como

parte de esta evaluación.

31http://mediawiki.org. Última visita: junio 2012.
32http://docs.google.com. Última visita: junio 2012.
33http://dabbleboard.com. Última visita: junio 2012.
34http://doodle.com. Última visita: junio 2012.
35http://developers.facebook.com/docs/reference/plugins/live-stream. Última visita: junio 2012.
36http://kaltura.com. Última visita: junio 2012.
37http://noteflight.com. Última visita: junio 2012.
38http://www.gnu.org/licenses/gpl.html. Última visita: junio 2012.

http://mediawiki.org
http://docs.google.com
http://dabbleboard.com
http://doodle.com
http://developers.facebook.com/docs/reference/plugins/live-stream
http://kaltura.com
http://noteflight.com
http://www.gnu.org/licenses/gpl.html

5. Evaluación

La evaluación de la arquitectura GLUE! se ha diseñado para cubrir tanto la dimensión

tecnológica como la dimensión educativa presentes en esta investigación. En esta evaluación

se ha utilizado el marco CSCL-EREM (CSCL Evaluand-oriented Responsive Evaluation Model

- Modelo de Evaluación receptivo orientando al evaluando) [Jor09]. Este marco facilita a los

investigadores y a los profesionales de la educación la evaluación formal de cursos, recursos,

estrategias de aprendizaje y sistemas software en contextos CSCL [Jor09], siendo este último

el caso de GLUE!. El CSCL-EREM está centrado en el concepto evaluand (evaluando), que

representa lo que se quiere evaluar (es decir, el cumplimiento de los requisitos de los principales

actores interesados en el contexto de esta tesis), y proporciona una representación grá�ca gracias

a la cual pueden verse de un vistazo el contexto, los objetivos y los métodos relacionados con

aquello que se quiere evaluar.

Utilizando el CSCL-EREM se ha formalizado la evaluación de cuatro experiencias rea-

lizadas en cursos universitarios. Se ha elegido este tipo de evaluación basada en experiencias

auténticas para mostrar que GLUE! puede ser utilizado de forma regular para llevar a cabo

situaciones de aprendizaje colaborativo que requieran la integración de herramientas externas.

Además, la utilización de experiencias auténticas [Dew01] con diferentes tipos de actores, tales

como usuarios �nales o desarrolladores, es una práctica común para la evaluación de sistemas

que apoyan la colaboración [Bot08, Iso10]. Sin embargo, el hecho de involucrar a los usuarios de

los sistemas en la evaluación conlleva una di�cultad añadida, ya que las oportunidades de llevar

a cabo experiencias reales son, en general, muy escasas, y su organización muy costosa.

En lo que se re�ere a los métodos de investigación, la dimensión educativa se ha evaluado

utilizando el método mixto propuesto en [Mar03], de acuerdo con el cual se recogieron y analizaron

datos cualitativos y cuantitativos procedentes de estas experiencias. De acuerdo con este método,

los datos cuantitativos no están dirigidos a demostrar hipótesis, sino a detectar tendencias que

luego son con�rmadas o descartadas utilizando datos cualitativos. Por otro lado, las propiedades

tecnológicas de la arquitectura se han evaluado a través de un análisis de características (feature

analysis) [Kit97b] acompañado de evidencias empíricas acerca de la complejidad del software,

303

304

obtenidas con métricas como las líneas de código fuente nuevas que deben desarrollarse (SLOC

- source lines of code) [Alb83], y el tiempo invertido en su desarrollo.

Cumplimiento de los requisitos

Los resultados de evaluación obtenidos a partir de las cuatro experiencias auténticas per-

miten concluir que GLUE! cumple con los requisitos de los principales actores interesados. A

continuación se presentan estos requisitos y de forma breve las evidencias obtenidas de las expe-

riencias que apoyan su cumplimiento. En la versión en inglés se recogen bastantes más evidencias

de apoyo a estas conclusiones y se discuten en mucha mayor profundidad.

REQ1: Permitir la instanciación de actividades individuales y colaborativas que requieran

la integración de herramientas externas con un esfuerzo asumible para los educadores. Los

datos de evaluación permiten a�rmar que GLUE! redujo el tiempo de instanciación en

más de un 80% al combinarse con VLE como Moodle o LAMS, facilitando por tanto

la instanciación de actividades individuales y colaborativas en las que fueron necesarias

herramientas externas. Esto ha sido corroborado por los educadores que participaron en

las experiencias a partir de datos cualitativos y cuantitativos procedentes de cuestionarios

y entrevistas.

REQ2: Permitir la puesta en marcha de actividades colaborativas que requieran la inte-

gración de herramientas externas facilitando la colaboración entre los participantes. Se han

obtenido diferentes evidencias cualitativas y cuantitativas mediante cuestionarios y grupos

de discusión con los alumnos que apoyan el cumplimiento de este requisito. Concretamente,

más del 77% de los alumnos consideraba que el soporte tecnológico (el cual incluye un VLE,

algunas herramientas externas, algunas herramientas internas, y GLUE!) había facilitado

bastante o mucho la colaboración. Asimismo, más del 72% estaba de acuerdo en que ver las

contribuciones de sus compañeros a lo largo de las actividades era fácil o muy fácil gracias

a este apoyo tecnológico.

REQ3: Permitir la integración de VLE y herramientas existentes y populares. Los edu-

cadores seleccionaron cinco herramientas existentes distintas (Google Documents, Google

Presentations, Dabbleboard, Doodle y el widget You Decide) y tres VLE (Moodle, LAMS

y MediaWiki) en las cuatro experiencias que se llevaron a cabo. Es interesante apuntar que

Google Documents y Google Presentations están entre las herramientas mejor valoradas

por educadores, según la lista de las 100 herramientas preferidas para educación (Top 100

tools for learning del C4LPT), siendo Moodle el VLE con una mayor adopción actualmente.

RESUMEN EN ESPAÑOL 305

REQ4: Permitir la integración de muchas herramientas externas. Los educadores tuvieron

a su disposición 17 herramientas externas durante la instanciación de las experiencias. Este

número por sí sólo es mayor que el número de herramientas internas de muchos VLE como

Moodle, Blackboard o Claroline. Además, al menos el 69% de las herramientas listadas

entre las 100 mejor valoradas cumplen el requisito obligatorio impuesto por el contrato de

GLUE! para herramientas, y por tanto, son potencialmente integrables.

REQ5: Demandar un esfuerzo de desarrollo asumible para la integración de nuevos VLE y

herramientas. El esfuerzo de desarrollo necesario para poner en marcha las distintas expe-

riencias disminuye progresivamente, aun cuando se utilizan diferentes VLE. Además, una

vez desarrollados los principales adaptadores de VLE, la integración de herramientas ex-

ternas requiere un esfuerzo bastante bajo (aproximadamente 100 líneas nuevas de código

y 6-8 horas de trabajo por herramienta), ofreciendo un rendimiento alto ya que la nueva

herramienta queda integrada en varios VLE (en todos aquellos para los que se ha desarro-

llado el correspondiente adaptador de VLE con anterioridad). El esfuerzo de los adaptadores

de VLE es mayor, aunque similar al necesario en otras propuestas de integración de bajo

acoplamiento.

REQ6: Ser construido sobre los VLE y las herramientas existentes sin modi�carlos. Todos

los adaptadores de VLE y de herramientas disponibles se han desarrollado utilizando las

interfaces de extensión e integración proporcionadas por los proveedores de VLE y herra-

mienta. Por tanto, estos adaptadores no modi�can la implementación existente, y son

compatibles con las distribuciones o�ciales de los VLE y de las herramientas integradas.

Comparación con otros trabajos de integración de bajo acopla-

miento

El análisis de características realizado sobre GLUE!, Apache Wookie [Wil08] y Basic

LTI [IMS10b] sirvió para comparar la funcionalidad y características de estas propuestas de in-

tegración de bajo acoplamiento. Como consecuencia de ese análisis, puede concluirse que GLUE!

ofrece un mayor grado de funcionalidad en comparación con Basic LTI. Además, el grado de

funcionalidad ofrecido por GLUE! es similar al que ofrece Apache Wookie. Sin embargo, GLUE!

permite la integración de herramientas externas heterogéneas, a diferencia de lo que ocurre con

Apache Wookie (el cual requiere que todas ellas cumplan con la especi�cación W3C [W3C11]).

En cuanto al esfuerzo de desarrollo, cabe destacar que hay diferencias menores en lo que

respecta a la implementación de adaptadores para Basic LTI (consumidores y proveedores en

la terminología propia de esta aproximación), y adaptadores de VLE y de herramientas para

GLUE!, respectivamente. En cambio, Apache Wookie sí que requiere un esfuerzo inicial menor en

306

comparación con GLUE!. Sin embargo, si los widgets van a ser utilizados desde alguno de los VLE

compatibles con GLUE!, entonces puede merecer la pena desarrollar un adaptador que permita

la comunicación entre el núcleo de GLUE! y el servidor de Apache Wookie. De hecho, esto es lo

que sucedió en la implementación de referencia de GLUE!, permitiendo que estos widgets puedan

ser integrados actualmente en Moodle, LAMS y MediaWiki. Esto refuerza la idea de que GLUE!

puede funcionar como una arquitectura middleware compatible con otras aproximaciones de bajo

acoplamiento, como las citadas Basic LTI y Apache Wookie. Finalmente, también se obtuvieron

evidencias del esfuerzo de desarrollo para algunas aproximaciones ad hoc con un mismo grado de

acoplamiento y funcionalidad que GLUE!, mostrando que una aproximación ad hoc es la peor

opción en términos de esfuerzo, especialmente si la herramienta va a ser usada desde distintos

VLE. En la versión en inglés se proporcionan más detalles sobre esta comparativa.

Conclusiones

La evaluación de la arquitectura GLUE! permite a�rmar que se cumplen los objetivos de

los principales actores interesados, y también que se superan las limitaciones encontradas en otros

trabajos de integración en este contexto. Por tanto, una vez que se ha completado la evaluación

satisfactoriamente, puede considerarse que el objetivo global presentado al comienzo de la tesis

ha sido alcanzado. A pesar de ello, quedan todavía algunas líneas abiertas que se presentan en

el último capítulo recogiendo también las principales conclusiones al trabajo de investigación.

6. Conclusiones y trabajo futuro

Esta tesis ha tratado de dar solución a la limitación encontrada en lo que respecta al número

de herramientas ofrecidas por los VLE para el apoyo de situaciones de aprendizaje colaborativo.

Esta limitación, mencionada de forma recurrente en la literatura, di�culta la instanciación y

puesta en marcha de muchas actividades de aprendizaje, tanto individuales como colaborativas.

Tras analizar los problemas de adopción de los primeros trabajos en este campo, los cuales pro-

ponían nuevos VLE y herramientas, se ha optado por investigar la integración de herramientas

existentes en VLE existentes. Sin embargo, aquellos trabajos que han tratado esta integración

también tienen problemas importantes. Uno de ellos afecta al esfuerzo de desarrollo, que siendo

necesario para conseguir la comunicación entre VLE y herramientas, es signi�cativamente alto

en muchas aproximaciones. Otro problema destacado es el tipo de restricciones impuestas a los

proveedores, las cuales impiden que muchos VLE y herramientas populares puedan ser integra-

dos. Finalmente, el tercer problema consiste en que algunos trabajos no tienen en cuenta cómo

deben gestionarse las herramientas externas a la hora de instanciar y poner en marcha situa-

ciones de aprendizaje colaborativo, impidiendo así que los profesionales de la educación puedan

aprovecharse de las características colaborativas proporcionadas por los VLE.

Las limitaciones encontradas en los trabajos relacionados han sido estudiadas con detalle

en el capítulo 2 de este documento, al analizar el problema de la integración, particularizado para

un conjunto representativo de VLE y herramientas, siendo éste el primer objetivo parcial de la

tesis. El análisis del problema de la integración ha supuesto la identi�cación de los seis princi-

pales requisitos de los actores interesados, y la identi�cación y discusión de las principales deci-

siones de diseño y sus alternativas, las cuales deberían ser tenidas en cuenta al proponer nuevas

aproximaciones de integración. Estas decisiones de diseño están interconectadas, requiriendo un

compromiso entre las alternativas elegidas para intentar cumplir con todos los requisitos de los

actores interesados. Las alternativas recomendadas en esta tesis para cumplir con estos requisitos

y superar así las limitaciones de los trabajos relacionados son: imponer pocas restricciones popu-

lares sobre los proveedores de VLE y herramientas; promover una integración muchos a muchos

poco acoplada para reducir el esfuerzo de desarrollo; y ofrecer funcionalidad su�ciente para, al

menos, facilitar la gestión del ciclo de vida de las herramientas externas. La identi�cación de

307

308

los principales requisitos y decisiones de diseño es una contribución original de esta tesis

que puede encontrarse en [Ala10a,Ala10c,Ala12a].

Sobre esta base y tratando de alcanzar el segundo objetivo parcial, se propone una arqui-

tectura middleware, llamada GLUE! en el capítulo 3. GLUE!, es una arquitectura de tres capas

poco acopladas compuesta por un elemento intermedio y dos conjuntos de adaptadores (de VLE

y de herramienta). GLUE! promueve la integración muchos a muchos de VLE y herramientas

existentes imponiendo pocos requisitos que los principales proveedores cumplen actualmente.

Además, la arquitectura GLUE! está pensada para que terceros puedan integrar nuevos VLE y

herramientas desarrollando adaptadores. Con respecto a la funcionalidad ofrecida, GLUE! per-

mite gestionar el ciclo de vida de las herramientas externas, facilitando que se puedan instanciar

y poner en marcha actividades individuales y colaborativas desde la interfaz del VLE. La arqui-

tectura GLUE!, incluyendo los elementos y sus responsabilidades, los contratos de integración

y las restricciones impuestas a VLE y herramientas, ha sido publicada en [Ala12a], siendo la

contribución principal de esta tesis.

La arquitectura GLUE! se ha desarrollado como una implementación de referencia de-

nominada GLUE!-RI (véase el capítulo 4), tal y como establecía el tercer objetivo parcial de

esta tesis. GLUE!-RI es una distribución software que incluye la implementación de referencia

del núcleo de GLUE! y un conjunto de ejemplos de adaptadores de VLE y de herramientas.

GLUE!-RI demuestra así que la arquitectura GLUE! no es sólo una propuesta teórica sino que

también es un sistema software que puede ser usado por educadores y estudiantes en escenarios

educativos reales. El código de GLUE!-RI (disponible en http://gsic.uva.es/glue) puede ser

descargado e instalado por cualquiera que esté interesado en utilizar GLUE! para la integración

de herramientas externas. Además, el código fuente se distribuye con licencia GPL para ser reu-

tilizado a la hora de desarrollar nuevos elementos para la arquitectura GLUE!. GLUE!-RI es

la tercera contribución de este trabajo, siendo mencionado en primera instancia en [Ala12a], y

posteriormente particularizado para los casos de Moodle y LAMS en [Ala11b,Ala12c].

La evaluación de esta tesis tenía como objetivo mostrar que GLUE! cumple con los seis

requisitos de los actores interesados (véase el capítulo 5). Esta evaluación se ha apoyado en el

marco CSCL-EREM y se han de�nido para ella cuatro experiencias involucrando a educadores y

estudiantes de nivel universitario en distintos contextos. Estas experiencias sirvieron para recoger

datos y evidencias que apoyasen la evaluación. Dichos resultados permiten a�rmar que GLUE!

cumple con los requisitos determinados al inicio de la tesis, lo que se espera fomente su adop-

ción por parte de los diferentes actores. Estos experimentos permitieron observar, por ejemplo,

que GLUE! puede facilitar la instanciación y puesta en marcha de actividades colaborativas,

reduciendo el tiempo de instanciación en más de un 80% (al combinarse con Moodle o LAMS).

Además, GLUE! puede integrar muchas herramientas (al menos diecisiete actualmente) y no

requiere abandonar los VLE a los que educadores y estudiantes están ya acostumbrados. Se es-

http://gsic.uva.es/glue

RESUMEN EN ESPAÑOL 309

pera por tanto que estas ventajas motiven a los profesionales de la educación a adoptar esta

arquitectura. En lo que respecta a otros actores, GLUE! trata de estimular las contribuciones de

los desarrolladores al reducir el esfuerzo de desarrollo, debido al bajo acoplamiento, a su capa

intermedia de software y a su integración muchos a muchos. De forma signi�cativa, estas con-

tribuciones no requieren cambios en el código original de VLE y herramienta, tal y como solicitan

los proveedores. La evaluación de la arquitectura GLUE! y GLUE!-RI ha sido publicada

en [Ala12a,Ala12b], y completa el último objetivo parcial de esta tesis.

Con todo ello, es posible a�rmar que se ha alcanzado el objetivo global de esta tesis:

Diseñar, desarrollar y evaluar una arquitectura middleware que permita la inte-

gración de múltiples herramientas externas existentes en múltiples VLE existentes,

requiriendo un esfuerzo de desarrollo asumible para integrar nuevas herramientas y

VLE, imponiendo sólo restricciones básicas que la mayoría de proveedores de VLE

y herramientas cumplan, y ofreciendo su�ciente funcionalidad para facilitar la ins-

tanciación y puesta en marcha de situaciones de aprendizaje colaborativo.

Trabajo futuro

Durante la realización de esta tesis han surgido algunos temas que han sido anotados para

futuras revisiones de esta propuesta. Además, algunos otros temas quedaban fuera del ámbito

principal de esta investigación, y por ello se marcaron con una prioridad más baja. En este punto

se sugieren varias líneas de trabajo que podrían extender y mejorar la investigación presentada en

esta tesis, y que incluyen algunos de estos temas. Para entender mejor las líneas de trabajo, éstas

se han clasi�cado en cuatro categorías: integración de nuevos sistemas, mejora de los sistemas

integrados, integración con otros sistemas en el ciclo de vida CSCL y programas de transferencia.

Dentro de la integración de nuevos sistemas destacan tres líneas de trabajo. La primera

de ellas es la integración de nuevas plataformas de aprendizaje como Sharepoint LMS o Sakai.

Dentro de esta misma línea también se recoge la migración a nuevas versiones de los VLE ya

integrados, y el estudio de la integración de herramientas en otras plataformas distintas a los

VLE, como pueden ser los CMS o los PLE. La segunda línea es la integración de nuevas herra-

mientas externas. Sobre esto ya se está trabajando en algunos casos concretos, como por ejemplo

la integración del editor de texto colaborativo PiratePad. Sin embargo, dado que el esfuerzo de

desarrollar adaptadores de herramientas no es muy elevado, se espera poder establecer priori-

dades a petición de los propios educadores. Queda pendiente también como parte de esta línea,

el desarrollo de un adaptador que permita alcanzar la compatibilidad entre GLUE! y Basic LTI,

permitiendo integrar herramientas externas que cumplan con esta especi�cación de IMS. Final-

mente, una tercera línea es la de fomentar el desarrollo de adaptadores por parte de terceros. En

este sentido ya se han establecido contactos con varias empresas y universidades para este �n.

310

Como parte de la mejora de los sistemas integrados se incluyen algunas líneas de

trabajo futuro al margen del objetivo principal de esta tesis que necesitan una mayor re�exión, y

también algunas tareas de implementación concretas de baja prioridad, que por falta de tiempo

no han podido completarse. Un ejemplo de las primeras es la revisión de las propuestas de auto-

rización de nivel de usuario para la gestión de herramientas externas. Actualmente, se plantean

dos soluciones de compromiso para este problema de seguridad que se han implementado, aunque

ambas tienen limitaciones en entornos con muchos usuarios o poco controlados. Además, dentro

de las tareas de implementación pendientes destacan, entre otras: la implementación de las pro-

puestas diseñadas para los otros problemas de seguridad detectados (incluyendo diferentes niveles

de autorización y también la privacidad en las comunicaciones); el desarrollo de un cliente de

administración para el registro interno de herramientas; la adopción de HTML5 como formato

para las plantillas de con�guración en los adaptadores ya desarrollados; el apoyo a la creación de

copias de seguridad de cursos que incluyan herramientas externas en Moodle (como parte de la

lógica del adaptador de este VLE); y la funcionalidad para reutilizar instancias de herramientas

externas en distintas actividades de una misma lección en LAMS.

Otro conjunto de líneas de trabajo futuro se engloban como parte de la integración de

la arquitectura GLUE! con otros sistemas dentro del ciclo de vida CSCL. En este

sentido, una de las investigaciones en curso promueve la utilización de una arquitectura deno-

minada GLUE!-PS (GLUE!-Pedagogical Scripting - GLUE!-Guiado Pedagógico) [Mun12b,Pri11]

para el despliegue de diseños de aprendizaje generados con múltiples herramientas de autoría

y lenguajes de modelado en múltiples VLE. Estos diseños pueden particularizarse también uti-

lizando herramientas externas integradas mediante la arquitectura GLUE!. La alianza GLUE!

- GLUE!-PS ya ha sido probada en experiencias con educadores reales, los cuales destacaron

los bene�cios de esta aproximación conjunta [Ala12d]. Otra línea de trabajo que actualmente se

está desarrollando es la posibilidad de que los profesores �ltren las herramientas externas en las

que están interesados mediante búsquedas semánticas; esto es especialmente útil a medida que

el número de herramientas integradas crece. También como parte de esta línea se ha propuesto

una infraestructura basada en datos enlazados (linked-data) [Biz09], denominada SEEK-AT-

WD (Support for Educational External Knowledge About Tools in the Web of Data - Apoyo al

Conocimiento Educativo Externo sobre Herramientas en la Web de Datos) [Rui12a,Rui12b] que

puede ser útil para reducir la carga de administración dedicada a poblar y mantener el registro

interno de herramientas de GLUE!. También se está trabajando en una extensión para GLUE! de-

nominada GLUE!-CAS (GLUE!-Collaboration Analysis Support - GLUE!-Apoyo al Análisis Co-

laborativo) [Rod11,Rod12] orientada a obtener información de distintas fuentes (VLE, GLUE!,

herramientas externas) sobre análisis de interacciones [Sol05], necesaria para facilitar la eva-

luación del trabajo de los alumnos. Por último, otra línea de trabajo pendiente es el uso de

geolocalización en las de herramientas integradas mediante GLUE! [Mun12a]. Esto permitiría

asignar coordenadas (latitud y longitud) a las diferentes instancias, de tal forma que los estu-

RESUMEN EN ESPAÑOL 311

diantes, utilizando dispositivos móviles, deberían posicionarse cerca de dichas coordenadas para

poder visualizar el contenido de las instancias.

Finalmente, es importante destacar que éste es un trabajo de investigación aplicado que se

espera sirva para mejorar las prácticas educativas. Por ello, es muy importante de�nir programas

de transferencia con instituciones dedicadas a la enseñanza. En este sentido el primer paso dado

ha sido el desarrollo de una implementación de los elementos de la arquitectura que cualquiera

puede descargar de http://gsic.uva.es/glue e instalar. Además, se han creado manuales de

usuario y vídeos explicativos (accesibles también a partir de ese enlace) con las novedades que

introduce la arquitectura en el funcionamiento habitual de los VLE. Finalmente, se han llevado a

cabo negociaciones para la adopción de esta propuesta en varias instituciones como la Universidad

de Valladolid, el Instituto de Oftalmobiología Aplicada (IOBA) asociado a esta Universidad y la

Universidad de Mondragón.

http://gsic.uva.es/glue

312

	Introduction
	Research problem of the dissertation
	Objectives and contributions
	Research methodology
	Structure of the document

	Integration of external tools in VLEs
	Introduction
	Computer Supported Collaborative Learning
	Life cycle of collaborative learning situations

	Virtual Learning Environments
	Examples of VLEs
	Life cycle of VLEs in collaborative learning situations

	Software tools
	Examples of software tools
	Life cycle of software tools in collaborative learning situations

	The integration problem
	Integration contracts
	Requirements of the main stakeholders
	Integration approaches
	Design issues and alternatives

	Analysis of existing integration approaches
	Conclusions

	The GLUE! architecture
	Introduction
	Methodology and process
	Initial requirements and design decisions
	Description of the architecture
	Overview of the architecture
	GLUE! integration contract for tools
	GLUE! integration contract for VLEs
	Technologies and behavior of the GLUElet Manager

	Overall behavior of the architecture
	Use case 1: creation, configuration and assignment of external tool instances
	Use case 2: use of external tool instances
	Use case 3: update of users sharing external tool instances
	Use case 4: deletion of external tool instances

	Security issues
	User level authorization for the management of external tool instances

	Discussion
	Compliance to the stakeholders' requirements
	GLUE! interoperability with other loosely-coupled integration approaches
	GLUE! for the integration of external tools in other contexts

	Conclusions

	GLUE!-RI: Reference implementation of the architecture
	Introduction
	Methodology
	Reference implementation
	Technologies
	Overview
	GLUE! core
	VLE Adapters
	Tool Adapters

	Developing new VLE and tool adapters
	Installation and configuration of GLUE!-RI
	Usage of GLUE!-RI
	Conclusions

	Evaluation
	Introduction
	Evaluation methodology
	Evaluation framework and experiments
	Evaluation methods and data sources

	Collaborative learning situations
	Collaborative learning situation I
	Collaborative learning situation II
	Collaborative learning situation III

	Compliance to the requirements
	Instantiation of individual and collaborative activities (REQ1)
	Enactment of collaborative activities (REQ2)
	Integration of existing and popular VLEs and external tools (REQ3)
	Integration of many external tools (REQ4)
	Development effort (REQ5)
	Built over VLEs and tools (REQ6)
	Other findings

	Comparison with other loosely-coupled integration works
	Feature analysis
	Development effort

	Conclusions

	Conclusions and future work
	Conclusions of the dissertation
	Future work

	Appendix A: Study of the development effort
	Appendix B: GLUE! data format
	Appendix C: Developing tool adapters in Java
	Appendix D: Installation and configuration manuals
	Appendix E: Examples of usage

