Model: OPEN.membrana.default
Version: 3
Date and Time: 07/05/2012 16:49:16.778000
Library: OPEN
Library dependency list: OPEN V2.0
Software: EcosimPro V4.8.0


GENERAL STATISTICS
INFO  #  
Number of equations: 48 
Number of boxes (coupled subsystems of equations): 
Number of linear boxes: 
Number of nonlinear boxes: 
Number of EXPLICIT variables: 42 
Number of DERIVATIVE variables: 
Number of ALGEBRAIC variables: 
EXPLICIT + DERIVATIVE + ALGEBRAIC variables: 48 
Number of BOUNDARY variables: 
Size of Jacobian matrix (DYNAMIC+ALGEBRAIC): 6x6 
Sparsity factor in Jacobian matrix (% of zeros): 
Default integration method: DASSL 

TYPE OF VARIABLES
TYPE  VARIABLE  DATA  CONSTANT  
REAL 53 11 
INTEGER 
STRING 
TABLE 

GLOBAL FLAGS:
FLAG  VALUE  
Remove derivatives FALSE

BOUNDARIES:
NAME  ALIAS  UNITS  DESCRIPTION  INITIAL  

JACOBIAN INDEPENDENT VARIABLES:
POS  VARIABLE  ALIAS  CATEGORY  UNITS  DESCRIPTION  INITIAL  CLOSURE EQUATION  
CSalt[1].  DYNAMIC kg/m3 Derivative of variable CSalt[1]  CSalt[1].' = 0 
CSalt[2].  DYNAMIC kg/m3 Derivative of variable CSalt[2]  CSalt[2].' = 0 
CSalt[3].  DYNAMIC kg/m3 Derivative of variable CSalt[3]  CSalt[3].' = 0 
CSalt[4].  DYNAMIC kg/m3 Derivative of variable CSalt[4]  CSalt[4].' = 0 
CSalt[5].  DYNAMIC kg/m3 Derivative of variable CSalt[5]  CSalt[5].' = 0 
C_permeate  ALGEBRAIC kg/m3  Concentracion de sal en el permeado (kg/m3)  0 = C_permeate - (ro * Js_sum / Jw_sum) 

USER DATA TYPES:


TYPES:
TYPE  NAME  

MODEL VARIABLES:


VARIABLES:
NUM  NAME  UNITS  EQUIV-TO  TYPE  MATH-TYPE  INITIAL  LRANGE  RRANGE  ALIAS  IS-ALIAS  EDIT  TRACE   
1 m3/hbar  REAL DATA_VAR 0.2    NO YES NO 
2 m3/hbar  REAL DATA_VAR 0.01    NO YES NO 
3 CSalt kg/m3  REAL[5] EXPLICIT     NO YES NO 
4 CSalt[1]' kg/m3  REAL DERIVATIVE     NO YES NO 
5 CSalt[1] kg/m3  REAL DYNAMIC     NO YES NO 
6 CSalt[2]' kg/m3  REAL DERIVATIVE     NO YES NO 
7 CSalt[2] kg/m3  REAL DYNAMIC     NO YES NO 
8 CSalt[3]' kg/m3  REAL DERIVATIVE     NO YES NO 
9 CSalt[3] kg/m3  REAL DYNAMIC     NO YES NO 
10 CSalt[4]' kg/m3  REAL DERIVATIVE     NO YES NO 
11 CSalt[4] kg/m3  REAL DYNAMIC     NO YES NO 
12 CSalt[5]' kg/m3  REAL DERIVATIVE     NO YES NO 
13 CSalt[5] kg/m3  REAL DYNAMIC     NO YES NO 
14 C_permeate kg/m3  REAL ALGEBRAIC     NO YES NO 
15 Cin kg/m3  REAL[5] EXPLICIT     NO YES NO 
16 Js kg/s  REAL[5] EXPLICIT     NO YES NO 
17 Js_sum kg/s  REAL EXPLICIT     NO YES NO 
18 Jw kg/s  REAL[5] EXPLICIT     NO YES NO 
19 Jw_sum kg/s  REAL EXPLICIT     NO YES NO 
20 bar  REAL[5] EXPLICIT     NO YES NO 
21 P_permeate bar  REAL DATA_VAR 1.5    NO YES NO 
22 P_retentate bar  REAL EXPLICIT     NO YES NO 
23 Q_permeate m3/seg  REAL EXPLICIT     NO YES NO 
24 Q_retentate m3/s  REAL EXPLICIT     NO YES NO 
25 Qin m3/seg  REAL DATA_VAR 0.0005555    NO YES NO 
26 Vi m3  REAL DATA_VAR 0.03    NO YES NO 
27 Wd kg/s  REAL[6] EXPLICIT     NO YES NO 
28 area  REAL DATA_VAR 0.075    NO YES NO 
29 feedC kg/m3  REAL DATA_VAR 18    NO YES NO 
30 feedP bar  REAL DATA_VAR 48    NO YES NO 
31 feedT ºC  REAL DATA_VAR 20    NO YES NO 
32 kpd   REAL DATA_VAR 1.3    NO YES NO 
33   INTEGER DATA_VAR    NO YES NO 
34 pd bar  REAL EXPLICIT     NO YES NO 
35 pi bar  REAL[5] EXPLICIT     NO YES NO 
36 ro kg/m3  REAL DATA_VAR 1000    NO YES NO 

Note 1: Variables called "__aux_int_..." are internal integer variables, used to iterate
Note 2: FOR statements are converted to WHILE statements

INIT STATEMENTS:

-- init(membrana,0)
_vi1 = 1
WHILE ( _vi1 <= n ) CSalt[_vi1] = 0 _vi1 += 1 END WHILE


Note 3: In equations 'E' means explicit,'I' implicit,'L' linear,,'F' function

SORTED EQUATIONS:

###eqts
[1] CSalt[1] = CSalt[1]. {E@CSalt[1]}
[2] CSalt[2] = CSalt[2]. {E@CSalt[2]}
[3] CSalt[3] = CSalt[3]. {E@CSalt[3]}
[4] CSalt[4] = CSalt[4]. {E@CSalt[4]}
[5] CSalt[5] = CSalt[5]. {E@CSalt[5]}
[6] Cin[2] = CSalt[1] {E@Cin[2]}
[7] Cin[3] = CSalt[2] {E@Cin[3]}
[8] Cin[4] = CSalt[3] {E@Cin[4]}
[9] Cin[5] = CSalt[4] {E@Cin[5]}
[10] Cin[1] = feedC {E@Cin[1]}
[32] Wd[1] = OPEN__f_max(Qin, 0) {E@Wd[1]}
[39] pd = kpd * Wd[1] ** 0.5 {E@pd}
[40] P[1] = feedP - pd / 6. {E@P[1]}
[41] P[2] = feedP - pd * 2. / 6. {E@P[2]}
[42] P[3] = feedP - pd * 3. / 6. {E@P[3]}
[43] P[4] = feedP - pd * 4. / 6. {E@P[4]}
[44] P[5] = feedP - pd * 5. / 6. {E@P[5]}


BOX 1 IS NONLINEAR
ALGEBRAICS  ALIAS  UNITS  DESCRIPTION  INITIAL  
C_permeate  kg/m3  Concentracion de sal en el permeado (kg/m3)  

Equations:

    [16] pi[1] = 0.003 * (feedT + 273.) * OPEN__f_max(CSalt[1] - C_permeate, 0) {E@pi[1]}
    [21] Jw[1] = OPEN__f_max(A * 0.07 * 0.000277777777777778 * (P[1] - P_permeate - pi[1]), 0) {E@Jw[1]}
    [17] pi[2] = 0.003 * (feedT + 273.) * OPEN__f_max(CSalt[2] - C_permeate, 0) {E@pi[2]}
    [22] Jw[2] = OPEN__f_max(A * 0.07 * 0.000277777777777778 * (P[2] - P_permeate - pi[2]), 0) {E@Jw[2]}
    [18] pi[3] = 0.003 * (feedT + 273.) * OPEN__f_max(CSalt[3] - C_permeate, 0) {E@pi[3]}
    [23] Jw[3] = OPEN__f_max(A * 0.07 * 0.000277777777777778 * (P[3] - P_permeate - pi[3]), 0) {E@Jw[3]}
    [19] pi[4] = 0.003 * (feedT + 273.) * OPEN__f_max(CSalt[4] - C_permeate, 0) {E@pi[4]}
    [24] Jw[4] = OPEN__f_max(A * 0.07 * 0.000277777777777778 * (P[4] - P_permeate - pi[4]), 0) {E@Jw[4]}
    [20] pi[5] = 0.003 * (feedT + 273.) * OPEN__f_max(CSalt[5] - C_permeate, 0) {E@pi[5]}
    [25] Jw[5] = OPEN__f_max(A * 0.07 * 0.000277777777777778 * (P[5] - P_permeate - pi[5]), 0) {E@Jw[5]}
    [26] Jw_sum = OPEN__f_max(Jw[1] + Jw[2] + Jw[3] + Jw[4] + Jw[5], 1e-007) {E@Jw_sum}
    [33] Js[1] = B * 0.001 * 0.000277777777777778 * OPEN__f_max(CSalt[1] - C_permeate, 0) {E@Js[1]}
    [34] Js[2] = B * 0.001 * 0.000277777777777778 * OPEN__f_max(CSalt[2] - C_permeate, 0) {E@Js[2]}
    [35] Js[3] = B * 0.001 * 0.000277777777777778 * OPEN__f_max(CSalt[3] - C_permeate, 0) {E@Js[3]}
    [36] Js[4] = B * 0.001 * 0.000277777777777778 * OPEN__f_max(CSalt[4] - C_permeate, 0) {E@Js[4]}
    [37] Js[5] = B * 0.001 * 0.000277777777777778 * OPEN__f_max(CSalt[5] - C_permeate, 0) {E@Js[5]}
    [38] Js_sum = Js[1] + Js[2] + Js[3] + Js[4] + Js[5] {E@Js_sum}
    [45] 0 = C_permeate - (ro * Js_sum / Jw_sum) {I@C_permeate}

END OF BOX 1
[27] Wd[2] = OPEN__f_max(Wd[1] - Jw[1], 0) {E@Wd[2]}
[11] CSalt[1]' = (Wd[1] * Cin[1] - Wd[2] * CSalt[1] - ro * Js[1]) / Vi {E@CSalt[1]'}
[28] Wd[3] = OPEN__f_max(Wd[2] - Jw[2], 0) {E@Wd[3]}
[12] CSalt[2]' = (Wd[2] * Cin[2] - Wd[3] * CSalt[2] - ro * Js[2]) / Vi {E@CSalt[2]'}
[29] Wd[4] = OPEN__f_max(Wd[3] - Jw[3], 0) {E@Wd[4]}
[13] CSalt[3]' = (Wd[3] * Cin[3] - Wd[4] * CSalt[3] - ro * Js[3]) / Vi {E@CSalt[3]'}
[30] Wd[5] = OPEN__f_max(Wd[4] - Jw[4], 0) {E@Wd[5]}
[14] CSalt[4]' = (Wd[4] * Cin[4] - Wd[5] * CSalt[4] - ro * Js[4]) / Vi {E@CSalt[4]'}
[31] Wd[6] = OPEN__f_max(Wd[5] - Jw[5], 0) {E@Wd[6]}
[15] CSalt[5]' = (Wd[5] * Cin[5] - Wd[6] * CSalt[5] - ro * Js[5]) / Vi {E@CSalt[5]'}
[46] Q_permeate = Jw_sum {E@Q_permeate}
[47] P_retentate = feedP - pd {E@P_retentate}
[48] Q_retentate = Wd[6] {E@Q_retentate}

EQUATIONS/VARIABLES MATRIX:
e/v  v
1
5
 
v
1
5
 
v
1
5
 
v
1
5
 
v
1
5
 
v
2
7
 
v
3
4
 
v
2
0
 
v
2
0
 
v
2
0
 
v
2
0
 
v
2
0
 
v
3
5
 
v
1
8
 
v
3
5
 
v
1
8
 
v
3
5
 
v
1
8
 
v
3
5
 
v
1
8
 
v
3
5
 
v
1
8
 
v
1
9
 
v
1
6
 
v
1
6
 
v
1
6
 
v
1
6
 
v
1
6
 
v
1
7
 
v
1
4
 
v
2
7
 
v
0
4
 
v
2
7
 
v
0
6
 
v
2
7
 
v
0
8
 
v
2
7
 
v
1
0
 
v
2
7
 
v
1
2
 
v
2
3
 
v
2
2
 
v
2
4
 
e6 E                                           
e7  E                                          
e8   E                                         
e9    E                                        
e10     E                                       
e32      E                                      
e39      E                                     
e40       E                                    
e41        E                                   
e42         E                                  
e43          E                                 
e44           E                                
B_NLI_1  
e16             E                              
e21            E                              
e17               E                            
e22              E                            
e18                 E                          
e23                E                          
e19                   E                        
e24                  E                        
e20                     E                      
e25                    E                      
e26                  E                     
e33                        E                   
e34                         E                  
e35                          E                 
e36                           E                
e37                            E               
e38                        E               
e45                            A              
END  
e27                             E             
e11                            E            
e28                               E           
e12                              E          
e29                                 E         
e13                                E        
e30                                   E       
e14                                  E      
e31                                     E     
e15                                    E    
e46                                        E   
e47                                         E  
e48                                          E 

Terminology:
    X: Variable used in equation
    E: Explict variable
    A: Algebraic variable
    L: Variable solved linearly
    O: Calculated as output of a function or SEQUENTIAL block
NOTE: Some internal equations are not presented (typically with variables ended in ".")

NOTE: click [+] for accessing the source code file
(Document generated automatically with EcosimPro Version 4.8.0 Date: 2012:05:07 Time: 16:49:16)