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Abstract

Principal Component Analysis (PCA) is a widely used technique for reducing

dimensionality of multivariate data. The principal component subspace is

defined as the affine subspace of a given dimension d giving the best fit to

the data. However, PCA suffers from a well-known lack of robustness. As a

robust alternative, one can resort to an impartial trimming based approach.

Here one searches for the best subsample containing a proportion 1 − α of

the observations, with 0 < α < 1, and the best d-dimensional affine subspace

fitting this subsample, yielding the trimmed principal component subspace.

A population version will be given and existence of a solution to both

the sample and population problem will be proven. Moreover, under mild

conditions, the solutions of the sample problem are consistent toward the

solutions of the population problem. The robustness of the method is studied
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by proving quantitative robustness, computing the breakdown point, and

deriving the influence functions. Furthermore, asymptotic efficiencies at the

normal model are derived, and finite sample efficiencies of the estimators are

studied by means of a simulation study.

Keywords: Affine Subspaces, Dimension Reduction, Orthogonal
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1. Introduction

When analyzing multivariate data sets, one of the primary goals is to

reduce the dimension of the data set at hand with a minimal loss of informa-

tion. This is often a preliminary step to carry out other statistical analysis

such as classification, regression fits and so on. Principal Component Anal-

ysis (PCA) is the most commonly used technique for doing this task and

most practitioners of statistics are familiarized with this method due to its

intuitive geometrical appealing and its implementation in most of statistical

packages. As it happens with many classical statistical methods, one of the

main drawbacks of PCA is the lack of robustness against the possible pres-

ence of outlying observations in the data set. There are a lot of examples

in the literature showing that the presence of one single outlier, strategically

placed, is enough to make classical PCA providing unreliable results.

During the past years, there have been several proposals to robustify clas-

sical PCA. Most of them use robust estimates of the covariance matrix and

compute eigenvectors and eigenvalues from it. As such, Campbell (1980)
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and Devlin et al. (1981) use M estimates, Croux and Haesbroeck (2000)

take high breakdown point covariance matrix estimators such as the Mini-

mum Covariance Determinant estimator and Croux, Ollila and Oja (2002)

use sign and rank covariance matrices. Another approach is based on the

“projection pursuit” idea, where one looks for the direction maximizing a ro-

bust measure of scale of the data projected on it (Li and Chen, 1985; Croux

and Ruiz-Gazen 2005). A hybrid approach combining projection pursuit and

robust covariance matrices was followed by Hubert, Rousseeuw, and Van-

den Branden (2005). Robust procedures have also been developed for kernel

PCA (see, e.g., Debruyne and Verdonck, 2010 and references therein) or in

the learning machine literature (see, e.g., Xu, Caramanis and Sanghavi, 2012

and references there in).

In this paper one aims at retrieving directly the lower dimensional affine

subspace best fitting the large majority of the data. More precisely, we are

looking for the “best” subset of size n − ⌊nα⌋1, with 0 ≤ α < 1, hereby

trimming a portion α of the data, and the corresponding best fitting affine

subspace of a given dimension, where the goodness of fit is measured by the

sum of squared Euclidean distances between the subspace and the selected

observations. More formally, given a sample X = {x1, ..., xn} of observations

in Rp and 0 ≤ α < 1, one looks for the solution of the problem:

min
Y⊂X , #Y≥ n−⌊nα⌋

min
h∈Ad(Rp)

1

#Y
∑
xi∈Y

∥xi − Prh(xi)∥2, (1)

where Ad(Rp) denotes the set of d-dimensional (1 ≤ d < p) affine subspaces

in Rp and Prh(·) denotes the orthogonal projection on h ∈ Ad(Rp). The

1⌊x⌋ represents the largest integer not greater than x.
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“best” subspace according to (1) is called the trimmed principal component

subspace. The “best” Y with n− ⌊nα⌋ observations is the optimal set which

contains the observations surviving the trimming process.

Trimming procedures have revealed as a very powerful tool to robus-

tify statistical methods. The idea of discarding a symmetric proportion of

extreme observations in both sides of the sample is a very old and appeal-

ing proposal for robustifying the classical univariate sample mean. In order

to overcome the implicit hypothesis of symmetry and to extend the idea of

trimming to other frameworks such as multivariate estimation and regression,

trimming procedures based on the idea of searching for the “best” subsam-

ple containing a fixed proportion of the data were introduced by Rousseeuw

(1984, 1985). That gave raise to the well known Least Median of Squares

(LMS) and Least Trimmed Squares (LTS) procedures in the robust regres-

sion context and the Minimum Volume Ellipsoid (MVE) and the Minimum

Covariance Determinant (MCD) in the robust multivariate estimation con-

text. Later on, Gordaliza (1991) stated a functional or population version of

some related trimming procedures in the multivariate setting and coined the

term “impartial trimming” which means that it is the data set itself which

tell us the best way of trimming a fixed proportion α of the data.

The problem defined in (1) is also considered in Maronna (2005), who

proposed a fast approximative algorithm to compute its solution. His paper

mainly discussed computational aspects, while this paper presents a theoret-

ical study of the trimmed principal component subspace, including existence,

consistency, influence function and asymptotic variance of the estimators.

The outline of the paper is as follows. In Section 2 we state the functional
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version of the problem by using trimming functions and we prove some pre-

liminary results simplifying the problem and throwing light on the way how

impartial trimming proceeds in this case. Section 3 is devoted to a general ex-

istence result, not requiring any conditions on the distribution. Consistency

is proven in Section 4 for absolutely continuous random variables. Special at-

tention is paid to the case of elliptical distributions in Section 5. Robustness

aspects are considered in Section 6 including qualitative robustness, influence

functions and breakdown point. We take advantage of the influence functions

previously derived to obtain asymptotic variances in Section 7. Section 8 pro-

vides finite-sample efficiencies obtained by means of a simulation study. The

last section contains the conclusions, while the Appendix contains all the

proofs.

2. Notation and preliminary results

In this paper X is a Rp-valued random vector defined on a probability

space, βp denotes the σ-algebra of all Borel sets in Rp, PX denotes the prob-

ability measure induced by X on (Rp, βp) and ∥ · ∥ denotes the usual norm

on Rp. For a set S ⊂ Rp, S denotes its closure, Sc its complementary set

and IS(·) its associated indicator function. For 1 ≤ d < p, Ad(Rp) denotes

the set of d-dimensional affine subspaces in Rp and for h ∈ Ad(Rp), Prh(·)

denotes the orthogonal projection on h.

We recall the notion of “trimming function” introduced in Gordaliza

(1991) and used in Cuesta-Albertos et al. (1997). Trimming functions are

introduced in order to allow impartial trimming of observations and play an

important technical role. For 0 ≤ α < 1, Tα = Tα(X) denotes the nonempty
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set of trimming functions for X at level α, i.e.,

Tα = {τ : Rp → [0, 1] measurable,

∫
τ(x)dPX(x) = 1− α},

and Tα− = Tα−(X) denotes the set of trimming functions for level 0 ≤ β ≤ α,

Tα− = {τ : Rp → [0, 1] measurable,

∫
τ(x)dPX(x) ≥ 1− α} =

∪
β≤α

Tβ.

Now we state a generalized version of the sample problem (1) using trimming

functions instead of trimming subsets:

Problem statement: For α ∈ (0, 1) and 1 ≤ d < p, search for an

affine subspace h0 ∈ Ad(Rp) and a trimming function τ0 ∈ Tα− solution of

the double minimization problem:

inf
τ∈Tα−

inf
h∈Ad(Rp)

1∫
τ(x)dPX(x)

∫
τ(x)∥x− Prh(x)∥2dPX(x). (2)

The minimum value in (2) will be denoted Vd,α ≡ Vd,α(PX) ≡ Vd,α(X).

We first state some technical results devoted to simplify the problem (2)

and to make the proofs of the existence and consistency results easier. The

next result guarantees the boundedness of the optimal value of the objective

function in (2). We recall that all proofs can be found in the Appendix.

Lemma 1. For any 1 ≤ d < n and any 0 ≤ α < 1, we have Vd,α(X) < ∞.

The next lemma shows that the optimal solution in (2) is characterized

by a strip. Given h ∈ Ad(Rp) and r ≥ 0, we define the strip S(h, r) around

h and with radius r as

S(h, r) = {x ∈ Rp : ∥x− Prh(x)∥ < r}.
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Lemma 2. For any h ∈ Ad(Rp) and 0 ≤ β < 1, let us denote

rβ(h) = inf{r ≥ 0 : PX

(
S(h, r)

)
≤ 1− β ≤ PX

(
S(h, r)

)
}

and

Th,β = {τ ∈ Tβ : IS(h,rβ(h)) ≤ τ ≤ IS(h,rβ(h)), PX-a.e.},

then, for all τ ∈ Th,β we have:

(a)
∫
τ(x)∥x − Prh(x)∥2dPX(x) ≤

∫
τ ′(x)∥x − Prh(x)∥2dPX(x) for all the

trimming functions τ ′ ∈ Tβ

(b) The equality in (a) holds if and only if τ ′ ∈ Th,β.

Take τh,β any trimming function in Th,β. From Lemma 2 (b) it follows that

Vd,β(h) :=
1

1− β

∫
τh,β(x)∥x− Prh(x)∥2dPX(x), (3)

is the same for every τh,β ∈ Th,β. We call (3) the β-trimmed variation of

X around the affine subspace h. Unless necessary, no explicit reference to

any particular choice in Th,β will be made and the notation τh,β will be used

for any trimming function in Th,β. Lemma 2 (a) says that taking another

trimming function τ cannot decrease the value of (3). Hence, τh,β, which

is essentially an indicator function of the strip S(h, rβ(h)) around h, is the

optimal trimming function for the problem (2).

Lemma 3. With the same notation as in Lemma 2, if β ≤ α, we have:

(a) Vd,α(h) ≤ Vd,β(h);

(b) The equality in (a) holds if and only if rα(h) = rβ(h) and

PX(S(h, rα(h))) = 0.
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It follows from Lemma 3 that, in order to minimize the α-trimmed vari-

ation around h, it is strictly better to trim the exact proportion α, except

in the case that all the probability mass of S(h, rα(h)) is supported on its

boundary. Lemma 2 and Lemma 3 together result in

Proposition 1. For any h ∈ Ad(Rp) and 0 ≤ α < 1, it holds that

Vd,α = inf
h∈Ad(Rp)

Vd,α(h).

The previous proposition allows us to simplify the original double mini-

mization problem (2) to the single search of the optimal affine subspace. Once

that the optimal affine subspace h is determined, the optimal trimming func-

tion is essentially the indicator function of the associated strip S(h, rα(h)).

Any affine subspace h0 satisfying Vd,α(h0) = Vd,α, i.e. being a solution of the

problem stated in (2), will be called a d-dimensional α-trimmed principal

component subspace of X. The shorter name trimmed principal component

subspace will be also used.

Note that the previous problem statement covers both the population

and the sample problem. In the sample case PX is replaced by the empir-

ical measure P ω
n . That is, if we have a sample {Xi}ni=1 of size n from the

probability distribution PX , the associated empirical measure is defined as

P ω
n (A) =

1

n

n∑
i=1

IA(Xi(ω))

for ω in the sample space Ω. Now, given the outcome of a sample X1(ω) =

x1, ..., Xn(ω) = xn, we can see that the problem stated in (1) is equivalent to

the problem (2) when taking P ω
n instead of PX .
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3. Existence

The main goal of this section is to state the existence of solutions of prob-

lem (2). The result would guarantee the existence of solutions of both the

population and the sample problem. We do not assume any moment condi-

tion on the underlying distribution. This is important in terms of robustness,

because outliers are often associated with the presence of heavy tails for the

underlying distribution, where moment conditions are not realistic.

From Lemma 1 and Proposition 1, we have that

Vd,α = inf
h∈Ad(Rp)

Vd,α(h) < ∞, (4)

so we can take a sequence of subspaces {hn}n ⊂ Ad(Rp) such that Vd,α(hn) ↓

Vd,α as n → ∞. For any affine subspace hn in that sequence, let us denote

τn = τhn,α, the radius rn = rα(hn) and Sn = S(hn, rn). Moreover, we param-

eterize hn through the distance to the origin, denoted by dn = infx∈hn ∥x∥,

and the choice of d unitary vectors spanning the affine subspace. The bound-

edness of the sequences {dn}n and {rn}n follows from the following lemma:

Lemma 4. If {hn}n is a sequence of affine subspaces in Ad(Rp) satisfying

Vd,α(hn) ↓ Vd,α as n → ∞, then {dn}n and {rn}n are bounded sequences.

Furthermore, as all d sequences of unitary vectors are bounded and Rp

is a complete space, {hn}n contains a convergent subsequence in the sense

that the corresponding subsequences of unitary spanning vectors, distances

to the origin {dn}n, and the radii {rn}n, are all convergent. We pass to

this convergent subsequence without changing notation. We now state the

existence result:
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Theorem 1 (Existence). Let X be a random vector, α ∈ (0, 1) and 1 ≤

d < p. Then there exists a d-dimensional α-trimmed principal component of

X.

Now that existence of the trimmed principal component subspace is es-

tablished, we can formulate two important corollaries. The first one says that

the optimal trimming function is essentially the indicator function of a strip

whose axis is the optimal affine subspace. The second one establishes that

the trimmed principal component subspace is spanned by the eigenvectors as-

sociated with the largest eigenvalues of the covariance matrix obtained with

respect to the probability distribution PX “restricted” through the optimal

trimming function.

Corollary 1. Under the hypotheses of Theorem 1, if τ0 and h0 are a solution

of (2), then

IS(h0,rα(h0)) ≤ τ0 ≤ IS(h0,rα(h0))
, PX-a.e.

Moreover, if PX is absolutely continuous with respect to the Lebesgue measure

on Rp, then

IS(h0,rα(h0)) = τ0, PX-a.e.

For every τ ∈ Tα, let us denote P τ
X the probability distribution induced

on Rp by the restriction of X through the trimming function τ , i.e. for every

Borel set A,

P τ
X(A) =

1

1− α

∫
A

τ(x)dPX(x).

Corollary 2. Under the hypotheses of Theorem 1, if τ0 and h0 are a solution

of (2) and the random variable X has finite second order moments, then h0
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is the affine subspace spanned by the ordinary principal components of the

probability distribution P τ0
X .

If Corollary 2 would not hold, the α-trimmed variation could be strictly

diminished by replacing h0 by the affine subspace spanned by the ordinary

principal components of the probability distribution P τ0
X and then τ0 and h0

would not be a solution of (2).

4. Consistency

While Theorem 1 guarantees the existence of solutions for the popula-

tion and the sample problem, we now prove the convergence of the sample

solutions to the population ones. The convergence between affine subspaces

is stated as the convergence of the distances to the origin and the possible

choice of a sequence of converging unitary spanning vectors. Obviously, the

sequences of sample optimal radii and sample trimmed variations will then

also be consistent.

In what follows, {Xn}n is a sequence of Rp-valued random vectors and

hn ∈ Ad(Rp), n = 1, 2, ..., are the d-dimensional trimmed principal com-

ponent subspaces for Xn with associated optimal trimming function τn =

τhn,α(Xn) and optimal radius rn. Moreover, Vn := Vd,α(Xn), n = 0, 1, 2, ...,

denotes the trimmed variation of Xn.

The main result related to the consistency of the trimmed principal com-

ponent subspace is based on a continuity result as well as on the Skorohod

representation theorem. This scheme of the proof is similar to that used in

Cuesta-Albertos et al. (1997) to establish consistency for trimmed k-means.
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Similar as in Cuesta-Albertos et al. (1997) difficulties arise since the trim-

ming functions have discontinuities on the boundaries of the corresponding

strips. To overcome this, the continuity of the probability distribution of the

limit random vector will be imposed.

As in the existence proof, the first step is to show that {hn}n contains a

convergent subsequence by showing that their unitary vectors, the distances

to the origin {dn}n and the radii sequences {rn}n are bounded.

Lemma 5. Let {Xn}n be a sequence of Rp-valued random vectors such that

Xn → X0, P -a.e. Then {dn}n and {rn}n are bounded sequences.

The proof of this lemma is essentially the same as that of Lemma 4. One

only needs to take into account that the sequence {Xn}n is tight. Now we

are ready to formulate the “continuity” result.

Theorem 2 (Continuity). Let {Xn}n be a sequence of Rp-valued random

vectors, α ∈ (0, 1) and 1 ≤ d < p. Let {hn}n ⊂ Ad(Rp) be the sequence of

d-dimensional trimmed principal component of Xn, for n = 1, 2, . . . Assume

that:

(a) Xn → X0, P -a.e.;

(b) PX0 is an absolutely continuous distribution;

(c) h0 is the unique d-dimensional trimmed principal component of X0.

Then hn → h0 and Vn → V0 as n → ∞.

We can replace the almost sure convergence condition in Theorem 2 by

a convergence in distribution. By applying the a.s. Skorohod representation
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theorem, there exists a sequence {Yn}n of Rp-valued random vectors such that

PX0 ≡ PY0 , PXn ≡ PYn and Yn → Y0 P−a.s. Hence, by applying Theorem 2

to the sequence {Yn}n, it follows that

Corollary 3. Theorem 2 holds if we replace condition (a) by

(a′) Xn → X0 in distribution.

Finally, to obtain the desired consistency result, consider a sequence of

independent, identically distributed random vectors {Xn}n, with probability

distribution PX and recall that problem stated in (1) is equivalent to the

problem (2) taking P ω
n instead of PX . Furthermore, it is well-known that the

set

Ω0 := {ω ∈ Ω such that P ω
n converges in distribution to PX}

has probability equal to 1. Thus, the desired consistency result follows as a

simple consequence of Corollary 3:

Theorem 3 (Consistency). Let {Xn}n be a sequence of independent, iden-

tically distributed Rp-valued random vectors with distribution PX and let

{P ω
n } be the sequence of empirical probability measures, for any ω ∈ Ω. Let

us assume that PX is absolutely continuous having a unique d-dimensional

trimmed principal component subspace h0 ∈ Ad. If {hω
n}n is a sequence of

empirical d-dimensional trimmed principal components of {P ω
n }n, then

(a) hω
n → h0, P -a.s.

(b) Vd,α(P
ω
n ) → Vd,α(X), P -a.s.
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The consistency result requires the uniqueness of the d-dimensional trimmed

principal component subspace, which does not hold in general. The unique-

ness property may be guaranteed resorting to certain “geometrical” condi-

tions on the probability distribution PX . In the next section, a uniqueness

result is obtained for elliptically contoured distributions.

5. Uniqueness and Fisher consistency for Elliptical distributions

In this section we focus on the interesting case of the elliptically con-

toured distributions. We say that a Rp-valued random variable X follows

an elliptical symmetric distribution X ∼ Ep(µ,Σ) if it admits a probability

density function of the form

fX(x) = |Σ|−
1
2h((x− µ)′Σ−1(x− µ)) for x ∈ Rp (5)

where h is a positive and non-increasing square integrable function called the

radial function. The symmetric positive definite matrix Σ is called the scatter

matrix, and is proportional to the covariance matrix if the distribution has a

second moment. The ordered eigenvalues of Σ will be denoted by λ1 ≥ ... ≥

λp > 0 and the associated eigenvectors will be v1, ..., vp, respectively. The

location parameter of the distribution is µ. The density f is called unimodal

if the radial function h has a strictly positive derivative ḣ.

The proof of the uniqueness result for elliptically contoured distributions

needs the application of the following multivariate probability inequality,

whose proof can be found in Davies (1987):

Lemma 6. Let µ ∈ Rp and Σ be a symmetrix positive definite matrix. Let
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ξ and g : R+ → R+ be nonincreasing functions with
∫
g(x′x)dx < ∞. Then∫

ξ((x− µ)′Σ−1(x− µ))g(x′x)dx ≤
∫

ξ(x′Σ−1x)g(x′x)dx.

To have uniqueness we need an additional restriction on the eigenvalues.

There needs to be a difference between λd and λd+1, where d is the dimension

of the affine subspace we are looking for. The other eigenvalues may coincide.

This condition guarantees that the space spanned by the first d eigenvectors

of Σ is uniquely determined.

Theorem 4 (Uniqueness). Let X be a random vector having an elliptically

symmetric distribution as in (5), with unimodal density. Let λ1 ≥ ... ≥ λp >

0 be the eigenvalues of Σ satisfying λd > λd+1. Then,

(a) For every α > 0 and every d < p, the d-dimensional trimmed principal

component subspace of X is unique. That subspace passes through µ

and is spanned by the d largest eigenvectors of the matrix Σ.

(b) If X has finite second order moments, then the trimmed d-dimensional

principal component subspace coincides with the ordinary principal com-

ponent subspace of dimension d.

The theorem above tells us that, at any elliptically symmetric distribution,

the trimmed principal component subspace passes through the location pa-

rameter µ and it is spanned by the largest d eigenvectors of the scatter matrix

Σ. If the second moment exist, then Σ is proportional to the covariance ma-

trix and, therefore, the principal axis corresponding to the trimmed principal

components are the same as those obtained by using the standard PCA.
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We also give a Fisher consistency result for elliptical contoured distri-

butions. At this point, some functional notations are needed. To avoid

notational complexity, we omit the reference to the random vector X in the

notation PX by just writing P . For a given distribution P with density as

in (5), let us denote by S(P ) the optimal strip associated with the trimmed

principal component subspace. By Theorem 4 and the hypothesis on the

eigenvalues of Σ, this strip is centered at µ and has the first d eigenvectors of

Σ as spanning vectors. We define the functional giving us the average over

this space

m(P ) =
1

1− α

∫
S(P )

xdP (x).

Analogously, we introduce the (restricted) covariance matrix

C(P ) =
1

1− α

∫
S(P )

(x−m(P ))(x−m(P ))′dP (x). (6)

Due to orthogonal and translation equivariance of the loss function defin-

ing the optimal strip, these functionals are orthogonal and translation equiv-

ariant. Based on this property, we restrict our attention to elliptical distri-

butions centered at the origin and with diagonal scatter matrix, i.e. µ = 0

and Σ is a diagonal matrix. In this case, it is easy to see that m(P ) = 0 and

C(P ) is diagonal.

Theorem 5 (Fisher consistency). Let P be with density as in (5). If

we assume finite second order moments, then there exists a real constant

c depending only on the distribution P via the radial function h and the

trimming constant α, such that the first d eigenvalues and eigenvectors of

cC(P )
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are equal to the first d eigenvalues and eigenvectors of the covariance matrix

of P . At the multivariate normal distribution, one has c = 1

The above property is called Fisher consistency of the the first d eigen-

values and eigenvectors of C(P ). To get this Fisher consistency, the matrix

C needs to be multiplied by a constant c. In the sequel, the functional C

will always be be multiplied by this consistency factor c. At the multivari-

ate normal distribution, no such correction is needed, but at other types of

elliptical distributions c may be different from zero.

6. Robustness

In this section, to avoid notational complexity, we keep on omitting the

reference to the random vector X in the notation PX by just writing P .

6.1. Qualitative Robustness

Hampel (1971) introduces the qualitative robustness of a sequence of es-

timators {Tn}∞n=1 as the equicontinuity of the mappings {P → LP (Tn)}∞n=1,

where LP (Tn) denotes the distribution of the estimator Tn under the distri-

bution P .

Hampel (1971) also defined a “continuity” condition for a sequence of

estimators at a distribution F . If Tn is such that Tn = T (P ω
n ) with P ω

n

the empirical distribution, the continuity condition is analogous to that of T

being a weak continuous functional. If we have a sequence of distributions

Qn, n = 1, 2, ..., converging weakly to P , we can obtain through the Skorohod

Representation theorem some random vectors Zn, n = 1, 2, ..., and Z0 with

distributions Qn, n = 1, 2, ..., and P , respectively, and converging almost
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surely. Thus, we can apply Theorem 2 to the sequence {Zn}∞n=0 to obtain

the weak continuity.

Lemma 7. The d-dimensional trimmed principal component subspace func-

tional is weakly continuous at any absolutely continuous distribution P ad-

mitting an unique d-dimensional trimmed principal component subspace.

If P n denotes the product measure on Rn×p, the weak continuity together

with the continuity of Tn as a point function on Rn, except for a set of P n-

measure 0, would imply the qualitative robustness of Tn (Theorem 1.a in

Hampel 1971). In our case, the weak continuity follows from Lemma 7 and

the point continuity is achieved, except perhaps in those points where we have

(at least) two optimal subsets of the sample X reaching the same minimum

value in expression (2). However, for absolutely continuous distributions

with respect to the Lebesgue measure, those points are a finite union of

P n-measure 0 zones, so those points have null P n-measure.

Theorem 6. The d-dimensional trimmed principal component subspace func-

tional is qualitatively robust under the assumptions of Lemma 7.

Notice that we need an uniqueness condition. This condition may be

seen as being similar to that of the uniqueness of the population median

in stating the qualitative robustness of the median estimator. A similar

uniqueness condition was needed to state the qualitative robustness of the

trimmed k-means estimator in Garćıa-Escudero and Gordaliza (1999).

6.2. Influence function

The influence function is the keystone of Hampel’s infinitesimal approach

to Robust Statistics (Hampel 1974 and Hampel et al. 1986), providing a very
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rich information about the robustness of an estimator. It is also a useful

tool for exploring asymptotic variances. Thus, to further investigate the

robustness and asymptotic properties of the trimmed principal component

subspace estimator, we compute its influence function, for the eigenvalues and

eigenvectors, for elliptical contoured distributions. The main ideas will follow

Croux and Haesbroeck (1999). The IF of a functional T at a distribution P

is given by

IF (x0;T, P ) = lim
ε↓0

T ((1− ε)P + εδ{x0})− T (P )

ε
,

for those x0 where this limit exists. Here δ{x0} denotes a Dirac distribution

putting al its mass at x0.

For deriving the influence function of the eigenvectors and eigenvalues at

elliptical distributions, we first need the influence function for the functional

C, defined in (6). For j = 1, . . . , p, we denote by Λj(P ) and Vj(P ) the jth

eigenvalue and eigenvector of C(P ). Thanks to the orthogonal and transla-

tion equivariance of the functional, we may assume that µ = 0 and take Σ

diagonal. The following result is proven in the Appendix.

Theorem 7. At an elliptical distribution function P with probability density

function given by (5), with µ = 0, and Σ = diag(λ1, . . . , λp), we have that

for a diagonal term of C:

IF (x0;C,P )ii =
c

1− α
IS(P )(x0)

(
x2
0i −

Aii

G

)
− Λi(P ) +

cAii

G

and for an off-diagonal term (i ̸= j)

IF (x0;C,P )ij = −(Λj(P )− Λi(P ))λiλj

2(λj − λi)

IS(P )(x0)x0ix0j

Hij

.
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The quantities G, Aii and Hij are defined in the Appendix, see formulas

(A.16),(A.14), and (A.20).

We note that the influence functions are not bounded. This come from

the unboundedness of the strip S(P ) along the first d eigenvectors of C(P ).

However, the influence function reveals that only good leverage points, i.e.

outliers in the direction of the first d eigenvectors and still belonging to S(P ),

may have huge influence. On the other hand, bad outliers have bounded in-

fluence, and are even redescending to zero for the non diagonal elements.

The influence function is alike the one of the classical estimator for contam-

inations close to the subspace span of the first d eigenvectors.

Using the above theorem, one readily obtains the influence functions for

eigenvectors and eigenvalues of C. Indeed, for Σ diagonal, Lemma 3 of Croux

and Haesbroeck (2000) yields

IF (x0, Vji, P ) =
IF (x0, C, P )ji
Λi(P )− Λj(P )

(1− δij)

where δij is a boolean that takes value 1 when j = i, and the corresponding

result for eigenvalues

IF (x0,Λi, P ) = IF (x0, C, P )ii.

The case of eigenvalues is therefore immediate

IF (x0,Λi, P ) =
c

1− α
IS(P )(x0)

(
x2
0i −

Aii

G

)
− Λi(P ) +

cAii

G
, (7)

for 1 ≤ i ≤ p. For an eigenvector Vi, with 1 ≤ i ≤ p, we have that the

influence function of its ith component is zero, while for component j ̸= i

IF (x0, Vi, P )j =
λjλi

λj − λi

IS(P )(x0)x0ix0j

2Hij

.
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In another form

IF (x0, Vi, P ) =
∑
j ̸=i

λiλj

λj − λi

IS(P )(x0)x0ix0j

2Hij

vj, (8)

with vj the jth eigenvector of Σ.

To conclude this section, Figures 1 and 2 picture the influence functions

of the largest eigenvalue and its associated eigenvector for a bivariate normal

distribution with zero mean and covariance matrix Σ = diag(2, 1). Further-

more, we take d = 1. Only the non-zero component of the influence function

of the eigenvector, i.e. only the second component, is represented. We make

plots of the IF for the functionals with α = 0 (left panel - no trimming) and

α = 0.01 (right panel - 1% trimming).
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Figure 1: Influence function of the largest eigenvalue at P = N(0,diag(2, 1)) when α = 0

(left panel) and α = 0.01 (right panel).

Inside the strip S(P ), which is here given by S(P ) = {x2|x2
2 ≤ r2(P )},
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the influence function for the untrimmed and the trimmed influence functions

have a similar behavior. But outside the optimal strip the influence of the

”trimmed” eigenvalue becomes zero, and bounded for the ”trimmed” eigen-

vectors. For the untrimmed or classical eigenvectors and eigenvalues, the

influence functions goes beyond all bounds, also outside the optimal strip.

The plots illustrate that the trimmed principal components bound the influ-

ence of bad leverage points (outside the optimal strip), while they still give

unbounded influence to good leverage points. The latter property ensures

that the loss in statistical efficiency due to the trimming remains limited, as

will be further explored in Section 7.
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Figure 2: Influence function of the eigenvector associated to the largest eigenvalue at

P = N(0,diag(2, 1)) when α = 0 (left panel) and α = 0.01 (right panel).
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6.3. Breakdown Point

As it is well known, the influence functions provides just a local descrip-

tion of the behavior of a functional at a probability model and we always need

to complement this description with a measure of global reliability. This com-

plementary measure is the breakdown point, that provides a measure of how

far from the model the good properties derived from the influence functions

of the estimator can be expected to extend. We will consider Donoho and

Huber’s (1983) sample version. Given X = {x1, ..., xn} a sample of n points

and T an estimator based in that sample, let us denote by ε∗n(T,X ) the small-

est fraction of corrupted observations needed to breakdown the estimator T ,

i.e.

ε∗n(T,X ) = min

{
k

n
; sup

X ′
∥T (X )− T (X ′)∥ = ∞

}
,

with X ′ ranging on the set of all possible samples obtained by replacing k

original data points in the sample X by arbitrary ones.

We consider the “distance to the origin” of the empirical optimal trimmed

principal component subspace based on the sample X . If hX denotes the

empirical optimal subspace for the sample, the distance to origin is D(X ) :=

infx∈hX ∥x∥, and, we would say that the procedure breaks down when D(X ′)

can be made arbitrarily large.

It is not difficult to see that for the “distance to the origin” estimator

associated with classical Principal Components Analysis it suffices to replace

d + 1 data points strategically placed in order to obtain an affine subspace

whose distance to the origin is arbitrarily large. Hence ε∗n(T,X ) = (d+1)/n,

which asymptotically reaches the worst possible value 0, showing the lack of

robustness of the classical estimator.
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For the trimming based method, the next result shows that the breakdown

point of the “distance to the origin” estimator is asymptotically equal to

α. Maronna (2005) also analyzed the breakdown point for an alternative

estimator. His results are coincident with Theorem 8 but his proof mainly

applies to estimators based on minimizingM -scales. We give in the Appendix

a detailed proof for the “distance to the origin” estimator resulting from

trimmed principal components.

Theorem 8. Let α ∈ (0, 1/2] and 1 ≤ d < p. The breakdown point of the

“distance to the origin” estimator D, at any p-dimensional sample X is

ε∗n(D,X ) = min

{
⌊nα⌋+ d+ 1

n
,
n− ⌊nα⌋

n

}
. (9)

One has ε∗n(D,X ) → α as n → ∞.

7. Asymptotic variances

In this section, we will use similar notation as in Subsection 6.2. Under

the hypothesis that a functional T is Frechet differentiable, its asymptotic

distribution is gaussian, and its asymptotic variance is given by

ASV(T, P ) =

∫
Rd

IF (x, T, P )IF (x, T, P )′dP (x)

The question of Frechet differentiability of the functionals is not addressed

in this paper.

7.1. Asymptotic variances in the elliptical case

For an elliptical contoured distribution with µ = 0 and Σ = diag(λ1, . . . , λp),

expression (7) gives

ASV(Λi, P ) =

∫
Rd

{
c

1− α
IS(P )(x)

(
x2
i −

Aii

G

)
− Λi(P ) +

cAii

G

}2

|Σ|−
1
2h(x′Σ−1x)dx
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=
c2

(1− α)2

∫
S(P )

x4
i |Σ|−

1
2h(x′Σ−1x)dx+

[
−cαAii

(1− α)G
− Λi(P )

]

· 2c

1− α

∫
S(P )

x2
i |Σ|−

1
2h(x′Σ−1x)dx+

α

1− α

(
cAii

G

)2

+Λi(P )2

=
c2

(1− α)2

∫
S(P )

x4
i |Σ|−

1
2h(x′Σ−1x)dx−Λi(P )2+

α

1− α

(
cAii

G

)2

+2Λi(P )
cAii

G
(
−α

1− α
).

For the eigenvectors, using (8) results in

ASV(Vi, P ) =

∫
Rd

(∑
j ̸=i

λiλj

λj − λi

IS(P )(x)xixj

2Hij

vj ·

∑
k ̸=i

λiλk

λk − λi

IS(P )(x)xixk

2Hik

vk
′
)
dP (x).

By symmetry of S(P ) and P , the terms for j ̸= k integrate to zero. Hence

there remains

ASV(Vi, P ) =
∑
j ̸=i

λ2
iλ

2
j

(λi − λj)2

∫
S(P )

x2
ix

2
jdP (x)

4H2
ij

vjvj
′. (10)

7.2. Asymptotic relative efficiencies in the gaussian case

Using the preceding results, one may obtain information on the efficiency

of the estimators of the eigenvectors and eigenvalues of C computed after

trimming. We restrict our attention here to gaussian distributions, where

further simplifications in the expressions derived for the asymptotic variances

can be made. Furthermore, we only consider the first d eigenvalues and

eigenvectors (which are also the only once retained in practical data analysis).

In Section 5 we showed that the consistency factor c is equal to 1 for the

d first eigenvalues, and that Λi(P ) = λi. By definition of G and A, see (A.14)

and (A.16), and by using the property that the marginals of a multivariate

25



normal are independent, we have that

Aii

G
=

∫
R
y2ϕ(y/

√
λi)dy∫

R
ϕ(y/

√
λi)dy

= λi,

where ϕ(·) denotes the probability density function of the standard normal.

These results allow for simpler expressions of the asymptotic variance of the

eigenvalues with 1 ≤ i ≤ d:

ASV(Λi, P ) =
1

(1− α)2

∫
S(P )

x4
i |Σ|−

1
2h(x′Σ−1x)dx

− λ2
i +

α

1− α

[(
Aii

G

)2

− 2λi
Aii

G

]
=

1

(1− α)2

∫
S(P )

x4
i dP (x)− λ2

i

1

1− α
=

1

1− α
λ2
i (3− 1) =

2

1− α
λ2
i .

(11)

For the eigenvectors with 1 ≤ i ≤ d, the definition of Hij in (A.20) to-

gether with the fact that, under the gaussian assumption, we have ḣ (y′Σ−1y) =

−1
2
h (y′Σ−1y) gives

Hij = −1

2

∫
S(P )

x2
ix

2
jf(x)dx. (12)

Inserting (12) in the expression for the asymptotic variance (10) gives

ASV(Vi, P ) =
∑
j ̸=i

λ2
iλ

2
j

(λi − λj)2
1∫

S(P )
x2
ix

2
jdP (x)

vjvj
′.

Now, since i ≤ d, we have∫
S(P )

x2
ix

2
jdP (x) = λiλj

1− α

cj
,

with

c−1
j =

∫
S(P )

x2
jdP (x)

(1− α)λj

(13)
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for 1 ≤ j ≤ p. We finally obtain

ASV(Vi, P ) =
1

1− α

∑
j ̸=i

λiλjcj
(λi − λj)2

vjvj
′. (14)

The availability of asymptotic variances under closed form expression

allows us to compute asymptotic relative efficiencies (ARE) with respect

to maximum likelihood (ML) estimators at the gaussian model. Those are

defined by

ARE(Λi, P ) =
ASV(ΛML;i, P )

ASV(Λi, P )
and ARE(Vi, P ) =

trace(ASV(VML;i, P ))

trace(ASV(Vi, P ))
,

for 1 ≤ i ≤ d. Note that the ML estimator is the untrimmed PCA, and its

asymptotic variances are given by the above expressions for α = 0. So it

follows from (11) that

ARE(Λi, P ) =
2

2/(1− α)
= 1− α,

meaning that the efficiency is just given by the trimming proportion for the

first d eigenvalues. A trimming level of 10% yields a 90% efficiency for the

eigenvalue estimators.

Regarding eigenvectors, we have from (14)

ARE(Vi, P ) =

∑
j ̸=i

λj

(λi−λj)2

1
1−α

∑
j ̸=i

λjcj
(λi−λj)2

.

We evaluate the above expression for the spherical noise situation, where

the p − d last eigenvalues are assumed to be equal, say, to λ. Observations

generated by a spherical noise model are lying in the same subspace, with

some spherical noise added. Using (13), one can readily see that cj = 1

for j ≤ d, and cj = c̃ for j > d, with c̃−1 = E[Z2
1I(∥Z∥ ≤ r̃)] and r̃2
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the 1−α quantile of a chi-square distribution with p− d degrees of freedom.

The constant c̃ is the same as the consistency factor needed for the Minimum

Covariance determinant estimator computed in Croux and Haesbroeck (1999,

p.165). We get

ARE(Vi, P ) = (1− α)

∑
j ̸=i,j≤d

λj

(λi−λj)2
+ (p− d) λ

(λi−λ)2∑
j ̸=i,j≤d

λj

(λi−λj)2
+ (p− d)c̃ λ

(λi−λ)2

(15)

This result calls for a few remarks. Globally, the efficiency is again deter-

mined by the trimming proportion. But here, other effects appear. For

instance (i) If the the noise level tends to zero, or λ ↓ 0, the efficiency tends

to 1−α; (ii) If the eigenvalue λi gets closer to the noise level λ, the efficiency

decreases to (1 − α)/c. Adding noise tends to decrease the efficiency of the

trimmed principal components; (iii) If the space dimension p rises for fixed

model dimension d, the efficiency reaches 1 − α for very high space dimen-

sions, since c̃ tends to 1 with p going to infinity; (iv) If, everything else being

fixed, the model dimension d rises, numerical computations show that the

efficiency increases in almost all scenarios (except for high trimming levels

and low initial noise dimension).

8. Simulations

This section studies the finite sample efficiency of the trimmed PCA. The

simulation experiment consists of m = 1000 replications of p-dimensional

samples of size n with p = 5 or p = 8 and n = 50, 100, 500 or 1000. The

samples were generated according to a normal distribution with a zero mean

and a diagonal covariance matrix Σ = diag(λ1, . . . , λp). Two sets of diagonal

elements were considered, similar as in Maronna (2005):
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(a) one representing a smooth decrease of the eigenvalues, i.e. λj = 2p−j

for 1 ≤ j ≤ p;

(b) one representing an abrupt decrease of the eigenvalues after λd, i.e.

λj = 20(1 + 0.5(d − j + 1)) for 1 ≤ j ≤ d and λj = 1 + 0.1(p − j + 1)

for d+ 1 ≤ j ≤ p.

For each dataset, the d-dimensional α-trimmed PCA method was applied

with d = 3, 4 or 7 and α = 0.05 or 0.1.

The computation of the empirical d-dimensional α-trimmed PC has a high

computational complexity, since one needs to optimize over the space of all

subsets of a given size. Exact algorithms are, in general, no longer possible. In

the simulation study that follows, the approximative algorithm of Maronna

(2005) is used. This algorithm follows the rationale behind the fast-MCD

algorithm in Rousseeuw and van Driessen (1999) for computing the Minimum

Covariance Determinant (MCD) estimator, combining random starts and so-

called “concentration” steps. We recommend to take the number of initial

random starts equal to 500, and the number of concentration steps equal to

10.

To assess the performance of the estimators of the eigenvalues and eigen-

vectors, mean squared error (MSE) were computed. For the eigenvalues, a

correction for bias is first applied and then the classical definition of MSE is

used :

MSE(Λj) =
1

m

m∑
i=1

(
ˆ̂
λ
(i)
j − λj)

2

where
ˆ̂
λ
(i)
j = λ̂

(i)
j ×

(
1
m

∑m
k=1 λ̂

(k)
j /λj

)−1

and λ̂
(i)
j is the estimate of λj com-

puted from the ith generated sample. For the eigenvectors, following Croux,
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Ollila and Oja (2002), the MSE is defined as

MSE(Vj) =
1

m

m∑
i=1

(
cos−1 |vtj v̂

(i)
j |

)2

where v̂
(i)
j is the estimate of vj computed from the ith generated sample.

Based on these MSE values, relative finite sample efficiencies were com-

puted as

Effn(Λj) =
ASV(ΛML;j, P )

nMSE(Λj)
and Effn(Vj) =

ASV(VML;j, P )

nMSE(Vj)
.

These finite sample efficiencies are reported in Tables 1 and 2. Since the

efficiencies for the different eigenvalues of a particular setting are quite sim-

ilar, their average value is reported. In this table, the asymptotic relative

efficiencies derived in the previous section appear in the rows referred as

“n = ∞”.

We first discuss the results for the model with smoothly decreasing eigen-

values. As we can see from Table 1, the efficiency decreases with an increasing

trimming size. The finite sample efficiency of the eigenvalues seems to de-

crease towards the asymptotic value, while they increase for the eigenvectors

towards the limit value with increasing sample size. If the model dimension d

increases, everything else being fixed, one observes a small increase in the ef-

ficiency of the eigenvectors. When it is the space dimension p that increases,

except for small sample sizes, the efficiency of the eigenvectors increases.

These last two behaviors have already been pointed out when studying the

asymptotic efficiencies.

Under scenario (b), there is a large difference between the noise and non-

noise levels. The results in Table 2 show that some finite sample efficiencies
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Table 1: Finite sample efficiencies of the eigenvalues and eigenvectors of the trimmed PCA

method w.r.t. the ML method under design (a).

p d α n Eigen values Eigen vectors

5 3 .05 50 .992 .754 .677 .590

100 .979 .918 .845 .710

500 .942 .927 .900 .852

∞ .950 .935 .927 .869

5 3 .10 50 .985 .652 .608 .502

100 .912 .762 .782 .650

500 .905 .828 .809 .710

∞ .900 .874 .861 .768

5 4 .10 50 .961 .668 .622 .552 .472

100 .948 .747 .738 .718 .614

500 .892 .877 .894 .858 .693

∞ .900 .886 .881 .853 .713

8 3 .10 50 .977 .620 .596 .521

100 .947 .776 .725 .669

500 .908 .871 .876 .751

∞ .900 .883 .876 .823

8 7 .10 50 .972 .642 .595 .587 .556 .523 .516 .462

100 .914 .735 .765 .774 .737 .726 .701 .614

500 .897 .856 .890 .901 .860 .832 .814 .745

∞ .900 .898 .898 .897 .893 .884 .855 .717
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Table 2: Finite sample efficiencies of the eigenvalues and eigenvectors of the trimmed PCA

method w.r.t. the ML method under design (b).

p d α n Eigenvalues Eigenvectors

5 2 .05 100 1.275 .697 .642 .642

500 1.040 .688 .702 .851

1000 .951 .899 .927 .967

∞ .950 .950 .950 .949

5 3 .10 100 1.196 .686 .593 .546

500 .919 .689 .665 .713

1000 .923 .831 .829 .882

∞ .900 .899 .899 .898

5 4 .10 100 1.179 .667 .628 .592 .640

500 .955 .729 .718 .789 .846

1000 .894 .833 .809 .823 .858

∞ .900 .899 .900 .899 .896

8 3 .10 100 1.426 1.168 1.168 .974

500 1.167 .597 .560 .607

1000 .995 .695 .674 .737

∞ .900 .900 .900 .900

8 7 .10 100 1.594 1.196 1.106 .914 .734 .612 .562 .599

500 1.087 .644 .590 .572 .608 .676 .760 .782

1000 .978 .716 .668 .689 .745 .774 .848 .896

∞ .900 .900 .900 .900 .900 .900 .899 .897
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even become larger than one, showing the good performance of the trimming

approach to find the best affine subspace. The convergence towards the

asymptotic efficiencies is here slower than for simulation design (a).

9. Conclusions

Principal Component Analysis (PCA) is a technique for reducing dimen-

sionality in multivariate data analysis. For p-dimensional observations, and a

given dimension d, with d typically much lower than p, classical PCA yields

the best fitting affine subspace of dimension d, in the sense of minimizing

the sum of squared Euclidean distances between the subspace and the obser-

vations. The robust alternative studied in this paper relies on an impartial

trimming based approach, where a proportion α of the observations is dis-

carded, and the best fitting d-dimensional affine subspace is determined from

the non-discarded observations. The difficulty is to find this “best” subsam-

ple of observations yielding the “best” affine subspace, which we called the

trimmed PC subspace. While an algorithm for computing the trimmed PC

subspace was already proposed by Maronna (2005), its theoretical properties

were not studied yet.

As a first result we could prove existence of the trimmed PC subspace

without making any moment restrictions. While standard PCA requires exis-

tence of second moments, this is not required for its trimmed version. Hence,

the trimmed PC subspace exists at a multivariate Cauchy distribution, for

example, where standard PCA is not feasible. We also proved, under mild

conditions, consistency of the sample trimmed PC space towards the pop-

ulation counterpart. The robustness of the method is studied by showing

33



quantitative robustness, computing the breakdown point, and deriving the

influence functions. The influence function turns out to be bounded in the

region where the outliers are, but good leverage points still may have an un-

bounded influence. Furthermore, asymptotic efficiencies at the normal model

are derived, while finite sample efficiencies of the estimators are obtained by

means of a simulation study. It is shown that, by selecting an appropriate

trimming proportion α, both a high breakdown point and a high efficiency

are attainable.

A distinct feature of the proposed method compared to other approaches

for robust PCA is that it directly aims at finding the best fitting affine sub-

space. The population version, which we presented in Section 2 and of which

we showed existence in Section 3, has a clear geometric interpretation, also at

non-elliptical distributions. If one would use, for example, the space spanned

by the first d eigenvectors of a robust estimate of the covariance matrix as

best fitting subspace, then it is not clear whether the corresponding popu-

lation quantity has any optimality property, unless at elliptically symmetric

distributions. When the aim of the robust principal component analysis is to

perform dimension reduction, and to find an optimal subspace of a certain

dimension, then trimmed PCA is a natural candidate. Of course, the aim of

the principal component analysis might be different. Sometimes one looks for

the optimal linear combination of the variables having maximal dispersion,

and then then robust prospection pursuit approach of Li and Chen (1985)

becomes more appealing.

Maronna (2005) conducted a simulation study and did found good per-

formance of the method. He also applied it on several real data sets. An
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application in robust multivariate error-in-variables modeling was studied in

Croux, Fekri and Ruiz-Gazen (2009). Serneels and Verdonck (2009) showed

its good performance when applied to principal component regression for

data containing outliers.

There are several extensions possible of the trimmed principal compo-

nents method we studied. One could consider general penalty functions Φ(·)

for quantifying the discrepancy between the point x and the affine subspace

h through Φ(∥x − Prh(x)∥), instead of merely considering the squared loss.

However, similar as in in Garćıa-Escudero and Gordaliza (1999), we expect

that the main robustification arises from the trimming and less by the dif-

ferent choices of the penalty function Φ. We can also adopt a “min-max” or

L∞ approach. In other words, we would search for the narrowest strip (i.e.,

having the smallest radius as possible) including a 1 − α proportion of the

data points. Notice that Rousseeuw’s LMS regression estimator also shares

that idea. A second possible avenue for future research is the extension of the

theoretical results to a multiple population setting. Applications of the trim-

ming approach in the multiple population case are in robust linear clustering

(Garcia-Escudero et al, 2009) and robust cluster analysis (Garcia-Escudero

et al, 2008).

Appendix A. Proofs

Proof of Lemma 1: Let us consider hd ∈ Ad(Rp), the affine subspace

spanned by the origin and the first d vectors of the canonical basis in Rp.

Take r > 0 such that PX(S(h
d, r)) ≥ 1 − α and consider the trimming
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function τd = IS(hd,r) ∈ Tα−. We have

Vd,α(X) ≤ 1

PX(S(hd, r))

∫
S(hd,r)

∥x− Prhd(x)∥2dPX(x) < r2. 2

Proof of Lemma 2: For every τ ∈ Th,β and τ ′ ∈ Tβ, we have that

τ(x)(1− τ ′(x)) = 0 for all x /∈ S(h, rβ(h)),∫
τ(x)(1− τ ′(x))dPX(x) =

∫
τ ′(x)(1− τ(x))dPX(x), and,

τ ′(x)(1− τ(x)) = 0 for all x ∈ S(h, rβ(h)).

Hence, by applying the above equalities, we have∫
τ(x)(1− τ ′(x))∥x− Prh(x)∥2dPX(x) ≤ r2β(h)

∫
τ(x)(1− τ ′(x))dPX(x)

(A.1)

= r2β(h)

∫
τ ′(x)(1− τ(x))dPX(x) ≤

∫
τ ′(x)(1− τ(x))∥x− Prh(x)∥2dPX(x).

(A.2)

So, we have∫
τ(x)∥x− Prh(x)∥2dPX(x)

=

∫
τ(x)τ ′(x)∥x− Prh(x)∥2dPX(x) +

∫
τ(x)(1− τ ′(x))∥x− Prh(x)∥2dPX(x)

≤
∫

τ(x)τ ′(x)∥x− Prh(x)∥2dP +

∫
τ ′(x)(1− τ(x))∥x− Prh(x)∥2dPX(x)

=

∫
τ ′(x)∥x− Prh(x)∥2dPX(x).

Moreover, the equality holds if and only if (A.1) and (A.2) are equalities.

However, (A.1) is an equality if and only if∫
S(h,rβ(h))

τ(x)(1− τ ′(x))dPX(x) = 0,
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which implies that ∫
S(h,rβ(h))

(1− τ ′(x))dPX(x) = 0,

and, thus, we conclude that IS(h,rβ(h)) ≤ τ ′, PX-a.e. . The equality in (A.2)

would analogously imply τ ′ ≤ IS(h,rβ(h)), PX-a.e. Therefore, assertion (b) in

this Lemma is also proven. 2

Proof of Lemma 3: Without loss of generality, we can assume that τh,β ≥

τh,α, PX-a.e., for β ≤ α (in fact, we can always choose τh,β and τh,α such that

τh,β ≥ τh,α pointwise).

Now, we can see that∫
τh,α(x)dPX(x)

∫
(τh,β(x)− τh,α(x))∥x− Prh(x)∥2dPX(x)

≥
∫

τh,α(x)dPX(x) · r2α(h)
∫
(τh,β(x)− τh,α(x))dPX(x) (A.3)

≥
∫

τh,α(x)∥x− Prh(x)∥2dPX(x) ·
∫

(τh,β(x)− τh,α(x))dPX(x),(A.4)

and then we have∫
τh,α(x)dPX(x)

∫
τh,β(x)∥x− Prh(x)∥2dPX(x)

=

∫
τh,α(x)dPX(x)

∫
τh,α(x)∥x− Prh(x)∥2dPX(x)

+

∫
τh,α(x)dPX(x)

∫
(τh,β(x)− τh,α(x))∥x− Prh(x)∥2dPX(x)

≥
∫

τh,α(x)dPX(x)

∫
τh,α(x)∥x− Prh(x)∥2dPX(x)

+

∫
τh,α(x)∥x− Prh(x)∥2dPX(x)

∫
(τh,β(x)− τh,α(x))dPX(x)

=

∫
τh,β(x)dPX(x)

∫
τh,α(x)∥x− Prh(x)∥2dPX(x).
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Now, by using
∫
τh,α(x)dPX(x) = 1−α and

∫
τh,β(x)dPX(x) = 1−β, we

have

1

1− β

∫
τh,β(x)∥x− Prh(x)∥2dPX(x) ≥ 1

1− α

∫
τh,α(x)∥x− Prh(x)∥2dPX(x).

and result (a) is derived.

Moreover, the equality in (a) holds if and only if (A.3) and (A.4) are

equalities. Now, the equality (A.3) holds if and only if∫
S(h,rα(h))c

(τh,β(x)− τh,α(x))dPX(x) = 0,

which holds if and only if rα(h) = rβ(h). Analogously, (A.4) is an equality if

and only if ∫
S(h,rα(h))

τh,α(x)dPX(x) = 0,

which implies PX(S(h, rα(h))) = 0. In other words, all the probability mass

is concentrated on the boundary of S(h, rβ(h)). 2

Proof of Lemma 4: Let us consider a ball B centered at the origin and

with radius R > 0, such that PX(B) > max{1−α, α}. As PX(Sn) ≤ 1−α ≤

PX(Sn), it can be easily seen that Sn ∩ B ̸= ∅ and B ̸⊆ Sn. Therefore,

dn − R ≤ rn ≤ dn + R for every n ∈ N, and {rn}n will be bounded if and

only if {dn}n is bounded. We will prove that {dn}n is a bounded sequence.

Let {εn}n and {γn}n be two sequences of positive numbers such that

εn ↓ 0, γn ↑ ∞ and PX(B(0, γn)) > 1 − εn. If {dn}n were not bounded, we

could find a subsequence (denoted as the original one) such that dn > 2γn
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for every n ∈ N. Then, we would have

Vd,α(hn) =
1

1− α

∫
τn(x)∥x− Prhn(x)∥2dPX(x)

≥ 1

1− α

∫
B(0,γn)

τn(x)∥x− Prhn(x)∥2dPX(x)

≥ 1

1− α

∫
B(0,γn)

τn(x) γ
2
n dPX(x)

≥ γ2
n

1− α− εn
1− α

↑ ∞ as n → ∞,

contradicting (4). Thus, {dn}n and {rn}n are bounded. 2

Proof of Theorem 1: Taking into account the comments and results at

the beginning of Section 3, we can take a sequence {hn}n ⊂ Ad(Rp) satisfying

Vd,α(hn) ↓ Vd,α as n → ∞, and such that the corresponding sequences of

unitary director vectors, distances to the origin and radius are convergent.

Let us denote h0 ∈ Ad(Rp) the limit subspace, r0 the limit of the radius

sequence and S0 = S(h0, r0) the corresponding limit strip.

We have that

IS0(X) ≤ lim
n

inf τn(X) ≤ lim
n

sup τn(X) ≤ IS0
(X),

and then, Fatou’s Lemma implies∫
IS0(x)dPX(x) ≤

∫
lim
n

inf τn(x)dPX(x) ≤ 1− α

≤
∫

lim
n

sup τn(x)dPX(x) ≤
∫

IS0
(x)dPX(x),

which means that r0 = rα(h0) and S0 = S(h0, rα(h0)).

We can consider a trimming function τ0 := τh0,α ∈ Tα associated to the

limit strip S0. If we prove that h0 satisfies limn→∞ Vd,α(hn) = Vd,α(h0), then

Vd,α(h0) = Vd,α = inf
h∈Ad(Rp)

Vd,α(h),
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and the proof would be finished. To do this task, we need to prove that∣∣∣∣ ∫ τn(x)∥x− Prhn(x)∥2dPX(x)−
∫

τ0(x)∥x− Prh0(x)∥2dPX(x)

∣∣∣∣ → 0.

Let us denote En = Sc
0 ∩ Sn, Fn = S0 ∩ Sc

n and Gn = S0 ∩ Sn. Note that

the convergence of the sequence of strips Sn toward the strip S0 implies that

PX(En) → 0 and PX(Fn) → 0 as n → ∞. Thus, taking into account that

τn(x) = τ0(x) = 0 for x ∈ (En ∪ Fn ∪Gn)
c, we can decompose∣∣∣∣ ∫ τn(x)∥x− Prhn(x)∥2dPX(x)−

∫
τ0(x)∥x− Prh0(x)∥2dPX(x)

∣∣∣∣
≤

∣∣∣∣ ∫
En

τn(x)∥x− Prhn(x)∥2dPX(x)−
∫
En

τ0(x)∥x− Prh0(x)∥2dPX(x)

∣∣∣∣
+

∣∣∣∣ ∫
Fn

τn(x)∥x− Prhn(x)∥2dPX(x)−
∫
Fn

τ0(x)∥x− Prh0(x)∥2dPX(x)

∣∣∣∣
+

∣∣∣∣ ∫
Gn

τn(x)∥x− Prhn(x)∥2dPX(x)−
∫
Gn

τ0(x)∥x− Prh0(x)∥2dPX(x)

∣∣∣∣
:= A(1)

n + A(2)
n + A(3)

n .

We need to prove that A
(1)
n , A

(2)
n and A

(3)
n converge to 0. For A

(1)
n , recalling

the bounded character of the sequence {rn}n from Lemma 4, we have:

A(1)
n ≤

∣∣∣∣ ∫
En

τn(x)∥x− Prhn(x)∥2dPX(x)

∣∣∣∣
+

∣∣∣∣ ∫
En

τ0(x)∥x− Prh0(x)∥2dPX(x)

∣∣∣∣
≤ r2n

∫
En

τn(x)dPX(x) + r20

∫
En

τ0(x)dPX(x)

≤ r2nPX(En) + r20PX(En) = (r2n + r20)PX(En) → 0.

In a similar way we can prove that A
(2)
n converges to 0. To study the
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convergence of A
(3)
n we can obtain the following decomposition:

A(3)
n ≤

∣∣∣∣ ∫
Gn

τn(x)(∥x− Prhn(x)∥2 − ∥x− Prh0(x)∥2)dPX(x)

∣∣∣∣
+

∣∣∣∣ ∫
Gn

(τn(x)− τ0(x))∥x− Prh0(x)∥2dPX(x)

∣∣∣∣ := A(3,a)
n + A(3,b)

n .

As for x ∈ Gn it holds τn(x) = τ0(x) = 1 and then τn(x)− τ0(x) = 0, we

have A
(3,b)
n = 0 and it only remains the convergence of A

(3,a)
n . Now, taking

into account the uniform continuity of the real valued quadratic function

g(x) = x2 on the compact set [0, supn rn], we have

A(3,a)
n ≤ sup

x∈Gn

{
∥x− Prhn(x)∥2 − ∥x− Prh0(x)∥2

}
(1− α) → 0,

and the proof is complete. 2

Proof of Theorem 2: It suffices to prove that every subsequence of {hn}n
(resp. {Vn}n) admits a new subsequence which converges to h0 (resp. V0).

Along the proof, all subsequences will be denoted as the original sequences.

For every n = 1, 2, ..., let us denote by τ ′n = τ ′n(Xn) a trimming function

in Th0,α. So, with r′n, n = 1, 2, ..., the radius associated to τ ′n, that is,

r′n = inf{r ≥ 0 : PXn(S(h0, r)) ≤ 1− α ≤ PXn(S(h0, r))},

we have IS(h0,r′n) ≤ τ ′n ≤ IS(h0,r′n)
. Moreover, denote

V ′
n =

1

1− α

∫
τ ′n(x)∥x− Prh0(x)∥2dPXn(x).

Obviously, {r′n}n is a bounded sequence, so we can assume, without loss

of generality, that r′n → r′0 for some r′0 ∈ R. Then, because of the continuity

of PX0 , we have τ
′
n(Xn) → IS(h0,r′0)

(X0) P -a.e., and, then, taking into account

that |τ ′n| ≤ 1, we may write

1− α =

∫
τ ′n(x)dPXn(x) →

∫
IS(h0,r′0)

(x)dPX0(x), as n → ∞.
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Therefore, we have IS(h0,r′0)
(X0) = τ0(X0), P -a.e. .

The sequence {τ ′n(Xn)∥Xn−Prh0(Xn)
2∥}n is uniformly bounded and sat-

isfies

τ ′n(Xn)∥Xn − Prh0(Xn)∥2 → τ0(X0)∥X0 − Prh0(X0)∥2, P -a.e. .

Hence we have

Vn ≤ V ′
n =

1

1− α

∫
τ ′n(x)∥x− Prh0(x)∥2dPXn(x)

→ 1

1− α

∫
τ0(x)∥x− Prh0(x)∥2dPX0(x) = V0

and, consequently, recalling the optimal character of Vn for Xn, we have

lim
n

supVn ≤ lim
n

supV ′
n ≤ V0. (A.5)

Taking into account Lemma 5 and the boundedness of the sequences of

unitary spanning vectors, we can take a subsequence of {hn}n ⊂ Ad(Rp)

such that the corresponding sequences of unitary spanning vectors, distances

to the origin and radius are convergent. Let us denote h0 ∈ Ad(Rp) the

limit subspace, r0 the limit of the radius sequence and S0 = S(h0, r0) the

corresponding limit strip.

In order to prove that S0 = S(h0, r0) provides trimming function of level

α for X0, we note that limn τn(Xn) = IS0(X0), P -a.e.. Now, by taking into

account that |τn| ≤ 1 for every n = 1, 2, ..., we have

1− α =

∫
τn(x)dPXn(x) →

∫
IS0(x)dPX0(x),

so that IS0 is a trimming function of level α for X0. Let us denote V 0 the

associated trimmed variation around h0, i.e.

V 0 =
1

1− α

∫
IS0(x)∥x− Prh0(x)∥2dPX0(x).
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Moreover, the sequence {τn(Xn)∥Xn−Prhn(Xn)
2∥}n is uniformly bounded

and satisfies

τn(Xn)∥Xn − Prhn(Xn)∥2 → IS0(X0)∥X0 − Prh0(X0)∥2, P -a.e. .

Then, we have

Vn =
1

1− α

∫
τn(x)∥x− Prhn(x)∥2dPXn(x)

→ 1

1− α

∫
IS0(x)∥x− Prh0(x)∥2dPX0(x)

and, consequently, recalling the optimal character of V0 for X0, we have

lim
n

inf Vn = V 0 ≥ V0. (A.6)

Finally, from (A.5) and (A.6) we obtain

lim
n

supVn ≤ lim
n

supV ′
n ≤ V0 ≤ V 0 ≤ lim

n
inf Vn, (A.7)

i.e., limn Vn = V0, P -a.e. and the convergence of the variations holds.

Moreover, from (A.7) we also have V0 = V 0 and then h0 is optimal for

X0, but taking into account the uniqueness of the d-dimensional trimmed

principal component subspace of X0 we must have h0 = h0, PX0-a.e., and

then it also holds the convergence of the optimal affine subspaces. 2

Proof of Theorem 4: Without loss of generality, let us assume that

µ = 0. The proof will be arranged in two steps:

1. Any optimal affine subspace pass trough µ = 0. In the first step we will

prove that given any h ∈ Ad(Rp), the value of the target function Vd,α(h) is

strictly decreased when choosing the affine subspace h0 ∈ Ad(Rp) parallel to

h and passing through the origin. I.e., let us consider h0 the affine subspace
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passing through the origin and spanned by the columns of a matrix U , where

the d columns of U are unitary and orthogonal vectors spanning the original

affine subspace h. Consider an orthonormal basis spanning h⊥
0 , the p − d

affine subspace orthogonal to h0, and let us denote V the p× (p− d) matrix

having these vectors as columns. Notice that

d(x, h0)
2 = ∥x− Prh(x)∥2 = ∥Prh⊥

0
(x)∥2 = ∥V ′x∥2.

As h is an affine subspace parallel to h0, then there exists x1 ∈ Rp such that

h ≡ h0 + x1 and

d(x, h)2 = ∥x− Prh(x)∥2 = ∥V ′(x− x1)∥2.

Without loss of generality, we have assumed µ = 0 and, then, we have

X ∼ Ep(0,Σ) and Y = V ′X ∼ Ep−d(0, V
′ΣV ) with p.d.f. equal to

fY (y) = |V ′ΣV |−1/2h(y′
(
V ′ΣV )−1y

)
,

with h a decreasing radial density function.

If we denote r0 = rα(h0), the trimmed variation around h0 can be written

as

Vd,α(h0) =
1

1− α

∫
S(h0,r0)

∥x− Prh0(x)∥2fX(x)dx

=
1

1− α

∫
S(h0,r0)

x′V V ′xfX(x)dx =
1

1− α

∫
B(0,r0)

∥y∥2fY (y)dy

where B(0, r0) ⊂ Rp−d denotes the ball with radius r0 around 0 ∈ Rp−d.

In a similar fashion, we get

Vd,α(h) =
1

1− α

∫
S(h,rα(h))

∥x− Prh(x)∥2fX(x)dx

=
1

1− α

∫
B(y1,rα(h))

∥y − y1∥2fY (y)dy,
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with B(y1, rα(h)) ⊂ Rp−d and y1 = V ′x1.

Now, we take ξ(·) = |V ′ΣV |−1/2h(·) and g(·) = (r20 − ·)I[0,r0](·), for ap-

pliyng Lemma 6 with θ = −y1 and the positively defined matrix V ′ΣV , we

obtain that (I1) ≤ (I2) with

(I1) =

∫
ξ((y + y1)

′(V ′ΣV )−1(y + y1))g(y
′y)dy

=

∫
fY (y + y1)g(y

′y)dy

= r20

∫
B(0,r0)

fY (y + y1)dy −
∫
B(0,r0)

∥y∥2fY (y + y1)dy

= r20

∫
B(y1,r0)

fY (y)dy −
∫
B(y1,r0)

∥y − y1∥2fY (y)dy

= r20

∫
S(h,r0)

fX(x)dx−
∫
S(h,r0)

∥x− Prh(x)∥2fX(x)dx

and

(I2) =

∫
ξ(y′(V ′ΣV )−1y)g(y′y)dy

=

∫
fY (y)g(y

′y)dy

= r20

∫
B(0,r0)

fY (y)dy −
∫
B(0,r0)

∥y∥2fY (y)dy

= r20

∫
S(h0,r0)

fX(x)dx−
∫
S(h0,r0)

∥x− Prh0(x)∥2fX(x)dx.

Then, we have

r20

∫
S(h0,r0)

fX(x)dx− (1− α)Vd,α(h0)

≥ r20

∫
S(h,r0)

fX(x)dx−
∫
S(h,r0)

∥x− Prh(x)∥2fX(x)dx.
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Now, adding and subtracting (1 − α)Vd,α(h) and rearranging terms in the

previous expression, we obtain the inequality

(1− α)[Vd,α(h)− Vd,α(h0)]

≥ r20

[∫
S(h,r0)

fX(x)dx−
∫
S(h0,r0)

fX(x)dx

]
−
[∫

S(h,r0)

∥x− Prh(x)∥2fX(x)dx−
∫
S(h,rα(h))

∥x− Prh(x)∥2fX(x)dx
]

= r20

[∫
S(h,r0)

fX(x)dx−
∫
S(h,rα(h))

fX(x)dx

]
−
[∫

S(h,r0)

∥x− Prh(x)∥2fX(x)dx−
∫
S(h,rα(h))

∥x− Prh(x)∥2fX(x)dx
]
,

where we have used PX(S(h0, r0)) = PX(S(h, rα(h)) = 1 − α. Now, taking

into account that rα(h) > r0 (that is a trivial consequence of the Anderson

lemma for strictly unimodal distributions (Anderson 1955)), fX(x) > 0 and

∥x− Prh(x)∥2 > r20 for all x ∈ S(h, r0)
c ∩ S(h, rα(h)), we have

(1− α)[Vd,α(h)− Vd,α(h0)]

≥
[∫

S(h,r0)c∩S(h,rα(h))
∥x− Prh(x)∥2fX(x)dx

]
−r20

[∫
S(h,r0)c∩S(h,rα(h))

fX(x)dx

]
> r20

[∫
S(h,r0)c∩S(h,rα(h))

fX(x)dx

]
− r20

[∫
S(h,r0)c∩S(h,rα(h))

fX(x)dx

]
= 0.

Thus, it holds the desired inequality Vd,α(h)− Vd,α(h0) > 0.

2. The optimal affine subspace is spanned by the d largest eigenvec-

tors of the scatter matrix Σ. Once proved that the d-dimensional trimmed
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principal component pass through the origin, we will search for the di-

rections of the optimal subspace. Without loss of generality, we continue

assuming that µ = 0 and, thus, that X ∼ Ep(0,Σ). Let us consider

again Y = V ′X ∼ Ep−d(0, V
′ΣV ). When trying to minimize Vd,α(h) on

h ∈ Ad(Rp), but restricted to affine subspaces passing through the origin, we

need to minimize

min
V

∫
B(0,rα,Y )

∥y∥2fY (y)dy,

(0 now stands for the zero vector in Rp−d) where rα,Y is defined as

rα,Y := inf{r : PY (B(0, r)) ≥ 1− α}.

Take Z = (V ′Σ1/2)−1Y (in such a way that Z ∼ Ep−d(0, Ip−d)). We have

that∫
B(0,rα,Y )

∥y∥2fY (y)dy = |Σ|1/2
∫
B(0,zα)

∥V ′Σ1/2z∥2fZ(z)dz

= |Σ|1/2
∫
B(0,zα)

trace[V ′Σ1/2zz′Σ1/2V ]fZ(z)dz

= |Σ|1/2trace
[
V ′Σ1/2

(∫
B(0,zα)

zz′fZ(z)dz

)
Σ1/2V

]
,

(A.8)

with zα := inf{r : PZ(B(0, r)) ≥ 1− α}.

It can be seen (see, e.g., Theorem 8.1 of Liu et al. 1999) that there exists

a positive constant ζα depending only on α, the dimension p − d, and, the

elliptical family considered, such that∫
B(0,zα)

zz′fZ(z)dz = ζαIp−d.
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Therefore, from (A.8), the problem reduces to the minimization of

min
V

[
trace[V ′ΣV ]

]
,

where V is a p×(p−d) matrix with unitary orthogonal vectors in its columns.

This problem admits a unique solution if the eigenvalues of Σ, λ1 ≥ ... ≥

λp > 0, satisfies λd > λd+1. Moreover, the solution is obtained from the

matrix with columns equal to the eigenvectors associated to these d largest

eigenvalues, see for example Jolliffe (2002). 2

Proof of Theorem 5: Without loss of generality, we assume that

µ = 0 and that Σ is diagonal with decreasing diagonal elements. Theorem 4

and Corollary 2 yields that the d largest eigenvectors of C(P ) are the same

as those of Σ, showing Fisher consistency for the eigenvectors. So we restrict

attention to the eigenvalues. The first d eigenvectors are the first d canonical

basis vectors, and they span the axis of the strip S(P ). Hence

S(P ) = {x = (x1, . . . , xp)
′ ∈ Rp|x2

d+1 + . . .+ x2
p ≤ r2(P )},

with r(P ) the radius of the strip. The strip is thus unbounded in the first d

coordinates, and we get that the first d eigenvalues of cC(P ) are given by

Λj(P ) = cC(P ) =
c

1− α
E[X2

j I(X
2
d+1 + . . .+X2

p ≤ r2(P ))]

for 1 ≤ j ≤ d and with X = (X1, . . . , Xp)
′). Denoting λj the eigenvectors of

the covariance matrix, which is a multiple of Σ, we have that the distribution

of Xj/
√
λj is the same for every j. Hence

Λj(P ) =
cλj

1− α
E[(X1/λ1)

2I(X2
d+1 + . . .+X2

p ≤ r2(P ))].
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We get Λj(P ) = λj, hence Fisher consistency, for 1 ≤ j ≤ d, if we set

c =
1− α

E[(X2
1/λ1)I(X2

d+1 + . . .+X2
p ≤ r(P ))]

. (A.9)

Note that the expression above is not depending on j. For the normal dis-

tributions we can use independency of the marginals, resulting in

c =
1− α

E[(X2
1/λ1)]P (X2

d+1 + . . .+X2
p ≤ r(P ))

= 1.

Hence at the normal distribution no correction for Fisher consistency is

needed. 2

Proof of Theorem 7: Let P be an absolutely continuous distribution

satisfying (5) and let T (P ) = (d0, r0, V0) denotes its unique d-dimensional

trimmed principal component. Let us consider the point-mass contaminated

distribution Pε,x0 = (1−ε)P+εδ{x0}, and T (Pε,x0) the corresponding trimmed

principal components. As Pε,x0 → P when ε ↓ 0, we can use Corollary 3 to

obtain the convergence T (Pε,x0) → T (P0).

We now start with the derivation of the influence function. Recall that we

assumed µ = 0, and Σ a diagonal matrix with decreasing diagonal elements.

Denote

mε = m(Pε,x0) =
1− ε

1− α

∫
S(Pε,x0 )

xdP (x) +
ε

1− α
IS(Pε,x0 )

(x0)x0

and

Cε = C(Pε,x0) = c

{
1− ε

1− α

∫
S(Pε,x0 )

xx′dP (x)+
ε

1− α
IS(Pε,x0 )

(x0)x0x
′
0−mεm

′
ε

}
.

(A.10)

We have by definition

IF (x0, C, P ) =

(
∂Cε

∂ε

)
|ε=0

.
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Differentiating (A.10) gives

∂Cε

∂ε |ε=0

= c

{
− 1

1− α

∫
S(P )

xx′dP (x) +
1

1− α

∂

∂ε

∫
S(Pε,x0 )

xx′dP (x)|ε=0

+
1

1− α
IS(P )(x0)x0x

′
0

}
. (A.11)

By definition, the first term is just −C(P ). The third term is easily handled.

We now turn to the differentiation of the second term. We introduce the

notation

I(ε) =

∫
S(Pε,x0 )

xx′dP (x)

To obtain a tractable integration domain, we apply the change of variables

y = V −1
ε (x − mε), where Vε is the matrix of eigenvectors of Cε. To obtain

an admissible change of variable, it must be that all eigenvalues are distinct.

However, it is easily seen that, making an arbitrary choice where needed,

the results for the first d eigenvalues and eigenvectors. To avoid further

notational complications, we develop the argument assuming all eigenvalues

to be distinct. The domain of integration then becomes a strip of the same

radius rε but with axis equal to the span of the first d coordinates of the

space.

I(ε) = |Vε||Σ|−
1
2

∫
y2d+1+...+y2p≤r2ε

(Vεy +mε) (Vεy +mε)
′

h
(
(Vεy +mε)

′ Σ−1 (Vεy +mε)
)
dy.

Now to make differentiation easier, we rewrite the last p − d coordi-

nates in polar form : (yd+1, . . . , yp)
′ = r e(θ) with r ∈ [0, rε], θ ∈ Θ =

[0, π[×...[0, π[×[0, 2π[, and e(θ) ∈ Sp−d−1, the unit hypersphere in p − d di-

mensions. Denote by J(r, θ) the Jacobian of this transformation. We get,
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with y1:d = (y1, . . . , yd)
′,

I(ε) = |Vε||Σ|−
1
2

∫
Rd

∫
[0,rε]

∫
Θ

J(r, θ) [Vε(y1:d, r e(θ)) +mε] [Vε(y1:d, r e(θ)) +mε]
′

h
(
[Vε(y1:d, re(θ)) +mε]

′Σ−1 [Vε(y1:d, r e(θ)) +mε]
)
dθ dr dy1:d.

By matrix differentiation, and since V0 = I we have

∂det (Vε)

∂ε |ε=0

= trace(IF (x0, V, P )). (A.12)

Applying the Leibniz formula, the derivative of the integral in the expression

of I(ε) is given by

∂rε
∂ε |ε=0

A(r0, h,Σ) +

∫
S(P )

∂

∂ε
B(ε, h,Σ, y)|ε=0dy (A.13)

where

A ≡ A(r0, h,Σ) = |Σ|−
1
2

∫
Θ

J(r0, θ)

∫
Rd

[y1:d, r0e(θ)] [y1:d, r0e(θ)]
′

·h
(
[y1:d, r0e(θ)]

′ Σ−1 [y1:d, r0e(θ)]
)
dy1:d dθ (A.14)

and

B(ε, h,Σ, y) = [Vεy +mε] [Vεy +mε]
′ |Σ|−

1
2h

(
[Vεy +mε]

′Σ−1 [Vεy +mε]
)
.

Using symmetry arguments, it is clearly seen that A is a diagonal matrix.

An exact expression is available for some specific distributions, but in the

general case, there seem to be no further simplification.

Differentiating B one gets

∂

∂ε
B(ε, h,Σ, y)|ε=0 =

{
IF (x0, V, P )yy′ + yy′IF (x0, V, P )′

+IF (x0,m, P )y′ + yIF (x0,m, P )′
}
|Σ|−

1
2h(y′Σ−1y)

51



+yy′|Σ|−
1
2 ḣ

(
y′Σ−1y

){
2y′Σ−1IF (x0,m, P ) + 2y′Σ−1IF (x0, V, P )y

}
. (A.15)

Due to the symmetry of integration domain and distribution, the quantities

with an odd number of y’s integrate to zero. This implies that terms including

IF (x0,m, P ) give a zero contribution to the integral.

Now let us take care of
∂rε
∂ε |ε=0

.

By definition of a solution strip, one has

1− α = (1− ε)

∫
S(Pε,x0 )

dP (x)|ε=0 + εIS(Pε,x0 )
(x0).

Differentiating both sides w.r.t. ε yields

0 = −
∫
S(P )

dP (x) +
∂

∂ε

∫
S(Pε,x0 )

dP (x)|ε=0 + IS(P )(x0).

In a similar fashion as was already done, one easily verifies that

∂

∂ε

∫
S(Pε,x0 )

dP (x)|ε=0 = (1− α)trace(IF (x0, V, P )) +
∂rε
∂ε |ε=0

G(r0, h,Σ)

+2|Σ|−
1
2

∫
S(P )

ḣ
(
y′Σ−1y

)
y′Σ−1IF (x0, V, P )ydy

where

G ≡ G(r0, h,Σ) = |Σ|−
1
2

∫
Θ

J(r0, θ)

∫
Rd

h
(
[y1:d, r0e(θ)]

′Σ−1 [y1:d, r0e(θ)]
)
dy1:d dθ.

(A.16)

By symmetry of the integration domain, the integral in the last term reduce

to the diagonal terms, hence:

∂rε
∂ε |ε=0

=
1

G

(
(1− α)(1− trace(IF (x0, V, P ))) (A.17)

−2|Σ|−
1
2

∫
S(P )

ḣ
(
y′Σ−1y

)
y′Σ−1diag(IF (x0, V, P ))ydy − IS(P )(x0)

)
52



At this point, we have an expression of IF (x0, C, P ) as a function of

IF (x0, V, P ) where V is the matrix of eigenvectors of C. By Lemma 3 in

Croux and Haesbroeck (2000), the last influence function elements may be

expressed in term of the firsts. So we’ll end up with an expression involving

only IF (x0, C, P ) and some constants.

Combining (A.11), (A.12), (A.13), (A.15), and (A.17), IF (x0, C, P ) be-

comes

=
c

1− α
IS(P )(x0)

(
x0x

′
0 −

1

G
A

)
+(trace(IF (x0, V, P ))− 1)

(
C(P )− cA

G

)
− cA

(1− α)G
2|Σ|−

1
2

∫
S(P )

ḣ
(
y′Σ−1y

)
y′Σ−1diag(IF (x0, V, P ))ydy

+
c

(1− α)
|Σ|−

1
2

∫
S(P )

{IF (x0, V, P )yy′ + yy′IF (x0, V, P )′}h(y′Σ−1y)dy

+
c

1− α
|Σ|−

1
2

∫
S(P )

yy′ḣ
(
y′Σ−1y

)
2y′Σ−1IF (x0, V, P )ydy

Using Lemma 3 of Croux & Haesbroeck (2000) and the diagonality of C(P ),

the diagonal elements of the influence function of V , the matrix of eigenvec-

tor functionals, is zero, hence is also the trace, and that the non diagonal

elements are given by

IF (x0, V, P )jk =
IF (x0, C, P )jk
Λk(P )− Λj(P )

(A.18)

So that we have to assume that all eigenvalues are distinct. As was mentioned

above, a more refined change of variable, with the identity on the last p− d

coordinates, would avoid this assumption. We end up with the simplified

53



form for IF (x0, C, P ):

=
c

1− α
IS(P )(x0)

(
x0x

′
0 −

1

G
A

)
−C(P ) +

cA

G

+
c

1− α
|Σ|−

1
2

∫
S(P )

{IF (x0, V, P )yy′ + yy′IF (x0, V, P )′}h(y′Σ−1y)dy

+
c

1− α
|Σ|−

1
2

∫
S(P )

yy′ḣ
(
y′Σ−1y

)
2y′Σ−1IF (x0, V, P )ydy,

where the two terms in the integral of the second line above involve the

matrix C(P ), so that we can further simplify into

IF (x0, C, P ) =
c

1− α
IS(P )(x0)

(
x0x

′
0 −

1

G
A

)
−C(P ) +

cA

G

+IF (x0, V, P )C(P ) + C(P )IF (x0, V, P )′

+
c

1− α
|Σ|−

1
2

∫
S(P )

yy′ḣ
(
y′Σ−1y

)
2y′Σ−1IF (x0, V, P )ydy.

(A.19)

Regarding the second line in the above formula, we are using (A.18) for the

element in position i, j:

[
IF (x0, V, P )C(P ) + C(P )IF (x0, V, P )′

]
ij

= IF (x0, V, P )ijΛj(P ) + IF (x0, V, P )jiΛi(P )

= (1− δij)

(
IF (x0, C, P )ij
Λj(P )− Λi(P )

Λj(P ) +
IF (x0, C, P )ji
Λi(P )− Λj(P )

Λi(P )

)
= (1− δij)IF (x0, C, P )ij

since IF (x0, C, P ) is a symmetric matrix, and C(P ) has its eigenvalues Λj(P )

on its diagonal.

Let us now treat the last integral in (A.19):

J =
c

1− α
|Σ|−

1
2

∫
S(P )

yy′ḣ
(
y′Σ−1y

)
2y′Σ−1IF (x0, V, P )ydy.
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We consider a typical element of the resulting matrix

Jij =
c

1− α
|Σ|−

1
2

∫
S(P )

yiyjḣ
(
y′Σ−1y

)
2y′Σ−1IF (x0, V, P )ydy.

The integrand is given by

2ḣ
(
y′Σ−1y

) p∑
k,l=1

yiyjykyl
IF (x0, V, P )kl

λk

,

where we recall that λ1, . . . , λp are the eigenvalues and also diagonal elements

of the matrix Σ. By symmetry of the integration domain, only those terms

where the indices i, j, k, l are such that only even powers of y are present

will contribute to the integral. Moreover, for k = l the influence function is

zero. That is, non-zero contributions come from k ̸= l and i = k, j = l or

i = l, j = k. So that for the element i, j of J , the contribution comes from

2ḣ
(
y′Σ−1y

)
y2i y

2
j

(
IF (x0, V, P )ij

λi

+
IF (x0, V, P )ji

λj

)
.

Using (A.18) and the symmetry of IF (x0, C, P ), we get

Jij = (1−δij)IF (x0, C, P )ij
λj − λi

(Λj(P )− Λi(P ))λiλj

2c

1− α
|Σ|−

1
2

∫
S(P )

y2i y
2
j ḣ

(
y′Σ−1y

)
dy

= (1− δij)IF (x0, C, P )ij
λj − λi

(Λj(P )− Λi(P ))λiλj

2c

1− α
Hij,

with

Hij = |Σ|−
1
2

∫
S(P )

y2i y
2
j ḣ

(
y′Σ−1y

)
dy. (A.20)

In the end, following up on (A.19), we can write an element i, j of the

influence function for C:

IF (x0, C, P )ij =
c

1− α
IS(P )(x0)

(
x0ix0j −

Aij

G

)
− C(P )ij +

cAij

G

+(1− δij)IF (x0, C, P )ij

(
1 +

2c

(1− α)

λj − λi

(Λj(P )− Λi(P ))λiλj

Hij

)
.
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Given the expression above, it is profitable to give separate expression for

diagonal and off-diagonal terms. We have

IF (x0, C, P )ii =
c

1− α
IS(P )(x0)

(
x2
0i −

Aii

G

)
− Λi(P ) +

cAii

G

and for an off-diagonal term (i ̸= j), we use that A in (A.14) is diagonal,

IF (x0, C, P )ij =
c

1− α
IS(P )(x0)x0ix0j

+ IF (x0, C, P )ij

(
1 +

2c

1− α

λj − λi

(Λj(P )− Λi(P ))λiλj

Hij

)
which gives

IF (x0, C, P )ij = −(Λj(P )− Λi(P ))λiλj

2(λj − λi)

IS(P )(x0)x0ix0j

Hij

. 2

Proof of Theorem 8: Let X = {x1, ..., xn} ⊂ Rp be the original

sample and hX ∈ Ad(Rp) the empirical d-dimensional trimmed principal

component of X . Assume, without loss of generality, thatD(X ) = d(hX , 0) =

0. Let us denote R = maxi=1,...,n d(xi, 0). Then the original sample satisfies

X ⊂ B(0, R).

We will develop the proof for the case (⌊nα⌋+ d+ 1)/n ≤ (n− ⌊nα⌋)/n.

In the other case the proof is easier. Note that this inequality may be equiv-

alently rewritten as n− 2⌊nα⌋ − d ≥ 1.

The proof will be arranged in two steps:

1. We first prove that ε∗n(D,X ) ≥ (⌊nα⌋ + d + 1)/n. If we replace at

most ⌊nα⌋ + d points of X in order to obtain a corrupted sample X ′, then

at least n − ⌊nα⌋ − d original points remain in X ′. Let hX ′ ∈ Ad(Rp) be

the empirical d-dimensional trimmed principal component of X ′, which is

based on a subsample Y ′ ⊂ X ′ containing n − ⌊nα⌋ data points. Note that
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n−⌊nα⌋− (⌊nα⌋+d) = n−2⌊nα⌋−d ≥ 1, therefore any subsample Y ′ ⊂ X ′

contains at least 1 data point from the original sample X .

Assume that for any arbitrarily large constant C > (
√
n+ 1)R, we could

get a contaminated sample satisfying D(X ′) = d(hX ′ , 0) ≥ C. Then, we

would have

(n− ⌊nα⌋)Vd,α(hX ′) =
∑
y∈Y ′

d(y, hX ′)2 ≥
∑

y∈Y ′∩X

d(y, hX ′)2 ≥ (C −R)2 > nR2.

On the other hand, if we considered a subsample Y∗ ⊂ X ′ made of n−⌊nα⌋−d

points belonging to X together with d arbitrary points belonging to X ′ −X

and the affine subspace hY∗ ∈ Ad(Rp) containing the origin 0 and those d

arbitrary points, then we would have

(n− ⌊nα⌋)Vd,α(hY∗) =
∑
y∈Y∗

d(y, hY∗)2 =
∑

y∈Y∗∩X

d(y, hY∗)2 ≤ nR2.

Then, we would get Vd,α(hY∗) < Vd,α(hX ′), contradicting the fact that hX ′ is

a d-dimensional trimmed principal component of X ′. Therefore, supX ′ d(hX ′ ,

0) < ∞ and the first inequality is proven.

2. We now prove that ε∗n(D,X ) ≤ (⌊nα⌋ + d + 1)/n. The goal is now

to built a corrupted sample X ′ replacing at least ⌊nα⌋ + d + 1 points of

X in such a way that the optimum hX ′ satisfies that D(X ′) is arbitrarily

large. Firstly, note that hX ′ would be based on a subsample Y ′ ⊂ X ′ of

size n − ⌊nα⌋ containing at least d + 1 corrupted observations belonging to

X ′ − X and at most n − ⌊nα⌋ − d − 1 points from the original sample X .

Given M > 0, let us consider a d-dimensional subspace h0 parallel to hX and

satisfying d(h0, hX ) = M . Take a corrupted sample X ′ satisfying:

(i) X ′ −X ⊂ h0,
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(ii) d(y, y′) ≥ M for every y, y′ ∈ X ′ −X for y ̸= y′, and,

(iii) every subset of d+ 1 points in X ′ −X are in general position.

Some technicalities that will be here omitted (see San Mart́ın (2008) for

details) lead us to limM→∞ d(hX ′ , 0) = ∞ and the result is proven. 2
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