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RESUMEN 

Este proyecto trata sobre el sistema de control a implementar en la planta “ball and 

plate” (bandeja y bola). Esta planta, de Feedback Instruments, está programada y 

controlada con LabVIEW y nuestro objetivo final es estudiar este sistema de control 

y transferirlo al entorno de Matlab/simulink. 

Vamos a construir un modelo en espacio de estados y después, le añadiremos un 

controlador y un observador. Simularemos y compararemos cada sistema, 

añadiéndole ciertas variaciones y ruidos. 

Finalmente también construiremos el modelo de esta misma planta utilizando la 

lógica difusa. Resulta un proyecto muy interesante para ser utilizado en educación 

ya que puede proporcionar una visión general y práctica del modelo en espacio de 

estados, como controlarlo, y una pequeña introducción a la lógica difusa de Takagi-

Sugeno. 
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Abstract

This Project deals with the control system of the plant �ball and plate�.
This plant, from Feedback Instruments, is programmed and controlled
with LabVIEW software and our �nal goal is to study this control system
and to transfer it to matlab/simulink environment.

We are going to build a state-space model, and then, we will add a
controler and an observer. We will simulate and compare each system,
also with noise and variations, and �nally we will build a fuzzy logic
model of this ball and plate's system. It is a very interesting project for
educational purpose that can report us some practical general view of
state-space model and how to control it, and a small introduction to the
Takagi-Sugeno fuzzy logic.
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1 Introduction

The study of this subject is aimed at students who have being introducted to the
automatics and control engineering and want to read some practical examples
of the modeling and control of a state-space system or as a little introduction
to one of the more useful fuzzy logic's types: Takagi-Sugeno. It could also be
interesting for those people who want to build their own ball and plate plant.

This speci�c plant can be useful for other project's foundation in di�erent
real situations, for instance, the dangerous ware transportation by truck or ship
where we need to have it very horizontal and without brusque movements. Or
more generally, wherever we need something to be equilibrated, as nowadays
the trending drones.

Basing our project in the bibliography, we will use for obtaining the mathe-
matical model of the plant principally the own Feedback's document �Ball and
Plate Control Experiments 33-240-LabView� and the Final Project Report from
Amirkabir University �Modelling and Control of Ball-Plate System�.

We will continue with the control design, using the state space model in
matlab and simulink. Here the main part of the documentation that will be
use is the course's slides �Observation et commande dans l'espace d'etat� by
professor Aitouche, apart from some others.

Finally we will use as reference �Takagi-Sugeno Fuzzy Modeling for Process
Control� by Kamyar Mehran for the last part of our system where we remodel
the plant but with fuzzy logic.

Concluding, this project is a mixture of teorical applied contents, and their
representation and simulation in matlab and simulink enviroments.
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Part I

Space State System Model and

Control Design

2 Mathematical Modeling

In this section we have worked mostly with the documents we have previously
mentioned in the introduction. Our goal is to build a mathematical model in the
state space in order to base our control system in the state-space environment.

2.1 System's description

First of all, we should describe our system (see �gure 1). It is based on the free
movement of a plastic ball on a square plate and our mision is to control their
position, velocity and aceleration. For doing so, we will have to use diferent
sensors and actators. In this case we will have two potentiometers and one
camera for the input section, and four inductors used as actuators. Let's detail
the entire system:

Figure 1: Feedback instruments machine

The plate is held in his middle point by the structure in charge of measuring
his angles with two potentiometers, placed in perpendicular directions. This
structure also gives more stability to the plate.
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In each corner we will �nd an aluminum ring that due to the electromag-
netism, will be in charge of the movement of the plate, and therefore of the
ball.

About the inductors that provoke this electromagnetism, each one is con-
trolled in couple with the other inductor in the opposite corner, in order to
maintain the equilibrium.

The movement of the ball is obtained by the camera that with an intelligent
vision system will be able to determine the position of the ball in the plate, and
by simple deductions, the velocity and acceleration.

In brief, our system is composed of: the plate; the ball; two potentiometers
that will catch the angles and of our plate; one camera in charge of getting
the position x and y of the ball; one subsystem in charge of determinate the
velocities and accelerations of the ball and plate based on the obtained values;
and four inductors in charge of moving the plate and the ball.

• Entries: the values from the camera and potentiometers.

• Outputs: currents for the inductors.

2.2 Plant Model

Now that we have described our entire system, we are able to start the math-
ematical modeling. We are adding to the report the �gure 2 to have a more
visual representation of the system in order to making easier the comprehension
of this and the following sections.

Figure 2: Reference system of the ball and plate

Like in all the documentation we have read, including Feedback's own doc-
umentation, we started the modeling with the energy equations of our system,
kinetic and potential:
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T =
1

2

[
m(ẋ2 + ẏ2) + Ip(α̇

2 + β̇2) + Ib

(
ẋ2 + ẏ2

r2

)
+ Ib(α̇

2 + β̇2) +m(xα̇+ yβ̇)2
]

(1)

W = mgx sinα+mgy sinβ (2)

Following the instructions of the Feedback's manual, we have made the La-
grangian, deriving, and linearizing the equations, and after all we have translated
the results into the space-state, which is the object of study here.

Working in the state-space, we need to de�ne di�erent kinds of variables:
input variables, output variables, and state variables. We have taken for the
entrance u the variables of angular acceleration α̈and β̈, u = [α̈, β̈]′. The state
variables, xn, will be: the lineal position and velocity, x, ẋ, y and ẏand angular
position and velocity, α, α̇, β and β̇. So we obtain x = [x, ẋ, y, ẏ, α, α̇, β, β̇] =
[x1, x2, x3, x4, x5, x6, x7, x8].



ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

ẋ7

ẋ8


=



x2

b · (x1x4 + x5x8) · x4 − b · g · sinx3

x4

0
x6

b · (x1x4 + x5x8) · x8 − b · g · sinx7

x8

0


+



0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 1


[

ux

uy

]
(3)

For the moment, our exit, or output variables, will be y = x, so the matrix
C in this system will be an identity matrix 8x8 and the matrix D will be null.

To make easier the model, we divided the system (MIMO) in two di�erent
subsystems (SIMOs) (system (x, ) and system (y,)) and we have omitted all the
relations between these two systems due to the fact that the achieved values
in this operations are very low and can be despised. Both for the �rst and the
second system we obtain the following matrix for the state-space system:

A =


0 −1 0 0
0 0 −b · g 0
0 0 0 −1
0 0 0 0

 ; (4)

B =


0
0
0
1

 ; (5)

Where b and g are constants values:
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b =
m

m+ Ib
r2

=
0.027

0.027 + 4.32·10−6

0.022

(6)

g = 9.8

m=ball's mass; Ib=ball's moment of inertia; r=ball's radius and g=gravity.

Since now and for the rest of the report, we will refere to these independent
subsystems as the complete system of the plant and we will work with them
paying attention to only one direction. Let's say direction (x, α).

In the �gure 3 we can see the model description that we have written in
matlab, �rst in one system, and also split in the two independent subsystems,
easier to work with:

Figure 3: model description in matlab

3 Control Design

In this section we will mainly work with Simulink and Matlab, but we will also
include some handmade methods in order to show di�erent ways.

First of all, we are going to build in Simulink environment the state space
system of the Ball and Plate dynamics that all we know using the data we have
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already calculated in the previous point of modeling. The basic state space
model that we will use for the next designs is show in the �gure 4.

Figure 4: Simulink blocks of the state space model

As you can see, we are still working with the reduced model with only 4
state variables and 1 entry, because it is simpler to work with by this way and
to observe the results and it makes no di�erence in the them using the reduced
or the bigger version in the control.

As we are in the state space system, the controller that we will use, it is
based on a proportional controller, is showed in the equation 7.

u(t) = −Kx(t) +Hy(t) (7)

So �rst of all we are going to implement the feedback controller and after
calculating this K, we will add the H.

3.1 Controler design: K design

In this context we should �rstly calculate the eigenvalues of the system without
feedback (�gure 4). With some common functions in matlab we can derive that
they are four zeros. So now we have the necessity of translating these eigenvalues
into the negative plane of the s-plane.

In this �rst attempt we are going to make a simulation of the system locating
the four eigenvalues in -1, but this is not possible because matlab we cannot
place poles with multiplicity greater than B's rank. So we have chosen the
eigenvalues [-1 -0.99 -0.998 -0.999] in order to have a very similar response.
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Figure 5: system with feedback

We have calculate the K by matlab with these eigenvalues that we have
already said, and at the same time, we derived K by hand for the values -1
(since here we will call Aalpha, A; Balpha, B: Kalpha, K; etc).

Figure 6: Matlab results for K

The results from matlab are showed in the �gure 6, and are almost the
same that we obtained manually (-0.1427 -0.5708 -6 -4). We have simulated our
system with this K in feedback and the results for position and velocity of both
ball and plate can be observed in the �gure 7.
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Figure 7: Results from the simulation. scope3: x; scope4: ẋ; scope5: α; scope12:
α̇.

As we expected and as we can see, each graphic tends to di�erent values in
a stable way, which means that for the poles that we have chosen before, we get
a stable system.

In order to improve and get the best poles for our system, now we are going
to study aswell the di�erences of speed if we change one of its eigenvalues. We
will compare the answer of the ball velocity for an impulse entry for this diferent
values of poles. We have chosen the velocity randomly.
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Figure 8: Ball's velocity answer for di�erent eigenvalues
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As we can see in �gure 8, the highest value for the �rst eigenvalue, the
fastest is the response of the ball's velocity. So after watching and comparing
these results we have decided to select a pole in -5 in order to have a fast response
but without locating the pole in the very left.

3.2 Controler design: H design

To guarantee the null steady errors, now we are adding the H matrix in our
system that we previously mentioned in equation 7. This H matrix will be also
very useful for watching and comparing the diferent responses, because it scales
the answer in order to adjust it to the entry.

As we should know and we will discover in the equation 8, H can be only
use in systems with the same amount of inputs and outputs. As we have only
one input, we have to select only one output variable. This means that our H
will not be a matrix neither a vector, but a scalar.

We have chosen the position of the ball because it is the simpliest and in
some way the most important, because the �nal goal of the system is just to
move and hold the ball in a certain place on the plate. We will also see in the
next subsection that this variable is the only one observable, ergo we will use
anyway the ball's position.

Figure 9: Ball's position outputs

Using the new matrix C: C1 = [1, 0, 0, 0]; we use the equation 8 in matlab
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to derive H1 valor (H for the ball's position output).

H1 = −(C1 · (A−B ·K)−1 ·B)−1 (8)

The result of this equation is the scalar that will redimensionate our system.
In �gure 9 we can apreciate the comparison between the ball's position output
before (in yellow), and after (in blue) adding this H scalar to our system with
its step entry (in brown).

We can deduce that we have achieved our goal because now the answer is
suposed to directly follow the input, which means that simpli�es the analisys of
the controler and the system.

Once we have �nished our controller, continuing with the objective of im-
proving our system, we are going to add to the plant and controller of our
system, an observer.

3.3 Observer design

The observer in a system helps in the control of the plant with a feedback of
the observer states. This means that if after a period of time, the virtual states
of our system start to di�er gently with the real states, the observer will reduce
this error.

First of all we have measured the observability of both, our system SIMO
and the subsystems of each SISO system which outputs compose the big system
(the same system (x, α) or (y, β) but only with one output: ball's position, ball's
velocity, plate's position or plate's velocity).

We have obtained as result that the SIMO system is observable but the
only SISO subsystem observable is the �rst, the one which output is the ball's
position, where we have already used for the H design (see subsection 3.2). This
means that we can only derive the state space variables if we have as output at
least the ball's position.

Figure 10: The observers

So as we can see in �gure 10, we will try the two di�erent observers for
the two di�erent observable systems: the �rst case where we don't have the
H control and we have four outputs; and the second case where we add H to
the controler but only the ball position is measured (SISO system). We will
compare both of them with a controller without observer.

We designed for making the comparison the �gure 11.
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Figure 11: SIMO system diagram, with and without observer

Figure 12: SIMO L matrix

We are not attaching the graphic results for this comparison because there
is no di�erence between the system with and without observer; the answers of
both are identical.

If we watch the answer for the second case, the SISO system, we will obtain
the same result, �gures 13 and 14.

In this case we have also changed the poles for placing the L matrix, and
also changing the value of the step entry. But we have obtained the same result
than with the previous case. The answer for both systems, with and without
observer, is the same than the answer showed in �gure 9.
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Figure 13: SISO system diagram, with and without observer

Figure 14: SISO L matrix

4 In�uece of noises and variations

In order to test the robustness of our system we will make a little battery of
tests adding to it some di�erent variations of some constants and also we will
add some noise to watch how the system answers and if it is adequate for our
demands.

4.1 Ball's characteristic's modi�cation

The �rst of the robustness test that we will do is to modi�cate our b constant
(equation 6), that depends on the ball's mass, radius, and inertia's moment.
We have chosen this constant because is directely relationated with variables
where there could not be a good precision in the meassurement instruments, as
it could happen with the mass or the radius.
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We have modi�cated this b value in ±5% in the H coupled system (de�ned
in subsection 3.2) and the answer to this variation is shown in �gure 15.

Figure 15: b variation responses

We can perceive some slightly di�erences between the three graphics, one
for each b value (105%, 100% and 95%). In fact, this is a clearly example of
an under, over and critically damped responses, as we can see in the zoom that
we made from �gure 15 in the �gure 16, where we can see one of the responses
above the reference (the entry).

Figure 16: b variation responses zoom

The reason of this behavior is that our feedback element (the controler K:
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Figure 17: b variation responses (±5% and ±20% respectively) for system with
observator

subsection 3.1) has been calculated with the original A matrix (equation 4),
composed with the values of the original b.

However, this changes in the ball's characteristics are not going to disturb
the systems response in any important way. In any case, it will reach the �nal
value a bit slower.

This b modi�cation when applied to the system with the observer, �gure 13,
results in a more dramatical divergation from the original, and if the ball's char-
acterictics di�er more than ±20% with its original values, we can have serious
problems to accomplish a decent time of stability, or even the system's stability,
as we can see in �gure 17.

4.2 Noise's e�ect

The other modi�cation we have made is about the in�uence of noise in the
system. As in the previous robustness test, we have made this test to the
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Figure 18: Location of noise's block

controled system with and without observer.
We have added one noise block in the plant's output, before the feedback, in

order to simulate the posible noises in the input system of the sensors, or even
noises in their signal treatment.

We have made two di�erent tests, the �rst one for a noise of 0.1% and the
second one of 0.01% of the entry state value.

Figure 19: noise's response (0.1%), without and with observer, respectively
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Figure 20: noise's response (0.01%), without and with observer, respectively

The results are, unlike before, better in the system with observer than with-
out it. We can see in �gures 19 and 20.

Brie�y, we can say that depending on the type of robustness desired we can
make a system more or less prepared for each situation. For example, if we
know in advance that the noises are going to be depreciable for the system, but
we are going to use balls of di�erent mass and radius, we prefere the system
without observer.

In the other hand, if we will use always the same ball, we will use the ob-
server in order to minimizate the noise's (and others) e�ects.
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Part II

Takagi-Sugeno Model Design

5 Takagi-Sugeno Fuzzy logic

Now we are going to study the fuzzy logic's TS type and its direct application
to our system. We will need for doing so, �rst of all, to remodel our system into
a fuzzy model, and then to make a controler. After these we will simulate it
and compare the results.

5.1 Fuzzy logic modeling

First of all, we are going to built a fuzzy model for our system. Nevertheless, we
are not starting from zero. We will use what we have already done in subsection
2.2 until equation (3).

As we have done before, we will consider that the motion of the ball is
independent of the axis, so we get the next equation (we will continue working
only in x and α axis):

ẋ1

ẋ2

ẋ3

ẋ4

 =


x2

b · (x1x
2
4 − g · sinx3)
x4

0

+


0
0
0
1

ux

Or expressed in the way ẋ = A · x+B · u:
ẋ1

ẋ2

ẋ3

ẋ4

 =


0 1 0 0

b · x2
4 0 −b · g · sin x3

x3
0

0 0 0 1
0 0 0 0

x+


0
0
0
1

ux (9)

Once we get here, we start the fuzzy modeling. Our goal is to derive the
TS fuzzy model from this system. This fuzzy model corresponds to a model
that follows some rules. Our rules will follow the same structure than the next
example:

IF z1 IS Pi AND z2 ISQj THENA(z1, z2) ISAk (10)

Where z1 and z2are fuzzy variables, P and Q fuzzy sets, and A the matrix
that we already know.

We will design the fuzzy model by operating with the nonlinear terms in the
equation (9). In this case, these terms are x3 and x4, or in other words, angle
position and velocity. First we will need the variables limits. Measured in radi-
ans and radians/second, we obtained the following limits: x3 ∈ [−0.175, 0.175]
and x4 ∈ [−2.25, 2.25].
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Now we are going to introduce our fuzzy variables z1 and z2, that correspond
to z1 = b · x2

4 and z2 = −b · g · sin x3

x3
. So now the matrix A from equation 9 can

we written as:

Ȧ(z) =


0 1 0 0
z1 0 z2 0
0 0 0 1
0 0 0 0

 (11)

The next steps should be to calculate the maximums and the minimums of
this fuzzy variables derivating its equations with respect to x3 and x4 limits. In
our system we obtained the following:

max z1 = 3.616; min z1 = 0;
max z2 = −6.964; min z2 = −7.

Now we can represent z1 and z2 using the membership functions M1(z1),
M2(z1), N1(z2) and N2(z2) as follows:

z1 = b · x2
4 = M1 · 3.616 +M2 · 0,

z2 = −b · g · sinx3

x3
= N1 · (−6.964) +N2 · (−7).

where, for z1

M1(z1) =
z1(x4)−min z1
max z1 −min z1

,

M2(z1) =
max z1 − z1(x4)

max z1 −min z1

and

M1(z1) +M2(z1) = 1,

with their equivalents for z2: N1(z2) and N2(z2). We will call the fuzzy sets
�Big�, �Small�, �Fast� and �Slow� refering to the angle's amplitude and speed.

Now we can determine the whole nonlinear system using the following rules:

Rule 1: IF z1 is �Big� and z2 is �Fast� THEN ẋ = A1 · x+B · u;

Rule 2: IF z1 is �Big� and z2 is �Slow� THEN ẋ = A2 · x+B · u;

Rule 3: IF z1 is �Small� and z2 is �Fast� THEN ẋ = A3 · x+B · u;
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Rule 4: IF z1 is �Small� and z2 is �Slow� THEN ẋ = A4 · x+B · u;

where these new subsystems have the following A matrix in the form of matrix
(11):

A1 =


0 1 0 0

3.616 0 −6.964 0
0 0 0 1
0 0 0 0

 A2 =


0 1 0 0

3.616 0 −7 0
0 0 0 1
0 0 0 0


A3 =


0 1 0 0
0 0 −6.964 0
0 0 0 1
0 0 0 0

 A4 =


0 1 0 0
0 0 −7 0
0 0 0 1
0 0 0 0


(12)

Finaly, we have to deal with a defuzzi�cation process in order to have a linear
ẋ answer and the posibility of using this system in non fuzzy enviroments. This
ẋ will be derived from the following equation:

ẋ = h1(z) ·A1 · x+ h2(z) ·A2 · x+ h3(z) ·A3 · x+ h4(z) ·A4 · x+B · u (13)

where

h1(z) = M1(z1) ·N1(z2),
h2(z) = M1(z1) ·N2(z2),
h3(z) = M2(z1) ·N1(z2),
h4(z) = M2(z1) ·N2(z2).

(14)

Once we have calculated the A matrix from equation (11), which results we
can see for our obtained limits in (12), and once we have derived h1, h2, h3 and
h4 from (14), we get our �nal equation system, shown in equation (13).

6 Simulation's comparison between state-space

model and TS fuzzy model

In this section we will deal with the simulation of this previous fuzzy controller
by simulink in order to see how it works and if its outputs are similar to the
outputs obtained by the state-space model design.

Starting with the code already used, in �gure 3, we have written the following
in �gure 21, that has all the necessary to build our fuzzy system in symulink.
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Figure 21: Model's code in matlab

Figure 22: Comparison between state-space and fuzzy models

In the following �gures 22 and 23, we have desgined the model in symulink
enviroment, we made a subsystem for the calculus of our variables h due to their
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more complex con�guration.

Figure 23: h calculus subsystem

The comparison makes no proper di�erences between these two systems, and
the results are the same for angle's position and velocity, and almost the same
for the ball's position and velocity. As we can see in the �gure 24.

Actually, we can also add to our new system the K controler derived in
subsection 3.1. This is not any fuzzy controler that we would build for the fuzzy
model, but it is possible to use it in order to make the previous comparation
with a controler.

We are adding only the answer of the ball's position, showed in �gure 25.
As we can see, now there is no di�erence between this two outputs

In conclusion, we can say that our fuzzy model has practically the same
behaviour than the state-space model. Which gives us certainty that our fuzzy
model is well built.
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Figure 24: x, ẋ, α and α̇ respectively

Figure 25: comparation with K
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