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Resumen 
 

En este trabajo se ha realizado un estudio sobre el modelado y la estimación de los 

estados de una batería de Litio principalmente, y en la parte final del mismo sobre una 

batería de Plomo. Este estudio se ha desarrollado simultáneamente en MapleSim, 

Matlab y Simulink, utilizando el algoritmo denominado Filtro de Kalman (Kalman Filter 

en inglés) para estimar el estado de carga (SOC) y el estado de salud (SOH) de la batería. 

Este algoritmo ha sido extensamente validado a lo largo del trabajo mediante 

simulación, y se ha llegado a demostrar su robustez contra el ruido utilizado. Por otro 

lado también se ha estudiado la degradación que sufre la batería en función de la 

temperatura de las celdas que la componen. 

 

Palabras clave 
 

Filtro de Kalman, batería de Litio, estado de carga (SOC), estado de salud (SOH) y 

modelado baterías. 
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1 INTRODUCTION TO BATTERIES, BATTERY MODELLING AND 

MAPLESIM ENVIRONMENT 

 

1.1 ORIGINS OF THE BATTERIES 
 

The first battery was invented by Alessandro Volta in 1800. There are two main 

kinds of batteries: the primary cells which, once they had been used, they cannot be 

recharged, and secondary cells which can be used many times thanks to their capacity 

of recharging when you supply an external current [1]. In Table 1 it is shown a 

classification with several examples of both kinds of batteries [2]. 

 

Primary Cells Secondary Cells 

Zinc Carbon Sealed Lead Acid 

Alkaline Nickel Cadmium 

Lithium Nickel Metal-Hydride 

 Lithium-ion 

 Lithium-Polymer 
Table 1.- Classification of different battery types in primary or secondary cells 

For instance, silver coin or button cell batteries are lithium batteries since they 

are composed of lithium metal and, due to their irreversible chemical reaction, they are 

classified as primary cells. Also the well-known alkaline batteries, which can be easily 

found on store shelves, are classified into this group. The disposable nature of this kind 

of batteries means that there is no need of recharge control, protection circuity or fuel 

gauging, whereas the secondary batteries, they do need this actions in order to enhance 

their performance. Within this group we can found the Lithium-ion batteries, which are 

the ones that we are going to focus on throughout this document. This batteries are now 

widely used in today portable’s world. At the end of this document, we are going to 

study the Lead-Acid batteries too, which are classified as secondary cells and are usually 

used in automotive applications or fixed installation due to their large size and weight. 

 

1.2 OPERATION OF A BATTERY 
 

A battery is a device composed by one or more electrochemical cells that 

converts the chemical energy contained in its active materials directly into electric 

energy by means of an oxidation reduction (redox) reaction, which consists in the 

transfer of electrons from one material to another through an electric circuit [2]. 

During the discharge of a battery, it operates like in Figure 1.1.a). When both 

terminals of the battery are connected to an external load (in this case a bulb), 
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electrodes flow from the anode, which is oxidized, through the external load to the 

cathode, which is reduced due to the flow of electrodes. The electric circuit is completed 

in the electrolyte by the flow of anions and cations to the anode and cathode, 

respectively. The electrolyte is an ionic conductor that allow the transfer of charge, as 

ions, inside the battery between the anode and the cathode [2]. 

 

  

Figure 1.1.- a) Discharge of Li-Ion Battery; b) Charge of Li-Ion Battery 

Source: http://www.sigmaaldrich.com/technical-documents/articles/material-

matters/ionic-liquids-for.html 

The operation inside the battery when charging is depicted in Figure 1.1.b). Now 

the current flow is inverted, with reduction occurring at the negative electrode and 

oxidation at the positive. To conclude, it is important to notice that the battery operation 

relies on the use of a pairs of metals that are capable of exchanging electrons. 

 

1.3 MAIN PARAMETERS OF THE BATTERY 
 

Each battery is characterised by the following parameters [1]: 

a) Usable power (P = V*I): 

 

It is obtained from the product of battery voltage (V) and the maximum 

current that it can tolerate (I). This usable power must be at least equal to the 

peak power so as to provide the electricity throughout all the operating range. 

 

b) Stored Energy (KWh): 

This parameter is going to determine the autonomy of the electric vehicle 
(EV) and the possibilities of recovering for a hybrid electric vehicle (HEV). The 
energy of the battery is expressed as a function of its capacity in ampere-hour 
(Ah) and its voltage. 

b) a) 

http://www.sigmaaldrich.com/technical-documents/articles/material-matters/ionic-liquids-for.html
http://www.sigmaaldrich.com/technical-documents/articles/material-matters/ionic-liquids-for.html
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c) State of charge of the battery (SOC): 

 

One possible definition of the state of charge (SOC) could be the ratio of 

the remaining charge of the battery and the total charge while the battery is fully 

charged at the same specific standard condition. The SOC is often expressed in 

percentage, where 100% means fully charged and 0% means fully discharged [3]. 

 

1.4 REQUIREMENTS OF A BATTERY FOR THE ELECTRIC VEHICLE 
 

The weight and volume of the batteries are some of the most important factors 

when choosing a battery. The electric vehicle (EV) must have a battery that meets the 

following requirements among others [1]: 

a) A good mass energy (Wh/Kg): the quantity of energy stored per mass unit. It 

allows to define the autonomy of the battery. 

b) A good power-to-weight ratio (W/Kg): The power delivered by a unit of mass of 

the battery. 

c) A steady voltage which generate a regular performance. 

d) A good autonomy. 

e) A maximum battery lifespan, expressed in number of cycles (charge/discharge) 

that it can support. Battery lifespan is defined as the number of times that the 

battery can be restored until a level of energy superior to 80% of its nominal 

energy. 

f) Less maintenance 

g) Availability 

 

1.5 BATTERY MODELLING 
 

Research in the field of electric vehicle simulation, energy distribution and power 

control strategy, as well as in the estimation of batteries state of charge (SOC) and state 

of health (SOH) is experiencing an important increase. This growing interest in this field 

caused that the improvement of battery models accuracy, especially those concerning 

Lithium-ion batteries, has become a crucial objective. 

This is the reason why in the literature there is a wide range of different 

approaches regarding the representation of battery behaviour using models with 

different degrees of complexity. Since the battery is a nonlinear system, the models 

usually used in electric vehicles can be classified into three different kinds: 

 

1.5.1 ELECTROCHEMICAL MODELS 
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It is possible to achieve a high accuracy by using electrochemical models that aim 

to capture all the key behaviours of the battery. They are suitable for understanding the 

distributed electrochemistry reactions in the electrodes (such as, the reactions from 

Figure 1.2, assuming LiyCoO2 cathode and LixC6 anode) and electrolyte. However, in order 

to describe the battery chemistry charge/discharge carrier mechanisms, they deploy a 

high number of partial differential equations (PDEs) with a large number of unknown 

parameters (see from equation (  1.1 ) to (  1.5 )), which must be solved simultaneously 

with a high computational expense and a significant requirement of memory. In 

addition, they frequently run into over-fitting problems due to their poor model 

robustness under extrapolation [4], which generally precludes their use in real-time 

online control [5]. 

 

This kind of battery modelling tries to describe all the details of physics 

phenomenon that happens inside the battery. Figure 1.2 shows the anatomy of a 

Lithium-ion cell battery, which has four main components: the negative composite 

electrode connected to the negative terminal of the cell, the positive electrode 

connected to the positive terminal of the cell, the separator and the electrolyte. 

Cathode: Li1-yCoO2 + y Li+ + y e-  LiCoO2 

   Anode: LiyC6  C6 + y Li+ + y e- 

 

Figure 1.2.- Basic anatomy of a Lithium-ion cell 

 

As it was stated previously in this section, the behaviour of the battery is 

explained by the electrochemical model with the following complex equations: 

 Transport in the solid phase: 

 

The partial differential equation (  1.1 ) describes the solid phase Li+ 

concentration in a single spherical active material particle in solid phase: 
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𝜕𝑐𝑠
𝜕𝑡

=  
𝐷𝑠
𝑟2
 
𝜕

𝜕𝑥
(𝑟2  

𝜕𝑐𝑠
𝜕𝑟
) (  1.1 ) 

 

 

Where Ds is the Li+ diffusion coefficient in the intercalation particle of the   

electrodes. 

 Transport in electrolyte: 

 

The Li+ concentration in the electrolyte phase changes due to the variations in 

the gradient diffusive flow of Li+ ions and is described by the following PDE: 

𝜖 
𝜕𝑐𝑒
𝜕𝑡

=  
𝜕

𝜕𝑥
 (𝐷𝑒𝑓𝑓

𝜕𝑐𝑒
𝜕𝑥
) + 𝑎 (1 + 𝑡+) 𝑗 

(  1.2 ) 

 

Where ϵ is the volume fraction, Deff is the Li+ diffusion coefficient in the 

electrolyte, a is the specific surface area of electrode and it is equal to  
3

𝑅𝑠
(1 − 𝜖 − 𝜖𝑓) (being ϵf the volume fraction of fillers and Rs the radius of 

intercalation of electrode), t+ is he Li+ transference constant in the electrolyte, 

and j is the wall-flux of Li+ on the intercalation particle of electrode. 

 Electrical potentials: 

 

Change conservation in the solid phase of each electrode is described by Ohm’s 

law (  1.3 ). In the electrolyte phase, the electrical potential is described by 

combining Kirchhoff’s law and Ohm’s law (equation (  1.4 )). 

 

𝜎𝑒𝑓𝑓 (
𝜕2

𝜕𝑥
Φ𝑠) = 𝑎𝐹𝑗 

(  1.3 ) 

 

−𝜎𝑒𝑓𝑓 (
𝜕Φ𝑠
𝜕𝑥
) − 𝜅𝑒𝑓𝑓 (

𝜕Φ𝑒
𝜕𝑥

) +
2𝜅𝑒𝑓𝑓𝑅𝑇

𝐹
 (1 − 𝑡+)

𝜕 ln(𝑐𝑒)

𝜕𝑥
= 𝐽 

(  1.4 ) 

 

  
Where σeff is the effective electronic conductivity (𝜎𝑒𝑓𝑓 = 𝜎(1 − 𝜖 − 𝜖𝑒𝑓𝑓), 

being 𝜎 the electronic conductivity in solid phase), Ƙeff is the effective ionic 

conductivity of the electrolyte, and J is the applied current density. 

 Butler-Volmer kinetics: 

 

Equation (  1.5 ) describes the relationship between the current density, 

concentrations and over-potential: 

𝑗 = 𝑘(𝑐𝑠,𝑚𝑎𝑥 − 𝑐𝑠,𝑠𝑢𝑟𝑓)
0,5
(𝑐𝑠,𝑠𝑢𝑟𝑓)

0,5
(𝑐𝑒)

0,5 (𝑒𝑥𝑝 (0.5
𝐹𝜇

𝑅𝑇
))

− 𝑒𝑥𝑝 (−0.5
𝐹𝜇

𝑅𝑇
) 

(  1.5 ) 
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Where k is the reaction rate constant, μ = Фs - Фe – U0 is the over-potential of 

intercalation reaction, U0 is the open-circuit potential for the electrode material 

(usually obtained from curve-fitting on experimental measurement), cs,max is the 

maximum concentration of Li+ ions in the intercalation particles of the electrode 

and cs,surf the concentration of Li+ ions on the surface of the intercalation particles 

of the electrode. 

Shepherd model is one of the most widely used electrochemical models, for 

instance it is commonly employed for the hybrid electric vehicle (HEV) description. This 

model describes directly the electrochemical behaviour of the battery in terms of 

voltage and current [1]. 

 

 

Where k is a time index, Uk is the model voltage, U0 is the open circuit voltage, 

R0 is the internal ohmic resistance of the battery, Kk is the polarization resistance 

(expressed in ohms), Ik is the instantaneous current (amps), and zk is the cell SOC. 

 

1.5.2 MATHEMATICAL MODELS 
 

In general, these models are so abstract that they cannot be used to develop a 

specific model, but they are still considered as a useful resource for system designers. 

They employ empirical equations or mathematical methods to predict the system level 

behaviour and system evolution, as well as its properties, such as the autonomy of a 

battery or its capacity [1].  

 

1.5.3  ELECTRICAL EQUIVALENT CIRCUIT MODELS 

 

 Electrical equivalent circuit (EEC) models consist of a combination of voltage 

sources, resistors and capacitors. They, like the other models, try to model the battery 

behaviour. They are based on the reproduction of the dynamic characteristics and 

working principles of the battery using circuit theory. Their accuracy lies within 1-5% and 

their low computational intensity makes them really accurate for real-time simulation 

use [5]. 

In document [6], they carried out an experimental study which allow them to 

conclude that an improved Thevenin circuit model, named dual polarisation (DP) model, 

was the best model in terms of compromise between accuracy and computation time. 

Due to the great performance of this model, we decided to use it in order to develop all 

our study. The selected model is shown below: 

𝑈𝑘 = 𝑈0 − 𝑅0𝐼𝑘 +
𝐾𝑘
𝑧𝑘

 
(  1.6 ) 
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Figure 1.3.- Schematic diagram for the DP model [6] 

This model allow to refine the description of polarisation characteristics of the 

battery and simulate the concentration polarisation and the electrochemical 

polarisation separately, which leads to an improved simulation at the moments of end 

of charge or discharge compared to the Thevenin model. 

The DP model is composed of three parts [6]: 

 The open-circuit voltage (Uoc), which is reproduced by a voltage source. 

 Internal resistances such as the ohmic resistance R0 and the polarisation 

resistances, which include Rpa to represent the effective resistance characterising 

electrochemical polarisation and Rpc to represent the effective resistance 

characterising concentration polarisation. 

 The effective capacitances like Cpa and Cpc, which are used to describe the 

electrochemical polarization and the concentration polarization separately and 

to characterise the transient response during transfer of power to/from the 

battery, more concretely the network Rpa and Cpa captures the short transients 

(STC) and the network Rpc and Cpc captures the long ones (LTC) [5]. 

Upa and Upc are the voltages across Cpa and Cpc respectively.  Ipa and Ipc are the 

outflow currents of Cpa and Cpc respectively. The equations that describes the electrical 

behaviour of this circuit will be expressed in the section 2.1.  

 

1.6 MAPLESIM ENVIRONMENT 
 

The most part of this work has been developed thanks to the modelling, 

simulation and analysis tool MapleSim, which has, among others, a specific library for 

the batteries. It provided us with a wide range of different batteries models. This 

together with the different tools to create custom components has allow us to suit our 

modelling and simulation needs, and therefore fulfil the goals of this study. 

The integration of MapleSim and Maple offers more freedom in order to develop 

your models. Thanks to its flexibility, you are no longer restricted to built-in components 

or analyse. With its complete programming and analysis environment, it is possible to 
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run simulations, customise analyses or script entirely new ones, perform optimisations, 

develop advanced symbolic control laws and investigate models in ways that are not 

possible with other tools [7]. It also allows to build component diagrams that represent 

physical systems in a graphical form, which is of great help for many engineers that do 

not find many existing simulation tools intuitive for physical modelling. Using both 

symbolic and numeric approaches, MapleSim automatically generates model equations 

from a component diagram and runs high-fidelity simulations [8]. 

After automatically generating these equations, MapleSim tries to simplify them 

with symbolic techniques that include index reduction, differential elimination, 

separation of independent systems, and elimination of redundant systems. The two 

main benefits of symbolic simplification are the following [8]: 

 By symbolically resolving algebraic loops and through reducing the complexity of 

DAEs, symbolic simplification makes many problems, which previously were 

intractable, numerically solvable. 

 

 The simplified equations are provided to the numerical solvers in a 

computationally efficient form. This reduces the total simulation time, in some 

cases, by many orders of magnitude. 

Computational efficiency is particularly important for studies that requires 

hardware-in-the-loop (HIL) simulation, such as the implementation of a batteries in the 

electric vehicle, because it allows to develop higher fidelity models while the real-time 

performance remains accurate.  

 

Figure 1.4- Screenshot of MapleSim, showing all the different possibilities concerning 

battery simulation 

 



14 

 

In Figure 1.4, we can see the appearance of MapleSim software. On the left-hand 

side of the screenshot, it is shown the two different approaches of battery modelling 

(electrochemical and EEC) that it allows, and some batteries of different nature that are 

already implemented in the software. As it was stated previously, during the 

development of this study the electrochemical and EEC models of the Lithium-ion 

battery were used, as well as the EEC model of the Lead-Acid battery, due to the fact 

that MapleSim does not include the electrochemical model of the latter.  
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2 MODELLING OF A LITHIUM-ION BATTERY 
 

Firstly, we started with the comparison between the two kinds of models that 

MapleSim allow us to use in order to describe the performance of a Lithium-ion battery. 

These models are the electrochemical model and the electrical equivalent circuit (EEC) 

model, also known as equivalent circuit models (ECM), which has been introduced in the 

section 1.5. 

So as to accomplish this task, we took the electrochemical model that MapleSim 

included in its battery library as a reference and we tried to obtain the same output with 

the electrical equivalent circuit (EEC) model. The equation that describe the behaviour 

of the EEC model in MapleSim is the following: 

 

       𝑉𝑏𝑎𝑡𝑡 = 𝑁𝑐𝑒𝑙𝑙 ∙ (𝑉𝑜𝑐 − 𝑉𝑅𝑖𝑛𝑡 − 𝑉𝑅𝐶1 − 𝑉𝑅𝐶2 −⋯− 𝑉𝑅𝐶𝑛) (  2.1 ) 
 

 

Where Vbatt is the terminal voltage, Ncell is the number of cells number of cells in 

series that compose the stack, in our study we considered a Lithium-ion battery with 

one cell (Ncell = 1) for almost every simulations, except in section 4.5. Voc corresponds to 

the open circuit voltage, VRint is the voltage drop across the internal resistance (Rint) and 

VRCn is the voltage drop across the n-th RC network. In this case, as we have established 

in section 1.5.3, we considered an electrical circuit with two RC networks, therefore its 

terminal voltage would be characterised by the equation (  2.2 ): 

  

       𝑉𝑏𝑎𝑡𝑡 = 𝑁𝑐𝑒𝑙𝑙 ∙ (𝑉𝑜𝑐 − 𝑉𝑅𝑖𝑛𝑡 − 𝑉𝑅𝐶1 − 𝑉𝑅𝐶2)   (  2.2 ) 
 

The layout of our model is presented in Figure 2.1. Each subsystem contains the 

electrochemical model (the one on the right) or the electrical equivalent circuit model 

(the left one). The content of each subsystem is the same excepting the battery model 

used. Figure 2.2 shows the EEC model subsystem.     

 

Figure 2.1.- Layout of the model developed in MapleSim 
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Figure 2.2.- Content of the EEC model subsystem 

 

Each source (P1 and P2) was configured to work in different periods of time. In 

order to achieve this, the configuration of the sources is shown in Figure 2.3. As a result, 

the input current obtained consist of a pulse train which firstly discharge the battery and 

then charge it, as depicted in Figure 2.4. 

 

 

  
Figure 2.3.- Configuration of the source that: a) discharge the batteries; b) charge the 

batteries 

 

 

Figure 2.4.- Input current: pulse train with an amplitude of -20 A, T=60 sec. and a width 

of 10% of the period 

During the 90% of the period the value of the current is 0 A and the remaining 

10% the current is ±20A depending if we are in the discharging or charging period. Using 

a) b) 
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this current as the input of our system, we obtain a comparison between the outputs of 

both models, electrochemical and EEC models, depicted in Figure 2.5 and Figure 2.6. 

 

 

Figure 2.5.- Output: Terminal voltage of the electrochemical model (green) and the EEC 

model (red) 

 

Figure 2.6.- Output: State of Charge of the electrochemical model (green) and the EEC 

model (red) 

It can be seen that the results obtained from both models are very similar. 

Nevertheless, there is an estrange behaviour in the electrochemical one. For instance, 

concerning the Figure 2.6, when we study the state of charge of the battery, it is of the 

utmost importance to bear in mind that it depends on the current and the temperature. 

Therefore, if the input current is equal to zero the value of the state of charge must 

remain constant because these models were configured as isothermals, which means 

that the temperature remains constant during all the simulation. However, we can verify 

that the state of charge of the electrochemical model does not follow this behaviour. 

On the other hand, in Figure 2.5 it is represented the terminal voltage of both 

models. Here, the EEC model output is also more similar to the terminal voltage of a real 

battery, due to the fact that in the electrochemical model, when the current is zero the 

value of this output increase very abruptly and decrease a little bit later in the 

discharging period and vice versa when charging. Whereas for EEC model, we can clearly 

distinguish the contribution of the different components of the electrical circuit (Figure 

1.3), which allow us to track the transients of the battery. When the input current 

becomes zero, firstly, there is a sudden increase of the output voltage due to the internal 

resistance, then the voltage keeps increasing but in a slower rate due to the parallel RC 



18 

 

networks, describing the transient response. When charging it would be the other way 

round, firstly there is a sudden drop due to the internal resistance and then a moderate 

decrease due to the RC networks. 

In order to make sure that the EEC model tracks better the battery behaviour we 

carried out another simulation with both models, but in this case the input current 

would be a constant current (Figure 2.7). 

 

 

Figure 2.7.- Input current: Constant current with an amplitude of +/-5 A 

 

 

Figure 2.8.- Output: Terminal voltage of the electrochemical model (green) and the EEC 

model (red) 

 

 

Figure 2.9.- Output: State of Charge of the electrochemical model (green) and the EEC 

model (red) 

The behaviour of both models is almost the same for this step input with an 

amplitude of 5A when discharging and -5A when charging. Thus, taking everything into 
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account we chose the EEC one as the reference battery model to carry out our study, as 

we verified that it was the one that describe the battery behaviour with the highest 

fidelity. 

 

2.1 IMPLEMENTATION OF THE BATTERY MODEL IN MATLAB ENVIRONMENT 
 

Once the EEC model was chosen as the reference model from which our study 

could be developed, we wanted to make sure that the parameters we were going to use 

in Matlab would allow us to have an accurate representation of the performance our 

battery model. The parameters used in Matlab were obtained from the EEC model that 

it was modelled in MapleSim. The value of each parameter depends on SOC, following 

the form of the equation (  2.3 ). Where the variable “parameter” refers to the internal 

resistance (R0) or any of the components of the RC networks (R1, C1, R2 or C2). 

General form:  

 

                                          𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 𝑘1 ∙ 𝑒
𝑘2∙𝑆𝑂𝐶 + 𝑘3                         (  2.3 ) 

 
Particularised for each parameter: 

 

𝑅0,𝑘 = 0,11 ∙ 𝑒
−50∙𝑆𝑂𝐶𝑘 + 0,0075 

𝑅1,𝑘 = 0,05 ∙ 𝑒
−29∙𝑆𝑂𝐶𝑘 + 0,0074 

𝑅1,𝑘 ∙ 𝐶1,𝑘 = 3,5 ∙ 𝑒
−10∙𝑆𝑂𝐶𝑘 + 10,5 

𝑅2,𝑘 = 1 ∙ 𝑒
−150∙𝑆𝑂𝐶𝑘 + 0,008 

𝑅2,𝑘 ∙ 𝐶2,𝑘 = −500 ∙ 𝑒
−20∙𝑆𝑂𝐶𝑘 + 710 

 

The open circuit voltage (Voc) is also obtained from MapleSim and follows the 

same form of (  2.3 ): 

 

𝑉𝑂𝐶𝑘 = 0,1958 ∗ 𝑒
1,332∙𝑆𝑂𝐶𝑘 + 3,429703601 (  2.4 ) 

 
So as to implement this model in Matlab environment it was necessary to create 

a linear state-space model defined by this equations: 

 

                                �̇� = 𝐴𝑥 + 𝐵𝑢 + 𝑤                                  (  2.5 ) 
 

                                        𝑦 = 𝐶𝑥 + 𝐷𝑢 + 𝐻𝑣                                    (  2.6 ) 
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We needed to rewrite the equations that described the electrical behaviour of 

the battery model into the matrix form, which fitted with the state-space formulation. 

This EEC model was based on the Dual Polarised circuit introduced in section 1.5.3. Our 

particular model is represented in Figure 2.10. 

 

Figure 2.10.-  Electrical equivalent circuit Model of the Battery 

 

The controllable source represents the open circuit voltage (Voc). The function of 

the rest of the components has been detailed in section 1.5.3. The electrical behaviour 

of the previous circuit could be described by the following system of equations: 

 

                   

{
 
 

 
 �̇�1 = −

𝑉1
𝑅1(𝑆) ∙ 𝐶1(𝑆)

+
𝐼𝑏𝑎𝑡𝑡
𝐶1(𝑆)

�̇�2 = −
𝑉2

𝑅2(𝑆) ∙ 𝐶2(𝑆)
+
𝐼𝑏𝑎𝑡𝑡
𝐶2(𝑆)

𝑉𝑡𝑒𝑟𝑚(𝑆, 𝐼) = 𝑉𝑜𝑐(𝑆) − 𝑉1 − 𝑉2 − 𝑅0 ∙ 𝐼𝑏𝑎𝑡𝑡

          

 
 
(  2.7 ) 
 

 

Bearing in mind that we were in a simulation environment, we chose the 

Coulomb counting method (  2.8 ) in order to keep track of the SOC of our model 

implemented in Matlab as it assures 100% accuracy for ideal batteries working in this 

environment [5]: 

 

                    𝑆(𝐼) = 𝑆𝑖𝑛𝑖𝑡 +
1

𝐶𝑢𝑠𝑒 ∙ 3600
∙ ∫ 𝐼𝑏𝑎𝑡𝑡(𝑡) 𝑑𝑡

𝑡

0

 
(  2.8 ) 
 

 

Where Sinit represents the SOC at the initial time t0, Ibatt (t) the current traversing 

the battery in Amperes (assumed to be positive when discharging and negative when 

charging) and Cuse is the available usable capacity of the battery in Ampere-hour, which 

changes with the service life (in our particular case Cuse = 1Ah and it will remain constant 

during most of the simulations of this study, except for the simulations concerning the 

state of health of the battery). However, if we take into consideration the losses that 
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occur while charging and discharging and also during storing periods, the equation (  2.8 

) must be slightly modified [9]: 

    

𝑆(𝐼) = 𝑆𝑖𝑛𝑖𝑡[1 −
𝜎

24
(𝑡 − 𝑡0)] +

ɳ

𝐶𝑢𝑠𝑒 ∙ 3600
∙ ∫ 𝐼𝑏𝑎𝑡𝑡(𝑡) 𝑑𝑡

𝑡

0

 
(  2.9 ) 
 

 

Where σ is the self-discharge rate, which depends on the accumulated charge 

and the battery state of health (SOH). A value of 0,2% per day is recommended for this 

parameter; ɳ is the coulombic efficiency1, which it is assumed to be one for discharging 

and less than or close to one when charging, in order to reflect the fact that only a 

fraction of the input energy is restored. It depends on the technology used for the 

battery and other variables such as the temperature, the charging/discharging current, 

the state of charge (SOC) and the state of health (SOH). In our particular case, as we 

work in the ideal conditions that characterised the simulation environment, it is 

assumed to be constant and equal to one in both charging and discharging process, and 

the self-discharge rate is going to be fixed to 0% for the same reason [10]. 

In order to adapt this equations to the state-space formulation we defined the 

following matrix based on the equations (  2.7 ) and (  2.8 ): 

 

𝐴 =

[
 
 
 
 −

1

𝑅1 ∙ 𝐶1
0 0

0 −
1

𝑅2 ∙ 𝐶2
0

0 0 0]
 
 
 
 

   ;   𝐵 =

[
 
 
 
 
 
 

1

𝐶1
1

𝐶2

−
1

𝐶𝑢𝑠𝑒 ∙ 3600]
 
 
 
 
 
 

   ;   𝐶 = [−1 −1
𝜕𝑉𝑂𝐶
𝜕𝑆𝑂𝐶

] ; 

𝐷 = [−𝑅0]   ;   𝐻 = [1]   ;   𝑥 = [
𝑉1
𝑉2
𝑆𝑂𝐶

]  ;   𝑢 = [𝐼𝑏𝑎𝑡𝑡]  ;   𝑦 = [𝑉𝑡𝑒𝑟𝑚]   
(  2.10 ) 
 

 

At first, we started implementing a linear model of the reference battery. 

Therefore, all the nonlinear expressions were linearized. Concerning the circuit 

parameters defined in (  2.3 ), we supposed that their value remained constant and equal 

to their initial value when the battery was fully charged (SOC=1) during all the 

simulation. Whereas the expression of the open circuit voltage (Voc) was linearized using 

the curve fitting tool from Matlab and an excel file with data from the battery model in 

MapleSim so as to fit these data with a linear curve. The linearized expression of the Voc 

is defined as follows: 

𝑉𝑂𝐶𝑘 = 0.5552 ∗ 𝑆𝑂𝐶𝑘 + 3,525 (  2.11 ) 

                                                      
1 Coulombic efficiency: The ratio of the number of charges that enter to the battery during charging and 
those that can be extracted from the battery during discharging. 
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Once our model in Matlab was defined, we proceeded to verify if this system was 

able to reproduce the same behaviour as that of our battery model in MapleSim. In order 

to carry out this verification we introduced the same excitations for the two systems and 

compared their outputs. For instance, using a constant current of 1A as the input, we 

obtain the following outputs:  

 

Figure 2.11.- Battery terminal voltage response in Matlab using a constant current of 

1A 

 

 

Figure 2.12.- Battery Voltage response in MapleSim using a constant current of 1A 

 

Although at a first glace it may seem that these two systems do not have any 

similarities between them, we have to take into account that when we transform a 

model into a linear state-space model we are linearizing the model, so the system will 

lose all the properties related to its nonlinearities. Therefore, we have to analyse the 

area where the model has a linear behaviour. If we do so, we are going to find that both 

systems have almost the same behaviour in their flatter part.  
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Figure 2.13.- State of charge (SOC) response in Matlab using a constant current of 1A 

 

Figure 2.14.- State of charge (SOC) response in MapleSim using a constant current of 1A 

It can be seen that the battery state of charge in both cases decrease at the same 

rate. In order to make sure that we could continue working with this model in Matlab, 

we introduced a new input current to the system, consisting of a square-wave pulse 

train with an amplitude of 10A and a period of 60 seconds during 679 seconds until the 

10% of the SOC was reached, as it is shown in Figure 2.15. 

Figure 2.15.- Input current: train of square-wave pulses with an amplitude of 10A and 

T=60 sec 
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Using this current as the battery model input, we obtain the following responses, 

in both Matlab and MapleSim. We can verify that we achieve a great accuracy in the 

estimation, being the linearization of the system in Matlab the reason of the small 

differences that exist between both models. 

Figure 2.16.- Battery Terminal Voltage response in Matlab 

 

Figure 2.17.- Battery Terminal Voltage response in MapleSim 

 

   
Figure 2.18.- State of charge (SOC) response in Matlab using an input current that 

consist of train of square-wave pulses 
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Figure 2.19.- State of charge (SOC) response in MapleSim using an input current that 

consist of train of square-wave pulses 

 

From the previous graphics it is visible that this model is highly accurate if we 

work with a battery that has a linear behaviour. However, due to the inherent nonlinear 

nature of the battery behaviour, the nonlinear model was also implemented in Matlab, 

as it accounts for the nonlinearities. This model was developed considering that R0, R1, 

C1, R2, C2 and Voc depend nonlinearly on SOC, as it was defined in equations (  2.3 ) and 

(  2.4 ). 

 

As we wanted to prove that this model accounts for the nonlinearities of the 

system, we used the same constant current as that which has been previously used to 

show that the linear system gives a good estimation of the terminal voltage only in the 

flatter area of the curve. Making a comparison between the outputs depicted in Figure 

2.20 and Figure 2.12, we can confirm that with this model we also keep track of the 

nonlinearities of the battery model to some extent. 

 

 

Figure 2.20.- Battery terminal voltage of the nonlinear system implemented in Matlab 

using a constant current of 1A as the input of the system 
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Figure 2.21.- SOC of the nonlinear system implemented in Matlab using a constant 

current of 1A as the input of the system 

 

All things considered, we decided to start the simulations in Matlab with the 

linear system in order to develop the Simple Kalman Filter (SKF), due to the fact that it 

has been proved that it operates better when it works with linear systems. Later on, we 

would change to the nonlinear system so as to implement the Extended Kalman Filter, 

as we will see in chapter 3. 
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3 STATE OF CHARGE ESTIMATION ALGORITHM 
 

3.1 STATE OF THE ART 
 

State of charge estimation of commercial batteries can be done by many 

different methods in electrical chemistry laboratory like coulometric titration technique 

[3]. But this estimation is quite challenging without destruction of the battery or 

interruption of the battery power supply, especially the applications which require 

online estimations. Currently there has been intensive study on SOC estimation 

algorithm. Below a short review of some of them is presented [3]: 

 

 Discharge test method 

 

This test could precisely find the remaining charge of the battery and then the 

SOC under controlled conditions, i.e., specified discharge current and ambient 

temperature. Its major drawback is that it is a time-consuming method and after 

the test the battery have no power, hence this method is not useful for the online 

applications of the batteries, reducing its utility to the laboratory environment 

only. 

 

 Coulomb counting (Ampere-Hour integral) method 

 

This is the most simple and general method to obtain the battery SOC. It is 

characterised by the equation (  2.8 ) that has been defined before. 

 

If the initial estimation of SOC is relatively precise, the results of the Coulomb 

counting method are quite satisfactory. Nevertheless, it has several 

disadvantages: 

 

i) It cannot get the precise initial SOC automatically, so it is highly important to 

have an accurate initial estimation of SOC in order to obtain a precise SOC 

estimation. 

ii) The Coulombic efficiency (ɳ) can be influenced by the operation state of the 

battery, such as SOC, temperature, etc., which are difficult to measure and 

then produce cumulative effects on SOC error. 

iii) Its dependence on the precision of the current sensor that will result in 

cumulative effects which will influence on the precision of SOC. 

 

Therefore, the Coulomb counting method alone cannot meet the requirement 

of SOC precision. 
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 Open circuit voltage (OCV) method 

 

The one to one correlation between OCV and SOC make this method an effective 

one to estimate SOC of Lithium-ion batteries, because it allows us to be sure that 

when the battery has reached balance after adequate resting, the OCV 

corresponds to 100% of the SOC. 

 

This method give us a high precision SOC estimation but, on the other hand, the 

relaxation period requires a lot of time until the batteries reach balance. It 

usually take some time for them to recover from an operating state to a balanced 

state, this duration depends on the SOC and temperature of the battery among 

others. Thus, this method, if used alone, is suitable only for applications where 

the device is left idle, for instance, for the electric vehicles (EVs) case, this 

method will be useful only if they are parking rather than driving. 

 

Moreover, careful consideration and research are needed as the OCV of some 

kinds of batteries depends on the charge/discharge process. For instance, the 

charge and discharge open circuit voltage of Lithium-ion phosphate (LFP) 

batteries experience the hysteresis phenomena as indicated in Figure 3.1 [11]: 

 

 

 

 

Figure 3.1.- Flat OCV-SOC curve for the LFP cell (20°C) after a 3-hour rest period [11] 

 

 

Considering the hysteresis phenomena of LFP battery, it has been shown that 

the hysteresis is correlated with the relaxation time, with the level of hysteresis 

decreasing as the rest period increases. This phenomenon is depicted in the 

Figure 3.2 where the voltage was plotted with respect to SOC for different 

relaxation periods. 

 



29 

 

 

Figure 3.2.- Hysteresis decreases with the increase of the rest time in the multiple-step 

test conducted on the LFP cell at 20°C [11] 

 

 Battery model-based SOC estimation method 

The OCV method needs enough time resting to complete the relaxation period 

accurately, hence, it is not useful for online applications when the device is 

working, for example, while the electric vehicle is driving. In such cases, the 

construction of battery model in conjunction with OCV method is necessary in 

order to online estimate the OCV during operation. The most commonly used 

battery models include electrical equivalent circuit (EEC) model and 

electrochemical model, which have been introduced in section 1.5. Remind that 

the terminal voltage of the EEC model derived from the Thevenin Model, could 

be expressed as: 

     

     𝑈𝐿 = 𝑈𝑂𝐶 − 𝑈𝑇ℎ − 𝐼𝐿𝑅0 (  3.1 ) 
 

 

Where UL is the battery terminal voltage, the product 𝐼𝐿𝑅0 represent the voltage 

drop caused by the ohmic resistance, UOC the battery OCV and UTh is the voltage 

drop across the parallel RC networks. So it is easy to found the value of the OCV 

if the battery model parameters are known. The direct relation between OCV 

and SOC allow us to easily found the SOC by using an OCV-SOC look-up table. 

For this method, the precision and complexity of battery model are very 

important. We have seen in the previous chapter that the desire to achieve a 

good compromise between accuracy and computation time, lead us to choose 

the EEC model composed of two RC networks among the wide variety of different 

battery models thanks to its accurate performance (with a mean error of 1.4%) 
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despite its low computational intensity. Whereas the electrochemical model, 

due to its high complexity, usually is only used for the battery performance 

analysis and battery design.   

 Neural network model method 

 

It is based on the use of nonlinear mapping characteristics of the neural network 

so as to estimate the SOC. When building a model, the neural network method 

does not have to take into account specific details of a battery as it is suitable for 

all kinds of batteries. Nevertheless, it needs a great number of training sample 

data to train the method. Moreover, this method requires a lot of computations, 

which makes necessary to have powerful processing chips.  

 

 Fuzzy logic method 

 

It is based on the simulation of the thinking of human beings by using the fuzzy 

logic on the basis of a great number of test curves, experience and reliable fuzzy 

logical theories. It eventually could be used to predict the SOC of the battery but 

it requires a deep understanding of the batteries themselves and a large number 

of computations. 

 

 Integrated algorithm based on the two or more of the above methods 

 

Currently there are several integrated methods such as: 

 

o Simple correction integrated algorithm: 

It includes Ampere-Hour integrated algorithm with correction by open circuit 

voltage, Ampere-Hour integral method with SOC calibration after charging 

and so on. For batteries in pure electric vehicles: 

 

 The working conditions are simple: when the vehicles are moving, 

their batteries are mainly in a discharge state, and when the batteries 

are being charged in a charging station, the batteries are in a charge 

state. Moreover the hysteresis of the open circuit voltage is easy to 

estimate. 

 Thanks to the large capacities of the batteries the errors of the 

Ampere-Hour integral are relatively low. 

 The possibility to be fully charge is great 

 

All the above things considered, we can affirm that the Ampere-Hour method 

with initial SOC correction according to the open circuit voltage and SOC 

calibration after full charging could meet the precision requirement of SOC 
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estimation of pure electric vehicles. However for batteries in hybrid electric 

vehicles (HEV) this method is unable to meet the requirements due to the 

following reasons: 

 The complexity of the working conditions because when the vehicles 

are moving, the current is both charged and discharged so as to keep 

the battery SOC in a narrow range. 

 Due to the small capacities of the batteries the errors of the Ampere-

Hour integral are high. 

 There is no opportunity of full charging when the vehicles ae parked, 

except for maintenance. 

Therefore, for the HEB other integrated methods are needed.  

 

o Weighted fusion algorithm 

 

This algorithm is to add up the SOC estimated through different methods in 

accordance with certain weights to obtain SOC. Figure 3.3 shows the 

operation of this algorithm: 

 

 

Figure 3.3.- weighted fusion algorithm from [3] 

 

o Kalman filtering 

 

Due to the impossibility of direct SOC measurement, two methods of SOC 

estimation are integrated as a dynamic system, in which SOC is regarded as 

an internal state of the system and is analysed. Furthermore, in order to take 

into consideration the nonlinearities of the battery, the Extended Kalman 

Filter (EKF) method is usually adopted. Generally, researches are conducted 

through systems formed by the Coulomb counting method and other battery 

models. In [12] it was pointed out  that the meaning of EKF as a state observer 

lies in: when the SOC is estimated using the Coulomb counting method, the 
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voltage of the capacitor is estimated and then the estimation values of the 

cell terminal voltage are obtained to act as a basis for correcting SOC; 

meanwhile noises and errors are taken into account, filtering  gains of each 

step is determined in order to minimise the a posteriori error covariance, and 

eventually the optimal estimation of SOC is also obtained. In this way, with 

the combination of the Coulomb counting method and the model-based SOC 

estimation (Kalman Filter), which overcomes the shortcoming of cumulative 

errors that characterised the former, we can achieve a SOC closed-loop 

estimation. Moreover, since the measurement and process noise are taken 

into consideration, the algorithm has a strong inhibiting effect on noises, 

what makes it a robust method.  

 

The Kalman filtering method used for SOC estimation relies on a reasonable 

battery equivalent model and a group of state equations. Therefore, as this 

method is highly dependent on the battery model, an accurate battery model 

is needed to be established so as to obtain a reliable SOC estimation. The 

model should not be too complex in order to save computations, but it 

should not be too simple either, to achieve an accurate resemblance with the 

battery that we are studying. Finally it is important to highlight that if the 

selection of the filtering gain is undesirable, the state will disperse. 

 

o Sliding mode observer 

 

So as to overcome the limitations of the Kalman filter method, the slip mode 

observer technology is used, which possesses strong robustness against the 

uncertainty of the model parameters and disturbance. The problem is that it 

is complicated to implement. 

Taking everything into account, we determined that the Kalman Filter algorithm 

was the most suitable method to estimate the SOC of our battery due to its good 

compromise between accuracy and computational intensity. 

 

3.2 INTRODUCTION TO DISCRETE SIMPLE KALMAN FILTER 
 

Kalman filter (KF) is a well-known estimation theory introduced in 1960. The filter 

tries to estimate the systems state variables by providing a recursive solution through a 

linear optimal filtering [13]. 

As it was explained in section 3.1, this particular model-based state-estimation 

technique is proposed to estimate the state of a battery cell that are normally difficult 

or expensive to measure. It is widely used due to its interesting characteristics. Among 

other things, it can optimally (searching the minimum variance) estimate the states 
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affected by a broadband noise contained within the system bandwidth, that cannot 

otherwise be filtered out using classical techniques [14]. 

We were based on the state space formulation defined in (  2.5 ) and (  2.6 ) for 

developing the Kalman Filter. However, in order to use this algorithm, it is necessary to 

consider that the battery model, of which we are trying to estimate the state vector, xk, 

which includes the SOC among others, is governed by the discrete linear equation (  3.2 

), whose output vector, yk, is defined in (  3.3 ). 

 

                                      𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘−1                            (  3.2 ) 
 

                     

        𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝑣𝑘  (  3.3 ) 
 

Equation (  3.2 ) is known as the state or process equation, where A ϵ Rnxn is the 
matrix that describes the system dynamics and relates the state at the previous time 
step k-1 to the current time step k when the control input uk-1 is equal to zero, and B ϵ 
Rnxp relates the control input uk-1 to the state xk. Whereas the equation (  3.3 ) is called 
the output or measurement equation. The transformation matrix C ϵ Rmxn and the 
feedforward matrix D ϵ Rmxp relate the output yk to the state xk and the input uk, 
respectively. 

 
The process noise, wk, and the measurement noise, vk, are assumed to be 

random variables, independent of each other, white and with normal probability 
distributions [15]: 
 

 

                                                𝑝(𝑤)~𝑁(0, 𝑄)                                (  3.4 ) 
 

 

                                                  𝑝(𝑣)~𝑁(0, 𝑅)                                 (  3.5 ) 
 

 

In practice, the process noise covariance Q and the measurement noise 

covariance are supposed to be variable throughout time, however in this study we are 

going to consider them to be constants for all the simulations. 
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3.2.1 STATE OF CHARGE ESTIMATION BASED ON SIMPLE KALMAN FILTER ALGORITHM 

FOR LITHIUM-ION BATTERIES 

 

Once it was verified that the battery model implemented in Matlab gave an 

accurate description of the MapleSim system behaviour, and the system of equations 

that governed our battery model was discretised, we continued trying to implement the 

Simple Kalman filter (SKF) so as to estimate the state vector xk, which is the same as the 

vector “x” defined in (  2.10 ) but discretised. The discrete SKF algorithm is defined as 

follows: 

First of all the Kalman Filter must be initialised:  

 

                             �̂�𝑘−1 = 𝐸(𝑥0) ;  𝑃𝑘−1 = 𝐸[(𝑥0 − �̂�0)(𝑥0 − �̂�0)
𝑇]              (  3.6 ) 

 
The state vector initialisation is obtained from the expected value that we would 

think the real state vector would have. The error covariance matrix P is initialised by 

obtaining the covariance matrix as defined in (  3.6 ). Normally, these quantities are not 

precisely known, but this is not a problem due to the robustness to poor initialisation 

that characterises the Kaman Filter, and it will quickly converge to the true value as it 

runs [16]. 

 

Time update:  

1. A priori state estimate update:                               

                     �̂�𝑘
− = 𝐴�̂�𝑘−1 + 𝐵𝑢𝑘−1                    (  3.7 ) 

 
2. Error covariance time update: 

                                        𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄                                         (  3.8 ) 
 

Measurement update: 

3. Kalman gain matrix 

                 𝐾𝑘 = 𝑃𝑘
−𝐶𝑇(𝐶𝑃𝑘

−𝐶𝑇 + 𝑅)−1         (  3.9 ) 
 

4. Measurement residual                              

                     �̃�𝑘 = 𝑦𝑘 − (𝐶�̂�𝑘
− + 𝐷𝑢𝑘)            (  3.10 ) 

 
5. A posteriori state estimate update        

                                 �̂�𝑘 = �̂�𝑘
− + 𝐾𝑘�̃�𝑘                                (  3.11 ) 
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6. Estimated output 

                                              �̂�𝑘 = 𝐶�̂�𝑘 + 𝐷𝑢𝑘                                           (  3.12 ) 
 

7. Error covariance measurement update 

                                         𝑃𝑘 = (𝐼 − 𝐾𝑘 ∙ 𝐶) ∙ 𝑃𝑘
−                                   (  3.13 ) 

 
8. Repeat steps one to seven until the simulation ends 

 

The state of charge is tracked by using the expression defined in (  2.8 ). 

Moreover, as we were working with the Simple Kalman Filter, it was necessary to use 

the linear expression of the open circuit voltage (Voc), which was expressed in equation 

(  2.11 ). Finally, in order to implement this algorithm using (  3.2 ), the matrices defined 

in (  2.10 ) must be discretised: 

𝐴 = [
𝑒

−𝑇𝑠
𝑅1,𝑘∙𝐶1,𝑘 0 0

0 𝑒
−𝑇𝑠

𝑅2,𝑘∙𝐶2,𝑘 0
0 0 1

] ; 𝐵 =

[
 
 
 
 
 
 𝑅1,𝑘 ∙ (1 − 𝑒

−𝑇𝑠
𝑅1,𝑘∙𝐶1,𝑘)

𝑅2,𝑘 ∙ (1 − 𝑒
−𝑇𝑠

𝑅2,𝑘∙𝐶2,𝑘)

−𝑇𝑠

𝐶𝑢𝑠𝑒,𝑘 ∙ 3600 ]
 
 
 
 
 
 

 ; 

𝐶 = [−1 −1
𝛿𝑉𝑂𝐶,𝑘
𝛿𝑆𝑂𝐶𝑘

] ; 𝐷 = [−𝑅0,𝑘] ; 𝐻 = [1] 
(  3.14 ) 
 

  
And the output equation (  3.3 ) is expressed by the following equation: 

 

𝑦𝑣𝑘 = 𝑉𝑡𝑒𝑟𝑚𝑣,𝑘 = 𝑉𝑜𝑐,𝑘(𝑆𝑂𝐶𝑘) − 𝑉𝐶1,𝑘 − 𝑉𝐶2,𝑘 − 𝐼𝑏𝑎𝑡𝑡,𝑘 ∙ 𝑅𝑖𝑛𝑡,𝑘 + 𝑣𝑘 (  3.15 ) 
 

Implementing this algorithm in Matlab with the parameters defined before, 

(2.3), we obtained the following response, which was compared to the response of the 

discrete linear system defined in (  3.3 ) and (  3.15 ): 

 

Where:      𝑄 = [
10−6 0 0
0 10−6 0
0 0 10−6

]            𝑎𝑛𝑑            𝑅 = 1.5 

 

And the algorithm initialization: �̂� = [
0.1
0.5
0.9
] ; 𝑃 = [

0.0009    0.0047 −0.0009
0.0047 0.0233 −0.0047
 −0.0009 −0.0047 0.0009

] 



36 

 

 

Figure 3.4.- Comparison between linear system and Simple Kalman Filter SOC 

estimation for an input which consists of a constant current of 1A 

 

Figure 3.5.- Comparison between linear system and Simple Kalman Filter terminal 

voltage estimation for an input which consists of a constant current of 1A 

 

Figure 3.6.- Comparison between linear system and Simple Kalman Filter voltage drop 

estimation in the first RC network for an input which consists of a constant current of 

1A 
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Figure 3.7.- Comparison between linear system and Simple Kalman Filter voltage drop 

estimation in the second RC network for an input which consists of a constant current 

of 1A 

 

It is visible from the previous graphics that the Simple Kalman Filter makes a good 

estimation when we are working with linear systems despite the strong measurement 

noise (Figure 3.5). In a simulation environment, as we are in ideal conditions, the 

Coulomb counting method is supposed to give the right estimation of the SOC as we do 

not have errors in the measurements. 

The input was changed to a square wave pulse train with an amplitude of 10A, 

conserving the previous initialisations. The results obtained are the following: 

 

Figure 3.8.- Comparison between linear system and Simple Kalman Filter SOC 

estimation for an input which consists of a square wave pulse train with an amplitude 

of 10A  
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Figure 3.9.- Comparison between linear system and Simple Kalman Filter terminal 

voltage estimation for an input which consists of a square wave pulse train with an 

amplitude of 10A

Figure 3.10.- Comparison between linear system and Simple Kalman Filter voltage drop 

estimation in the first RC network for an input which consists of a square wave pulse 

train with an amplitude of 10 A 

 

Figure 3.11.- Comparison between linear system and Simple Kalman Filter voltage drop 

estimation in the second RC network for an input which consists of a square wave pulse 

train with an amplitude of 10 
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We can observe that in this case, as the input current experiences abrupt 

changes, the SOC estimation is not as good as for the constant current. The SKF struggles 

due to the non-linear behaviour of the battery terminal voltage, Vterm. This is to be 

expected as the algorithm is trying to minimise the error between non-linear process 

(Vterm) and a linear equation by varying SOC away from its true value.  

At this point, we wanted to improve this estimation, thus we proceeded with the 

implementation of the Extended Kalman Filter, which is able to keep track of the 

nonlinearities of the system. In order to do that we implemented also the nonlinear 

battery model, which was introduced in section 2.1.  The procedure followed will be 

seen in the next section. 

 

3.3 EXTENDED KALMAN FILTER 
 

As it was said previously, in reality Voc, R1, C1, R2 and C2 are nonlinearly dependant 

on SOC, therefore it is necessary to consider that our system (the battery model), whose 

state vector xk (which includes SOC) is the aim of our estimation, is governed by the 

discrete nonlinear difference stochastic equation (  3.16 ) whose measurement vector yk 

is given by the equation (  3.17 ). Where f(.,.) is a nonlinear state transition function and 

g(.,.) is a nonlinear measurement function. 

 

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1) + 𝑤𝑘−1 (  3.16 ) 

𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘) + 𝑣𝑘 (  3.17 ) 

  

As before, wk and vk are assumed to be mutually uncorrelated white Gaussian 

random processes, with zero mean and covariance matrices Q and R, (  3.4 ) and (  3.5 ), 

respectively. Now, at each time step f(xk-1,uk-1) and g(xk,uk) are linearised by a first-order 

Taylor-series expansion. We assume that f(.,.) and g(.,.) are differentiable at all operating 

points (xk,uk), as shown in (  3.18 ) and (  3.19 ). As we can deduce from these expressions, 

the matrices A and G (which replaces C) are now Jacobian matrices Ak-1 and Gk of partial 

derivatives with respect to x. 

𝑓(𝑥𝑘−1, 𝑢𝑘−1) ≈ 𝑓(𝑥𝑘−1, 𝑢𝑘−1) +
𝜕𝑓(𝑥𝑘−1, 𝑢𝑘−1)

𝜕𝑥𝑘−1
|
𝑥𝑘−1=�̂�𝑘−1⏟                

(𝑥𝑘−1 − 𝑥𝑘−1)

𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝐴𝑘−1

 
 

(  3.18 ) 
 

𝑔(𝑥𝑘 , 𝑢𝑘) ≈ 𝑔(𝑥𝑘 , 𝑢𝑘) +
𝜕𝑔(𝑥𝑘 , 𝑢𝑘)

𝜕𝑥𝑘
|
𝑥𝑘=�̂�𝑘⏟          

(𝑥𝑘 − 𝑥𝑘)

𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝐺𝑘

 
 

(  3.19 ) 
 

 

If we combine the equations (  3.16 ) and (  3.17 ) with (  3.18 ) and (  3.19 ), and 

we transform them into the state space formulation defined in (  2.5 ) and (  2.6 ), we 
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obtain the equations that describe the nonlinear system, where matrices A, B, G and D 

are now subscripted with k so as to highlight that they also vary with time. 

𝑥𝑘 = 𝐴𝑘−1 ∙ 𝑥𝑘−1 + 𝐵𝑘−1 ∙ 𝑢𝑘−1 + 𝑤𝑘−1   (  3.20 ) 

𝑦𝑘 = 𝐺𝑘 ∙ 𝑥𝑘 + 𝐷𝑘 ∙ 𝑢𝑘 + 𝑣𝑘 (  3.21 ) 

 

The EKF algorithm remains almost the same as that of the SKF (from (  3.7 ) to 

(3.13 )), with only steps 1, 4 and 6 changing, as it is shown in Figure 3.12. 

 

 

Figure 3.12.- Extended Kalman Filter algorithm 

 

3.3.1 STATE OF CHARGE ESTIMATION BASED ON EXTENDED KALMAN FILTER 

ALGORITHM FOR LITHIUM-ION BATTERIES 

 

Aiming to implement this algorithm in Matlab, we defined the nonlinear 

functions f(.,.) and g(.,.) as well as their respective matrices, A and G. 

 

𝑓(𝑥𝑘−1, 𝑢𝑘−1) = 𝐴𝑘−1 ∙ 𝑥𝑘−1 + 𝐵𝑘−1 ∙ 𝑢𝑘−1 (  3.22 ) 

 

𝑔(𝑥𝑘, 𝑢𝑘) = 0,1958 ∗ 𝑒
1,332∙𝑥3,𝑘 + 3,429703601⏟                      

𝑉𝑜𝑐 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 (  2.4 )

− 𝑥1,𝑘 − 𝑥2,𝑘

− (0.11 ∙ 𝑒−50∙𝑥3,𝑘 + 0.0075⏟                )
𝑅0𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 (  2.3 )

∙ 𝑢𝑘 

 

(  3.23 ) 
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𝐴𝑘−1 =
𝛿𝑓[𝑖]

𝛿𝑥[𝑗]
(�̂�𝑘−1, 𝑢𝑘−1) =

[
 
 
 
 
 𝑒

−𝑇𝑠
𝑅1,𝑘−1∙𝐶1,𝑘−1 0

𝛿𝑓1
𝛿𝑥3

0 𝑒
−𝑇𝑠

𝑅2,𝑘−1∙𝐶2,𝑘−1
𝛿𝑓2
𝛿𝑥3

0 0 1 ]
 
 
 
 
 

 ; 

𝐺𝑘 =
𝛿𝑔[𝑖]

𝛿𝑥[𝑗]
(�̂�𝑘 , 𝑢𝑘) = [−1 −1 𝐺(1,3)] ; 𝐵𝑘−1 =

[
 
 
 
 
 
 𝑅1,𝑘−1 ∙ (1 − 𝑒

−𝑇𝑠
𝑅1𝑘−1∙𝐶1𝑘−1)

𝑅2,𝑘−1 ∙ (1 − 𝑒
−𝑇𝑠

𝑅2,𝑘−1∙𝐶2,𝑘−1)

−𝑇𝑠

𝐶𝑢𝑠𝑒 ∙ 3600 ]
 
 
 
 
 
 

  

 

 

(  3.24 ) 

 

 

Where: 

 𝐺(1,3) =
𝛿𝑔[1]

𝛿𝑥[3]
(𝑥𝑘 , 𝑢𝑘) =  0.1958 ∙ 1.332 ∙ 𝑒

1.332∙�̂�3⏟                

 
𝜕𝑉𝑜𝑐
𝜕𝑥3

− [0.11 ∙ (−50) ∙ 𝑒−50∙�̂�3⏟              
𝜕𝑅𝑜
𝜕𝑥3

∙ 𝑢𝑘]. 

 

The matrix A defined in (  3.24 ) was simplified due to some singularity problems 

experienced during the implementation of the algorithm in Matlab. Hence, we ended 

up using the expression of this matrix defined in (  3.14 ), which had been employed for 

the Simple Kalman Filter too. The singularity problems were caused because the 

denominators of the terms 
𝛿𝑓1

𝛿𝑥3
 and 

𝛿𝑓2

𝛿𝑥3
 reached such a small values that they became 

infinite. 

Using a constant current of 1A as the input of our system we obtain the results 

depicted from Figure 3.13 to Figure 3.16. The matrices Q, R, as well as the initialisations 

of �̂� and P are the same as for the SKF. 

Figure 3.13.- Comparison between nonlinear system (red) and Extended Kalman Filter 
(blue) SOC estimation for an input which consists of a constant current of 1A
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Figure 3.14.- Comparison between nonlinear system (red) and Extended Kalman Filter 
(blue) terminal voltage estimation for an input which consists of a constant current of 

1A 

Figure 3.15.- Comparison between nonlinear system (red) and Extended Kalman Filter 
(blue) voltage drop estimation in the first RC network for an input which consists of a 

constant current of 1A 

 

Figure 3.16.- Comparison between nonlinear system (red) and Extended Kalman Filter 
(blue) voltage drop estimation in the second RC network for an input which consists of 

a constant current of 1A 
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From these graphics we can affirm that, for this particular input current, this 

algorithm makes a good estimation. Despite the good estimation that the SKF also gave 

for the same input,  if we compare the Figure 3.7 and Figure 3.16, which represent 

estimation of the voltage drop in the second RC network (V2) using the SKF and the EKF, 

respectively, we can state that we achieve a faster convergence to the true vale with the 

latter. Therefore, for this input the estimation with the EKF has improved. 

Keeping track of the errors, we obtain that the mean absolute error of the 

terminal voltage (Vterm) estimation is 0,0032V and the relative error of this estimation is 

0,00078067. Concerning the SOC estimation for this particular input, the value of the 

mean absolute error is 0,007. This values can support what we have just declared in the 

previous paragraph.  

As SKF algorithm showed some problems of convergence with the input current 

which consists of a square wave pulse train of 10 A. We introduced the same input to 

the EKF in order to reaffirm that this algorithm provides better estimations. The 

initialisation matrices were the same as before. 

 
Figure 3.17.- Comparison between nonlinear system (red) and Extended Kalman Filter 
(blue) SOC estimation for an input which consists of a square wave pulse train with an 

amplitude of 10A 

Figure 3.18.- Comparison between nonlinear system (red) and Extended Kalman Filter 
(blue) terminal voltage estimation for an input which consists of a square wave pulse 

train with an amplitude of 10A
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Figure 3.19.- Comparison between nonlinear system (red) and Extended Kalman Filter 
(blue) voltage drop estimation in the first RC network for an input which consists of a 

square wave pulse train with an amplitude of 10A 

Figure 3.20.- Comparison between nonlinear system (red) and Extended Kalman Filter 

(blue) voltage drop estimation in the second RC network for an input which consists of 

a square wave pulse train with an amplitude of 10A 

Keeping track of the errors, we obtain that the mean absolute error of the 

terminal voltage (Vterm) estimation is 0,014706 V and the relative error of this estimation 

is 0,0036. Concerning the SOC estimation for this particular input, the value of the mean 

absolute error is 0,00812. This values are a little bit higher than those for the previous 

input, but anyway, with this algorithm the estimations are better compared to that of 

the SKF by far.   

From the comparison between the SOC estimation obtained from the SKF 

algorithm (Figure 3.8) and that from the EKF algorithm ( Figure 3.17 ), we can deduce 

that the SOC estimation is highly improved using the EKF algorithm. Not only does it 

arrive to the true value but it converges very quickly. Comparing the estimation of the 

voltage drop in the second RC network (V2) it is also visible the important improvement 

achieved by the EKF. 
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Finally, in order to make sure that this algorithm makes good estimations for a 

wide range of different inputs, we decided to introduce an input which consists of a 

constant current of 50 A. As our battery was not originally designed to support such a 

strong current, the estimation did not have to be as perfect as for the previous cases. 

However, we verified that, in spite of the strong current, the estimation was quite good 

with a mean absolute error of the terminal voltage (Vterm) of 0,1057V and a relative error 

of this estimation of 0,0316. Concerning battery SOC, it was estimated with a mean 

absolute error of 0,0168. These errors are really small bearing in mind that the battery 

is not conceived for this kinds of strong inputs. 

The results that could corroborate what it was stated in the previous paragraph 

are depicted from Figure 3.21 to Figure 3.24. 

Figure 3.21.- Comparison between nonlinear system (red) and Extended Kalman Filter 

(blue) SOC estimation for an input which consists of a constant current of 50A 

Figure 3.22.- Comparison between nonlinear system (red) and Extended Kalman Filter 
(blue) terminal voltage estimation for an input which consists of a constant current of 

50A  



46 

 

 

Figure 3.23.-  Comparison between nonlinear system (red) and Extended Kalman Filter 
(blue) voltage drop estimation in the first RC network for an input which consists of a 

constant current of 50A

 

Figure 3.24.- Comparison between nonlinear system (red) and Extended Kalman Filter 
(blue) voltage drop estimation in the second RC network for an input which consists of 

a constant current of 50A 

 

Finally, once we had confirmed that the EKF enhance all the estimations 

compared to the SKF, and in order to verify that the EKF algorithm also provided good 

estimations after several cycles of charge and discharge, we created a script in Matlab 

in which it was possible to define the number of cycles that our battery model and EKF 

would be subjected to. In this case, the number of cycles was fixed to five and the input 

current was the same square wave pulse train with an amplitude of 10 A and a period 

of 60 seconds that it was used in the simulations for the SKF and the EKF. 
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Figure 3.25.- Profile of the input current: 5 complete cycles of discharge and charge 

consisting of a square pulse wave with an amplitude of +/- 10A and T=60 sec 

 

Figure 3.26.- Comparison between nonlinear system (red) and Extended Kalman Filter 

(blue) SOC estimation for an input which consists of a square wave pulse train with an 

amplitude of 10A and T=60sec 

 

Figure 3.27.- Figure 3.18.- Comparison between nonlinear system (red) and Extended 

Kalman Filter (blue) terminal voltage estimation for an input which consists of a square 

wave pulse train with an amplitude of 10A and T=60sec 
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Figure 3.28.- Comparison between nonlinear system (red) and Extended Kalman Filter 

(blue) voltage drop estimation in the first RC network for an input which consists of a 

square wave pulse train with an amplitude of 10A and T=60sec 

 

Figure 3.29.- Comparison between nonlinear system (red) and Extended Kalman Filter 

(blue) voltage drop estimation in the second RC network for an input which consists of 

a square wave pulse train with an amplitude of 10Aand T=60sec 

Taking everything into account, we could confirm that our algorithm always 

provides a good estimation of the state of the battery. Therefore, we proceeded to 

implement this algorithm together with the real battery in Simulink, so as to test our EKF 

algorithm with real data. Our algorithm was implemented in Simulink using the block 

“Matlab Function” from Simulink library, as we will detail in the next section. 

 

3.4 STATE OF CHARGE ESTIMATION BASED ON KALMAN FILTER ALGORITHM FOR 

LITHIUM-ION BATTERIES IN SIMULINK 
 

The last step so as to validate our algorithm, and also to make sure that it was 

ready to its implementation into a battery management system (BMS), was to verify that 

it provided good results in real time using real data from the reference battery. In order 
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to do this, we transformed the subsystem of our battery in MapleSim into a Simulink 

block, using one of the functions of the MapleSim connector which allowed to export a 

MapleSim model to Simulink using Simulink s-functions that is called “Simulink 

Component Block Generation”. Firstly, it was necessary to convert our MapleSim model 

workspace into a subsystem with the inputs and outputs desired for our Simulink block. 

This tool identifies the set of modelling components that you want to export as a block 

component. Since Simulink only supports data signals, properties on acausal connectors 

such as mechanical flanges and electrical pins, must be converted to signals using the 

appropriate ports [17]. The subsystem created in MapleSim is shown in Figure 3.30 and 

the outcome of this transformation (Figure 3.31) permits us to implement our reference 

battery directly in Simulink (See Annex to have a further knowledge on the procedure). 

 

Figure 3.30.- Battery subsystem in MapleSim 

 

Figure 3.31.- Simulink block created from the battery in MapleSim in order to estimate 

the SOC 

Concerning the development of the estimation algorithm, we used the block 

“Matlab Function” from the Simulink library, and we adapted the Matlab script to 

Simulink environment, i.e., we deleted the for loop from the script as Simulink iterates 

itself in each time step. We needed also to add a retard in each feedback loop in order 

to introduce the value of the state vector and that of the error covariance matrix at the 
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previous time step, as well as the value of the input current at the previous time step as 

it was necessary for the algorithm. Once all these things were implemented correctly 

(Figure 3.32), we were able to carry out all the desired simulations using as input of our 

algorithm the real data (Vterm) from the reference battery.  

 

 

Figure 3.32.- Battery implemented together with the EKF algorithm in Simulink 

 

We implemented both algorithms, Simple Kalman Filter (SKF) and Extended 

Kalman Filter (EKF), in order to study the results of both estimators. Using a sample time 

of 0,1 and an input which consists of a square wave pulse train with a period of 60 

seconds and an amplitude of 10A, we obtain the following responses for the SKF and the 

EKF, respectively. 

Figure 3.33.- Common input current for both algorithms: pulse train with an amplitude 

of 10A and a T=60 sec. 
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 Simple Kalman Filter (SKF) 

 

 

Figure 3.34.- Terminal voltage output: Comparison between real data from the 

reference battery (blue) and Simple Kalman Filter estimation (red) 

 

Figure 3.35.- SOC output: Comparison between real data from the reference battery 

(blue) and Simple Kalman Filter estimation (red) 

 Extended Kalman Filter (EKF) 

 

 

Figure 3.36.- Terminal voltage output: Comparison between real data from the 

reference battery (blue) and Extended Kalman Filter estimation (red) 
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Figure 3.37.- SOC output: Comparison between real data from the reference battery 

(blue) and Extended Kalman Filter estimation (red) 

 

We can observe that EKF algorithm converge really fast but when the SOC 

value becomes less than 20%, it starts to diverge, this can be attributed to difficulties 

during curve fitting as undervoltage protection distorts the voltage waveforms, 

making more difficult to obtain accurate estimations because it experiences abrupt 

changes (drops and rises) in its outputs. However, this problem of divergence is not 

important due to the fact that the Battery Management Systems (BMS) has a 

working range between 80% and 20% of SOC, this is because of the same reason 

from which our algorithm diverge when the battery is discharge below 20% of SOC. 

We also observed that this divergence was highly influenced by the sample time, 

because if we modified its value the convergence changed a lot. Thus, we could 

deduct that this problem was caused by the internal computations of Simulink and 

not by any problem in our algorithm. 

 

Bearing this in mind, we decided that the discharges would last until the value 

of SOC was equal to 20% for both algorithms as we had seem that the SKF also 

experienced problems of divergence for lower values of SOC and both of them did 

not have any problem for values greater than 20%. As noted in Table 2, the EKF 

shows better performance than that of SKF for SOC estimation (which is our goal due 

to the fact that it cannot be directly measured) as it accounts for the nonlinearities 

in the battery behaviour. 

 
 

Kalman type SOC Estimation (%) Terminal Voltage Estimation(V) 

SOC error max 
 

SOC absolute 
mean error  

Vterm error max  Vterm absolute 
mean error  

Simple 9,8 % 1,4 % 0,6580 V 0,0198 V 

Extended 9,8 % 0,89% 0,6036 V 0,0198V 

Table 2.- SKF and EKF estimation errors 
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The maximum error could seem very high but it is important to take into 

account that the algorithm is initialised with false values. If we measure the error 

when I has reached more accurate values (from t=60sec), the maximum error for the 

terminal voltage estimation is 0,0781V (SKF) or 0,7067V (EKF), and for the SOC 

estimation it is 5,56% (SKF) or 2,94% (EKF). The results from which we obtained this 

errors are: 

 

 

 Simple Kalman Filter (SKF) 

 

 

Figure 3.38.- Terminal voltage output: Comparison between real data from the 
reference battery (blue) and Simple Kalman Filter estimation (red) 

 

 

Figure 3.39.- SOC output: Comparison between real data from the reference battery 

(blue) and Simple Kalman Filter estimation (red) 

 

 Extended Kalman Filter (EKF) 

 



54 

 

 

Figure 3.40.- Terminal voltage output: Comparison between real data from the 

reference battery (blue) and Extended Kalman Filter estimation (red) 

 

Figure 3.41.- SOC output: Comparison between real data from the reference battery 

(blue) and Extended Kalman Filter estimation (red) 

As we have proceeded in the previous verifications of the estimation algorithms, 

we tested it convergence with other kind of inputs. Firstly, with a constant current of 1A 

and then with a constant current of 20A, in order to push our algorithm to the limit. 

a) Constant current of 1A 

o Simple Kalman Filter (SKF) 

 

Figure 3.42.- Terminal voltage output: Comparison between real data from the 

reference battery (blue) and Simple Kalman Filter estimation (red) 
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Figure 3.43.- SOC output: Comparison between real data from the reference battery 

(blue) and Simple Kalman Filter estimation (red) 

 

o Extended Kalman Filer (EKF) 

 

 

Figure 3.44.- Terminal voltage output: Comparison between real data from the 

reference battery (blue) and Extended Kalman Filter estimation (red) 

 

Figure 3.45.- SOC output: Comparison between real data from the reference battery 

(blue) and Extended Kalman Filter estimation (red) 



56 

 

Kalman type 
SOC Estimation (%) Terminal Voltage Estimation(V) 

SOC error max 
 

SOC absolute 
mean error 

Vterm error max 
Vterm absolute 

mean error 

Simple 9,78% 1,37 % 0,7242 V 0,0026 V 

Extended 9,79 % 0,64% 0,6696 V 0,0021 V 
 

Table 3.- SKF and EKF estimation errors using a constant current of 1A as the input of 

our system 

If we measure the error when it has converged despite the initial false values 

(from t=65 seconds), the maximum error for the terminal voltage estimation is 0,0174V 

(SKF) or 0,0148V (EKF), and for the SOC estimation it is 6,61% (SKF) or 1,44% (EKF). 

Focusing on mean errors displayed in Table 3, the error made in SOC estimation is highly 

reduced if EKF is used instead of SKF. 

 

b) Constant current of 20A  

 Simple Kalman Filter Extended Kalman Filter 

Battery 
Terminal 
Voltage 

(V) 

  

State of 
Charge 

  

Figure 3.46.- Comparison between real data from the reference battery (blue) and 

Kalman Filter algorithm estimation (red) using constant current of 20A 

 

Kalman 
type 

SOC Estimation (%) Terminal Voltage Estimation(V) 

SOC error max 
 

SOC absolute 
mean error 

Vterm error max 
Vterm absolute 

mean error 

Simple 9,82% 3,56 % 0,5845 V 0,0385 V 

Extended 9,83 % 2,37% 0,5302V 0,0366V 
Table 4.- SKF and EKF estimation errors using as input a constant current of 20A 
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From Table 4 we can deduce the same conclusion as before. Despite pushing our 

battery model, and therefore our algorithm, into the limit, the EKF keeps showing better 

performance than that of the SKF for battery SOC estimation as it reduce the mean error 

more than 1% which is highly important concerning the little errors both algorithms 

show. 

Taking everything into account, we could confirm that these algorithms were 

ready to be implemented in applications that need real time SOC estimations, with the 

EKF showing better performance. From this point forward, once we were sure that the 

SOC estimation was accurate, we would tackle the estimation of another state of the 

battery that is crucial in order to develop a BMS, which is the state of health (SOH) of 

the battery. 
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4 STATE OF HEALTH ESTIMATION ALGORITHM 
 

4.1 INTRODUCTION  
 

State of health (SOH) measures the ability of a cell to store energy, source and 

sink currents, and retain charge over extended periods, relative to its initial or nominal 

capabilities [14]. The available charge stored is expected to fall during the lifespan of the 

battery due to cell usage, as the active material on the cell plates gradually degrades by 

mechanisms such as loss of plate active surface area, as a consequence of repeated 

dissolution and recrystallization, and growth of large inactive crystals within the plate 

structures. Such capacity loss can be deemed a loss of cell SOH. Early detection of SOH 

degradation would allow the battery pack to take remedial action just in time. For 

instance, they could include the application of conditional routines to the cell, so as to 

remove small sulphate crystals before they become inactive crystals, thereby restoring 

the cells capacity [14].   

The commonly used indicators of battery SOH include battery capacity (the one 

we have chosen so as to measure this state of the battery), DC resistance and AC 

impedance. The SOH estimation methods mainly include durability model-based open-

loop methods and battery model-based closed-loop methods [18]. The durability 

models describe the increase of solid-electrolyte interface (SEI) film resistance and 

battery terminal voltage, which allow the former type of methods to directly predict the 

changes in capacity fade and internal resistance. The latter comprises least-squares 

methods, Kalman filtering, other adaptive algorithms, such as fuzzy logic, to identify the 

battery capacity and internal resistance according to the operating data, and sample 

entropy method as different possibilities of SOH estimation. In Table 5 it is summarised 

the advantages and disadvantages of these SOH estimation methods. 

Most of the above mentioned methods and those explained in section 3.1, were 

developed for either SOC or SOH estimation but not for both of them. The close relation 

between SOC and SOH was overlooked. Battery degradation has a great influence on 

the accuracy of SOC estimation. As battery degrades, those algorithms that only perform 

SOC estimation may lead to large errors. The inaccurate SOC estimations in turn may 

mislead the battery SOH calibration. Thus, simultaneous SOC and SOH estimations is 

quite beneficial. Comparing battery SOC and SOH variations, battery SOH typically 

change much more slowly, being necessary the use of multi-timescale state estimators. 

The multi-scale EKFs are used to estimate SOC and SOH, and the capacity estimation is 

periodically introduced in SOC update equation. However, the determination of the two 

time scales is heavily dependent on tuition and calibration. Moreover, this multi-

timescale algorithm has a heavier computational intensity, which makes it more difficult 

to implement in real time applications. Hence, instead of an algorithm of this 

characteristics, we decided to implement an extended version of the EKF developed in 

section 3.3, adding two new parameters to the state vector (x): the internal resistance 
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(R0) and the inverse of the available usable capacity of the battery (Cuse), which is 

considered to change during the service life, contrary to what we established in section 

2.1, in order to be more closer to the reality. This modified EKF algorithm will be used in 

the next section in order to estimate the battery SOH. 

 

State of health (SOH) estimation 

Classification Method Advantage Disadvantage 

Durability model-
based open-loop 

method 

Durability 
mechanism 

Comprehensive 
understanding 

Complex, need 
accurate input 

parameters 

Durability external 
characteristic 

Simple and easy to 
predict capacity 

fade and internal 
resistance 
increment 

Based on a large 
number of 

experiments 

Battery model-
based close-loop 

method 

DC resistance Simple 
Not accurate, 
sensitive to 

disturbances 

AC impedance Accuracy Complex 

Extended Kalman 
Filter (EKF) 

Quite easy to 
implement, 

accurate 

Sensitive to 
modelling accuracy 

Fuzzy logic Accurate Slow convergence 

Sample entropy Simple 
Need large amount 

of data 

Discharge voltage Easy Not accurate 

Adaptive control 
system 

Online applications 
Sensitive to 

modelling accuracy 
 

Table 5.- Advantages and disadvantages of existing SOH estimation methods [18] 

 

4.2 STATE OF HEALTH ESTIMATION BASED ON FIFTH-ORDER EXTENDED KALMAN 

FILTER USING DATA FROM MAPLESIM 
 

The fifth-order EKF algorithm that we have developed follows the same stages 

than the EKF from section 3.3, which are now shown in Figure 4.1, particularised for the 

new estimation algorithm. The modifications were pointed out in the previous section. 

The enlargement of the state vector implied the redefinition of all matrices that take 

part in this algorithm, as it can be seen in (  4.1 ) and (  4.2 ). 
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Figure 4.1.- Schematic of the fifth-order EKF estimation algorithm 

 

Where: 

𝐴𝑘 =

[
 
 
 
 
 
 𝑒

−𝑇𝑠
𝑅1,𝑘∙𝐶1,𝑘 0 0 0 0

0 𝑒
−𝑇𝑠

𝑅2,𝑘∙𝐶2,𝑘 0 0 0

0 0 1 0
−𝑇𝑠 ∙ 𝐼𝑏𝑎𝑡𝑡,𝑘
3600

0 0 0 1 0
0 0 0 0 1 ]

 
 
 
 
 
 

 ;  𝐷𝑘 = [0] ; 

 

𝐵𝑘 =

[
 
 
 
 
 
 
 𝑅1,𝑘 ∙ (1 − 𝑒

−𝑇𝑠
𝑅1𝑘∙𝐶1𝑘)

𝑅2,𝑘 ∙ (1 − 𝑒
−𝑇𝑠

𝑅2,𝑘∙𝐶2,𝑘)

0
0
0 ]

 
 
 
 
 
 
 

 ; 𝐶𝑘 = [−1 −1
𝜕𝑉𝑜𝑐,𝑘
𝜕𝑥3,𝑘

𝐼𝑏𝑎𝑡𝑡,𝑘 0] 2 

 

   (  4.1 ) 
 

𝑥𝑘 =

[
 
 
 
 
 
𝑉1,𝑘
𝑉2,𝑘
𝑆𝑂𝐶𝑘
𝑅0,𝑘

1
𝐶𝑢𝑠𝑒,𝑘
⁄ ]

 
 
 
 
 

 
(  4.2 ) 

 

 

                                                      
2 VOC is defined in (  2.4 ) and Ibatt is the input of our system (u = [Ibatt,k] ) as it was defined in (  2.10 ). 



61 

 

With this algorithm we are able not only to obtain the estimation of battery SOC 

but also the SOH estimation. The latter can be calculated indirectly using the fifth 

component of the state vector. The expression (  4.3 ) allow us to estimate the battery 

SOH from the fifth state. 

 

𝑆𝑂𝐻 =
𝐶𝑢𝑠𝑒

𝐶𝑁𝑜𝑚𝑖𝑛𝑎𝑙
∙ 100% 

(  4.3 ) 
 

 

Where Cuse is the actual capacity, which is the fifth component of the state vector 

and therefore it is going to change during the whole simulation, contrary to what it was 

established in section 2.1, and Cnominal is the capacity established by the manufacturer in 

the main specifications of the battery, and in our case it is equal to the value of the 

capacity of the cell of the reference battery from MapleSim, that is, Cnominal = 1 Ah.  

Using in MapleSim the same current profile from the hybrid pulse test that it was 

used in [18], which is depicted in Figure 4.2, we collected some data from the reference 

battery and we saved it in an excel file. In this file it was saved the time in which each 

data was collected, the value of the current at this time, the terminal voltage of the cell, 

and the state of charge (SOC) and state of health (SOH) of the battery cell, so as to export 

all this data to Matlab environment. Then, we assigned this data to its corresponding 

variables in our Matlab script, where it was implemented the fifth-order EKF, in order to 

use them as a reference for our estimation algorithm. 

As depicted in Figure 4.3, the cell terminal voltage estimation is highly accurate 

once the algorithm has found its true value, being the error since t=1222,4 seconds 

inferior to its mean value. Focusing on SOC estimation (Figure 4.4), despite the increase 

of the estimation error at the end of the simulation, this error is still very small (about 

2,9%3), therefore this algorithm is still accurate to estimate the state of charge. 

Concerning the SOH estimation, in Figure 4.7 it is remarkable that the SOH 

estimation error becomes smaller than the mean error at the end of the simulation, 

which means that in the end the SOH estimation converges to the real value. As a matter 

of fact, we can verify this phenomenon observing the Figure 4.5 and Figure 4.6. 

Finally, due to the fact that MapleSim is not able to measure the voltage across 

the different components of the circuit that forms the EEC model, neither does it track 

the variation of the battery internal resistance, we decided to compare the estimation 

of these states with that of the nonlinear model, which does not account for the effect 

of the battery aging. From Figure 4.8 and the next one, it is visible that the estimation of 

these two states of the battery converge relatively faster to that of the nonlinear model.   

                                                      
3 Considering that SOC is given in percentage, despite the fact that it is represented between 0 and 1. 
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Figure 4.2.- Input: Current profile from the hybrid pulse test at 25°C 

 

Figure 4.3.- Above: Comparison between Vterm from real data (green) and EKF 

estimation (blue). Below: Vterm estimation error 

Figure 4.4.- Above: Comparison between SOC from real data (green) and EKF 

estimation (blue). Below: SOC estimation error 
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Figure 4.5.- Comparison between real SOH data from MapleSim (green) and SOH EKF 

estimation (blue) 

Figure 4.6.- Comparison of the SOH value in each cycle between real data from 

MapleSim (green) and EKF algorithm (blue) 

Figure 4.7.- SOH estimation error: Absolute Error (blue). Mean Error (red) 
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Figure 4.8.- Comparison between nonlinear system (red) and Extended Kalman Filter 

(blue) voltage drop estimation across the first RC network

Figure 4.9.- Comparison between nonlinear system (red) and Extended Kalman Filter 

(blue) voltage drop estimation across the second RC network

Figure 4.10.- Internal resistance estimation result from the EKF (blue) and the nonlinear 

model (red) 
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From the picture above it can be seen that in the fifth-order EKF the value of the 

internal resistance changes throughout the simulation, ending the simulation with a 

higher value of the resistance, as it was to be supposed because of the accumulation of 

inactive crystals that makes more difficult the flow of electrons inside the battery. 

 

4.3 SOH AND SOC ESTIMATION USING FIFTH-ORDER EKF IN SIMULINK 
 

Following the procedure explained in section 3.4, we obtained the Simulink block 

shown in Figure 4.11, which was implemented in Simulink using a model very similar to 

that represented in Figure 3.32, but in this case we used the fifth-order EKF instead of 

the original EKF, in order to simultaneously estimate the SOC and SOH. We did not 

achieve the co-simulation between Simulink and Matlab, because the block generated 

from MapleSim only works in time continuous simulations and the EKF only works with 

discrete time. Therefore, it was necessary to modify the initialisation of the error 

covariance matrix P, and that of the noise covariance matrices Q and R.  

 

 

Figure 4.11.- Simulink block created from the battery in MapleSim in order to estimate 

the battery SOC and SOH 

 

Figure 4.12.- Battery terminal voltage: Comparison between real data from the 

reference battery (pink) and Fifth-order EKF estimation (blue) 
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Figure 4.13.- SOC: Comparison between real data from the reference battery (blue) and 

Simple Kalman Filter estimation (red) 

 

 

Figure 4.14.- SOH: Comparison between real data from the reference battery (blue) and 

Simple Kalman Filter estimation (red) 

 

From Figure 4.12 to Figure 4.14, we can observe the estimation results obtained 

from the simulation in Simulink. It is visible that the convergence of the estimations to 

the real value is assured for all cases. In particular, the SOH estimation seems to 

converge slowly but once it reaches the real value it tracks the true SOH really well. 

Despite the fact that at a first glance it may seem that the SOC estimation error starts to 

increase at the end, the reality is that the error is so small that it can be neglected. In 

Table 6 all the estimation errors for the three variables represented above are shown. 
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Kalman 
type 

SOC Estimation (%) SOH Estimation (%) Vterm Estimation (V) 

SOC error 
max. 

SOC abs. 
mean err. 

SOH error 
max. 

SOH abs. 
mean err. 

Vterm err. 
max. 

Vterm abs. 
mean err. 

5th-order 
EKF 

24,34 % 1,54 % 7,3 % 0,56 % 0,0901 V 0,0011 V 

Table 6.- Fifth-order EKF estimation errors 

The maximum SOC error is extremely high due to a bad initialisation of the 

algorithm, in fact if we start to track the error from t=1.000 seconds, its maximum 

value decrease to 5,06% and if we start to track it later, this value would decrease even 

more. This phenomenon help us to confirm the claim stated at the beginning of the 

paragraph.  

With regard to mean errors, they are small enough to consider that the 

algorithms provides good estimations. Despite the increase of the SOC estimation mean 

error compared with the error of the third-order EKF algorithm, the possibility of 

tracking the SOH of the battery and the reduction in the terminal voltage estimation 

mean error, make that the advantages of this algorithm outweigh its disadvantages. And 

therefore, we consider that this algorithm provides a correct simultaneous estimation 

of SOC and SOH. 

 

4.4 MEASUREMENT OF THE STATE OF CHARGE AT DIFFERENT TEMPERATURES 
 

So far, the temperature of the battery cell has been considered constant and 
equals to 25 °C. In this section we want to study the effect of the temperature in the 
degradation of the battery cell. In order to do so, the same battery has to be subjected 
to the same input current at the different temperatures that we want to study.   

 

When we did the simulation, we used a constant current with an amplitude of 

20 A as the input of our system in order to discharge and charge the battery cell. As 

battery cell aged, it started to become deteriorated, therefore it had a faster discharge. 

To solve this problem we decided to implement a model in MapleSim in which we could 

detect when the SOC was inferior to 10 % or equal to 100 % and inverse the sense of the 

input current. So as to achieve this we used the block “On Off Controller” (OOC1 in Figure 

4.15), which sets the output signal to true when the input signal, SOC, falls below the 

reference signal, Avg SOC, plus half of the hysteresis [19]. This Boolean signal becomes 

the input of a block called “Boolean to Real” (“Charger” in our MapleSim model), which 

converts the Boolean input to a real value preset by the parameters, Real True and Real 

False, -20 and 20 respectively in our case. The equation of this component is [19]: 

 

𝑦 = {
𝑟𝑒𝑎𝑙𝐹𝑎𝑙𝑠𝑒      𝑖𝑓     𝑖𝑛𝑝𝑢𝑡 = 𝑓𝑎𝑙𝑠𝑒
𝑟𝑒𝑎𝑙𝑇𝑟𝑢𝑒    𝑖𝑓     𝑖𝑛𝑝𝑢𝑡 = 𝑡𝑟𝑢𝑒

 
(  4.4 ) 
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Figure 4.15.- MapleSim model layout 

 

Figure 4.16.- Battery cell degradation for different temperatures. Where the y-axis 

represent SOH and x-axis the number of cycles 
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Simulation was carried out at different battery cell temperatures, 10°C, 25°C and 
45°C. From Figure 4.16 it is visible that the higher the cell temperature is, the more 
deterioration it will experience, and therefore the higher the decreasing of the state of 
health (SOH) is. Thus, it is also important to control the temperature of the battery so as 
to assure that the temperature does not influence a lot in the degradation of the battery 
and to make sure that the lifespan of the battery coincides with that of the application 
that it would be implemented in. 
 

4.5 COMPARATION BETWEEN THE DEGRADATION OF ONE CELL AND A REAL 

BATTERY WITH EIGHT CELLS 
 

In real life, batteries are not composed of only one cell as we have supposed 

during all the previous sections, in fact they usually consist of a high number of cells 

connected in series in order to obtain a higher power. In this section we are going to 

verify this improvement in battery performance using a battery pack instead of one cell. 

Actually, in equation (  2.2 ) this assertion was introduced (where Ncell was the number 

of cells connected in series). Therefore, from this equation we deduce that the more 

cells the battery has, the higher power it will be able to supply. 

 

 

Figure 4.17.- SOH of one cell (red) and of eight cells connected in series (green) 

 

 

Figure 4.18.- Cell terminal voltage (red) and battery pack terminal voltage (green) 
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Comparing the behaviour of one cell with that of a battery pack, which consist of 

8 cells, it can be seen that the degradation of both is the same (Figure 4.17), i.e., both 

experience the same SOH decrease, as it was expected bearing in mind that we are 

working in a simulation environment. Nevertheless, the battery pack provides a higher 

voltage level (Figure 4.18). Thus, from the power equation (𝑃 = 𝑉 ∙ 𝐼), using the same 

input current, we can obtain a higher power with a battery pack than with only one cell. 

This is the reason why nowadays all the applications that need a battery have a battery 

pack. 

However, as we stated in the previous paragraph, the fact that the rate of charge 

and discharge was the same is due to the ideal simulation environment. In real 

applications, the battery packs are provided with cells of slightly different 

characteristics, so the charging/discharging capability of weakest cell is the limiting 

factor. Therefore, the characteristics of this cell are important during operation in order 

to avoid overcharging/over discharging [13].  

In Figure 4.19 it is shown the waste of capacity if we use a battery pack where it 

exists some variations between the two cells. This shows us more clearly the importance 

of an exhaustive control of the cells that compose the battery pack in order to balance 

their characteristics. If the balancing device is not efficient enough, the real SOC of the 

battery pack will be related to the real performance of this balancing device. If there is 

no balancing device or with dissipation, there will be some waste capacity [3]. 

 

 

Figure 4.19.- The waste capacity and remaining capacity of a battery module (take a 

battery module of two cells as example) [3] 
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5 LEAD-ACID BATTERY MODELLING  
 

Until now, we have considered Lithium-ion battery as the one with the best 
characteristics based on the different comparisons that it has been made in the 
literature. However, at this point, we thought that it would add some value to this report 
if we compared the performance of the Lithium-ion battery that it has been used for all 
the simulations with that of a Lead-Acid battery (which was widely used before the 
creation of the Lithium-ion batteries due to its good performance, despite its heavy 
weight) with the same specifications, that is, with the same cell resistance  (Rcell = 0,0075 
Ω), and capacity (CA = 1 Ah).  

 
The simulation was carried out in MapleSim, using the same input current for 

both batteries (Figure 5.1). From the simulations results we can confirm what we said in 
the previous paragraph. As the batteries were configured with the same specifications 
their charging/discharging capability is the same (Figure 5.2). However, the Lithium-ion 
battery provides a higher voltage level than the Lead-Acid battery (Figure 5.3), and 
therefore the power that the former can supply is higher than that of the latter. 

 
 

 

Figure 5.1.- Common input for both kinds of batteries: pulse train with an amplitude of 

20A, a T=60 sec. and a width of 10% of the time period 

 

 

Figure 5.2.- SOC of Lead-Acid battery (red) and SOC of Lithium-ion battery (green) 
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Figure 5.3.- Lead-Acid battery terminal voltage (red) and Lithium-ion battery terminal 

voltage (green) 

Thus, from simulation results we can conclude that using a battery with the same 

rate of charging/discharging (i.e., the SOC of both batteries experience the same 

changes), if we introduce the same input, Lithium-ion battery provides higher power. 

Therefore it will be widely used for those applications that requires great power, such 

as the electric vehicle, which is growing fast this recent years. 

 

5.1 STATE ESTIMATION FOR LEAD-ACID BATTERY 
 

The last step of this report would be the estimation of the state of the Lead-Acid 

battery employed in the previous section using the third-order EKF. In order to achieve 

that we exported the data from MapleSim and we save it in an Excel file. Then, also from 

MapleSim, we obtained the expressions that define the EEC model. This model for this 

kind of battery is the same as the one which was depicted in Figure 2.10. However, as 

the battery was of different nature, it was necessary to modify the expressions that 

define the value of each component, which still follow the form of the equation (  2.3): 

 

𝑅0,𝑘 = 0,025 ∙ 𝑒
−24∙𝑆𝑂𝐶𝑘 + 0,012 
 

𝑅1,𝑘 = 0,05 ∙ 𝑒
−29∙𝑆𝑂𝐶𝑘 + 0,0074 

 

𝑅1,𝑘 ∙ 𝐶1,𝑘 = −3 ∙ 𝑒
−13∙𝑆𝑂𝐶𝑘 + 3 

 

𝑅2,𝑘 = 1 ∙ 𝑒
−155,2∙𝑆𝑂𝐶𝑘 + 0,008 

 

𝑅2,𝑘 ∙ 𝐶2,𝑘 = −31000 ∙ 𝑒
−88∙𝑆𝑂𝐶𝑘 + 710 

(  5.1 ) 
 

 

The expression of the OCV was obtained using the curve fitting parameter tool 

from Matlab: 

 

𝑉0𝐶,𝑘 = 20,23 ∙ 𝑒
−0,01499∙𝑆𝑂𝐶𝑘 − 18,487 (  5.2 ) 
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Once the redefinition was made, we assigned the data from the Excel file to their 

respective variables in our Matlab script. Using the current shown in Figure 5.4 as the 

input of our system, the simulation results are depicted from Figure 5.5 to Figure 5.8. It 

is visible that the state estimations are highly accurate, being the mean error of SOC 

estimation 0,92%4 (Table 7). In fact, in the end the SOC estimation error starts to 

decrease below the value of the mean SOC estimation error. It is not possible to measure 

the other two states of the batter EEC model, V1 and V2, in MapleSim. Hence, we decided 

to compare its estimations with that of the nonlinear model, which describes the battery 

behaviour in a suitable manner. 

 

Figure 5.4.- Input current 

 

 

Figure 5.5.- Above: Comparison between Vterm from real data (green) and EKF 

estimation (blue). Below: Vterm estimation error 

                                                      
4 Considering that SOC is expressed in %. Nevertheless in Figure 5.6 it is depicted as a variable that varies 
between 0 and 1. 
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Figure 5.6.- Above: Comparison between SOC from real data (green) and EKF 

estimation (blue). Below: SOC estimation error 

 

Figure 5.7.- Comparison between nonlinear battery model (red) and Extended Kalman 

Filter (blue) voltage drop estimation across the first RC network

Figure 5.8.- Comparison between nonlinear battery model (red) and Extended Kalman 

Filter (blue) voltage drop estimation across the second RC network 
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Kalman type 
SOC Estimation4 (%) Terminal Voltage Estimation(V) 

SOC error max 
 

SOC absolute 
mean error 

Vterm error max 
Vterm absolute 

mean error 

Extended 8,67 % 0,92% 0,9412 V 0,0447 V 
Table 7.- Estimation Errors 

 

The errors made are of the same order of magnitude than that of the previous 

applications of the third-order EKF, therefore we can confirm that this algorithm is 

suitable to estimate the state of batteries from different nature and characteristics, 

provided that we define accurately the value of each EEC model component. 
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6 CONCLUSIONS 
 

6.1 PRESENT WORK 
 

The present work starts in a general way introducing the reader to some 

important concepts in the field of batteries, such as, the internal operation of batteries 

or the different approaches concerning battery modelling. In the next chapter firstly we 

chose the EEC model as the battery model of reference for our study, and then we made 

a co-simulation between MapleSim and Matlab. In the third chapter, a wide range of 

different simulations were carried out in Matlab and Simulink in order to study the 

convergence of the SKF and EKF, showing that the latter provided better estimations 

than the former for all kinds of simulations. In chapter four, we extended the number of 

state variables of EKF to make a simultaneous simulation of battery SOH and SOC in 

Matlab and Simulink. In the last chapter, a comparison between the Lithium-ion 

reference battery model and the Lead-Acid EEC model with the same resistance and 

capacity was made, showing that the Lithium-ion one was able to provide more power. 

Finally, also in this chapter, the EKF algorithm was employed to estimate the state of the 

Lead-Acid battery. 

Above all, the biggest contribution of this study has been the fast convergence 

achieved when using the EKF so as to estimate the state of the battery. This algorithm 

has been verified through simulation, and from the results of this validation, we can 

affirm that this algorithm is ready to be implemented in a BMS in order to monitor the 

state of the battery pack due to its simplicity, low computational expense and 

robustness to measurement errors and random disturbances. Moreover, not only is it 

highly accurate for Lithium-ion batteries, but also for batteries of other nature, such as 

Lead-Acid ones. 

 

6.2 FURTHER WORK 
 

Due to the lack of time, there are three main aspects which I would have liked to 

study more deeply: 

 Develop of a simultaneous SOC and SOH estimation method which converge to 

the true value of SOH for all kinds of inputs, without having to modify the 

initialisation of each variable when changing the input. Maybe an algorithm that 

estimates in real time the SOC and only when this estimation starts to diverge, 

introduce and extended version of this algorithm in order to update the 

parameters and SOH of the battery would be more accurate since these 

parameters change more slowly than the SOC. 
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 Pass from SOC and SOH estimation problem to the implementation of a complete 

BMS, which would allow me to have a more global perspective of what battery 

management and optimisation involves. 
 

 Achieve the co-simulation between Matlab and Simulink for state estimation, as 

in this study we have struggled with the problem of working in Simulink with a 

time continuous block in a sample time-based model, due to the fact that Kalman 

Filter can only work in discrete time systems. 
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ANNEX- GUIDE TO USE MAPLESIM 
 

First of all, it is necessary to create a new MapleSim model following these septs: 

FileNewModel. However, if you prefer to open a model that it was already created 

in a previous session, these are the steps: FileOpen…Choose the file where it was 

saved previously. Both possibilities are shown inside the red rectangle in Figure A. 

 

 

Figure A 

 

Among the Electrochemical models it is possible to find the Lithium-ion Battery 

and Nickel-Metal Hydride, whereas for the EEC models we have the Lithium-ion battery, 

Lead-Acid, Nickel-Metal Hydride and we also have some other user-defined battery 

components that allow you to customise them using experimental data. All of these 

battery models are shown inside the red rectangle of the left-hand side in Figure B. We 

can use all the components listed on MapleSim libraries simply dragging them into the 

model. 

The behaviors of the battery model are described by a small set of parameter 

that can be seen in Figure B inside the red rectangle of the right-hand side. For the 

Lithium-ion battery we can also select different kinds of cathode and anode material, 

for example we have fourteen different types of cathode materials and three types of 

anode materials (green rectangle in Figure B) for Lithium-ion chemistry. 
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Figure B 

 

HOW TO CREATE CUSTOM COMPONENTS 
 

In Figure 2.1 (from section 2) we used a custom component which summed the 

current provided by the two sources. These sources were configured in order to work 

separately in different periods of time. Firstly, it worked the one that discharged the 

battery and then the other one which charged it.  

The general process of creating a custom component for a MapleSim model 

consists of specifying the component equations for the custom component, component 

parameters and system model, specifying the port types and their values. The creation 

of a custom component follows these steps: 

1. Click on the option “create attachment from template” (red circle in Figure C). 

 

Figure C 
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2. Select Custom Component, write the name that you want to give to the 

attachment and then click “Create Attachment”. The Maple Custom Component 

template is loaded. 

 

Figure D 

 

3. In the Equations section, you have to write down the equations that describe the 

operation that you want to give to the block. Equations, parameters and initial 

conditions are all entered here. In the model of Figure 2.1, as we had two inputs, 

y(t) and z(t) (the two sources), and we wanted to obtain an output equal to the 

sum of both of them, in the “Equations” section we wrote 𝑥(𝑡) = 𝑦(𝑡) + 𝑧(𝑡) 

(Figure E). 

 

  
 

Figure E 

4. In the Parameters section, assign default values and types to model parameters. 

In our case, it was not necessary to define anything here because the equation 

did not have parameters. 
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5. In the Variables section, assign initial values and types for model parameters. 

The variables for our custom component were automatically defined here. 

6.  In the Ports section, add ports to the custom components by clicking Add Port 

(“Ajouter un port” in Figure E). 

7. Provide the details for the port type, style, name and port signals. 

8. In the Component Generation section, enter a name for the component. This will 

be the name shown in the Definitions tab in MapleSim for the custom component 

(Figure F). 

9. Click Generate MapleSim Component to create your component and to bring you 

back into the MapleSim environment. The custom component now is going to 

appear in the Definitions tab under Components, as shown in Figure F. 

 

 
Figure F 

 

CREATE A SUBSYSTEM  
 

In order to create a subsystem it is necessary to select all the components that 

we want to group together. Then click the right bottom of the mouse and choose “Create 

Subsystem”. 

 

   

Figure G 
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Then if we want to continue measuring the battery states, such as SOC or 

terminal voltage, it is necessay to configure it as an output of the subsystem as shown 

in Figure 2.2. 

 

USING THE SIMULINK COMPONENT BLOCK GENERATION TEMPLATE 
 

In sections 3.4 and 4.3 the Simulink Component Block Generation was used in 

order to export the reference battery model from MapleSim to Simulink environment. 

In this section we are going to explain this function of MapleSim which allows to connect 

two of the most important software concerning battery modelling and simulation. 

The MapleSim Connector provides Simulink Component Block Generation 

template in the form of a Maple worksheet for manipulating and exporting MapleSim 

subsystems. This template contains pre-built embedded components that allow you to 

generate S-function or C code from MapleSim subsystem, export the subsystem as a 

Simulink block, and save the source code. 

The Simulink Component Block Generation consists of the following steps: 

1. Subsystem preparation:  

The creation of the subsystem was explained in the previous section. This help 

MapleSim to identify the set of modelling components that you want to export 

as a block component. 

 

2. Subsystem selection:  

You can select which subsystems from your model you want to export to a 

Simulink block. Once a subsystem is selected, click Load Selected Subsystem and 

all the defined input and outputs ports will be loaded automatically. 

 

3. Port and Management: 

MapleSim allows you to customise, define and assign parameter values to 

specifics ports. Subsystem components to which you assign the parameter, 

inherit a parameter value defined at the subsystem level. Once the subsystem is 

loaded you can group individual input and output variable elements into a vector 

array, and add additional input and output ports for customised parameter 

values. 

The following selections specify the input ports: 

a. If you select Group all inputs into a single vector, MapleSim is going to 

create a single vector input port for all of the input signals instead of 

individual ports. 

b. If you select Add additional inputs for required input variable derivatives, 

MapleSim would use calculated derivative values instead of numerical 

approximations 
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Figure H 

Regarding the output ports you have the following options: 

a. Select Group all outputs into a single vector to define outputs as an S-

Function mask if you want to create custom dialog boxes and icons for 

your S-Function blocks. Masked dialog boxes can make it easier to specify 

additional parameters for S-functions. 

b. Select Add an additional output port for subsystem state variables to add 

extra output ports for the state variables. 

Finally, with regard to parameters options: 

a. Select Group all parameters into a single vector to create a single 

parameter vector for all of the parameters in the S-function. If this option 

is not selected, the S-function mask will contain one parameter input box 

for each of the S-function parameters 

b. Select Generate m-script for assigning parameters to generate an 

initialisation m-file with the parameters 

Press Toggle Export Column to toggle selected/unselected parameters for 

export. 

 

4. S-Function Options: 

 

These settings specify the advanced options for the code generation process: 
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a. Optimisation options: 

 

This option specifies the degree of simplification applied to the model 

equation during the code generation process and eliminates redundant 

variables and equations in the system. It is possible to select one of the 

following options: 

 

i. None (0): no optimisation is performed; the default equations will 

be used in the generation code. 

 

ii. Partial (1, 2): removes redundant equations from the system. 
 

iii. Full (3): performs index reduction to reduce the system to an 

ordinary differential equation (ODE) system or a differential 

algebraic equation (DAE) system of index 1, and removes 

redundant equations. 

 

b. Constraint Handling Options: 

 

This option is used to improve the accuracy of DAE system that has 

constraints. If the constraint is not satisfied, the system result may 

deviate from the actual solution and could lead to an increase in error at 

an exponential rate. These are the parameter that you can adapt to meet 

your specific needs: 

 

i. Maximum number of projection iterations: here it is possible to 

specify the maximum number of times that a projection is 

permitted to iterate to obtain a more accurate solution. 

 

ii. Error tolerance: to specify the desirable error tolerance to achieve 

after the projection. 
 

iii. Apply projection during event iterations: this option must be 

selected when you want to interpolate iterations to obtain a more 

accurate solution. 

 

c. Event Handling Options: 

 

Use this option to improve the accuracy of DAE system with events. If the 

constraint is not satisfied, the system result may deviate from the actual 

solution and could lead to an increase in error at an exponential rate. In 

this section you have the following options to adapt the generated block 

to your requirements: 
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i. Set the Maximum number of event iterations to specify the 

maximum number of times that a projection is permitted to 

iterate to obtain a more accurate solution. 

 

ii. Set the Width of event hysteresis band to specify the desirable 

error tolerance to achieve after the projection. 

 

iii. Select Optimize for use with fixed-step integrators to optimise the 

event iterations as a function of hysterias bandwidth 

 

5. Generate S-Function 

 

In this section you can provide a name and specify the location for the generated 

file. Moreover you can choose if you prefer to generate an S-Function without 

Simulink connection (Generate S-Function (no Compile)) or to generate an S-

Function block (click Generate and Compile S-Function). 

 

6. View S-Function 

 

A Matlab command window opens and the block with any of the following 

specified parameters is generated in Simulink: 

 

 Block Generation Script 

 C Code 

 Parameter Script 
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