

UNIVERSIDAD DE VALLADOLID

ESCUELA DE INGENIERIAS INDUSTRIALES

Grado en Ingeniería en Organización Industrial

Modelling and State Estimation of Batteries

Autor:

Rodríguez Asensio, Miguel

 Responsable de Intercambio en la UVa:

Fernando Tadeo Rico

Universidad de destino:

Université de Picardie Jules Verne - Amiens

Valladolid, Julio 2016.

1

TFG REALIZADO EN PROGRAMA DE INTERCAMBIO

TÍTULO: Modelling and state estimation of batteries

ALUMNO: Miguel Rodríguez Asensio

FECHA: 28/06/2016

CENTRO: Laboratoire MIS

TUTOR: Prof. A. El Hajjaji

2

Resumen

En este trabajo se ha realizado un estudio sobre el modelado y la estimación de los

estados de una batería de Litio principalmente, y en la parte final del mismo sobre una

batería de Plomo. Este estudio se ha desarrollado simultáneamente en MapleSim,

Matlab y Simulink, utilizando el algoritmo denominado Filtro de Kalman (Kalman Filter

en inglés) para estimar el estado de carga (SOC) y el estado de salud (SOH) de la batería.

Este algoritmo ha sido extensamente validado a lo largo del trabajo mediante

simulación, y se ha llegado a demostrar su robustez contra el ruido utilizado. Por otro

lado también se ha estudiado la degradación que sufre la batería en función de la

temperatura de las celdas que la componen.

Palabras clave

Filtro de Kalman, batería de Litio, estado de carga (SOC), estado de salud (SOH) y

modelado baterías.

3

4

Content

Resumen ... 2

Palabras clave ... 2

1 INTRODUCTION TO BATTERIES, BATTERY MODELLING AND MAPLESIM

ENVIRONMENT ... 6

1.1 ORIGINS OF THE BATTERIES ... 6

1.2 OPERATION OF A BATTERY .. 6

1.3 MAIN PARAMETERS OF THE BATTERY ... 7

1.4 REQUIREMENTS OF A BATTERY FOR THE ELECTRIC VEHICLE 8

1.5 BATTERY MODELLING .. 8

1.5.1 ELECTROCHEMICAL MODELS .. 8

1.5.2 MATHEMATICAL MODELS .. 11

1.5.3 ELECTRICAL EQUIVALENT CIRCUIT MODELS... 11

1.6 MAPLESIM ENVIRONMENT .. 12

2 MODELLING OF A LITHIUM-ION BATTERY .. 15

2.1 IMPLEMENTATION OF THE BATTERY MODEL IN MATLAB ENVIRONMENT..... 19

3 STATE OF CHARGE ESTIMATION ALGORITHM .. 27

3.1 STATE OF THE ART ... 27

3.2 INTRODUCTION TO DISCRETE SIMPLE KALMAN FILTER 32

3.2.1 STATE OF CHARGE ESTIMATION BASED ON SIMPLE KALMAN FILTER

ALGORITHM FOR LITHIUM-ION BATTERIES .. 34

3.3 EXTENDED KALMAN FILTER ... 39

3.3.1 STATE OF CHARGE ESTIMATION BASED ON EXTENDED KALMAN FILTER

ALGORITHM FOR LITHIUM-ION BATTERIES .. 40

3.4 STATE OF CHARGE ESTIMATION BASED ON KALMAN FILTER ALGORITHM FOR

LITHIUM-ION BATTERIES IN SIMULINK ... 48

4 STATE OF HEALTH ESTIMATION ALGORITHM ... 58

4.1 INTRODUCTION .. 58

4.2 STATE OF HEALTH ESTIMATION BASED ON FIFTH-ORDER EXTENDED KALMAN

FILTER USING DATA FROM MAPLESIM ... 59

4.3 SOH AND SOC ESTIMATION USING FIFTH-ORDER EKF IN SIMULINK 65

4.4 MEASUREMENT OF THE STATE OF CHARGE AT DIFFERENT TEMPERATURES . 67

5

4.5 COMPARATION BETWEEN THE DEGRADATION OF ONE CELL AND A REAL

BATTERY WITH EIGHT CELLS ... 69

5 LEAD-ACID BATTERY MODELLING ... 71

5.1 STATE ESTIMATION FOR LEAD-ACID BATTERY... 72

6 CONCLUSIONS ... 76

6.1 PRESENT WORK .. 76

6.2 FURTHER WORK ... 76

ANNEX- GUIDE TO USE MAPLESIM ... 78

HOW TO CREATE CUSTOM COMPONENTS ... 79

CREATE A SUBSYSTEM .. 81

USING THE SIMULINK COMPONENT BLOCK GENERATION TEMPLATE 82

REFERENCES .. 86

6

1 INTRODUCTION TO BATTERIES, BATTERY MODELLING AND

MAPLESIM ENVIRONMENT

1.1 ORIGINS OF THE BATTERIES

The first battery was invented by Alessandro Volta in 1800. There are two main

kinds of batteries: the primary cells which, once they had been used, they cannot be

recharged, and secondary cells which can be used many times thanks to their capacity

of recharging when you supply an external current [1]. In Table 1 it is shown a

classification with several examples of both kinds of batteries [2].

Primary Cells Secondary Cells

Zinc Carbon Sealed Lead Acid

Alkaline Nickel Cadmium

Lithium Nickel Metal-Hydride

 Lithium-ion

 Lithium-Polymer
Table 1.- Classification of different battery types in primary or secondary cells

For instance, silver coin or button cell batteries are lithium batteries since they

are composed of lithium metal and, due to their irreversible chemical reaction, they are

classified as primary cells. Also the well-known alkaline batteries, which can be easily

found on store shelves, are classified into this group. The disposable nature of this kind

of batteries means that there is no need of recharge control, protection circuity or fuel

gauging, whereas the secondary batteries, they do need this actions in order to enhance

their performance. Within this group we can found the Lithium-ion batteries, which are

the ones that we are going to focus on throughout this document. This batteries are now

widely used in today portable’s world. At the end of this document, we are going to

study the Lead-Acid batteries too, which are classified as secondary cells and are usually

used in automotive applications or fixed installation due to their large size and weight.

1.2 OPERATION OF A BATTERY

A battery is a device composed by one or more electrochemical cells that

converts the chemical energy contained in its active materials directly into electric

energy by means of an oxidation reduction (redox) reaction, which consists in the

transfer of electrons from one material to another through an electric circuit [2].

During the discharge of a battery, it operates like in Figure 1.1.a). When both

terminals of the battery are connected to an external load (in this case a bulb),

7

electrodes flow from the anode, which is oxidized, through the external load to the

cathode, which is reduced due to the flow of electrodes. The electric circuit is completed

in the electrolyte by the flow of anions and cations to the anode and cathode,

respectively. The electrolyte is an ionic conductor that allow the transfer of charge, as

ions, inside the battery between the anode and the cathode [2].

Figure 1.1.- a) Discharge of Li-Ion Battery; b) Charge of Li-Ion Battery

Source: http://www.sigmaaldrich.com/technical-documents/articles/material-

matters/ionic-liquids-for.html

The operation inside the battery when charging is depicted in Figure 1.1.b). Now

the current flow is inverted, with reduction occurring at the negative electrode and

oxidation at the positive. To conclude, it is important to notice that the battery operation

relies on the use of a pairs of metals that are capable of exchanging electrons.

1.3 MAIN PARAMETERS OF THE BATTERY

Each battery is characterised by the following parameters [1]:

a) Usable power (P = V*I):

It is obtained from the product of battery voltage (V) and the maximum

current that it can tolerate (I). This usable power must be at least equal to the

peak power so as to provide the electricity throughout all the operating range.

b) Stored Energy (KWh):

This parameter is going to determine the autonomy of the electric vehicle
(EV) and the possibilities of recovering for a hybrid electric vehicle (HEV). The
energy of the battery is expressed as a function of its capacity in ampere-hour
(Ah) and its voltage.

b) a)

http://www.sigmaaldrich.com/technical-documents/articles/material-matters/ionic-liquids-for.html
http://www.sigmaaldrich.com/technical-documents/articles/material-matters/ionic-liquids-for.html

8

c) State of charge of the battery (SOC):

One possible definition of the state of charge (SOC) could be the ratio of

the remaining charge of the battery and the total charge while the battery is fully

charged at the same specific standard condition. The SOC is often expressed in

percentage, where 100% means fully charged and 0% means fully discharged [3].

1.4 REQUIREMENTS OF A BATTERY FOR THE ELECTRIC VEHICLE

The weight and volume of the batteries are some of the most important factors

when choosing a battery. The electric vehicle (EV) must have a battery that meets the

following requirements among others [1]:

a) A good mass energy (Wh/Kg): the quantity of energy stored per mass unit. It

allows to define the autonomy of the battery.

b) A good power-to-weight ratio (W/Kg): The power delivered by a unit of mass of

the battery.

c) A steady voltage which generate a regular performance.

d) A good autonomy.

e) A maximum battery lifespan, expressed in number of cycles (charge/discharge)

that it can support. Battery lifespan is defined as the number of times that the

battery can be restored until a level of energy superior to 80% of its nominal

energy.

f) Less maintenance

g) Availability

1.5 BATTERY MODELLING

Research in the field of electric vehicle simulation, energy distribution and power

control strategy, as well as in the estimation of batteries state of charge (SOC) and state

of health (SOH) is experiencing an important increase. This growing interest in this field

caused that the improvement of battery models accuracy, especially those concerning

Lithium-ion batteries, has become a crucial objective.

This is the reason why in the literature there is a wide range of different

approaches regarding the representation of battery behaviour using models with

different degrees of complexity. Since the battery is a nonlinear system, the models

usually used in electric vehicles can be classified into three different kinds:

1.5.1 ELECTROCHEMICAL MODELS

9

It is possible to achieve a high accuracy by using electrochemical models that aim

to capture all the key behaviours of the battery. They are suitable for understanding the

distributed electrochemistry reactions in the electrodes (such as, the reactions from

Figure 1.2, assuming LiyCoO2 cathode and LixC6 anode) and electrolyte. However, in order

to describe the battery chemistry charge/discharge carrier mechanisms, they deploy a

high number of partial differential equations (PDEs) with a large number of unknown

parameters (see from equation (1.1) to (1.5)), which must be solved simultaneously

with a high computational expense and a significant requirement of memory. In

addition, they frequently run into over-fitting problems due to their poor model

robustness under extrapolation [4], which generally precludes their use in real-time

online control [5].

This kind of battery modelling tries to describe all the details of physics

phenomenon that happens inside the battery. Figure 1.2 shows the anatomy of a

Lithium-ion cell battery, which has four main components: the negative composite

electrode connected to the negative terminal of the cell, the positive electrode

connected to the positive terminal of the cell, the separator and the electrolyte.

Cathode: Li1-yCoO2 + y Li+ + y e- LiCoO2

 Anode: LiyC6 C6 + y Li+ + y e-

Figure 1.2.- Basic anatomy of a Lithium-ion cell

As it was stated previously in this section, the behaviour of the battery is

explained by the electrochemical model with the following complex equations:

 Transport in the solid phase:

The partial differential equation (1.1) describes the solid phase Li+

concentration in a single spherical active material particle in solid phase:

10

𝜕𝑐𝑠
𝜕𝑡

=
𝐷𝑠
𝑟2

𝜕

𝜕𝑥
(𝑟2

𝜕𝑐𝑠
𝜕𝑟
) (1.1)

Where Ds is the Li+ diffusion coefficient in the intercalation particle of the

electrodes.

 Transport in electrolyte:

The Li+ concentration in the electrolyte phase changes due to the variations in

the gradient diffusive flow of Li+ ions and is described by the following PDE:

𝜖
𝜕𝑐𝑒
𝜕𝑡

=
𝜕

𝜕𝑥
 (𝐷𝑒𝑓𝑓

𝜕𝑐𝑒
𝜕𝑥
) + 𝑎 (1 + 𝑡+) 𝑗

(1.2)

Where ϵ is the volume fraction, Deff is the Li+ diffusion coefficient in the

electrolyte, a is the specific surface area of electrode and it is equal to
3

𝑅𝑠
(1 − 𝜖 − 𝜖𝑓) (being ϵf the volume fraction of fillers and Rs the radius of

intercalation of electrode), t+ is he Li+ transference constant in the electrolyte,

and j is the wall-flux of Li+ on the intercalation particle of electrode.

 Electrical potentials:

Change conservation in the solid phase of each electrode is described by Ohm’s

law (1.3). In the electrolyte phase, the electrical potential is described by

combining Kirchhoff’s law and Ohm’s law (equation (1.4)).

𝜎𝑒𝑓𝑓 (
𝜕2

𝜕𝑥
Φ𝑠) = 𝑎𝐹𝑗

(1.3)

−𝜎𝑒𝑓𝑓 (
𝜕Φ𝑠
𝜕𝑥
) − 𝜅𝑒𝑓𝑓 (

𝜕Φ𝑒
𝜕𝑥

) +
2𝜅𝑒𝑓𝑓𝑅𝑇

𝐹
 (1 − 𝑡+)

𝜕 ln(𝑐𝑒)

𝜕𝑥
= 𝐽

(1.4)

Where σeff is the effective electronic conductivity (𝜎𝑒𝑓𝑓 = 𝜎(1 − 𝜖 − 𝜖𝑒𝑓𝑓),

being 𝜎 the electronic conductivity in solid phase), Ƙeff is the effective ionic

conductivity of the electrolyte, and J is the applied current density.

 Butler-Volmer kinetics:

Equation (1.5) describes the relationship between the current density,

concentrations and over-potential:

𝑗 = 𝑘(𝑐𝑠,𝑚𝑎𝑥 − 𝑐𝑠,𝑠𝑢𝑟𝑓)
0,5
(𝑐𝑠,𝑠𝑢𝑟𝑓)

0,5
(𝑐𝑒)

0,5 (𝑒𝑥𝑝 (0.5
𝐹𝜇

𝑅𝑇
))

− 𝑒𝑥𝑝 (−0.5
𝐹𝜇

𝑅𝑇
)

(1.5)

11

Where k is the reaction rate constant, μ = Фs - Фe – U0 is the over-potential of

intercalation reaction, U0 is the open-circuit potential for the electrode material

(usually obtained from curve-fitting on experimental measurement), cs,max is the

maximum concentration of Li+ ions in the intercalation particles of the electrode

and cs,surf the concentration of Li+ ions on the surface of the intercalation particles

of the electrode.

Shepherd model is one of the most widely used electrochemical models, for

instance it is commonly employed for the hybrid electric vehicle (HEV) description. This

model describes directly the electrochemical behaviour of the battery in terms of

voltage and current [1].

Where k is a time index, Uk is the model voltage, U0 is the open circuit voltage,

R0 is the internal ohmic resistance of the battery, Kk is the polarization resistance

(expressed in ohms), Ik is the instantaneous current (amps), and zk is the cell SOC.

1.5.2 MATHEMATICAL MODELS

In general, these models are so abstract that they cannot be used to develop a

specific model, but they are still considered as a useful resource for system designers.

They employ empirical equations or mathematical methods to predict the system level

behaviour and system evolution, as well as its properties, such as the autonomy of a

battery or its capacity [1].

1.5.3 ELECTRICAL EQUIVALENT CIRCUIT MODELS

 Electrical equivalent circuit (EEC) models consist of a combination of voltage

sources, resistors and capacitors. They, like the other models, try to model the battery

behaviour. They are based on the reproduction of the dynamic characteristics and

working principles of the battery using circuit theory. Their accuracy lies within 1-5% and

their low computational intensity makes them really accurate for real-time simulation

use [5].

In document [6], they carried out an experimental study which allow them to

conclude that an improved Thevenin circuit model, named dual polarisation (DP) model,

was the best model in terms of compromise between accuracy and computation time.

Due to the great performance of this model, we decided to use it in order to develop all

our study. The selected model is shown below:

𝑈𝑘 = 𝑈0 − 𝑅0𝐼𝑘 +
𝐾𝑘
𝑧𝑘

(1.6)

12

Figure 1.3.- Schematic diagram for the DP model [6]

This model allow to refine the description of polarisation characteristics of the

battery and simulate the concentration polarisation and the electrochemical

polarisation separately, which leads to an improved simulation at the moments of end

of charge or discharge compared to the Thevenin model.

The DP model is composed of three parts [6]:

 The open-circuit voltage (Uoc), which is reproduced by a voltage source.

 Internal resistances such as the ohmic resistance R0 and the polarisation

resistances, which include Rpa to represent the effective resistance characterising

electrochemical polarisation and Rpc to represent the effective resistance

characterising concentration polarisation.

 The effective capacitances like Cpa and Cpc, which are used to describe the

electrochemical polarization and the concentration polarization separately and

to characterise the transient response during transfer of power to/from the

battery, more concretely the network Rpa and Cpa captures the short transients

(STC) and the network Rpc and Cpc captures the long ones (LTC) [5].

Upa and Upc are the voltages across Cpa and Cpc respectively. Ipa and Ipc are the

outflow currents of Cpa and Cpc respectively. The equations that describes the electrical

behaviour of this circuit will be expressed in the section 2.1.

1.6 MAPLESIM ENVIRONMENT

The most part of this work has been developed thanks to the modelling,

simulation and analysis tool MapleSim, which has, among others, a specific library for

the batteries. It provided us with a wide range of different batteries models. This

together with the different tools to create custom components has allow us to suit our

modelling and simulation needs, and therefore fulfil the goals of this study.

The integration of MapleSim and Maple offers more freedom in order to develop

your models. Thanks to its flexibility, you are no longer restricted to built-in components

or analyse. With its complete programming and analysis environment, it is possible to

13

run simulations, customise analyses or script entirely new ones, perform optimisations,

develop advanced symbolic control laws and investigate models in ways that are not

possible with other tools [7]. It also allows to build component diagrams that represent

physical systems in a graphical form, which is of great help for many engineers that do

not find many existing simulation tools intuitive for physical modelling. Using both

symbolic and numeric approaches, MapleSim automatically generates model equations

from a component diagram and runs high-fidelity simulations [8].

After automatically generating these equations, MapleSim tries to simplify them

with symbolic techniques that include index reduction, differential elimination,

separation of independent systems, and elimination of redundant systems. The two

main benefits of symbolic simplification are the following [8]:

 By symbolically resolving algebraic loops and through reducing the complexity of

DAEs, symbolic simplification makes many problems, which previously were

intractable, numerically solvable.

 The simplified equations are provided to the numerical solvers in a

computationally efficient form. This reduces the total simulation time, in some

cases, by many orders of magnitude.

Computational efficiency is particularly important for studies that requires

hardware-in-the-loop (HIL) simulation, such as the implementation of a batteries in the

electric vehicle, because it allows to develop higher fidelity models while the real-time

performance remains accurate.

Figure 1.4- Screenshot of MapleSim, showing all the different possibilities concerning

battery simulation

14

In Figure 1.4, we can see the appearance of MapleSim software. On the left-hand

side of the screenshot, it is shown the two different approaches of battery modelling

(electrochemical and EEC) that it allows, and some batteries of different nature that are

already implemented in the software. As it was stated previously, during the

development of this study the electrochemical and EEC models of the Lithium-ion

battery were used, as well as the EEC model of the Lead-Acid battery, due to the fact

that MapleSim does not include the electrochemical model of the latter.

15

2 MODELLING OF A LITHIUM-ION BATTERY

Firstly, we started with the comparison between the two kinds of models that

MapleSim allow us to use in order to describe the performance of a Lithium-ion battery.

These models are the electrochemical model and the electrical equivalent circuit (EEC)

model, also known as equivalent circuit models (ECM), which has been introduced in the

section 1.5.

So as to accomplish this task, we took the electrochemical model that MapleSim

included in its battery library as a reference and we tried to obtain the same output with

the electrical equivalent circuit (EEC) model. The equation that describe the behaviour

of the EEC model in MapleSim is the following:

 𝑉𝑏𝑎𝑡𝑡 = 𝑁𝑐𝑒𝑙𝑙 ∙ (𝑉𝑜𝑐 − 𝑉𝑅𝑖𝑛𝑡 − 𝑉𝑅𝐶1 − 𝑉𝑅𝐶2 −⋯− 𝑉𝑅𝐶𝑛) (2.1)

Where Vbatt is the terminal voltage, Ncell is the number of cells number of cells in

series that compose the stack, in our study we considered a Lithium-ion battery with

one cell (Ncell = 1) for almost every simulations, except in section 4.5. Voc corresponds to

the open circuit voltage, VRint is the voltage drop across the internal resistance (Rint) and

VRCn is the voltage drop across the n-th RC network. In this case, as we have established

in section 1.5.3, we considered an electrical circuit with two RC networks, therefore its

terminal voltage would be characterised by the equation (2.2):

 𝑉𝑏𝑎𝑡𝑡 = 𝑁𝑐𝑒𝑙𝑙 ∙ (𝑉𝑜𝑐 − 𝑉𝑅𝑖𝑛𝑡 − 𝑉𝑅𝐶1 − 𝑉𝑅𝐶2) (2.2)

The layout of our model is presented in Figure 2.1. Each subsystem contains the

electrochemical model (the one on the right) or the electrical equivalent circuit model

(the left one). The content of each subsystem is the same excepting the battery model

used. Figure 2.2 shows the EEC model subsystem.

Figure 2.1.- Layout of the model developed in MapleSim

16

Figure 2.2.- Content of the EEC model subsystem

Each source (P1 and P2) was configured to work in different periods of time. In

order to achieve this, the configuration of the sources is shown in Figure 2.3. As a result,

the input current obtained consist of a pulse train which firstly discharge the battery and

then charge it, as depicted in Figure 2.4.

Figure 2.3.- Configuration of the source that: a) discharge the batteries; b) charge the

batteries

Figure 2.4.- Input current: pulse train with an amplitude of -20 A, T=60 sec. and a width

of 10% of the period

During the 90% of the period the value of the current is 0 A and the remaining

10% the current is ±20A depending if we are in the discharging or charging period. Using

a) b)

17

this current as the input of our system, we obtain a comparison between the outputs of

both models, electrochemical and EEC models, depicted in Figure 2.5 and Figure 2.6.

Figure 2.5.- Output: Terminal voltage of the electrochemical model (green) and the EEC

model (red)

Figure 2.6.- Output: State of Charge of the electrochemical model (green) and the EEC

model (red)

It can be seen that the results obtained from both models are very similar.

Nevertheless, there is an estrange behaviour in the electrochemical one. For instance,

concerning the Figure 2.6, when we study the state of charge of the battery, it is of the

utmost importance to bear in mind that it depends on the current and the temperature.

Therefore, if the input current is equal to zero the value of the state of charge must

remain constant because these models were configured as isothermals, which means

that the temperature remains constant during all the simulation. However, we can verify

that the state of charge of the electrochemical model does not follow this behaviour.

On the other hand, in Figure 2.5 it is represented the terminal voltage of both

models. Here, the EEC model output is also more similar to the terminal voltage of a real

battery, due to the fact that in the electrochemical model, when the current is zero the

value of this output increase very abruptly and decrease a little bit later in the

discharging period and vice versa when charging. Whereas for EEC model, we can clearly

distinguish the contribution of the different components of the electrical circuit (Figure

1.3), which allow us to track the transients of the battery. When the input current

becomes zero, firstly, there is a sudden increase of the output voltage due to the internal

resistance, then the voltage keeps increasing but in a slower rate due to the parallel RC

18

networks, describing the transient response. When charging it would be the other way

round, firstly there is a sudden drop due to the internal resistance and then a moderate

decrease due to the RC networks.

In order to make sure that the EEC model tracks better the battery behaviour we

carried out another simulation with both models, but in this case the input current

would be a constant current (Figure 2.7).

Figure 2.7.- Input current: Constant current with an amplitude of +/-5 A

Figure 2.8.- Output: Terminal voltage of the electrochemical model (green) and the EEC

model (red)

Figure 2.9.- Output: State of Charge of the electrochemical model (green) and the EEC

model (red)

The behaviour of both models is almost the same for this step input with an

amplitude of 5A when discharging and -5A when charging. Thus, taking everything into

19

account we chose the EEC one as the reference battery model to carry out our study, as

we verified that it was the one that describe the battery behaviour with the highest

fidelity.

2.1 IMPLEMENTATION OF THE BATTERY MODEL IN MATLAB ENVIRONMENT

Once the EEC model was chosen as the reference model from which our study

could be developed, we wanted to make sure that the parameters we were going to use

in Matlab would allow us to have an accurate representation of the performance our

battery model. The parameters used in Matlab were obtained from the EEC model that

it was modelled in MapleSim. The value of each parameter depends on SOC, following

the form of the equation (2.3). Where the variable “parameter” refers to the internal

resistance (R0) or any of the components of the RC networks (R1, C1, R2 or C2).

General form:

 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 𝑘1 ∙ 𝑒
𝑘2∙𝑆𝑂𝐶 + 𝑘3 (2.3)

Particularised for each parameter:

𝑅0,𝑘 = 0,11 ∙ 𝑒
−50∙𝑆𝑂𝐶𝑘 + 0,0075

𝑅1,𝑘 = 0,05 ∙ 𝑒
−29∙𝑆𝑂𝐶𝑘 + 0,0074

𝑅1,𝑘 ∙ 𝐶1,𝑘 = 3,5 ∙ 𝑒
−10∙𝑆𝑂𝐶𝑘 + 10,5

𝑅2,𝑘 = 1 ∙ 𝑒
−150∙𝑆𝑂𝐶𝑘 + 0,008

𝑅2,𝑘 ∙ 𝐶2,𝑘 = −500 ∙ 𝑒
−20∙𝑆𝑂𝐶𝑘 + 710

The open circuit voltage (Voc) is also obtained from MapleSim and follows the

same form of (2.3):

𝑉𝑂𝐶𝑘 = 0,1958 ∗ 𝑒
1,332∙𝑆𝑂𝐶𝑘 + 3,429703601 (2.4)

So as to implement this model in Matlab environment it was necessary to create

a linear state-space model defined by this equations:

 �̇� = 𝐴𝑥 + 𝐵𝑢 + 𝑤 (2.5)

 𝑦 = 𝐶𝑥 + 𝐷𝑢 + 𝐻𝑣 (2.6)

20

We needed to rewrite the equations that described the electrical behaviour of

the battery model into the matrix form, which fitted with the state-space formulation.

This EEC model was based on the Dual Polarised circuit introduced in section 1.5.3. Our

particular model is represented in Figure 2.10.

Figure 2.10.- Electrical equivalent circuit Model of the Battery

The controllable source represents the open circuit voltage (Voc). The function of

the rest of the components has been detailed in section 1.5.3. The electrical behaviour

of the previous circuit could be described by the following system of equations:

{

 �̇�1 = −

𝑉1
𝑅1(𝑆) ∙ 𝐶1(𝑆)

+
𝐼𝑏𝑎𝑡𝑡
𝐶1(𝑆)

�̇�2 = −
𝑉2

𝑅2(𝑆) ∙ 𝐶2(𝑆)
+
𝐼𝑏𝑎𝑡𝑡
𝐶2(𝑆)

𝑉𝑡𝑒𝑟𝑚(𝑆, 𝐼) = 𝑉𝑜𝑐(𝑆) − 𝑉1 − 𝑉2 − 𝑅0 ∙ 𝐼𝑏𝑎𝑡𝑡

(2.7)

Bearing in mind that we were in a simulation environment, we chose the

Coulomb counting method (2.8) in order to keep track of the SOC of our model

implemented in Matlab as it assures 100% accuracy for ideal batteries working in this

environment [5]:

 𝑆(𝐼) = 𝑆𝑖𝑛𝑖𝑡 +
1

𝐶𝑢𝑠𝑒 ∙ 3600
∙ ∫ 𝐼𝑏𝑎𝑡𝑡(𝑡) 𝑑𝑡

𝑡

0

(2.8)

Where Sinit represents the SOC at the initial time t0, Ibatt (t) the current traversing

the battery in Amperes (assumed to be positive when discharging and negative when

charging) and Cuse is the available usable capacity of the battery in Ampere-hour, which

changes with the service life (in our particular case Cuse = 1Ah and it will remain constant

during most of the simulations of this study, except for the simulations concerning the

state of health of the battery). However, if we take into consideration the losses that

21

occur while charging and discharging and also during storing periods, the equation (2.8

) must be slightly modified [9]:

𝑆(𝐼) = 𝑆𝑖𝑛𝑖𝑡[1 −
𝜎

24
(𝑡 − 𝑡0)] +

ɳ

𝐶𝑢𝑠𝑒 ∙ 3600
∙ ∫ 𝐼𝑏𝑎𝑡𝑡(𝑡) 𝑑𝑡

𝑡

0

(2.9)

Where σ is the self-discharge rate, which depends on the accumulated charge

and the battery state of health (SOH). A value of 0,2% per day is recommended for this

parameter; ɳ is the coulombic efficiency1, which it is assumed to be one for discharging

and less than or close to one when charging, in order to reflect the fact that only a

fraction of the input energy is restored. It depends on the technology used for the

battery and other variables such as the temperature, the charging/discharging current,

the state of charge (SOC) and the state of health (SOH). In our particular case, as we

work in the ideal conditions that characterised the simulation environment, it is

assumed to be constant and equal to one in both charging and discharging process, and

the self-discharge rate is going to be fixed to 0% for the same reason [10].

In order to adapt this equations to the state-space formulation we defined the

following matrix based on the equations (2.7) and (2.8):

𝐴 =

[

 −

1

𝑅1 ∙ 𝐶1
0 0

0 −
1

𝑅2 ∙ 𝐶2
0

0 0 0]

 ; 𝐵 =

[

1

𝐶1
1

𝐶2

−
1

𝐶𝑢𝑠𝑒 ∙ 3600]

 ; 𝐶 = [−1 −1
𝜕𝑉𝑂𝐶
𝜕𝑆𝑂𝐶

] ;

𝐷 = [−𝑅0] ; 𝐻 = [1] ; 𝑥 = [
𝑉1
𝑉2
𝑆𝑂𝐶

] ; 𝑢 = [𝐼𝑏𝑎𝑡𝑡] ; 𝑦 = [𝑉𝑡𝑒𝑟𝑚]
(2.10)

At first, we started implementing a linear model of the reference battery.

Therefore, all the nonlinear expressions were linearized. Concerning the circuit

parameters defined in (2.3), we supposed that their value remained constant and equal

to their initial value when the battery was fully charged (SOC=1) during all the

simulation. Whereas the expression of the open circuit voltage (Voc) was linearized using

the curve fitting tool from Matlab and an excel file with data from the battery model in

MapleSim so as to fit these data with a linear curve. The linearized expression of the Voc

is defined as follows:

𝑉𝑂𝐶𝑘 = 0.5552 ∗ 𝑆𝑂𝐶𝑘 + 3,525 (2.11)

1 Coulombic efficiency: The ratio of the number of charges that enter to the battery during charging and
those that can be extracted from the battery during discharging.

22

Once our model in Matlab was defined, we proceeded to verify if this system was

able to reproduce the same behaviour as that of our battery model in MapleSim. In order

to carry out this verification we introduced the same excitations for the two systems and

compared their outputs. For instance, using a constant current of 1A as the input, we

obtain the following outputs:

Figure 2.11.- Battery terminal voltage response in Matlab using a constant current of

1A

Figure 2.12.- Battery Voltage response in MapleSim using a constant current of 1A

Although at a first glace it may seem that these two systems do not have any

similarities between them, we have to take into account that when we transform a

model into a linear state-space model we are linearizing the model, so the system will

lose all the properties related to its nonlinearities. Therefore, we have to analyse the

area where the model has a linear behaviour. If we do so, we are going to find that both

systems have almost the same behaviour in their flatter part.

23

Figure 2.13.- State of charge (SOC) response in Matlab using a constant current of 1A

Figure 2.14.- State of charge (SOC) response in MapleSim using a constant current of 1A

It can be seen that the battery state of charge in both cases decrease at the same

rate. In order to make sure that we could continue working with this model in Matlab,

we introduced a new input current to the system, consisting of a square-wave pulse

train with an amplitude of 10A and a period of 60 seconds during 679 seconds until the

10% of the SOC was reached, as it is shown in Figure 2.15.

Figure 2.15.- Input current: train of square-wave pulses with an amplitude of 10A and

T=60 sec

24

Using this current as the battery model input, we obtain the following responses,

in both Matlab and MapleSim. We can verify that we achieve a great accuracy in the

estimation, being the linearization of the system in Matlab the reason of the small

differences that exist between both models.

Figure 2.16.- Battery Terminal Voltage response in Matlab

Figure 2.17.- Battery Terminal Voltage response in MapleSim

Figure 2.18.- State of charge (SOC) response in Matlab using an input current that

consist of train of square-wave pulses

25

Figure 2.19.- State of charge (SOC) response in MapleSim using an input current that

consist of train of square-wave pulses

From the previous graphics it is visible that this model is highly accurate if we

work with a battery that has a linear behaviour. However, due to the inherent nonlinear

nature of the battery behaviour, the nonlinear model was also implemented in Matlab,

as it accounts for the nonlinearities. This model was developed considering that R0, R1,

C1, R2, C2 and Voc depend nonlinearly on SOC, as it was defined in equations (2.3) and

(2.4).

As we wanted to prove that this model accounts for the nonlinearities of the

system, we used the same constant current as that which has been previously used to

show that the linear system gives a good estimation of the terminal voltage only in the

flatter area of the curve. Making a comparison between the outputs depicted in Figure

2.20 and Figure 2.12, we can confirm that with this model we also keep track of the

nonlinearities of the battery model to some extent.

Figure 2.20.- Battery terminal voltage of the nonlinear system implemented in Matlab

using a constant current of 1A as the input of the system

26

Figure 2.21.- SOC of the nonlinear system implemented in Matlab using a constant

current of 1A as the input of the system

All things considered, we decided to start the simulations in Matlab with the

linear system in order to develop the Simple Kalman Filter (SKF), due to the fact that it

has been proved that it operates better when it works with linear systems. Later on, we

would change to the nonlinear system so as to implement the Extended Kalman Filter,

as we will see in chapter 3.

27

3 STATE OF CHARGE ESTIMATION ALGORITHM

3.1 STATE OF THE ART

State of charge estimation of commercial batteries can be done by many

different methods in electrical chemistry laboratory like coulometric titration technique

[3]. But this estimation is quite challenging without destruction of the battery or

interruption of the battery power supply, especially the applications which require

online estimations. Currently there has been intensive study on SOC estimation

algorithm. Below a short review of some of them is presented [3]:

 Discharge test method

This test could precisely find the remaining charge of the battery and then the

SOC under controlled conditions, i.e., specified discharge current and ambient

temperature. Its major drawback is that it is a time-consuming method and after

the test the battery have no power, hence this method is not useful for the online

applications of the batteries, reducing its utility to the laboratory environment

only.

 Coulomb counting (Ampere-Hour integral) method

This is the most simple and general method to obtain the battery SOC. It is

characterised by the equation (2.8) that has been defined before.

If the initial estimation of SOC is relatively precise, the results of the Coulomb

counting method are quite satisfactory. Nevertheless, it has several

disadvantages:

i) It cannot get the precise initial SOC automatically, so it is highly important to

have an accurate initial estimation of SOC in order to obtain a precise SOC

estimation.

ii) The Coulombic efficiency (ɳ) can be influenced by the operation state of the

battery, such as SOC, temperature, etc., which are difficult to measure and

then produce cumulative effects on SOC error.

iii) Its dependence on the precision of the current sensor that will result in

cumulative effects which will influence on the precision of SOC.

Therefore, the Coulomb counting method alone cannot meet the requirement

of SOC precision.

28

 Open circuit voltage (OCV) method

The one to one correlation between OCV and SOC make this method an effective

one to estimate SOC of Lithium-ion batteries, because it allows us to be sure that

when the battery has reached balance after adequate resting, the OCV

corresponds to 100% of the SOC.

This method give us a high precision SOC estimation but, on the other hand, the

relaxation period requires a lot of time until the batteries reach balance. It

usually take some time for them to recover from an operating state to a balanced

state, this duration depends on the SOC and temperature of the battery among

others. Thus, this method, if used alone, is suitable only for applications where

the device is left idle, for instance, for the electric vehicles (EVs) case, this

method will be useful only if they are parking rather than driving.

Moreover, careful consideration and research are needed as the OCV of some

kinds of batteries depends on the charge/discharge process. For instance, the

charge and discharge open circuit voltage of Lithium-ion phosphate (LFP)

batteries experience the hysteresis phenomena as indicated in Figure 3.1 [11]:

Figure 3.1.- Flat OCV-SOC curve for the LFP cell (20°C) after a 3-hour rest period [11]

Considering the hysteresis phenomena of LFP battery, it has been shown that

the hysteresis is correlated with the relaxation time, with the level of hysteresis

decreasing as the rest period increases. This phenomenon is depicted in the

Figure 3.2 where the voltage was plotted with respect to SOC for different

relaxation periods.

29

Figure 3.2.- Hysteresis decreases with the increase of the rest time in the multiple-step

test conducted on the LFP cell at 20°C [11]

 Battery model-based SOC estimation method

The OCV method needs enough time resting to complete the relaxation period

accurately, hence, it is not useful for online applications when the device is

working, for example, while the electric vehicle is driving. In such cases, the

construction of battery model in conjunction with OCV method is necessary in

order to online estimate the OCV during operation. The most commonly used

battery models include electrical equivalent circuit (EEC) model and

electrochemical model, which have been introduced in section 1.5. Remind that

the terminal voltage of the EEC model derived from the Thevenin Model, could

be expressed as:

 𝑈𝐿 = 𝑈𝑂𝐶 − 𝑈𝑇ℎ − 𝐼𝐿𝑅0 (3.1)

Where UL is the battery terminal voltage, the product 𝐼𝐿𝑅0 represent the voltage

drop caused by the ohmic resistance, UOC the battery OCV and UTh is the voltage

drop across the parallel RC networks. So it is easy to found the value of the OCV

if the battery model parameters are known. The direct relation between OCV

and SOC allow us to easily found the SOC by using an OCV-SOC look-up table.

For this method, the precision and complexity of battery model are very

important. We have seen in the previous chapter that the desire to achieve a

good compromise between accuracy and computation time, lead us to choose

the EEC model composed of two RC networks among the wide variety of different

battery models thanks to its accurate performance (with a mean error of 1.4%)

30

despite its low computational intensity. Whereas the electrochemical model,

due to its high complexity, usually is only used for the battery performance

analysis and battery design.

 Neural network model method

It is based on the use of nonlinear mapping characteristics of the neural network

so as to estimate the SOC. When building a model, the neural network method

does not have to take into account specific details of a battery as it is suitable for

all kinds of batteries. Nevertheless, it needs a great number of training sample

data to train the method. Moreover, this method requires a lot of computations,

which makes necessary to have powerful processing chips.

 Fuzzy logic method

It is based on the simulation of the thinking of human beings by using the fuzzy

logic on the basis of a great number of test curves, experience and reliable fuzzy

logical theories. It eventually could be used to predict the SOC of the battery but

it requires a deep understanding of the batteries themselves and a large number

of computations.

 Integrated algorithm based on the two or more of the above methods

Currently there are several integrated methods such as:

o Simple correction integrated algorithm:

It includes Ampere-Hour integrated algorithm with correction by open circuit

voltage, Ampere-Hour integral method with SOC calibration after charging

and so on. For batteries in pure electric vehicles:

 The working conditions are simple: when the vehicles are moving,

their batteries are mainly in a discharge state, and when the batteries

are being charged in a charging station, the batteries are in a charge

state. Moreover the hysteresis of the open circuit voltage is easy to

estimate.

 Thanks to the large capacities of the batteries the errors of the

Ampere-Hour integral are relatively low.

 The possibility to be fully charge is great

All the above things considered, we can affirm that the Ampere-Hour method

with initial SOC correction according to the open circuit voltage and SOC

calibration after full charging could meet the precision requirement of SOC

31

estimation of pure electric vehicles. However for batteries in hybrid electric

vehicles (HEV) this method is unable to meet the requirements due to the

following reasons:

 The complexity of the working conditions because when the vehicles

are moving, the current is both charged and discharged so as to keep

the battery SOC in a narrow range.

 Due to the small capacities of the batteries the errors of the Ampere-

Hour integral are high.

 There is no opportunity of full charging when the vehicles ae parked,

except for maintenance.

Therefore, for the HEB other integrated methods are needed.

o Weighted fusion algorithm

This algorithm is to add up the SOC estimated through different methods in

accordance with certain weights to obtain SOC. Figure 3.3 shows the

operation of this algorithm:

Figure 3.3.- weighted fusion algorithm from [3]

o Kalman filtering

Due to the impossibility of direct SOC measurement, two methods of SOC

estimation are integrated as a dynamic system, in which SOC is regarded as

an internal state of the system and is analysed. Furthermore, in order to take

into consideration the nonlinearities of the battery, the Extended Kalman

Filter (EKF) method is usually adopted. Generally, researches are conducted

through systems formed by the Coulomb counting method and other battery

models. In [12] it was pointed out that the meaning of EKF as a state observer

lies in: when the SOC is estimated using the Coulomb counting method, the

32

voltage of the capacitor is estimated and then the estimation values of the

cell terminal voltage are obtained to act as a basis for correcting SOC;

meanwhile noises and errors are taken into account, filtering gains of each

step is determined in order to minimise the a posteriori error covariance, and

eventually the optimal estimation of SOC is also obtained. In this way, with

the combination of the Coulomb counting method and the model-based SOC

estimation (Kalman Filter), which overcomes the shortcoming of cumulative

errors that characterised the former, we can achieve a SOC closed-loop

estimation. Moreover, since the measurement and process noise are taken

into consideration, the algorithm has a strong inhibiting effect on noises,

what makes it a robust method.

The Kalman filtering method used for SOC estimation relies on a reasonable

battery equivalent model and a group of state equations. Therefore, as this

method is highly dependent on the battery model, an accurate battery model

is needed to be established so as to obtain a reliable SOC estimation. The

model should not be too complex in order to save computations, but it

should not be too simple either, to achieve an accurate resemblance with the

battery that we are studying. Finally it is important to highlight that if the

selection of the filtering gain is undesirable, the state will disperse.

o Sliding mode observer

So as to overcome the limitations of the Kalman filter method, the slip mode

observer technology is used, which possesses strong robustness against the

uncertainty of the model parameters and disturbance. The problem is that it

is complicated to implement.

Taking everything into account, we determined that the Kalman Filter algorithm

was the most suitable method to estimate the SOC of our battery due to its good

compromise between accuracy and computational intensity.

3.2 INTRODUCTION TO DISCRETE SIMPLE KALMAN FILTER

Kalman filter (KF) is a well-known estimation theory introduced in 1960. The filter

tries to estimate the systems state variables by providing a recursive solution through a

linear optimal filtering [13].

As it was explained in section 3.1, this particular model-based state-estimation

technique is proposed to estimate the state of a battery cell that are normally difficult

or expensive to measure. It is widely used due to its interesting characteristics. Among

other things, it can optimally (searching the minimum variance) estimate the states

33

affected by a broadband noise contained within the system bandwidth, that cannot

otherwise be filtered out using classical techniques [14].

We were based on the state space formulation defined in (2.5) and (2.6) for

developing the Kalman Filter. However, in order to use this algorithm, it is necessary to

consider that the battery model, of which we are trying to estimate the state vector, xk,

which includes the SOC among others, is governed by the discrete linear equation (3.2

), whose output vector, yk, is defined in (3.3).

 𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘−1 + 𝑤𝑘−1 (3.2)

 𝑦𝑘 = 𝐶𝑥𝑘 + 𝐷𝑢𝑘 + 𝑣𝑘 (3.3)

Equation (3.2) is known as the state or process equation, where A ϵ Rnxn is the
matrix that describes the system dynamics and relates the state at the previous time
step k-1 to the current time step k when the control input uk-1 is equal to zero, and B ϵ
Rnxp relates the control input uk-1 to the state xk. Whereas the equation (3.3) is called
the output or measurement equation. The transformation matrix C ϵ Rmxn and the
feedforward matrix D ϵ Rmxp relate the output yk to the state xk and the input uk,
respectively.

The process noise, wk, and the measurement noise, vk, are assumed to be

random variables, independent of each other, white and with normal probability
distributions [15]:

 𝑝(𝑤)~𝑁(0, 𝑄) (3.4)

 𝑝(𝑣)~𝑁(0, 𝑅) (3.5)

In practice, the process noise covariance Q and the measurement noise

covariance are supposed to be variable throughout time, however in this study we are

going to consider them to be constants for all the simulations.

34

3.2.1 STATE OF CHARGE ESTIMATION BASED ON SIMPLE KALMAN FILTER ALGORITHM

FOR LITHIUM-ION BATTERIES

Once it was verified that the battery model implemented in Matlab gave an

accurate description of the MapleSim system behaviour, and the system of equations

that governed our battery model was discretised, we continued trying to implement the

Simple Kalman filter (SKF) so as to estimate the state vector xk, which is the same as the

vector “x” defined in (2.10) but discretised. The discrete SKF algorithm is defined as

follows:

First of all the Kalman Filter must be initialised:

 �̂�𝑘−1 = 𝐸(𝑥0) ; 𝑃𝑘−1 = 𝐸[(𝑥0 − �̂�0)(𝑥0 − �̂�0)
𝑇] (3.6)

The state vector initialisation is obtained from the expected value that we would

think the real state vector would have. The error covariance matrix P is initialised by

obtaining the covariance matrix as defined in (3.6). Normally, these quantities are not

precisely known, but this is not a problem due to the robustness to poor initialisation

that characterises the Kaman Filter, and it will quickly converge to the true value as it

runs [16].

Time update:

1. A priori state estimate update:

 �̂�𝑘
− = 𝐴�̂�𝑘−1 + 𝐵𝑢𝑘−1 (3.7)

2. Error covariance time update:

 𝑃𝑘
− = 𝐴𝑃𝑘−1𝐴

𝑇 + 𝑄 (3.8)

Measurement update:

3. Kalman gain matrix

 𝐾𝑘 = 𝑃𝑘
−𝐶𝑇(𝐶𝑃𝑘

−𝐶𝑇 + 𝑅)−1 (3.9)

4. Measurement residual

 �̃�𝑘 = 𝑦𝑘 − (𝐶�̂�𝑘
− + 𝐷𝑢𝑘) (3.10)

5. A posteriori state estimate update

 �̂�𝑘 = �̂�𝑘
− + 𝐾𝑘�̃�𝑘 (3.11)

35

6. Estimated output

 �̂�𝑘 = 𝐶�̂�𝑘 + 𝐷𝑢𝑘 (3.12)

7. Error covariance measurement update

 𝑃𝑘 = (𝐼 − 𝐾𝑘 ∙ 𝐶) ∙ 𝑃𝑘
− (3.13)

8. Repeat steps one to seven until the simulation ends

The state of charge is tracked by using the expression defined in (2.8).

Moreover, as we were working with the Simple Kalman Filter, it was necessary to use

the linear expression of the open circuit voltage (Voc), which was expressed in equation

(2.11). Finally, in order to implement this algorithm using (3.2), the matrices defined

in (2.10) must be discretised:

𝐴 = [
𝑒

−𝑇𝑠
𝑅1,𝑘∙𝐶1,𝑘 0 0

0 𝑒
−𝑇𝑠

𝑅2,𝑘∙𝐶2,𝑘 0
0 0 1

] ; 𝐵 =

[

 𝑅1,𝑘 ∙ (1 − 𝑒

−𝑇𝑠
𝑅1,𝑘∙𝐶1,𝑘)

𝑅2,𝑘 ∙ (1 − 𝑒
−𝑇𝑠

𝑅2,𝑘∙𝐶2,𝑘)

−𝑇𝑠

𝐶𝑢𝑠𝑒,𝑘 ∙ 3600]

 ;

𝐶 = [−1 −1
𝛿𝑉𝑂𝐶,𝑘
𝛿𝑆𝑂𝐶𝑘

] ; 𝐷 = [−𝑅0,𝑘] ; 𝐻 = [1]
(3.14)

And the output equation (3.3) is expressed by the following equation:

𝑦𝑣𝑘 = 𝑉𝑡𝑒𝑟𝑚𝑣,𝑘 = 𝑉𝑜𝑐,𝑘(𝑆𝑂𝐶𝑘) − 𝑉𝐶1,𝑘 − 𝑉𝐶2,𝑘 − 𝐼𝑏𝑎𝑡𝑡,𝑘 ∙ 𝑅𝑖𝑛𝑡,𝑘 + 𝑣𝑘 (3.15)

Implementing this algorithm in Matlab with the parameters defined before,

(2.3), we obtained the following response, which was compared to the response of the

discrete linear system defined in (3.3) and (3.15):

Where: 𝑄 = [
10−6 0 0
0 10−6 0
0 0 10−6

] 𝑎𝑛𝑑 𝑅 = 1.5

And the algorithm initialization: �̂� = [
0.1
0.5
0.9
] ; 𝑃 = [

0.0009 0.0047 −0.0009
0.0047 0.0233 −0.0047
 −0.0009 −0.0047 0.0009

]

36

Figure 3.4.- Comparison between linear system and Simple Kalman Filter SOC

estimation for an input which consists of a constant current of 1A

Figure 3.5.- Comparison between linear system and Simple Kalman Filter terminal

voltage estimation for an input which consists of a constant current of 1A

Figure 3.6.- Comparison between linear system and Simple Kalman Filter voltage drop

estimation in the first RC network for an input which consists of a constant current of

1A

37

Figure 3.7.- Comparison between linear system and Simple Kalman Filter voltage drop

estimation in the second RC network for an input which consists of a constant current

of 1A

It is visible from the previous graphics that the Simple Kalman Filter makes a good

estimation when we are working with linear systems despite the strong measurement

noise (Figure 3.5). In a simulation environment, as we are in ideal conditions, the

Coulomb counting method is supposed to give the right estimation of the SOC as we do

not have errors in the measurements.

The input was changed to a square wave pulse train with an amplitude of 10A,

conserving the previous initialisations. The results obtained are the following:

Figure 3.8.- Comparison between linear system and Simple Kalman Filter SOC

estimation for an input which consists of a square wave pulse train with an amplitude

of 10A

38

Figure 3.9.- Comparison between linear system and Simple Kalman Filter terminal

voltage estimation for an input which consists of a square wave pulse train with an

amplitude of 10A

Figure 3.10.- Comparison between linear system and Simple Kalman Filter voltage drop

estimation in the first RC network for an input which consists of a square wave pulse

train with an amplitude of 10 A

Figure 3.11.- Comparison between linear system and Simple Kalman Filter voltage drop

estimation in the second RC network for an input which consists of a square wave pulse

train with an amplitude of 10

39

We can observe that in this case, as the input current experiences abrupt

changes, the SOC estimation is not as good as for the constant current. The SKF struggles

due to the non-linear behaviour of the battery terminal voltage, Vterm. This is to be

expected as the algorithm is trying to minimise the error between non-linear process

(Vterm) and a linear equation by varying SOC away from its true value.

At this point, we wanted to improve this estimation, thus we proceeded with the

implementation of the Extended Kalman Filter, which is able to keep track of the

nonlinearities of the system. In order to do that we implemented also the nonlinear

battery model, which was introduced in section 2.1. The procedure followed will be

seen in the next section.

3.3 EXTENDED KALMAN FILTER

As it was said previously, in reality Voc, R1, C1, R2 and C2 are nonlinearly dependant

on SOC, therefore it is necessary to consider that our system (the battery model), whose

state vector xk (which includes SOC) is the aim of our estimation, is governed by the

discrete nonlinear difference stochastic equation (3.16) whose measurement vector yk

is given by the equation (3.17). Where f(.,.) is a nonlinear state transition function and

g(.,.) is a nonlinear measurement function.

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑢𝑘−1) + 𝑤𝑘−1 (3.16)

𝑦𝑘 = 𝑔(𝑥𝑘, 𝑢𝑘) + 𝑣𝑘 (3.17)

As before, wk and vk are assumed to be mutually uncorrelated white Gaussian

random processes, with zero mean and covariance matrices Q and R, (3.4) and (3.5),

respectively. Now, at each time step f(xk-1,uk-1) and g(xk,uk) are linearised by a first-order

Taylor-series expansion. We assume that f(.,.) and g(.,.) are differentiable at all operating

points (xk,uk), as shown in (3.18) and (3.19). As we can deduce from these expressions,

the matrices A and G (which replaces C) are now Jacobian matrices Ak-1 and Gk of partial

derivatives with respect to x.

𝑓(𝑥𝑘−1, 𝑢𝑘−1) ≈ 𝑓(𝑥𝑘−1, 𝑢𝑘−1) +
𝜕𝑓(𝑥𝑘−1, 𝑢𝑘−1)

𝜕𝑥𝑘−1
|
𝑥𝑘−1=�̂�𝑘−1⏟

(𝑥𝑘−1 − 𝑥𝑘−1)

𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝐴𝑘−1

(3.18)

𝑔(𝑥𝑘 , 𝑢𝑘) ≈ 𝑔(𝑥𝑘 , 𝑢𝑘) +
𝜕𝑔(𝑥𝑘 , 𝑢𝑘)

𝜕𝑥𝑘
|
𝑥𝑘=�̂�𝑘⏟

(𝑥𝑘 − 𝑥𝑘)

𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑎𝑠 𝐺𝑘

(3.19)

If we combine the equations (3.16) and (3.17) with (3.18) and (3.19), and

we transform them into the state space formulation defined in (2.5) and (2.6), we

40

obtain the equations that describe the nonlinear system, where matrices A, B, G and D

are now subscripted with k so as to highlight that they also vary with time.

𝑥𝑘 = 𝐴𝑘−1 ∙ 𝑥𝑘−1 + 𝐵𝑘−1 ∙ 𝑢𝑘−1 + 𝑤𝑘−1 (3.20)

𝑦𝑘 = 𝐺𝑘 ∙ 𝑥𝑘 + 𝐷𝑘 ∙ 𝑢𝑘 + 𝑣𝑘 (3.21)

The EKF algorithm remains almost the same as that of the SKF (from (3.7) to

(3.13)), with only steps 1, 4 and 6 changing, as it is shown in Figure 3.12.

Figure 3.12.- Extended Kalman Filter algorithm

3.3.1 STATE OF CHARGE ESTIMATION BASED ON EXTENDED KALMAN FILTER

ALGORITHM FOR LITHIUM-ION BATTERIES

Aiming to implement this algorithm in Matlab, we defined the nonlinear

functions f(.,.) and g(.,.) as well as their respective matrices, A and G.

𝑓(𝑥𝑘−1, 𝑢𝑘−1) = 𝐴𝑘−1 ∙ 𝑥𝑘−1 + 𝐵𝑘−1 ∙ 𝑢𝑘−1 (3.22)

𝑔(𝑥𝑘, 𝑢𝑘) = 0,1958 ∗ 𝑒
1,332∙𝑥3,𝑘 + 3,429703601⏟

𝑉𝑜𝑐 𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 (2.4)

− 𝑥1,𝑘 − 𝑥2,𝑘

− (0.11 ∙ 𝑒−50∙𝑥3,𝑘 + 0.0075⏟)
𝑅0𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑖𝑛 (2.3)

∙ 𝑢𝑘

(3.23)

41

𝐴𝑘−1 =
𝛿𝑓[𝑖]

𝛿𝑥[𝑗]
(�̂�𝑘−1, 𝑢𝑘−1) =

[

 𝑒

−𝑇𝑠
𝑅1,𝑘−1∙𝐶1,𝑘−1 0

𝛿𝑓1
𝛿𝑥3

0 𝑒
−𝑇𝑠

𝑅2,𝑘−1∙𝐶2,𝑘−1
𝛿𝑓2
𝛿𝑥3

0 0 1]

 ;

𝐺𝑘 =
𝛿𝑔[𝑖]

𝛿𝑥[𝑗]
(�̂�𝑘 , 𝑢𝑘) = [−1 −1 𝐺(1,3)] ; 𝐵𝑘−1 =

[

 𝑅1,𝑘−1 ∙ (1 − 𝑒

−𝑇𝑠
𝑅1𝑘−1∙𝐶1𝑘−1)

𝑅2,𝑘−1 ∙ (1 − 𝑒
−𝑇𝑠

𝑅2,𝑘−1∙𝐶2,𝑘−1)

−𝑇𝑠

𝐶𝑢𝑠𝑒 ∙ 3600]

(3.24)

Where:

 𝐺(1,3) =
𝛿𝑔[1]

𝛿𝑥[3]
(𝑥𝑘 , 𝑢𝑘) = 0.1958 ∙ 1.332 ∙ 𝑒

1.332∙�̂�3⏟

𝜕𝑉𝑜𝑐
𝜕𝑥3

− [0.11 ∙ (−50) ∙ 𝑒−50∙�̂�3⏟
𝜕𝑅𝑜
𝜕𝑥3

∙ 𝑢𝑘].

The matrix A defined in (3.24) was simplified due to some singularity problems

experienced during the implementation of the algorithm in Matlab. Hence, we ended

up using the expression of this matrix defined in (3.14), which had been employed for

the Simple Kalman Filter too. The singularity problems were caused because the

denominators of the terms
𝛿𝑓1

𝛿𝑥3
 and

𝛿𝑓2

𝛿𝑥3
 reached such a small values that they became

infinite.

Using a constant current of 1A as the input of our system we obtain the results

depicted from Figure 3.13 to Figure 3.16. The matrices Q, R, as well as the initialisations

of �̂� and P are the same as for the SKF.

Figure 3.13.- Comparison between nonlinear system (red) and Extended Kalman Filter
(blue) SOC estimation for an input which consists of a constant current of 1A

42

Figure 3.14.- Comparison between nonlinear system (red) and Extended Kalman Filter
(blue) terminal voltage estimation for an input which consists of a constant current of

1A

Figure 3.15.- Comparison between nonlinear system (red) and Extended Kalman Filter
(blue) voltage drop estimation in the first RC network for an input which consists of a

constant current of 1A

Figure 3.16.- Comparison between nonlinear system (red) and Extended Kalman Filter
(blue) voltage drop estimation in the second RC network for an input which consists of

a constant current of 1A

43

From these graphics we can affirm that, for this particular input current, this

algorithm makes a good estimation. Despite the good estimation that the SKF also gave

for the same input, if we compare the Figure 3.7 and Figure 3.16, which represent

estimation of the voltage drop in the second RC network (V2) using the SKF and the EKF,

respectively, we can state that we achieve a faster convergence to the true vale with the

latter. Therefore, for this input the estimation with the EKF has improved.

Keeping track of the errors, we obtain that the mean absolute error of the

terminal voltage (Vterm) estimation is 0,0032V and the relative error of this estimation is

0,00078067. Concerning the SOC estimation for this particular input, the value of the

mean absolute error is 0,007. This values can support what we have just declared in the

previous paragraph.

As SKF algorithm showed some problems of convergence with the input current

which consists of a square wave pulse train of 10 A. We introduced the same input to

the EKF in order to reaffirm that this algorithm provides better estimations. The

initialisation matrices were the same as before.

Figure 3.17.- Comparison between nonlinear system (red) and Extended Kalman Filter
(blue) SOC estimation for an input which consists of a square wave pulse train with an

amplitude of 10A

Figure 3.18.- Comparison between nonlinear system (red) and Extended Kalman Filter
(blue) terminal voltage estimation for an input which consists of a square wave pulse

train with an amplitude of 10A

44

Figure 3.19.- Comparison between nonlinear system (red) and Extended Kalman Filter
(blue) voltage drop estimation in the first RC network for an input which consists of a

square wave pulse train with an amplitude of 10A

Figure 3.20.- Comparison between nonlinear system (red) and Extended Kalman Filter

(blue) voltage drop estimation in the second RC network for an input which consists of

a square wave pulse train with an amplitude of 10A

Keeping track of the errors, we obtain that the mean absolute error of the

terminal voltage (Vterm) estimation is 0,014706 V and the relative error of this estimation

is 0,0036. Concerning the SOC estimation for this particular input, the value of the mean

absolute error is 0,00812. This values are a little bit higher than those for the previous

input, but anyway, with this algorithm the estimations are better compared to that of

the SKF by far.

From the comparison between the SOC estimation obtained from the SKF

algorithm (Figure 3.8) and that from the EKF algorithm (Figure 3.17), we can deduce

that the SOC estimation is highly improved using the EKF algorithm. Not only does it

arrive to the true value but it converges very quickly. Comparing the estimation of the

voltage drop in the second RC network (V2) it is also visible the important improvement

achieved by the EKF.

45

Finally, in order to make sure that this algorithm makes good estimations for a

wide range of different inputs, we decided to introduce an input which consists of a

constant current of 50 A. As our battery was not originally designed to support such a

strong current, the estimation did not have to be as perfect as for the previous cases.

However, we verified that, in spite of the strong current, the estimation was quite good

with a mean absolute error of the terminal voltage (Vterm) of 0,1057V and a relative error

of this estimation of 0,0316. Concerning battery SOC, it was estimated with a mean

absolute error of 0,0168. These errors are really small bearing in mind that the battery

is not conceived for this kinds of strong inputs.

The results that could corroborate what it was stated in the previous paragraph

are depicted from Figure 3.21 to Figure 3.24.

Figure 3.21.- Comparison between nonlinear system (red) and Extended Kalman Filter

(blue) SOC estimation for an input which consists of a constant current of 50A

Figure 3.22.- Comparison between nonlinear system (red) and Extended Kalman Filter
(blue) terminal voltage estimation for an input which consists of a constant current of

50A

46

Figure 3.23.- Comparison between nonlinear system (red) and Extended Kalman Filter
(blue) voltage drop estimation in the first RC network for an input which consists of a

constant current of 50A

Figure 3.24.- Comparison between nonlinear system (red) and Extended Kalman Filter
(blue) voltage drop estimation in the second RC network for an input which consists of

a constant current of 50A

Finally, once we had confirmed that the EKF enhance all the estimations

compared to the SKF, and in order to verify that the EKF algorithm also provided good

estimations after several cycles of charge and discharge, we created a script in Matlab

in which it was possible to define the number of cycles that our battery model and EKF

would be subjected to. In this case, the number of cycles was fixed to five and the input

current was the same square wave pulse train with an amplitude of 10 A and a period

of 60 seconds that it was used in the simulations for the SKF and the EKF.

47

Figure 3.25.- Profile of the input current: 5 complete cycles of discharge and charge

consisting of a square pulse wave with an amplitude of +/- 10A and T=60 sec

Figure 3.26.- Comparison between nonlinear system (red) and Extended Kalman Filter

(blue) SOC estimation for an input which consists of a square wave pulse train with an

amplitude of 10A and T=60sec

Figure 3.27.- Figure 3.18.- Comparison between nonlinear system (red) and Extended

Kalman Filter (blue) terminal voltage estimation for an input which consists of a square

wave pulse train with an amplitude of 10A and T=60sec

48

Figure 3.28.- Comparison between nonlinear system (red) and Extended Kalman Filter

(blue) voltage drop estimation in the first RC network for an input which consists of a

square wave pulse train with an amplitude of 10A and T=60sec

Figure 3.29.- Comparison between nonlinear system (red) and Extended Kalman Filter

(blue) voltage drop estimation in the second RC network for an input which consists of

a square wave pulse train with an amplitude of 10Aand T=60sec

Taking everything into account, we could confirm that our algorithm always

provides a good estimation of the state of the battery. Therefore, we proceeded to

implement this algorithm together with the real battery in Simulink, so as to test our EKF

algorithm with real data. Our algorithm was implemented in Simulink using the block

“Matlab Function” from Simulink library, as we will detail in the next section.

3.4 STATE OF CHARGE ESTIMATION BASED ON KALMAN FILTER ALGORITHM FOR

LITHIUM-ION BATTERIES IN SIMULINK

The last step so as to validate our algorithm, and also to make sure that it was

ready to its implementation into a battery management system (BMS), was to verify that

it provided good results in real time using real data from the reference battery. In order

49

to do this, we transformed the subsystem of our battery in MapleSim into a Simulink

block, using one of the functions of the MapleSim connector which allowed to export a

MapleSim model to Simulink using Simulink s-functions that is called “Simulink

Component Block Generation”. Firstly, it was necessary to convert our MapleSim model

workspace into a subsystem with the inputs and outputs desired for our Simulink block.

This tool identifies the set of modelling components that you want to export as a block

component. Since Simulink only supports data signals, properties on acausal connectors

such as mechanical flanges and electrical pins, must be converted to signals using the

appropriate ports [17]. The subsystem created in MapleSim is shown in Figure 3.30 and

the outcome of this transformation (Figure 3.31) permits us to implement our reference

battery directly in Simulink (See Annex to have a further knowledge on the procedure).

Figure 3.30.- Battery subsystem in MapleSim

Figure 3.31.- Simulink block created from the battery in MapleSim in order to estimate

the SOC

Concerning the development of the estimation algorithm, we used the block

“Matlab Function” from the Simulink library, and we adapted the Matlab script to

Simulink environment, i.e., we deleted the for loop from the script as Simulink iterates

itself in each time step. We needed also to add a retard in each feedback loop in order

to introduce the value of the state vector and that of the error covariance matrix at the

50

previous time step, as well as the value of the input current at the previous time step as

it was necessary for the algorithm. Once all these things were implemented correctly

(Figure 3.32), we were able to carry out all the desired simulations using as input of our

algorithm the real data (Vterm) from the reference battery.

Figure 3.32.- Battery implemented together with the EKF algorithm in Simulink

We implemented both algorithms, Simple Kalman Filter (SKF) and Extended

Kalman Filter (EKF), in order to study the results of both estimators. Using a sample time

of 0,1 and an input which consists of a square wave pulse train with a period of 60

seconds and an amplitude of 10A, we obtain the following responses for the SKF and the

EKF, respectively.

Figure 3.33.- Common input current for both algorithms: pulse train with an amplitude

of 10A and a T=60 sec.

51

 Simple Kalman Filter (SKF)

Figure 3.34.- Terminal voltage output: Comparison between real data from the

reference battery (blue) and Simple Kalman Filter estimation (red)

Figure 3.35.- SOC output: Comparison between real data from the reference battery

(blue) and Simple Kalman Filter estimation (red)

 Extended Kalman Filter (EKF)

Figure 3.36.- Terminal voltage output: Comparison between real data from the

reference battery (blue) and Extended Kalman Filter estimation (red)

52

Figure 3.37.- SOC output: Comparison between real data from the reference battery

(blue) and Extended Kalman Filter estimation (red)

We can observe that EKF algorithm converge really fast but when the SOC

value becomes less than 20%, it starts to diverge, this can be attributed to difficulties

during curve fitting as undervoltage protection distorts the voltage waveforms,

making more difficult to obtain accurate estimations because it experiences abrupt

changes (drops and rises) in its outputs. However, this problem of divergence is not

important due to the fact that the Battery Management Systems (BMS) has a

working range between 80% and 20% of SOC, this is because of the same reason

from which our algorithm diverge when the battery is discharge below 20% of SOC.

We also observed that this divergence was highly influenced by the sample time,

because if we modified its value the convergence changed a lot. Thus, we could

deduct that this problem was caused by the internal computations of Simulink and

not by any problem in our algorithm.

Bearing this in mind, we decided that the discharges would last until the value

of SOC was equal to 20% for both algorithms as we had seem that the SKF also

experienced problems of divergence for lower values of SOC and both of them did

not have any problem for values greater than 20%. As noted in Table 2, the EKF

shows better performance than that of SKF for SOC estimation (which is our goal due

to the fact that it cannot be directly measured) as it accounts for the nonlinearities

in the battery behaviour.

Kalman type SOC Estimation (%) Terminal Voltage Estimation(V)

SOC error max

SOC absolute
mean error

Vterm error max Vterm absolute
mean error

Simple 9,8 % 1,4 % 0,6580 V 0,0198 V

Extended 9,8 % 0,89% 0,6036 V 0,0198V

Table 2.- SKF and EKF estimation errors

53

The maximum error could seem very high but it is important to take into

account that the algorithm is initialised with false values. If we measure the error

when I has reached more accurate values (from t=60sec), the maximum error for the

terminal voltage estimation is 0,0781V (SKF) or 0,7067V (EKF), and for the SOC

estimation it is 5,56% (SKF) or 2,94% (EKF). The results from which we obtained this

errors are:

 Simple Kalman Filter (SKF)

Figure 3.38.- Terminal voltage output: Comparison between real data from the
reference battery (blue) and Simple Kalman Filter estimation (red)

Figure 3.39.- SOC output: Comparison between real data from the reference battery

(blue) and Simple Kalman Filter estimation (red)

 Extended Kalman Filter (EKF)

54

Figure 3.40.- Terminal voltage output: Comparison between real data from the

reference battery (blue) and Extended Kalman Filter estimation (red)

Figure 3.41.- SOC output: Comparison between real data from the reference battery

(blue) and Extended Kalman Filter estimation (red)

As we have proceeded in the previous verifications of the estimation algorithms,

we tested it convergence with other kind of inputs. Firstly, with a constant current of 1A

and then with a constant current of 20A, in order to push our algorithm to the limit.

a) Constant current of 1A

o Simple Kalman Filter (SKF)

Figure 3.42.- Terminal voltage output: Comparison between real data from the

reference battery (blue) and Simple Kalman Filter estimation (red)

55

Figure 3.43.- SOC output: Comparison between real data from the reference battery

(blue) and Simple Kalman Filter estimation (red)

o Extended Kalman Filer (EKF)

Figure 3.44.- Terminal voltage output: Comparison between real data from the

reference battery (blue) and Extended Kalman Filter estimation (red)

Figure 3.45.- SOC output: Comparison between real data from the reference battery

(blue) and Extended Kalman Filter estimation (red)

56

Kalman type
SOC Estimation (%) Terminal Voltage Estimation(V)

SOC error max

SOC absolute
mean error

Vterm error max
Vterm absolute

mean error

Simple 9,78% 1,37 % 0,7242 V 0,0026 V

Extended 9,79 % 0,64% 0,6696 V 0,0021 V

Table 3.- SKF and EKF estimation errors using a constant current of 1A as the input of

our system

If we measure the error when it has converged despite the initial false values

(from t=65 seconds), the maximum error for the terminal voltage estimation is 0,0174V

(SKF) or 0,0148V (EKF), and for the SOC estimation it is 6,61% (SKF) or 1,44% (EKF).

Focusing on mean errors displayed in Table 3, the error made in SOC estimation is highly

reduced if EKF is used instead of SKF.

b) Constant current of 20A

 Simple Kalman Filter Extended Kalman Filter

Battery
Terminal
Voltage

(V)

State of
Charge

Figure 3.46.- Comparison between real data from the reference battery (blue) and

Kalman Filter algorithm estimation (red) using constant current of 20A

Kalman
type

SOC Estimation (%) Terminal Voltage Estimation(V)

SOC error max

SOC absolute
mean error

Vterm error max
Vterm absolute

mean error

Simple 9,82% 3,56 % 0,5845 V 0,0385 V

Extended 9,83 % 2,37% 0,5302V 0,0366V
Table 4.- SKF and EKF estimation errors using as input a constant current of 20A

57

From Table 4 we can deduce the same conclusion as before. Despite pushing our

battery model, and therefore our algorithm, into the limit, the EKF keeps showing better

performance than that of the SKF for battery SOC estimation as it reduce the mean error

more than 1% which is highly important concerning the little errors both algorithms

show.

Taking everything into account, we could confirm that these algorithms were

ready to be implemented in applications that need real time SOC estimations, with the

EKF showing better performance. From this point forward, once we were sure that the

SOC estimation was accurate, we would tackle the estimation of another state of the

battery that is crucial in order to develop a BMS, which is the state of health (SOH) of

the battery.

58

4 STATE OF HEALTH ESTIMATION ALGORITHM

4.1 INTRODUCTION

State of health (SOH) measures the ability of a cell to store energy, source and

sink currents, and retain charge over extended periods, relative to its initial or nominal

capabilities [14]. The available charge stored is expected to fall during the lifespan of the

battery due to cell usage, as the active material on the cell plates gradually degrades by

mechanisms such as loss of plate active surface area, as a consequence of repeated

dissolution and recrystallization, and growth of large inactive crystals within the plate

structures. Such capacity loss can be deemed a loss of cell SOH. Early detection of SOH

degradation would allow the battery pack to take remedial action just in time. For

instance, they could include the application of conditional routines to the cell, so as to

remove small sulphate crystals before they become inactive crystals, thereby restoring

the cells capacity [14].

The commonly used indicators of battery SOH include battery capacity (the one

we have chosen so as to measure this state of the battery), DC resistance and AC

impedance. The SOH estimation methods mainly include durability model-based open-

loop methods and battery model-based closed-loop methods [18]. The durability

models describe the increase of solid-electrolyte interface (SEI) film resistance and

battery terminal voltage, which allow the former type of methods to directly predict the

changes in capacity fade and internal resistance. The latter comprises least-squares

methods, Kalman filtering, other adaptive algorithms, such as fuzzy logic, to identify the

battery capacity and internal resistance according to the operating data, and sample

entropy method as different possibilities of SOH estimation. In Table 5 it is summarised

the advantages and disadvantages of these SOH estimation methods.

Most of the above mentioned methods and those explained in section 3.1, were

developed for either SOC or SOH estimation but not for both of them. The close relation

between SOC and SOH was overlooked. Battery degradation has a great influence on

the accuracy of SOC estimation. As battery degrades, those algorithms that only perform

SOC estimation may lead to large errors. The inaccurate SOC estimations in turn may

mislead the battery SOH calibration. Thus, simultaneous SOC and SOH estimations is

quite beneficial. Comparing battery SOC and SOH variations, battery SOH typically

change much more slowly, being necessary the use of multi-timescale state estimators.

The multi-scale EKFs are used to estimate SOC and SOH, and the capacity estimation is

periodically introduced in SOC update equation. However, the determination of the two

time scales is heavily dependent on tuition and calibration. Moreover, this multi-

timescale algorithm has a heavier computational intensity, which makes it more difficult

to implement in real time applications. Hence, instead of an algorithm of this

characteristics, we decided to implement an extended version of the EKF developed in

section 3.3, adding two new parameters to the state vector (x): the internal resistance

59

(R0) and the inverse of the available usable capacity of the battery (Cuse), which is

considered to change during the service life, contrary to what we established in section

2.1, in order to be more closer to the reality. This modified EKF algorithm will be used in

the next section in order to estimate the battery SOH.

State of health (SOH) estimation

Classification Method Advantage Disadvantage

Durability model-
based open-loop

method

Durability
mechanism

Comprehensive
understanding

Complex, need
accurate input

parameters

Durability external
characteristic

Simple and easy to
predict capacity

fade and internal
resistance
increment

Based on a large
number of

experiments

Battery model-
based close-loop

method

DC resistance Simple
Not accurate,
sensitive to

disturbances

AC impedance Accuracy Complex

Extended Kalman
Filter (EKF)

Quite easy to
implement,

accurate

Sensitive to
modelling accuracy

Fuzzy logic Accurate Slow convergence

Sample entropy Simple
Need large amount

of data

Discharge voltage Easy Not accurate

Adaptive control
system

Online applications
Sensitive to

modelling accuracy

Table 5.- Advantages and disadvantages of existing SOH estimation methods [18]

4.2 STATE OF HEALTH ESTIMATION BASED ON FIFTH-ORDER EXTENDED KALMAN

FILTER USING DATA FROM MAPLESIM

The fifth-order EKF algorithm that we have developed follows the same stages

than the EKF from section 3.3, which are now shown in Figure 4.1, particularised for the

new estimation algorithm. The modifications were pointed out in the previous section.

The enlargement of the state vector implied the redefinition of all matrices that take

part in this algorithm, as it can be seen in (4.1) and (4.2).

60

Figure 4.1.- Schematic of the fifth-order EKF estimation algorithm

Where:

𝐴𝑘 =

[

 𝑒

−𝑇𝑠
𝑅1,𝑘∙𝐶1,𝑘 0 0 0 0

0 𝑒
−𝑇𝑠

𝑅2,𝑘∙𝐶2,𝑘 0 0 0

0 0 1 0
−𝑇𝑠 ∙ 𝐼𝑏𝑎𝑡𝑡,𝑘
3600

0 0 0 1 0
0 0 0 0 1]

 ; 𝐷𝑘 = [0] ;

𝐵𝑘 =

[

 𝑅1,𝑘 ∙ (1 − 𝑒

−𝑇𝑠
𝑅1𝑘∙𝐶1𝑘)

𝑅2,𝑘 ∙ (1 − 𝑒
−𝑇𝑠

𝑅2,𝑘∙𝐶2,𝑘)

0
0
0]

 ; 𝐶𝑘 = [−1 −1
𝜕𝑉𝑜𝑐,𝑘
𝜕𝑥3,𝑘

𝐼𝑏𝑎𝑡𝑡,𝑘 0] 2

 (4.1)

𝑥𝑘 =

[

𝑉1,𝑘
𝑉2,𝑘
𝑆𝑂𝐶𝑘
𝑅0,𝑘

1
𝐶𝑢𝑠𝑒,𝑘
⁄]

(4.2)

2 VOC is defined in (2.4) and Ibatt is the input of our system (u = [Ibatt,k]) as it was defined in (2.10).

61

With this algorithm we are able not only to obtain the estimation of battery SOC

but also the SOH estimation. The latter can be calculated indirectly using the fifth

component of the state vector. The expression (4.3) allow us to estimate the battery

SOH from the fifth state.

𝑆𝑂𝐻 =
𝐶𝑢𝑠𝑒

𝐶𝑁𝑜𝑚𝑖𝑛𝑎𝑙
∙ 100%

(4.3)

Where Cuse is the actual capacity, which is the fifth component of the state vector

and therefore it is going to change during the whole simulation, contrary to what it was

established in section 2.1, and Cnominal is the capacity established by the manufacturer in

the main specifications of the battery, and in our case it is equal to the value of the

capacity of the cell of the reference battery from MapleSim, that is, Cnominal = 1 Ah.

Using in MapleSim the same current profile from the hybrid pulse test that it was

used in [18], which is depicted in Figure 4.2, we collected some data from the reference

battery and we saved it in an excel file. In this file it was saved the time in which each

data was collected, the value of the current at this time, the terminal voltage of the cell,

and the state of charge (SOC) and state of health (SOH) of the battery cell, so as to export

all this data to Matlab environment. Then, we assigned this data to its corresponding

variables in our Matlab script, where it was implemented the fifth-order EKF, in order to

use them as a reference for our estimation algorithm.

As depicted in Figure 4.3, the cell terminal voltage estimation is highly accurate

once the algorithm has found its true value, being the error since t=1222,4 seconds

inferior to its mean value. Focusing on SOC estimation (Figure 4.4), despite the increase

of the estimation error at the end of the simulation, this error is still very small (about

2,9%3), therefore this algorithm is still accurate to estimate the state of charge.

Concerning the SOH estimation, in Figure 4.7 it is remarkable that the SOH

estimation error becomes smaller than the mean error at the end of the simulation,

which means that in the end the SOH estimation converges to the real value. As a matter

of fact, we can verify this phenomenon observing the Figure 4.5 and Figure 4.6.

Finally, due to the fact that MapleSim is not able to measure the voltage across

the different components of the circuit that forms the EEC model, neither does it track

the variation of the battery internal resistance, we decided to compare the estimation

of these states with that of the nonlinear model, which does not account for the effect

of the battery aging. From Figure 4.8 and the next one, it is visible that the estimation of

these two states of the battery converge relatively faster to that of the nonlinear model.

3 Considering that SOC is given in percentage, despite the fact that it is represented between 0 and 1.

62

Figure 4.2.- Input: Current profile from the hybrid pulse test at 25°C

Figure 4.3.- Above: Comparison between Vterm from real data (green) and EKF

estimation (blue). Below: Vterm estimation error

Figure 4.4.- Above: Comparison between SOC from real data (green) and EKF

estimation (blue). Below: SOC estimation error

63

Figure 4.5.- Comparison between real SOH data from MapleSim (green) and SOH EKF

estimation (blue)

Figure 4.6.- Comparison of the SOH value in each cycle between real data from

MapleSim (green) and EKF algorithm (blue)

Figure 4.7.- SOH estimation error: Absolute Error (blue). Mean Error (red)

64

Figure 4.8.- Comparison between nonlinear system (red) and Extended Kalman Filter

(blue) voltage drop estimation across the first RC network

Figure 4.9.- Comparison between nonlinear system (red) and Extended Kalman Filter

(blue) voltage drop estimation across the second RC network

Figure 4.10.- Internal resistance estimation result from the EKF (blue) and the nonlinear

model (red)

65

From the picture above it can be seen that in the fifth-order EKF the value of the

internal resistance changes throughout the simulation, ending the simulation with a

higher value of the resistance, as it was to be supposed because of the accumulation of

inactive crystals that makes more difficult the flow of electrons inside the battery.

4.3 SOH AND SOC ESTIMATION USING FIFTH-ORDER EKF IN SIMULINK

Following the procedure explained in section 3.4, we obtained the Simulink block

shown in Figure 4.11, which was implemented in Simulink using a model very similar to

that represented in Figure 3.32, but in this case we used the fifth-order EKF instead of

the original EKF, in order to simultaneously estimate the SOC and SOH. We did not

achieve the co-simulation between Simulink and Matlab, because the block generated

from MapleSim only works in time continuous simulations and the EKF only works with

discrete time. Therefore, it was necessary to modify the initialisation of the error

covariance matrix P, and that of the noise covariance matrices Q and R.

Figure 4.11.- Simulink block created from the battery in MapleSim in order to estimate

the battery SOC and SOH

Figure 4.12.- Battery terminal voltage: Comparison between real data from the

reference battery (pink) and Fifth-order EKF estimation (blue)

66

Figure 4.13.- SOC: Comparison between real data from the reference battery (blue) and

Simple Kalman Filter estimation (red)

Figure 4.14.- SOH: Comparison between real data from the reference battery (blue) and

Simple Kalman Filter estimation (red)

From Figure 4.12 to Figure 4.14, we can observe the estimation results obtained

from the simulation in Simulink. It is visible that the convergence of the estimations to

the real value is assured for all cases. In particular, the SOH estimation seems to

converge slowly but once it reaches the real value it tracks the true SOH really well.

Despite the fact that at a first glance it may seem that the SOC estimation error starts to

increase at the end, the reality is that the error is so small that it can be neglected. In

Table 6 all the estimation errors for the three variables represented above are shown.

67

Kalman
type

SOC Estimation (%) SOH Estimation (%) Vterm Estimation (V)

SOC error
max.

SOC abs.
mean err.

SOH error
max.

SOH abs.
mean err.

Vterm err.
max.

Vterm abs.
mean err.

5th-order
EKF

24,34 % 1,54 % 7,3 % 0,56 % 0,0901 V 0,0011 V

Table 6.- Fifth-order EKF estimation errors

The maximum SOC error is extremely high due to a bad initialisation of the

algorithm, in fact if we start to track the error from t=1.000 seconds, its maximum

value decrease to 5,06% and if we start to track it later, this value would decrease even

more. This phenomenon help us to confirm the claim stated at the beginning of the

paragraph.

With regard to mean errors, they are small enough to consider that the

algorithms provides good estimations. Despite the increase of the SOC estimation mean

error compared with the error of the third-order EKF algorithm, the possibility of

tracking the SOH of the battery and the reduction in the terminal voltage estimation

mean error, make that the advantages of this algorithm outweigh its disadvantages. And

therefore, we consider that this algorithm provides a correct simultaneous estimation

of SOC and SOH.

4.4 MEASUREMENT OF THE STATE OF CHARGE AT DIFFERENT TEMPERATURES

So far, the temperature of the battery cell has been considered constant and
equals to 25 °C. In this section we want to study the effect of the temperature in the
degradation of the battery cell. In order to do so, the same battery has to be subjected
to the same input current at the different temperatures that we want to study.

When we did the simulation, we used a constant current with an amplitude of

20 A as the input of our system in order to discharge and charge the battery cell. As

battery cell aged, it started to become deteriorated, therefore it had a faster discharge.

To solve this problem we decided to implement a model in MapleSim in which we could

detect when the SOC was inferior to 10 % or equal to 100 % and inverse the sense of the

input current. So as to achieve this we used the block “On Off Controller” (OOC1 in Figure

4.15), which sets the output signal to true when the input signal, SOC, falls below the

reference signal, Avg SOC, plus half of the hysteresis [19]. This Boolean signal becomes

the input of a block called “Boolean to Real” (“Charger” in our MapleSim model), which

converts the Boolean input to a real value preset by the parameters, Real True and Real

False, -20 and 20 respectively in our case. The equation of this component is [19]:

𝑦 = {
𝑟𝑒𝑎𝑙𝐹𝑎𝑙𝑠𝑒 𝑖𝑓 𝑖𝑛𝑝𝑢𝑡 = 𝑓𝑎𝑙𝑠𝑒
𝑟𝑒𝑎𝑙𝑇𝑟𝑢𝑒 𝑖𝑓 𝑖𝑛𝑝𝑢𝑡 = 𝑡𝑟𝑢𝑒

(4.4)

68

Figure 4.15.- MapleSim model layout

Figure 4.16.- Battery cell degradation for different temperatures. Where the y-axis

represent SOH and x-axis the number of cycles

69

Simulation was carried out at different battery cell temperatures, 10°C, 25°C and
45°C. From Figure 4.16 it is visible that the higher the cell temperature is, the more
deterioration it will experience, and therefore the higher the decreasing of the state of
health (SOH) is. Thus, it is also important to control the temperature of the battery so as
to assure that the temperature does not influence a lot in the degradation of the battery
and to make sure that the lifespan of the battery coincides with that of the application
that it would be implemented in.

4.5 COMPARATION BETWEEN THE DEGRADATION OF ONE CELL AND A REAL

BATTERY WITH EIGHT CELLS

In real life, batteries are not composed of only one cell as we have supposed

during all the previous sections, in fact they usually consist of a high number of cells

connected in series in order to obtain a higher power. In this section we are going to

verify this improvement in battery performance using a battery pack instead of one cell.

Actually, in equation (2.2) this assertion was introduced (where Ncell was the number

of cells connected in series). Therefore, from this equation we deduce that the more

cells the battery has, the higher power it will be able to supply.

Figure 4.17.- SOH of one cell (red) and of eight cells connected in series (green)

Figure 4.18.- Cell terminal voltage (red) and battery pack terminal voltage (green)

70

Comparing the behaviour of one cell with that of a battery pack, which consist of

8 cells, it can be seen that the degradation of both is the same (Figure 4.17), i.e., both

experience the same SOH decrease, as it was expected bearing in mind that we are

working in a simulation environment. Nevertheless, the battery pack provides a higher

voltage level (Figure 4.18). Thus, from the power equation (𝑃 = 𝑉 ∙ 𝐼), using the same

input current, we can obtain a higher power with a battery pack than with only one cell.

This is the reason why nowadays all the applications that need a battery have a battery

pack.

However, as we stated in the previous paragraph, the fact that the rate of charge

and discharge was the same is due to the ideal simulation environment. In real

applications, the battery packs are provided with cells of slightly different

characteristics, so the charging/discharging capability of weakest cell is the limiting

factor. Therefore, the characteristics of this cell are important during operation in order

to avoid overcharging/over discharging [13].

In Figure 4.19 it is shown the waste of capacity if we use a battery pack where it

exists some variations between the two cells. This shows us more clearly the importance

of an exhaustive control of the cells that compose the battery pack in order to balance

their characteristics. If the balancing device is not efficient enough, the real SOC of the

battery pack will be related to the real performance of this balancing device. If there is

no balancing device or with dissipation, there will be some waste capacity [3].

Figure 4.19.- The waste capacity and remaining capacity of a battery module (take a

battery module of two cells as example) [3]

71

5 LEAD-ACID BATTERY MODELLING

Until now, we have considered Lithium-ion battery as the one with the best
characteristics based on the different comparisons that it has been made in the
literature. However, at this point, we thought that it would add some value to this report
if we compared the performance of the Lithium-ion battery that it has been used for all
the simulations with that of a Lead-Acid battery (which was widely used before the
creation of the Lithium-ion batteries due to its good performance, despite its heavy
weight) with the same specifications, that is, with the same cell resistance (Rcell = 0,0075
Ω), and capacity (CA = 1 Ah).

The simulation was carried out in MapleSim, using the same input current for

both batteries (Figure 5.1). From the simulations results we can confirm what we said in
the previous paragraph. As the batteries were configured with the same specifications
their charging/discharging capability is the same (Figure 5.2). However, the Lithium-ion
battery provides a higher voltage level than the Lead-Acid battery (Figure 5.3), and
therefore the power that the former can supply is higher than that of the latter.

Figure 5.1.- Common input for both kinds of batteries: pulse train with an amplitude of

20A, a T=60 sec. and a width of 10% of the time period

Figure 5.2.- SOC of Lead-Acid battery (red) and SOC of Lithium-ion battery (green)

72

Figure 5.3.- Lead-Acid battery terminal voltage (red) and Lithium-ion battery terminal

voltage (green)

Thus, from simulation results we can conclude that using a battery with the same

rate of charging/discharging (i.e., the SOC of both batteries experience the same

changes), if we introduce the same input, Lithium-ion battery provides higher power.

Therefore it will be widely used for those applications that requires great power, such

as the electric vehicle, which is growing fast this recent years.

5.1 STATE ESTIMATION FOR LEAD-ACID BATTERY

The last step of this report would be the estimation of the state of the Lead-Acid

battery employed in the previous section using the third-order EKF. In order to achieve

that we exported the data from MapleSim and we save it in an Excel file. Then, also from

MapleSim, we obtained the expressions that define the EEC model. This model for this

kind of battery is the same as the one which was depicted in Figure 2.10. However, as

the battery was of different nature, it was necessary to modify the expressions that

define the value of each component, which still follow the form of the equation (2.3):

𝑅0,𝑘 = 0,025 ∙ 𝑒
−24∙𝑆𝑂𝐶𝑘 + 0,012

𝑅1,𝑘 = 0,05 ∙ 𝑒
−29∙𝑆𝑂𝐶𝑘 + 0,0074

𝑅1,𝑘 ∙ 𝐶1,𝑘 = −3 ∙ 𝑒
−13∙𝑆𝑂𝐶𝑘 + 3

𝑅2,𝑘 = 1 ∙ 𝑒
−155,2∙𝑆𝑂𝐶𝑘 + 0,008

𝑅2,𝑘 ∙ 𝐶2,𝑘 = −31000 ∙ 𝑒
−88∙𝑆𝑂𝐶𝑘 + 710

(5.1)

The expression of the OCV was obtained using the curve fitting parameter tool

from Matlab:

𝑉0𝐶,𝑘 = 20,23 ∙ 𝑒
−0,01499∙𝑆𝑂𝐶𝑘 − 18,487 (5.2)

73

Once the redefinition was made, we assigned the data from the Excel file to their

respective variables in our Matlab script. Using the current shown in Figure 5.4 as the

input of our system, the simulation results are depicted from Figure 5.5 to Figure 5.8. It

is visible that the state estimations are highly accurate, being the mean error of SOC

estimation 0,92%4 (Table 7). In fact, in the end the SOC estimation error starts to

decrease below the value of the mean SOC estimation error. It is not possible to measure

the other two states of the batter EEC model, V1 and V2, in MapleSim. Hence, we decided

to compare its estimations with that of the nonlinear model, which describes the battery

behaviour in a suitable manner.

Figure 5.4.- Input current

Figure 5.5.- Above: Comparison between Vterm from real data (green) and EKF

estimation (blue). Below: Vterm estimation error

4 Considering that SOC is expressed in %. Nevertheless in Figure 5.6 it is depicted as a variable that varies
between 0 and 1.

74

Figure 5.6.- Above: Comparison between SOC from real data (green) and EKF

estimation (blue). Below: SOC estimation error

Figure 5.7.- Comparison between nonlinear battery model (red) and Extended Kalman

Filter (blue) voltage drop estimation across the first RC network

Figure 5.8.- Comparison between nonlinear battery model (red) and Extended Kalman

Filter (blue) voltage drop estimation across the second RC network

75

Kalman type
SOC Estimation4 (%) Terminal Voltage Estimation(V)

SOC error max

SOC absolute
mean error

Vterm error max
Vterm absolute

mean error

Extended 8,67 % 0,92% 0,9412 V 0,0447 V
Table 7.- Estimation Errors

The errors made are of the same order of magnitude than that of the previous

applications of the third-order EKF, therefore we can confirm that this algorithm is

suitable to estimate the state of batteries from different nature and characteristics,

provided that we define accurately the value of each EEC model component.

76

6 CONCLUSIONS

6.1 PRESENT WORK

The present work starts in a general way introducing the reader to some

important concepts in the field of batteries, such as, the internal operation of batteries

or the different approaches concerning battery modelling. In the next chapter firstly we

chose the EEC model as the battery model of reference for our study, and then we made

a co-simulation between MapleSim and Matlab. In the third chapter, a wide range of

different simulations were carried out in Matlab and Simulink in order to study the

convergence of the SKF and EKF, showing that the latter provided better estimations

than the former for all kinds of simulations. In chapter four, we extended the number of

state variables of EKF to make a simultaneous simulation of battery SOH and SOC in

Matlab and Simulink. In the last chapter, a comparison between the Lithium-ion

reference battery model and the Lead-Acid EEC model with the same resistance and

capacity was made, showing that the Lithium-ion one was able to provide more power.

Finally, also in this chapter, the EKF algorithm was employed to estimate the state of the

Lead-Acid battery.

Above all, the biggest contribution of this study has been the fast convergence

achieved when using the EKF so as to estimate the state of the battery. This algorithm

has been verified through simulation, and from the results of this validation, we can

affirm that this algorithm is ready to be implemented in a BMS in order to monitor the

state of the battery pack due to its simplicity, low computational expense and

robustness to measurement errors and random disturbances. Moreover, not only is it

highly accurate for Lithium-ion batteries, but also for batteries of other nature, such as

Lead-Acid ones.

6.2 FURTHER WORK

Due to the lack of time, there are three main aspects which I would have liked to

study more deeply:

 Develop of a simultaneous SOC and SOH estimation method which converge to

the true value of SOH for all kinds of inputs, without having to modify the

initialisation of each variable when changing the input. Maybe an algorithm that

estimates in real time the SOC and only when this estimation starts to diverge,

introduce and extended version of this algorithm in order to update the

parameters and SOH of the battery would be more accurate since these

parameters change more slowly than the SOC.

77

 Pass from SOC and SOH estimation problem to the implementation of a complete

BMS, which would allow me to have a more global perspective of what battery

management and optimisation involves.

 Achieve the co-simulation between Matlab and Simulink for state estimation, as

in this study we have struggled with the problem of working in Simulink with a

time continuous block in a sample time-based model, due to the fact that Kalman

Filter can only work in discrete time systems.

78

ANNEX- GUIDE TO USE MAPLESIM

First of all, it is necessary to create a new MapleSim model following these septs:

FileNewModel. However, if you prefer to open a model that it was already created

in a previous session, these are the steps: FileOpen…Choose the file where it was

saved previously. Both possibilities are shown inside the red rectangle in Figure A.

Figure A

Among the Electrochemical models it is possible to find the Lithium-ion Battery

and Nickel-Metal Hydride, whereas for the EEC models we have the Lithium-ion battery,

Lead-Acid, Nickel-Metal Hydride and we also have some other user-defined battery

components that allow you to customise them using experimental data. All of these

battery models are shown inside the red rectangle of the left-hand side in Figure B. We

can use all the components listed on MapleSim libraries simply dragging them into the

model.

The behaviors of the battery model are described by a small set of parameter

that can be seen in Figure B inside the red rectangle of the right-hand side. For the

Lithium-ion battery we can also select different kinds of cathode and anode material,

for example we have fourteen different types of cathode materials and three types of

anode materials (green rectangle in Figure B) for Lithium-ion chemistry.

79

Figure B

HOW TO CREATE CUSTOM COMPONENTS

In Figure 2.1 (from section 2) we used a custom component which summed the

current provided by the two sources. These sources were configured in order to work

separately in different periods of time. Firstly, it worked the one that discharged the

battery and then the other one which charged it.

The general process of creating a custom component for a MapleSim model

consists of specifying the component equations for the custom component, component

parameters and system model, specifying the port types and their values. The creation

of a custom component follows these steps:

1. Click on the option “create attachment from template” (red circle in Figure C).

Figure C

80

2. Select Custom Component, write the name that you want to give to the

attachment and then click “Create Attachment”. The Maple Custom Component

template is loaded.

Figure D

3. In the Equations section, you have to write down the equations that describe the

operation that you want to give to the block. Equations, parameters and initial

conditions are all entered here. In the model of Figure 2.1, as we had two inputs,

y(t) and z(t) (the two sources), and we wanted to obtain an output equal to the

sum of both of them, in the “Equations” section we wrote 𝑥(𝑡) = 𝑦(𝑡) + 𝑧(𝑡)

(Figure E).

Figure E

4. In the Parameters section, assign default values and types to model parameters.

In our case, it was not necessary to define anything here because the equation

did not have parameters.

81

5. In the Variables section, assign initial values and types for model parameters.

The variables for our custom component were automatically defined here.

6. In the Ports section, add ports to the custom components by clicking Add Port

(“Ajouter un port” in Figure E).

7. Provide the details for the port type, style, name and port signals.

8. In the Component Generation section, enter a name for the component. This will

be the name shown in the Definitions tab in MapleSim for the custom component

(Figure F).

9. Click Generate MapleSim Component to create your component and to bring you

back into the MapleSim environment. The custom component now is going to

appear in the Definitions tab under Components, as shown in Figure F.

Figure F

CREATE A SUBSYSTEM

In order to create a subsystem it is necessary to select all the components that

we want to group together. Then click the right bottom of the mouse and choose “Create

Subsystem”.

Figure G

82

Then if we want to continue measuring the battery states, such as SOC or

terminal voltage, it is necessay to configure it as an output of the subsystem as shown

in Figure 2.2.

USING THE SIMULINK COMPONENT BLOCK GENERATION TEMPLATE

In sections 3.4 and 4.3 the Simulink Component Block Generation was used in

order to export the reference battery model from MapleSim to Simulink environment.

In this section we are going to explain this function of MapleSim which allows to connect

two of the most important software concerning battery modelling and simulation.

The MapleSim Connector provides Simulink Component Block Generation

template in the form of a Maple worksheet for manipulating and exporting MapleSim

subsystems. This template contains pre-built embedded components that allow you to

generate S-function or C code from MapleSim subsystem, export the subsystem as a

Simulink block, and save the source code.

The Simulink Component Block Generation consists of the following steps:

1. Subsystem preparation:

The creation of the subsystem was explained in the previous section. This help

MapleSim to identify the set of modelling components that you want to export

as a block component.

2. Subsystem selection:

You can select which subsystems from your model you want to export to a

Simulink block. Once a subsystem is selected, click Load Selected Subsystem and

all the defined input and outputs ports will be loaded automatically.

3. Port and Management:

MapleSim allows you to customise, define and assign parameter values to

specifics ports. Subsystem components to which you assign the parameter,

inherit a parameter value defined at the subsystem level. Once the subsystem is

loaded you can group individual input and output variable elements into a vector

array, and add additional input and output ports for customised parameter

values.

The following selections specify the input ports:

a. If you select Group all inputs into a single vector, MapleSim is going to

create a single vector input port for all of the input signals instead of

individual ports.

b. If you select Add additional inputs for required input variable derivatives,

MapleSim would use calculated derivative values instead of numerical

approximations

83

Figure H

Regarding the output ports you have the following options:

a. Select Group all outputs into a single vector to define outputs as an S-

Function mask if you want to create custom dialog boxes and icons for

your S-Function blocks. Masked dialog boxes can make it easier to specify

additional parameters for S-functions.

b. Select Add an additional output port for subsystem state variables to add

extra output ports for the state variables.

Finally, with regard to parameters options:

a. Select Group all parameters into a single vector to create a single

parameter vector for all of the parameters in the S-function. If this option

is not selected, the S-function mask will contain one parameter input box

for each of the S-function parameters

b. Select Generate m-script for assigning parameters to generate an

initialisation m-file with the parameters

Press Toggle Export Column to toggle selected/unselected parameters for

export.

4. S-Function Options:

These settings specify the advanced options for the code generation process:

84

a. Optimisation options:

This option specifies the degree of simplification applied to the model

equation during the code generation process and eliminates redundant

variables and equations in the system. It is possible to select one of the

following options:

i. None (0): no optimisation is performed; the default equations will

be used in the generation code.

ii. Partial (1, 2): removes redundant equations from the system.

iii. Full (3): performs index reduction to reduce the system to an

ordinary differential equation (ODE) system or a differential

algebraic equation (DAE) system of index 1, and removes

redundant equations.

b. Constraint Handling Options:

This option is used to improve the accuracy of DAE system that has

constraints. If the constraint is not satisfied, the system result may

deviate from the actual solution and could lead to an increase in error at

an exponential rate. These are the parameter that you can adapt to meet

your specific needs:

i. Maximum number of projection iterations: here it is possible to

specify the maximum number of times that a projection is

permitted to iterate to obtain a more accurate solution.

ii. Error tolerance: to specify the desirable error tolerance to achieve

after the projection.

iii. Apply projection during event iterations: this option must be

selected when you want to interpolate iterations to obtain a more

accurate solution.

c. Event Handling Options:

Use this option to improve the accuracy of DAE system with events. If the

constraint is not satisfied, the system result may deviate from the actual

solution and could lead to an increase in error at an exponential rate. In

this section you have the following options to adapt the generated block

to your requirements:

85

i. Set the Maximum number of event iterations to specify the

maximum number of times that a projection is permitted to

iterate to obtain a more accurate solution.

ii. Set the Width of event hysteresis band to specify the desirable

error tolerance to achieve after the projection.

iii. Select Optimize for use with fixed-step integrators to optimise the

event iterations as a function of hysterias bandwidth

5. Generate S-Function

In this section you can provide a name and specify the location for the generated

file. Moreover you can choose if you prefer to generate an S-Function without

Simulink connection (Generate S-Function (no Compile)) or to generate an S-

Function block (click Generate and Compile S-Function).

6. View S-Function

A Matlab command window opens and the block with any of the following

specified parameters is generated in Simulink:

 Block Generation Script

 C Code

 Parameter Script

86

REFERENCES

[1] R. MKAHL, Contribution à la modélisation, au dimensionnement et à la gestion

des flux énérgetiques d'un système de recharge de véhicules électriques: étude

de l'interconnexion avec le reseau électrique, 2015.

[2] S. Dearborn, “Power Management in Portable Applications: Charging Lithium-

Ion/Lithium-Polymer Batteries,” Microchip Technology Inc..

[3] L. L. e. al., “A review on the key issues for lithium-ion battery management in

electric vehicles,” Journal of Power Sources 226 , pp. 272-288, 2013.

[4] X. H. e. al., “A comparative study of equivalent circuit models for Li-ion

batteries,” Power of Sources, no. 198, pp. 359-367, 2012.

[5] J. B. e. al., “Modelling of Lithium-ion Battery and SOC Estimation using Simple

and Extended Discrete Kalman Filters for Aircraft Energy Management,” in

IECON2015, Yokohama, 2015.

[6] H. H. e. al., “Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State

of Charge Estimation by an Experimental Approach,” Energies, pp. 582-598, 2011.

[7] T. W. J. Cao, “Multi-Domain Modeling Simulation and Applications Based on

MapleSim,” 2013.

[8] MapleSoftTM, “MapleSim: Technological Superiority in Multi-Domain Physical

Modeling and Simulation”.

[9] “Zhou W, et al. Battery behaviour prediction and battery working states analysis

of a hybrid solar-wind power generation system. Renew Energy (2007):”.

[10] A. R. Rami Yamin, “Embedded State of Charge and State of Health Estimator

based on Kalman Filter for Electric Scooter BMS”.

[11] T. H. e. al., “Simplified Extended Kalman Filter Observer for SOC Estimation of

Commercial Power-Oriented LFP Lithium Battery Cells”.

[12] “C.Y. Xia, S. Zhang, H.T. Sun, Chin. J. Power Sources 31 (5) (2007) 414-417(”.

[13] S. S. e. al., “Improved extended Kalman filter or state od charge estimation of the

battery pack,” J. Power Sources, pp. 368-376, 2014.

[14] B. B. e. al., “Nonlinear Observers for Predicting State-of-Charge and State-of-

Health of Lead-Acid Batteries for Hybrid-Electric Vehicles,” IEEE Transactions on

vehicular technology, vol. 54, no. 3, pp. 783-794, 2005.

[15] G. W. a. G. Bishop, “An Introduction to the Kalman Filter,” 2006.

87

[16] A. R. e. al., “SOC Estimation for Li-ion Batteries Based on Equivalent Circuit

Diagrams and the Application of a Kalman Filter”.

[17] Maplesoft, Getting Started with MapleSim Connector, Canada, 2011.

[18] Y. Z. e. al., “Combined State of Charge and State of Health estimation over

lithium-ion battery cell cycle lifespan for electric vehicles,” Journal of Power

Sources, no. 273, pp. 793-803, 2015.

[19] MapleSoft TM, MapleSim Help.

