

UNIVERSITY OF VALLADOLID

INDUSTRIAL ENGINEERING SCHOOL

FINAL PROJECT DEGREE

INGENIERO TÉCNICO INDUSTRIAL, ELECETRICIDAD

AUTOMATION PROCESS OF AN

ELEVATOR SYSTEM

SAMUEL NOVAL SÁNCHEZ

2012

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 2

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 3

A mis padres Alfredo y Mª Dolores,

 mi hermano Alfredo

 y mis tías, Flor y Nani

 por su ayuda y apoyo incondicional,

sin ellos nada de esto habría sido posible.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 4

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 5

RESUMEN

Un ascensor es un sistema de transporte vertical diseñado para mover personas

o bienes entre diferentes niveles. Puede usarse para moverse arriba o abajo en un

edificio o en una construcción subterránea. Está compuesto por partes mecánicas,

eléctricas y electrónicas que trabajan conjuntamente para obtener un sistema seguro

de movilidad.

La cabina debe acudir al piso solicitado por el usuario, ya sea interna o

externamente.

El principal objetivo del presente proyecto es diseñar tanto la instalación

eléctrica como el control automático para un ascensor instalado en un edificio de

viviendas de diez pisos, teniendo en cuenta todos los aspectos relacionados con la

seguridad.

El control automático del ascensor es llevado a cabo mediante un PLC

(Controlador Lógico Programable), el cual es un dispositivo electrónico diseñado para

programar y controlar procesos secuenciales en tiempo real.

Con el objetivo de demostrar la funcionalidad del algoritmo diseñado, se ha

realizado una simulación con una maqueta de un ascensor de cuatro niveles, utilizando

un controlador de “Klockner Moeller” llamado PS4-201-MM1, el cual se programa

mediante el software “Sucosoft-S40”.

-PALABRAS CLAVE.-

Control Dahlander Ascensor

Grafcet

PLC PS4-201-MM1 Seguridad

Sucosoft

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 6

-INSTALACIÓN ELÉCTRICA.-

 La instalación eléctrica comprende la instalación y dimensionamiento de la caja

de protecciones del ascensor, instalación del panel de control, instalación de los

controles manuales del cuarto de máquinas y de cabina, sensores, iluminación, tomas

de corriente, conexionado del motor, etc.

 La caja de protecciones está compuesta por un interruptor general de corte

magneto-térmico con mando manual con enclavamiento, para evitar la conexión

accidental durante los trabajos de mantenimiento o reparación del ascensor. Para la

protección contra contactos indirectos la instalación cuenta con interruptores

diferenciales de 30mA de corriente mínima de activación, mientras que para la

protección contra sobrecargas y cortocircuitos los dispositivos utilizados son

interruptores magneto-térmicos e interruptores fusibles. Para la protección del motor

ante sobrecargas se instala un relé de sobrecarga de disparo retardado, para evitar el

disparo en el arranque. En la caja de protecciones también se instalan los contactores

(relés) que actúan sobre las diferentes bobinas del motor.

 El panel de control alberga en su interior la fuente de alimentación, que

transforma la corriente de 230V C.A. a 24V C.C. para hacerla apta para el

funcionamiento del controlador y los sensores, y el propio controlador.

 Los paneles de mando manual se instalarán en el techo de la cabina y en el

cuarto de máquinas y están compuestos por un botón de parada, uno de subida y otro

de bajada, para posibilitar al operario el movimiento manual de la cabina del ascensor

durante los trabajos de mantenimiento o reparación del ascensor.

 Para la iluminación de la cabina se ha instalado un panel de LEDs, con

encendido y apagado controlado por el PLC, lo que conlleva un notable ahorro de

energía en comparación con otros dispositivos de iluminación. Para la iluminación del

cuarto de máquinas, del hueco y del foso han sido instalados tubos fluorescentes de

8W de potencia. La instalación y dimensionamiento de la iluminación de emergencia y

antipánico también se contempla en el presente proyecto.

 Las tomas de corriente instaladas en el cuarto de máquinas, el hueco y el foso

son tomas Schucko de 16A.

 El motor encargado del movimiento de la cabina es un motor trifásico sin

reductora de 3kW de potencia con conexión Dahlander de dos velocidades con

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 7

inversión de giro y freno eléctrico. Se incluyen todos los esquemas de conexión de

potencia y de mando del motor.

-SEGURIDAD.-

 Todos los aspectos relacionados con la seguridad de los usuarios del ascensor

han sido tenidos en cuenta. Para ello, la instalación cuenta con diversos sensores,

como son los sensores de tensión del cable tractor, sensor de fallo de suministro

eléctrico, sensor de sobrepeso, sensores de puertas, límites de carrera, limitadores de

velocidad, amortiguadores de frenado de emergencia, etc.

 La instalación cuenta con una batería conectada en paralelo con el circuito del

ascensor para suministrar suficiente energía eléctrica como para propiciar que la

cabina llegue a la planta baja del edificio (según la vigente normativa europea sobre

ascensores) en caso de un fallo de suministro.

-SISTEMA DE POSICIONAMIENTO.-

 El sistema de posicionamiento es el conjunto de sensores instalados durante

todo el recorrido de la cabina encargados de indicarle al control automático la posición

de la cabina en todo momento.

 El sistema de posicionamiento elegido para el presente proyecto consta de

imanes colocados en las propias guías metálicas del ascensor a lo largo de toda su

trayectoria, y tres sensores magnéticos instalados sobre la cabina. Dos de los sensores

son los encargados de detectar los cambios de velocidad del ascensor cuando la cabina

llega al nivel solicitado por el usuario. Para ello han de instalarse dos imanes por nivel,

uno para el cambio de velocidad en subida y otro para el cambio de velocidad en

bajada. El tercero de los sensores es utilizado para detectar cuándo el ascensor ha

llegado al nivel solicitado por el usuario, y debe por tanto detenerse.

 En resumidas cuentas, cuando un usuario solicita el ascensor en un

determinado nivel, la cabina arranca en velocidad rápida hasta unos instantes antes de

llegar al nivel solicitado, donde cambia a velocidad lenta. La cabina viaja en velocidad

lenta hasta que alcanza el nivel y se detiene.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 8

 Las ventajas principales de este sistema de posicionamiento son principalmente

la facilidad de instalación y modificación de los imanes y sensores, así como su

reducido mantenimiento.

-CONTROL DE PUERTAS.-

 El control de puertas se realiza mediante control automático a través de un

motor de apertura de puertas situado en el techo de la cabina. Las puertas instaladas

son de tipo telescópico con apertura de derecha a izquierda. La apertura y cierre de las

puertas externas se realiza al mismo tiempo que las internas, gracias a una elongación

de la parte móvil del mecanismo, permitiendo la maniobra únicamente cuando la

cabina se encuentra perfectamente alineada con la puerta de acceso a cada planta, lo

que conlleva varias ventajas, como son la simplificación de la instalación, al tener tan

sólo un control de puertas, y la mayor seguridad al permitir la apertura sólo cuando la

cabina se encuentra en un determinado nivel, evitando así la posible precipitación de

personas al hueco del ascensor.

 El mecanismo consta de un motor de apertura y cierre y dos finales de carrera,

uno para cierre y otro para apertura. Para la seguridad se han instalado también un

sensor óptico para evitar el cierre de las puertas cuando una persona u objeto se

encuentran en la trayectoria de cierre de las puertas, y un botón de apertura de

puertas incluido en la botonera interna de la propia cabina del ascensor, para abrir las

puertas en caso de emergencia.

-SIMULACIÓN.-

 Con el objetivo de demostrar el funcionamiento del algoritmo creado, se ha

realizado una simulación para un ascensor de cuatro niveles utilizando un PLC del

fabricante Klockner Moeller, en concreto el modelo PS4-201-MM1. Este controlador

consta de ocho entradas digitales y ocho salidas digitales, funciona con una tensión de

24V C.C. y permite la conexión de módulos de extensión.

 El software utilizado para programar dicho controlador es Sucosoft-S4, el cual

sólo permite la programación en modo Lista de Instrucciones (IL). La función más

característica de este software es la conocida como Función de Control Secuencial (SK),

la cual está basada en los esquemas GRAFCET, haciendo la programación basándose en

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 9

dichos esquemas mucho más sencilla. El programa creado para el control de la

maqueta de simulación se incluye en los anexos del presente proyecto.

 Una de las principales limitaciones para esta simulación es el limitado número

de entradas y salidas del controlador. Para el sistema de posicionamiento se utilizan

sensores ópticos, uno por cada nivel, conectados en las entradas I0.0 a I0.3. Existe un

botón por cada piso conectados en las entradas I0.4 a I0.7, quedando así ocupadas

todas las entradas disponibles del controlador. Para las salidas tan sólo se conectan

Q0.1 y Q0.2, para actuar sobre las bobinas del motor, una para subida y otra para

bajada.

 Una vez demostrado el algoritmo para la simulación, se puede admitir que el

algoritmo es válido para un ascensor con n pisos o niveles. En el caso concreto que en

este proyecto se describe, se ha decidido la creación de un algoritmo para un ascensor

en un edificio con diez niveles.

-CONTROL AUTOMÁTICO PARA DIEZ NIVELES.-

 Debido a las limitaciones tanto de software y de hardware como a la poca

disposición de medios para la creación de una maqueta para diez niveles, se decidió la

realización únicamente de los esquemas GRAFCET para este caso, siguiendo el mismo

algoritmo utilizado para la simulación con cuatro niveles, incluyendo todos los

elementos adicionales necesarios para el control y seguridad del ascensor.

 Así, para el presente caso, se necesitan un número mayor de entradas y salidas,

por lo que es necesaria la instalación de módulos de expansión. Los módulos de

expansión aptos para este controlador (expansión concentrada o local) son los

módulos LE4-501-BS1, los cuales constan de ocho entradas digitales y seis salidas

digitales más dos conexiones digitales que pueden ser utilizadas como entradas o

como salidas según sea necesario. Funciona con corriente continua 24V, y el número

máximo de módulos que pueden conectarse al controlador PS4 es 7. En total se

necesitan 63 entradas, entre sensores, elementos de seguridad, botoneras externas e

internas, etc. por lo que se necesitan conectar un total de 7 módulos. El número total

de salidas es 13, cuatro para el motor que cuenta con velocidad lenta y rápida, en

subida y en bajada, una para la activación del freno, dos para el control de puertas, y el

resto para control de luces y alarmas de seguridad.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 10

 El grafcet principal cuenta con varias macroetapas para hacer más fácil su

comprensión y las transiciones correspondientes a seguridades se han representado

con línea roja para distinguirlas del control principal.

 La idea del algoritmo creado es de fácil comprensión. En la etapa inicial se

inicializan los marcadores e indicadores. Después, dependiendo del sensor de nivel

activado, se guarda un valor de tipo byte en una variable llamada “ALEVEL” (nivel

actual), desde el valor 0 para el piso 0 hasta el valor 9 para el piso 9. Tras este paso, el

sistema permanece en espera hasta que uno de los botones (interno o externo, dando

prioridad a los internos) es presionado. Dependiendo del botón pulsado, se almacena

un valor de tipo byte en una nueva variable llamada “LEVEL” (nivel deseado), desde el

valor 0 para el piso 0 hasta el valor 9 para el piso 9. A continuación se comparan ambas

variables. Si la variable LEVEL es menor que ALEVEL, se activa el motor en sentido

bajada y velocidad rápida, hasta unos instantes antes de alcanzar el nivel deseado,

donde cambia a velocidad lenta. Si la variable LEVEL es mayor que ALEVEL, se activa el

motor en sentido subida y velocidad rápida, hasta unos instantes antes de alcanzar el

nivel deseado, donde cambia a velocidad lenta. El ascensor se detiene al alcanzar el

nivel deseado y el sistema vuelve a la etapa inicial. Si el valor de ambas variables

coincide, se activa el control de puertas y el sistema vuelve a la etapa inicial. Las

transiciones de seguridad se explican más detalladamente en la presente memoria.

-CONCLUSIÓN.-

 Todos los cálculos necesarios para el dimensionamiento de los contrapesos,

potencia del motor, sección de cables y características de las protecciones se incluyen

en el presente proyecto.

 También se ha incluido un régimen de mantenimiento tanto preventivo como

correctivo.

 Los principales objetivos cumplidos son la realización de la instalación eléctrica,

creación de un algoritmo para el control de un ascensor de diez niveles, verificación del

algoritmo mediante una simulación para cuatro niveles y por tanto, la posibilidad de

admitir la validez del algoritmo diseñado para el caso de n niveles.

 Como principales mejoras cabe destacar la posibilidad de diseño de un

algoritmo con memoria, para poder atender peticiones consecutivamente, mientras el

ascensor se encuentra ocupado, sin necesidad de espera por parte de los usuarios a la

finalización del movimiento del ascensor. Otra posible mejora es la instalación de un

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 11

variador de frecuencia para regular la velocidad de ascenso y descenso de la cabina,

haciendo así el viaje más confortable para los usuarios, pero con la consiguiente

complejidad que lleva su programación. También cabe la posibilidad de la instalación

de un bus de datos para reducir el cableado, o un microcontrolador que se encargue

de todo lo relacionado con la seguridad, ocupando así sólo una entrada del

controlador para controlar la seguridad.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 12

ABSTRACT

 An elevator is a vertical transport system designed to move persons or goods

between different levels. It can be used to go up and down in a building or an

underground construction. It consists of mechanical, electrical and electronic parts that

operate together to get a safe way of mobility.

 The car must go to any floor every time it is requested by a user, either

internally or externally.

 The main target of the present project is to design all the electrical installation

as well as the automatic control for an elevator installed in a building with ten levels,

taking into account all aspects related to security.

 The automatic control of the elevator is conducted by a PLC (Programmable

Logic Controller), which is an electronic device designed to program and control real

time sequential processes.

 In order to demonstrate the functionality of the algorithm, a simulation has

been made by using a Klockner Moeller´s PLC called PS4-201-MM1, which is

programmed with the software “Sucosoft-S40”, for an elevator with four levels.

KEYWORDS

Control Dahlander Elevator

Grafcet

PLC PS4-200-MM1 Security

Sucosoft

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 13

INDEX

1. PROJECT DESCRIPTION .. 17

1.1. BRIEF HISTORY OF LIFTS .. 17

1.2. OBJECTIVES OF THE PROJECT .. 18

1.3. MARKET ORIENTATION ... 19

1.3.1. One speed elevators .. 20

1.3.2. Two speed elevators ... 20

1.3.3. Variable speed elevators ... 20

1.4. DESCRIPTION OF THE INSTALLATION .. 22

1.4.1. Main structure ... 22

1.4.2. Traction group ... 25

1.4.3. Protection box ... 26

1.4.4. Control Panel ... 26

1.4.5. External and internal doors ... 27

1.4.6. Security .. 28

1.5. DESCRIPTION OF THE COMPONENTS .. 30

1.5.1. Electrical protection devices ... 30

1.5.2. Conductors .. 34

1.5.3. Lights ... 34

1.5.4. Plugs .. 37

1.5.5. Protective earth ... 37

1.5.6. Buttons .. 37

1.5.7. Contactors ... 39

1.5.8. Power supply ... 40

1.5.9. PLC ... 41

1.5.10. Door control .. 42

1.5.11. Positioning system .. 42

1.5.12. Emergency battery .. 47

1.5.13. Security .. 48

1.6. MOTOR CONNECTION ... 51

1.7. MANUAL CONTROL ... 53

1.8. PLC CONNECTION .. 55

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 14

2. AUTOMATIC CONTROL DESIGN ... 57

2.1. SIMULATION .. 58

2.1.1. Controller PS4-201-MM1 and SUCOSOFT ... 58

2.1.2. Four levels elevator application .. 67

2.1.3. Grafcet for simulation ... 72

2.2. GRAFCET FOR TEN LEVELS´ ELEVATOR .. 75

2.2.1. Inputs and outputs identification .. 75

2.2.2. Main grafcet .. 79

2.2.3. M1 – Level control ... 84

2.2.4. M2 – Button control .. 84

2.2.5. M3 - Door control .. 85

3. CALCULATIONS .. 88

3.1. COUNTERWEIGHT ... 88

3.2. MOTOR POWER ... 89

3.3. CONDUCTORS SECTION AND ELECTRICAL DEVICES DIMENSIONING 90

4. MAINTENANCE AND SECURITY ... 97

4.1. MAINTENANCE .. 97

4.1.1. Preventive maintenance ... 97

4.1.2. Corrective maintenance .. 98

4.2. SECURITY ... 98

5. PLOTS AND GRAFCETS ... 100

5.1. PLOTS ... 100

5.2. GRAFCETS .. 100

6. CONCLUSION ... 102

6.1. IMPROVEMENTS .. 102

6.2. ACHIEVEMENTS ... 104

7. ANNEXES ... 106

7.1. ANNEX I: PROGRAM FOR SIMULATION WRITTEN IN INSTRUCTION LIST (IL) WITH

SUCOSOFT. .. 106

7.2. ANNEX II: KLOCKNER MOELLER PS4-201-MM1 INSTALLATION 107

8. BIBLIOGRAPHY ... 108

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 15

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 16

PROJECT DESCRIPTION

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 17

1. PROJECT DESCRIPTION

1.1. BRIEF HISTORY OF LIFTS

The first reference of the use of lifts is the work of the roman architect Vitruvio,

who said that Arquimedes built the firs elevator in 236 B.C. In medieval times, the lifts

worked with the help of animals or manually to transport persons or materials

between different levels. In its easiest way, it was built with a wooden box hanging

from a wire.

But lifts as they are known nowadays are dated from the XIX century.

In 1823, in London, Burton and Hormer built what they called “ascending

room”, which could elevate 20 persons at a height of 37 meters.

In 1853, Elisha Graves Otis invented

the first emergency brake for lifts, which was

actuated in case that the cable got broken, or

the lift reached a high speed. The security

device designed by Otis is very similar to one

of the devices that are used nowadays.

In 1857, March 23, Otis installed his

first elevator in New York through his

company “OTIS”.

In 1880, the German inventor Werner

von Siemens introduced the electrical motor in elevators.

In 1957, August 30, the first automatic system for doors was installed, what

finished with the process of opening and closing doors manually.

In 1996, the company KONE built the first viable lift without machine room.

In 2003, ThyssenKrupp Elevators presented the “Twin” elevator: two cars in the

same hole.

The World Trade Center, in New York (EE.UU), with its two towers of 110 levels,

has 244 elevators with a capacity up to 4536 Kg and speed up to 488m/min.

Figure 1. Elisha Otis's Elevator Patent Drawing,

01/15/1861

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 18

1.2. OBJECTIVES OF THE PROJECT

The main goal of the project is to design an automatic control for an elevator

system with 10 levels for a maximum of 6 persons (450Kg).

In order to demonstrate the functionally of the algorithm designed, a

simulation has been made with the PLC PS4-201-MM1 for an elevator with 4 levels,

principally due to the limitation of inputs and outputs of the PLC.

For the simulation, the goal is to design the GRAFCET and the program for this

PLC using “Sucosoft”, whereas that for the case with 10 levels the goal is to design the

GRAFCET for the automatic control, taking into account everything related to security

devices.

A second objective is to design the electrical installation for the elevator, which

involves the connection between the power supply, the motor and the PLC, the

connection of the different devices to the inputs and outputs of the PLC, and the

installation of light and power plugs. The design of electrical protection for motor and

persons is also included.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 19

1.3. MARKET ORIENTATION

The current lifts can be divided in two big categories: lifts with machine room,

and lifts without it. The last category has great advantages as far as space concerns,

letting the lift, for instance, have access in the roof at the last floor of a building.

A second division can be made according to the type of energy used to move

the car. Thus, the car can be moved by electricity or by a piston moved by a liquid. The

first group are called electromechanical elevators and consist in an electrical motor

that moves the car and its counterweight, whilst the second group are called hydraulic

elevators and consist, as it was said at the beginning, in a piston moved by a liquid,

generally oil, to make a platform go up and down.

According to the speed of the car, three types of lifts can be found: one speed

elevators, two speeds elevators or variable speed elevators.

The classification can be easily observed in the following diagram:

ELEVATOR FOR PERSONS OR MATERIALS

WITH MACHINE ROOM WITHOUT MACHINE ROOM

HYDRAULIC ELECTROMECHANIC

ONE SPEED

TWO SPEEDS

ONE SPEED

TWO SPEEDS

VARIABLE SPEED

ELECTROMECHANIC

Figure 2. Elevators classification

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 20

1.3.1. One speed elevators

Elevators with one speed are the most numerous type of lifts installed

nowadays, since they were the only type of elevators that were produced and installed

until 1990´s.

Its operation is very simple. The car goes to a given floor at a constant speed,

and it stops as soon as it arrives.

This type of elevators is not produced or installed nowadays for persons,

principally due to the abrupt start and stop. Another reason is the low speed of the car

in this configuration.

1.3.2. Two speed elevators

Two speed elevators are the most current marketed elevators.

In this configuration, the car moves at a constant speed, but a few seconds

before the target floor is reached, the car changes to a lower speed until it stops,

resulting in a most comfortable trip between levels, as well as a chance to increase the

speed of the car.

1.3.3. Variable speed elevators

The variable speed elevators are mainly used in high quality installations, due

to a great number of users per hour.

In this type of lifts, the speed is varied by

modifying either the frequency or the voltage of the

electrical power supply for the motor, with the aim of

causing soft and progressive accelerations and

decelerations. Thus, the users practically cannot detect

abrupt movements and a higher speed of the car is

allowed.

Figure 3. Siemens frequency

variators for phase motors

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 21

The current project is based on the configuration with machine room and two

speeds. The main reason to choose this configuration is the market. While the one

speed elevator is not used anymore and the variable speed elevator is more complex,

expensive and for specific applications, the two speeds elevator can be used in most of

the residential buildings or reforms, which are the most extended markets nowadays.

The two speeds motor also represents an energy saving with respect to the one

speed elevator by reducing the friction at the stop and the energy peaks at the start.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 22

1.4. DESCRIPTION OF THE INSTALLATION

1.4.1. Main structure

In an elevator with machine room, the main structure is composed of five

different parts:

� Hole: is the space of the building provided to the movement of the car,

it contains also the counterweight, the guides, limit switches, sensors,

doors and traction cables.

� Machine room: this room is at the top of the installation and inside it

are located the motor, the tractor group, the protections and all

elements of automatic and manual controllers

� Car: is the platform where the users get into to go up and down trough

different levels. It must be a closed structure, provided with automatic

doors to allow the users get into the car.

� Counterweight: in the case of an electromechanical elevator, as a

general rule, a counterweight is installed in the opposite side of the

traction cable in order to compensate the charge of the car and the

persons inside, thus, the necessary power of the motor is considerably

reduced

� Pit: is located at the bottom of the installation. There can be found the

security dampers and other security devices

All this parts are shown in the next figure:

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 23

Figure 4. Main structure

 In the next figure, a more detailed diagram of the components is shown. All

necessary components for electrical installation and automation of the elevator are

described in the next section.

MACHINE ROOM

CAR

PIT

COUNTERWEIGHT

HOLE

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 24

Figure 5. Components

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 25

1.4.2. Traction group

 The traction group is located in the machine room and

it is composed of the following parts:

Figure 7. Motor distribution

The pulley is the part integral with the motor rotor, and from it the traction

cables hang to make the car go up and down depending on the direction of rotation of

the rotor.

The brake is actuated through the controller or when the power supply is off.

 The motor that has been chosen for the current project is an electrical

asynchronous pole-changing gearless motor with two speeds (2-4 poles). The power of

the motor is 3 kW, the main characteristics of the motor for both speeds are shown in

the next table, and the justification of the power chosen can be found at the

“calculations” section.

POWER
CV | kW

SPEED
(rpm)

In
400V

(A)

Cn
(Nm)

cos ϕ

η
(%)

6-4|4-3 2850-1420 9-8 22,4-19,6 0,82-0,85 78-79

Figure 6. Tractor group

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 26

 It must be taken into account that the motor data above are only indicative and

can change depending on the manufacturer.

1.4.3. Protection box

Inside the protection box are located all the electrical protection devices like

the main miniature circuit breaker (MCB) to protect all the installation, the residual

current circuit breakers (RCCB´s) to protect against indirect contacts and the MCB´s to

protect against overloads and short-circuits, which will be explained later.

For this purpose, the protection box contains:

� 1 main MCB 25A/4p which must have a mechanical interlock to avoid

the breaker close accidentally during repairs

� 1 RCCB 25A/4p/30mA to protect the motor against indirect contacts and

4 RCCB´s 25A/2p/30mA to protect the different circuits of the

installation

� 1 MCB 10A/4p, 1 MCB 16A/2p and 3 MCB´s 10A/2p to protect the

different five circuits of the installation

The distribution of each device for the different circuits can be found in plot

number 5.

1.4.4. Control Panel

The control panel is the “brain” of the installation. Inside this panel are located

the power source, the PLC, the relays and the contactors to manage the motor and the

rest of the installation. The panel must be a closed receptacle and it must be accessible

only by authorized and qualified persons.

The protection box and the control panel must be in different receptacles and

separate each other a minimum distance of 50 cm.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 27

1.4.5. External and internal doors

The external doors are located in the hole of the elevator, one per level, and

the internal doors are located in the car.

The configuration that has been selected is telescopic doors with right-left

opening and an automatic control to open and close the doors. The automatic control

is located above the car door, and the external doors are opened or closed through the

control of the internal door due to the elongation of the moving part of the door

actuator. The external doors are equipped with a mechanism that allows the opening

only if the car is aligned with the level of the external door and stopped.

This configuration has several advantages, since the external door cannot be

opened when the car is not in the level, so it can be more secure to avoid persons fall

down in the elevator´s hole.

 Figure 8. Telescopic external doors Figure 9. Door actuator

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 28

1.4.6. Security

The elevator has two kinds of securities. On one hand it has the mechanical

securities, which are explained in this section, and on the other hand it has all the

electrical and electronic security devices, controlled by the PLC, which will be

explained later.

As mechanical securities, the elevator has two important components:

 SPEED LIMITER:

 The speed limiter consists of two pulleys, one mounted in the machine room

and the other aligned vertically to the first in the pit. Through them passes a steel

cable, whose ends are fixed, one of them to the chassis of the car, and the other to a

lever system. Thus, the wire joins the car in its travel, by rotating the pulleys according

to the car speed.

 The upper pulley speed limiter, if it exceeds a set speed, it actuates and

produces a sudden stoppage of the cable that actuates the lever system of the car.

 This system frees wedges or rolls that are in a box along the guides. When this

happens, the guidelines are “bitten” by wedges and the stop of the car is produced.

 For the current installation, the car rated speed is 1 m/s.

Figure 10. Speed limiter

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 29

 SHOCK ABSORBER:

 Elevators must be provided with shock absorbers to stop the car or the

counterweight in case of speed limiter failure. These shock absorbers must be installed

in the pit.

 According to the rule EN-81-1, there are three types of shock absorbers:

a) Energy storage shock absorbers: they can be used only for lifts with a

maximum rated speed of 1 m/s.

b) Energy storage shock absorbers with back movement absorption: for lifts with

a rated speed above 1.6 m/s.

c) Energy dissipation shock absorbers: for lifts with any speed.

For the current installation, the rated speed of the car is 1 m/s, so the types a) and

c) can be chosen for this purpose. But the type c) uses oil inside to dissipate the

energy, what means a higher maintenance as well as a danger for the environment, so

the best option for this case is the energy storage shock absorber.

Figure 11. Shock absorber for elevators

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 30

1.5. DESCRIPTION OF THE COMPONENTS

In this chapter, every component of the installation is detailed in order to

understand the function of each one in the elevator.

1.5.1. Electrical protection devices

POWER CONTROL SWITCH:

 The power control switch is the main breaker of the installation. It is installed at

the beginning of the installation, in the protection box. It is basically a MCB, with some

particularities, and has several functions:

- It works as a breaker in case that an overload or short-circuit is not detected for

the rest of the MCB´s in the installation, maybe because a device failure or for

such a big short-circuit that it cannot be broken for the other devices. It also

must have protection against residual current, but with time delayed tripping,

in order to have selectivity in case of a RCCB failure. The circuit break must be

in all poles.

- But the main function of this device is as a general switch for the installation. It

must have a manual actuator to cut the power for all the installation manually

and it must also have a mechanical locking to prevent an accidental connection

of the power, while the installation is being repaired or tested.

Figure 12. Main circuit breaker

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

PROTECTION AGAINST OVERL

For the protection against overload and short

miniature circuit breaker (MCB). It breaks the circuit in case that a current a little bit

higher than the rated current flows through the wire for a long time (overload), or a

much more higher current than the rated for that circuit flows through the wire for a

short time (short-circuit).

The category of protection is AC3 (curve C). This means that they are made to

work with inductive charges and are suitable for home use.

 Figure 14. MCB

In order to protect the wires against

installed in each phase of the circuits.

that melts when too much current flows, which interrupts the

connected. Thus, it is installed one fuse for each of the three phases of the motor

circuit, and one fuse for each of the remaining circuits.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

FINAL PROJECT DEGREE

Samuel Noval Sánchez

OVERLOAD AND SHORT-CIRCUIT:

e protection against overload and short-circuits, the device used is a

miniature circuit breaker (MCB). It breaks the circuit in case that a current a little bit

higher than the rated current flows through the wire for a long time (overload), or a

e higher current than the rated for that circuit flows through the wire for a

he category of protection is AC3 (curve C). This means that they are made to

work with inductive charges and are suitable for home use.

 Figure 13. MCB- Curves

. MCB

In order to protect the wires against overloads and short-circuit, fuses are

installed in each phase of the circuits. Its essential component is a metal wire or strip

that melts when too much current flows, which interrupts the circuit

Thus, it is installed one fuse for each of the three phases of the motor

circuit, and one fuse for each of the remaining circuits.

31

circuits, the device used is a

miniature circuit breaker (MCB). It breaks the circuit in case that a current a little bit

higher than the rated current flows through the wire for a long time (overload), or a

e higher current than the rated for that circuit flows through the wire for a

he category of protection is AC3 (curve C). This means that they are made to

circuit, fuses are

Its essential component is a metal wire or strip

circuit in which it is

Thus, it is installed one fuse for each of the three phases of the motor

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

PROTECTION AGAINST INDIRECT CONTACTS:

To protect the installation against indirect contacts,

Residential-Current Circuit Breaker (RCCB).

disconnects a circuit whenever it detects that the

between the energized conductor and the return

imbalance may indicate current leakage through the body of a person who is grounded

and accidentally touching the energized part of the circuit. A lethal

from these conditions. RCCBs are designed to disconnect quickly enough to prevent

injury caused by such s

against overcurrent (overload) or

They must be provided with a tester button to check their operation.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

FINAL PROJECT DEGREE

Samuel Noval Sánchez

 Figure 15. Fuse and fuse curve

PROTECTION AGAINST INDIRECT CONTACTS:

To protect the installation against indirect contacts, the device installed is

Current Circuit Breaker (RCCB). It is an electrical wiring

disconnects a circuit whenever it detects that the electric current

tween the energized conductor and the return neutral conductor. Such an

imbalance may indicate current leakage through the body of a person who is grounded

ly touching the energized part of the circuit. A lethal

from these conditions. RCCBs are designed to disconnect quickly enough to prevent

injury caused by such shocks. They are not intended to provide protection

(overload) or short-circuit conditions.

They must be provided with a tester button to check their operation.

Figure 16. RCCB

32

the device installed is

electrical wiring device that

 is not balanced

conductor. Such an

imbalance may indicate current leakage through the body of a person who is grounded

shock can result

from these conditions. RCCBs are designed to disconnect quickly enough to prevent

hocks. They are not intended to provide protection

They must be provided with a tester button to check their operation.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 33

OVERLOAD RELAY:

Overload relays are the most commonly used devices used to protect motors

against weak and prolonged overloads. This protection ensures:

- Optimize durability of the engine, preventing it from operating in abnormal

heating conditions

- Continuous operation of machines or installations to avoid unplanned

shutdowns

- Restarting after a shot more quickly and the best possible safety conditions for

persons and installation.

-

Figure 17. Overload relay

All devices detailed in this section are installed inside the protection box, in DIN

rail, properly grounded for protection and the characteristics of each one as well as

their distribution on each circuit can be found in the PLOTS section in “PLOT NUM: 5 -

PROTECTIONS ”. The dimensioning of this installation is justified in the section

CALCULATIONS.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 34

1.5.2. Conductors

All the conductors used in the installation must be made by copper and must

also be able to withstand a voltage isolation of 0,6 / 1000 V.

The minimum section for the conductors of each circuit is indicated in PLOT

NUM: 5 and it is justified in CALCULATIONS.

Each type of conductor must have a different color:

- Grounding conductors: green and yellow

- Phase conductors: black, grey and brown

- Neutral conductor: blue

- Control conductors: red

1.5.3. Lights

Several kinds of lights are installed on the elevator; they will be detailed

depending on the kind of light. Thereby, we will find four different types of lights:

FLUORESCENT TUBE OR INCANDESCENT LAMP:

Incandescent lamps with a power of 60W/230V or fluorescent tubes with a

power of 11W/230V will be installed as follows:

- One in the machine room

- One above the door in each level

- One in the pit

- One under the car

The distribution of each light can be found in PLOT NUM: 6.

The switch for these lights will be installed in the machine room. The aim of these

lamps is to light all parts of the elevator in case of reparation or maintenance.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 35

CAR LIGHT:

For the car light, a LED panel has been chosen, due principally to energy savings

reasons. As it can be seen in Figure 18, energy savings is substantial compared to other

types of light.

Figure 18. Light comparison

 The car light is controlled by the PLC and it is turned off whenever the elevator

is not used for a time, meaning a higher energy saving.

Figure 19. LED spots ceiling for elevators

 The type of LED chosen is spot 230V / 7W / AC.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 36

INDICATOR LIGHTS:

The elevator has many lights to indicate different states in order to give some

information to the users. All this lights are LED 24V/DC and are controlled by the PLC.

The color and connection to PLC´s outputs of each light are detailed in PLOT NUM: 3.

Thus, the users will find the next indicator lights:

- External Button: Every time that one of the buttons (external or internal) is

pushed, all the external buttons on every floor are lighted to indicate to other

users that the lift is being used in that moment. Once the lift is free again, the

lights are turned off.

- Up and down indicator: a LED light informs the user if the lift is moving up or

down.

- Weight alarm: if the maximum weight is exceeded, a light and an alarm are

turned on to indicate the problem to the user.

- Security fail: another alarm is turned on if any security fail occurs.

EMERGENGENCY LIGHTS:

The emergency lights are turned on after a power failure. They are provided

with a battery that is charged while the power supply is correct, and actuates when a

power failure exists. They must have a little light to indicate if the battery works

correctly.

They will be installed like follows:

- One in the machine room

- One above the door in each level

- One in the pit

- One inside the car

The characteristics of emergency lights are 230V/8W.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 37

1.5.4. Plugs

 Three plugs are installed, one in the machine room, one in the pit and one on

the car´s roof, as it is shown in PLOT NUM: 6.

The plugs type is called “SCHUKO”. It is the colloquial

name for a system of AC power plugs and sockets that is

defined as "CEE 7/4". A Schuko plug features two round pins of

4.8 mm diameter (19 mm long, centers 19 mm apart) for the

live and neutral contacts, plus two flat contact areas on the top

and bottom side of the plug for protective earth (ground), as it

is shown in Figure 20. The maximum carried by this plugs is

16A/230V.

1.5.5. Protective earth

The protective earth is a protection system against direct contacts. It limits the

contact tension in a value (50V in this installation) that cannot cause important injures

to a person who touches a metallic part that is accidentally in tension, due for example

to an isolation failure.

For this purpose, all electrical elements and metallic parts of the installation are

connected to the protective earth (ground) of the building where the elevator is

installed.

1.5.6. Buttons

Three different types of buttons can be found in the elevator:

PUSH BUTTONS MANUAL CONTROL:

 For manual control, NO (normally opened) buttons

(230V A.C.) are used to control the motor while repairs or

maintenance, as will be explained later.

 Figure 21. Button manual control

 Figure 20. Schuko plug

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 38

EXTERNAL BUTTONS

One external button NO (normally opened) per level is installed to

request the lift at each level. This buttons are provided with a LED light to

indicate the users when the lift is being used, as it was explained in previous

sections. The external buttons work with 24V/D.C., as they are PLC inputs.

INTERNAL KEYPAD

The internal keypad is installed inside the car and allows the users to choose

the destination floor. They also are NO contacts 24V/D.C., PLC inputs.

 Besides the number for level indicator, they must have Braille writing,

according to the rule EN81-70, in order to let blind persons use the elevator.

 Figure 23. Internal keypad Figure 24. Braille writing on buttons

The internal keypad must also have an alarm button and a door opening

button, as is explained later.

Figure 22.

External button

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 39

1.5.7. Contactors

A contactor is an electrically controlled switch used for switching a power

circuit, similar to a relay except with higher current ratings. A contactor is controlled by

a circuit which has a much lower power level than the switched circuit. The control

circuit is based on NO and NC switches.

The contactors chosen for this project are provided with several switches NO

and NC, but more modules with switches can be added if needed.

Another important feature of these contactors is the possibility to work with

either A.C. or D.C. In fact, they have a special input to connect both controls: the

manual control, which has a tension of 230V A.C., and the automatic control, which is

directly connected with a PLC output at 24V D.C. as it is shown in Figure 25.

The contactors are installed inside the control panel on DIN rail.

Depending on the contactor activated, the rotor can rotate in one direction or

another with two different speeds, to make the car goes up or down, fast or slow, as it

is explained later.

Figure 25. Contactor-PLC connection

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 40

1.5.8. Power supply

A power supply is installed before the PLC inputs in order to supply the PLC,

including all the switches and sensors.

Its function is to convert the input current (230V A.C.) into 24V direct current

suitable for the control circuit.

It consists basically in an electrical transformer and an inverter, and is the first

device installed in the control panel, on DIN rail. A typical circuit of a power supply is

shown in Figure 26.

Figure 26. Power supply circuit

Figure 27. Power supply DIN rail

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 41

1.5.9. PLC

A programmable logic controller (PLC) or programmable controller is a digital

computer used for automation of electromechanical processes, such as control of

machinery on factory assembly lines, amusement rides, or light fixtures. PLCs are used

in many industries and machines. Unlike general-purpose computers, the PLC is

designed for multiple inputs and output arrangements, extended temperature ranges,

immunity to electrical noise, and resistance to vibration and impact. Programs to

control machine operation are typically stored in battery-backed-up or non-volatile

memory. A PLC is an example of a hard real time system since output results must be

produced in response to input conditions within a limited time, otherwise unintended

operation will result.

For the case of ten levels, the PLC model has not been selected, inasmuch as

the program for the control has not been designed, whereas that for the simulation,

the PLC chosen has been the Klockner Moeller´s PLC, model PS4-201-MM1, which is

programmed with SUCOSOFT.

Figure 28. PS4-201-MM1

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 42

1.5.10. Door control

As it was said before, the door operator is the

mechanism through which the elevator and floor

doors are driven to both the opening and closing

movements. This mechanism is located at the top of

the car and consists of an electric one phase motor,

independent of the principal motor, that moves

several gears and belts to open and close both

external and car doors.

This mechanism has two limit switches, one on

each limit of the door travel, in order to detect when

doors are either opened or closed.

The door operator is controlled by the PLC, as it will be explained later.

1.5.11. Positioning system

It is called positioning system the mechanism that the lift uses to detect in what

position inside the hole the lift is in every moment.

 Until a few years ago, most of elevators used mechanic switches to detect the

car position. A mechanic “finger” in the car activates the switches installed on each

level.

 There is a new system, not too extended nowadays, for medium-high quality

elevators, consisting of opposing photocells. During the car travel, photocells go

through a holey metallic sheet that cuts or lets the infrared beam pass alternatively.

Depending on the codification, the control calculates the car position.

 A new trend in positioning systems for elevators is to use magnetic sensors to

detect the position of the car. Magnets are installed on fixed parts in the hole, and the

sensors are activated or deactivated whenever they pass in front of the magnets.

Thereby, the automatic control calculates the position of the car.

 Figure 29. Door control

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 43

 The advantages of this system are numerous:

- Magnetic sensors are simple and reliable

- The magnets do not need electrical supply

- They offer free potential outputs, so it is not necessary a special circuit to fit

the signal

- During installation or maintenance, the magnets are easily removable, as they

do not need mechanical fasteners.

In the current project, this system is integrated both for controlling speed and

positioning.

Magnetic sensors located in the car “read” the

position depending on the magnets founded during the

movement.

There will be a magnet on every level that, with the car at the same level that the

floor, will match exactly with sensors position, as it is shown in Figure 31. The magnet

must have a length of 150 mm, and this length must be exactly the same that the

separation between both level sensors. Two level sensors are installed as a security

device, to detect the car level more precisely.

The distance between magnets and sensors depend on the manufacturer and must

be set properly during the installation.

Figure 31. Magnetic sensors installation

Figure 30. Magnetic sensor

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 44

Another magnet of about 50 mm long will be installed at approximately 700

mm over the level magnet, and another one, at the same distance, but under the level

magnet. The function of these magnets, with their respective sensors, is to set the low

speed in both movements, up and down.

The distance between the stop sensors (level sensors) and the up and down

sensors must be set according to the motor speed, the brake, and the car length, trying

to get a low speed during a balanced time between comfort and speed.

In next figures, it is shown the installation of the magnets depending on the

level. The activators for limit switches are security devices that will be explained later.

FIRST FLOOR:

1. Down pulse magnet

2. First floor stop magnet

3. Limit switch activator (bottom)

Figure 32. First floor magnets installation

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 45

INTERMEDIATE FLOORS:

1. Down pulse magnet

2. Level stop intermediate floors

3. Up pulse magnet

Figure 33. Magnet installation

intermediate floors

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 46

LAST FLOOR:

1. Up pulse magnet

2. Stop last level magnet

3. Limit switch activator (top)

Figure 34. Magnet installation

last floor

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 47

1.5.12. Emergency battery

An emergency battery is an electrical device that supplies the installation in

case of a power supply failure. It keeps on charging while the power supply is correct,

and provides the installation with electrical current when the power supply is very low

or even does not exists.

This battery will be installed only in case that the building does not have a

generator group. In this case, the battery will be connected in parallel with the

installation circuits, to provide energy to both the motor and the controller. It must

work in such a long time that allows the security control to actuate during a power

failure (down correction).

This device must be provided with a NC contact that informs the controller

when the battery is supplying the installation.

The emergency battery must have a 400V input and two outputs 230/400V,

with a minimal power of 10 kW / 12kVA.

A detailed document with all the characteristics of the battery can be found in

section “ANNEXES”, although the characteristics may change depending on the

manufacturer chosen.

Figure 35. Emergency battery

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 48

1.5.13. Security

One of the most important points of the current project is everything related to

security terms, due to the fact that the elevator is intended to be used by persons. To

this end, all European rules in security terms related to elevators have been taken into

account. For that, several devices will be installed to prevent possible injuries to the

users.

Logic adopted for the implementation of the security system has been negative

logic, i.e. all security devices are NC (normally closed) switches, in order to avoid a false

security failure in case of malfunction of some sensors or power supply failure.

The following devices will be installed for security:

EMERGENCY STOP BUTTONS:

Four emergency stop buttons will be installed. Three

of them will be 230V A.C. switches, installed in the manual

control panel, one in machine room, one in car´s roof and

one in the pit, to stop the car in case of emergency during

repairs or maintenance.

The fourth button will be installed in the machine

room, next to the control panel, to stop the automatic

control. It must be pressed before every maintenance or

repair operations, or in case of emergency. This device must

work at 24V D.C. insomuch as it is a PLC input.

SPEED LIMIT:

The speed limit is a NC contact 24V D.C. associate to

the speed limit pulley installed on the elevator. Its function is

to inform the automatic control in case the speed limit is

activated.

 Figure 36. Emergency stop

button

Figure 37. Speed limit

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 49

WIRE SENSOR:

The wire sensor is a device installed along all the traction

cable of the car. Its function is to inform the controller in case of

a low strain in the cable. The strain can be set in different values

and the device´s voltage is 24V D.C.

WEIGHT METER:

In order to avoid an overload in the motor, the weight of the charge inside the

car is measured by an electronic device before it moves. If the charge is higher than a

rated value, the device informs the controller about the failure. For the current

elevator, the maximum weight is 450 kg (6 persons).

This device is installed under the car´s floor, and it works at a voltage of 24V

D.C.

Figure 39. Weight meter

ENERGY SENSOR:

As it was said in the emergency battery section, the battery is provided with a

contact to inform the controller when the installation is being supplied by the battery.

This device also works at 24V D.C.

Figure 38. Wire

sensor

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 50

LIMIT SWITCHES:

Two limit switches will be installed as security devices: one at the top of the

car´s way and another one at the bottom. The function of this limit switches is to stop

the motor in case the elevator reaches the limit of the way or a malfunction of the stop

sensors.

There are two possibilities to stop the motor. The first one, and the most

common is connecting the switches directly to the motor circuit, so when one of the

switches is activated, the power supply of the motor is cut. The second one is to stop

the motor through the controller. Although the first one is the best option, the second

one has been chosen for the current project, principally due to the interest of

implement an automatic control that involves all the security devices.

 When the car is placed at floor level in extreme floors, the exact place of the

switches must be calibrated in case the car reaches a distance of 5 or 6 cm of its way.

Figure 40. Limit switches

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 51

1.6. MOTOR CONNECTION

The goal of this section is to make a detailed explanation of the connection

between the motor and the rest of the electrical devices.

The diagram of the connection is presented in “PLOT NUM.: 1 –

POWERMOTOR”.

The motor chosen for the elevator is a three phase “Dahlander” motor. It works

in the same way that other three phase squirrel cage motors, except that in its

windings it has intermediate connections to change the number of active poles,

depending on the way it is connected. By changing the number of active poles, the

motor speed will change. Logically, having two ways of connection, two different

speeds are obtained, one slow and one fast. On its terminal box, there are 9

connections, corresponding to intermediate terminals, instead of 6 like in the rest of

motors.

In this kind of motors is essential the use of two thermal protections, one per

each speed, due to the difference of power for each one.

These motors have the particularity that their windings can be linked in three

different ways: constant torque, variable torque, constant power. For the current

installation the connection is for constant power, as it is needed the same power to

move the car in both speeds.

The connection of motor terminals for a constant power in both speeds is as

follows:

 V2

 U1 W1

 U2 V1 W2

 SLOW SPEED: U1, V1, W1 � to power supply; U2, V2, W2 � joined

 FAST SPEED: U2, V2, W2 � to power supply; U1, V1, W1 � opened

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 52

 The electrical characteristics of the necessary devices of control and protection

for this configuration will be as follows:

- Contactor K1 for slow speed down (SSD) connection. It will be for a rated

current equal or higher than the motor current in triangle connection, and AC3

category.

- Contactor K2 for slow speed up (SSU) connection. It will be for a rated current

equal or higher than the motor current in triangle connection, and AC3

category. To invert the rotor direction, two phases are inverted.

- Contactor K3 for fast speed down (FSD) connection. It will be for a rated

current equal or higher than the motor current in double star connection, and

AC3 category.

- Contactor K4 for fast speed up (FSU) connection. It will be for a rated current

equal or higher than the motor current in double star connection, and AC3

category. To invert the rotor direction, two phases are inverted.

- Contactor K5 for star connection in fast speed. For fast speed, the motor start is

made by a triangle-star connection to reduce the current intensity during the

start. It will be for a rated current equal or higher than the motor current in

double star connection, and AC3 category.

- Fuses F1 and F2 to protect the circuit against short-circuits. They will be aM

type (special fuse type for electrical motors) and equal current than the motor

current for each speed.

- Thermal relays Q1 and Q2 to protect the motor against overloads. Their current

must be the same than the motor current for each speed.

The contactors are activated or deactivated by both manual and automatic control,

as it is detailed in next sections, making the elevator go up and down in fast or slow

speed.

NOTE: It is mandatory for the installer to check out the fast, slow, up and down movements of the

motor before connecting it to the elevator, in order to be sure of each connection.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 53

1.7. MANUAL CONTROL

Two manual controls are installed, one in the machine room and the other one

on car´s roof, to manually control the elevator during repairs or maintenance.

The manual control diagram is presented in “PLOT NUM.: 2 – MANUAL

CONTROL”, and it is explained in this section.

Basically, it is composed of several NC and NO contacts and buttons to activate

or deactivate the contactors that manage the motor.

Between the two contactors of each investor K1-K2 and K3-K4, interlocks have

been installed: one with auxiliary contacts of the contactors themselves (K1, K2, K3 and

K4, 21-22) and the other one with button´s auxiliary contacts (S1, S2, S3 and S4, 21-22).

These contacts could be replaced by mechanical interlocks between each pair of

contactors: K1-K2 and K3-K4, avoiding in this case the use of triple contacts switches

for shifting S3 and S4. There are also interlocking between contactors used for low

speed K3 and K4, and the remaining K3, K4 and K5, used for high speed, from the

auxiliary contacts of the contactors (K1, K2, K3 and K4, 31-32) and (K5, 21-22).

In order to make it easy to understand, here it is only explained one of the

controls (machine room). To make the other control (car´s roof), other buttons are

simply added in parallel with this circuit. Thus, we can find (S1, S2, S3 and S4, 13-14)

for machine room control and (S5, S8, S9 and S10, 13-14) for car´s roof control.

One fuse F5 protects the circuit against short-circuits. In case a motor overload,

the circuit is opened by NC contacts associate to thermal relays Q1 and Q2.

Three emergency stop buttons are installed to stop the elevator when required.

One of them is installed in the room machine, other in car´s roof and the third one in

the pit.

The following describes the circuit operation in each of the four movements:

a) Start and stop slow speed down (SSD):

- Start by pushing S1 (13-14 and 23-24).

- Contactor K1 closing and motor start in low speed and down direction, triangle

connection.

- Interlocked by (K1, 13-14).

- Stop by pushing S0, S6 or S7 (21-22).

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 54

b) Start and stop slow speed up (SSU):

- Start by pushing S2

- Contactor K2 closing and motor starts in low speed and up direction, triangle

connection.

- Interlocked by (K2, 13-14).

- Stop by pushing S0, S6 or S7 (21-22).

c) Start and stop fast speed down (FSD):

- Start by pushing S3 (13-14 and 23-24).

- Contactor K5 closing. It forms the star connection of the motor by short-

circuiting U1, V1 and W1.

- Contactor K3 closing by (K5, 23-24), connecting the motor in fast speed mode,

down direction and double star connection.

- Interlocked by (K3 and K5, 13-14).

- Stop by pushing S0, S6 or S7 (21-22).

d) Start and stop fast speed up (FSU):

- Start by pushing S4 (13-14 and 23-24).

- Contactor K5 closing. It forms the star connection of the motor by short-

circuiting U1, V1 and W1.

- Contactor K4 closing by (K5, 23-24), connecting the motor in fast speed mode,

down direction and double star connection.

- Interlocked by (K4 and K5, 13-14).

- Stop by pushing S0, S6 or S7 (21-22).

NOTE: It is mandatory for the installer to check out the fast, slow, up and down movements of the

motor before connecting it to the elevator, in order to be sure of each connection.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 55

1.8. PLC CONNECTION

The goal of this section is to explain how the inputs and outputs connection is

made, as in the diagram presented “PLOT NUM.: 3 – PLC CONNECTION”, it is made to

summarize all the connection, as it is explained now.

The PLC and all buttons, sensors, contactors, etc. connected to its inputs and

outputs work with 24V D.C.

A generic connection has been made, representing the PLC like a box with

inputs and outputs, but must be taken into account the fact that once the PLC is

chosen, inputs and outputs must be selected according to the PLC selected, adding as

many modules as need.

Thus, in the diagram, to make the comprehension easier, for external buttons is

represented only one input, although ten inputs are needed (from P0 to P9), one per

level. The same representation is made for the internal keypad (from A0 to A9) and the

sensors (L0-L9, U0-U9 and D0-D9), while for the other inputs and outputs it is used

only one slot, like it is represented on the diagram.

To actuate the motor in fast speed it must be taken into account that, as it was

explained for the manual control, the connection must be double star, so contactor K5

must be actuated every time that K3 or K4 are actuated. For that, a parallel connection

must be made between contactors K3 and K4 with K5, although K5 is not represented

in the diagram, as far as it is not a controller output.

Several indicators are also installed. When the lift is been used, an external

button light is turned on to indicate the other users that the lift is busy and it won´t be

ready until the light is off. In each floor a light indicator is installed to inform whether

the lift is moving up or down. Inside the car two light and sound alarms are installed to

inform the users if the maximum weight has been reached or a security failure has

occurred.

Button lights and up and down lights can be installed in series connection for all

levels. All input and output devices will be explained in next sections.

Once all the electrical components, connections and main installations have

been explained, in next section is detailed the automatic control design, the main point

of this project.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 56

AUTOMATIC CONTROL DESIGN

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 57

2. AUTOMATIC CONTROL DESIGN

First of all, to understand the whole process, the simulation is described at the

beginning. The algorithm designed is the same for the simulation and the case for ten

levels, so once the simulation has been understood, the automation process for the

elevator with ten levels is based on the simulation model, but adding all related to

security.

 The process is represented by “GRAFCETS”. A GRAFCET or SFC in English

(Sequential Function Chart) is a graphical programming language used for PLCs. It is

one of the five languages defined by IEC 61131-3standard. The SFC standard is defined

in IEC 848, "Preparation of function charts for control systems", and was based on Petri

nets.

It can be used to program processes that can be split into steps.

Main components of SFC are:

� Steps with associated actions

� Transitions with associated logic conditions

� Directed links between steps and transitions

Steps in an SFC diagram can be active or inactive. Actions are only executed for
active steps. A step can be active for one of two motives:

 (1) It is an initial step as specified by the programmer

 (2) It was activated during a scan cycle and not deactivated since

Steps are activated when all steps above it are active and the connecting transition
is superable (i.e. its associated condition is true). When a transition is passed, all steps
above are deactivated at once and after all steps below are activated at once.

Actions associated with steps can be of several types, the most relevant ones being
Continuous (N), Set (S) and Reset (R). Apart from the obvious meaning of Set and
Reset, an N action ensures that its target variable is set to 1 as long as the step is
active. An SFC rule states that if two steps have an N action on the same target, the
variable must never be reset to 0. It is also possible to insert LD (Ladder Diagram)
actions inside an SFC program (and this is the standard way, for instance, to work on
integer variables).

SFC is an inherently parallel language in that multiple control flows (POUs in the
standard's parlance) can be active at once.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 58

2.1. SIMULATION

In order to demonstrate the algorithm designed for the ten levels elevator, a

simulation has been made for an elevator with four levels. In this section all the

simulation process is explained, including the controller, the software used to program

it and all necessary devices for the elevator simulation.

2.1.1. Controller PS4-201-MM1 and SUCOSOFT

SUCO control PS4-201-MM1 is a compact controller, product of Klockner

Moeller.

The controller PS4-201-MM1 (Figure 41) has eight numerical inputs and eight

numerical outputs. This number can be increased if an extension module is linked to

the main module, through the connectors SUCOnet K or SUCOnetK1. The added

module can be linked at a maximum distance of 600m.

Programs to use the controller are inserted with the help of software installed

in a computer, with standard programming language (IL), through the programmable

interface unit.

Figure 41. Controller PS4-201-MM1

1=Ready 3=NReady
2=Run 4=Battery

1 2 3 4

 PRG SUCOnet K
 NET

PS4 - 201 - MM1

 24V 0V G

3 4

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 59

1. Battery

2. Reset button

3. Extension connector

4. Work mode switch selector

 Analogical inputs and outputs have a variation between 0 and 10 volts. The

analogical inputs resolution is 10 bits (1.024 increases), but for analogical outputs is 12

bits (4.096 increases).

 Numerical inputs and outputs are galvanic isolated of the central processing

unit (CPU) and have separate electrical supplies. Each input and output has an state

indication LED.

2.1.1.1. Operation mode

SYSTEM PARAMETERS SET:

The using program contains information about PS4 system configuration in the

source file *.q42. These data are converted by the compiler and transferred to the

controller.

To set system parameters, keys F1 and F3, from the computer´s keyboard, are

pressed, in order, starting from main menu:

F1 � Programming

F3 � System parameters edit

After that, name and directory of file are selected. Name and directory are

required to activate next screen:

F2 � System parameters

Square brackets contain default set values. After introducing all parameters

values, we return by pressing F1. Now set values can be saved. The options that can be

set are presented as follows.

Program check in RUN: the compiler makes several verifications that are saved

in compiled program in the defined directory. If YES=1 is selected, the PS4 operating

system verifies the user program, during the operation of this algorithm. The controller

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 60

is stopped if some differences between verifications are detected. An error is

introduced into corresponding verification diagnostic word. Default value is NO=0.

Start after NOT READY: defines the controller behavior after NOT READY.

Default set is HALT.

The state of the controller can be set with the help of a switch which has three

positions:

0 – Halt (Stop)

1 – Cold start

2 – Warm start

Maximum cycle time in ms: default set is 60ms. The maximum time value can

be 255ms. This setting does not control the user program cycle time, it only defines the

maximum limit to check defects. Shorter cycle time is set only if the programmer

knows the real processing time. In this case, a longer processing time indicates an

error. The selection of the maximum time for cycle depends on the type and length of

the user program. If cycle time is reached, ETC bit is set in diagnostic word DSW and

the controller changes to HALT.

Active marker range: default set is from MB0 to MB4096. This parameter sets

memory length for the markers used in the user program. If the user program uses

markers that were not defined in default settings, the compiler will emit the

corresponding error message.

Retentive marker range: in case of low tension, the previous state of markers

remains in the previous defined state. The previous state is also kept in case of system

reset. This marker length forms a part of the selected active marker length, and does

not overlap with the retained length of cold start.

PROGRAM EDIT FOR PS4-201-MM1 CONTROLLER:

 The user program edition can be considered a specific operation for the

programmable controller, containing a complete description of all control sequences.

 To create a user program, the following function keys are selected, starting

from main menu:

 F1 � Programming

 F2 � Programming IL

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 61

 -Introduce source and reference files names and select directory

 F2 � Edit program file

 For that file *.q42, next screen is obtained, in which the program can be edited

(Figure 41):

Figure 41. Edit program screen

 Including the configuration file is necessary to compile the program, as the

configuration file contains information about the physical structure of the connection

between the controller and local extension modules or other stations. The compiler

can check if addresses and specifications are correct.

 The syntax for this instruction is:

include “config._file_name.k42”

 This instruction must be always the first one in the program.

PROGRAM COMPILATION:

 The program writing must be compiled to obtain an executable program.

 To compile the program, we must go through the following steps:

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 62

- Select F5-Compiler in Programming menu

- Specify source and reference file required through successive windows

displayed.

- By pressing YES or NO, it is specified if configuration files are included or not. If

the answer is YES, a standard drive must be chosen (A, B, C…). If the answer is

NO, the directory for each “include” instruction is selected. NO answer is

favorable just in case “include” files are saved in different drives.

After the corresponding drive has been selected by F1, the compilation starts. If

the compilation is executed without any error, the executable program can be

transferred to the controller. If not, the errors are listed with the name of the block

and line in the program, and must be corrected. An executable program will be

created only if all the errors have been corrected.

 Once the program has been compiled, it only can be decompiled in original

program code. For this reason, next files must be saved:

- .q42 – Source file;

- .z42 – Reference file;

- .k42 – Configuration file;

PROGRAM TRANSFER TO CONTROLLER PS4:

 Once the compiler has converted the program into machine code, this can be

transferred from the computer to the controller.

 Before transferring by pressing the function keys F1, F2 and F6 (transfer

Drive�PLC), starting from main menu, we need to follow next steps:

- Connect the computer to the controller, by using the programming cable ZB 4-

303-KB1;

- Supply the controller with 24V DC, thus indicating the state Ready or Not

Ready;

- The operating mode selector S2 is set in the controller to position 1-HALT.

The end of the transfer is indicated by a transfer verification message. Once the

program transfer is confirmed, it can be executed, from the controller or from the

computer, by Sucosoft.

To launch the program from the controller, the switch must be set in position

Run M-SET or Run, and then, Reset button must be pushed.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 63

2.1.1.2. Logic and transfer instructions to program controller PS4-201-MM1

The controller program is written by a sequence of instructions that describes

the desired operation. It is composed by pre-processor directives and program blocks.

The instruction EP ends the program. In usual mode, the pre-processor directive used

is:

#include “name.k42”, where name is the configuration file number.

The configuration file is made after program edition by selecting F1, F4 (Device

configuration), selecting drive (C, D, E, F) and saving directory. With F2 configuration

can be made and with F4 saved is made.

Each block is numbered by a five digits number, starting from 00000, and can

be commentated by adding simple quotation marks (“), which is not interpreted by the

compiler.

To create a new block, the key F2-Open Block is pressed, from the edit menu.

The instructions inside a block are numbered with a three digits number, starting from

001.

An instruction is composed by one operator and one operand. The operations

described by the operator (logic, arithmetic and transfer operations) are used as the

second working memory operand called accumulator (A). The result of the logic,

arithmetic or transfer operations is saved on this memory A.

Now are described only those instructions that have been used to write the

program for the simulation. The whole program can be found in section “ANNEXES”.

TRANSFER INSTRUCITONS:

� L operand: Load instruction � it loads in work memory (A) the corresponding

operand, which can be:

 Name of the loaded input (L I0.0. to load input I0.0. in A)

 Name of a marker (L M0.0. to load marker M0.0. in A)

 Name of a constant (L KB 1 loads a type byte constant in A)

� LN operand: loads the negative value of the operand in A

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 64

� = operand: transfers the value of the working memory to the corresponding

operand address. The operand can be an output (Q0.0.) or a marker (M0.0.)

LOGICAL INSTRUCTIONS:

� A operand: effectuates AND logic between the accumulator and the

operand, and the result is saved again in the accumulator. Operand can

be input, marker or output.

� AN operand: effectuates AND logic between accumulator and the

negative value of the operand and the result is saved again in the

accumulator. Operand can be input, marker or output.

� O operand: effectuates OR logic between the accumulator and the

operand, and the result is saved again in the accumulator. Operand can

be input, marker or output.

� ON operand: effectuates OR logic between accumulator and the

negative value of the operand and the result is saved again in the

accumulator. Operand can be input, marker or output.

� EM: this instruction marks the end of a program module

� EP: represents the logical and physical end of the program. This

instruction is located after the last step of the main program, producing

a jump to the operating system.

JUMP INSTRUCTIONS:

� JP label: this instruction makes a no-conditioned jump inside the

program to the address indicated in the label

� JC label: makes a conditioned jump, only if the content of the

accumulator is 1. In other case, next instruction is executed.

� JCN label: makes a conditioned jump, only if the content of the

accumulator is 1. In other case, next instruction is executed.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 65

CONDITIONAL RAMIFICATIONS:

� BLT label: makes a jump to the address indicated in the label if the

relation between compared terms by CP is lower (<).

� BGT label: makes a jump to the address indicated in the label if the

relation between compared terms by CP is bigger (>).

� BLE label: makes a jump to the address indicated in the label if the

relation between compared terms by CP is lower or equal (<=).

� BGE label: makes a jump to the address indicated in the label if the

relation between compared terms by CP is bigger or equal (>=).

� BE label: makes a jump to the address indicated in the label if the

relation between compared terms by CP is equal (=).

COMPARISON INSTRUCTIONS:

� CP operand: compares the specified operand with the content of the

work registry and sets the conditional operators BE, BNE, BLT, BGT, BLE

and BGE. These conditional operators are always used together with CP.

Conditional bits are changed immediately after comparison. Operand

can be constant, marker, input or output the type byte or word.

SEQUENTIAL CONTROL BLOCK:

 This function uses GRAFCET representation.

 Sequential control makes possible that different tasks are executed in order, as

is represented in the GRAFCET. All actions provided in sequential control function are

executed step by step. The sequence of one step ensures the activation of next step

only if the previous step has been deactivated. This allows the user to program

complex sequences in simple and clear steps. All the active steps are indicated too,

thus simplifying the error diagnostic.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 66

 The pros of sequential block (SK) are:

- Clear structure in complex sequences

- Coupling steps between stages do not need to be programmed

- Simple characteristic of set and reset steps

- It is possible to modify the functional block SK without problems

- Easy diagnostic of errors trough the program, that indicates active steps

- Fast processing of sequence steps.

The sequential control programming allows a graphical and structured

representing of stages.

The first stage defines the initial position, and contents start and initialization

conditions of the process. One important characteristic is that no more than one step

is active at the same time. The next step is not activated until the next transition is

executed. Only after the transition is executed, the program continues processing next

step.

With type OR ramifications, only one step can be executed of several steps

programmed in parallel (only one feather line). With type AND ramifications, several

parallel steps are executed at the same time (double feather line). AND ramification

can be synchronized, which ensures that the last transition of the AND sequence is not

processed, it´s only to wait for the rest of stages in parallel finish at the same time.

Input SINO specifies what the next stage to be processed is. Before the

sequential step is called for the first time, this input must be initialized with the

number of the next step to be processed. The initialization is accomplished by

subprogram INIT, which remains active as long as RESET=1. The operand INB 0.0

(indicator for first cycle after Reset or after pushing reset button), can be used as

RESET input for sequential control function. Reset input is set to 1 in the first cycle,

after program starts. The program INIT assign to input SINO the first step number.

This initialization ensures that the functional block SK knows the number of the

first step to be processed. The value of the step SINO is changed depending on what

step is going to be executed. A logical sequence of the program can be easily written.

To activate the functional block, SET input must be 1. This activates

simultaneously defined stage input.

The sequential control syntax can be founded in the printed program created

for the simulation, in section “ANNEXES”.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 67

2.1.2. Four levels elevator application

In this section all the application for the simulation of the elevator is described.

The simulation consists basically on an elevator with four levels. The device has four

sensors to detect the position of the car, and four buttons to choose the level of the

car.

BLOCK DIAGRAM FOR DEVICES CONNECTION:

Figure 42. Simulation connection

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 68

The parts of the block diagram are:

- Driver motor (M1)

- Protection module and PS4 controller interface (M2)

- Level display and relay control module (M3)

- Motor supply and protection module (M4)

- PS4-201-MM1 controller

- Controller power source (S2)

- Power source for driver motor module, controller interface, level display and

motor protection (S1)

DESCRIPTION OF THE APPLICATION:

 A lift must move between the ground floor and the rest of the levels of a

building.

 The positioning system is based on four limit switches, one per level. When one

of these switches is activated, the level is marked in a little screen and a logic signal is

generated (1 logic). The sensors activate inputs I0.0, I0.1, I0.2 and I0.3 of the

controller. This operation is made by the intermediate assembly of modules M3 and

M2.

 M3 contains two electronic assemblies that are commanded for the signal

created by the four sensors. The first assembly is to show the level where the lift´s car

is, and has as a main device an integral circuit latch/decoder/divider BCD-7 segments

MMC 4511. The second assembly has as main element 4 NPN low power transistors

and an integrated circuit CDB 400, which has four logic NAND doors. Their role is to

adapt the signal from the sensors to the module M2.

 M2 has the function of transmission the logic signal from the CDB 400 to the

controller. This signal is applied on the basis of 4 low power transistors. This transistors

control 4 low battery relays (24V).

 The transistors make the function of a buffer between logic outputs of the CDB

400, which can have a maxim level of 5V (1 logic), and the supply tension for relays

windings (12V). For a visual review of the floors functionality, are installed in parallel

with the relays windings 4 LEDs to indicate what the position of the lift is in the system,

i.e. the actual level. Relays make an electrical isolation between the controller tension

(24V) and the supply tension of the driver module (5V), thus protecting the controller

against short-circuits or vortex currents. The modules ground is separated of the

controller ground.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

1. Supply and protection module (M1)

2. Motor – stepper motor 24V

3. Sensors

4. Driving belt

5. Lift car

6. Metal guides

7. Driver motor module (M1)

8. Level display and control relays

9. Controller interface module (M2)

10. Buttons

11. Coupling controller contacts

12. Mobile connection band

13. Pressure sensor

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

FINAL PROJECT DEGREE

Samuel Noval Sánchez

Supply and protection module (M1)

stepper motor 24V

Driver motor module (M1)

Level display and control relays

Controller interface module (M2)

Coupling controller contacts

Mobile connection band

Figure 43. Simulation model

69

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 70

INPUT AND OUTPUT IDENTIFICATION:

 One of the most important steps for the simulation is to identify the inputs and

outputs of the controller, in order to write the program properly. Figure 44 shows the

connection between sensors, buttons, relays and the controller, as well as a brief

description of each one.

NAME DESCRIPTION I/O & MARKERS

L0 Sensor level 0 I0.0

L1 Sensor level 1 I0.1

L2 Sensor level 2 I0.2

L3 Sensor level 3 I0.3

P0 Button level 0 I0.4

P1 Button level 1 I0.5

P2 Button level 2 I0.6

P3 Button level 3 I0.7

MOTOR UP Motor drive up Q0.1

MOTOR DOWN Motor drive down Q0.2

LEVEL Selected level MB1

ALEVEL Actual level MB2

Figure 44. I/O identification

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 71

In Figure 45, the connection between inputs outputs and controller is shown.

Figure 45. I/O connection

Now that all devices have been explained, in the next section the designed

algorithm to solve the problem of the lift is detailed through the explanation of the

GRAFCET.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 72

2.1.3. Grafcet for simulation

The objective of this GRAFCET is to represent in an easy way the algorithm

designed for the simulation. Once that is proved that the algorithm works for the

simulation, it can be accepted that it works for the case with ten levels. The GRAFCET

provides the programmer an easy comprehension of the problem and an easy way to

write the program with the sequential block function SK from SUCOSOFT.

 Two different GRAFCETS have been made for the simulation, in tow levels: level

one represents the GRAFCET with the name of the variables, while level two

represents the GRAFCET with the name of inputs and outputs to make a nearer

diagram from the programming language.

 Both GRAFCETS can be found in the section “GRAFCETS – NUMBER 5 AND 6”,

and they are explained like follows.

In the first stage, all markers and outputs are set to 0. This is the initial stage so

the elevator must be stopped (Figure 46).

Figure 46. First stage

 Next step is an OR ramification with four different stages, depending on the level

where the car is, i.e. depending on the activated sensor, a different value is saved in the

marker “ALEVEL-MB2”, starting from value 0 for level 0 to value 3 for level 3 (Figure 47).

Figure 47. ALEVEL value

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 73

 After that a stage is represented where the program does not make any action.

It is because another stage is needed to pass from the ramification above to the next.

Thus, after stage number 5, another OR ramification follows with the routine. In this

ramification, with 4 stages too, a different value is saved in the marker “LEVEL-MB1”,

depending on the button pressed, starting from value 0 for button P0 to value 3 for

button P3.

One problem that must be solved is that once the buttons have been pushed,

they do not remain pushed, so we need to save somewhere in the program the fact

that the button has been pressed. For this reason, some markers are used. Every time

a button is pushed, one different marker is set to value 1, thus, markers starting from

M0.0 for button P0 to M0.3 for button P3 are used in these stages, as it can be seen in

(Figure 48).

Figure 48. LEVEL value

 Now that the markers LEVEL and ALEVEL have taken a value, we compare both

with the CP function of SUCOSOFT. If the level required by the user is higher than the

actual level of the car (LEVEL>ALEVEL), the motor is driven up, and obviously, if the

level required by the user is lower than the actual level of the car (LEVEL<ALEVEL), the

motor is driven down. If the level required by the user is the same level where the lift

is (LEVEL=ALEVEL), it does not move, so the program goes to the initial stage and waits

for next order (Figure 49).

Figure 49. LEVEL & ALEVEL comparisson

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 74

As it is known, the elevator must stop when the car arrives to the level required

by the user. To make this possible, the equation created is as follows:

L0*M0.0+L1*M0.1+L2*M0.2+L3*M0.3

Where “*” is AND logic operation and “+” is OR logic operation. That means

that when the transition is fulfilled, i.e. when LX is activated and M0.X is 1 (being X a

number between 0 and 3) the program goes to the initial stage, where all variables are

set to 0 and the car is stopped, with another words, the elevator stops when the car

arrives to the required floor and the process starts again.

All transitions with (=1) mean that the program changes to the next stage when

the previous one has finished, without any condition.

As we can see, the algorithm has been explained in an easy way. Starting from

this GRAFCET, the program is written in SUCOSOFT with the SK function block. Once

the program has been created, it is compiled and transferred to the controller to test

the simulation.

The program and reference file created in instruction list mode (IL) are printed

in section “ANNEXES – PROGRAM AND REFERENCE FILE”.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 75

2.2. GRAFCET FOR TEN LEVELS´ ELEVATOR

Once that the simulation has be explained and tested, it can be accepted that

the algorithm is valid for the case of an elevator with n levels, letting n be a natural

number (1, 2, 3 ... n). For the current project, the GRAFCET designed is for a lift with

ten levels (from level 0 to level 9). In this section all grafcets related to the automatic

control design are explained. These grafcets can be found in section “GRAFCETS” of the

project.

The programming part has been omitted for this case, due to the limit of inputs

and outputs and modules of the PLC chosen, but with the design of the GRAFCET it is

easy to write the program for that purpose and not only for the PLC used in this

project, but for the rest of PLCs in the market, based on GRAFCET programming.

2.2.1. Inputs and outputs identification

 As it was said before, the main GRAFCET (GRAFCET NUM.: 1) is based on the

GRAFCET explained for the simulation, but adding all related to security, which makes

it more complex.

 But first of all the inputs and outputs must be identified, as it was said before, it

is one of the most important steps of the automatic control in order to write the

program correctly.

 The connection between the inputs, outputs and the controller was explained

in section “1.8.PLC CONNECTION” and the diagram can be found in section “PLOTS –

PLOT NUM.: 3 – AUTOMATIC CONTROL”.

 In (Figures 50 and 51) it is represented a relation of inputs, outputs and a brief

description of each one, as well as an elevator diagram to see the position of each

component in the installation.

 In total 63 inputs and 13 outputs are needed, so the installation of extension

modules is necessary to make the control possible. For the controller PS4-201-MM1

the expansion modules required are LE4-501-BS1.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

EXPANSION MODULE LE4-

 The expansion module LE4 is suitable for

expansion of Klockner Moeller´s controller PS4, in case that more inputs and/or

outputs are needed, as it happens in this case.

 This module works with 24V D.C

plus two digital connections that can be

maximum number of modules that can be connected to the PS4 controller is 7, just the

number of modules that are necessary for the installation, as 63 inputs are needed (7 X

8 = 64).

 The connection between controller and modules is shown in (Figure

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

FINAL PROJECT DEGREE

Samuel Noval Sánchez

501-BS1:

The expansion module LE4 is suitable for digital inputs and outputs local

expansion of Klockner Moeller´s controller PS4, in case that more inputs and/or

tputs are needed, as it happens in this case.

Figure 50. LE4-501-BS1

This module works with 24V D.C. It has 8 digital inputs and 6 digital outputs

plus two digital connections that can be used indifferently as inputs or output

maximum number of modules that can be connected to the PS4 controller is 7, just the

number of modules that are necessary for the installation, as 63 inputs are needed (7 X

The connection between controller and modules is shown in (Figure

Figure 51. Modules connection

76

inputs and outputs local

expansion of Klockner Moeller´s controller PS4, in case that more inputs and/or

8 digital inputs and 6 digital outputs

used indifferently as inputs or outputs. The

maximum number of modules that can be connected to the PS4 controller is 7, just the

number of modules that are necessary for the installation, as 63 inputs are needed (7 X

The connection between controller and modules is shown in (Figure 51).

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 77

Figure 52. I/O diagram

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 78

NAME DESCRIPTION INPUTS
P0-P9 External buttons I0.0-I0.7/I1.0-I1.1

A0-A9 Internal buttons I1.2-I1.7/I2.0-I2.3

L0-L9 Level control I2.4-I2.7/I3.0-I3.5

U0-U9 Up sensors I3.6-I3.7/I4.0-I4.7

D0-D9 Down sensors I5.0-I5.7/I6.0-I6.1

TOP Top limit switch I6.2

BOTTOM Bottom limit switch I6.3

STOP Stop button I6.4

WEIGHT Weight meter contact I6.5

WIRE Wire sensor I6.6

SPLIMIT Speed limit sensor I6.7

ENERGY Energy failure sensor I7.0

DOOR OPENED Door opened sensor I7.1

DOOR CLOSED Door closed sensor I7.2

OPEN BUT. Open door button I7.3

SECURITY Security door sensor I7.4

NAME DESCRIPTION OUTPUTS

K1 Activate contactor K1 Q0.1

K2 Activate contactor K2 Q0.2

K3 Activate contactor K3 Q0.3

K4 Activate contactor K4 Q0.4

BRAKE Activate brake Q0.5

OPEN DOOR Activate door opening Q1.0

CLOSE DOOR Activate door closing Q1.1

CAR LIGHT Car light on Q1.2

EXT. BUT. LIGHT External buttons light on Q1.3

UP LIGHT Up light on Q1.4

DOWN LIGHT Down light on Q1.5

ALARM Alarm on Q2.0

 SEC. FAIL Security failure indicator Q2.1

Figure 53. I/O description

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 79

2.2.2. Main grafcet

Now that all inputs and outputs have been described, the MAIN GRAFCET is

explained next. This grafcet is based on the grafcet designed for the simulation and it

can be found in section “GRAFCETS – GRAFCET NUM.: 1 – MAIN GRAFCET”.

To make the explanation easier, the grafcet is explained step by step.

The first stage is where the program is initialized, so there all variables and

outputs are reset (Figure 52):

Figure 54. Stage 0

The next step has been clustered in a “macro-stage” (M1 – LEVEL CONTROL) to

make the main grafcet easier to understand. In this macro-stage a value is saved on

the variable ALEVEL, depending on the level of the car, as it will be explained later.

Figure 55. Level control

 After that, there is an empty stage (STAGE 11 - NOP) where the program does

not do anything, but this stage is necessary just to let the program wait there until a

button is pushed. Then the program goes to the button control, which is included in

another macro-stage (M2) that will be explained later. In this macro-stage basically a

value is saved in variable LEVEL depending on the level required by the user.

Figure 56. Button control

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 80

In the next stage, the program compares the value of the two variables LEVEL

and ALEVEL.

Figure 57. Compare LEVEL & ALEVEL

Next step is an OR condition. Depending on the value of the comparison, the

program goes to a different way.

If LEVEL<ALEVEL, the elevator must go down and if LEVEL>ALEVEL the elevator

must go up. Up and down movements have several stages. After the comparison made

before, the program waits 5 seconds for security. After this elapsed time, if there is not

any security failure, the movement starts in fast speed. When the desired level is

reached by up or down sensors, the controller changes to slow speed. To let the

controller know what the desired level is, several markers are used. For example, if the

desired level is level 1, it is saved M0.1=1, then the next equation is used to make the

transition between slow and fast speeds (D for down and U for up sensors):

D0*M0.0+D1*M0.1+D2*M0.2+D3*M0.3+D4*M0.4+D5*M0.5+D6*M0.6+D7*M0.7+D8*M0.8+D9*M0.9

 If LEVEL=ALEVEL, the car does not move, the program goes to the door control

(stage 30), i.e. the door is opened and then the program starts a new cycle it goes to

the first stage and waits for next order. All this process is shown in Figure 56.

Figure 58. Up and down movement

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 81

The condition used to stop the elevator when it is in the desired level is the

same than in the case before to change the speed of the motor:

(L0*M0.0)+(L1*M0.1)+(L2*M0.2)+(L3*M0.3)+(L4*M0.4)+(L5*M0.5)+(L6*M0.6)+(L7*M0.7)+(L8*M0.8)+(L9*M0.9)

 Thus, when the car arrives to the required level, it is stopped. The program

waits five seconds for security and after that the door control is activated, which is

included in another macro-stage (M3). When the door is closed, the program waits five

seconds again and after that it goes to the first stage to reset all variables and wait for

a new order (Figure 57).

Figure 59. Car stop and door control

This is the explanation for the main grafcet when all the installation works right

but, as it can be seen in MAIN GRAFCET, there are much more stages. All that stages

are related to security, and they are explained next, step by step, to complete the

explanation of the whole grafcet.

SECURITY:

All security transitions are represented with red line, to differentiate them

clearly from main transitions and stages. There are three different securities. One of

them is activated when a security fail has occurred, i.e. one or several security sensors

are activated (WIRE, SPLIMIT, BOTTOM, TOP, ENERGY, STOP). In this case, the elevator

is stopped and an acoustic and visual alarm is activated inside the car to inform the

users. The door control can be activated inside the car by pushing OPEN BUTTON, to

allow the users get out of the car in case of security failure. The program remains in

this stage until the problem has been solved, i.e. the security sensors are not activated

any more (Figure 58). After the security failure is solved, the program goes to the first

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 82

stage to start a new cycle. For all security sensors it is applied negative logic, i.e. all

security sensors are N.C. contacts, to avoid a false security signal in case that the

sensors do not work good. This security checking is done after a button is pushed,

before the movement starts.

Figure 60. Security failure

 Another security device is the weight meter. In case that the maximum rated

weight is reached, to avoid an overload in the motor, the movement is not allowed,

the door is opened to allow users to get out of the car and an acoustic and visual alarm

is activated to report the event. The program remains in this stage until the weight is

correct to start the movement. Then, the door is closed and the program goes back to

the button control to wait for a new order (Figure 59).

Figure 61. Weight control

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 83

 During the movement, security checking is made in every transition, to stop the

elevator in case of a security failure. If this occurs, the elevator stops in the next floor

and the program goes to stage 36, which was explained before (Figure 60).

Figure 62. Security fail during movement

 If during the movement an energy failure occurs, European standards require

that the lift goes to the first floor to allow the users get out of the car there, for a

possible evacuation of the building, as the energy failures are caused for several

reasons. This is called “DOWN CORRECTION”, and in the main grafcet corresponds to

stages 40 and 41 (Figure 61).

Figure 63. Down correction

 Now that the main grafcet is explained, in next section we can see the different

macro-stages that form all the automatic process.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 84

2.2.3. M1 – Level control

The level control is easy to understand. Depending on the level where the car

is, a value is saved in the variable ALEVEL, from value 0 for level 0 to value 9 for level 9

(Figure 62).

It can be found in section “GRAFCETS – GRAFCET NUM.: 2 – LEVEL CONTROL”.

Figure 64. Level control

2.2.4. M2 – Button control

The button control is an OR disjunction like the level control, but in this case a

different value is saved in variable LEVEL depending on the button pressed. When a

button is pressed, it does not remain pressed, so the program must save in a marker

the fact that a certain button has been pressed. This action is made by setting different

markers, from M0.0 for buttons level 0 to M0.9 for buttons level 9. Other important

characteristic of this control is that the internal keypad must take priority over the

external buttons, as if a user is inside the car, the program must respond first to the

user or users inside the car than the users outside. This is made by the next equation,

for instance for level 0, but it is repeated for all levels.

This equation means that the button P0 is only allowed if there is not any

internal button pressed.

In (Figure 63) the grafcet for the first three levels is shown, and it is the same

for the other levels.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 85

Figure 65. Button control

After a button has been pressed, the external buttons are lighted to indicate

other users that the lift is being used, as well as the car light is turned on (Figure 64).

Figure 66. Car and external lights

 After this stage the program continues in main grafcet.

 This grafcet can be found in section “GRAFCETS – GRAFCET NUM.: 3 – BUTTON

CONTROL”.

2.2.5. M3 - Door control

The last grafcet to be explained is the door control. When the door control is

activated, the motor that controls the door device is activated in open direction. The

door keeps opening until the limit switch DOOR OPENED is reached, then the motor

stops opening the door. After that the program waits ten seconds until the motor

starts closing the door, which keeps closing until the limit switch DOOR CLOSED is

reached. If during the closing movement or before it starts, an object is placed in the

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 86

door´s path the door opens again thanks to the SECURITY light sensor. The same action

is made if the button OPENBUT placed inside the car is pressed (Figure 65).

This grafcet can be found in section “GRAFCETS – GRAFCET NUM.: 4 – LEVEL

CONTROL”.

Figure 67. Door control

 With the explanation of this grafcet all the automatic design process is

completed, starting from the simulation to demonstrate that the algorithm designed is

valid, and finishing with the grafcet design for the case of a lift with ten levels.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 87

CALCULATIONS

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 88

3. CALCULATIONS

In this section all the calculations needed for the electrical installation are

detailed. The most important point in this chapter is to calculate the necessary power

for the motor to calculate after that all the devices and conductors sections for each

circuit. Circuit distribution and conductors sections can be found in PLOT NUM.: 5.

3.1. COUNTERWEIGHT

The power of the motor is directly related with the counterweight installed. The

point of this counterweight is to reduce the load of the motor, thus reducing the

power and dimensions of the installation. In this case, the counterweight is calculated

to balance the car weight and 50% of the load.

Figure 68. Counterweight calculation

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 89

This equation is valid when the total travel of the car is not higher than 35

metres, like in this case. If it is higher it is necessary to install a compensation cable. A

general weight has been considered for the car, 650Kg and for the load it is used the

maximum weight allowed for the European standard for an elevator with a capacity of

six persons, 450Kg. Then, the counterweight is calculated as follows:

� = � +
�

2
= 650 +

450

2
= 875
�.

3.2. MOTOR POWER

The motor power calculation is one of the most important goals of the

electrical installation, as the rest of the installation is dimensioned depending on that

power. With the counterweight installed this power is considerably reduced, thus

using a smaller motor than if this counterweight is not installed, so the necessary

torque is lower and so is the cost of the installation.

To calculate the motor power next formula is used:

� =
1

2
�

�

1000 · �

Where:

• P is the motor power, in kW.

• ½ is because the car´s weight and half of the payload are compensated

by the counterweight.

• F is the maximum load allowed in the car in Kgf. For six persons the

maximum weight allowed is 450 Kg. To change it into Kgf the force is

multiplied by 9.8. So F=450 · 9,8=4410 Kgf.

• ν is the car medium speed during the travel. European standards

establish that in lifts used by persons, like in this case, the medium

speed of the car must be 1m/s.

• η is the mechanical performance. It is selected a minimum desired

performance of 85%.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 90

Thus, the necessary motor power is calculated as follows:

� =
1

2
�

�

1000 · �
=

1

2
· 4410 ·

1

1000 · 0.85
= 2,6 ��

The selected motor power is 3 kW, in order to have an extra power in case of

unforeseen loads.

3.3. CONDUCTORS SECTION AND ELECTRICAL DEVICES
DIMENSIONING

To calculate the section of each circuit (PLOT NUM.: 5 - PROTECTIONS), next

formulas are used.

For three phase circuits (MOTOR CIRCUIT) the formula used is:

� =
� · � · �

� · ��

For the rest of the circuits, single phase circuits, the formula used is:

� =
2 · � · � · �

� · ��

Where:

• S � section in mm2.

• ρ � copper resistivity (1/56 Ωm)

• P � Power transported through the circuit

• L � Circuit length

• U � Circuit tension

• ΔU � maximum permissible tension fall (5%)

Thus, the section for each circuit is calculated as follows:

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 91

MOTOR CIRCUIT:

Data: P=3000W ; L=5m ; U=400V ; ΔU=400·0.05=20

The amperage required by the motor is:

� =
�

√3 · ! · "#$%
=

3000

√3 · 400 · 0,85
= 5,094 '

Standard section for this amperage is 1,5mm2 (ITC-BT-19, table1.)

It must be checked if the voltage drop allowed is not reached

�� =
� · �

(· ! · �
=

3000 · 5

56 · 400 · 1,5
= 0,45! < 20!

Then, the section 1,5mm2 is valid for the motor circuit. The maximum current

for this section is 10A, so the mini circuit breaker installed is 4p/10A. The residential-

current circuit breaker installed must be higher than the MCB. The next normalized

RCCB higher than 10A is 25A, and the minimum current detection must be 30mA.

Then, the RCCB installed for this circuit will be 4p/25A/30mA.

The maximum power in this circuit is:

� = ! · � · "#$% = 400 · 10 · 1 = 4000�

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 92

LIGHTS:

Data: P=40W·12bulbs + 15W LED≈500W ; L=10 floors·2,5m/floor+5extra=30m ;

U=230V ; ΔU=230·0.03=6,9.

� =
2 · � · � · �

� · ��
=

2 ·
1

56 · 500 · 30

230 · 6,9
= 0,34 **+

Standard section immediately above the calculated is 1,5mm2.

The maximum current for this section is 10A, so it must be checked if it is not

reached:

� =
�

! · "#$%
=

500

230 · 1
= 2,17 < 10'

And the maximum tension fall for this circuit is:

�� =
2 · � · �

, · ! · �
·

100

400
=

2 · 30 · 500

56 · 230 · 1,5
·

100

230
= 0,67% < 5%

Then, the section 1,5mm2 is valid for the lights circuit. The maximum current

for this section is 10A, so the mini circuit breaker installed is 2p/10A. The residential-

current circuit breaker installed must be higher than the MCB. The next normalized

RCCB higher than 10A is 25A, and the minimum current detection must be 30mA.

Then, the RCCB installed for this circuit will be 2p/25A/30mA.

The maximum power in this circuit is:

� = ! · � · "#$% = 230 · 10 · 1 = 2300�

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 93

CONTROL PANEL:

Data: P=230V·5A=1150W (the maximum admissible current for the power supply of

the control panel is 5A) ; L=4m (connection between panels); U=230V ;

ΔU=230·0.05=11,5.

� =
2 · � · � · �

� · ��
=

2 ·
1

56 · 1150 · 4

230 · 11,5
= 0,06 **+

Standard section immediately above the calculated is 1,5mm2.

The maximum current for this section is 10A, so it must be checked if it is not

reached:

� =
�

! · "#$%
=

1150

230 · 1
= 5 < 10'

And the maximum tension fall for this circuit is:

�� =
2 · � · �

, · ! · �
·

100

400
=

2 · 4 · 1150

56 · 230 · 1,5
·

100

230
= 0,2% < 5%

Then, the section 1,5mm2 is valid for the control panel circuit. The maximum

current for this section is 10A, so the mini circuit breaker installed is 2p/10A. The

residential-current circuit breaker installed must be higher than the MCB. The next

normalized RCCB higher than 10A is 25A, and the minimum current detection must be

30mA. Then, the RCCB installed for this circuit will be 2p/25A/30mA.

The maximum power in this circuit is:

� = ! · � · "#$% = 230 · 10 · 1 = 2300�

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 94

POWER PLUGS:

Data: P=230V·16A=3680W (The maximum admissible current for Shucko plugs is

16A); L=10 floors·2,5m/floor+5extra=30m ; U=230V ; ΔU=230·0.05=11,5.

� =
2 · � · � · �

� · ��
=

2 ·
1

56 · 3680 · 30

230 · 11,5
= 1,48 **+

Minimal standard section for 16A is 2,5mm2.

And the maximum tension fall for this circuit is:

�� =
2 · � · �

, · ! · �
·

100

400
=

2 · 30 · 3680

56 · 230 · 1,5
·

100

230
= 4,96% < 5%

Then, the section 2,5mm2 is valid for the plugs circuit. The maximum current for

this section is 16A, so the mini circuit breaker installed is 2p/16A. The residential-

current circuit breaker installed must be higher than the MCB. The next normalized

RCCB higher than 16A is 25A, and the minimum current detection must be 30mA.

Then, the RCCB installed for this circuit will be 2p/25A/30mA.

The maximum power in this circuit is:

� = ! · � · "#$% = 230 · 16 · 1 = 3680�

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 95

EMERGENCY CIRCUIT:

Data: P=8W·13=104W ; L=10 floors·2,5m/floor+5extra=30m ; U=230V ;

ΔU=230·0.03m=6,9.

� =
2 · � · � · �

� · ��
=

2 ·
1

56 · 104 · 30

230 · 6,9
= 0,07 **+

Standard section immediately above the calculated is 1,5mm2.

The maximum current for this section is 10A, so it must be checked if it is not

reached:

� =
�

! · "#$%
=

104

230 · 1
= 0,45 < 10'

And the maximum tension fall for this circuit is:

�� =
2 · � · �

, · ! · �
·

100

400
=

2 · 30 · 104

56 · 230 · 1,5
·

100

230
= 0,14% < 5%

Then, the section 1,5mm2 is valid for the emergency circuit. The maximum

current for this section is 10A, so the mini circuit breaker installed is 2p/10A. The

residential-current circuit breaker installed must be higher than the MCB. The next

normalized RCCB higher than 10A is 25A, and the minimum current detection must be

30mA. Then, the RCCB installed for this circuit will be 2p/25A/30mA.

The maximum power in this circuit is:

� = ! · � · "#$% = 230 · 10 · 1 = 2300�

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 96

MAINTENANCE AND SECURITY

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 97

4. MAINTENANCE AND SECURITY

4.1. MAINTENANCE

The maintenance work is carried out once a month at least to allow the elevator to

work as efficiently and safely as possible. Furthermore, necessary repairs of the

components are made if necessary. There are two types of maintenance: preventive

and corrective.

4.1.1. Preventive maintenance

As the name suggests, this kind of maintenance is aimed at regular monthly

review of several elements of the elevator with the consequent comfort and safety

improvements. The review includes:

� Cleanliness: car, counterweight and motor.

� Lubrication: rails, boxes and balances, handles and pulleys, speed limiter

� Settings: rail, adjustments control and power lifts, level sensors

� Minor repairs: lights and buttons review

� Overhaul: includes the entire operation of the lift, including security

methods such as brakes, door devices, car´s speed.

� It will be checked the start and stop and the presence of abnormal

sounds.

� Relay contacts and manual control checking

� Car roof and wall cleaning

� Safety devices checking

Once the preventive maintenance is finished, a report must be prepare

containing the following information:

� Date, start time and end of each service, client name and technical and

computer data.

� Confirmation of the completion of each of the activities requested in the

Service Description

� General features of the materials and parts used

� Observations and suggest of the technician, and total time

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 98

4.1.2. Corrective maintenance

This service consists of major repairs and/or lower based on the emergency

calls for damage or stops. Such faults are repaired on any day and time, so the elevator

must have a maintenance service available 24 hours a day, 365 days a year.

4.2. SECURITY

The elevator must be a safety installation not only for the users, but also for the

technicians responsible for repair. For this reason, the machine room must have the

next components to prevent or resolve minor incidents:

� Dielectric helmet to protect against electrical contacts

� Polyester cotton work clothes

� Anti dust glasses

� Insulated gloves to protect against electrical contact voltage up to

5000V

� Belt for tools

� Emergency kit

� Fire extinguisher type ABC

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 99

PLOTS AND GRAFCETS

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 100

5. PLOTS AND GRAFCETS

5.1. PLOTS

1. MOTOR

2. MANUAL CONTROL

3. AUTOMATIC CONTROL

4. BRAKE AND LIGHT CONNECTION

5. PROTECTIONS

6. SENSORS AND MEASURES

5.2. GRAFCETS

1. MAIN CONTROL

2. LEVEL CONTROL

3. BUTTON CONTROL

4. DOOR CONTROL

5. SIMULATION LEVEL 1

6. SIMULATION LEVEL 2

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 101

CONCLUSION

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 102

6. CONCLUSION

As a final conclusion of the project, several possible improvements are described.

To conclude the work, major achievements are highlighted.

6.1. IMPROVEMENTS

DATA BUS:

 The main advantage of the data bus is that all the wiring and car installation

(excluding securities) can be replaced by a industrial data bus that implements:

- Data input of external buttons and car to the PLC

- Data input of position sensors to the PLC

The main goal of the data bus is to simplify the installation. On the other hand

it allows an economical way to make an extension of the installation.

The total price of the data bus installation, including the PC programming

software is about 500€.

FRECUENCY VARIATOR:

The double-speed motor with two windings can be replaced by a frequency and

voltage variation system. It is installed before the motor supply. To control its

operation, the contactors must be replaced and the variation signals must be PLC

inputs, as upward and downward, acceleration and deceleration. A start-up data

should be set as values of acceleration and slowdown etc.

Such systems greatly increase the cost of the installation but gains in passenger

comfort and considerable energy saving, and it reduces peak starting current and

decreases friction and potential energy when stopping.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 103

DECODER:

To indicate the users the level where they are, a BCD decoder can be installed

to show in a screen inside the elevator the floor number. The installation can be made

like in the simulation. A BCD decoder is connected to level sensors and depending on

the floor, the screen shows the number of the level.

MICROCONTROLLER:

Instead of use several PLC inputs to control all security devices, a

microcontroller can be installed to control them. Thus, all security signals are

processed by this controller and only one input is used, to connect the microcontroller

with the PLC. Then, if a security fail occurs, the microcontroller informs the PLC about

it. A BCD screen can be installed in the control panel, connected to the controller to

inform the technician about the type of error occurred.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 104

6.2. ACHIEVEMENTS

The main achievements of this project are:

� Design the GRAFCET for an automatic control for an elevator with ten levels.

� The designed control operation has been demonstrated by programming a

simulation with a model for a case of an elevator with four levels.

� Then, it can be accepted that the algorithm designed is valid for a general case

of an elevator with n levels.

� Other important achievement is the fact that all related to security has been

taken into account in the current project, thus making the lift be a safety

system to be used by persons.

� But not only is the automatic control designed in the project. All the electrical

installation and device dimensioning has been included, involving the motor

connection and all electrical protection devices.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 105

ANNEXES

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 106

7. ANNEXES

7.1. ANNEX I: PROGRAM FOR SIMULATION WRITTEN IN
INSTRUCTION LIST (IL) WITH SUCOSOFT.

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 107

7.2. ANNEX II: KLOCKNER MOELLER PS4-201-MM1 INSTALLATION

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 108

8. BIBLIOGRAPHY

[1].- PROGRAMMING SUCOCONTROL PS4-201-MM1. Ref: 4/94 AWB 27-1186-GB,

Klockner Moeller.

[2].- TRAINING GUIDE SUCOSOFT S40 PROGRAMMING SOFTWARE. Ref: 06/99 AWB 27-

1307-GB, Klockner Moeller.

[3].- LABORATOR DE INFORMATICA INDUSTRIALĂ. ÎNDRUMAR II, Prof. Dr. Ing. Culea G.

[4].- ELECTRICAL MACHINES, Jesús Fraile Mora, Ed. Mc Graw Hill, 5
th

 edition, 2003.

[5].- REGLAMENTO ELECTROTÉCNICO PARA BAJA TENSIÓN, Real Decreto 842/2002, Ed.

Paraninfo.

WEB PAGES:

[http://www.ascensoreszener.com/] – General information

[http://www.thyssenkruppelevadores.com/] – General information

[http://www.schindler.es/esp] – General information

[http://www.otis.com/otis/1,1352,CLI15_RES1,00.html] – General information

[http://www.otis.com/products/detail/0,1355,CLI1_PRD16916_PRT30_PST708_RES1,
00.ht
ml#flash] – General information

[http://www.ascensoreslezama.com/variadores-de-frecuencia.aspx] – Frequency variators

[http://www.idemver.com.ar/ascensores%20productos.html] – Lift components

[http://www.nersolar.com/compra_online/es/30-paneles-led] – Led panels

[http://www.wikipedia.org/] – Lifts´history and devices definitions

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 109

FIGURES INDEX

Figure 1. Elisha Otis's Elevator Patent Drawing, 01/15/1861 ... 17

Figure 2. Elevators classification ... 19

Figure 3. Siemens frequency variators for phase motors ... 20

Figure 4. Main structure .. 23

Figure 5. Components ... 24

Figure 7. Motor distribution .. 25

Figure 6. Tractor group .. 25

Figure 8. Telescopic external doors Figure 9. Door actuator 27

Figure 10. Speed limiter .. 28

Figure 11. Shock absorber for elevators ... 29

Figure 12. Main circuit breaker ... 30

Figure 13. MCB- Curves ... 31

Figure 14. MCB .. 31

Figure 15. Fuse and fuse curve .. 32

Figure 16. RCCB ... 32

Figure 17. Overload relay .. 33

Figure 18. Light comparison .. 35

Figure 19. LED spots ceiling for elevators ... 35

Figure 21. Button manual control ... 37

Figure 20. Schuko plug .. 37

Figure 23. Internal keypad Figure 24. Braille writing on buttons .. 38

Figure 22. External button ... 38

Figure 25. Contactor-PLC connection .. 39

Figure 26. Power supply circuit ... 40

Figure 27. Power supply DIN rail ... 40

Figure 28. PS4-201-MM1... 41

Figure 29. Door control ... 42

Figure 31. Magnetic sensors installation... 43

Figure 30. Magnetic sensor ... 43

Figure 32. First floor magnets installation .. 44

Figure 33. Magnet installation intermediate floors .. 45

Figure 34. Magnet installation last floor ... 46

Figure 35. Emergency battery ... 47

Figure 36. Emergency stop button .. 48

Figure 37. Speed limit .. 48

Figure 39. Weight meter ... 49

Figure 38. Wire sensor .. 49

Figure 40. Limit switches ... 50

Figure 41. Edit program screen ... 61

Figure 42. Simulation connection ... 67

Figure 43. Simulation model ... 69

Figure 44. I/O identification .. 70

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 110

Figure 45. I/O connection .. 71

Figure 46. First stage ... 72

Figure 47. ALEVEL value .. 72

Figure 48. LEVEL value ... 73

Figure 49. LEVEL & ALEVEL comparisson .. 73

Figure 50. LE4-501-BS1 .. 76

Figure 51. Modules connection ... 76

Figure 52. I/O diagram .. 77

Figure 53. I/O description.. 78

Figure 54. Stage 0 .. 79

Figure 55. Level control ... 79

Figure 56. Button control .. 79

Figure 57. Compare LEVEL & ALEVEL .. 80

Figure 58. Up and down movement.. 80

Figure 59. Car stop and door control .. 81

Figure 60. Security failure ... 82

Figure 61. Weight control ... 82

Figure 62. Security fail during movement ... 83

Figure 63. Down correction ... 83

Figure 64. Level control ... 84

Figure 65. Button control .. 85

Figure 66. Car and external lights.. 85

Figure 67. Door control ... 86

Figure 68. Counterweight calculation ... 88

AUTOMATION PROCESS OF AN ELEVATOR SYSTEM

 FINAL PROJECT DEGREE

 Samuel Noval Sánchez 111

 PAGE 1

KLOCKNER MOELLER PS4-201

Application Note

This document was written to provide assistance in configuring a G3 operator interface
terminal to allow communications with a Klockner Moeller PS4-201 PLC. Please read this
document carefully before attempting to configure communications with these devices.

KLOCKNER MOELLER PS4-201

PAGE 2

KNOWLEDGE OF UNIT OPERATION IS ASSUMED

In all cases, both familiarity with the control functions and knowledge of system operation are assumed.

COMMUNICATIONS

Communications with the Klockner Moeller PS4-201 is via an RS-232 point-to-point link. The default
serial communications format is RS-232, baud rate of 9600, 8 data bits, No parity, and 2 stop bits. RS-
485 multi-drop cannot be used due to a baud rate incompatibility. The Moeller K-Suconet RS-485 port
communicates at either 187.5K baud or 375K baud, whereas the current line of Red Lion HMI’s
cannot communicate at either of those baud rates.

The connection details are described in the table below.

RS232

1

7

4

8

3

5
2

6

RJ12 8P DIN
CTS
Rx

COMM
COMM

Tx
RTS

Connections

Name

41 2 3 5 6

1
2
3
4

6
5

RLC UNIT
CONNECTER PINOUTFROM

RS232 PORT
(FROM RLC UNIT)

The above table denotes the pin names of the RS232 port.
When connecting, the pin name at the RS232 port is connected
to the opposite of that pin name at the destination device.

1, 6

1, 6
5

-
2

3
-

2
3
-

5

-

A
06/01 AWA27-1589

Montageanweisung
Installation Instructions
Notice d’installation

Istruzioni per il montaggio
Instrucciones de montaje

15890601.FM Seite 1 Montag, 15. Januar 2007 3:22 15
1/10

PS4-201-MM1

Abmessungen – Dimensions – Dimensioni – Dimensiones [mm]

UL/CSA

1) p. d. Pilot Duty/Maximum operating temperature 55 °C/
Tightening torque 0.6 Nm/AWG 12-28

Power
Supply

of channels and
Input Rating

of channels and
Output Rating

24 V DC
0.8 A

8 digital
24 V DC
2 analog

6 digital
24 V DC, 0.5 A
24 V DC, 0.5 A p. d.1)

1 analog

A AWB27-1184…
AWB27-1287…

h Das Gerät ist für den industriellen Einsatz
geeignet (l EN 55011/22 Klasse A).
The device is suitable for use in industrial
environments (l EN 55011/22 Class A).
L’appareil a été conçu pour l’emploi en milieu
industriel (l EN 55011/22 classe A).
L’apparecchio è adatto per uso in ambienti
industriali (l EN 55011/22 Classe A).
El aparato es adecuado para uso en ambiente
industrial (l EN 55011/22 clase A).

79

86

45

134.5

85 87
.5
For Immediate Delivery call KMParts.com at (866) 595-9616

06
/0

1
AW

A2
7-

15
89

15890601.FM Seite 2 Montag, 15. Januar 2007 3:22 15
2/10

Frontansicht – Front view – Face avant – Vista frontale – Vista de frente

Offene Gehäuseklappe
Housing cover open
Courvercle ouverte
Calotta della custodia aperta
Tapa abierta

a Batterie
b Reset-Taste
c Stiftleiste für Lokale Erweiterung
d Betriebsarten-Vorwahlschalter S2

a 24-V-DC-Stromversorgung
b Eingang: „Schneller Zähler“,

(3 kHz)
c Alarmeingang
d 8 Digital-Eingänge

24 V DC und 24-V-DC-
Versorgung für die Ausgänge

e Steckbare Schraubklemme

f Statusanzeige der Eingänge
g Statusanzeige der Ausgänge
h 6 Digital-Ausgänge

24 V DC/0,5 A; kurzschlussfest
und überlastsicher
2 Analog-Eingänge (0 bis 10 V)
1 Analog-Ausgang (0 bis 10 V)

i Suconet-K-Schnittstelle/seriell
transparent (RS 485)

j Sollwertgeber P1, P2
k Schalter S1 für Busabschluss-

widerstände
l Programmiergeräte-Schnitt-

stelle (PRG)/seriell transparent
(RS 232)

m Speichermodul
n Statusanzeige der Steuerung

S1

Power Supply
24V 0V

1=Ready
2=Run
3=Not Ready
4=Battery

Suconet K

1 2

1 2 3 4

Digital
Input

Digital
Output

Analog
Input/Output

PS4-201-MM1

.0 Output
Power Supply.1 .2 .3 .4 .5

.0 .1 .2 .3 .4 .5 U0 U1 U10 0VA

.6 .7 24VQ 0VQ

a b d

g

hjk i

c

PRG

f

e

e

n

P1 P2

l

m

b

c

d

a

Reset

1 Halt/Diag.
2 Run
3 Run M-Reset

+

Battery

1
2
3

S2

Diag.
For Immediate Delivery call KMParts.com at (866) 595-9616

15890601.FM Seite 3 Montag, 15. Januar 2007 3:22 15
3/10

06
/0

1
AW

A2
7-

15
89

a 24 V DC power supply
b Input high-speed counter (3 kHz)
c Alarm input
d 8 24 V DC digital inputs and 24 V DC supply

for the outputs
e Plug-in screw terminal
f LED status display for the inputs
g LED status display for the outputs
h 6 24 V DC/0.5 A digital outputs; short-circuit proof

and overload protectetd 2 analog inputs (0 to 10 V)
1 analog output (0 to 10 V)

i Suconet K interface/serial transparent (RS 485)
j Setpoint potentiometer P1, P2
k S1 Switch for bus terminating resistors
l Programming device interface (PRG)/

serial transparent (RS 232)
m Memory module
n LED status display of the PLC

a Alimentation secteur 24 V CC Terre de protection
b Entrée compteur rapide (3 kHz)
c Entrée d’alarme
d 8 entrées digitales 24 V CC et 24 V CC

alimentation pur sorties
e Bornier à vis enfichable
f Afficheur d’état DEL entrées
g Afficheur d’état DEL sorties
h 6 sorties digitales 24 V CC/0,5 A;

protection courts-circuits et surchages
2 entrées analogiques (0 à 10 V)
1 sortie analogique (0 à 10 V)

i Liaison Suconet K/séquentiel transparent (RS 485)
j Module d’entrées de consignes
k S1 interrupteur pour résistance de terminaison

de bus
l Liaison pour appareils de programmation (PRG)/

séquentiel transparent (RS 232)
m Module de mémoire
n Afficheur d’état DEL de l’automate

a Battery
b Reset button
c Terminal for local expansion
d Mode selector switch S2

a Pile
b Bouton RAZ
c Connecteur pour extensions locales
d Sélecteur modes de fonctionnement S2

a 24 V DC alimentazione
b Ingresso contatore veloce 3 kHz
c ingresso interrupt
d 8 ingressi digitali 24 V DC e 24 V DC

alimentazione per uscite
e Morsetto a vite sfilabile
f Visualizzazione di stato a LED degli ingressi
g Visualizzazione di stato a LED degli uscite
h 6 uscite digitali 24 V DC/0,5 A;

protetto da cortocircuito e sovraccarico
2 ingressi analogici (0 a 10 V)
1 uscita analoga (0 a 10 V)

i Interfaccia Suconet K/in serie transparente (RS 485)
j Potenziometro P1, P2
k Interruttore S1 resistenze di terminazione bus
l Interfaccia di programmazione (PRG)/

in serie transparente (RS 232)
m Modulo di memoria
n Visualizzazione a LED di PLC

a 24 V DC alimentación
b Entrada de contador rapido 3 kHz
c Entrada de alarma
d 8 entradas digitales 24 V DC y

24 V DC alimentación para las salidas
e Terminal roscado enchufable
f LED visualización entradas
g LED visualización salidas
h 6 salidas digitales 24 V DC/0,5 A; a prueba de

cortocircuitos y seguridad contra sobrecargas
2 entradas analógicas (0 a 10 V)
1 salida analógica (0 a 10 V)

i Interface Suconet K/en serie transparente (RS 485)
j Encoder
k Interruptor S1 para bus resistancias terminales
l Interface aparatos de programmación (PRG)/

en serie transparente (RS 232)
m Módulo de memoria
n LED visualización del PLC

a Batteria
b Tasto di reset
c Connettore per espansioni locali
d Selettore modo di funzionamento S2

a Pila
b Pulsador Reset
c Regleta de bornes para extensiones locales
d Selector de modo de servicio S2
For Immediate Delivery call KMParts.com at (866) 595-9616

06
/0

1
AW

A2
7-

15
89

15890601.FM Seite 4 Montag, 15. Januar 2007 3:22 15
4/10

Anschlüsse – Connections – Raccordements – Collegamenti – Conexiones

a Schraubklemmen
24-V-DC-Netzanschluss, Anschlussquerschnitt
– flexibel mit Aderendhülse 2 x 0,75 mm2 bis 1,5 mm2

– massiv 2 x 0,75 mm2 bis 2,5 mm2

b Steckbare Schraubklemme
c Anschlussquerschnitte: Alle Klemmen sind für 1 x 1,5 mm2

oder 2 x 0,75 mm2 mit Aderendhülse ausgelegt.
d Stiftleiste für Lokale Erweiterungen LE4
e Suconet-K-Anschluss (RS 485)
f Programmiergeräte-Schnittstelle (RS 232)

+

S1 P1 P2

c

Power Supply

c

b

a

b

d

f e

24V 0V

Suconet K

1 2

.0 .1 .2 .3 .4 .5

.0 .1 .2 .3 .4 .5 U0 U1 U10 0VA

.6 .7 24VQ 0VQ
Output
Power Supply

PRG

1 2

3

Lokale Erweiterung
Local expansion
Extension locale
Espansione locale
Extensión local

Achtung!
Buchsenstecker nur im spannungs-
losen Zustand stecken oder ziehen.

Care!
Always switch off the power supply when
fitting or removing the socket connector.

Attention !
Le connecteur ne doit être branché ou
debranché qu´hors tension.

Attenzione!
Inserire o togliere il connetore solo a tensione
disinserita.

¡Atención!
Enchufar o desenchufar al conector hembra
sólo sin tensión.
For Immediate Delivery call KMParts.com at (866) 595-9616

15890601.FM Seite 5 Montag, 15. Januar 2007 3:22 15
5/10

06
/0

1
AW

A2
7-

15
89

a Screw terminal
24 V DC power supply
Connection cross-section:
– flexible with ferrule: 2 x 0.75 mm2 to 1.5 mm2

– without ferrule 2 x 0.75 mm2 to 2.5 mm2

b Plug-in screw terminal
c Connection cross-sections: All terminals are designed

for 1 x 1.5 mm2 or 2 x 0.75 mm2 with ferrule
d Terminal for LE4 local expander units
e Suconet K connection (RS 485)
f Programming device interface (RS 232)

a Bornier à vis
Alimentation secteur 24 V CC
Section de raccordement :
– avec embout : 2 x 0,75 mm2 à 1,5 mm2

– sans embout : 2 x 0,75 mm2 à 2,5 mm2

b Bornier à vis enfichable
c Section de raccordement : Toutes les bornes

sont conçues pour une section 1 x 1,5 mm2
ou 2 x 0,75 mm2 et douille d’embout.

d Connecteur pour extensions locales LE4
e Raccordement Suconet K (RS 485)
f Liaison pour appareils de programmation (RS 232)

a Morsetti a vite
Alimentazione 24 V DC
Sezione del cavo
– flessibile, con guaina 2 x 0,75 mm2 a 1,5 mm2

– rigido 2 x 0,75 mm2 a 2,5 mm2

b Morsetto a vite sfilabile
c Sezione del cavo: tutti i morsetti sono utilizzabili per

1 x 1,5 mm2 oppure 2 x 0,75 mm2 con guaina
d Connettore per espansioni locali LE4
e Collegamento Suconet K (RS 485)
f Interfaccia di programmazione (RS 232)

a Terminales roscados
Alimentación 24 V DC, Secciónes de conexión:
– flexible con casquillo 2 x 0,75 mm2 a 1,5 mm2
– macizo 2 x 0,75 mm2 a 2,5 mm2

b Terminal roscado
c Secciones de conexión: todos los terminales

están dimensionados para 1 x 1,5 mm2 o bien
2 x 0,75 mm2 con casquillo

d Regleta de bornes para extensiones locales LE4
e Conexión Suconet K (RS 485)
f Interface aparatos de programmación (RS 232)
For Immediate Delivery call KMParts.com at (866) 595-9616

06
/0

1
AW

A2
7-

15
89

15890601.FM Seite 6 Montag, 15. Januar 2007 3:22 15
6/10

Schirmerdung – Earthing the screen – Mise à la terre du blindage –
Collegamento alla terra dello schermo – Conexión a tierra de pantalla

* Signalleitungen (abhängig vom Modul) – Signal cable (depending on module) – Ligne de signaux (en fonction
du module) – Conduttore del segnale (dipendente dal modulo) – Línea de señalización (en función del módulo)

a für Hutschiene – for top-hat rail – pour profilé-
support – per guida – para guía simétrica

b für Montageplatte – for mounting plate – pour
plaque de montage – per piastra di montaggio –
para placa de montaje

PS4/EM4

*

*

a b

M4

ZB4-102-KS1

ZB4-102-KS1

FM 4/TS 35
(Weidmüller)

KLBü 3-8 SC
(Weidmüller)
For Immediate Delivery call KMParts.com at (866) 595-9616

15890601.FM Seite 7 Montag, 15. Januar 2007 3:22 15
7/10

06
/0

1
AW

A2
7-

15
89

Alternative Schirmerdung – Alternative screen earth – Mise à la terre du
blindage au choix – Collegamento alternativo dello schermo a terra –
Puesta a tierra alternativa de la pantalla
Falls die Schirmerdung auf Seite 6/10 aus Platzgründen nicht möglich ist.
In the event that the screen earthing arrangement on Page 6/10 is not possible due to lack of space.
Au cas où la mise à la terre du blindage en page 6/10 est trop encombrante.
Se il collegamento a terra dello schermo di pag. 6/10 richiede troppo spazio.
En caso de que la puesta a tierra de la pantalla en página 6/10 no sea posible por razones de espacio.

PS4/EM4

PS4-...
EM4-...

PS4/EM4

PS4-...
EM4-...

2.5 mm2 (< 11 cm)
For Immediate Delivery call KMParts.com at (866) 595-9616

06
/0

1
AW

A2
7-

15
89

15890601.FM Seite 8 Montag, 15. Januar 2007 3:22 15
8/10

Busabschlusswiderstände – Bus terminating resistors – Résistances de terminaison
de bus – Resistenci di terminazione bus – Resistencias terminales de bus

Batterie – Batery – Pile – Batteria – Pila

Speichermodul – Memmory Module – Module de mémoire – Modulo di memoria –
Módulo de memoria

Schalterstellung im Auslieferungszustand

Factory setting

Position à la livraison

Impostazione di fabbrica

Posición de entrega

S1: 1 ON
2 ON

Achtung!
Nur im eingeschalteten Zustand
stecken oder ziehen.

Attention!
Only fit or remove if switched on.

Attention !
Ni enficher ni retirer que lorsque l’appareil
est sous tension.

Attenzione!
Inserire/togliere solo a tension inserita.

¡Atención!
Meter o sacar sólo con tensión.

Achtung!
Nur im spannungslosen Zustand
stecken oder ziehen.

Attention!
Always switch off the power supply when fitting
or removing.

Attention !
Brancher/débrancher uniquement hors tension.

Attenzione!
Inserire o togliere solo a tensione disinserita.

¡Atención!
Enchufar o desenchufar sólo sin tensión.

S1

On
Off 1 2

P1 P2

1
2

1

2

3

4

For Immediate Delivery call KMParts.com at (866) 595-9616

15890601.FM Seite 9 Montag, 15. Januar 2007 3:22 15
9/10

06
/0

1
AW

A2
7-

15
89

Montage – Fitting – Montaggio – Montaje
auf Montageplatte mit 35-mm-Hutschiene a (senkrecht ohne LE oder waagerecht)
on mounting plate with 35 mm top-hat rail a (vertical without LE or horizontal)
sur plaque de montage avec profilé-support 35 mm a (vertical sans LE ou horizontal)
su piastra di montaggio con guida DIN 35 mm a (verticale senza LE o orizzontale)
sobre placa de montaje con guía simétrica de 35 mm a (vertical sin LE ó horizontal)

auf Montageplatte (senkrecht ohne LE oder waagerecht)
on mounting plate (vertical without LE or horizontal)
sur plaque de montage (vertical sans LE ou horizontal)
su piastra di montaggio (verticale senza LE o orizzontale)
sobre placa de montaje (vertical sin LE ó horizontal)

35

42
.5

4542
.5

a
1

23

ZB4-101-GF1
For Immediate Delivery call KMParts.com at (866) 595-9616

06
/0

1
AW

A2
7-

15
89

15890601.FM Seite 10 Montag, 15. Januar 2007 3:22 15
10/10

Bohrschablone M 1 : 1
Template for holes, scale 1 : 1
Gabarit de perçage, échelle 1 : 1
Dima di foratura, scala 1 : 1
Plantilla para taladros, escala 1 : 1

100

40
.2

5
94

.2
5

15
.2

5
10

0
19

.2
5

M
4

EM
4/

PS
4

Moeller GmbH, Industrieautomation, D-53115 Bonn
© 1997 by Moeller GmbH

Änderungen
vorbehalten

06/01 AWA27-1589 DE13 Doku/Eb
Printed in Germany (01/07)

For Immediate Delivery call KMParts.com at (866) 595-9616

M K/ockner /^fs
OELLER ®L

Programming

SUCOcontrol
PS 4-201-MM 1

sucos
Automation

4/94 AWB 27-1186-GB

IBM is a registered trademark of International Business
Machines Corporation.

All other brand and product names are trademarks or
registered trademarks of the owner concerned.

1st edition 4/94

© Klockner-Moeller, Bonn
Authors: Olaf Duda, Jiirgen Herrmann, Ralf Stang
Editor: Barbara Petrick
Translators: Karin Weber, Terence Osborn

All rights reserved, including those of the translation.
No part of this manual may be reproduced in any form
(printed, photocopy, microfilm or any other process)
or processed, duplicated or distributed by means of
electronic systems without the written permission
of Klockner-Moeller, Bonn.

Subject to alteration without notice.

Printed on bleached cellulose.
100 % free from chlorine and acid.

Klockner-Moeller GmbH, 53105 Bonn, Germany s"bie,c"° *ffl3 * W B j ? - " f "°B
D

 FLS'KI ,r
' alterations Printed in the Federal Republic oi Germany (8/94)

Programming of the
SUCOcontrol PS4-201-MM1

Contents

About this Manual III

1 Programming: Procedure 1-1

2 Programming: Elements and Rules 2-1

3 Structuring Programs 3-1

4 Commissioning 4-1

5 IL Instructions 5-1

6 Function Blocks 6-1

7 SK Sequential Control Function Block 7-1

8 Indirect Addressing 8-1

9 Programming Examples 9-1

Appendix A-1

Klockner-Moeller 4/94 AWB 27-1186-GB

4/94 AWB 27-1186-GB Klockner-Moeller

Programming
of the SUCOcontrol PS4-201-MM1
About this Manual

The documentation for the PS4-201-MM1 is divided
into three sections:

- Hardware, operation, documentation

- Programming

- Hardware and engineering

The manual AWB27-1185-GB explains in which way you
are supported by the SUCOsoft S30-S 4-200: with the
creation of the user program in IL (Instruction List), with
the device configuration and the commissioning of the
controller. This manual also contains the installation
instruction, the documentation of user programs, a
chapter which describes the "Operation of SUCOsoft
S30-S 4-200" with emphasis on the "IL editor" and the
"Device configurator".

This manual, AWB27-1186-GB "Programming",
contains information required for programming the
PS 4-201-MM 1. The procedure for creating, structuring
and commissioning the program is described first of all.
Also included are overviews of all IL instructions and
function blocks. The manual also includes practical
examples of programming.

The manual AWB27-1184-GB, "Hardware and
Engineering", explains how the PLC is to be mounted
and designed. It describes the elements of the
PS 4-201-MM1 and their functions. The chapter
"Addressing" describes the general syntax rules for
addressing the stations in a SUCOnet K/K1 network.
This is also described in the chapter "Networking with
SUCOnet K/K1" and is illustrated with examples.

Klockner-Moeller 4/94 AWB 27-1186-GB III

Programming
of the SUCOcontrol PS4-201-MM1
About this manual

The following table gives an overview of the topics
described in the documentation and where they can be
found. The topics are listed in the order they are
normally required.

Steps

1. Installing SUCOsoft S 30-S 4-200

2. Operation of SUCOsoft S 30-S 4-200

3. Writing programs

3.1 Setting system parameters

3.2 Configuring stations

3.3 Introduction to the IL editor

3.4 Introduction to program elements and
programming rules

3.4.1 Structuring programs

3.5 Incorporating the configuration file
in the program

3.6 Entering program code

4. Compiling programs

5. Transferring programs to the PLC

6. Commissioning the PLC

7. Error/diagnostics description

8. Program documentation

Described in

AWB 27-1185-GB, Chapter 1

AWB 27-1185-GB, Chapter 2

AWB 27-1186-GB, Chapter 1

AWB 27-1186-GB, Chapter 1

AWB 27-1186-GB, Chapter 2,
Device configurator

AWB 27-1185-GB, Chapter 2,
IL editor

AWB 27-1186-GB, Chapter 2

AWB 27-1186-GB, Chapter 3

AWB 27-1186-GB, Chapter 1

AWB 27-1186-GB, Chapter 1

AWB 27-1186-GB, Chapter 1

AWB 27-1186-GB, Chapter 1

AWB 27-1186-GB, Chapter 4,
AWB 27-1184-GB, Chapter 7

AWB 27-1186-GB, Chapter 4,
AWB 27-1184-GB, Chapter 7

AWB 27-1185-GB, Chapter 3

IV 4/94 AWB 27-1186-GB Klockner-Moeller

1 Programming: Procedure

Contents

General

Setting system parameters
- Program test in RUN
- Start after NOT READY
- Maximum cycle time in ms
- Active marker range
- Retentive marker range

(also after cold start)
- Retentive marker range
- Forcing marker range in RUN
- Password
- Save versions of function blocks
- Create a utilisation table
- Version number for user program

Creating a device configuration

Writing a program
- Incorporating the configuration file

1-3

1-5
1-6
1-7
1-7
1-7

1-7
1-8
1-8
1-8
1-9
1-9
1-9

1-11

1-13
1-14

Compiling a program 1-15
- Backup copies 1-16

Transferring a program to the PLC 1-17

Klockner-Moeller 4/94 AWB 27-1186-GB 1-1

r

1-2 4/94AWB27-1186-GB Klockner-Moeller

Programming: Procedure

General

This chapter provides you with information which you
need for the generation of a program. Besides the input
of the program code, you will find several preparatory
and final tasks which are explained in the order they will
be required.

The following description presumes two requirements:

- SUCOsoft S30-S 4-200 is installed:
see AWB 27-1185-GB, Chapter 1.

- A knowledge on the general operation and the user
interface of the SUCOsoft S 30-S 4-200:
see AWB 27-1185-GB, Chapter 2.

Klockner-Moeller 4/94 AWB 27-1186-GB 1-3

/

1-4 4/94 AWBP7-11R6-GB Klockner-Moeller

Programming: Procedure

Setting system parameters

The user program contains information on the system
configuration of the PS 4 200 series in the header of the
.q42 source file. This data is converted by the compiler
and thus transferred to the controller.

Settings of the following functions can be made or
modified via the system parameters:

- program memory test
- start behaviour after NOT READY
- maximum cycle time
- active marker range
- retentive marker range (also after cold start)
- retentive marker range
- password
- version number of user program

Starting from the main menu, press the following keys in
order to set the system parameters:

- [F1] PROGRAMMING
- [F3] SYSTEM PARAMETER EDITOR

You are then asked to state the name of your program
file and the corresponding drive, since system
parameters are parts of the user program. Enter or
select the required name and drive to activate the
following mask:

- [F2] SYSTEM PARAMETERS

Klockner-Moeller 4/94AWB27-1186-GB 1-5

Programming: Procedure

Setting system parameters

S V S T E M P A R A M E T E R S :

Program c h e c k in RUN
S t a r t a f t e r NOT READV
Maximum c y c l e t ime in ns

Akt ive marker range
R e t e n t i v e marker range

< a l s o a f t e r c o l d s t a r t)
R e t e n t i v e marker range

Force marker range in RUN from MB

Password
Save v e r s i o n s o f f u n c t i o n b l o c k s
Create u t i l i s a t i o n t a b l e
U e r s i o n number f o r u s e r program

Mark n o n - r e t e n t i v e r a n g e s w i t h -
- MAIN MENU—PROGRAMMING— >SVSTEM PARAMETER EDITOR
F 1 Return

<Ves=l.No=0):
CHalt=0.Cold=l,Warm=2):

<1...255>:

up to MB <0...32767):
up to MB <0...32767):
up to MB <0...32767):
up to MB <0...32767):
up to MB <0...32767):
C0...32767):
up to MB <0...32767)

<Ves=l,No=0>
<¥es=l,No=0)

F10 Help

[0]
[0]

[60]

4096]
]
1
]
J
1
]
]

[0]
[0]

[0]

Figure 1-1: System parameters menu

The square brackets contain the default setting values.
After you have entered all system parameters according
to your requirements, exit the menu via [F1] Return. You
can now save the set values.

Program test in
RUN

The compiler builds a checksum which is saved in the
compiled program at a defined location. If you select
yes = 1, the operating system of the PS 4 200 series
checks the user program during the run time with this
checksum algorithm. The PLC is stopped if deviations
are detected between the checksums. The error is
entered in the diagnostics status word where it is
indicated. The check is repeated cyclically. The default
setting is No = 0.

1-6 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Procedure

Setting system parameters

Start after
NOT READY

Maximum cycle
time in ms

This defines how the controller should behave after NOT
READY. The default setting is Halt.

0 = Halt
1 = Cold start
2 = Warm start

Detailed description in
AWB 27-1184-GB, Chapter 4

The default setting is 60 ms. The cycle time can be max.
255 ms. This setting does not control the cycle time of a
user program but only defines an upper limit for the
malfunction check. Only set a shorter cycle time if you
know the real processing time of the program. In this
case, a longer processing time indicates an error.

The maximum cycle time to be selected depends on the
type and size of the user program concerned. If the set
cycle time is exceeded, the ETC bit is set in the
diagnostics status word (DSW) and the controller
switches to Halt.

Active marker
range

Retentive marker
range (also after
cold start)

The default setting is MB 0 to MB 4096. Set the marker
range to suit the requirements of the markers used in the
user program since all markers set require memory. If
you use markers in the user program which have not
been defined in the default setting, the compiler will
output a corresponding error message.

Set the marker range for data which is to be kept
retentively also with a cold start. This marker range
forms a part of the-selected active marker range and
may not overlap with the retentive marker range (see
next paragraph).

Due to the dynamic memory management in the
SUCOsoft S 30-S 4-200 it is necessary to save this
marker range if the device configuration is modified
(adding or removing input/output elements). Write the
retentive marker range on a flash EEPROM memory
module via the SDAT function block before transferring
the modified user program. After the modified program
has been transferred to the controller, the saved marker

Klockner-Moeller 4/94 AWB 27-1186-GB 1-7

Programming: Procedure

Setting system parameters

Retentive marker
range (also after
cold start)

Retentive marker
range

Forcing marker
range in RUN

range must be reloaded from the flash EEPROM
memory to the PLC memory via the RDAT function
block. This is only necessary if the retentive marker
range is used.

In the event of a voltage failure the retentive markers
keep their previously defined states. They are also kept
with a restart of the operating system. This marker range
forms a part of the selected active marker range and
may not overlap with the cold start-retentive range (see
previous paragraph).

The defined markers can be dynamically forced in the IL
status display while the controller is in RUN. This marker
range forms a part of the selected active marker range.

Dynamic forcing enables a desired program process to
be forced or particular actions to be initiated by defining
special data values. It is also possible to organize 18
markers in one block in order to observe their states.You
can find detailed information in Chapter 4, IL Instruction
List.

Password The entry of a password prevents unauthorised access.

The default setting is "No password". The password can
have up to eight characters. It is connected with the user
program and is incorporated during the compiler run. A
password that is already saved can be overwritten by a
new one.

A password is scanned when data or the PLC status is
to be modified. With the following functions the
password is scanned if the controller contains a
program which is password protected:
- Start
- Stop
- Diagnostic counter reset
- Diagnostic status word reset
- Retentive marker reset

1-8 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Procedure

Setting system parameters

- Force setting
- Online programming
- Compare PS <—> Drive
- Transfer PS «—> Drive
- Transfer Drive <—> PS
- Set date in PS

The following functions can be executed without stating
a password since the data involved is only read and not
modified:

- Status indication
- Display range
- Device status
- I/Q indication

If no password or the wrong one is entered, the function
is not executed and the error message "Incorrect
password! Function cannot be executed" is output.

If you cannot remember your password, you can find it
in your backup copy in the source file (name).q42 in the
System parameter entry menu. See also section
Compile programs/backup copies.

Whoever is able to access the source file with the
system parameters, can execute all password protected
functions.

Save versions of The version of the used function blocks is saved with
function blocks Yes = 1. This considerably facilitates a possible

troubleshooting since different versions of function
blocks can exist for the same function. The default
setting is "0 = Not save".

This allows you to save in the utilisation table the
corresponding physical addresses for the used logic
addresses (marker, etc.) in the PLC memory. See also
AWB 27-1185-GB, Chapter 3.

Version number for The default setting is 0. Use this field to identify specific
user program program versions.

Create a utilisation
table

Klockner-Moeller 4/94 AWB 27-1186-GB 1.-9

1-10 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Procedure

Creating a device configuration

In order to create the device configuration, proceed as
follows starting from the main menu:

[F1] Programming
[F4] Device configuration
Enter a name for the configuration file or select a file
from the existing files
[F2] Configure

PS4-201-MM1 116-DX1 116-DX1 116-DXi

PS3-DC

EM4-201-DX2

EM4-201-DX1

-[EM4-201-DX1

RMQ-16I

- MAIN MENU —>PROGFfiMflING
F 1 Return
F 2 Add s t a t i o n
F 3 Add nodule

->DEUICE CONFIGURATION
F 4 Replace module
F 5 Zoon/Normal
F & Parameter e d i t o r

F 8 D e l e t e
F10 Help

c:e4000am.k42

Figure 1-2: Device configuration menu

This menu is used for creating the device configuration.

Use "Add station" to expand the configuration vertically.
Use "Add module" to expand the configuration
horizontally. After pressing one of these a selection box
appears containing the stations/modules to be selected.
Press [F3] SAVE PROGRAMS to save the file
(name).k42.

The (name).k42 configuration file must always be
incorporated at the beginning of the user program, also
if the PS4-201-MM1 is used on its own.

You can find detailed information on the device
configuration in AWB 27-1185-GB, Chapter 2.

Klockner-Moeller 4/94 AWB 27-1186-GB 1-11

1-12 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Procedure

Writing a program

The user program can also be considered as a job
specification for the programmable controller which
contains a complete description of all control
sequences.

Proceed as follows to create the user program, starting
from the main menu:

- [F1] Programming
- [F2] Programming IL
- Entry of the source and reference file via selection

boxes
- [F2] Edit program file

00000
001
002
00001
001
002
003
00002
001
002
003
004
005
006
007
008
009
010
011
012

CONFIG

INPUT

STRT

- MftIN MENU—
F 1 Return

"
t t inc lu .de "e4000an.

"reading input
L I B 1 . 2 . 0 . 0
= MB32

s

" S t a r t of DEMO-Pro
L K 1
S M 1 0 . 0
S n 1 8 . 0

L K 1
AN M 1 1 . 1
= M 1 1 . 2
L K 1
- 11 1 1 . 1
L M 1 1 . 2
JCN PROGRAM
L KHB 1

k42"

gran

->PRO

F 2 Open b lock
F 3 S e l e c t bloc

F 4
F 5

k F 6

Add
Find
Copy

l i n e

STRT_SK0
Master-Mode

F
/ Replace
b loc ks F

7
8
9

D e l e t e
D e l e t e
D e l e t e

i n s e r t b l o c k s
current l i n e
range

Figure 1-3: Program editor menu

Klockner-Moeller 4/94 AWB 27-1186-GB 1-13

ttinclu.de

Programming: Procedure

Writing a program

The following overview shows the topics which you
should know before entering the program code:

A knowledge of programming

IL editor

Programming: elements and rules

Structuring programs

IL instructions

Function blocks

The step sequencer function block
(for advanced users)

Indirect addressing
(for advanced users)

Described in

AWB27-1185-GB, Chapter 2

AWB27-1186-GB, Chapter 2

AWB27-1186-GB, Chapter 3

AWB27-1186-GB, Chapter 5

AWB27-1186-GB, Chapter 6

AWB 27-1186-GB, Chapter 7

AWB27-1186-GB, Chapter 8

Incorporating the Incorporating the configuration file is necessary for the
configuration file compiler run. Since this configuration contains

information on the type of expansion modules, slave
controllers, etc. and on which locations they are used,
the compiler can thus check whether the addressing
and other specifications are correct. The correct syntax
for this instruction is the following:

• include "configuration file.k42"

This instruction must always be the first one in the
program. This also applies if the PS 4-201-MM 1 is used
on its own, otherwise an error message is output when
compiling the user program.

1-14 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Procedure

Compiling a program

The IL instructions must be compiled in order to obtain
an executable program.

Note!

Please read the section Backup copies on the
next page before you start the compiler run.

Select from the Programming menu [F5] Compiler in
order to compile the program. Specify the source and
reference file required via the two selection boxes
displayed in succession. You are then asked whether
Include files are always read in by the same drive. If you
answer with Yes, you will be asked for the standard drive
(A, B, C,...).

If you enter No, you are asked to state an appropriate
drive for each Include instruction found during the
compiler run. Answering with No would thus only be
usefull if the corresponding Include files are saved on
different drives.

Select the drive via F1 in the selection boxes. The
compiler run then starts. If the run is executed without
errors, the executable program can be transferred into
the controller, otherwise the errors which are listed
according to block and line numbers must be rectified.
An executable program is only generated if all errors
have been rectified.

Klockner-Moeller 4/94 AWB 27-1186-GB 1-15

Programming: Procedure

Compiling a program

Backup copies After the user program has been compiled, it cannot be
discompiled into the original program code. We
therefore advise you to make backups and/or create
documentation of the following files:

- .q42 source file
- .z42 reference file
- .k42 configuration file

This measure is also recommended if you cannot
remember your password anymore. You can find it in
your backup copy of the source file (name).q42 in the
System parameter entry menu.

1-16 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Procedure

Transferring a program to the PLC

Select [F2] Test/Commissioning in the Programming
menu and [F6] Transfer drive —> PS in order to transfer
the program to the controller. After you have selected
the file (name.p42) to be transferred via the selection
box, the file is transferred to the controller.

If there is already a user program in the PLC, it is
overwritten by the new program. If the previous program
is protected with a password, this password must be
entered before the program can be overwritten.

After the transfer has been carried out successfully, a
message is output which informs you on how many
bytes (size of the file (name).p42) have been transferred
and on the size of the remaining memory in the PLC.

You can find further information on other transfer
operations, on Test/Commissioning functions and the
online modification in Chapter 4.

Klockner-Moeller 4/94 AWB 27-1186-GB 1-17

1-18 4/94 AWB 27-1186-GB Klockner-Moeller

2 Programming: Elements and Rules

Contents

Elements of an instruction
- Addressing the operands
- Digital inputs
- Analogue inputs
- Counter input
- Outputs
- Digital output
- Analogue output
- Markers
- Constants
- Real-time clock
- Function block parameters
- System specific operands
- Peripheral operands
- Symbolic operands
- Negation of operands
- Operations

Function blocks
- Overview
- Organisation and location of the function

blocks
- Number of function blocks
- Call-up of the function blocks
- Behaviour of the function block inputs
- Incorporation into the user program
- Retentive function blocks

Registers
- Working register
- Auxiliary register
- Status register
- Stack register

2-3
2-5
2-7
2-7
2-7
2-8
2-8
2-9
2-9

2-11
2-11
2-13
2-13
2-14
2-15
2-18
2-18

2-21
2-23

2-24
2-26
2-26
2-27
2-28
2-31

2-35
2-37
2-37
2-37
2-39

Handling intermediate results 2-41

Klockner-Moeller 4/94 AWB 27-1186-GB 2-1

Programming: Elements and Rules

IL syntax rules
- Instruction line
- Sequence
- Block
- Main program

Pre-processor instructions
- Incorporating the configuration file
- Inserting files
- Combining files
- Control of documentation

2-45
2-45
2-45
2-48
2-49

2-53
2-54
2-54
2-55
2-55

2-2 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Elements of an Instruction

The user program is a set of instructions for the
programmable controller which describes the entire
control process. An instruction is the smallest self-
contained unit of a program. An instruction can be
written in one line and contains a job for the controller
which cannot be divided into further units. The AND
sequence and the Addition function are typical
instructions.

An instruction consists of an operator and an operand in
accordance with DIN 19239 (IEC 65 A).

The operator specifies the function to be executed. It
instructs the processor how to process the operand in
question.

The operand consists of operand identifiers and
parameters, and may be extended if necessary. The
operand identifier specifies the type of operand involved
whilst the parameters specify exactly which parameter
section of the operand is to be selected. For this
purpose, the location of the operand is related to the
network (PS 4 200 series, EM 4, LE 4) and the word/byte
address and the bit number are stated.

The SUCOsoft S 30 programming language recognizes
the following operand types:

Inputs- I
Outputs - Q
Markers - M
Constants - K
System-specific operands
Symbolic operands

Klockner-Moeller 4/94 AWB 27-1186-GB 2-3

Programming: Elements and Rules

Elements of an Instruction

Operator section

Opera­
tion

Exten­
sion

Instruction

I
Operand section

Operand
Identifier

; Exten-
| sion
L J

Parameter

Line Station Module
no.

Figure 2-1: Structure of an instruction

Word/
byte address

Bit-
number

The following table shows all operands which can be
used with the instructions. Ensure that the data type (bit,
byte, word) stated in each instruction is the same as the
data type of the operands.

Table 2-1: Operand overview

Designation

Inputs1)

Outputs

Markers

Constants1)

Real-time clock')

Peripheral access

Status/diagnosis

Communications data

Information

Bit

I

Q

M

K

-

IP1), QP

IS1)

-
INB x.y1)

Byte

IB, IAB, ICB

QB, QAB

MB

KB, KHB

CKxx

IPB1), QPB

ISB1)

RDB, SDB

-

Word

IW, IAW, ICW

QW, QAW

MW

KW, KHW

-

-

ISW1)

-

-

1)These operands cannot be used for the following operations:
- Allocation (=)
- Reset (R)
- Set (S)

2-4 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Elements of an Instruction

Addressing the
operands

The following example shows the required logical syntax
of the PS 4 200 series for the unique addressing of the
operands:

I x.x.x.x.x

— Bit number (0 ...7)

— Byte number (0 ... y)

— Module (0 ... 6)

— Station (0 ... 8)

— Line number (0 ... 3)

y depends on the type of station/module concerned

The correct syntax for the seventh digital input bit in
module 1 (LE) which belongs to the slave 1 (EM) and
which is assigned to line 1 is the following:

11.1.1.0.7

If the inputs (I 0.0 -1 0.7) or the outputs (Q 0.0 - Q 0.5)
are addressed in the PS 4-201-MM1 basic unit, the first
three digits are not necessary. If they are entered by the
user, they are removed automatically when the line is
completed. The inputs/outputs of all expansion modules
must be addressed via the five-digit address syntax.

The same applies to the addressing of the markers. If
the markers are addressed in the basic unit, the
addressing is identical with that of the other basic unit
operands. Furthermore, parallel bus markers (LE bus
markers) can be used in the horizontal (i.e. local) level.
These are:

M O.O.Lx.y. - M 0.0.6.x.y. (bit, byte, word)

The access to these markers requires more cycle time
than the access to the markers of the basic unit, since
the parallel bus must be opened for each access.

All other stations on the line do not have markers.

Klockner-Moeller 4/94 AWB 27-1186-GB 2-5

Programming: Elements and Rules

Elements of an Instruction

Adressing the
operands

Inputs

SUCOsoft S 30-S 4-200 also offers the possibility of
indirect addressing. You will find a detailed description in
Chapter 8, Indirect addressing.

The Inputs constitute the interface between the external
environment of the programmable controller and the
programmable controller itself. External signals reach
the PLC via the inputs and are processed further.

Bit inputs are specified by the appropriate byte number
and the bit number within the byte concerned. These
two numbers are separated by a full stop.

Byte inputs are identified by the appropriate byte
number and the letter B.

Word inputs do not require the bit number and the full
stop. They are always even numbers. The letter W is
required as an extension.

2-6 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Elements of an Instruction

Digital inputs IW 0.0.1.0

IB 0.0.1.1 IB 0.0.1.0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Input word 0

Analogue inputs

Figure 2-2: Input addresses

If the PS 4 200 series operates on its own, 8 digital bit
inputs are available. The number of digital inputs can be
increased by 6 x 16 bits by using LE4 modules.

The digital input words are always addressed via the
image register.

The 2 standard analogue inputs of the PS 4 200 series
are not optocoupled. Only analogue values from 0 to
10 V d.c. can be scanned and handled with a 10-bit
resolution. The program addresses the inputs either as
absolute or symbolic operands.

This addressing applies also for the two setpoint
potentiometers of the PS4-201-MM1 which can be
considered as two more analogue inputs.
Read the analogue inputs:
IAW 0 Setpoint potentiometer
IAW 2 Setpoint potentiometer
IAW 4 Terminal
IAW 6 Terminal

Counter input The PS 4 200 series provides a high-speed counter as a
standard feature which is accessed via the alarm
function blocks.

Klockner-Moeller 4/94 AWB 27-1186-GB 2-7

Programming: Elements and Rules

Elements of an Instruction

Outputs The signals generated in the PLC are transmitted to the
connected peripherals via the outputs. They constitute
the interface between the programmable controller and
the process.

Bit outputs are defined with the byte number and the
corresponding bit number, separated by a full stop.

Byte outputs contain the byte number and also the
letter B.

Word outputs do not have a bit number or a full stop.
They are always even. The letter W must be added.

Digital outputs QW 0.0.2.0

QB 0.0.2.1 QB 0.0.2.0
I I

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

x — Output word 0 -]

Figure 2-3: Output addresses

Unlike the input image registers, the output image
registers have a read/write feature. The values in the
image register can be read back by the user program for
further processing.

Write : = Q 0.0
Read: L Q 0.0

2-8 4/94AWB27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Elements of an Instruction

Analogue output The PS 4 2 0 0 series provides one analogue output
(0-10 V d.c.) as a standard feature wi th a 12-bit
resolution (0...4095). The analogue output is either
addressed as an absolute or symbol ic operand. The
analogue output cannot be read.

Example:
The value 4000 is to be output on Q A W 0 .
L KW 4000
= Q A W 0

Markers M markers are used to store intermediate results
produced dur ing the data processing operat ions of the
PLC.

The number of the used markers (Bit, Byte, Word) is only
l imited by the memory range prov ided, i.e. the system
parameters entered by the user.

Bit markers are def ined wi th the byte number and the
corresponding bit number, separated by a full s top.

Byte markers contain the byte number and also the
letter B.

Word markers do not have a bit number or a full s top.
They are always even. The letter W must be added .

MW0

MB1 MB0

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

M Marker word 0

Figure 2-4: Marker addresses

Klockner-Moeller 4/94 AWB 27-1186-GB 2-9

Programming: Elements and Rules

Elements of an Instruction

Markers Markers can always be read back and their retentive
behaviour in the event of a power failure can be set as
required. Two marker ranges which retain their data in
the event of a power failure can be selected for
programming. One marker range is freely available. The
other one is reserved for the cold start retentive data.
The markers located outside of this range are always
reset to "0" when the PLC is powered up after a cold
start. These retentive ranges can be set in the System
parameters menu of SUCOsoft S30 and only apply to
the user program concerned.

Parallel bus markers
The user can access the parallel bus of the PS 4 200
series only in the horizontal string 0. Each of the stations
LE1 to LE6 (0.0.1 - 0.0.6) is connected to the basic unit
via the parallel bus and has a parallel bus page of 256
bytes each. The operand syntax is for example:

M 0.0.1.x.y with x = byte address and
y = bit address

The general operand syntax is the following:

<Marker ope randxDa ta type>0.0.module.byte.bit

with data type = bit, byte, word

The access to the parallel bus markers always requires
more cycle time than the access to the markers of the
basic unit, since the parallel bus is normally closed and
must be opened for each access.

2-10 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Elements of an Instruction

Constants Fixed starting and reference values can be entered by
means of the K constants. Depending on the data type
selected, the constant values are available in the
following ranges:

Bit: K 0 and K 1
Byte: KB-128...KB 0...KB 127
Word: KW-32768...KW 0...KW 32767

In addition to the above representation, the
programming language also accepts constants written in
the "KH" hexadecimal form. Hexadecimal constants are
possible within the following ranges:

Byte: KHB 0...KHB FF
Word: KHW 0...KHW FFFF

The plus/minus sign is not stated separately for
hexadecimal constants. It is already contained in the
most significant digit of the hexadecimal value.

The constants KHW FFFF thus corresponds to the
decimal constant KW - 1 .

The constant values are fixed during programming and
cannot be altered while the program is running.

Real-time clock The CPU of the PS 4 200 series is provided with a real­
time clock, thus enabling date and time dependent
programming. The clock can be set via the SUCOsoft
S30-S 4-200 software (Test and Commissioning menu) if
the PC and PLC are connected.

The current time and date values are entered (seconds
resolution) by the system routine into a specially
reserved data range which is organised in byte format.
This data can be accessed in byte format by the
SUCOsoft S30-S 4-200 software using the Load
instruction. The following syntax is permissible:

Klockner-Moeller 4/94 AWB 27-1186-GB 2-11

Programming: Elements and Rules

Elements of an Instruction

L
L
L
L
L
L
L

CKSS
CKMM
CKHH
CKYR
CKMT
CKDY
CKWD

Seconds
Minutes
Hours
Year
Month
Day
Weekday

0-59
0-59
0-23
0-99
1-12
1-31
0-6
Sunday-Saturday

These values are made available by the PS 4 200 series
in decimal form so that direct comparisons can be made
in the IL program with constants specified by the user.

These operations enable cyclical alarms to be preset as
required.

The real-time clock operates with an accuracy of
± 10 ppm, which corresponds to a maximum deviation
of + 10 seconds in 11.5 days.

Example
A one-minute alarm is to be output every day at
1600 hrs.

ALARM

CONTINUE

LKO
= M x.y
LCKHH
CPKB16
BNE CONTINUE
LCKMM
CPKBO
BNE CONTINUE
LK1
= M x.y

If it is not 1600 hrs,
branch to CONTINUE.

The current minute
is compared with 0.

This sequence is run
for one minute at 1600 hrs.

2-12 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Elements of an Instruction

Function block In addition to the settings carried out directly after the
parameters module is called up, the function block parameters

can be set at any point in the user program. In this case,
the function block name and number as well as the
parameter concerned are used together to form an
operand, e.g.

L C 25 Q Output Q of counter module 25
= CP 6 11 Input 11 of the comparator 6

With this kind of function block setting the function
block inputs can be seen from the point of view of the
user program as outputs, i.e. they can be read back,
whilst function block outputs are treated as inputs.
Function block outputs can only be read via the user
program and cannot be written.

System specific The PS 4 200 series has system-specific operands for
operands monitoring internal faults via the program or for

exchanging data between the operating system of the
programmable controller and the user program. These
operands are described in the following sections.

Peripheral operands IP, QP
Peripheral operands can be used to access the inputs/
outputs in the basic unit of the PS 4 200 series
irrespective of the cycle time and the image register. The
use of these operands in control sequences is analogue
to all other operands. Alarm processing, for example, is
a typical application for these operands.

The peripheral operands can be accesed in bit and byte
format. When the QPBO is accessed, remember that the
outputs QP0.6 and 0.7 cannot be accessed since they
do not exist in the basic unit, they are set to zero when
the entire byte is accessed.

Klockner-Moeller 4/94 AWB 27-1186-GB 2-13

Programming: Elements and Rules

Elements of an Instruction

Peripheral Example:
operands IP, QP L IP 0.0

A IP 0.5
= QP0.3

The following applies for the inputs, since the access is
only possible in the basic unit:
IP 0.0 ...0.7
IPB0

for the outputs:
QP 0.0 ...0.5
QPB0

Note!

The output image changes when using
peripheral operands.

Status/diagnostics inputs IS
These inputs contain the information on the status or
allow a diagnosis of the connected stations. All local
expansion and external modules etc. are connected
stations. All operations are possible with this data,
taking into account the permitted data types.

You can find a detailed description of the diagnostics
status word (status/diagnostics inputs IS) of the basic
unit PS 4-201-MM1 in Chapter 4, Diagnostics status
word. Local expansion and external modules are
explained in the relevant hardware description.

2-14 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Elements of an Instruction

Communications data RD/SD
This data () is exchanged among active SUCOnet
stations or between the PS 4 200 series basic unit and
the active stations via the SUCOnet K field bus. (SD =
SEND DATA, RD = RECEIVE DATA). All operations are
possible with this data, taking into account the
permitted data types. You can find further information on
this data and a detailed description of the
communications data in AWB27-1184-GB, Chapter 6.

Information data INB
The information data contains information on the status
of the controller. They can only be accessed in bit format
and enable a reaction depending on the status of the
controller.

You can find detailed information on the meaning of the
individual bits of the information byte INB in Chapter 4,
Commissioning.

Symbolic All the operands (I, Q, M etc.) listed in this chapter can
operands be addressed in the program via their respective

operand identifier and parameter or via symbolic
operands.

A symbolic operand consists of up to eight characters
which the user can select as required.

Symbolic operands are listed in the reference file and
are assigned with the appropriate operand code.
Additional information such as behaviour (M/B), terminal
designation and operand comments can also be listed in
the reference list.

Klockner-Moeller 4/94 AWB 27-1186-GB 2-15

Programming: Elements and Rules

Elements of an Instruction

Symbolic Example of a reference list:
operands

Symbol

SO
S1
S3
LS4
LS5
S6
S7
S8
YO
Y1
H2
H3
H7
H8

Operand

10.0
10.1
I 0.2
I 0.3
I 0.4
I 0.5
I 0.6
IB 1.1.2.0
QO.O
Q0.1
Q0.2
a o.3
0.0.5
QW 1.1.4.0

M/B

M
M
M
M
M
M
M
set

Terminal

1x0
1x1
1x3
1x4
1x5
1x6
1x7
1x40...47
2x0
2x1
2x2
2x3
2x7
2x40...56

Operand comment

Limit switch, deflector in "feed position"
Limit switch, deflector in "deflect position"
Select data input, terminal/selector switch
Light barrier "Incoming packets"
Light barrier "Outgoing packets"
Reset packet counter
Acknowledge fault, klaxon off
Select "Max. no. parcels in build-up zone"
Bring deflector into feed position (H2)
Bring deflector in deflector position (H3)
Y0 -» end pos. 2 Hz flash; end pos. cont. light
Y1 -» end pos. 2 Hz flash; end pos. cont. light
Klaxon 5 sec. interval "Build-up zone full"
Digital indication ... Parcels in build-up zone

A symbolic operand is always preceded in the program
by a ' character (single quotation mark) so that it can be
identified clearly.

When symbolic operands are used in the user program,
the operand comments stored in the reference file are
automatically transferred.

2-16 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Elements of an Instruction

Example: Example of program structure with symbolic operands

00001 FLASHING " Flash generator movement indication

00002

[]

[w]
[]

SIGNAL

TGEN0
S:

I:
P:

<•

L 'Y0
0 'Y1
KW 500

Flash generator, 2 Hz
Bring deflector into feed position (H2)
Bring deflector into deflect position (H3)
Constant 500 (ms)

In the following signals, the indicator addressed will flash at
2 Hz as long as the positioning control is moving, but has not
yet reached the end position. When the appropriate end position is
reached, the signal changes to continuous light.

00003 SIGNAL1 " Indication: Travel to feed position

LN M 10.0 Auxiliary marker, build-up indication
A TGEN 0 P Flash generator, 2 Hz
0 'SO Limit switch, deflector, in "feed position"
= 'H2 Y0 -> end pos. 2 Hz flash; end pos. cont. light

00004 SIGNAL2 " Indication: Travel to deflect position

LN M 10.0 Auxiliary marker, build-up indication
A TGEN 0 P Flash generator, 2 Hz
0 'S1 Limit switch, deflector, in "deflect position"
= 'H3 Y0 —> end pos. 2 Hz flash; end pos. cont. light

The possible relationships between symbols and operands:

Operation

Inputs
Markers
Outputs

Symbol

SO
HM2
Y0

Operand

I 0.0
M2.0
QO.O

Programming

L'SO
L 'HM2; = 'HM2
= 'Y0; S 'Y0

Klockner-Moel ler 4 /94 AWB 27-1186-GB 2-17

Programming: Elements and Rules

Elements of an Instruction

Negation of Apart from the function block parameters, the operands
operands mentioned in this chapter can be negated as required.

The character N is placed for this purpose in front of the
operand to be negated. This causes the operand value
to be negated when it goes to the instruction. The
following instruction is an example of this:

L N Q0.3,

This instruction means that the inverted value of the 4th
bit is loaded into the working register without changing
the actual output Q0.3.

Operations The operators available can perform Boolean and
arithmetic instructions, comparator, shift, rotate and
transfer operations. A number of operators are also
available for organising programs.

All the operators are listed in the table below together
with their respective data types. You can find detailed
information on the meaning of the individual operators in
Chapter 5, IL instructions.

Table 2-2: Available operators with their respective data types

Operations

Boolean:
AND sequence
OR sequence
EXCLUSIVE OR
NEGATION

Arithmetic
Addition
Subtraction
Multiplication
Division

Comparison
Comparison

Bit

A
0
XO
NOT

negated

AN
ON
XON

ByteAVord

A
0
XO
NOT

ADD
SUB
MUL
DIV

CP

negated

AN
ON
XON

2-18 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Elements of an Instruction

Operations

Word modification
Shift*—
with carry
Shi f t -*
with carry
Rotate <-
Rotate ->

Transfer
Load operand in working register or stack,
set sequence result operand,
Set operand
Reset operand
Load auxiliary register

Program organisation
Jumps to block label:

absolute jump
conditional jump

Return from a subprogram to the calling program from the
main program to the operating system

absolute
conditional

Conditional branches to block labels dependent:
on bit
on carry

on plus/minus sign
on zero
on overflow

Compare
on greater than
on equal or greater than
on equal
on less than
on equal or less than

Others
Zero operation
End of module
End of program

Bit

L

=
S
R

JP
JC

RET
RETC

NOP
EM
EP

negation

LN
=N

JCN

RETCN

Byte/Word

SHL
SHbC
SHR
SHRC
ROTL
ROTR

L

=

GOR

JP

RET

BB
BC
BP
BZ
BV

BGT
BGE
BE
BLT
BLE

NOP
EM
EP

negation

LN
=N

BNB
BNC
BM
BNZ
BNV

BNE

Klockner-Moeller 4/94 AWB 27-1186-GB 2-19

Programming: Elements and Rules

Elements of an Instruction

Operations

Program organisation:
Program module call-up:

unconditional
conditional

Conditional branches to program module
dependent:
on bit in working register
on carry
on plus sign +
on minus sign -
on zero
on overflow
on greater than >
on equal =
on less than <
on greater equal >
on less equal <

Bit

CM
CMC

negated

CMCN

Byte/Word

CM

CMB
CMCY
CMP
CMM
CMZ
CMV
CMGT
CME
CMLT
CMGE
CMLE

negated

CMNB
CMNC

CMNZ
CMNV

CMNE

2-20 4/94AWB27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Function Blocks

Function blocks Function blocks are part of the system program of the
CPU and are supplied with data from the user program
which also activates them. The function blocks enable
complex functions to be executed which accept data
from the user program according to specified rules and
then return the results to the user program after
completing certain specified functions. The operating
system of the programmable controller performs the
actual evaluation of the data itself.

These modules thus eliminate the need for lengthy
instruction sequences, and increase the amount of user
memory available. They also save the programmer any
time consuming program testing required for the
function concerned. An example of this is the
comparator, which compares the contents of the two
input words and sends the result to its function block
outputs for further processing.

— W 11 GT — = 1, if Word 1 > Word 2

CP10

EQ — = 1, if Word 1 = Word 2

— W 12 LT — = 1, if Word 1 < Word 2
l

Figure 2-5: Example of a function block

The SUCOsoft S30 programming software supports the
integration of the function blocks in the user program. It
knows the function and designation of all function block
inputs and outputs, enabling the function blocks to be
called up and assigned parameters from within the user
program itself. This data enables the programming
system to display on screen the basic elements of the
function blocks to be programmed. The user can then
include connections from the function block into the
program.

Klockner-Moeller 4/94 AWB 27-1186-GB 2-21

Programming: Elements and Rules

Function Blocks

Function blocks The used function blocks are compiled together with the
user program and transferred to the controller.

Individual instructions or function blocks are used as
required in the application in hand.

The function block provides the user with a ready-made
and well-tested solution which takes all programming
aspects into consideration, monitors all possible errors,
and provides program driven user-friendly handling.

The central unit requires more time to run a function
block than to run an individual instruction.

2-22 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Function Blocks

Overview The function blocks mentioned in Table 2-3 are
described in detail in chapter 6.

Table 2-3: Available function blocks

Group

Arithmetic
(Fixed-point)

Counters

Timers

Real-time clock

Registers
(cascadable)

Alarm function blocks

Code converters

Block transfer

Block compare

Working with data
in cold start retentive
range

F block

Comparison

Up/down
counter

On-delayed

Off-delayed

Pulse transmitter

Generator

Time/date comparator

Set real-time clock

Shift register

Stack register
(Last in First out)

Stack register
(First in First out)

Sequential control
module

High-speed counter

Edge counter

Timer

binary -» BCD

BCD -» binary

Indirect copy

Comparator

Save

Reload

Designation

CP

C

TR

TF

TP

TGEN

CK

SCK

SR

SRB

SRW

LIFOB

LIFOW

FIFOB

FIFOW

SK

CALARM

FALARM

TALARM

BID

DEB

ICPY

ICP

SDAT

RDAT

Data type

Word

Word

-
-
-
-
-
-
Bit

Byte

Word

Byte

Word

Byte

Word

_

-
-
-
Word

Word

Byte

Byte

-
-

Retentive

-

yes

yes

yes

yes

-
-
-
yes

yes

yes

yes

yes

yes

yes

yes

-
-
-
-
-
yes

yes

-
-

Klockner-Moeller 4/94 AWB 27-1186-GB 2-23

Programming: Elements and Rules

Function Blocks

Organisation and The function blocks must be supplied with input data
location of the before being called up. After the call-up, the function
function blocks block processes the input data and generates the result

as output data.

The function block input data is entered via the user
program and transferred to an input data field. The user
program then takes the output data from the output data
field of the function block.

For every function block used in the program the
compiler stores these data fields in the data memory
(see manual on central unit). The function block inputs
and outputs are thus available in the user program in the
same way as any other operands.

In the following example, it is therefore possible to use
the result output "Q" of the binary/BCD converter 12 in
conjunction with the function block.

It can also be used as an operand at any point in the
program

BID 12 Q

and then incorporated into an instruction.

Example:
LB ID12Q
= MW2

The contents of the data fields are retained until they are
overwritten when the same function block is processed
once more.

2-24 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Etements and Rutes

Function Blocks

Module program

User program memory

Input data

Output data

_\ Program sequence

-^ Data flow

User program

V Call-up of the
function block

3
\ 7

Figure 2-6: Program sequence and data flow during function block processing

Klockner-Moeller 4/94 AWB 27-1186-GB 2-25

Programming: Elements and Rules

Function Blocks

Organisation and
location of the
function blocks

Number of
function blocks

Figure 2-6 shows the interaction between the user
program and the function block. The function block
must be called so that it can calculate the results. It is
not enough to allocate data to the function block as
operands via an instruction and to fetch the results in
the same way (see also "Incorporation into the user
program").

It should be noted that it is not necessary to reserve
generally accessible marker ranges since function
blocks have their own data ranges.

The number of the function blocks to be used is not
restricted. A restriction is only given by the capacity of
the user memory. Theoretically, the upper limit of
function blocks is 65 535.

Call-up of the
function blocks

The function blocks are called up using the appropriate
reference code, the function block number and any
supplementary settings are required (see Table 2-3 page
9). All additional settings are preceded by a hyphen "-" .

The following additional settings are also possible.

-R

-MS

- S

1...128

Retentive

Millisecond

Second

Register
length

The function block is
incorporated in the battery
back-up.

In timers, the basic time
selected, millisecond
(in 10 ms clock pulse).

In timers, the basic time
selected second.
In registers, the selected
register length
(step length).

2-26 4/94AWB27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Function Blocks

Example:

C 13-R Call-up of retentive up/down counter 13

SR 14-121 -R Call-up of retentive bit shift register 14
and setting of register length to
121 steps.

TF 14-S Call-up of off-delayed timer 14 and
selection of the basic time, seconds.

Function blocks can be made retentive (zero-voltage
proof) by the -R suffix.

The register lengths of register function blocks can be
selected.

The timers can be set to the clock rates 10 ms and 1 s.

The inputs of the function block are either static or
dynamic.

With static inputs, the function allocated to the input
concerned is implemented when the input recognizes a
logic High. All inputs have this feature except for the
clock and set inputs.

The clock and set inputs behave dynamically. They must
recognize a change from logic 0 to logic 1 (rising edge)
before they can carry out their function. In order to be
able to form these signals independently, the function
block must be able to recognize a Low signal following a
High signal. Particular attention should be paid to this
when program branching is involved.

It is not necessary to use all function block inputs.
Unoccupied inputs are passive; they behave as if the
input recognizes a permanent Low signal.

Behaviour of the
function block
inputs

Klockner-Moeller 4/94 AWB 27-1186-GB 2-27

Programming: Elements and Rules

Function Blocks

Incorporation into The information given in the call-up instruction specifies
the user program the type of function block concerned as well as other

features. This causes SUCOsoft S 30-S4-200 to display
the function block with its inputs and outputs.

The function block inputs and outputs are shown with
appropriate designations, including one of the following
data type designations.

Bit 1 bit
B Byte 8 bit
W Word 16 bit

Below is an example of a counter which has been called
up.

0 M 105.3
= Q0.7
C14-R
[]U:
[]D:
[]S:
[]R:
PA/] I:
[]Z:
[W]Q:

In this example, the user has entered the instruction
lines up to and including the function block call-up "C
14-R". The lines following this then appear automatically.

After the function block is shown on screen, the
programmer must enter the necessary parameters for
the inputs and outputs. The relevant operands or
operand sequences are thus entered, which either
supply the required data or receive it.

2-28 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Function Blocks

0
=
c
[]
[]
[]
[]

(W|
[]
[W]

L
ADD

M 105.3
Q0.3
1 4-R
U:
D:
S:
R:

I:
Z:
0:

MW22
MW21

10.10
I 0.2
I 0.3
LI 0.4
0 N M 24.6
KW256
Q0.5
MW20

Up pulse
Down pulse
Set input
Reset input
Reset condition
Counter setting value
Zero indication
Counter status

Counter status
Intermediate sum

The example above shows the function block after it has
been incorporated into the user program.

When the program is run, the contents of the operands
entered on the input side are copied to the appropriate
data memory. The program then jumps to the
appropriate function block program in the system
section of the program memory. This program processes
the input data and writes the result to the output data
range of the function block. The user program can then
fetch the results from here and process them.

In the example shown, the inputs and outputs are added
directly next to the function block. As explained in the
section "Organisation and location of the function
block", the function block inputs and outputs can be
incorporated into instructions in the same way as other
operands.

Klockner-Moeller 4/94 AWB 27-1186-GB 2-29

Programming: Elements and Rules

Function Blocks

Function blocks,
incorporation into
the user program

The previous example could be modified whilst
maintaining the same function. See below.

LKW256
= C 141

- • o <-

LKW557
= C 14 I

C14-R
t]U :
[]D :
[]S :
t]R:

DM I:
[] Z :
[W]Q:

L MW20
ADD MW 22

10.1
I 0.2
I 0.3
LI 0.4
0 N M 24.6

Q0.3
MW20

Up pulse
Down pulse
Set input
Reset input
Reset condition

Zero indication
Counter status

Counter status
Intermediate sum

The program now contains a counter with an external
data supply. The I input is not assigned a parameter in
the function block itself but rather in the program lines
before it.

This procedure enables a central function block to be
supplied with different data from a number of program
sections located before the function block itself.

2-30 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Function Blocks

Retentive function A memory module (RAM) which also has a flash
blocks EEPROM memory can be installed in the PS 4 200 in

addition to the user program memory (RAM).

The compiled user program is stored in the user
program memory. Areas are reserved in the data
memory for any function blocks contained in the user
program. The current data of the function blocks
concerned (e.g. counter status values, register contents
etc.) is stored in these data ranges.

The data memory is managed dynamically. This means
that contents of the assigned function blocks are not
stored in permanently specified data ranges, but rather
in the order in which they were programmed (see Figure
2-7). The data range is dynamically managed by the
compiler.

When the PS 4 200 series is switched on, the data fields
of the non-retentive function blocks are cleared, whilst
the contents of the retentive function blocks are kept.

Note!

As function blocks are
program modifications

added later with
the data

subsequent function blocks are
(see Figure 2-8).

ranges of
shifted further

This can cause retentive data to be incorrectly assigned
to function blocks and so it is advisable to use the
following procedure when modifying programs:

1) Add new function blocks to the end of the program if
the retentive values must be kept after the
modification.

2) Function blocks can be inserted if the retentive data
is no longer required after the modification to the
program. The retentive data must then be deleted.

Klockner-Moeller 4/94 AWB 27-1186-GB 2-31

Programming: Elements and Rules

Function Blocks

Retentive function
blocks

This can be done by switching off the PS 4 200 and then
switching it back on again with the toggle switch in
position 3 or via the programming device in the "Status
menu" (Test and commissioning sub-menu) by pressing
the "Delete retentive range" key F7.

Counter CO

Shift register

FIFO register
(retentive)

Shift register

User program
memory

IL program

CO

SRB1-10

FIF020-15-R

SRB1-20

Data memory System memory

CO
data

SRB1-10
data

FIFO20-15-R
data

SRB1-20
data

Function blocks

Figure 2-7: Function blocks, types of memories and function block data storage

2-32 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Function Blocks

Counter CO

Shift register

LIFO register

FIFO register

(retentive)

Shift register

User program
memory

IS-Program

CO

SRB1-10

LIF05-30

FIF020-15-R

SRB1-20

Data memory

CO
data

SRB1-10
data

UF05-30
with data

from
FIFO20-15-R

FIF020-15-R
data

SRB1-20
data

System memory

Function blocks

Figure 2-8: Function blocks, shifting of data ranges after inserting new function
block data

Klockner-Moel ler 4 /94 AWB 27-1186-GB 2-33

2-34 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Registers

All operands, whether negated or not, can be handled in
a number of ways with the instructions described in
Table 2-2. For this purpose the SUCOcontrol PS 4 200
series provide the user with several freely available
registers, via which all sequences must run and in which
values can be stored temporarily. These are the working
register, the auxiliary register, the status register and the
stack registers.

Klockner-Moeller 4/94 AWB 27-1186-GB 2-35

Programming: Elements and Rules

Registers

1—*-

/

/

/
\

/ / / /
V P/M Z c

L

t

Carry

Zero

Plus/minus

Overflow

1

2

3

4

5

6

7

8

9

10

/

/

/

/

/

/

/

/

/

/

/

/

Stack register

) ^

/

/

Working register

Auxiliary register

Status register

Figure 2-9: Register overview

2-36 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Registers

Apart from the status register, all others have a variable
width, i.e. the registers have the following widths
depending on the data type of the operands in the
relevant program sequence.

1 bit for bit operations
1 byte 8-bit with byte operations with values

between - 1 2 8 and 127 as signed integers
1 word 16-bit with word operations with values

from - 32 768 to 32 767 as signed integers

Working register The working register is the most frequently used register,
all sequencing and operations being carried out here. It
is used as a working memory for analysing the status of
the operands and transferring values in any direction
required.

Auxiliary register The auxiliary register is required for some arithmetic
operations. It is used to store the overflow (after
multiplication) or the remainder (after division). These
values can be loaded into the working register using the
"GOR" instruction. Working register and auxiliary register
together can form a pair. This combination is used in
multiplication and division.

Klockner-Moeller 4/94 AWB 27-1186-GB 2-37

Programming: Elements and Rules

Registers

Status register The status register is four bits long and contains data
relating to the contents of the working register (zero or
plus/minus bit) and to the result of the previous
arithmetic or logic operation (carry and overflow bit).

The individual status bits have the following meanings:

Carry bit: Carry flag contains the carry over for
(C) arithmetic operations (virtually an

extension of the working register by
one bit).

Zero bit: Zero flag describes the contents of the
(Z) working register. It is

- high if the working register equals
zero

- low if the working register does not
equal zero

Plus/minus: Sign flag indicates the plus/minus
(P/M) symbol of the number in the working

register. Often the same as the most
significant bit of the working register.
It is
- high if the number is negative
- low if the number is not negative

Overflow bit: The overflow flag indicates whether an
(V) overflow has taken place during an

arithmetic operation. The overflow
normally consists of several bits and
thus cannot be absorbed by the carry
bit. This bit indicates the validity (V = 0)
or nonvalidity (V = 1) of the result of the
arithmetic sequence.

When conditional jumps are programmed, the status bits
are scanned individually or in combinations (with the
branches BGT, BGE, BE, BLE, BLT). The condition of the
status register after an operation is described in
instructions Chapter 5, IL instructions.

2-38 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Register

Stack register Instructions are processed in the programmable
controller sequentially, and the sequence result located
in the working register is always processed further. This
means that stack registers are required to form
intermediate results when logical and arithmetical
parenthesized expressions are involved.

Ten stack registers are available for bit operations, eight
for byte operations and four for word operations. The
stack register used is a LIFO register.

Klockner-Moeller 4/94 AWB 27-1186-GB 2-39

2-40 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Handling Intermediate Results

If the current sequence result has not been stored or
does not initiate conditional operations (conditional
jumps or set or reset operations) and comes before a
Load instruction, it is stored in one of the stack registers
before the subsequent Load instruction is carried out.

The Load operation is then carried out afterwards. The
value in the stack register is thus stored temporarily for
further processing. It can be sequenced later with an
arithmetic or logic operation with the contents of the
working register:

LI 0.1
AI0.2
LI 0.3

AI0.4
0

= M3.4

The order in which values are entered is important for
stack processing:

Stack register (operation) working register

The result of this kind of operation can be obtained from
the working register.

This rule for the order of the operands can easily be
demonstrated by comparing the following program
sections.

LI 0.1
LI 0.2 LI 0.1
0 -* • 01 0.2
= Q 0.3 =Q 0.3
LI 0.1 LI 0.1
L N I 0.2 •* • 0 N 10.2
0 =Q 0.3
= Q 0.3

10.1^ Working register
"Working register A I 0.2 —»working register
"Working register -» Stack register 1
" 10.3 -» Working register
"Working register A I 0.4 —* working register
"Stack register 1 V working register ->
"Working register
"Working register —* M 3.4

Klockner-Moeller 4/94 AWB 27-1186-GB 2-41

Programming: Elements and Rules

Handling Intermediate Results

The order is very important when division and logic
operations with a negation are involved.

L I W 0.0.0.0
L I W 0.0.0.2
DIV "Means IW 0.0.0.0 :IW 0.0.0.2

LI 0.1
LI 0.2
A N "Means 10.1 A I 0.2

In the same way, the negation is used in the work ing

register in the fol lowing example:

L 10.1
A 10.2
L 10.3
0 10.4
XO N

The operat ion consists of an Exclusive-OR sequence

consist ing of the stack register (containing the result

f rom I 0.1 A I 0.2) with the negated work ing register

(contains the result f rom 10.3 V I 0.4).

Up to four values can be stored in the stack register

when word operat ions are involved. With byte

operat ions eight values can be stored and with bit

operat ions ten. These values are stored in the order of

their entry into the stack register. They are then

processed in the reverse order, the last value stored

being sequenced first of all. The second is then the next

to be sequenced and this is cont inued until the entire

stack is empty.

2-42 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Handling Intermediate Results

L I 0.0
L I 0.1

L I 0.2

LI 0.3

" I 0.0 -
" I 0.0 -
" I 0.1 -
" I 0.1 -
" I 0.2 -
" I.0.2 -
" I 0.3 -

-> Working register
-» Stack register 1;
-> Working register
-» Stack register 2;
-» Working register
-> Stack register 3;
-»Working register

O "Stack register 3 V Working register
—» Working register

XO "Stack register 2 © Working register
-» Working register

A "Stack register 1 A Working register
—» Working register

= Q 0.4 "Working register -> Q 0.4

From the above program section the following
mathematical equation is obtained:

Q 0.4 = I 0.0 A (I 0.1© [I 0.2 V I 0.3])

As can be seen from the above, the stack operations
can be used as an effective bracketing technique which
eliminates the need for auxiliary markers.

Klockner-Moeller 4/94 AWB 27-1186-GB 2-43

2-44 4/94AWB27-1186-GB Klockner-Moeller

Programming: Elements and Rules

IL Syntax Rules

Instruction line The instruction line consists of an instruction followed by
a comment. The comment section contains an operand
comment which is used to describe the operand
concerned and to which it is permanently assigned.
Thus the same text always appears in all instruction lines
containing the same operand. This text is managed by
the IL editor and is stored in the reference file (file with
the suffix ".z42"). Operand-related comments are not
kept in the program file (file with the suffix ".q42").

The instruction line is written directly on entry and is
checked directly by the syntax check function contained
in the IL editor. Any errors that occur are described in
plain text. A high degree of protection against
programming errors is therefore already ensured during
the initial editing stage. Optional comments can also be
entered in addition to the operand-related comments.
These comments must be prefixed with the " comment
character in order to distinguish them from instructions.

The entire range of the character set available can be
used for comments.

" This is an example of command lines with
" Operand-related and optional
" Comments
L I 0.0 Motor 1 on
ANI0.2 Limit switch 12

Sequence A sequence consists of several instruction lines which
have to fulfill certain conditions. The first instruction line
of a sequence must contain a Load instruction. The data
type of the operand in this Load instruction determines
the data type of the entire sequence. The data type
cannot be changed within the sequence.

Klockner-Moeller 4/94 AWB 27-1186-GB 2-45

Programming: Elements and Rules

IL Syntax Rules

Sequence

Figure 2-10: Sequence overview

2-46 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

IL Syntax Rules

The sequence can be terminated by one or more of the
following instructions:

- Allocation of the sequence result to an operand
- Set/reset dependent on the sequence result
- Conditional jumps dependent on the sequence result

"Example of a sequence in bit format.

L I 0.0 Motor 1 on
AN 10.2 Limit switch 12
A M 2.4 Run indication motor 1
= Q 3.4 Motor 1 start

The GOR instruction is an exception to this rule. Since it
is used following a multiplication or division in order to
enter an overflow of the result (after multiplication) or the
remainder (after division) into the working register, an
allocation followed by GOR is not valid as a sequence
termination. In fact, the first part of the result is stored
during the allocation operation and if the data types are
identical, the processing of the second part result is
started.

Klockner-Moeller 4/94 AWB 27-1186-GB 2-47

Programming: Elements and Rules

IL Syntax Rules

Sequence

Block

o *(Block number)-

"Example of a sequence in word format

L
DIV
=

IW 0.3.2.0
KW2
MW4

" Check whether IW 0.3.2.0 is even
" or
GOR
CP
BE
BNE

odd

KWO
EVEN
ODD

The handling of the stack registers is checked within a
sequence. In this case, a sequence is not completed
error-free until all the intermediate values stored in the
stack registers have been processed again, i.e. the stack
must be emptied by the end of the sequence. Values
cannot be transferred to the next sequence from the
stack registers or the working register.

L IW 0.3.4.0
ADD MW 4
L MW 44

SUB QW 0.3.5.0
DIV

1 "IW 0.3.4.0" + "MW 4" in
1 stack register
1 "MW 44" in working register

Stack register:
("MW 44" - "QW 0.3.5.0")

MW 100

The combination of several interrelated sequences in
one block provides the program with a modular
structure and also helps to make the program more
legible and understandable.

Label

> ^ Sequence j -

Function block call-up

Figure 2-11: Block structure

2-48 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

IL Syntax Rules

The block begins with a block number, block label and
comment. The block numbers are automatically
assigned by the IL editor. These numbers are issued in
consecutive order and begin with 0. The block label
following the number must be no more than eight
characters long, and the first character must be a letter.
This block label is absolutely necessary if the user
program contains jumps or branches.

00001 PR0GR1 "Program preselect
LM 100.0
JC PR0GR2
L I 0.0
JCN PR0GR2
= M 101.1
L I 0.2
= M 101.2

00002 PR0GR2 "Relay output of
"program preselect
LM 101.1
= Q0.3
LM 101.2
= 0.0.4

Block labels are used as jump targets with conditional
and unconditional branches. The block header can be
used to give a brief description of the block concerned.
It is introduced by the " character and must be no longer
than one screen line. The block comment is particularly
important for documentation tasks. The lines below the
header can be used for comment text to provide a
detailed functional description of the block.

Note!

It is advisable to write program additions
via the # Include instruction in one block.
Program instructions in blocks which contain
include instructions are not accessible for
online modification.

Klockner-Moeller 4/94 AWB 27-1186-GB 2-49

Programming: Elements and Rules

IL Syntax Rules

Main program, Each program (user program with the suffix .q42) for the
structure PS 4 200 series consists of one or several blocks

followed by the control instruction EP (End of program).

O ^ - » { Block) — ^ K EP y

Figure 2-12: Main program structure

This instruction is used to control the sequence of a
program. At the end of the program it carries out the
jump to the operating system of the programmable
controller where such operations as the communication
with the programming unit are performed and the input
and output image registers are updated.

Information about the system configuration of the
programmable controller is also contained in the main
program. This information is managed in the IL editor
and stored in compressed form in front of block 0 in the
source program.

This information consists of the following system
parameters:
- Date of the last modification to the source program
- Operation with/without image register
- Program memory test active/inactive

The memory test is carried out during program cycle
- Maximum cycle time in ms
- A fault indication is output if this is exceeded
- Two retentive marker ranges

Markers which are declared as retentive do not lose
their states in the event of a power failure. Non-
retentive markers are cleared if this occurs.

2-50 4/94AWB27-1186-GB Klockner-Moeller

Programming: Elements and Rules

IL Syntax Rules

Figure 2-13: Program cycle

Klockner-Moeller 4/94 AWB 27-1186-GB 2-51

Programming: Elements and Rules

IL Syntax Rules

Main program, The source program has to be translated into machine
structure code in order for it to run in the PS 4 200 series. A

program file (file with the suffix .p42) is stored in
machine code if this translation takes place error-free.
This executable user program can then be transferred to
the programmable controller concerned.

Detailed information on the creation of system
parameters is provided in chapter 1, Compiling and
transferring.

2-52 4/94AWB27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Pre-Processor Instructions

SUCOsoft S 30-S4 200 supports pre-processor
instructions which are not translated into machine code
but which are control instructions for the compiler and
for documentation programs. Pre-processor instructions
are preceded by the # character in order to distinguish
them from normal IL instructions. These # characters
must be put at the beginning of a line and can be
assigned an optional comment text. The following pre­
processor instructions are available:

Table 2-4: Available pre-processor instructions

Pre-processor Instructions

include "Configuration file"
include (Program file)
include "Reference file"
title "title, 70 lines long"
page
• list
nolist

Effect

Include the device configuration file
Include other files
Combine files

• Control of documentation

Klockner-Moeller 4/94 AWB 27-1186-GB 2-53

Programming: Elements and Rules

Pre-Processor Instructions

Incorporating the The incorporation of the configuration file is required for
configuration file the compiler run. Since this configuration contains

information on the type of expansion modules, slave
controllers, etc. and at which locations they are used,
the compiler can thus check whether the addressing
and other specifications are correct.

The correct syntax for this instruction is the following:

#include"configuration file.k42"

This instruction must always be the first one in the
program. This also applies if the PS 4 200 series is used
on its own, otherwise an error message is output when
the user program is compiled.

Inserting files A pre-processor instruction with the syntax

include (program file)

is replaced by the compiler with the content of the
program file stated between the brackets. The files
combined in this way in the memory are translated by
the compiler into the machine code of the PS 4 200
series. Any errors are indicated by the compiler which
also indicates the file name, the block and line number
of the error concerned. The name of the main program is
used for the file name of the translated instructions.

Include instructions can also be nested inside a file
which is also included in the main program.

The # Include instruction (program file) can be used to
create function blocks once and use them several times.
You can find more details in chapter 3, Structuring
programs.

2-54 4/94 AWB 27-1186-GB Klockner-Moeller

Programming: Elements and Rules

Pre-Processor Instructions

Combining files In addition to the Include instruction for program files, a
similar instruction is also available for inserting or
combining reference files. In order to distinguish the text
file to be included from a program file, its name is
written in between " characters in the following way:

include "Reference file"

The complete name with the suffix z.42 for a reference
file must be stated.

You can find more details in chapter 3, Structuring
programs.

Control of The following instructions can be used for the printout of
documentation documentation:

title " " Generation of new sub-titles.
page Generation of a new page break.
nolist The program section following this

instruction up to the # list instruction is not
shown in the documentation.

list See # nolist.

More information on these control instructions is provided
in the manual AWB 27-1185-GB, chapter 3,
Documentation of user programs.

Kiockner-Moeller 4/94 AWB 27-1186-GB 2-55

2-56 4/94AWB27-1186-GB Klockner-Moeller

3 Structuring Programs

Contents

General

The Include instruction
- Inserting source files
- Inserting reference files
- Example
- Nested program structure

Structuring with program modules
- Definition of a program module
- Procedure
- Program module calls from an Include file

Use of program modules
- Designation of program modules
- Instruction set of the program module
- Handling the program modules
- Calling the module
- Execution time
- Rules for the program module call
- Rules for module programming
- Program modules as independent files
- Data transfer with multiple program module

calls
- Example: main program and program modules

in one file
- Example: main program and program modules

in different files
- Example: multiple program module calls

Control functions
- Editor
- Compiler
- CPU

Test functions
- Online programming
- Status display

3-3

3-5
3-5
3-7
3-8

3-10 1

3-11 1
3-11
3-11 "
3-13

3-15
3-16
3-16
3-16
3-17
3-19
3-19
3-19
3-21

3-22

3-24

3-25
3-26

3-29
3-29
3-30
3-31

3-35
3-35
3-38

Klockner-Moeller 4/94 AWB 27-1186-GB 3-1

3-2 4/94 AWB 27-1186-GB Klockner-Moeller

Structuring Programs

General

The structuring of programs in blocks is a recommended
way of maintaining a clear overview of the user program
even when long user programs are involved.

In addition to ensuring a greater transparency of the
program, this technique provides other advantages:

- The effects of any changes are limited to specific
sections in the program

- Programming and testing can be carried out in
sections

- Error handling is simplified by restricting the search to
a specific section of the program

- Program libraries can be set up, i.e. reduction of
software costs

Individual program sections which handle as self-
contained a function as possible within the program
sequence can be created and then stored on diskette
(hard disk). In this case, these programs should be
written without an EP instruction at the end of the
program.

With programs that are not too lengthy it is advisable to
create a common reference file for all program blocks. If
very lengthy files are involved, it may be that the size of
the user memory in the personal computer is insufficient.
In this case, the reference file must also be subdivided
into two or several sub-files.

Klockner-Moeller 4/94 AWB 27-1186-GB 3-3

3-4 4/94AWB27-1186-GB Klockner-Moeller

Structuring Programs

The Include Instruction

Inserting source With traditional programming, a linear structure is used
files by which the individual program sections are sequenced

one after the other. The compiler translates the program
sections in the existing order and stores them
accordingly in the code file.

In order to obtain a clear structuring of the program,
programming with the Include instruction enables any
number of program sections to be stored in a separate
file. When the program sections are translated, the
compiler generates a sequential code in the normal way.
This means that the compiler inserts the appropriate file
each time it comes to an Include instruction. There is
therefore no difference between the code files produced
by these two programming methods (see Figure 3-1).

Klockner-Moeller 4/94 AWB 27-1186-GB 3-5

Structuring Programs

The Include Instruction

Inserting source
files

Source file
PROGLQxx

Program
• section

1.1

Program
section
2.1

Program
section
1.2

EP

Linear programming structure

Source file
PR0G1 .Qxx

Program
section
1.1

INCLUDE
<PR0G2.Qxx>

Program
section
1.2

LP

PR0G2.Qxx

Program
section

. 2.1

Compiler

Compiler

Code file
PROGlPxx

1.1

2.1

1.2

EP

Code file
PROGlPxx

Figure 3-1: Programming with an inserted source file

3 - 6 4/94 AWB 27-1186-GB Klockner-Moeller

Structuring Programs

The Include Instruction

Inserting reference In addition to this Include instruction for program files,
files there is a different instruction which has a similar effect

when inserting or collating reference files. The file name
is enclosed with quotation marks (") in order to
distinguish it from program files, e.g.:

include "Reference file name".

The text file name must meet the same requirements
that apply to the naming of program files:

- Full name must be given, i.e. with suffix.

- The suffix must be a proper reference file suffix, i.e.
z42 for a reference file of the PS 4 200 series. The
reference file is sorted and checked for errors by the
compiler, e.g. multiple definition of elements. The
following example will explain the effect of the Include
instruction.

Klockner-Moeller 4/94 AWB 27-1186-GB 3-7

Structuring Programs

The Include Instruction

Example
Program MAIN.QXX

00002 START " Start of main program
L I 0.0
= M0.0

include <module1.qxx>
L INPUT1
= QB 0.0.0.0
= MB0

include <module2.qxx>
00003 END " End of main program

EP

Program M0DULE1.QXX

Program M0DULE2.QXX

Reference file MAIN.ZXX

INPUT1 IB 0.0.0.0 INPUT byte 0.0.0.0

Reference file M0DULE1.ZXX

00000 START1

00001 END1

" START of 'modulel.qxx'
include <module1 .zxx>
L AM0
='0UTPUT0
" End of 'modulel.qxx'

AM0 M 0.0
0UTPUT0 Q 0.0

Auxiliary marker MO.O
Output bit Bit 0.0.0

Reference file M0DULE2.ZXX

00000 START2 " Start of 'module2.qxx'

00001 END2

include "module2.zxx"
L'AM1
OI0.4
= 'OUTPUT!
" End of 'module2.qxx'

AM1 M1.0
OUTPUT1 Q 0.0

Auxiliary marker M1.0
Output bit Q 0.0

Program after pre-processor run

00000 START

00000 START

00002 END1

" Start of main program
LI 0.0
= M0.0

" Start of 'modulel.qxx'
L'AMO
='OUTPUTO
" End of 'modulel .qxx'
L 'INPUT1
= QB 0.0.0.0
= MB0

00000 START2 " Start of 'moduleZqxx'

00001 END2
00003 END

L AM1
OI0.4
='0UTPUT1
" End of 'module2qxx'

' End of main program
EP

Reference file after pre-processor run

INPUT1
AMO
OUTPUTO
AM1
0UTPUT1

IB 0.0.0.0
MO.O
QO.O
M1.0
QO.O

INPUT byte 0.0.0.0
Auxiliary marker MO.O
Output bit QO.O
Auxiliary marker M1.0
Output bit Q 0.0

3-8 4/94 AWB 27-1186-GB Klockner-Moeller

Structuring Programs

The Include Instruction

The "modulel.qxx" program file is inserted at the
appropriate point in the "main.qxx" main program. The
instruction

include "modulel.zxx"

contained in "modulel.qxx" ensures that the
"modulel.zxx" file is inserted at the end of the
"main.zxx" reference file. The program file
"module2.qxx" is then inserted in the main program with
the following instruction:

include <module2.qxx>

After all these operations have been completed, the
instructions are compiled into the machine code of the
controller. All the reference file data for the main program
and for the other INCLUDE files and modules involved is
then available for compiling. The machine code thus
produced is stored on the drive stated, under the name
"main.pxx".

Klockner-Moeller 4/94 AWB 27-1186-GB 3-9

Structuring Programs

The Include Instruction

Nested program
structure

Include instruct ions can be used to produce nested,
linear or mixed program structures.
Up to 32 program files can be nested wi th SUCOsof t
S 30 , and up to 1024 Include instruct ions can be
conta ined in each main program. Each program file
"Name.qxx " may only be inc luded once in the main
program using the Include instruct ion.

Main program (main)
prog.qxx •<-

include
<prog1 .qxx>

i_ EP

1
progl.qxx

include
<prog2.qxx>
include
"prog2.zxx"

L (NoEP)

Figure 3-2: Nested program structure

Nesting depth up to max. 32

1
prog2.qxx

include
<prog3.qxx>

- (No EP)

1
prog3.qxx

include
<progN.qxx>
include
"progN.zxx"

L (No EP)

~i
progN.qxx

L (No EP)

3-10 4/94AWB27-1186-GB Klockner-Moeller

Structuring Programs

Structuring with Program Modules

Definition of a
program module

Procedure

Program modules form a programming tool with which
programs can be structured, thus enabling the
programmer to economically store frequently used
program sections. It is also possible to store these
modules under different names (i.e. in different files).

A program module is part of a user program consisting
of any number of blocks and which is programmed as a
related software module after the main program, i.e.
after the "EP" instruction.

A program module can be called from any point in the
main program or from other program modules, thus
enabling the program modules to be nested. After the
program module has been executed, a jump takes place
to the program from which the module was called. The
program continues with the instruction following the call.

Both before and after a module is called up it is supplied
with and cleared of data via globally accessible markers
(global data).

The user program consists of a main program and any
number of PM program modules - see Figure 3-3. The
main program is terminated with the EP (end of program)
instruction. A program module can be given any name
and this is used for calling the module from the main
program or another program module by means of the
CM.. (Call module) instruction.

The CM., instruction is the point where the processing of
the program module is "inserted", i.e. a jump is made to
the first instruction in the program module. The EM
instruction (end of module) marks the end of the module.
The program then continues with the instruction
following the CM., call instruction, in the program from
which the module was called.

Up to 16 program modules can be nested with the
PS 4 200 series.

Klockner-Moeller 4/94 AWB 27-1186-GB 3-11

Structuring Programs

Structuring with Program Modules

Procedure In the fol lowing diagrams, the program modules have
been given the name PMx. The modules can, of course,
be given other names.

Main

CM $PM1

CM $PM2

CM $PM3

EP

1st PM level

$PM1

2nd PM level

$PM2 $PM4

CM $PM4

LM

$PM3

Nesting depth (here 2)

Figure 3-3: Program module calls initiated from the main program and from a
program module

3-12 4/94 AWB 27-1186-GB Klockner-Moeller

Structuring Programs

Structuring with Program Modules

Program module Program modules can also be called from an Include file
call from an (see Include instruction). The example shown in
Include file Figure 3-4 shows the source include file "Inc.qxx" which

is called up in the main program. This file calls up the
PM1 program module, which in turn contains the call
instruction for the PM4 module.

After the processing of the PM4 module has been
completed, a return is made with the EM instruction
back to the PM1 module. The EM instruction in the PM1
module then causes a return to the Include file "Inc.qxx".
The main program then continues with other module
calls.

The PM4 module is called twice in this example, firstly
from PM1 and later from PM2. This kind of multiple
calling can be implemented as often as required as long
as the cycle time restrictions of the CPU are observed.

Klockner-Moeller 4/94 AWB 27-1186-GB 3-13

Structuring Programs

Structuring with Program Modules

Program module

call f rom an Include

file
Main program

include

<include.qxx>

CM $PM2

CM $PM3

EP
SPM1
$PM2
$PM3
$PM4

\

\

$PM1

EM

$PM2

CM $PM4 -

EM
\

$PM4

EM

•*

$PM3

Nesting depth (here 2)

Figure 3-4: Program module calls from an "Include" file of the main program.

The example above shows the logical sequence

resulting f rom the program module structure. The

fol lowing sect ions look at the operat ion of program

modules and their physical location in the program

memory.

3-14 4/94 AWES 27-1186-GB Klockner-Moeller

Structuring Programs

Use of Program Modules

In the source program, the program modules are stored
in any order after the main program (see Figure 3-5).
Each module is terminated with the EM instruction.

The following examples are shown with symbolic
operands in IL.

Main program start block 0

Block

M1

M2

$PM1

$PM2

M1

Instruction

L 'COM-ON
A 'VOLT-ON
= 'PUMP1
CM $PM2
L 'END-POS
A 'ENABLE
= 'M0T0R3
L ..

CM $PM1

EP

L 'LEV-MIN
0 'PUMP-ERR
= 'IND7
EM

L 'BI-MET
XO 'INSUFFP

= 'IND19

EM

Main program block 1

End of main program

PM1 start block 2

End of PM1

Start of block 3

PM2 block 4

PM2 END

Figure 3-5: Location of main program and program modules in IL

Klockner-Moeller 4/94 AWB 27-1186-GB 3-15

Structuring Programs

Use of Program Modules

Designation of
program modules

Instruction set of
the program
module

Handling the
program modules

In order to identify a program module, the first block
name of each module is marked with a $ sign. This
means that the name of a program module always starts
with the $ sign followed by up to seven optional
characters. The individual blocks are numbered
consecutively from 0 up to the number of the last block
of the last program module to be programmed.

It is also possible to open additional blocks in a program
module. The block names used inside a program
module may be the same as the block names in the
main program and those of other program modules as
the compiler is able to distinguish them.

All possible jump and branch instructions are only
possible within the program modules themselves - jump
and branch instructions into and out of a module are not
permissible. All other instructions, however, which are
permissible in the programmable controller concerned,
including the function blocks, can be used in the
program modules.

The use of program modules requires both the program
module calls and the program modules themselves.
A program module must be provided in an executable
program for every different module call. It is not
necessary, however, for every program module in the
program to be called. In this case the compiler
generates an alarm which informs the user that a
program module has not been called. The order in which
the modules are entered and the call instruction is
optional.

3-16 4/94 AWB 27-1186-GB Klockner-Moeller

Structuring Programs

Use of Program Modules

Calling the module The program containing the call instruction is interrupted

and the first instruction of the program module is

executed. As with JP and JC/BC instructions, the call

can be conditional, unconditional or at the end of the

program. Calls can be executed in bit, byte or word

sequences.

The following different types of calls are available.

Unconditional call:

CM $ (name) Absolute module call

Conditional calls (logical calls)

CMOS (name) Call when RA=1
Conditional call of the module when working register is
logic 1 in bit sequences

CMCN $ (name) Call when RA=0
Conditional module call when working register with
logic 0 In bit sequences

CMBxS(name) Call on Bit x
Conditional module call when bit (x=0-15) on logic 1
In byte/word sequences

CMNB x $ (name) Call on Not Bit X
Conditional module call when bit (x=0-15) is logic 0
In byte/word sequences

Conditional calls: (arithmetic calls)

CMCY$(name) Call on Carry
Conditional module call when carry bit is set
In byte/word sequences

CMNC $ (name) Call on Not Carry
Conditional module call when carry bit is not set
In byte/word sequences

CMZ$(name) Call on Zero
Conditional module call when zero bit is set
In byte/word sequences

Klockner-Moel ler 4 /94 AWB 27-1186-GB 3-17

Structuring Programs

Use of Program Modules

C a l l i n g t h e m o d u l e CMNZ $(name>

CMES(name)

CMNES(name)

CMV$(name)

CMNV$(name>

CMP$(name)

CMM $(name)

CMGT$(name)

CMLT$(name>

CMGES(name)

CIVILE $(name)

Call on Not Zero
Conditional module call when zero bit is not set
In byte/word sequences

Call on Equal
Conditional module call when compared values are
equal In byte/word sequences

Call on Not Equal
Conditional module call when compared values are not
equal In byte/word sequences

Call on Overflow
Conditional module call when overflow bit is set
In byte/word sequences

Call on Not Overflow
Conditional module call when overflow bit is not set
In byte/word sequences

Call on Plus
Conditional module call when sign bit positive
In byte/word sequences

Call on Minus
Conditional module call when sign bit negative
In byte/word sequences

Call on Greater Than
Conditional module call when comparison finds value
greater than reference value In byte/word sequences

Call on Less Than
Conditional module call when comparison finds value
less than reference value In byte/word sequences

Call on Greater Than or Equal
Conditional module call when comparison finds value
greater than or equal to reference value
In byte/word sequences

Call on Less Than or Equal
Conditional module call when comparison finds value
less than or equal to reference value
In byte/word sequences

3 -18 4 /94 A W B 27-1186-GB Klockner-Moel ler

Structuring Programs

Use of Program Modules

Execution time

Rules for the
program module
call

Rules for
module
programming

With the PS 4 200 the execution time and the memory
required for a program module call and for the return
after the EM instruction are 38 LIS/18 byte. These values
apply irrespective of the type of module call involved.

The program module calls have the same sequence
position as the Jump and Branch instructions. The
status registers are not altered. After the return from the
program module, the status registers have the same
data as before the module call, even if they were
modified by the PM operation.

Below is a summary of the rules for calling a program
module:

1. The unconditional call must be made outside of a
sequence.

2. The name must be no more than 7 characters long.
The characters can be alphanumeric characters and
the special characters " - " , " _ " and "/". The special
character "$" must be placed before the name in
order to distinguish it from the block label.

3. There are no restrictions on the possible number of
calls within one program for a particular program
module.

After the EP instruction a block is opened with a
name beginning with the $ program module indicator.
The module program is then written in IL. The
program ends with an "EM" instruction. Include
instructions are also permissible within a program
module.

I

Block

$PM1

Instructions

L I 0.0
0 M32.1
= QO.O
EM

PM1 begin block x

PM1 end

Program module declaration in IL

Klockner-Moeller 4/94 AWB 27-1186-GB 3-19

Structuring Programs

Use of Program Modules

Rules for module Below is a summary of the rules for a module program:
programming 1. Naming convention: Similar to block labels, the

name must begin with "$".
2. The writing of a program module with a name is only

possible once within the entire program.
3. Jumps and branches into the program module from

outside are not permissible.
4. Jumps out of a program module into the main

program or into other program modules are only
permissible with the RET/RETCN instructions.

5. There are no restrictions on branch operations
within an individual program module.

6. Program modules can contain other program
module calls. The maximum nesting depth is 16.
The operating system is responsible for monitoring
the nesting depth.

7. Program modules can also be contained in Include
files (see paragraph "Program modules as
independent files").

8. Module programs can contain Include instructions.
9. Block names in module programs are only valid

within the program section where they are located.
10. Block names have a "local status", i.e. the blocks

can have the same name in the program module as
in the main program or in another program module.

11. A program module call should never be contained
within the program module of the same name
(recursive calling not permissible).

12. The names of jump labels must not contain the "$"
character.

3-20 4/94AWB27-1186-GB Klockner-Moeller

Structuring Programs

Use of Program Modules

Program modules
as independent
files

The description of the use of program modules has so
far assumed that the program module is kept in the
same file as the main program. It is possible, however, to
store the program module in a separate file and to
incorporate it in the main program using the Include
function.

Main program

Block Instructions

MO

Ml

L 'COM-ON
A 'VOLT-ON
= 'PUMP1
CMC $PM2
L ..

CM $PM1

EP

#include (dpml.qxx)

• include (dpm2.qxx)

Main program start block 0

Main program block!

Main program end

Incorporate the PM1 declaration

Incorporate the PM2 declaration

Program module d p m l . q x x

Block Instructions

$PM1 L 'BI-METAL
A 'HIGH PRESS
= 'ALARM4

'KLAX0N2
EM

Start of program module PM1

Module declaration in Include file

Klockner-Moeller 4/94 AWB 27-1186-GB 3-21

Structuring Programs

Use of Program Modules

Program modules

as independent files

Prograrr module dpb2.qxx

Block Instructions

$PM2 L AUTO
A 'MIN PRESS
= 'ALARM 1
= 'IND7
EM

Start PM2 module

Module declaration in Include file (continued)

The above example shows the call of two program

modules $PM1 and $PM2 . The module programs are

writ ten separately to the main program and are kept in

the files dpm1.q42 and dpm2.q42. The first block of

these files carries the name of the program module, in

this case $PM1 and $PM2 ; the program module ends

with the EM instruct ion.

The Include instruction incorporates these files behind

the EP of the main program so that the compi led .pxx

file has the same structure as shown in Figure 3 - 5 .

It is also possible to store both program modules in one

file and incorporate them into the main program wi th

one Include instruct ion.

Data transfer with

multiple program

module calls

In addition to program structuring, program module

programming has the advantage of enabling modules to

be called several times within the main program. After an

algorithm has been programmed once, therefore, it can

be run several times with a different data content, thus

saving valuable memory.

In this case, marker ranges are used for the data

transfer, these being reserved by the programmer.

3-22 4/94 AWB 27-1186-GB Klockner-Moeller

Structuring Programs

Use of Program Modules

MAIN
L I 0.1
= M 100.0

$PB:

Write data for program module in marker field

. M 1 (i n n Process data in program module

= M 120.0

MAIN

and write results in marker field

Marker
range for
transfer
data
to/from
program
modules

I
. M 1200 Read program module data from marker field

= Q0.4

Figure 3-6: Data transfer between the main program and program modules via the marker range

The input data required for the program module is
written in the main program to a marker field. The
program module is then called and this accesses the
input data, performs the algorithm involved and writes
the results to an output data field. The main program
then allocates the data to the outputs or markers.
The input fields are thus filled with values before the
program module is called once more. See also "Fault
indication module" in the paragraph: Multiple program
module calls.

Klockner-Moeller 4/94 AWB 27-1186-GB 3-23

Structuring Programs

Use of Program Modules

The fol lowing examples show the principles of program

module programming and some of their possible

appl icat ions.

Example:

main program and

program module in

one file

00002 START "The main program starts here.
L 'PUMP-ST
='C0M-ST

CM $PM1
L M 20.3
= Q0.3

unconditional call

00003

00004

CONTROL

END

" Control program
L I 0.1
0M12.5
CMC $PM2 conditional call

= 0.0.1

" End of main program
EP

00005
00006

00007

$PM1
ST-C0N1

END

" The functions of PM1 are
" programmed from
" this point.
" Program module 1 starts here.
" Start conditions
LMB24
CP IB 0.0.0.0
BE END
= QB 0.0.0.0
" End of program module 1

EM

00008
00009

$PM2
CON-COND

00010 END

The functions of PM2 are
programmed from
this point.

Program module 2 starts here.
Control function

L I 0.3
A M 99.0
= TGEN 0 S
TGENO

S:
I: KW250
P: Q0.1

" End of program module 2
EM

3-24 4/94 AWB 27-1186-GB Klockner-Moeller

Structuring Programs

Use of Program Modules

Example:

main program and

program module in

different files

00002

00003

00004

START

BL0CK1

END

" The main program starts here.
L 'KEY23
= 'DRV7
CM $PM1 unconditional call
L M 20.3
= 0.0.4

L I 0.5
0M12.5
CMC SPM2 conditional call
= Q0.3
" End of main program
EP

" The functions of
" program module 1 are
" programmed
" from here.

• include (prgmod1.q42)

" The functions of
" program module 2 are
" programmed
" from here.

include (prgmod2.q42)

Klockner-Moeller 4/94 AWB 27-1186-GB 3-25

Structuring Programs

Use of Program Modules

Example: multiple program module calls

"Printout of file c:fault.q42 of 24.3.94"

00002
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
00003
001
002
003
004
005
006
007
008
00004
001
002
003
004
005
006
007
008
009
010
011

FAULT

ACK

FAULT1

"Fault indication program

"Implemented by multiple calling
"of a program module

"Fltn

"INDn

"ACK

_ru"L_n_n_r

.TL

"A fault (signal 1 of an "FLTn input) is
"indicated by the fast flashing of an INDn
"indicator light. After the acknowledgement via
"the ACK key, this flashing changes to a steady
"light. If the fault is no longer present, the
"steady light can be acknowledged via the ACK key.

"A centralized alarm is output on CENI
"indicator as soon as the fault is present.

"Edge evaluation of the ACK key

L ACK LAcknowledge key
AN ACK-EDG IVLAcknowledge key edge marker
=ACK-PUL IVLAcknowledge key pulse marker

L ACK LAcknowledge key
=ACK-EDG IVLAcknowledge key edge marker

"First fault
"Input data for FIM (fault indication module)

L 'FLT1
= 'FLT

LM 100.0
= 'FLT-EDG

LM 120.0
='FLT-FL

LFault 1
M_Fault n

Fault 1 edge marker
IVLEdge marker fault n

Flash marker for fault 1
IVLFIashing fault n

3-26 4/94AWB27-1186-GB Klockner-Moeller

Structuring Programs

Use of Program Modules

00005
001
002
00006
001
002
003
004
005
006
007
008
009
010
00007
001
002
003
004
005
006
007
008
009
010
011
00008
001
002
003
00009
001
002
003
004
005
006
007
008
009
010
00010
001
002
003
00011
001
002

FIMCAL1

IND1

"Call of the fault program module

FAULT2

FIMCAL2

IND2

CEN

END

CM $FIM
"Output data of FIM for fault 1

L 'FLT-EDG
= M 100.0

L 'FLT-FL
= M 120.0

L'IND
='IND1

M_Edge marker fault n
Fault 1 edge marker

M_Flashing fault n
Flash marker for fault 1

MJndication output n
CLOutput light indicator fault 1

"Second fault
"Input data for FIM (fault indication module)

L 'FLT2
='FLT

LM 100.1
= 'FLT-EDG

LM 120.1
='FLT-FL

LFault 2
M_Fault n

Edge marker fault 2
M_Edge marker fault n

Flash marker for fault 2
M_Flashing fault n

"Call of fault indication module

CM $FIM

"Output data of FIM fault 2

L 'FLT-EDG
=M 100.1

L 'FLT-FL
= M 120.1

L'IND
= 'IND 2

M_Edge marker fault n
Edge marker fault 2

M_Flashing fault n
Flash marker for fault 2

MJndication output n
0_0utput fault 2 indicator light

"Output central indication

L 'CENI M_Central indication
= 'CENQ CLCentral indication
"End of main program
EP
•include (pm1.q42)

Klockner-Moeller 4/94 AWB 27-1186-GB 3-27

Structuring Programs

Use of Program Modules

"Printout of file pm1.q42 of 24.3.94"

00002 SFIM
001
002 "Edge evaluation of fault indication
003

004
005
006
007
008
009
010
011
012
00003 FLACK
001
002
003
004
005
00004 TIMER
001
002
003
004
005
006
00005 IND
001
002
003
004
005
006
007
008

00006 CENI
001
002
003
004
005

L'FLT
AN 'FLT-EDG
S 'FLT-FL
S 'FLT-EDG

LN 'FLT
A ACK-PUL
R 'FLT-EDG

MJaul t n
MJEdge marker fault n
M_Jlashing fault n
MJEdge marker fault n

M_Fault n
IVLPulse marker Acknowledge key
M_Edge marker fault n

"Acknowledge flash

L 'ACK-PUL
R 'FLT-FL
R 'CENI

"Set timer

TGEN13
S: K1
I: KW 62
P:

M_Pulse marker Acknowledge key
M_Flashing fault n
M-Central indication

"Output indication

L 'FLT_FL
ATGEN13P
LN 'FLT-FL
A 'FLT-EDG
0
= 'IND

M_Flashing fault n

M_ Flashing fault n
M_Edge marker fault n

MJndication output n

"Central indication

L 'CENI
O'IND
= 'CENI
EM

M_Central indication
MJndication output n
M_Central indication

3-28 4/94AWB27-1186-GB Klockner-Moeller

Structuring Programs

Control Functions

This paragraph gives a description of the control
functions which are carried out by the CPU of the
programmable controller when the program is entered,
during compiling and during the run time.

Editor The line syntax of the editor checks the following cases:

The special character "$"•'

- must only be placed at the first space in the block
name

- must only be present once in the block name
- must not be present in jump labels
- must be present within the program module call

instruction.

The line syntax recognizes:

- whether EP or EM was programmed.
- whether a block name or a program module is

involved.

Appropriate error messages are generated if the line
syntax detects a violation of the syntax rules. The editor
knows whether the main program or the program
module is currently being processed. It outputs
messages that indicate to the user any incorrect use of
EP and EM instructions.

Klockner-Moeller 4/94 AWB 27-1186-GB 3-29

Structuring Programs

Control Functions

Compiler The compiler performs the same monitoring functions as
the editor. It also monitors the following events:

- It generates an error message if a program module is
called which was not declared at any point:

"Program module: xyz does not exist"

- Program modules can on the other hand be declared
but need not be called.

Warning:
"Program module: xyz has not been called"

- Program modules must always be written outside the
main program or outside other program modules, i.e.
if there is a module program within the main program
and/or within another program module, the compiler
detects this error:

"No correct program module declaration"

- A so-cal led recursive call instruct ion, i.e. the call of

the program module currently being processed is not

permit ted by the compiler.

The recursive call instruct ion is explained in the fol lowing

example:

$PM2 Declaration of program module 2
L'FLT
A'VER
= 'P0INT6

CM $PM2

EM

Call of PM2 module

End of module

Summary of error messages:

- Program modules cannot be declared in the main
program or within other program modules

- Main program/program module is not terminated
correctly (EP or EM missing)

- No correct program module declaration
- Program module: XYZ is present more than once
- Incorrect program module call
- Program module: XYZ has not been declared

3-30 4/94AWB27-1186-GB Klockner-Moeller

Structuring Programs

Control Functions

- Jumps to program modules are not permissible
- Program module name has already been issued
- Recursive program module calls are not permitted
- Main program must be terminated with EP.
- Program modules must be terminated with EM.
- Block name/program module name not correct

(impermissible special characters in the name).

CPU (of the PLC)

Warnings after compiling program:
- Program module: XYZ declared but not called.

The individual program modules are stored after the
EP command and before the module directory in the
program file (.pxx) and are also transferred
accordingly to the user program memory (see Figure
3-7).

Information for operating system PCB

Main

EP

PM1

EM

PMn

EM

Module
directory

Free for
on-line changes

Complete program

Only if present

Figure 3-7: Location of the program modules in the user memory

Klockner-Moeller 4/94 AWB 27-1186-GB 3-31

Structuring Programs

Control Functions

The CPU saves the current data before a program module is entered. Saved

data is read back on return to the main program.

Operations on entering a program module:
- Saving of bit, byte, word working registers

- Saving of status registers

- Monitoring of nesting depth

Operation on leaving a program module:

- Writing back of status registers

- Writing back of bit, byte, word work ing registers

After leaving the program module, the work ing register and all status registers

contain the same data as before the program module was called up. This is also

the case when the status registers are used in the program module and when

these registers therefore contain temporary data. It is not possible to transfer the

data to program modules via the registers.

As shown in the fol lowing example, the result of a compar ison for the condit ional

call instruction can be used by several program modules.

L IB 0.0.0.0 "Load input byte 0.0.0.0
CP KB 20 "Compare constant 20
CMESPM1 "Call PM1 if compared value equal
CMB 6 SPM2 "Call PM2 if bit 6 of IB 0 = 1
CMGT$PM3 "Call PM3 if IB 0 > 20
= QB 0.0.0.0 "Store content of IB 0 on output byte 0.

3-32 4/94AWB27-1186-GB Klockner-Moeller

Structuring Programs

Control Functions

Recursive call instructions:

Indirect recursive call instruction of program modules cause cycle t ime error

messages. These types of instruction must be avoided.

Example of an indirect recursive call instruct ion:

$PM2

$PM3

L'BER01
A'ENAB
= TLT-EN

CM $PM3

EM

L'CANC
A 'CANC-EDG
0 'CANC-D
= 'IND7

CM $PM2
EM

Program module 2

PM3 module call

Program module 3

PM2 module call

Monitoring of the nesting depth:

If the nesting depth is exceeded (max. 16), a cycle time

error message (DCT) is initiated and halts the CPU.

Klockner-Moeller 4/94 AWB 27-1186-GB 3-33

J

I

3-34 4/94 AWB 27-1186-GB Klockner-Moeller

Structuring Programs

Test Functions

Online Online programming in IL is also possible in program
programming modules in the same way as for the main program.

Note!

The complete scope of online programming
functions and restrictions are described in
detail in Chapter 4.

Familiarise yourself with these details before
using Online programming with program
modules and Include files.

All possible modifications using the offline compiler are
available with the following exceptions:
- New program module declarations are not

permissible. Program module calls can be
supplemented or deleted as required (same as for
function modules).

- The termination of a module program (EM) cannot be
deleted.

- The online programming does not check whether a
declared program module is called up.

The online menu provides two search functions in order
to make it more easy to find a program module.
- Program module selection.

The F8 key "Program module selection" provides a
summary of all program modules present. Program
modules that are kept in another file (# include) are
also handled.

Klockner-Moeller 4/94 AWB 27-1186-GB 3-35

Structuring Programs

Test Functions

Online Example: The screen shows the following program
programming section:

00012 PUMP3 "Control Pump 3
L 'STRT-EN
= 'STRT-IND
CM SPM1 unconditional call
L M 20.3
= 0.0.3

00013 PUMP3S "Pump 3 fault indication program
L I 0.3
OM12.5
CMC $PM2 conditional call
= 0.0.4

00014 END "End of the main program
EP

00015 $PM1 "General pump interlocks
L 'INT-C0ND
A 1NT-7

F8 is pressed to display at the top right of the screen a

summary of all program modules which are

programmed:

$Main
SPM1
$PM2
$Flt

Select the program module required with the cursor and

the [Enter] key to display the first screen of the module

program. The online editor can be selected by pressing

F2.

Select program file

Key F7 "Select program fi le" is used to provide a

summary of all p rogrammed Include files. This

compr ises all Include files which have been incorporated

by the main program or by program modules, in addit ion

to the main program itself.

3-36 4/94 AWB 27-1186-GB Klockner-Moeller

Structuring Programs

Test Functions

Example: The screen shows the following program
section:

00012 Pump3 "Control pump 3
L 'STRT-EN

= 'PUMP3
CM $PM1 unconditional call
L M 20.3
= Q0.3

00013 Pump3F "Pump 3 fault indication program
LI 0.3
0M12 .5
CIVIC $PM2 conditional call
= Q0.4
• include (Flt.q42)

00014 END "End of main program
EP
• include (pm1.q42)
• include <pm2.q42)

A summary of all files that have been combined with the
Include instruction is shown in a window at the top right
after function key F7 is pressed:

main.q42
flt.q42
pm1.q42
pm2.q42

Select file required with the cursor and the [Enter] key
required to display the first screen of the include file. The
online editor can be selected by pressing F2 in order for
any necessary changes to be made within this file. The
F1 "Return" key is used to leave the file and save the
alterations made.

The source file is overwritten with the modified program
with F4 "Save program file".

If the PS 4 200 series has a memory module which, e.g.
contains a flash EEPROM memory, you can select in the
menu

Klockner-Moeller 4/94 AWB 27-1186-GB 3-37

Structuring Programs

Test Functions

Online whether the program should also be overwritten in this
programming flash EEPROM memory. If you answer with "No", the

program modification is lost when switching off the PLC.
When switching on the PLC again, the old program is
loaded from the flash EEPROM memory.

Status display The operand states of program modules are also
displayed in IL without any restrictions or changes in the
form of display involved. The status display can be
directly called from the "Test and Commissioning" menu.

If the status display is carried out in IL during
commissioning, the status display can also be obtained
from the "Online Menu" via F9 and then F4. This path
enables simple changing between "Change" and
"Observe" operations.

3-38 4/94 AWB 27-1186-GB Klockner-Moeller

4 Commissioning

Contents

General notes 4-3

Test/Commissioning main menu 4-5

PS 4 200 status 4-7
- Diagnostic status word (DSW) 4-8
- Information byte (INB) 4-14

Device, l/Q Status 4-17

Status display IL
- Dynamic forcing

Online program modification
- General
- Handling
- Function key F2 EDIT PROGRAM FILE
- Function key F7

Select program file
- Function key F8

Program module selection

Date/time

4-23
4-26

4-29
4-29
4-31
4-32

4-35

4-37

4-39

I

Klockner-Moeller 4/94 AWB 27-1186-GB 4-1

4-2 4/94 AWB 27-1186-GB Klockner-Moeller

Commissioning

General Notes

The greater the complexity of installations with
programmable controllers, the higher the costs are for
program testing, commissioning and servicing.

The selection of a suitable PLC system therefore
requires particular importance to be attached not only to
the functionality of the system itself but also to the
testing facilities available for use in program creation,
commissioning and service. Particularly in the event of
errors, it is important to identify and rectify the cause of
the fault as quickly as possible, in order to minimize the
costs resulting from loss of production.

The SUCOcontrol PS 4 200 series programmable
controllers fulfill this requirement particularly well
through a range of functions for testing and
commissioning.

This range involves the software tools and the LEDs
which indicate the status.

This manual only deals in detail with the test functions in
connection with the programmer (personal computer). It
should be noted that in fault diagnosis, approximately
90 % of all faults occur in the process peripherals, i.e. in
the sensors and actuators.

The test functions described below can be illustrated
and explained clearly with the aid of a personal
computer and a PS 4 200 series.

Klockner-Moeller 4/94 AWB 27-1186-GB 4-3

e

4-4 4/94 AWB 27-1186-GB Klockner-Moeller

Commissioning
Test/Commissioning
Main Menu

The figure below shows the Test and Commissioning
menu with the particular test functions that it offers.
They are divided into the following sub-menus which are
each divided up into further sub-menus. Integral help
texts give information on the operation of the individual
test functions.

S U C O s o f t - S 3 0

TEST / COMMISSIONING S 4 - 2 0 0

F l M A I N M E N U
F 2 PLC STATUS
F 3 DEUICE I/Q STATUS
F 4 STATUS DISPLAY IL
F 5 ONLINE PROGRAMMING IL
F 6 TRANSFER DRIUE -> PLC
F 7 TRANSFER PLC -> DRIUE
F 8 COMPARISON PLC <-> DRIUE
F 9 DATE • TIME
F10 H E L P

Figure 4-1: Test/Commissioning main menu

Klockner-Moeller 4/94 AWB 27-1186-GB 4-5

4-6 4/94 AWB 27-1186-GB Klockner-Moeller

Commissioning

PS 4 200 Status

Figure 4-2 on the next page shows the PS 4 200 Status
menu. The left side of the display shows the central
processing unit. The position of the mode selector
switch, the status of the PS 4 200 series and indications
are shown. These status indications mean the following:

PS 4 200 series

RUN

READY

NOT READY

CHANGE H |-

CYCLE TIME

Explanation

User program is being
processed.

The memory tests performed
whenever the power supply is
switched on have been
completed successfully. The
user program can be started.

The program or memory test
executed was not
successfully completed. The
PLC cannot change to the
RUN status.

The voltage monitor on the
backup batteries fitted has
indicated that a battery
change is required (indication
of necessary battery change).

Cycle time exceeded (max.
permissible time can be
preselected in range from 1 to
255 ms).

Klockner-Moeller 4/94 AWB 27-1186-GB 4-7

Commissioning

PS 4 200 Status

In the centre of the menu, 16 possible events are
identified and shown in a diagnostic status word (DSW).
The PS 4 200 series detects 14 events. The cycle time is
shown on the right of the menu, when the PLC is in the
RUN mode. The system version of the CPU and the
memory capacity are also shown. This information is of
particular use for servicing.

The PS 4 200 series PLC can be started and stopped in
this menu. The retentive markers can also be reset, e.g.
in order to restart an installation.

PS4 200 STATUS:
Last change registered
at 14:36:S4h

1
1

i

i
hursdc
4:36:E

RUN
READY
NOT READY
CHANGE !!
CYCLE TIME

TOGGLE SWITCH:
1 HLT
2 - RUN
3 - RUN <M-RESET>

iy,7.7.1994
8

DIAGN. COUNTER
Last reset
at 00:00:00h

ECT I
i EDC 1

EWD 1
00001 EPM |
00001 EDR I
===== ERT 1

ENR |

DAC |
BB001 DBM 1
00001 DMC I
====E DLK 1

DLS |
DDK I
DDS 1

DIAGNOSTICS WORD
Last reset
at 00:00:00h

Cyc le t ine :
001 ns

External memory:
128 KB-FLASH

Program: hans
Date: 7Jul94
Uersion: ul00

Operating system:
U1.00 L

SUCOsoft uersion:
U1.0

Status —
1 RETURN
2 PLC - Start
3 PLC - Stop

F 4 Reset Diagn-
F 5 Reset Diagn.

counter F 7 Retentiue markers reset
word

F10 HELP

Figure 4-2: Status menu

Diagnostic status
word DSW

The diagnostics status word of the PS 4 200 series
consists of 16 bits which are defined as either D bits,
which only have an indication function, or E bits, which
stop the PLC in addition to the indication function.

4-8 4/94 AWB 27-1186-GB Klockner-Moeller

Commissioning

PS 4 200 Status

Table 4-1: Diagnostics status word DSW

The first letter
stands for category
EorD

Bit 15 ECT

Bit 14 EDC

Bit 13 EWD

Bit 12 EPM

Bit 11 EDR

Bit 10 ERT

Bit 9 ENR

Bit 8

Bit 7 DAC

Bit 6 DBM

Bit 5 DMC

Bit 4 DLK

Bit 3 DLS

Bit 2 DDK

Bit 1 DDS

BitO

Meaning

Cycle time exceeded

DC failure in the basic unit

CPU failure

Error in the program memory

Retentive data in operating system

RUN TIME error

New start only with retentive marker reset

not assigned

Input voltage drop

Battery monitoring

Backup not present

Local configuration error

Input/output error

Remote configuration error

SBI or network station error

not assigned

The diagnostics bit 0 to 7 are scanned via the user
program with the L IS O.X (X = 0 -7) instruction.
The error messages of the bits 8 to 15 cause a stop of
the controller so that these bits must not be read.

After the error has been rectified the diagnostics bits of
category D can be reset via the Reset button on the
front panel of the PS 4 200 series or via the
programming device (PC).

Each diagnostics bit has been assigned a counter in
order to provide information on the frequency of the

Klockner-Moeller 4/94 AWB 27-1186-GB 4-9

Commissioning

PS 4 200 Status

Diagnostic status errors. These counters can be read and, if required, be
word DSW reset by the programming device.

If a category E error occurs, the controller switches to
the HALT status and can be started again after the error
has been rectified. A cold start is always carried out with
the switch in the M-RESET position. The restart
behaviour with the switch in RUN is preset via the entry
in the System parameters submenu of the Programming
main menu.

Depending on this configuration SUCOsoft initiates a
warm/cold start as required. The standard setting HALT
means that it is necessary to cold start the controller via
M-RESET. All retentive data is lost.

Description of errors and reactions

ECT Cycle time exceeded
The maximum cycle time (standard setting: 60 ms/max.
255 ms) set in the System parameters menu has been
exceeded during programming execution

Reaction of the running controller:
Indication and stop

EDC DC failure in the basic unit
Short-circuit or overload in the basic unit.

Reaction of the running controller:
Indication and stop

EWD Failure of the CPU
CPU hardware watchdog indicates the failure.

Reaction of the running controller:
Indication and stop

4-10 4/94 AWB 27-1186-GB Klockner-Moeller

Commissioning

PS 4 200 Status

EPM Error in the program memory
An error has been detected during the checksum test or
the plausibility check of the user program. The program
must be loaded again.

Reaction of the running controller:
Indication and stop

EDR Retentive data destroyed in the operating system
Important operating system control data is destroyed or
does not exist after a RAM change or in a new controller.

Reaction of the controller:
Does not start; also overall reset of all memory ranges
and a re-initialisation.

ERT Run time error
The controller detects an error during operation.

Reaction of the running controller:
Indication and stop

ENR Restart only with retentive marker reset
This message only occurs if the controller has been
configured to HALT (0) in the "Start after NOT READY"
option of the System parameters menu and if the user
has tried to carry out a warm start after a category E
error.

DAC Input voltage drop
The supply voltage of the basic unit has dropped
temporarily.

Reaction of the running controller:
Indication
Restart with RESET or M-RESET.

Klockner-Moeller 4/94 AWB 27-1186-GB 4-11

Commissioning

PS 4 200 Status

DBM Battery monitoring
The battery voltage is below the tolerance threshold. The
battery module must be changed if the PLC is operated
with a RAM module or if retentive data ranges or the
real-time clock were used.

Reaction of the running controller:
Indication
Restart with RESET or M-RESET

DMC No backup
The backup which is automatically configured in the
memory module is faulty.

Reaction of the running controller:
Indication
Restart with RUN or M-RESET.

DLK Error in the local configuration
The configuration of the PS 4 200 series is not correct or
a local expansion (LE module) connected to the basic
unit is faulty.

Reaction of the running controller:
Indication
Restart with RUN or M-RESET

DLS Input/output error
Short-circuit or overload of the digital outputs or the
value range of analogue outputs of the basic unit or its
local expansion modules (LE module) is exceeded.

Reaction of the running error:
Indication
Restart with RUN or M-RESET.

4-12 4/94AWB27-1186-GB Klockner-Moeller

Inbetriebnahme

PS 4 200 Status

DDK Remote configuration error
The configuration of one or several network stations is
faulty, i.e. the entered type designation does not agree
with the existing device.

Reaction of the running controller:
Indication
Restart with RUN or M-RESET.

DDS SBI error or network station error
An error of a network station has been detected via the
internal serial interface of the basic unit. The exact
location of the error is possible via the diagnostics bytes
of the individual network stations.

Reaction of the running controller:
Indication
Restart with RUN or M-RESET.

Note!

The diagnostics bits described above only
apply to the PS 4 200 series. Other devices
(LE, EM, PS 3) have other status information
which is described in the manuals concerned.

Klockner-Moeller 4/94 AWB 27-1186-GB 4-13

Commissioning

PS 4 200 Status

INB information The information byte informs the user on the status of
byte the controller, the images of the network stations, start

behaviour of the controller etc. The operating system of
the PS 4 200 series generates this INB information byte.
Its information bits can be evaluated in the user program
but not be written.

The following bits are assigned in the information byte:

Table 4-2: INB information byte

Bit

INBO.O

INB0.1

INB0.3

INB0.4

INB0.5

Meaning

1 st cycle after Reset or Reset button

1 st cycle after Reset button

Information bit for the remaining cycle

Information for the restart:
0 = warm start
1 = cold start

Information on new data in the image of the 1st
network line

INB 0.0 The INB 0.0 bit is High during the first cycle after the
PLC is started up with the toggle switch in positions
RUN and RUN M-RESET. INB 0.0 can be used in the
user program for application related initialization
routines, e.g.

L INBO.O
JC START

INB 0.1 INB 0.1 is High during the first cycle if the programmable
controller is started via the Reset button on the CPU.
INB 0.1 can be used for initialization routines, e.g.

L INB 0.1
JC START

4-14 4/94 AWB 27-1186-GB Klockner-Moeller

Commissioning

PS 4 200 Status

INB0.3 If a user program has been stopped in the middle of the
cycle, the INB0.3 bit remains set after the restart until
the remaining cycle and the updating of the output
image are completed. If required, a special handling of
the data ranges can be initialized by scanning the
INB0.3 bit when the user program starts again.

Example:

L INB0.3
JC DATRESET

INB0.4 This bit indicates how the controller was last started.
With INB0.4 = 0 a warm start was last carried out. With
INB0.4 = 1 a cold start was last carried out and all data
ranges are initialized. This information is only valid
during the first cycle after the restart. The bit is then
automatically reset.

INB0.5 This bit is set for exactly one cycle if a network station
has sent new data to the basic unit. This INB0.5 bit can
be used in simple sequence to determine when new
data has been received since the program cycle and the
communications process are not synchronized. This
data can then be processed directly as required.

Example:

L INB0.5
JC NEWDATA

Klockner-Moeller 4/94 AWB 27-1186-GB 4-15

4-16 4/94 AWB 27-1186-GB Klockner-Moeller

Commissioning

Device, l/Q Status

This function particularly supports commissioning when
checking cables on-site.

A dynamic display of the digital and analogue input
states is provided for this purpose without the user
program being run.

The cables to the control devices are checked by
actuating the control devices concerned, and the
relevant signal change is displayed on screen. The
analogue input variables for analogue inputs are
converted internally and displayed as decimal values,
thus allowing analogue transducers to be balanced
easily.

When selecting F3 DEVICE, l/Q STATUS in the TEST/
COMMISSIONING menu the set device configuration is
read out of the connected PS 4 200 series device. This
configuration which has been transferred to the
controller together with the user program is displayed
graphically on the screen.

PS4-201-MM1 116-XDl 116-DX1

EM4-201-DX1

PS3-AC

PS3-DC

EM4-101-DD1/106

- MAIN MENU—>TEST/COMMISSIONING—>DEUICES,I/Q STATUS
F 1 Return F 4 Device s t a t u s o n / o f f
F 2 PLC - S t a r t F 5 l/Q d i s p l a y o n / o f f
F 3 PLC - Stop F 6 Forc ing o n / o f f F10 Help

Figure 4-3: Display of the device configuration and the l/Q status

Klockner-Moeller 4/94 AWB 27-1186-GB 4-17

Commissioning

Device, I/Q Status

The current status of the connected devices is indicated
to the user by clicking the F4 Device status on function
key. The message "OK" or "DIAG" is indicated in the
above right corner of the graphical display.

I116-XDl 116-DX1

EM4-201-DX1
HJJJEEl

PS3-AC -ami

PS3-DC
-aEEi

r4 M3Sl
EM4-101-DD1/106

- MAIN MENU —>TEST/COMMI SSI ONI N G — > D E U I C E S , I / q STATUS a i M H U J
F 1 Return F 4 Deuice s t a t u s on/off
F 2 PLC - S ta r t F 5 I/Q display on/off
F 3 PLC - Stop F 6 Forcing on/off FIB Help

ntHm-rarrew

Figure 4-4: Device status

You can select the desired device via the cursor keys
and the errors can be displayed by pressing Return.

116-XDl 116-DX1

EM4-201-DX1
oaaii

PS3-AC
-MM I

—Diagnostics display
Bit 2: DDK- Remote configuration error
Bit 4: DLK- Error in local configuration
Bit 6: DBM- Battery nonitor

| PS 3-DC
GffiEh

^ EM4-101-DD1/106

- M A I N MENU — >TEST/COMMI SSI ONI NG—>DEU ICES , I / Q STATUS • UJ'MJJ
F 1 Return F 4 Device s t a t u s on/off
F 2 PLC - S ta r t F 5 I/Q display on/off
F 3 PLC - Stop F 6 Forcing on/off F10 Help

BEB^BBEi

Figure 4-5: Diagnostics display for individual devices

4 -18 4/94 AWB 27-1186-GB Klockner-Moeller

Commissioning

Device, l/Q Status

You can obtain the current input and output states of the
device selected with the cursor keys via the F5 l/Q
display menu point. Remember that in the HALT status
of the controller all input states are refreshed, but the
outputs reset. If the PS 4 200 series is configured as a
slave, the communications input and output data is
indicated as well.

PS4-201-riMl L16-XD1 116-DX1

—Communication i n p u t
B 0 : X00 x00 x00 x00 X00 X00

— D i g i t a l i n p u t
B0: 00000000 0x00

—Digital output
B0: 00000000 0x00

EJ
iomiiunication output

B 0: x00 x00 x00 x00 x00 x00 x00
1—Analogue
1J0:

Ul:
U2:
U3:

00000
00000
00000
00000

input 1
0X0000
0X0000
0X0000
0X0000

—Analogue output 1
U0: 00000 0x0000

- (IAIN MENU —>TEST/COMMISSIONING—>DEUICES,I/Q STATUS
F 1 Return F 4 Device status on/off
F 2 PLC - Start F S l/Q display on/off
F 3 PLC - Stop F 6 Forcing on/off F10 Help

Figure 4-6: Input/output display for individual devices (here: PS4-201-MM1 as slave)

The status of the digital and analogue outputs can be
forced via F6 Forcing on/off when the controller is in
Halt. This allows the wiring and function of the
connected actuators and signal encoders to be
checked.

Danger!

The forcing of outputs may lead to unexpected
reactions of the controlled machine/plant.
Before forcing, ensure that no persons and
objects are in the endangered area.

Klockner-Moeller 4/94 AWB 27-1186-GB 4-19

Commissioning

Device, l/Q Status

116-XDl 116-DXi

- D i g i t a l output
BB: 11001100 0xcc [5
nalogue output-

W0: 00030 0x001eI

Leave box
Set values
Reset values

- tlfilN MENU >TnST/COMMISSIONING—>DEUICES,I/Q STATUS •a.HlAlit-»-.TTOIB»-
F 1 Return F 4 Device s t a t u s o n / o f f
F 2 PLC - S t a r t F 5 I/Q d i s p l a y o n / o f f
F 3 PLC - Stop F 6 Forc ing o n / o f f F10 Help

Figure 4-7: Forcing of outputs

Remember that the PS 4 200 series can have a different
resolution when PS 3-..., PS 306-..., or EM 4-101-AA 1
devices are used as slaves:

Table 4-3: Resolution of the analogue values

IA

QA

PS 4 200 series

10 bits

12 bits

PS 3-...

8 bits

8 bits

PS 306-...

10 bits

12 bits

EM4-101-AA1

8/12 bits')

8/12 bits1)

') Can be selected on the EM 4 device

The cables to the actuators are checked in the usual
way by activating the PLC output and checking the
reaction of the actuator concerned.

Outputs within the entire device configuration can be
forced to 1 or 0 using the forcing function in order to
check the cabling to the actuators.

4-20 4/94AWB27-1186-GB Klockner-Moeller

Commissioning

Device, l/Q Status

Danger!

Before checking the cables, ensure that there
are no persons and objects in the endangered
area!

After the cursor has been positioned (via the cursor
control keys) on a module which has digital or analogue
outputs, the entry box for forcing can be opened via F6,
Forcing ON/OFF (Figure 4-7). In this box you can enter
values for the outputs of the selected module.

Forcing applies to digital and analogue outputs. For
increased safety, the set states must then be activated
with F7.

If there is no reaction when the inputs or outputs are
checked, the reference file indicates the signal path from
the sensor or actuator to the terminal on the PLC.

Klockner-Moeller 4/94 AWB 27-1186-GB 4-21

4-22 4/94 AWB 27-1186-GB Klockner-Moeller

Commissioning

Status Display IL

The states of the operands (Figure 4-8) and the function
blocks are displayed dynamically in order to test the
program. The following information appears on screen
depending on the data type of the operand concerned:

- For bit operands, 1 or 0 depending on status
- For multiple-bit operands (byte and word), their

content, either as a decimal figure with +/ - sign, or a
positive value or in binary representation. Display is
also possible in hexadecimal form.

The operator can also freeze the Status monitoring
function via any key (except the function and cursor
keys) in order, for example, to allow sufficient time to
evaluate the situation at the exact moment a particular
event occurs.

iiTipT
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019

.:

- MAIN
F 1 Re
F 2 Se
F 3

LC/TIMER " C l o s e d Loop C o n t r o l

TR63 -MS
» • [[] S: LK -LC/TR-S

a t] R ;

B i t 3 STOP:
• f e L ^ U l u l I: KH 3000

Elf 3 EQ:
• H l t u] Q = 'LC/TR-Q

MOB I* 'LC/TR—Q
CP KW 2000
" BLI LC/TIM-1

"Timer has e l a p s e d

L K 1
MM ' 'LC/TR-S

" MENU —>STATUS DISPLAV — De

Timer

C l o s e d Loop C o n t r o l Timer
S e t M - C o n t r o l - T i m e r

M i l - a c t u a l v a l u e o f c o n t r o l t i m e r

MU—actual v a l u e o f c o n t r o l t i m e r

Timer no t y e t e l a p s e d

<2000 ms> r e t r i g g e r

S e t M - C o n t r o l - T i m e r
C o n t r o l l e r o p e r a t i o n

c i m a i u a t a t r a n s f e r a c c i u e
l e c t b l o c k F 5 S t a t u s m o n i t o r i n g off F 8 + / - d i s p l a y

F ind s t r i n g F 6 DISPLAY RANGE F 9 B i n a r y d i s p l a y

Figure 4-8: Status display IL

Klockner-Moeller 4/94 AWB 27-1186-GB 4-23

Commissioning

Status Display IL

The function key F6 allows entry into the DISPLAY
RANGE menu.

Press function key F2 and enter the marker (M) range
required. The following type of menu will then appear on
screen showing the markers previously selected, see
Figure 4-9.

MU0
MU18
MW36
MU54

H

0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

- DISPLAY RANGE —
F 1 Return
F 2 D i s p l a y range
F 3 LIFO/FIFO

D e c i n a l -
F 4 Double range

F 6 UflRIABLE WINDOU

F 7 Dec imal /hex d i s p l a y
F 8 + /- d i s p l a y
F 9 Binary d i s p l a y

Figure 4-9: Display range

4-24 4/94AWB27-1186-GB Klockner-Moeller

Commissioning

Status Display IL

Press the function key F4 and enter the required marker
(M) areas. The following type of menu will then appear
on screen showing the operand areas previously
selected. See Figure 4-11.

This display is particulary useful when checking the
function of the ICP and ICPY function blocks for indirect
addressing.

MB0 0 0 0 0 0 0 0 0 0 0 0 0
MB12 0 0 0 0 0 0 0 0

MB50
MB62
MB74
MB86
MB98

0
0
0
0
0

0
0
0
0
0

0
M
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

a
0
0
0

0
0
0
0

0
0
0
0

- DISPLAY RANGE Decimal Data t r a n s f e r e r r o r
F 1 Return F 4 Double range F V Dec imal /hex d i s p l a y
F 2 D i s p l a y range F 5 S e l e c t window F 8 * /- d i s p l a y
F 3 LIFO/FIFO F 6 UARIABLE WINDOW F 9 Binary d i s p l a y

Figure 4-10: Double range

Klockner-Moeller 4/94 AWB 27-1186-GB 4-25

Commissioning

Status Display IL

It is also possible in the DISPLAY RANGE menu via F3
to check the status of the First-in-First-out and Last-in-
First-out registers (LIFO and FIFO), see Figure 4-11.

Dynamic forcing You can force byte and word markers dynamically during
the RUN operation of the controller via the F6 Display
range function key in the VARIABLE WINDOW menu of
the IL status display (Figure 4-9). Only operands can be
force set dynamically which have been released for this
by the System parameters menu (see chapter 1).

0

1903
2906
803
2

8092
8092

3
113

1100
1111
1222
1222
1222
2232
12
3

103
1105
1000
2000

Interrupt

20

1222
2232
12
3

103
1105
1000
2000
1903
2906
803
2

8092
8092

3
113

1100
1111
1222
1222

with any

40

1000
2000
1903
2906
803
2

8092
8092

3
113

function key

60 80 100 120

LIFOU0-50

CF: 1
CE: 1
R: 0
I: 0
F: 0
E: 1
Q: 0

^^7^*^*7^TTTT7T^^TTr?^^^^^^^^^^M

Figure 4-12: UF0/FIF0 status display

4-26 4/94AWB27-1186-GB Klockner-Moeller

Commissioning

Status Display IL

You can add an entry in the IL via the F2 Add line
function key. The operand type, the operand number, the
input type and the input value are assigned to the entry
in succession.The operand type (MB or MW) and the
input type can be modified with the PgUp/PgDn keys.
The format of the input value display agrees with the
selected input type automatically.

Operand
type
MB
MB
MU
Ml)

Operand
number
0
4
10
2H

Current
value
2
00
0000
0

Input Input
type value
Decimal 30
Hexadecimal fftt
Binary 0010001010111000
Decimal */- B

- UARIABLE UINDOU
F 1 Return
F 2 Add line —HBHHBBBfflimB

F 6 Force operand

M-l«4J.I,»i4».U4UfJ-

F 8 Delete current line
F10 Help

Figure 4-12: Dynamic forcing

Danger!

The forcing of markers may lead to unexpected
reactions of the controlled machine/plant.
Before forcing ensure that persons and objects
are not in the endangered area.

The input value selected with the cursor is transferred to
the corresponding operand by pressing the F6 Force
operand function key, and then processed in the user
program, i.e. the value only needs to be forced once.
The value of the marker after the dynamic forcing is
completed thus only depends on the program logic: The

Klockner-Moeller 4/94 AWB 27-1186-GB 4-27

Commissioning

Status Display IL

markers are not reset to the previous value or to zero
when you exit the menu.

The display "Current value" in the variable list enables a
check of the current data value. The current value is
displayed in the format selected under "Input type"; only
data entered as binary values is displayed in
hexadecimal format.

Dynamic forcing can be used to initiate a desired
program sequence or certain actions by setting certain
data values. The VARIABLE WINDOW menu can also be
used to display up to 18 markers in the list as required in
order to monitor their states.

4-28 4/94 AWB 27-1186-GB Klockner-Moeller

Commissioning

Online Program Modification

General This function (Figure 4-13) is particularly useful when
commissioning. It allows program modifications with the
PS 4 200 series in "Run" mode. The following
modifications can be carried out:

- Open new blocks
- Insert instructions and allocations
- Delete instructions and allocations
- Alter jumps and jump targets
- Alter function block input parameters

Press F5 in the Test/Commissioning menu and enter the
file name and the drive specification. The program will
be displayed as in the example below.

mm INIT
001 !lsl5l:II PROG
001
002
003
004
005
'!l!l!l!W 11
001
•sTsTsTsM 12
001
SBBia Mfinin F
001
002
003
•JlsIslSH E N D
001
smsRia SPBI
001
- MAIN MENU—
F 1 Return

"Initialisation device-configuration
tt include "doku.k42"
"Mini Program
1, I 0 . 0
A I 0 . 1
- Q 0 . 1
L KB 20
= MB1
"Include 1
t t i n c l u d e < i n c l l . q 4 2 >
"Include 2
t t i n c l u d e < i n c l 2 . q 4 2 >
" CM $PB1
CM $PB2
CM SSTATIC
"
EP
"
L I 0 . 0

>ONLINE MODIFICfiTION $MAIN -
F 4 Save program f i l e

F 2 EDIT PROGRAI

d:doku.q42 —
JMmrm F 8 S e l e c t
F 9 STATUS

i n c l i . q 4 2
i n c l 2 . q 4 2

d:doku.z42 —
fcfiiiu»T;v;nm
program module
DISPLAY

I

Figure 4-13: Online modification

In the Online menu (figure 4-13), select EDIT PROGRAM
FILE F2 and make any modifications in blocks to the
program that are necessary.

Klockner-Moeller 4/94 AWB 27-1186-GB 4-29

Commissioning

Online Program Modification

General Press the Activate key F6 (Figure 4-14) which transfers
the modifications to the PS 4 200 series. In order to
cancel modifications before activation, use the Undo
modification key F7.

™ i T = l I N I T
001
•ilililsn PROG
001
002
003
004
005
'slsIffiW i i
001
'JBJ5SM I a
001
ilililsE! M f i n i l l F
001
002
003
•sTsTJTsH FN1)
001
liJHsKH SPR1
001
- MB IN MENU — >C
F 1 Re tu rn
F 2 Open b l o c k
F 3 S e l e c t b l o c

"Initialisation device-configuration
t t i n c l u d e " d o k u . k 4 2 "
"Mini Program
L I 0 . 0
A I 0 . 1
= Q 0 . 1
L KB 20
= MB1
" I n c l u d e 1
t t i n c l u d e < i n c l l . q 4 2 >
" I n c l u d e 2
t t i n c l u d e < i n c l 2 . q 4 2 >
"
CM $PB1
CM 5PB2
CM SSIATIC
"
EP
"
L I 0 . 0

F 4 Add l i n e
F B F i n d s t r i n g

k F 6 ftctiuate

$MAIN — Insert —
F 7 Undo modification
F 8 Delete current line
F 9 STATUS DISPLAY

Available PC memory:204.000 Byte Available PLC memory:23.556 Byte Status:RUN

Figure 4-14: Online modification

Online modifications involve intentional modifications to
program instructions of a machine or plant which is in
operation.

Danger!

Before starting with the online modifications,
ensure that there are no persons and objects in
the endangered area since Online modifications
may cause unexpected reactions of the
controlled machine/system!

4-30 4/94 AWB 27-1186-GB Klockner-Moeller

Commissioning

Online Program Modification

Handling SUCOsoft S 30 programming software and later
versions feature the Online modification function
integrated in the Test and Commissioning menu. This
menu is called up from the main menu via F2.

Once in the Test and Commissioning menu, press the
ONLINE PROGRAMMING IL function key. The PS 4 200
series must be connected with the programming device
in order to use this function.

Online modifications are possible with the
programmable controller in either RUN or HALT mode.

The last valid program and reference files are required
for the next operation, including all Include files that may
be used.

Enter the relevant drive specification for your program
files following the prompts on screen.

Note!

It is advisable to store these program
the hard disk in order to ensure faster
processing as well on account of the
volumes that are possibly involved.

files

large

on

data

After entering the drive specification, select one of the
following functions from the menu

F1 RETURN Leave Online menu

F2 EDIT Online programming and
PROGRAM modification function
FILE

Klockner-Moeller 4/94 AWB 27-1186-GB 4-31

Commissioning

Online Program Modification

Handling

Function key F2
EDIT PROGRAM
FILE

F4 Save Save the program file under the
program file current name

If the PLC has a memory module with Flash EEPROM
memory, you will be asked if the program file is also to
be updated in the Flash EEPROM memory (backup). If
you answer with "No", the program modification is lost
when switching off the PLC. When switching it on again,
the previous program is loaded out of the Flash
EEPROM memory.

F7

F8

F9

Select
source file

Select
program
module

STATUS
DISPLAY

F10 HELP

Select from a list all PROGRAM and
Include files in the main program.

Select from a list all program
modules which are linked to the main
program.

Activate the IL status display.

Supplementary help texts

This menu enables the following operations to be carried
out:

- Modifying user programs block by block

- Modifying instructions and allocations —> operands
and existing symbolic names

- Deleting instructions and allocations

- Inserting instructions and allocations -» operands and
existing symbolic names

- Inserting comment texts

- Altering jumps and jump targets

- Deleting jump instructions

- Inserting jumps

- Modifying function block parameters

- Opening new blocks by assigning new block labels

4-32 4/94AWB27-1186-GB Klockner-Moeller

Commissioning

Online Program Modification

Restrictions of the ONLINE modification:

The following functions cannot be carried out via the
ONLINE EDITOR:

- Assigning new symbolic names

- Simultaneous modification in several blocks

- Online modifications in blocks mixed with program
instructions and # Include < q42>

- Re-programming of function blocks

Note!

Online modifications may not be carried out
with subprograms which are called up by alarm
function blocks (CALARM, FALARM, TALARM).
In certain circumstances this may lead to
program failure, e.g. if the event signal required
to activate the alarm function block occurs
when the online modification is activated.

The following cannot be deleted:

- Function blocks

End of program module instruction (EM)

- End of program instruction (EP)

The following cannot be modified or deleted:

- Existing block labels

- Operand comments

- Pre-processor instructions

The function key F6 of the ONLINE MODIFICATION
menu (Figure 4-14) activates the modified program. This
compiles the modified block and transfers it to the PLC.

The program files <... .p42> and <.r42> and the
source file <... .q42> are modified at the same time.

Klockner-Moeller 4/94 AWB 27-1186-GB 4-33

Commissioning

Online Program Modification

Function key F2
PROGRAM ENTRY

The program file is stored in the form of an auxiliary
program file with the extensions 000 001 etc.,
and modified, depending on the number of online
modifications involved.

When the Online modification menu is left, these
auxiliary files are automatically transferred to the current
program file and then deleted.

Caution!

Do not therefore switch off your PC before the
Online editor has been left via RETURN.
Otherwise your program will no longer
correspond with the program file on the disk.

The amount of user program memory available in the
PLC is reduced with every online modification made.
Keep the blocks in your user program as short as
possible. The memory capacity as well as the remaining
memory is indicated with every online modification
made.

If your program memory capacity is used up on account
of too many online modifications, you can transfer your
optimized (i.e. shortened) program after the new
compiler run with the CPU in Halt mode (offline).

Danger!

If active outputs set by the previous program
cycle are edited online so that they then no
longer have an allocation within the program,
they will remain High until the next POWER
OFF in the PS 4 200 series.

4-34 4/94AWB27-1186-GB Klockner-Moeller

Commissioning

Online Program Modification

The outputs are also reset when switching the controller
to the HALT status.

In some applications it is necessary to return edited, but
not yet activated program sections to their original state.
Function key F7 (Figure 4-14) should be used for this.

These applications include:

- Discarding (abandoning) the last modification(s) made

- Switching to Status display

- Calling up an Include program file

Function key F7 If the main program contains Include program files,
Select program file these too may be edited with the ONLINE EDITOR. In

order to call up the appropriate Include file, press
function key F7. All the Include files that are called up by
the main program are then listed.

Mark the desired file name with the cursor keys in the list
right above in order to call up the Include file concerned.

Note!

Put # Include instructions in separate blocks
since the program instructions of blocks
containing Include instructions cannot be
edited via the ONLINE EDITOR if they are
written before or behind an Include instruction.

Klockner-Moeller 4/94 AWB 27-1186-GB 4-35

Commissioning

Online Program Modification

Function key F7

Select program file

Example:

00005

00006

00007

"Block 5
LI 0.0
AM 10.0
= Q 0.0
INCLUDE <PR0GRAM.q42>
LQ 0.0
AI 0.1
= M 10.0

"Block 6
LI 0.0
AM 10.0
= Q 0.0

ONLINE modification
not possible

ONLINE modification
possible

"Block 7
INCLUDE <PR0GRAM.q42> ONLINE modification

not possible

00008 "Block 8
LQ 0.0
AI 0.1
= M 10.0

ONLINE modification
possible

4-36 4/94 AWB 27-1186-GB Klockner-Moeller

Commissioning

Online Program Modification

Function key F8 Online modifications can also be made if the main
Program module program contains program modules.

Call up the required program module by pressing
function key F8 (Figure 4-15). All the program modules
called up by the main program are then listed.

Mark the desired file name with the cursor keys in the list
shown at the top right in order to call up the program
module concerned. See Figure 4-15.

•51B15151SJ I N I I
001
fliTiliU PROG
001
002
003
004
005
slilslBH 11
001
.sliUKM 12
001
••jTsTsTsEl M O D U L E
001
002
003
JBBBB END
001
.'iiiiiisia $PBi
001
- MAIN MENU—

"Initialisation device-configuration
tt in e l ude "doku.k42"
"Mini Program
L I 0 . 0
A I 0 . 1
- Q 0 . 1
L KB 20
= MB1
"Include 1
t t i n c l u d e < i n c l l . q 4 2 >
"Include 2
t t i n c l u d e < i n c l 2 . q 4 2 >
"
CM $PB1
CM SPB2
CM JSTATIC
"
vv "
I. I 0 . 0

>ONLINE MODIFICATION SMAIN -
F 1 Return F 4 Save program f i l e
F 2 EDIT PROGRAM FILE

fPBl
SPB2
SSTATIC

d:doku.q42 — d:doku.z42 —
F 7 S e l e c t source f i l e

F 9 STATUS DISPLAY

Figure 4-15: Program module directory

Klockner-Moeller 4/94 AWB 27-1186-GB 4-37

4-38 4/94 AWB 27-1186-GB Klockner-Moeller

Commissioning

Date/Time

Figure 4-16 shows the Date/Time menu which you find in

the TEST/COMMISSIONING menu via F9 the date and

the time can be specified for

- the PC

- the real-time clock of the PS 4 200 series

- summer/winter time changes

PC

PS

Date
<DD.MM.Y¥¥¥>

Fr.,08.07.1994

Fr.,08.07.1994

Tine
<HH:MM:SS>

10:03:34

10:03:34

— Date/Tine
F 1 RETURN
F 2 PC date
F 3 PC time

F 4 PC date/tine
F 5 PLC date
F 6 PLC tine

> PLC F 7 PLC date/tine -> PC
F 8 Uinter/sunner tine
F10 HELP

Figure 4-16: Date/time

Klockner-Moeller 4/94 AWB 27-1186-GB 4-39

4-40 4/94AWB27-1186-GB Klockner-Moeller

5 IL Instructions

Contents

General
- Abbreviations
- Conditional bit

=
A
ADD
B...
CM...

CP
DIV
EM
EP
GOR
JC, JCN
JP
L
MUL
NOP
NOT
0
R
RET
RETC, RETCN
ROTL
ROTR
S
SHL
SHLC
SHR
SHRC
SUB
XO

Allocation
AND
Addition
Conditional branches
Possible program
module call-ups
Compare
Division
End of module
End of program
Load auxiliary register
Conditional jumps
Unconditional jump
Load
Multiplication
No operation
Negation
OR
Reset
Return
Conditional returns
Rotate left
Rotate right
Set
Shift left
Shift left with carry
Shift right
Shift right with carry
Subtraction
Exclusive OR

5-3
5-4
5-4

5-6
5-8

5-10
5-12

5-14
5-16
5-18
5-21
5-22
5-23
5-24
5-25
5-26
5-28
5-30
5-31
5-32
5-34
5-36
5-37
5-38
5-40
5-42
5-44
5-46
5-48
5-50
5-52
5-56

Klockner-Moeller 4/94 AWB 27-1186-GB 5-1

5-2 4/94 AWB 27-1186-GB Klockner-Moeller

IL Instructions
General

This manual gives a comprehensive description of the
instructions for the PS 4 200 series as well as an
overview of the modified conditional bits for each
instruction. They are listed in alphabetical order.

The following table shows all operands which can be
used with the instructions. Please ensure that the data
type (bit, byte, word) stated in each instruction is the
same as the data type of the operands.

Table 5-1: Operand overview

Designation

Inputs1)

Outputs

Markers

Constants1)

Real-time clock1)

Peripheral access

Status/diagnosis

Communication data

Information

BIT

I

Q

M

K

-

IP1), QP

IS1)

-

INB x.y1)

BYTE

IB, IAB, ICB

QB, QAB

MB

KB, KHB

CKxx

IPB1), QPB

ISB1)

RDB, SDB

-

WORD

IW, IAW, ICW

QW, QAW

MW

KW, KHW

-

-

ISW1)

-

-

1) These operands cannot be used for the following operations:
- Allocation (=)
- Return (R)
- Set (S)

Special features of each instruction are explained in
examples if required.

Pressing (RETURN) after the valid IL syntax has been
entered automatically causes the instruction concerned
to be written in the correct format thus ensuring a
standard display format. This is particulary useful, for
example, when using the FIND/REPLACE function in the
IL program editor.

Klockner-Moeller 4/94 AWB 27-1186-GB 5-3

IL Instructions
General

Note!

When entries are made in hexadecimal form, the syntax
check cannot distinguish the following points:

e.g. KHBB1
KHBC1
KHBE1

Entries like the one above must be made with a space
as follows:

KHBuBI
KHBuCI
KHBuEl

The description in the header shows in which sequences
(bit, byte, word) the instructions may be used.

Bit Byte Word

Abbreviations The following abbreviations are used:

RA Bit working register (1 bit wide)
RAb Byte working register (8 bit wide)
RAw Word working register (16 bit wide)

RHw Word auxiliary register (16 bit wide)

RS Bit stack register (1 bit wide)
RSb Byte stack register (8 bit wide)
RSw Word stack register (16 bit wide)

Conditional bit C
Z
P/M
V

Carry bit
Zero bit
Plus/minus bit
Overflow bit

5-4 4/94AWB27-1186-GB Klockner-Moeller

Klockner-Moeller 4/94 AWB 27-1186-GB 5-5

IL Instructions
Allocation

Bit Byte Word

Description The contents of the working register are allocated to the
operand indicated. The original value of the operand is
overwritten. In an allocation to a negated operand, the
negated contents of the working register are allocated to
the operand.

When an allocation is made to a peripheral output, the
corresponding output is written in the image register
only in the program section "Operating system
activities".

All operands of Table 5-1 can be used with an allocation,
except the operands marked1). Please ensure that the
data type mentioned above (Bit, Byte, Word) is the same
as the data type of the operands.

The working register and the auxiliary register are not
altered by the allocation.

Updated
conditional bit

Carry bit

(C)

Zero bit

(Z)

Plus/minus bit
(P/M)

Overflow bit

(V)

1

0

1

0

Not altered

Not altered

Otherwise

Not altered

Otherwise

Not altered

5-6 4/94 AWB 27-1186-GB Klockner-Moeller

IL Instructions
Allocation

Bit Byte Word

Example IL

L I 0.0
A 10.1

= M0.1

Status

1
0

0

Remarks

The states of inputs 0.0 and 0.1 are ANDed and
the result is stored in the working register.

The content of the working register is transferred
to marker 0.1.

I

Klockner-Moeller 4/94AWB27-1186-GB 5-7

IL Instructions
AND

Bit Byte Word

Description AND sequencing of the operand concerned with the
contents of the working register. The result is stored in
the working register. The original contents of the working
register are overwritten. The operand is not altered.

With AND sequences of word operands, the
corresponding bit of every operand involved is
sequenced.

An AND sequence is added to the last value stored in
the stack register in the same way. If a negation is
entered then this will influence the contents of the
working register, i.e. the last value stored in the stack
register is combined in an AND function with the
negated contents of the working register.

All operands of Table 5-1 can be used with an AND
sequence. Please ensure that the data type mentioned
above (Bit, Byte, Word) is the same as the data type of
the operands.

The auxiliary register is not altered by the AND function.

5-8 4/94 AWB 27-1186-GB Klockner-Moeller

IL Instructions
AND

Bit Byte Word

Updated
conditional bit

Carry bit

(C)

Zero bit

(Z)

Plus/minus bit
(P/M)

Overflow bit

(V)

1

1

0

1

0

Not altered

Set if working register equals zero

Otherwise

Set if the result is negative, i.e. the most
significant bit is set;

Otherwise

Not altered

Example IL

LIB 0.0.0.0

AMBO

= QB 0.0.0.0

Status

10001010

01001011

00001010

Remarks

Load input byte 0.0.0.0 in the working register
RAb.

The bits of marker byte 0 are then ANDed with
the bits in the working register.
The result is set in the working register.

The contents of the working register are then
allocated to output byte 0.0.0.0.

Klockner-Moeller 4/94AWB27-1186-GB 5-9

ADD IL Instructions
Addition

Byte Word

Description The operand concerned is added to the content of the
working register, where the result is then stored. The
original content of the working register is overwritten.
The operand is not altered.

An operand is added in the same way to the last value
stored in the stack register.

Note!

The values involved in the addition are
interpreted as integers (whole numbers) with
plus/minus symbols.

All operands of Table 5-1 can be used with the Addition
instruction. Please ensure that the data type mentioned
above (Bit, Byte, Word) is the same as the data type of
the operands.

The auxiliary register is not influenced by the addition.

5-10 4/94 AWB 27-1186-GB Klockner-Moeller

IL Instructions
Addition

ADD

Byte Word

Updated
conditional bit

Carry bit

(C)

Zero bit

(Z)

Plus/minus bit
(P/M)

Overflow

(V)

1

0

1

0

1

0

1

0

Set if a carry-over has taken place, i.e. if the sum
is higher than 8 bits with byte operations and
16 bits with word operations.

Otherwise

Set if the result equals zero

Otherwise

Set if the most significant bit is set

Otherwise

Set if an arithmetical overflow has occurred, i.e. if
the result exceeds the limits of the signed number
range (-128 to +127 for byte or -32768 to
+32767 with word operations)

Otherwise

Example IL

ERROR

CONTINUE

LMB3

ADD MB 3

BV ERROR

= MB4

JP
CONTINUE

Status

00110110

00011010

01010000

Remarks

Load marker byte 3 in the working
register RAb.
Add marker byte 3 to the working
register.
The result will be in the working
register.

When the overflow bit is set branch
to the ERROR routine.
The working register is allocated to
marker byte 4.

The calculated value is valid. The
permissible number range was not
exceeded.

The result of the addition is not
valid. The limits of the number
range were broken. An error
routine can be entered here if
required.

Rest of program

Klockner-Moel ler 4 /94 AWB 27-1186-GB 5-11

B... IL Instructions
Conditional Branches

Byte Word

Description Conditional
Branches

BB
BC
BZ
BP
BV
BE
BLT
BGT
BLE
BGE

BNB
BNC
BNZ
BM
BNV
BNE

Explanation

Bit of working register
Carry bit
Zero bit
Sign (+,-) bit
Overflow bit
Equal
Less than
Greater than
Less equal
Greater equal

The content of the status register is compared with the
branching condition. If they agree, the program is
continued at the place which is indicated as the branch
target. If the condition is not fulfilled, the branch is not
executed. The target for a branch operation must always
be the beginning of a block.

Conditional branches are permissible only in byte and
word sequences and are of practical value only if they
follow arithmetical operations.

The working, auxiliary, and status registers are not
affected by branches.

5-12 4/94 AWB 27-1186-GB Klockner-Moeller

IL Instructions
Conditional Branches

B.

Byte Word

Example of BE
(Branch when
Equal)

IL

EQUAL

CONTINUE

LKB25

CP IB 0.0.0.0

BE EQUAL

JP CONTINUE

Status

00011001

00101011

Remarks

Load constant 25 to the working
register.
Compare with input byte 0.0.0.0
and set the status register.

If equal, branch to block label
"EQUAL".

This instruction is only executed if
values not equal. The program
section with the label "EQUAL" is
then jumped.

This program section is only
executed when the compared
values are equal.

Example of BB
(Branch depending
on state of
individual bits in
working register)

IL

VPOS

END

LMB110

BNB 7 VPOS

JPEND

EP

Status

10100011

x = 1

Remarks

Load marker byte 110 into the
working register.
Examine bit 7 of the working
register. If bit is Low, branch to
VPOS.

If bit 8 of the working register is
High then jump to END. The
program section labelled VPOS is
jumped.

This program section is only
executed when marker bit
110.7 = 0, i.e. when MB 110 is
positive.

End program

Klockner-Moeller 4/94 AWB 27-1186-GB 5-13

CM... IL Instructions
Possible Program Module Call-ups

Bit Byte Word

Syntax of the
PM call-up

Unconditional call-up1)
CM $ (Name)

Conditional call-ups
(Working register)

CMC(N) $ (Name)
CM(N)B (x) $ (Name)

Conditional call-ups
(Status register)

CMCY $ (Name)

CMNC $(Name)
CM(N)Z $ (Name)
CM(N)V $ (Name)
CMP $ (Name)

CMM $ (Name)

Conditional call-ups
(after comparison)

CM(N)E $ (Name)
CMGT $ (Name)
CMLT $ (Name)
CMGE $ (Name)
CMLE $ (Name)

Call-up
depending on

RA working register
Bit x of the
working register
RAborRAw

Carry bit
Zero bit
Overflow bit

Sign bit
(Plus/minus)

Equal
Greater than
Less than
Greater equal
Less equal

Data type

Bit, Byte, Word

Bit
Byte, Word

Byte, Word

Byte, Word
Byte, Word
Byte, Word
Byte, Word

Byte, Word

Byte, Word
Byte, Word
Byte, Word
Byte, Word
Byte, Word

1)The CM $ command is to be considered as a sequence which consists of an
instruction. The unconditional call-up may thus be programmed only after the
sequence has been completed.

5-14 4/94 AWB 27-1186-GB Klockner-Moeller

IL Instructions CM...
Possible Program Module Call-ups

Bit Byte Word

Description Program modules can be called up as absolute or
conditional call instruction depending on the state of the
working register. They can also be called up as
conditional instructions dependent on the state of the
status register or on a specific comparison (<; =; >; <;
>). These call-ups can also be used for negative
conditions as shown in the table on the previous page.
The name of the program module must always be given
after the instruction, and should be prefixed with the $
character, which indicates that the program concerned
is a program module.

If the condition is not fulfilled, the program continues
with the next instruction.

The working, auxiliary and status registers are assigned
the same data content after the module has been
processed. When the program module is being
processed, these registers can be used freely without
any restrictions.

Klockner-Moeller 4/94 AWB 27-1186-GB 5-15

CP IL Instructions
Comparison

Byte Word

Description Compare via working register:
The indicated operand is compared with the content of
the working register and the relevant conditional bits are
set for evaluation by means of the arithmetical branch
instructions. Comparison is carried out internally in the
form of a subtraction: the operand (subtrahend) is
subtracted from the content of the working register
(minuend). The values involved are not altered.

When making a comparison with the last value stored in
a stack register, the content of the working register
(subtrahend) is subtracted from the content of the stack
register (minuend).

Note!

The values involved in the comparison are
interpreted as integers with plus/minus
symbols.

All operands of Table 5-1 can be used with the
Comparison instruction. Please ensure that the data
type mentioned above (Bit, Byte, Word) is the same as
the data type of the operands.

The auxiliary register is not affected by the comparison.

5-16 4/94 AWB 27-1186-GB Klockner-Moeller

IL Instructions
Comparison

CP

Byte Word

Updated
conditional bits

The conditional bits are altered immediately via the
comparison. They cannot, however, be used for
evaluation.

Only the following are possible when used in
conjunction with CP:

BE
BIT
BGT
BLE
BGE

(equal)
(less than)
(greater than)
(less equal)
(greater equal)

Example

LESS

CONTINUE

IL

L M B 2
CPMB3

BLT LESS

JP CONTINUE

Status

10100011
01101110

Remarks

Load marker byte 2
and compare with MB 3 in
working register by subtraction.

If MB 2 is < MB 3, branch to
LESS.

This program section is
processed if MB 2 is > 3.

This program section is
processed if MB 2 is < MB 3.

Klockner-Moeller 4/94 AWB 27-1186-GB 5-17

DIV IL Instructions
Division

Byte Word

Description Division via working register:
The content of the working register (dividend) is divided
by the indicated operand (divisor) and the result is
stored in the working register. Any remainder is stored in
the auxiliary register. The original content of the working
register is overwritten. The operand is not altered.

Division via the stack register is as follows. The content
of the stack register (dividend) is divided by the content
of the working register (divisor). The result is written into
the working register, the remainder into the auxiliary
register.

Note!

The values
interpreted

involved in the division are
as unsigned integers (i.e. without

plus/minus symbols).

Division can produce one of the following two types of
results. Depending on the dividend and divisor:

1. If the quotient is within the range of 0 to 65 535
inclusive, i.e., constitutes a valid number, the quotient
and the remainder are stored as valid results in the
relevant registers. The zero bit is set depending on
the quotient; the overflow bit is deleted.

2. If the divisor equals zero, the values in the working
and auxiliary registers are invalid. This can, in this
case, be indicated by the overflow bit which is set.

All operands of Table 5-1 can be used with the Division
instruction. Please ensure that the data type mentioned
above (Bit, Byte, Word) is the same as the data type of
the operands.

Reminder:
Dividend

Divisor
Quotient

5-18 4/94 AWB 27-1186-GB Klockner-Moeller

IL Instructions
Division

DIV

Byte Word

Updated
conditional bit

Carry bit

(C)

Zero bit

(Z)

Plus/minus bit
(P/M)

Overflow bit

M

1

0

1

0

1

0

Not altered

Set if the result equals zero

Otherwise

If the result is negative, i.e.,
if the most significant bit is set

If the result is positive

Set if the divisor equals zero

Otherwise

Example To divide the contents of MW 0 by MW2 and store the
result in MW6. The decimal part of the answer is stored
in MW8.

MWO

Remainder -

MW4

RA

MW2

MW4

KW10

MW2

MW6

RA

MWf

Klockner-Moeller 4/94 AWB 27-1186-GB 5-19

DIV IL Instructions
Division

Byte Word

Example IL

DIVZERO

EP

LMWO
DIV MW 2
= MW6

GOR

BV DIVZERO

= MW4

LMW4
MULKW10
DIV MW 2

= MW8

JPEP
LKWO
= MW6
= MW8

EP

Remarks

Division of MW 0 by MW 2
Store result in MW 6

The auxiliary register is loaded into the
working register.

If the divisor is equal to zero then the
division is invalid. Branch to the label
"DIVZERO".

The remaining integer is stored in MW4.

To calculate the value of the first decimal
place of the remainder first multiply by 10
and then divide by divisor.

The result is the first decimal place. It is
stored in MW8.

End of calculation
Divisor is zero; the result is invalid and is
deleted.

5-20 4/94AWB27-1186-GB Klockner-Moeller

IL Instructions
End of Module

EM

Bit Byte Word

The end of module command EM marks the end of a
program module. It must always be written as the last
instruction at the end of each program module.

Example $BP1

LI 0.0

A I 0.1

01 0.2

=Q0.3

EM

I

Klockner-Moeller 4/94 AWB 27-1186-GB 5-21

EP IL Instructions
End of Program

Bit Byte Word

Description The EP instruction is the logical and physical end of the
program. This instruction must be placed at the last step
in the main program and causes a jump to the operating
system.

Registers and data are not altered.

Example 00001

1 L I 0.0

2 A I 0.1

3 0 1 0.2

4 = Q 0.3

5 EP

5-22 4/94 AWB 27-1186-GB Klockner-Moeller

IL Instructions
Load Auxiliary Register

GOR

Byte Word

Description

Example

The content of the auxiliary register is loaded into the
working register.

The operation is permissible only in word and byte
sequences and is used only after a multiplication or
division.

The content of the auxiliary register is not altered.

The status registers are not affected.

Division of MWO by MW2 with rounding. If the first
decimal place is greater than 5, it is rounded up. The
result is stored in MW6.

IL

ROUNDUP

EP

LMWO
DIV MW 2
= MW6

GOR

= MW8

LMW8
MUL KW 10
DIV MW 2

CPKW5
BLTEP

LMW6
ADDKW1
= MW6

EP

Remarks

Division of MW 0 by MW 2
Store result in MW 6

Load auxiliary register in working register.

Store remaining integer in MW8.

Calculation of the first decimal place
(Rest x 10): MW 2

If the first decimal place is less than 5,
round off.
The result in MW 6 is therefore correct.
Continue with EP

The first decimal place is greater than 4; it
must be rounded up.

See also example for MUL and DIV.

Klockner-Moeller 4/94 AWB 27-1186-GB 5-23

JC, JCN IL Instructions
Conditional Jumps

Bit

Description The current sequence result is compared with 1 or 0. If
they agree, the program is continued at the location
which is indicated as the jump target. If the condition is
not fulfilled, no jump occurs. The jump target must
always be the beginning of a block (a block label).

Conditional jumps are permissible only in bit sequences.

The working and the auxiliary registers are not affected
by the conditional jumps.

Example Pulse generator

IL

CONTINUE

LKO
= Q1.0

TPO
[] S: LN Q 1.0

[] R :
[W] I: KW 5000
[] P :
[W]Q:
LTPOP

JCN CONTINUE

LK1

= 0.1.0 •

Remarks

Reset output 1.0

Generate a 5s cycle pulse

If the timer T5 has not yet timed out,
the program jumps on the label
"CONTINUE".

This program section is run for one
cycle if the timer T5 times out.

5-24 4/94AWB27-1186-GB Klockner-Moeller

IL Instructions
Unconditional Jump

JP

Bit Byte Word

Description The program will continue wherever the jump was
targetted to. The target must be the beginning of a
block.

This command is a sequence consisting of one
instruction. Unconditional jumps should therefore only
be used at the end of a sequence.

The auxiliary and status registers are unchanged by this
jump instruction.

Example

TARGET 1

TARGET 2

CONTINUE

IL

LMBO
CPMB1
BGT TARGET 1
BLT TARGET 2
JP CONTINUE

JP CONTINUE

Remarks

By comparing the values of the markers the
program is either branched to TARGET 1 if greater
than or TARGET 2 if less than. If the marker
values are equal then both TARGETS must be
jumped.

The greater than comparison is valid.

The less than comparison is valid.

Further program

Klockner-Moeller 4/94 AWB 27-1186-GB 5-25

IL Instructions
Load

Bit Byte Word

Description The value of the indicated operand is loaded into the
working register. The original content of the register is
overwritten.

If the Load instruction is within a sequence, i.e., the
content of the working register has not yet been
allocated to an operand, the original content of the
working register is stored in a stack register.

The operand is not altered.

All operands of Table 5-1 can be used with the Load
instruction. Please ensure that the data type mentioned
above (Bit, Byte, Word) is the same as the data type of
the operands.

The auxiliary register is not altered by the Load
instruction. The status registers have no meaning.

Example IL

L I 0.0
0 10.1

L I 0.2

A

= Q0.0

Status

1
0

1

1

Remarks

Input 0.0 is ORed with input 0.1 and the result is
stored in the working register.

The result stored in the working register is
shifted to the bottom of the stack register and
the state of input 0.2 is stored in the working
register.

The value stored in the bottom of the stack
register is ANDed with the value in the working
register.

The value in the working register is transferred to
output 0.0.

5-26 4/94 AWB 27-1186-GB Klockner-Moeller

I

Klockner-Moeller 4/94 AWB 27-1186-GB 5-27

MUL IL Instructions
Multiplication

Byte Word

Description Multiplication via working register:
The indicated operand is mulitplied by the content of the
working register and the product is then stored. The
original content of the working register is overwritten.
The operand is not altered.

Multiplication via stack register:
The operand is mulitiplied by the last value stored in a
stack register in the same manner.

Note!
The values involved in the mulitiplication are
interpreted as unsigned integers (i.e. without
plus/minus signs).

The product of the multiplication of two 16 bit numbers
is a 32 bit number. The lower word value of the product
(16 bits) is stored in the working register, while the higher
word value is stored in the auxiliary register. This
overflow, as it is known, can be processed with the
instruction "GOR".

All operands of Table 5-1 can be used with the
Multiplication instruction. Please ensure that the data
type mentioned above (Bit, Byte, Word) is the same as
the data type of the operands.

5-28 4/94 AWB 27-1186-GB Klockner-Moeller

IL Instructions
Multiplication

MUL

Byte Word

Updated
conditional bit Are undefined and must thus be scanned after this

command.

Example IL

CONTINUE

L MB 200

MUL MB 201

= QB 0.0.0.0

G0R

= QB 0.0.1.0

Status

00010101

00000101

01101001

00000000

Remarks

Load the value of marker byte
MB 200 to the working register
RAb.

Multiply the contents of the
working register with the value of
marker byte 201. Store the result in
the working register.

Display the result on the output
byte QB 0.0.0.0

The auxiliary register is loaded into
the working register.

The higher section of the results is
now in the working register and is
allocated to the output byte
Q 0.0.1.0

Klockner-Moel ler 4/94 A W B 27-1186-GB 5-29

NOP IL Instructions
No Operation

Bit Byte Word

Description The NOP instruction does not influence registers or
data. It can be written at any point in the program
regardless of the data type in the sequence.

Example IL

L I 0.0
A 10.1
NOP
NOP

= 0 0.3

Status

1
1

1

Remarks

The inputs are ANDed.
The two NOP instructions are reminders that two
more conditions are to be added subsequently to
the sequence.

The result is allocated to output Q 0.3.

5-30 4/94 AWB 27-1186-GB Klockner-Moeller

IL Instructions
Negation

NOT

Bit Byte Word

Description The contents of the working register are negated, i.e.
the one's complement is formed. The new contents of
the working register therefore consist of the inverted bits
of the original contents.

The operation may be carried out in the bit, byte and
word sequences.

The auxiliary register is not affected by the negation.

Updated
conditional bit

Carry bit

(Q

Zero bit

(Z)

Plus/minus bit
(P/M)

Overflow bit

(V)

1

0

1

0

Not altered

Set if the result equals zero

Otherwise

Set if the result is negative, i.e. the most
significant bit is set

Otherwise

Not altered

Example IL

L I 0.0
A I 0.1
A I 0.2
OI0.3

NOT

= Q0.5

Status

0
1
1
0

1

PF.

0
0
0
0

1

1

Remarks

The result of the functions is stored in
the working register.

The result stored in the working
register is inverted (negated).
The state of the working register is
transferred to the output Q 0.5

*PF sequence result (Power flow)

Klockner-Moeller 4/94 AWB 27-1186-GB 5-31

IL Instructions
OR

Bit Byte Word

Description OR sequencing of the indicated operand with the
content of the working register. The result is stored in the
working register. The original content of the working
register is overwritten. The operand is not altered.

In an OR sequence with byte or word operands the
corresponding bits of each operand involved are
sequenced.

The operand is paralleled (OR function) with the last
value stored in the stack register in the same manner. If
a negation is entered, it influences the content of the
working register, i.e., the last value stored in the stack
register is paralleled with the negated content of the
working register.

All operands of Table 5-1 can be used with the OR
sequence. Please ensure that the data type mentioned
above (Bit, Byte, Word) is the same as the data type of
the operands.

The auxiliary register is not affected by the
OR sequence.

5-32 4/94AWB27-1186-GB Klockner-Moeller

IL Instructions
OR

Bit Byte Word

Updated
conditional bit

Carry bit

(C)

Zero bit

(Z)

Plus/minus bit
(P/M)

Overflow bit

(V)

1

0

1

0

Not altered

If the sequence result equals zero

Otherwise

If there is a negative result with byte or word
operations, i.e. the most significant bit is set

Otherwise

Not altered

Example IL

LM3.0
OM3.1
0M3.2
OM3.3
= M6.0

Status

1
0
1
0
1

PF Remarks

The markers 3.0 to 3.3
are ORed together and
the result allocated to
marker 6.0.

Klockner-Moel ler 4 /94 A W B 27-1186-GB 5-33

IL Instructions
Reset

Bit

Description The indicated bit of the operand is deleted if the content
of the working register equals " 1 " . If this reset condition
is not fulfilled, the operand is not altered. The operation
is permissible only in bit sequences.

All operands of Table 5-1 can be used with the Reset
instruction, except the operands marked1). Please
ensure that the data type mentioned above (Bit, Byte,
Word) is the same as the data type of the operands.

The working and auxiliary registers are not altered.

Updated
conditional bit

Carry bit

(C)

Zero bit

(Z)

Plus/minus bit
(P/M)

Overflow bit

(V)

1

0

Not altered

If the working register equals zero

Otherwise

Not altered

Not altered

Example IL

L I 0.0
AN I 0.1
SQ0.4

L I 0.1
RQ0.4

Status

1
0

1
0

PF*

1
1
1

1
1

R

If the input 0.0 is High
and input 0.1 is Low
output 0.4 will be set High.

The self-holding function
is stopped as soon as the input 0.1 is
set.

*PF sequences result (Power Flow)

5-34 4/94 AWB 27-1186-GB Klockner-Moeller

I

Klockner-Moeller 4/94 AWB 27-1186-GB 5-35

RET IL Instructions
Return

Bit Byte Word

Description This instruction causes a return from the current
program level to the next higher level, e.g. from the sub­
program to the main program or from the main program
to the operating system.

The RET command is a sequence which consists of an
instruction. The return may thus only be programmed
after a sequence is completed.

Example IL

LI 0.3
= M3.5

RET

Comment

Sub-program

Instruction

Return to the main program

5-36 4/94AWB27-1186-GB Klockner-Moeller

IL Instructions RETC, RETCN
Conditional Returns

Bit

Description The current sequence result is compared with 1 or 0. If
they agree, a return to the next higher level is carried
out.

IL

L I 0.0
AM 3.4

RETCN

Comment

AND sequence of I 0.0 and M 3.4

Return to the next higher level if AND sequence is not
fulfilled.

Klockner-Moeller 4/94 AWB 27-1186-GB 5-37

ROTL IL Instructions
Rotate to the Left

Byte Word

Description The content of the working register is shifted to the left.
In the process, the most significant bit moves to the
least significant location of the working register and
simultaneously into the carry bit of the status register.

With byte sequences 8 rotation steps are possible and
with word sequences 16 rotation steps.

0

0

L
7

RAb

0

-4

,
15

RAw

(
•4

The operation is permissible in byte and word
sequences.

The content of the auxiliary register is not altered.

Syntax Datatype

Byte

Word

Instruction

ROTL
ROTLn

ROTL
ROTLn

Action

rotate RAb left
n = 1...8

rotate RAw left
n-1...16

5-38 4/94 AWB 27-1186-GB Klockner-Moeller

IL Instructions
Rotate to the left

ROTL

Byte Word

Updated
conditional bit

Carry bit

(C)

Zero bit

(Z)

Plus/minus bit
(P/M)

Overflow bit

1

0

1

0

1

0

Set if the last rotated bit was set

Otherwise

Set if the working register equals zero

Otherwise

Set if the result of rotation is negative, i.e., the
most significant bit is set

Otherwise

Not altered

Example IL

LMB4

ROTL

= MB4

Status

01011011

10110110

Remarks

The bits in marker byte 4 are shifted to the
left and the
most significant bit will be shifted to the least
significant bit.

Klockner-Moeller 4/94 AWB 27-1186-GB 5-39

ROTR IL Instructions
Rotate to the Right

Byte Word

Description The content of the working register is shifted to the right.
In the process the least significant bit moves to the most
significant location of the working register and at the
same time into the carry bit of the status register.

With byte sequences 8 rotation steps are possible and
with word sequences 16 rotation steps.

— •

7

RAb

C

RAw

The operation is permissible in byte and word
sequences.

The content of the auxiliary register is not altered.

Syntax Data type

Byte

Word

Instruction

ROTR
ROTRn

ROTR
ROTRn

Action

rotate RAb right
n = 1...8

rotate RAw right

n = 1...16

5-40 4/94AWB27-1186-GB Klockner-Moeller

IL Instructions
Rotate to the Right

Byte Word

Updated
conditional bit

Carry bit

(Q

Zero bit

(Z)

Plus/minus bit
(P/M)

Overflow bit

(V)

1

0

1

0

1

0

1

0

Set if the last rotated (most significant) bit was set

Otherwise

Set if the working register equals zero

Otherwise

Set if the result of rotation is negative, i.e., the
most significant bit is set

Otherwise

Set if the plus/minus symbol has altered after
rotation

Otherwise

Example IL

LMBO

ROTR2

= MB0

Status

01101110

10011011

10011011

Remarks

The bits of marker byte 0 are rotated to the
right twice.
The state of bit 8 is transferred to bit 1 and
the state of bit 7
is transferred to bit 0.

Klockner-Moel ler 4 /94 AWB 27-1186-GB 5-41

S IL Instructions
Set

Bit

Description The indicated bit of the operand is set if the content of
the working register equals " 1 " . If this setting condition is
not fulfilled, the operand is not altered.

All operands of Table 5-1 can be used with the Set
instruction, except the operands marked1). Please
ensure that the data type mentioned above (Bit, Byte,
Word) is the same as the data type of the operands.

The working and the auxiliary registers are not altered.

5-42 4/94AWB27-1186-GB Klockner-Moeller

IL Instructions
Set

Bit

Updated
conditional bit

Carry bit

(C)

Zero bit

(Z)

Plus/minus bit
(P/M)

Overflow

(V)

1

0

Not altered

Set if the working register equals zero

Otherwise

Not altered

Not altered

Example IL

L I 0.5

SM0.6

Status

1

1

PF*

1

1

Remarks

When input 0.5 is on the marker 0.6
is set High.
This marker will maintain this
condition regardless of the status of
input 0.5.

*PF sequence result (Power flow)

Klockner-Moeller 4/94AWB27-1186-GB 5-43

SHL IL Instructions
Shift to the Left

Byte Word

Description The content of the working register is shifted to the left.
In the process the most significant bit moves to the
carry bit of the status register. A "0" is drawn into the
least significant location.

0-
E>

RAb

15

RAW

0

•* 0

•* 0

The operation is permissible only in byte and word
sequences. The highest shift step number is 8 in byte
operation, 16 in word operation.

The content of the auxiliary register is not altered.

Syntax Data type

Byte

Word

Instruction

SHL
SHLn

SHL
SHLn

Action

shift RAb left
n = 1...8

shift RAw left
n = 1...16

5-44 4/94AWB27-1186-GB Klockner-Moeller

IL Instructions
Shift to the Left

SHL

Byte Word

Updated
conditional bit

Carry bit

(C)

Zero bit

(Z)

Plus/minus bit
(P/M)

Overflow bit

(V)

1

0

1

0

1

0

Set if the last shifted (most significant) bit was set

Otherwise

Set if the working register equals zero after the

shift operation

Otherwise

Set if the result of the shift operation is negative,
i.e., the most significant bit is set

Otherwise

Not altered

Example IL

L MB 151

SHL
= MB 151

Status

OOOO0O1O

00000100
00000100

Remarks

The bits in marker byte 151 are shifted left by
one place.
This is equivalent to multiplying by 2.

Klockner-Moeller 4/94 AWB 27-1186-GB 5-45

SHLC IL Instructions
Shift Left with Carry

Byte Word

Description The value in the working register is shifted to the left.
The carry bit of the status register is shifted to the least
significant bit of the working register and the most
significant bit of the working register is shifted to the
carry bit.

H-
o

RAb

15

RAw

0

•* C

Updated
conditional bit

The operation is possible in byte or word sequences.

The content of the auxiliary register is not altered.

Carry bit

(C)

Zero bit

(Z)

Plus/minus bit
(P/M)

Overflow bit

(V)

1

0

1

0

1

0

Set when the most significant bit is set after the
shift operation

Otherwise

Set when the working register equals zero after
the shift operation

Otherwise

Set when the working register is negative, i.e.,
the most significant bit is set

Otherwise

Not altered

5 - 4 6 4/94 AWB 27-1186-GB Klockner-Moel ler

IL Instructions
Shift Left with Carry

SHLC

Byte Word

Example IL

LMB12
SHL
= MB12

LMB13
SHLC
= MB13

Status

01001101
10011010
10011010

10110110
01101100
01101100

Remarks

The bits of the marker byte 12 are shifted to
the left. In this sequence the lowest significant
bit becomes a zero. The most significant bit
moves into the carry bit.

The bits of the marker byte 13 are shifted to
the left.
In this sequence the lowest significant bit
takes the value of the carry bit. The most
significant bit moves to the carry bit.

Klockner-Moeller 4/94 AWB 27-1186-GB 5-47

SHR IL Instructions
Shift to the Right

Byte Word

Description

Syntax

The content of the working register is shifted to the right.
In the process, the least significant bit moves into the
carry bit of the status register.'A "0" is drawn into the
most significant location.

7 0

RAb

I!,

RAw HE
The operation is permissible only in byte and word
sequences. The highest shift step number is 8 in byte
operation and 16 in word operation.

The content of the auxiliary register is not altered.

Data type

Byte

Word

Instruction

SHR
SHRn

SHR
SHRn

Action

shift RAb right
n = 1.8

shift RAw right
n = 1...16

5-48 4/94 AWB 27-1186-GB Klockner-Moeller

IL Instructions
Shift to the Right

SHR

Byte Word

Updated
conditional bit

Carry bit

(C)

Zero bit

(Z)

Plus/minus bit
(P/M)

Overflow bit

(V)

1

0

1

0

1

0

If the last shifted (most significant) bit was set

Otherwise

Set if the working register equals zero after the
shift operation

Otherwise

Set if the result of the shift operation is negative,
i.e., the most significant bit is set

Otherwise

Not altered

Example IL

L IB 0.0.0.1
SHR 4
= MB20

Status

00101001
00000010
00000010

Remarks

The value of input byte 0.0.0.1 is to be
divided by 16 and stored
in maker byte 20. Any remainder is to be
ignored.

Klockner-Moel ler 4 /94 AWB 27-1186-GB 5-49

SHRC IL Instructions
Shift Right with Carry

Byte Word

Description

Updated

conditional bit

The value in the working register is shifted to the right. In

this case the status of the carry bit in the status register

moves to the most significant bit of the working register

and the least significant bit moves to the carry bit.

o

RAb

15

SHI RAw

-0
HE

The operat ion is permissible in byte and word

sequences.

The content of the auxiliary register is not altered.

Carry bit
(C)

Zero bit
(Z)

Plus/minus bit
(P/M)

Overflow bit
(V)

1

0

1

0

1

0

Set when bit 0 (the least significant bit) is set

Otherwise

Set when contents of working register is zero

Otherwise

Set when content of working register is negative,
the most significant bit is set

Otherwise

Not altered

5-50 4/94AWB27-1186-GB Klockner-Moeller

IL Instructions
Shift Right with Carry

SHRC

Byte Word

Example Cascade 4 marker bytes to construct a 32 bit shift
register

IL

LMB9
SHR
= MB9

L M B 8
SHRC
= MB8

LMB10
SHRC
= MB10

LMB9
SHRC
= MB9

Status

10101001
C = 1
01010100

11101000
c = o
11110100

11100101
C = 1
01110010

00001110
c = o
10000111

Remarks

The contents of MB 9 is shifted to the right
and the state of the least significant bit is
stored in the carry bit.

The state of the carry bit will be transferred
to the most significant bit of MB 8 and the
contents will be shifted to the right.

The value of the least significant bit is
shifted to the carry register. The value of the
carry bit is shifted to the most significant
location and the marker byte 10 is shifted to
the right.

The state of the least significant bit is stored
in the carry bit. The state of the carry bit is
transferred to the most significant bit and
the marker byte 9 is shifted to the right. The
state of the least significant bit is shifted to
the carry bit.

Klockner-Moel ler 4 /94 AWB 27-1186-GB 5-51

SUB IL Instructions
Subtraction

Byte Word

Description Subtraction via working register:
The indicated operand (subtrahend) is subtracted from
the content of the working register (minuend) and the
result is stored in the working register. The original
content of the working register is overwritten. The
operand is not altered.

Subtraction via stack register:
The content of the working register (subtrahend) is
subtracted from the content of the stack register
(minuend). The result is written into the working register.

Note!

The values involved in the subtraction are
interpreted as integers with plus/minus
symbols.

All operands of Table 5-1 can be used with the
Subtraction instruction. Please ensure that the data type
mentioned above (Bit, Byte, Word) is the same as the
data type of the operands.

The auxiliary register is not influenced by the
subtraction.

Remember: Minuend - Subtrahend = Difference

5-52 4/94AWB27-1186-GB Klockner-Moeller

IL Instructions
Subtraction

SUB

Byte Word

Updated
conditional bit

Carry bit

(C)

Zero bit

(Z)

Plus/minus bit
(P/M)

Overflow bit

(V)

1

0

1

0

1

0

1

0

Set if a so-called "borrowed bit" was required, i.e.,
the minuend was smaller than the subtrahend

Deleted if there is carry-over from the most
significant bit (this is ignored with the subtraction)

Set if the result equals zero

Otherwise

Set if the result is negative, i.e., if the most
significant bit is set

Otherwise

Set if an arithmetical overflow has taken place,
i.e., if the result exceeds the permissible range
(-128 to +127 for byte operations, -32768 to
+32767 for word operations)

Otherwise

Klockner-Moel ler 4 /94 AWB 27-1186-GB 5 - 5 3

SUB IL Instructions
Subtraction

Byte Word

Example of Cascading

15

MB1

15

MB 3

+ m

7

7

MBO

MB 2

0

0

15

MB 5 MB 4

IL

SUBTRA

CARRY

CONTINUE 1

ERROR

CONTINUE 2

L M B O
SUB MB 2
BV ERROR
= M B 4
BC CARRY

JP CONTINUE 1

L M B 3
ADD KB 1
BV ERROR
= MB3

LMB1
SUB MB 3
= MB5
BV ERROR
JP CONTINUE 2

Status

00101011
00010110

00010101
C = 0

01011101
00110111
00100110

Remarks

Subtract the lower order bytes and
store the result in MB 4.

If this calculation results in an
overflow, branch to the CARRY
routine.

If a carry-over (borrow bit) is
present, a 1 is added to the
subtrahend of the higher order
byte.

Subtract the higher order bytes and
store the result in MB 5.

ERROR routine if an overflow
occurs in an arithmetic operation.

5-54 4/94 AWES 27-1186-GB Klockner-Moeller

I

Klockner-Moeller 4/94 AWB 27-1186-GB 5-55

xo IL Instructions
Exclusive OR

Bit Byte Word

Description Exclusive OR sequencing of the indicated operand with
the content of the working register, where the result is
then stored. The original content of the working register
is overwritten. The operand is not altered.

In exclusive OR sequencing of byte or word operands
the corresponding bits of each operand involved are
sequenced.

The operand is paralleled in an exclusive OR sequence
with the last value stored in the stack register in the
same manner. If a negation is inserted here, it will affect
the content of the working register, i.e., the last value
stored in the stack register is paralleled (XOred) with the
negated content of the working register.

All operands of Table 5-1 can be used with the
Exclusive-OR sequence. Please ensure that the data
type mentioned above (Bit, Byte, Word) is the same as
the data type of the operands.

The auxiliary register is not altered by the exclusive OR
sequencing.

Truth Table: W1

0
0
1
1

W2

0
1
0
1

W1 e W2

0
1
1
0

5-56 4/94 AWB 27-1186-GB Klockner-Moeller

IL Instructions
Exclusive OR

XO

Bit Byte Word

Updated
conditional bit

Carry bit
(C)

Zero bit
(Z)

Plus/minus bit
(P/M)

Overflow bit
(V)

1

0

1

0

1

Not altered

Set if the sequencing result equals zero

Otherwise

Set if the result is negative with byte and word
operations, i.e., the most significant bit is set

Otherwise

Not altered

Example IL

LI 0.1
XO I 0.2
= 0 0.2

Status

1
0
1

Remarks

The output 0.2 will only be set
when input 0.1 or 0.2 are High but not
when both are.

Klockner-Moeller 4/94 AWB 27-1186-GB 5-57

5-58 4/94 AWB 27-1186-GB Klockner-Moeller

6 Function Blocks

Contents

General
- Engineering and commissioning notes
- Key to symbols
- Designations

BID

C

Code converter: binary to
BCD
Up/down counter

CALARM Counter alarm function bloch
CK
CP
DEB

FALARM
FIFOB
FIFOW
ICP
ICPY
LI FOB

LIFOW

RDAT
SCK
SDAT
SK
SR
SRB
SRW
TALARM
TF
TGEN
TP
TR

Time/Date comparator
Comparator
Code converter: BCD to
binary
Edge alarm function block
First In-First Out register
First In-First Out register
Block comparison
Block transfer
Last In-First Out
(Stack register)
Last In-First Out
(Stack register)
Reload data
Set real-time clock
Save data
Sequential control
Shiftregister
Shift register
Shift register
Timer alarm function block
Off-delayed timer
Generator function block
Pulse transmitter
On-delayed timer

Word
Word

Word

Word

Byte
Word
Byte
Byte

Byte

Word

Bit
Byte
Word

6-3
6-3
6-4
6-4

6-5
6-6
6-9

6-12
6-16

6-17
6-19
6-22
6-24
6-26
6-30

6-34

6-36
6-38
6-40
6-42
6-44
6-46
6-50
6-52
6-54
6-58
6-60
6-61
6-62

Klockner-Moeller 4/94 AWB 27-1186-GB 6-1

4

6-2 4/94 AWB 27-1186-GB Klockner-Moeller

Function Blocks
General

This manual gives individual descriptions of the function
blocks, the pages being arranged alphabetically in
accordance with the code references of the function
blocks. The header lines contain the most important
function block data and the syntax, followed by the
designation of inputs and outputs and, where
appropriate, truth tables. This first part of the function
block description is intended to provide a brief overview.
In the second part the function of the function block is
explained with the aid of texts and diagrams.

Engineering and New retentive function blocks should always be added
commissioning to the end of the user program during commissioning on
notes account of the dynamic memory management feature of

the controller.

The number of the function blocks to be used is not
restricted. A restriction is only given by the capacity of
the user memory. Theoretically, the upper limit of
function blocks is 65 535.

The organisation of the function blocks, their
incorporation in the user program and the behaviour of
function block inputs is described in Chapter 2.

Klockner-Moeller 4/94 AWB 27-1186-GB 6-3

Function Blocks
General

Key to symbols

(Block No.)
(Register length)
(Time base)
(Input/Output)
(No. of inputs)

Optional value

Rising edge; the function block
has to recognize a change from 0
t o 1 .

Separation sign in front of
register length, retentive
behaviour or time base

Retentive; the function block
called up in this way becomes
zero-voltage proof (retains its
content)

The appropriate value or term
from the heading is entered here.
The pointed brackets are not
written.

Designations The following symbol designations are used to identify
the data of the input or output to which the symbol is
assigned.

IL

[]

[B]

[W]

[&]

[$]

[*]

Typ

Bit

Byte

Word

Address

Subprograms

Time and date parameters
(only for CK function block)

6-4 4/94 AWB 27-1186-GB Klockner-Moeller

Function Blocks
Code Converter:
Binary to Decimal

BID

Word

Syntax Call-up:
BID < Block No. >

As operand:
BID < Block No. >u< Input/output >

Number ranges: -32768...0...+32767
Result: 5 decades
Performance time: 460...560 (is

Representation IL
BID 10
[W] I:
[I QS:
[W] Q1:
[W] Q2:

binary input
Sign output
Decade 5
Decade 1-4

Description A 16-bit binary coded number is converted into a 5-
decade BCD number. The sign is displayed at the QS
output (0 4 +, 1 A -) .

0.2
4th decade
I I

3rd decade

I
2nd decade

I I
1st decade

I I I

5. decade

Q1

'hex

0000
0001

7FFF
8000
8001

FFFF

Idez

0
1

32767
-32768
-32767

-1

QS

0
0

0
1
1

1

Q1

0 0 0 0
0 0 0 0

0 0 0 3
0 0 0 3
0 0 0 3

0 0 0 0

Q2

0 0 0 0
0 0 0 1

2 7 6 7
2 7 6 8
2 7 6 7

0 0 0 1

Klockner-Moeller 4/94 AWB 27-1186-GB 6-5

Function Blocks
Up/down Counter

Word

Syntax Call-up:
C < Block No. > - R

- R only, if retentive operation is required.

As operand:

C < Block No. >u< Input/Output >

Number range: 0...65535 (unsigned)

Performance time: 170 u,s

Representation IL
C17-R

[W]

[W]

11:
D:
S:
R:
1:
Z:
0:

Pulse forward (Up)
Pulse reverse (Down)
Set
Reset
Preset value input
Count zero
Count

Truth table
Input
Type
Function

Count up
Count down
Set
Delete

U
Bit

j T

X

X

X

D
Bit

X

_r
X

X

S
Bit

X

X

_ r
X

R
Bit

0
0
0
1

I
Wort

X

X

Value
X

Description When a rising edge is at the S-input, the value at the I-
input is transferred to the counter. The counter is
incremented when there is a rising edge at the U-input
and is decremented when there is a rising edge at the D-
input.

The counter status evaluated depends on the user
program. If negative values also occur, use the signed
number range -32 768 to 32 767. If only positive values
are required, the range is from 0 to 65 535. The number
circle is run through cyclically.

6-6 4/94 AWB 27-1186-GB Klockner-Moeller

Function Blocks
Up/Down Counter

Word

This means that the value 0 appears after the value
65 535 and -32 768 appears after 32 767. This
progression must be taken into account in the user
program.
When the R-input is High, the counter is reset into its
initial position and the contents deleted. The Z-output of
the counter is High, when the content of the counter
equals 0. The Q-output always shows the counter actual
value.

Note!

The pulse must at least be as long as one
cycle, so that the counter can recognize every
counting pulse. The counter must be able to
recognize a subsequent Low of the signal in
order to ensure automatic edge formation.
The maximum counting frequency is therefore

F - 1

tcycle

Klockner-Moeller 4/94 AWB 27-1186-GB 6-7

Function Blocks
Up/Down Counter

Word

Example The counter 11 is to count one step further each time
I0.5 closes. I0.6 resets the counter. The actual count is
indicated via the marker word MW12. Reverse counting
and setting is not used.

The program:

C11
10.5 Forward pulse (Up)

10.6

MW12

Reset

Actual value

Cycle 1. 2. 3. 4. 5. 6. 7. 8. 9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.

10.5 U .

I 0.6 R .

MW12 D '

r
i Xo

6-8 4/94AWB27-1186-GB Klockner-Moeller

Function Blocks
Counter Alarm Function Block
Counter Alarm

CALARM

Syntax

Representation

Call- up:
CALARM 0

Execution t ime: 20 \ns without subprogram (UP)

IL

CALARM 0

[]
[W]
[W]
[B]
[W]
[$]

EN
VT
SOLL
ERR
CNT
AC

240 \is + SP time with subprogram

Enable/disable interrupt (0 = disable, 1 = enable)
Predivider counter
Setpoint value counter
Error output
Alarm counter (number of module call-ups)
Address of the subprogram which is to be called up

Description This function block is assigned the I 0.0 hardware input
in the basic unit (PS 4-201-MM1).

The EN input controls the start of the counter. The
counter is started if the input is 1. When switching from 1
to 0, the counter is stopped and reset.

The VT input (values: 1 - 65535) indicates how many
signals occur on the hardware input until the counter is
incremented by 1. The SOLL input (1 - 65535) indicates
after how many counted signals the alarm is to be
enabled or the function block is to be called up.

The ERR ouput contains the code of the errors:

0 = no error
1 = setpoint value is 0
2 = predivider is 0

The CNT output (0 - 65535) indicates how often the
setpoint value SOLL has been reached.

The AC input allows an event-driven program to be
implemented. For this it is necessary to define the
address ($ name) of the subprogram that is to be
executed when reaching the event. If no address is
stated, only the CNT counter is incremented.

Klockner-Moeller 4/94 AWB 27-1186-GB 6-9

CALARM Function Blocks
Counter Alarm Function Block
Counter Alarm

Description The following points must be observed for the event-
driven program:

- After the event has occurred, the user program is
interrupted, the register status is saved and the
subprogram stated under the AC address is executed.
The alarm function block cannot be interrupted by
other alarm function blocks (all alarm function blocks
have the same priority).

- The max. execution time of alarm function blocks is
restricted by the user program to 5 ms (approx. 1K IL
instructions) since the alarm function blocks cannot
be interrupted even by the operating system in the
event of a voltage drop. If the execution time is
exceeded, an EDC error may occur when switching
off the power supply.

- The execution time of the alarm function block is
added to the execution time of the cyclical user
program and also monitored by the cycle time
monitoring function.

- Since the event-driven program processing enables
access to the entire image register, access to data
that is used by the event-controlled and cyclical user
program must be disabled. Bit accesses may not
occur on the same byte in the cyclical user program
and in the Alarm function block.

- Since an Alarm function block requires, due to its fast
reactions, a high-speed peripheral access (direct
output), the QB, QPB peripheral operands available in
the basic unit should be used.

- An alarm function block can be used several times
(multiple instantiation) although this should normally be
avoided since each function block group has the same
event source (hardware input I 0.0.0.0.0) and only the
last function block instance in the program is valid.

- By multiple instantiation is meant the reservation of
several data ranges for each parameter set of a
particular function block type.

6-10 4/94AWB27-1186-GB Klockner-Moeller

Function Blocks CALARM
Counter Alarm Function Block
Counter Alarm

Example In the following example the signals of a rotary encoder
are counted. The time between the signals is shorter
than the cycle time of the PLC. The encoder outputs
1000 signals per rotation degree. The divider ratio on the
function block is to be set to 100 so that the rotation
position is 1/10 degree on the CNT output.

Printout of the c:cala.q42 file Dated: 6. 4. 94

00000
001
002
003
00001
001
00002
001
002
003
004
005
006
007
008
009
010
00003
001
002

BLOCK0

BL0CK1

BL0CK2

[]

"Incorporate configuration file

#include "config.k42"

"Start of program

"Call up CALARM0 function block in order
"the signals via I 0.0 counter input

CALARM0
EN: I 0.5 Set function block

[w] VT:KW100
[w] S0LL KW 1

[b]
[w]
[$]

END

HP

ERR: MB25
CNT: MW10
AC:

"End of program I

Klockner-Moeller 4/94 AWES 27-1186-GB 6-11

CK Function Blocks
Time/Date Comparator
Clock

Syntax Call-up:
CK < Block No. >

As operand:
CK < Block No. >u< Input/Output >
Number ranges TIME:

DAY:

DATE:

VDAT:
VTIM:

1) Hours (0...23)
2) Point
3) Minutes (0...59)

(0...6)
0 = Sunday (SU)
1 = Monday (MO)
2 = Tuesday (TU)
3 = Wednesday (WE)
4 = Thursday (TH)
5 = Friday (FR)
6 = Saturday (SA)

1) Month (1 ...12)
2) Point

3) Day (1...31)

Day. Month (1...31 .1...12)
h . min (0...23 . 0...59)

Performance time: 200 |is

Representation IL

CK10

[]
[X]
[X]
[X]
[W]
[W]
[]
[]
[]
[]

S:
TIME
DAY:
DATE
VDAT
VTIM
GT:

EQ:
LT:
ERR:

Truth table

tREF < tACT

tREF = tACT

tREF < tACT

tREF invalid

LT

1

0

0

0

EQ

0

1

0

0

GT

0

0

1

0

ERR

0

0

0

1

6-12 4/94 AWES 27-1186-GB Klockner-Moeller

Function Blocks CK
Time/Date Comparator
Clock

Description The time/date comparator function block scans the
internal real-time clock which is battery-backed for when
the controller is switched off. Time and date can be set
or corrected by means of the SUCOsoft "Time/date"
menu.

When in operation, the function block compares the
preset values, such as time (hours, minutes), day (week­
day), date (day, month) with the running real-time clock.

The values can be preset in two ways:

1. Via function block inputs TIME, DAY, DATE.

The data is entered via PC during programming.
These constant values cannot be changed during
processing. They are only valid when the inputs VDAT
and VTIM have no defined operands.

The ERR output is Low.

Possible parameter settings.
TIME: 20.35 DAY: - DATE: -
TIME: 20.35 DAY: 1, DATE: -
TIME: 20.35 DAY: - DATE: 3.28

Klockner-Moeller 4/94 AWB 27-1186-GB 6-13

CK Function Blocks
Time/Date Comparator
Clock

Description 2. Via function block inputs VDAT, VTiM.

When VTIM or VTIM and VDAT have been set, the
inputs TIME, DAY, DATE are no longer active.
The settings in word format is carried out, as usual,
by means of a function block call-up or in the user
program.

e.g.

LKB35
= MB10
LKB17
= MB 11
LKB3
= MB12
LKB18
= MB13

CK10
[]
[XI
[XI
[X]
[W]
[W]

[1
[]
[]
[1
etc.

S: 1 0.0
TIME:
DAY:
DATE:
VDAT: MW 12
VTIM: MW 10
GT:
EQ: Q 0.0
LT:
ERR: Q 0.1

or

LI 0.0
= C K 1 0 S

LKB35
= MB10
LKB17
= MB 11
LKB3
= MB12
LKB18
= MB13
LMW10
= CK10VTIM
LMW12
= CK10VDAT

LCK 10 EQ
= 0.0.1
LCK 10 ERR
= Q0.1

CK10
etc.

< 1 Word •

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 Bit

0 0 0 1 0 0 0 1) 0 0 1 0 0 0 1 1 | |17|35|VTIM
Hour Minute h min.

0 0 0 1 0 0 1 0 | 0 0 0 0 0 0 1 1 | |18|3| VDAT
Day Month day month

6-14 4/94 AWB 27-1186-GB Klockner-Moeller

Function Blocks CK
Time/Date Comparator
Clock

All possible values are acceptable for the marker words.
If invalid values are given, e.g. 25 hours, the ERR output
is High.

Function The function block is activated when the S input is High.
A Low signal sets all the outputs Low.

Example 1:

S _J I

LT I L?

EQ n l
GT _J i r 2)

fsET tACT

1) EQ remains High for one minute when the set time
has been reached.

2) Change from "greater than" to "less than" depends
on time preselect
of TIME or VTIM at 24 hours,
of DAY on Sunday 24 hours,
of DAT or VDAT at the end of the year at 24 hours.

Example 2
(Data change

S

VDAT, VTIM

LT

EQ

GT

with tl le program running):

l_l
1)

m X W2

— i _ _r~
n
_ | | _

fc.
tsET tACT

1) Change of value: old = W1, new = W 2
The new value is accepted in the next processing
cycle of the function block in the user program.

Klockner-Moeller 4/94 AWB 27-1186-GB 6-15

CP Function Blocks
Comparator

Word

Syntax Call-up:

CP < Block No. >

As operand:

CP < Block No. >u< Input/output >

Number ranges: -32768. . .0 . . .+32767 decimal

Performance t ime: 105 us

Representation IL
CP10
[W]
[W]
[]
[]
[]

12:
GT:
EQ:
LT:

Value 1
Value 2
11 <I2
11 = 12
11 >I2

Truth table

11 < 12
11 = 12
11 > 12

LT

1
0
0

EQ

0
1
0

GT

0
0
1

Description The function block compares the values at the word
inputs 11 and 12, then sets the outputs according to the
truth table.

6-16 4/94AWB27-1186-GB Klockner-Moeller

Function Blocks DEB
Code Converter:
Decimal to Binary

~~ ~T~ I Word

Syntax Call-up:
DEB < Block No. >

As operand:
DEB < Block No. >u< Input/output >

Number ranges: 4 decades BCD
Output range: -9999...0...+9999

Performance times: 145 u,s

Representation IL
DEB 47
[] 11: Sign input
[W] I: BCD input
[W] Q: Binary output

Description A 4-decade, BCD coded number is converted into a 16-
bit, binary coded number. If the BCD value is to be
converted into a positive binary value, the sign "IS" must
be Low. For negative numbers the input must be High.

Example A 4-decade BCD number received from a preselector
switch is to be converted into a binary number for
further processing. The input values are +11, +9999,
-1311,-9999.

IL

0
0
1
1

I

0 0 1 1
9 9 9 9
13 11
9 9 9 9

Q

11
9999

-1311
-9999

Q

B
270F
FAE1
D8F1

Klockner-Moeller 4/94 AWB 27-1186-GB 6-17

6-18 4/94 AWB 27-1186-GB Klockner-Moeller

Function Blocks
Edge Alarm Function Block
Edge Alarm

FALARM

Syntax Call-up:
FALARM 0

Execution time: 20 LIS without subprogram (SP)
240 us + SP time with subprogram

Representation IL

FALARM 0

EN
ACT
SOLL
ERR
CNT
At;

: Enable, disable interrupt (0 = disable, 1 = enable)
: Rising edge (0 = positive, 1 = negative edge)
: Setpoint value counter
: Error output
: Alarm counter (number of function block call-ups)
: Address of the subprogram which is to be called up

Description This function block is assigned the I 0.1 hardware input
in the basic unit (PS 4-201-MM1).

The EN input controls the start of the function block. The
counter is started if the input is 1. When switching from 1
to 0, the counter is stopped and reset.

The ACT input indicates at which edge a signal is to be
counted. The SOLL input (1 - 65535) indicates after how
many counted signals the alarm is to be enabled or the
function block is to be called up.

The ERR ouput contains the code of the errors:

0 = no error
1 = setpoint value is 0

The CNT output (0 - 65535) indicates how often the
setpoint value SOLL has been reached.

The AC input allows an event-driven program to be
implemented. For this it is necessary to define the
address ($ name) of the subprogram that is to be
executed when reaching the event. If no address is
stated, only the CNT counter is incremented.

Klockner-Moeller 4/94 AWB 27-1186-GB 6-19

FALARM Function Blocks
Edge Alarm Function Block
Edge Alarm

Description The following points must be observed for the event-
driven program:

- After the event has occurred, the user program is
interrupted, the register status is saved and the
subprogram stated under the AC address is executed.
The alarm function block cannot be interrupted by
other alarm function blocks (all alarm function blocks
have the same priority).

- The max. execution time of alarm function blocks is 5
ms (approx. 1K IL instructions) since the alarm
function blocks cannot be interrupted even by the
operating system in the event of a voltage drop. If the
execution time is exceeded, an EDC error may occur
when switching off the power supply.

- The execution time of the alarm function block is
added to the execution time of the cyclical user
program and also monitored by the cycle time
monitoring function.

- Since the event-driven program processing enables
access to the entire image register, access to data
that is used by the event-controlled and cyclical user
program must be disabled. Bit accesses may not
occur on the same byte in the cyclical user program
and in the Alarm function block.

- Since an Alarm function block requires, due to its fast
reactions, a high-speed peripheral access (direct
output), the QB, QPB peripheral operands available in
the basic unit should be used.

- An alarm function block can be used several times
(multiple instantiation) although this should normally
be avoided since each function block group has the
same event source (hardware input I 0.0.0.0.0) and
only the last function block instance in the program is
valid.

- By multiple instantiation is meant the reservation of
several data ranges for each parameter set of a
particular function block type.

6-20 4/94AWB27-1186-GB Klockner-Moeller

Function Blocks FALARM
Edge Alarm Function Block
Edge Alarm

Example Printout of the c:fala.q42 file Dated 6. 4. 94

00000 BLOCK0 "Incorporate configuration file
001
002 #include "conflg.k42"
003
00001 BL0CK1 "Start of program
001
00002 BL0CK2 "In the FALARMO function block the water level of
001 "a tank is controlled via the 10.1 alarm input and
002 "calls up the UP0 subprogram when reaching a
003 "level mark (positive edge on the alarm input).
004
005
006 FALARMO
007 [] EN: I 0.2 Enable alarm function block
008 [] ACT: K 0
009 [w] S0LL: KW 1
010 [b] ERR:MB22
011 [w] CNT: MW124
012 [$] AC:$UP0
013
014 "UP0 subprogram is called up when the
015 "edge is received on the alarm input.
016
00003 END "End main program
001
002 EP
003
00004 SUP0 "Subprogram 0
001
002 L...
003

0.. EM

Klockner-Moel ler 4 /94 AWB 27-1186-GB 6-21

FIFOB Function Blocks
First In - First Out

Byte

Syntax

Representation

Truth table

Description

Call-up:
FIFOB < Block No. > - < Register length > - R

- R only if retentive operation is required.

As operand:
FIFOB < Block No. >u< Input/output >

Register length: Optional 1...128

Performance time: 265 us

IL
FIFOB 57-60-R

CF:
CF:
R:
I:
F:
E:
0:

Fill pulse
Read out pulse
Reset
Data input
Register full
Register empty
Data output

Inputs/outputs
Type
Function

Fill
Read out
Reset

CF
Bit

_r
0
X

CE
Bit

0
_r
X

R
Bit

0
0
1

I
Byte

value
X

X

Q
Byte

X

value
0

With a rising edge at the "CF" input, any value at the " I "
input is entered at the beginning of the FIFO.

A rising edge at the "CE" input copies the first value into
the output Q and all the values in the register are shifted
forward one step. The outputs "E" and "F " use a High
signal to indicate if the FIFO memory is either empty or
full.

The FIFO memory is reset into the initial state and
deleted when the R-input is High.

6-22 4/94 AWB 27-1186-GB Klockner-Moeller

Function Blocks
First In - First Out

FIFOB

Byte

Examples

7
019

6
255

5
035

4
095

3 2 1 0

CF

I
014

CE

7
019

6
255

5
035

4
095

3
014

2 1 0

CF

I

First in - first out register
An input byte is taken from I to the topmost free location with the rising edge at "CF"

7
255

6
035

5
095

4
014

CE

Q
X

5

7
019

6
255

5
035

4
095

3
014

2 1 0

CF

I
X

CF

First in - first out register
The lowest byte is transferred from the first in - first out to memory output Q with the
rising edge at "CE". I

Klockner-Moeller 4/94 AWB 27-1186-GB 6-23

FIFOW Function Blocks
First In - First Out

Word

Syntax

Truth table

Description

Call-up:

FIFOW < Block No. > - < Register length > - R

- R only if retentive operation is required.

As operand:

FIFOW < Block No. >u< Input/output >

Register length: Optional 1 ...128

Performance time: 265 |.ts

Representation IL
FIFOW 57-60-R
[
[
[
[W
[
[
[W

CF:
CE:
R:
I:
F:
E:
Q:

Fill pulse
Read out pulse
Reset
Data input
Register full
Register empty
Data output

Input/output

Type

Function

Fill

Read out

Reset

CF

Bit

_ r

0
X

CE

Bit

0

_r
X

R
Bit

0

0

1

I

Word

value

X

X

Q

Word

X

value

0

With a rising edge at the "CF" input, any value at the " I "

input is entered at the beginning of the FIFO.

A rising edge at the "CE" input copies the first value into

the output Q and all the values in the register are shifted

forward one step. The outputs "E " and "F " use a High

signal to indicate if the FIFO memory is either empty or

full.

The FIFO memory is reset into the initial state and

deleted when the R-input is High.

6-24 4/94 AWB 27-1186-GB Klockner-Moeller

Function Blocks
First In - First Out

FIFOW

Word

Examples

Q 7 6 5 4 3 2
_X 00197 02555118367 00023 13657 •*—

1 0

CE

Q
X

CE

7 6 5 4
00197 02555 18367 00023

3 2 1 0

CF

I
13657

CF

First in - first out register
An input word is taken from I to the topmost free location when the rising edge is at "CF".

Q

00197-

7
02555

6

18367

5
00023

4
13657

3 2 1 0

CE

Q
X

CE

7
00197

6
02555

5
18367

4
00023

3
13657

2 1 0

CF

I
X

CF

First in - first out register
The lowest word is transferred from the first in - first out to the memory output Q when
the rising edge is at "CE". I

Klockner-Moeller 4/94 AWB 27-1186-GB 6-25

ICP Function Blocks
Block Comparison

Byte

Syntax Call-up:
ICP < Block No. > - R

- R if retentive operation is required.

As operand:

ICP < Block No. >u< Input/output >

Number of
elements: 1...255

Performance time: The performance time of this
function block heavily depends on
the type of source and destination
operands involved.

Standard values:
MOD0:(244 + 7 x n) us
MOD 1: (264 + 20 x n) us
n = number of elements

Representation IL
ICP 5
[] MOD:
[&] SADR:
[&] DADR:
[B] NO:
[] GT:
[] EQ:
[] LT:
[B] Q:
[B] ERR:

Note!

A detailed description of the function block
"ICP" is given in Chapter 8,
Addressing.

Indirect

6-26 4/94 AWB 27-1186-GB Klockner-Moeller

Function Blocks ICP
Block Comparison

Byte

Description Inputs:
MOD Operating mode

= 1 Compare data fields
= 2 Search for data value

SADR Source address
Start address of the source data block from
which the comparison is to be made

DADR Destination address
Destination address from which the comparison
is to be made

NO Number of elements
1-255 to be compared (depending on data type
Of SADR/DADR)

Outputs:

Note:
Comparisons are not signed

GT Greater than
= 1 Data value in SADR > data value in DADR

EQ Equal
= 1 Data values are identical

LT Less than
= 1 Data value in SADR < data value in DADR

Q Output
indicates the relative offset address of the
unequal value (comparison) or of the found data
value (data value search).
The offset is determined from the beginning of
the block (DADR) and is dependent on the data
type in DADR. The calculation of the offset is
restricted to the following limits: 0< Q < NO.

ERR = 0 Data limits are permissible
= 1 NO is 0
= 2 SADR has not been defined
= 3 DADR has not been defined
= 4 SADR is the same as DADR

Klockner-Moeller 4/94 AWB 27-1186-GB 6-27

ICP Function Blocks
Block Comparison

Byte

Description The function block has a data search or block compare
mode. The coding on the MOD input determines whether
a comparison or a data value search is to be carried out.

Search mode Search mode is used to search for a particular value in a
data block. The compared value is located at address
SADR (source address). The start of the data block to be
examined is specified by DADR (data address). The
address is prefixed by the address operator "&".

If the value defined under SADR is found within the NO
elements starting from the DADR address, the location is
indicated via output Q and the output EQ is set (=1).

The following applies when a character is found:

Q = 0...NO-1; EQ = 1;LT=GT = 0;

If the data value is not found in the block, the output Q is
equal to NO. The EQ output is set to 0 and the outputs
LT and GT are set according to the last comparison.

The following applies when a character is not found:

Q = NO; EQ = 0; LT, GT according to the last comparison

In the following example the value 7D in MB 23 is
searched for in the marker field from MB 27 to MB 32.
Function block
ICPO

Marker field:

[]
l&l
M

I I
[til
[B]

Result
Q = 3
LT = 0
EQ = 1
LT = 0

MOD: KO
SADR:&MB 23
DADR:&MB 27
NO: KB6
GT:

EQ:
IT:
0:
ERR:

MB 23

MB 24

MB 13

MB 26

MB 27

MB 28

MB 29

MB 30

MB 31

MB 32

MB 33

MB 34

7!)
00
00
00
3D
7D
4D
7D
7D
70
00
00

Search

Found: therefore
search routine
aborted

The data value 7D was found at the address DADR + Q
(here: MB27 + 3) and the search was terminated.

6-28 4/94AWB27-1186-GB Klockner-Moeller

Function Blocks
Block Comparison

ICP

Byte

Compare mode The block compare mode is used to compare two data
blocks with each other. The start of both blocks is
defined by SADR and DADR. The size of the block is
specified by the number of elements NO. If both data
blocks are found to be equal, the Q output equals NO
and the EQ output is set to 1.

The following applies when the compared data blocks
are equal:

Q = NO; EQ = 1;LT = GT = 0;

If the compared data blocks are not equal, output Q
indicates the location of the unequal data. The EQ
output is set to 0 and the LT and GT output are set
according to the result of the comparison (either 1 or 0).

The following applies when the compared data blocks
are not equal:

Q = 0...NO-1; EQ = 0; LT, GT depending on the result of
the last comparison.

In the following example the marker field from MB 23 to
MB 26 is compared with the marker field from MB 30 to
MB 33.

CPO
MOD: K1
SADR:&MB 23
DADR:&MB 30
NO: KB4
GT:
E0:

LT:
Q:
FRR:

Result
GT = 0
EQ = 1
LT = 0
Q = 4

Marker field:

MB 23

MB 24

MB 25

MB 26

MB 27

MB 28

MB 29

MB 30

MB 31

MB 32

MB 33

MB 34

7D
3B
64
A6
00
00
00
7D
3B
64
A6
00

—

+
™
«
^

The two data blocks are identical. This is indicated by
EQ = 1 and Q = NO (run completed).

Klockner-Moeller 4/94 AWB 27-1186-GB 6-29

ICPY Function Blocks
Block Transfer
Indirect Copy

Byte

Syntax Call up:
ICPY < Block No. > - R

- R, if retentive operation is required.

As operand:

ICPY < Block No. >u< Input/output >

Number of
elements: 1...255

Performance time: The execution time of this function
block heavily depends on the type of
source and destination operands
involved.

Standard values:
MODO: (355 +25 x n) \is
MOD 1: (355+ 10 x n) [us
n = Number of elements

Representation IL
ICPY 63
[] MOD:
[&] SADR:
[&] DADR:
[B] NO:
[B] ERR:

Note!

A detailed description of the function block
"ICPY" block transfer is given in Chapter 8,
Indirect Addressing.

6-30 4/94 AWB 27-1186-GB Klockner-Moeller

Function Blocks
Block Transfer
Indirect Copy

ICPY

Byte

Description Inputs:

MOD

SADR

DADR

NO

Outputs:
ERR

Initialize/Copy mode
= 1 Copy data fields
= 2 Initialize data fields

Source address of source data block from
which the transfer is to begin

Destination address
Destination address to which the source data is
to be transferred or from where initializing is to
begin

Number of elements to be transferred 1-255
(depending on data type SADR/DADR)

0 Data limits are permissible
1 NOisO
2 SADR has not been defined
3 DADR has not been defined
4 SADR is the same as DADR

The ICPY function block supports the transfer of data
blocks within the system. A transfer is always made from
a "source" to a "destination". Markers M,
communications data RD/SD and the address inputs of
other function blocks are permitted as operands for the
address operator "&".

The function block can be used in the copy mode and
the initialize mode which are selected by setting a 1 or a
0 at the MOD input (1 or 0). The differentiation between
address and data is important with this function block.
With typical operations such as L M 2.2, it is always the
data that is stored, in this case in the marker cell, which
is accessed. In the case of the block transfer, the source
address SADR from which the copying is to be made
and the destination address DADR must be specified.
The address operator "&" must be used here. This
signifies that the operand behind it is an address and
not a data value.

Klockner-Moeller 4/94 AWB 27-1186-GB 6-31

ICPY Function Blocks
Block Transfer
Indirect Copy

Byte

Copy mode The number of data cells specified by the NO value are
copied from the source address specified by SADR to
the destination address specified by DADR.

In the following example the data from the marker fields
MB 23 to MB 26 is copied to marker field MB 30 to
MB 33.

IL
ICPY 0
I] MOD: K1
[&] SADR:&MB 23
[&] DADR:&MB 30
[B] NO: KB4
[B] ERR:

Marker field:

MB 23
MB 24
MB 25
MB 26
MB 27
MB 28
MB 29
MB 30
MB 31
MB 32
MB 33
MB 34

?0
3B

64

A6

00
00

00

7D
3B
64

A6

00

Example of the copy mode of the ICPY function block

6-32 4/94 AWB 27-1186-GB Klockner-Moeller

Function Blocks
Block Transfer

ICPY

Byte

Initialize mode This involves a transfer of the data (byte or word) stored
under address SADR in a number of data cells specified
by NO, beginning with the DADR destination address.

In the following example the marker field from MB 27 to
MB 32 is initialized with the data value 7Dh which is
stored in MB 23.

IL:
ICPYO
[] MOD: KO
[&] SADR:&MB 23
[&] DADR:&MB 27
[B] NO: KB6
[B] ERR:

Marker field:

MB 23

MB 24

MB 13

MB 26

MB 27

MB 28

MB 29

MB 30

MB 31

MB 32

MB 33

MB 34

I'D

00
00
00
/D
70
70
iV

iV

70
00
00

Example of initialize mode of the ICPY function block

Kiockner-Moeller 4/94 AWB 27-1186-GB 6-33

LIFOB Function Blocks
Last In - First Out
Stack Register

Byte

Syntax

Representation

Truth table

Description

Call-up:
LIFOB < Block No. > - < Register length > - R

- R only if retentive operation is required.

As operand:
LIFOB < Block No. >u< Input/output >

Register length: Optional 1...128

Performance t ime: 255 us

IL
LIFOB 8-40-R

CF:
CE:
R:
I:
F:
E:
0:

Fill pulse
Read out pulse
Reset
Data input
Register full
Register empty
Data output

Inputs/outputs
Type
Function

Fill
Read out
Reset

CF
Bit

_r
0
X

CE
Bit

0
_ r
X

R
Bit

0
0
1

I
Byte

Value
X

X

Q
Byte

X

Value
0

With rising edge at the "CE" input any value at the " I "
input is entered in the stack. A rising edge at the "CE"
input copies the value at the top of the stack into the
output "Q" . When High, the "E" and "F" outputs indicate
respectively whether the stack is empty or full. The stack
memory is reset into the initial state, and deleted when
the "R" input is High.

6-34 4/94AWB27-1186-GB Klockner-Moeller

Function Blocks
Last In - First Out
Stack Register

Byte

LIFOB

Examples CF
062

3
0A7_
2

025
1

033
0

255

CF 1

7

6

5

14
062
3
047
2
025
1
033

0
255

Last in - first out (stack register)
The input byte is entered on the stack on " I " when the rising edge is at "CF".

Q

7

6

5

4

3
047
2
025
1
033
0
255

CE Q
062

•

7

6

5

4
062

3
047

2
025
1
033
0
255

CE

I

Last in - first out (stack register)
The topmost byte is transferred from the stack to the output "Q"
when the rising edge is at "CE".

Klockner-Moel ler 4/94 A W B 27-1186-GB 6-35

LIFOW Function Blocks
Last In - First Out
Stack Register

Word

Syntax

Truth table

Call-up:
LIFOW < Block No. > - < Register length > - R

- R only if retentive operation is required.

A s o p e r a n d :
LIFOW < Block No. >u< Input/output >

Register length: Optional 1 ...128

Performance time: 265 u.s

Representation IL
LIFOW 8-40-F

[W

[W

CF:
CE:
R:
I:
F:
E:
Q:

Fill pulse
Read out pulse
Reset
Data input
Register full
Register empty
Data output

Inputs/outputs
Type
Function

Fill
Read out
Reset

CF
Bit

_ r

0
X

CE
Bit

0
_ r
X

R
Bit

0
0
1

I
Word

Value
X

X

Q
Word

X

Value
0

Description With a rising edge at the "CF" input any value at the " I "
input is entered on the stack. A rising edge at the "CE"
input copies the value at the top of the stack into the
output "Q".

When High, the "E" and "F" outputs indicate
respectively when the stack is empty or full. The stack
memory is reset into the initial state, and deleted when
the "R" input is High.

6-36 4/94 AWB 27-1186-GB Klockner-Moeller

Function Blocks
Last In - First Out
Stack Register

LIFOW

CF 1
02384

7

6

5

4

~~ "3
00034

2
01283

1
00346

0
12764

Word

CF I

7

6

5

i 4
02384

3
00034
2

01283
1

00346

0
12764

Examples

Last in - first out (stack register)
The input word is enterd on the stack on "I" when the rising is at "CF"

Q

7

6

5

4
02384

3
00034

2
01283
1

00346

0
12764

CE Q
02384

,.

7

6

5

4

3
00034
2

01283
1

00346

0
12764

CE

I

Last in - first out (stack register)
The topmost word is transferred from the stack to the output "Q"
when the rising edge is at "CE".

Klockner-Moel ler 4 /94 AWB 27-1186-GB 6-37

RDAT Function Blocks
Reload Data

Syntax

Representation

Description

Call-up:
RDAT < Block No. >

Execution time:

IL
RDAT1
[] S:
[&] DADR:
[W] SGNO:
[B] LEN:
[B] ERR:

Any data which

(330 + 25 x n) (iS
n = number of elements

Set input
Destination address (address operator)
Segment number (0-511)
Segment length (1-128)
Error output

is already stored in the SDAT function
block can be written via the RDAT function block out of
the memory module to the corresponding data range.
This data can be saved if a memory module is fitted on
the PS 4 200 series which reserves 64 Kbytes for the
cold-start retentive range. This memory is logically
divided into 512 segments of 128 bytes each.

Another important application for the RDAT and SDAT
function blocks is the required saving of the retentive
marker range (with cold start) before modifying the
device configuration. You will find further information in
Chapter 1, System Parameters.

The RDAT function block is designed for programming
with indirect addressing. See Chapter 8, Indirect
Addressing.

Error messages The ERR output contains the code of possible errors:

no memory module present
access not possible due to online connection
access not possible due to simultaneous use of
SDAT
SGNO is greater than 511
LEN is greater than 128
DADR parameters incorrectly set

6-38 4/94 AWB 27-1186-GB Klockner-Moeller

Function Blocks
Reload Data

RDAT

Example RDAT 12

I &
fW
I B
I B

S:
DADR:
SGNO:
LEN:
ERR:

I 0.3
&MB23
KW5
KB 127
MB 12

If I 0.0.0.0.3 changes to 1, the data stored in the memory
module on segment number 5 is rewritten to the marker
range starting from the address MB 23. Errors are saved
in marker byte 12.

Klockner-Moeller 4/94 AWB 27-1186-GB 6-39

SCK Function Blocks
Set Real-Time Clock
Set Clock

Syntax Call-up:
SCK < Block No. >

Execution time: 790 us

Representation

Description

Error messages

IL
SCKO
[] S:
[&] SADR:
[B] ERR:

Set
Data address (indirect)
Error byte

If the input S changes to 1, the clock is set again with
the values stated under SADR. The clock setting
information is stated indirectly via the SADR address
operand.

The length of the block must not be stated since a
standard 7 bytes (year, month, day, week day, hour,
minute, second) are transferred. This means that the
clock will only function if all clock parameters are
defined.

The SCK function block is designed for programming
with indirect addressing. See Chapter 8, Indirect
Addressing.

The ERR output contains the code of possible errors:

1 = SADR parameters incorrectly set
2 = Incorrect year stated (0-99)
3 = Incorrect month stated (1-12)
4 = Incorrect day stated (1-31)
5 = Incorrect week day stated (0-6, 0 = Sunday)
6 = Incorrect hour stated (0-23)
7 = Incorrect minute stated (0-59)
8 = Incorrect second stated (0-59)

6-40 4/94AWB27-1186-GB Klockner-Moeller

Function Blocks SCK
Set Real-Time Clock
Set Clock

Example 00000 BL0CK1 "Define new parameters for the SCKO function
001 "block to set the real-time clock.
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
00001 BL0CK2 "Set real-time clock with SCK 0 function block
001
002
003
004 SCKO
005 [] S:M0.0 Set SCKO
006 [&] SADR:&MB10
007 [b] ERR:MB20
008
00002 END "End of program
001
002 EP

LKB94
= MB10

LKB3
= MB11

L KB 27
= MB12

LKB0
= MB13

LKB3
= MB14

LKB0
= MB15

LKB0
= MB16

Year (19)94

Month: March

Day: 27.

Weekday: (Sunday)

Hour: 3

Minute: 0

Second: 0

This example shows how a marker range is def ined with

the required data for sett ing the real-t ime c lock and how

the clock is set with the SCKO funct ion block.

Klockner-Moeller 4/94 AWB 27-1186-GB 6-41

SDAT Function Blocks
Save Data

Syntax

Representation

Call-up:
SDAT < Block No. >

Execution time:

IL
SDAT1
[] S:
[&] SADR:
[W] SGNO:
[B] LEN:
[B] ERR:

(330 + 25 x n) |xs
n = number of e lements

Set input
Source address (address operator)
Segment number (0-511)
Segment length (1-128)
Error output

Description Any data can be saved in the memory module of the
PS 4 200 series if this memory module has 64 Kbytes for
the cold-start retentive range. This memory is logically
divided into 512 segments of 128 bytes each. The data
can be reloaded to the data range concerned via the
RDAT function block.

Another important application for the RDAT and SDAT
function blocks is the required saving of the retentive
marker range (with cold start) before modifying the
device configuration. You will find further information in
Chapter 1, System Parameters.

The SDAT function block is designed for programming
with indirect addressing. See Chapter 8, Indirect
Addressing.

Error messages The ERR output contains the code of possible errors:

1
2
3

4
5
6

no memory module present
access not possible due to online connection
access not possible due to simultaneous use of
RDAT
SGNO is greater than 511
LEN is greater than 128
SADR parameters incorrectly set

6-42 4/94 AWB 27-1186-GB Klockner-Moeller

Function Blocks
Save Data

SDAT

Example SDAT 12

[&
fW
f B
[B

S:
SADR:
SGNO:
LEN:
ERR:

I 0.3
&MB23
KW5
KB 127
MB 12

If I 0.3 changes to 1, the data stored in the memory
module on segment number 5 is rewritten to the marker
range starting from the MB 23 address. Errors are saved
in marker byte 12.

I

Klockner-Moeller 4/94 AWB 27-1186-GB 6-43

SK Function Blocks
Sequential Control Function Block

Syntax

Description

Call-up:
SK < Block No. > - < Number of steps > - R

- R only if retentive operation is required.

A s o p e r a n d :
SK < Block No.

Step number
Nesting depth:

Executing time:

ion IL
SK 3-14

[B
[B
[B

[S
[$
[$
[S

S:
R:
SINO:
ERR:
SQNO:
TG:
INIT:
AC1:
AC2:
AC3:

> < Input/output >

1...99
8

with SET = RESET =
with RESET = 1
with SET = 1
with invalid SINO

Set
Reset
Step input number
Error output
Step number display
Step change indication
Step call-up after reset
Step 1 (action program 1)
Step 2 (action program 2)
Step 3 (action program 3)

• 0 app rox .
app rox .
app rox .
app rox .

130u .s
2 4 0 ns
2 5 0 [is
150 u.s

[S] AC14: Step 14 (action program 14)

Note:
Refer to Chapter 7 for a detailed description of the
sequential control function block.

The sequential control function block enables the user
program to be structured simply and clearly.

Each SK function block can control up to 99 steps. Each
step can itself activate other sequences, allowing a
nesting depth of 8. The individual steps are formed by
means of subprograms which contain the actions to be
executed. The logical structure of the step sequence
control can therefore be incorporated directly in the user
program via the function block.

6-44 4/94 AWB 27-1186-GB Klockner-Moeller

Function Blocks SK
Sequential Control Function Block

The inputs and outputs of the function block have the
following meaning:
S Set
Activate the sequential control function block

R Reset
This resets the function block and the initialisation
program is activated via the INIT input.

SINO Step Input Number

The number of the current step is assigned to this input.

ERR Error

Display of faulty conditions.
Error number:

Binary:
00000001
or decimal: 1

Binary:
00000010
or decimal: 2

Binary:
00000100
or decimal: 4

Cause or error:

The SINO input
shows the value 0

(S=1)

Step number

exceeds the
maximum possible
step number

No subprogram on
selected AC output

Error behaviour:

The function block is passive.
No step is processed.

Error output is set. The function
block remains in its current
status.

Error output is set. The selected
step is transferred. Nothing is
processed since there is no
action program present.

SQNO Step Output Number
The SQNO output indicates the number of the step
currently being processed.

TG Toggle outputs
The TG output indicates the transition to a new step. In
normal operation this output is High, only in the first
cycle is it Low after a change.

INIT Initialisation
Name of the initialisation subprogram which runs on
activation of a reset.
Example: "$INIT"

AC. Action
Name of the current step subprogram.
Example: "$STEP1"

Klockner-Moeller 4/94 AWB 27-1186-GB 6-45

SR Function Blocks
Shift Register

Bit

Syntax Call-up:
SR < Block No. > - < Register length > - R

- R only if retentive operation is required.

As operand:

SR < Block No. >u< Input/output >

Register length: Optional 1...128

Performance time: typ.: 148 u.s + (n-1) x 20 (is
n = register length

Representation IL
SR 54-13-R
[]
[]
[]
[]
[]
[]

[]

U:
D:
R:
IU:
ID:
QO:

Q12:

Pulse input forward
Pulse input reverse
Reset
Data input forward
Data input reverse
Output 0

Q (n-1) Last output
t— Register length

Truth table
Inputs
Type
Function

Shift, forward
Shift, reverse
Delete

U
Bit

_r
0
X

D
Bit

0
_r
X

R
Bit

0
0
1

IU
Bit

Value
X

X

ID
Bit

X

Value
X

6-46 4/94AWB27-1186-GB Klockner-Moeller

Function Blocks
Shift Register

SR

Bit

Description When the rising edge is at the "U" input, the value of the
"IU" input is entered in the first register field after all
other register fields have been shifted in the positive
direction by one step.

D

ID
X

D

ID
X

7
1

7
1

6
1

6
0

5
0

5
0

4
0

4
1

3
1

•4

3
1

2
1

1
0

0
1

Shift direction

2
0

1
1

0
1 «

u

IU
1

u

IU

Bit shift register eight steps long; one forward pulse and acceptance of an input bit from
IU.

A rising edge at the D input causes the entry of the "ID"
value into the last register field after the contents of all
other registers fields have been shifted in the negative
direction by one step.

D

ID
0

D

ID

7
1

6
0

5
0

Shift direction

7
0

6
1

5
0

4
1

•

4
0

3
1

3
1

2
0

2
1

1
0

1
0

0
1

0
1

u

IU
X

u

IU
X

Bit shift register eight steps long; one reverse pulse and acceptance of a bit from ID into
the last register field.

Klockner-Moel ler 4 /94 AWB 27-1186-GB 6-47

SR Function Blocks
Shift Register

Bit

Description The contents of all register fields are externally displayed
via the Q outputs. When the "R" input is High, the shift
register is reset to the initial state, and all the register
fields are cleared. If there is a rising edge at U and D
simultaneously, a forward shift is performed first before a
reverse shift.

The register length is restricted to 128 register fields.
Several shift registers can be linked together if more
than 128 shift steps are required.

Example SR 14-8
U:
D:
R:
IU:
ID:
00
01
02
03
04
0b
06
07

SR
U:
D:
R:
IU:
ID:
00
01
02
03
04
05
06
0/

10.1
I 0.2
I 0.3
I 0.4
SR15Q0

: = M 100.0
: = M 100.1
: = M 100.2
: = M 100.3
: = M 100.4
: = M 100.5
: = M 100.6
: = M 100.7

15-8
10.1
I 0.2
I 0.3
SR 14 Q7

= M 101.0
= M 101.1
= M 101.2
= M 101.3
= M 101.4

= M 101.5
= M 101.6
= M 101.7

Pulse forward
Pulse reverse
Reset
Data input forward
Data input reverse
Shift register output

Shift register output

Pulse forward
Pulse reverse
Reset
Data input

Shift register output

•

Shift register output

6-48 4/94AWB27-1186-GB Klockner-Moeller

Function Blocks SR
Shift register

Bit

The coupling of two bit-shift registers of 8 steps each to
form one register of double bit length (16 steps).

(In order to simplify the diagram, two eight-bit registers
have been connected together in the example. In
practice shift register 14 would have been pre-selected
from the outset as a 16-step register.)

Klockner-Moeller 4/94 AWB 27-1186-GB 6-49

SRB Function Blocks
Shift Register

Byte

Syntax Call-up:
SRB < Block No. > - < Register length > - R

- R only if retentive operation is required.

As operand:

SRB < Block No. > u < Input/output >

Register length: Optional 1...128

Performance t ime: typ. : 148 \is + (n-1) x 20 \ns

n = register length

Representation IL
SRB 54-13-R
[] U:
[] D:
[] R:
[] IU:
[] ID:
[] 0.0:

Pulse input forward
Pulse input reverse
Reset
Data input forward
Date input reverse
Output 0

[] Q27: Q (n-1) Last output
t— Register length

Truth table
Inputs
Type
Function

Shift, forward
Shift, reverse
Delete

U
Bit

_r
0

X

D
Bit

0
_r
X

R
Bit

0
0
1

IU
Byte

Value
X

X

ID
Byte

X

Value
X

6-50 4/94AWB27-1186-GB Klockner-Moeller

Function Blocks
Shift Register

SRB

Byte

Description When the rising edge is at the "U" input, the value of the
"IU" input is entered in the first register field after all
other register fields have been shifted in the positive
direction by one step.

ID
X

7
019

6
255

5
035

4
095

3
122

2
023

1
082

0
003

IU
102

D

ID
X

7
255

6
035

5
095

<

4
122

3
023

Shift direction

2
082

1
003

0
102-

U

IU

Byte shift register eight steps long; one forward pulse and acceptance of an input byte
from IU.

A rising edge at the D input causes the entry of the "ID"
value into the last register field after the contents of all
other register fields have been shifted in the negative
direction by one step.

ID
007

7 6 5 4 3 2 1 0
255 035 095 122 023 I 082 003 102

D

ID

Shift direction

7
007

6
255

5
035

4
095

3
122

2
023

1
082

0
003

U

IU
X

Byte shift register eight steps long; one reverse pulse and acceptance of a byte from ID
into the last register field.

The contents of all the register fields are externally
displayed via the Q outputs. When the "R" input is High,
the shift register is reset to the initial state, and all
register fields are cleared. If there is a rising edge at U
and D simultaneously the forward shift is carried out
before the reverse shift.

The register length is limited to 128 register fields. If
longer shift registers are required, several registers can
be coupled (see SR bit shift register).

Klockner-Moeller 4/94 AWB 27-1186-GB 6-51

SRW Function Blocks
Shift register

Word

Syntax Call-up:
SRW < Block No. > - < Register length > - R

- R only if retentive operation is required.

A s o p e r a n d :
SRW < Block No. >u< Input/output >

Register length: Optional 1...128

Performance time: typ.: 158 LIS + (n-1) x 65 LIS
n = register length

Representation IL
SRW115-R
[]
[]
[]
[W]
[W]
[W]

[W]

U:
D:
R:
IU:
ID:
QO:

Q114: Q(n

Pulse input forward
Pulse input reverse
Reset
Data input forward
Data input reverse
Output 0

-1) Last output
— Register length

Truth table
Inputs
Type
Function

Shift, forward
Shift, reverse
Delete

U
Bit

_r
0
X

D
Bit

0
_ r
X

R
Bit

0
0
1

IU
Word

Value
X

X

ID
Word

X

Value
X

6-52 4/94 AWB 27-1186-GB Klockner-Moeller

Function Blocks
Shift Register

SRW

Word

Description When the rising edge is at the "U" input, the value of the
"IU" input is entered in the first register field after all
other register fields have been shifted in the positive
direction by one step.

D

ID
X

D

7
00197

6
0255

5 4 3 2 1 0
18367 00023 12987 00292 09688 00023

Shift direction
•*

U

IU
13657

U

ID
X

7
02555

6
18367

5
00023

4 3
12987 00292

2
09688

1
00023

Word shift register eight steps long; one forward pulse and acceptance of an input word
from IU.

A rising edge at the D input causes the entry of the "ID"
value into the last register field after the contents of all
other register fields have been shifted in the negative
direction by one step.

D

ID
00984

D

7
02555

6
18367

5
00023

4
12987

3
00292

2
09688

1
00023

0
13657

Shift directio l
•

U

IU
X

U

7
»(00984

6
02555

5
18367

4
00023

3
12987

2
00292 09688

0
00023

Word shift register eight steps long; one reverse pulse and acceptance of a word from ID
into the last register field.

The contents of all register fields are externally displayed
via the Q outputs. When the "R" input is High, the shift
register is reset into the initial state, and all the register
fields are deleted. If there is a rising edge at U and D
simultaneously the forward shift is carried out before the
reverse shift.

The register length is limited to 128 register fields.
Several shift registers can be coupled, if more shift steps
are required.

Klockner-Moeller 4/94 AWB 27-1186-GB 6-53

TALARM Function Blocks
Time Alarm Function Block
Timer Alarm

Syntax Call-up:
TALARM 0

Execution time: 20 îs without subprogram (SP)
240 jxs + SP time with subprogram

Representation IL

[1
[B]
[W]
[W]
[B]
[W]
[$]

EN
MOD
VT
SOLL
ERR
CNT
AC

Enable/disable interrupt (0 = disable, 1 = enable)
Mode 1 = timer, mode 2 = signal generator
(Predivider) signal length
Set number of signals
Error output
Alarm counter (number of module call-ups)
Address of subprogram which is to be called up

Description The EN input controls the start of the function block. If
this input is 1, the function block is started, the
subprogram address, the VT and SOLL are accepted
and temporarily stored. CNT is reset. The function block
is stopped and reset when switching from 1 to 0.

The function block is a timer in the operating mode
MOD = 1. The time is then defined in |is by the VT input.
SOLL defines the setpoint value of the timer. After the
set number of signals has been completely processed,
the CNT counter is increased and, if required, a
subprogram is called up via $AC.

The ERR output contains the code of the errors:
0 = no error
1 = SOLL = 0
2 = VT less than 512
3 = MOD may only be 1 or 2

In the operating mode MOD = 2 the function block is a
signal generator which is connected with the Q 0.0
hardware output of the basic unit (PS 4-201-MM1). The
VT input then defines the signal length/time base in u.s.
SOLL defines the half of the set number of signals (=
sum of rising and falling edge) on Q 0.0. QP 0.0 is output
completely and CNT counts how often SOLL has been
reached.

6-54 4/94 AWES 27-1186-GES Klockner-Moel ler

Function Blocks TALARM
Time Alarm Function Block
Timer Alarm

The ERR output contains the code of errors:

0 = no error
1 = SOLL = 0
2 = VT less than 512
3 = MOD may only be 1 or 2

The AC input allows an event-driven program to be
implemented. For this it is necessary to define the
address ($ name) of the subprogram that is to be
executed when reaching the event. If no address is
stated, only the CNT counter is incremented.

The following points must be observed for the event-
driven program:

- After the event has occurred, the user program is
interrupted, the register status is saved and the
subprogram stated under the AC address is executed.
The alarm function block cannot be interrupted by
other alarm function blocks (all alarm function blocks
have the same priority).

- The max. execution time of alarm function blocks is
restricted by the user program to 5 ms (approx. 1K IL
instructions) since the alarm function blocks cannot
be interrupted even by the operating system in the
event of a voltage drop. If the execution time is
exceeded, an EDC error may occur when switching
off the power supply.

- The execution time of the alarm function block is
added to the execution time of the cyclical user
program and also monitored by the cycle time
monitoring function.

- Since the event-driven program processing enables
access to the entire image register, access to data
that is used by the event-controlled and cyclical user
program must be disabled. Bit accesses may not
occur on the same byte in the cyclical user program
and in the Alarm function block.

Klockner-Moeller 4/94 AWB 27-1186-GB 6-55

TALARM Function Blocks
Time Alarm Function Block
Timer Alarm

Description - Since an Alarm function block requires, due to its fast
reaction, a high-speed peripheral access (direct
output), the QB, QPB peripheral operands available in
the basic unit should be used.

- An alarm function block can be used several times
(multiple instantiation) although this should normally
be avoided since each function block group has the
same event source (hardware input I 0.0.0.0.0) and
only the last function block instance in the program is
valid.

- By multiple instantiation is meant the reservation of
several data ranges for each parameter set of a
particular function block type.

6-56 4/94AWB27-1186-GB Klockner-Moeller

Function Blocks TALARM
Time Alarm Function Block
Timer Alarm

Example The following example shows the call-up of the timer
alarm function block as a signal generator (MOD = 2).
The time/signal length is 1 ms (VT = 1000). The output on
Q 0.0 is shown below (a total of 50 signals are output):

QO.O

1 ms 1 ms

1 ms

Printout of the c:tala.q42 file Dated: 7. 4. 94

00000
001
002
003
00001
001
002
003
004
005
006
007
008
009
010
00002
001
002

BLOCK0 "Incorporate configuration file

#include "config.k42"

BL0CK1 "Call-up the timer alarm function block

TALARM0
[] EN: I 0.3 Set function block
[b] MOD: KB 2
[w] VT:KW1000
[w] SOU: KW 100
[b] ERR:MB25
[w] CNT:MW12
[$] AC:

END "End of program

EP

Klockner-Moeller 4/94 AWB 27-1186-GB 6-57

TF Function Blocks
Off-delayed Timer

Syntax

*

Representation

Call-up:
TF < Block No. > - R

- R only if retentive operation is required.

As operand:

TF < Block No.

Time ranges:

>

Performance t ime:

Basic t ime:

IL
TF 7-ms-R
[] S:
[] R:
[] STOP:
[W] 1:
[] EQ:
[W] Q:

< Input/output >

1...65 535 ms
10...65535 ms

300 ^s

- ms milliseconds
- s for seconds

Start and set
Reset
Interruption for timer
Set time value
Control output
Actual time value

Description

(D
S__j—i

STOP

E Q r -

(2) (3) (4) (5)

W

With the rising edge of "S" the delay factor at " I " is
accepted and the "EQ" output is set High. If the "S"
input is Low, the "EQ" output follows, delayed by the
time "T" (1).

T = delay factor x time base

6-58 4/94AWB27-1186-GB Klockner-Moeller

Function Blocks
Off-delayed Timer

TF

The set time should always be greater than the cycle
time to ensure that the delay is always detected. The
output "Q" shows the time elapsed in units of the
selected time base.

The time count can be interrupted via an "H" signal at
the "STOP" input; i.e. the delay time "T" is extended by
the time for which the "STOP" input is High (2), (3).

The EQ output only follows the S output if the STOP
input is Low (4), (5), when the set input is High.

The timer is reset into the initial state if the "R" input is
High.

Example The timer 56 is to indicate the dropping-out of input 10.2
- delayed by the time constant T = 50 000 - to the
output Q 0.3 In order to enter values greater than 32 767,
calculate the corresponding HEX or signed value. It
should be possible to stop the measurement of the
delay time via I 0.3 if there is an external event. The
elapsed time is indicated via the marker word MW 10.
The delay time in progress must be continued even after
a power loss, or after switching off the system and
subsequent restarting. The timer therefore has to be
retentive.

The program:

Option

TF 56-S-l
S:
R:
STOP:
I:
EQ:
0:

1

1
10.2

10.3
KW-1
Q0.3
MW10

Option

TF 56-S-l
S:
R:
STOP
I:
EQ:
Q:

2

1
10.2

10.3
KHW C350
Q0.3
MW10

Klockner-Moel ler 4 /94 AWB 27-1186-GB 6-59

TGEN Function Blocks
Generator Function Block

Syntax Call-up:
TGEN < Block No. >

As operand:

TGEN < Block No. >u< Input/output >

Cycle time: 2 x 1 ...2 x 65535 ms

Performance time: 50 \iS

Time base: ms, no specification required

Representation IL
TGEN 63
[] S:
[W] I:
[] P:

Start and set
Period T
Pulse output

Description When the "S" input is High, the period in milliseconds, at
the " I " input, is transferred. The "P" output generates
pulses with a pulse/pause ratio of 1:1 for as long as the
"S" input carries a "H" signal.

The time period should always be at least twice the
cycle time so that the High and Low signals can be
recognized clearly.

If the time period at the " I " input is changed, a rising
edge must be generated at the "S" input in order that
the new value can be accepted.

6-60 4/94 AWB 27-1186-GB Klockner-Moeller

Function Blocks
Pulse Transmitter

TP

Syntax Call-up:
TP<Block N o . > - R

- R only if retentive operation is required.

As operand:

TP < Block No. >u< Input/output >

Time range: 1 ...65535 ms

Performance time: 300 \is

Basic time: ms, no specification required

Representation IL
TP5-R

[W]
[]
[W]

S:
R:
I:
P:
0:

Start and set
Reset
Pulse time
Pulse output T
Actual time value

<T

Description When the rising edge is at the "S" input, the "P" output-
is set High, and the pulse time at the " I " input (always hV
milliseconds) is transmitted. Irrespective of the status of
the "S" input the "P" output remains High for the
duration of the pulse, and then goes back to Low.

The set time should always be greater than the cycle
time so that the pulse can be recognized clearly.

The Q output indicates the running time in milliseconds.

The timer can be reset to the initial state with a High
signal at the "R" input.

Klockner-Moeller 4/94 AWB 27-1186-GB 6-61

TR Function Blocks
On-Delayed Timer

Syntax Call-up:
TR < Block No. > - R

- R only with retentive operation.

As operand:

TR < Block No. >u< Input/output >

Time ranges: 1...65 535 ms

1...65 535 s

Performance time: 300 \is

Basic time: - ms for milliseconds
- s for seconds

Representation IL
TR 7-s-R
[] S:
[] R:
[] STOP:
[W] I:
[] EQ:
[W] Q:

Start und set
Reset
Interruption of timer
Set time value
Control output
Actual time value

Description

(1)
S _ j L_
R

STOP

EQ : J w : n
i T i

(2)

i I I

! : n
I :

TS T O P | |

' T + T S T O P :

(3)

I I

I I

(4)

I—I

c

(5)

I I

J L_

: :
i n
; T :

The delay factor at " I " is accepted with the rising edge at
the "S" input and the "EQ" output is set to the "H" level,
delayed by the time "T"

T = delay factor x time base

The set time should always be greater than the cycle
time to ensure that the delay is always detected.

The output "Q" indicates the time elapsed in units of the
selected time base.

6-62 4/94 AWB 27-1186-GB Klockner-Moeller

Function Blocks TR
On-Delayed Timer

The time count can be interrupted by setting the "STOP"
input High; i.e. the delay time "T" is extended by the
time for which the "STOP" input is High (2).

The STOP input should only be set in the time between
the setting of the S input and that of the EQ output. If
the STOP input is already High when the S input is reset
(3) or set (4), the EQ output will respond as shown in the
signal diagram.

The timer can be reset to the initial state with a "H"
signal at the R input.

If the R input is set from 0 to 1 while the S input is High,
the EQ output will be set with a delay (5).

Example After a time delay of T ms, the timer 12 is to transmit a
signal received from I 0.3 to the Q 0.3. The time T is
variable and is obtained by adding to the basic time of
200 ms (KW 200), a time determined by the process,
which is contained in MW 28.

The program

10.3 S

KW200

MW28

KW200 + MW28 I

Q 0.3 EQ

X
X

X

I

200
I

48
I

248
[

I
- I —

I
I T

TR 12-ms
S: 10.3
R:
STOP:
I: LKW200

ADD MW 28
EQ: Q0.3
Q:

~L_

X x X xi

X x X xi

n
= 248 ms I

I l

200
I

X 150
I

X 350
I
I
I
I
I

Input signal

Constant basic time
Variable time ratio
Output signal

X x

X x

r
T = 350 ms i

X

X

X

Klockner-Moeller 4/94 AWB 27-1186-GB 6-63

6-64 4/94 AWB 27-1186-GB Klockner-Moeller

7 SK Function Block

Sequential Control Function Block

Contents

Basic principles of sequential control
programming 7-3
- Applications 7-3
- Graphical symbols 7-4
- Application example 7-7
- Elementary sequence control 7-10

Description of function block 7-13
- Syntax 7-13
- Representation 7-13
- Description 7-14

Program sequence with the sequential
control function block 7-17
- Initialisation 7-17
- Processing 7-19
- Status indication 7-22

Program examples 7-25
- Linear sequence 7-25
- OR sequence 7-28
- AND sequence with synchronisation 7-31

Klockner-Moeller 4/94 AWB 27-1186-GB 7-1

7-2 4/94 AWB 27-1186-GB Klockner-Moeller

SK Function Block

Basic Principles of Sequential Control

Applications Process-dependent or time-dependent sequential
control enables various tasks that are stored in different
programs to be executed in a particular order. These
tasks are executed step by step, according to the logical
structure of the sequence control. The sequential control
function block provides a user-friendly solution for
implementing this structure in the user program.

The program of every step is a self-contained unit. This
means that a self-maintaining function or an interlock do
not need to be programmed as well. The SK (sequential
control) function block handles the management of the
step sequence.

A step sequence ensures that a step is only activated if
the previous step has been deactivated. This allows
complex sequences to be programmed simply and
clearly.

The currently active steps are always indicated, thus
simplifying error diagnostics.

The advantages of the sequential control function block
are:

- clear structuring of complex sequences
- reduced work load; self-maintaining functions and

step interlocks need not be programmed
- simple set and reset features of steps
- modifications to the sequential control function block

are possible without any problems
- simple error diagnostics by program indication of the

active step
- fast step sequence processing, unlike jump

destination list

Klockner-Moeller 4/94 AWB 27-1186-GB 7-3

SK Function Block

Basic Principles of Sequential Control

Applications The sequential control function block furthermore
provides a large number of possibilities for nesting, thus
allowing for the creation of highly flexible step
sequences with a range of functions far beyond the
normal range.

Graphical symbols Sequential control programming allows sequences to be
shown graphically or as a structure.

The symbols used here comply with DIN 40 719 Part 6
(corresponding to IEC 3B (sec) 49).

The start or initial step defines the basic or initial
position, containing the start and reset conditions at the
beginning of the process. The initial step is always
shown in a double frame.

Steps are numbered consecutively, and each step is
assigned one or several actions. Only when the step is
active can the corresponding actions be carried out.

An essential feature of the step sequence is that only
one step is active whilst all the others are ignored. The
program works in the current step until the appropriate
transition (step condition) has been fulfilled. Only then
can the program continue processing in the next step.

7-4 4/94AWB27-1186-GB Klockner-Moeller

SK Function Block

Basic Principles of Sequential Control

Representation
of the SK

Symbol Name

»

2 3 Action

0

1

+
1

L i
3 Action

Initial step

Transition or step condition

Step

Alternative branch
(OR sequence)

Step with action

Simultaneous branch
(AND sequence)

Synchronisation

Klockner-Moeller 4/94 AWB 27-1186-GB 7-5

SK Function Block

Basic Principles of Sequential Control

Graphical symbols

Cyclical
processing

Active step

Transition

Figure 7-1: Cyclical processing of the step sequence

With alternative branches (OR sequences), only one of
the subsequent steps programmed in parallel can be
executed. Alternative branches are indicated by a single
horizontal line.

With simultaneous branches (AND sequences) several
parallel branches can be processed at the same time.
These branches are indicated by a double horizontal
line. A simultaneous branch is synchronised.

The synchronisation ensures that the following transition
is not processed until the last steps of all parallel
branches are active.

7-6 4/94AWB27-1186-GB Klockner-Moeller

SK Function Block

Basic Principles of Sequential Control

Application
example

The following example of a paint filling plant is used to
illustrate the procedures involved in sequential control
programming.

Figure 7-2: Paint filling plant

Klockner-Moeller 4/94 AWB 27-1186-GB 7-7

SK Function Block

Basic Principles of Sequential Control

Application example The conveyor belt is switched on by pressing a button.
The paint can reaches the light barrier after a period of
time. The conveyor belt then stops and the paint filling
valve is opened. Once the required filling quantity has
been reached, the valve is reclosed. After the
"Flow = 0?" check, the paint can is transported further.

The individual working steps are programmed in the
following order:

- Press start button
- Conveyor belt motor running
- Paint can reaches light barrier
- Switch off conveyor belt
- Open valve
- Measuring filling volume
- Close valve
- Check flow
- Switch on conveyor belt motor

7-8 4/94 AWB 27-1186-GB Klockner-Moeller

SK Function Block

Basic Principles of Sequential Control

This example therefore produces the fol lowing step

sequence:

Start button on?

1 Conveyor belt motor on

Light barrier reached 7

2 Conveyor belt off/Valve open

Filling quantity reached?

3 Valve closed

Flow = 0?

4 Conveyor belt on

Figure 7-3: Step sequence for a filling plant

Klockner-Moeller 4/94 AWB 27-1186-GB 7-9

SK Function Block

Basic Principles of Sequential Control

Elementary Linear sequence
sequence control

1

2

3

The sequence passes from step S1 via transition T1 to
step S2 and via transition T2 to step S3.

When T1 is enabled, i.e. when the transition condition for
T1 is fulfilled, step S1 is deactivated whilst step S2 is
activated. After step S2 has been processed, T2 is also
enabled. Step S2 is then deactivated and step S3
activated.

The individual steps are always separated by transitions.

7-10 4/94AWB27-1186-GB Klockner-Moeller

SK Function Block

Basic Principles of Sequential Control

OR step sequence
(Alternative branch)

Branch 1

T1

Branch 2

12

Branch 3

- T3

T4 T5 - T6

After step S1 has been deactivated, either step S2, step
S3 or step S4 is activated, depending on whether T1, T2
or T3 is enabled. If more than one transition condition is
fulfilled, the transition that is located nearest to the left is
enabled first.

Step S5 is activated if one of the preceding transitions
T4, T5 or T6 is enabled.

Klockner-Moeller 4/94 AWB 27-1186-GB 7-11

SK Function Block

Basic Principles of Sequential Control

Elementary

sequence control

AND step sequence

(Simultaneous branch wi th synchronization)

l i

Branch 1 Branch 2

— T2

- T3

When T1 is enabled, step S1 is deact ivated. Step S2 and

step S3 are activated at the same t ime.

When T2 is enabled, step S3 is deact ivated and step S4

is act ivated. The branches are executed separately.

The convergence of a simultaneous branch is

synchronized.

The validity of T3 is not checked until s tep S2, step S3

and step S4 have been executed. If T3 is enabled, the

preceding steps are deact ivated whilst step S5 is

act ivated.

7-12 4/94AWB27-1186-GB Klockner-Moeller

SK Function Block

Description of Function Block

Syntax

Representation

Call-up:
SK Function block no.> - (No. of steps) - R
(R only if retentive function is required)

As operand:
SK <Function block no.> <lnput/Output>

Function block nc

Number of steps

Nesting depth:
(Cascading)

Execution time:
With Set = Reset = 0
With Reset = 1
With Set = 1
With invalid SINO

AWL
S K 3 - 1 4

[] S:

[] R:
[b] SINO:
[b] ERR:
[b] SQNO:

[] TG:
[$] INm
[$] AC1:
[$] AC2:
[S] AC3:

S
R
SINO
ERR
SQNO
TG
INIT
AC1
AC2
AC3

rhe number of the function block
tie memory size of the PS 4 200 i

I...99

3

approx. 130 us
approx. 240 us
approx. 250 us
approx. 150 us

Set
Reset
Step number
Error output
Step number indication
Step change indication
Step call-up after reset
Name of subprogram for Step 1
Name of subprogram for Step 2
Name of subprogram for Step 3

AC14 AC14 Name of subprogram for Step 3

Klockner-Moeller 4/94 AWB 27-1186-GB 7-13

SK Function Block

Description of Function Block

Description User programs can be structured simply and clearly
through the use of sequential control function blocks.

Each SK function block can activate up to 99 steps. A
step can itself also activate another step sequence. The
maximum nesting depth possible is 8. The individual
steps are created by subprograms which in turn contain
actions to be executed. The necessary transition (step
condition) must be programmed in between the end of
one step and the beginning of another. Steps can be
executed in succession, in parallel or in a particular
order, thus allowing very complex sequences to be
formed according to the requirements of the application
at hand.

The inputs and outputs of the function block have the
following meaning:

S Set
Set activates the sequential control function block

R Reset
Reset deactivates the sequential control function block
and activates the initialisation program at the INIT input

SINO Step Input No.
The SINO input defines the number of the current step

ERR Error
Indication of error states

SQNO Step Output
Number

The SQNO output indicates the number of the current
step

7-14 4/94 AWB 27-1186-GB Klockner-Moeller

SK Function Block

Description of Function Block

TG Toggle
The TG output indicates the change to another step. In
normal operation this output has the signal 1. Only in the
first cycle after a transition does the TG output go to 0.

INIT Initialisation
Name of initialisation subprogram run when Reset is
active.
Example: "$INIT"

A C . Action
Name of the current step subprogram.
Example: "$STEP1"

Klockner-Moeller 4/94 AWB 27-1186-GB 7-15

7-16 4/94 AWB 27-1186-GB Klockner-Moeller

SK Function Block
Program Sequence
with the SK Function Block

The function of the sequential control function block and
the linear sequencing of the steps always consist of the
following elements:

1. Initialization of the SK function block
2. Processing of the SK function block
3. Status indication of the function block

Initialisation The SINO input specifies which step is to be processeq^
Before the step sequence is called up for the first time,
this input must be assigned with the number of the first
step to be processed.

The initialisation is best carried out by the INIT
subprogram which stays active as long as the Reset
input = 1.

The operand INBO.O (flag for identifying the first cycle
after a Reset or Pushbutton reset) can be used to start
an initialisation automatically. The Reset input is set to 1
in the first cycle after the program start.

The INIT program assigns the number of the first step to
the SINO input.

Klockner-Moeller 4/94 AWB 27-1186-GB 7-17

SK Function Block
Program Sequence
with the SK Function Block

Initialisation Program example: Initialisation

SKO
S:
R:
SINO:
ERR:
SQNO:
TG:
INIT:
AC1:
AC2:
EP

2
K 1
INB 0.0

SINIT
SSTEP1
SSTEP2

SINrr "Initialisation of the function block
"Start step 1:
L K B 1
= SKO SINO
EM

SSTEP1 "Step 1

EM

SSTEP2 "Step 2

KM

This ensures that the SK function block knows the
number of the first step to be processed directly after
the program is started. The step subprogram of the
SINO input is then changed. The logical sequence of the
PLC user program can therefore be programmed simply.

7-18 4/94AWB27-1186-GB Klockner-Moeller

SK Function Block
Program Sequence
with the SK Function Block

Processing To activate the function block, the Set input must be 1.
This simultaneously activates the step defined at the
SINO input. If both S and R inputs are 1 at the same
time, only the initialisation subprogram is executed.

In the following examples, the S input is permanently set
to 1. The variables T1 and T2 are freely definable
transitions.

Several actions can be carried out in the subprogram.
They remain active until the transition at the end of the
subprogram has been fulfilled. Once the transition is
fulfilled, the SINO input is assigned the number of the
next step to be processed.

In the following cycle the new step is automatically
activated and the old step deactivated.

Klockner-Moeller 4/94 AWB 27-1186-GB 7-19

SK Function Block
Program Sequence
with the SK Function Block

Processing Program example: check transition

SKO-
S:
R:
SINO:
ERR:
SQNO
TG:
INIT:
AC1:
AC2:

<
K1
INB 0.0

$INIT
SSTEP1
SSTEP2

SINIT

EP

"Initialisation of the function block

$STEP1

EM

"Step 1
1st action
2nd action

END

SSTEP2

"Check transition
L 'T1 Transition 1
JCN END
"Start step 2
LKB2
= SKO SINO

EM

"Step 2
1st action
2nd action

END

"Check transition
L T2 Transition 2
JCN END
"Start step 3
LKB3
= SKO SINO

CM

7-20 4/94 AWB 27-1186-GB Klockner-Moeller

SK Function Block
Program Sequence
with the SK Function Block

Once a step subprogram has been completed, the user
program directly following the sequential control
function block is continued, irrespective of whether the
transition is fulfilled or not. If the transition is fulfilled, the
resulting step change will be carried out in the next
cycle. If the transition is not fulfilled, the same step will
remain active.

Cyclical
processsing

A

V
I
I
I

I Instructions

Sequential
control
function
block

IL instructions

EP

$ <INfT>
Initialisation
subprogram must
be executed once
before the SK
function block can
be processed

$ <name>
Step 1

$ <name>
Step 2

Figure 7-4: Processing of the sequential control function block within the user
program

Klockner-Moeller 4/94 A W B 27-1186-GB 7-21

SK Function Block
Program Sequence
with the SK Function Block

Status indication Various status signals are provided for monitoring the
sequential control function block.

ERR output

This output shows malfunctions in the processing of the
input data.

Table 7-1: Error signals at the ERR output

Error number:

binary:
00000001
or decimal: 1

binary:
00000010
or decimal: 2

binary:
00000100
or decimal: 4

Error cause:

SINO input = 0
(S=1)

Step number exceeds
max. possible step
no.

No subprogram on
selected AC output

Error behaviour:

SK not active. No step being
processed.

Error output set. Function block
stays in current state.

Error output is set. The
selected step is accepted. No
instructions are executed since
there is also no action
program.

SQNO output

The SQNO output (step output number) indicates the
number of the current step. If this output indicates the
value 3, the 3rd step has been selected. With 5, the 5th
step has been selected.

The value 0 indicates the initialisation subprogram.

7-22 4/94AWB27-1186-GB Klockner-Moeller

SK Function Block
Program Sequence
with the SK Function Block

TG output

The toggle output indicates the change from one step to
the other. The toggle output is 1 for as long as a step is
still active. Only in the first cycle after the change to a
new step is the TG output 0.

1st step

TG

2nd step

1st cycle 1st cycle

Figure 7-5: Step change indication on TG output

The TG output can be used to initialise individual steps.

For example, it can be used to implement a time
monitoring function. If an operation is too long because
either the limit switch has not been reached or there is
an electrical fault, a fault indication signal can be output.

Klockner-Moeller 4/94 AWB 27-1186-GB 7-23

SK Function Block
Program Sequence
with the SK Function Block

Status indication The TG output pulse is used to start a timer.

Step change
— •

TG

-> Start timer

Start timer

"Start timer
TR 10-S
[] S
[]R
[]ST0P
[W]l
[]EQ
[WjQ
"Scan timer
L TR 10 EQ
JC Stoer

SKOTG

LKW3

Figure 7-56: Program example using the step change indication

If three seconds expire after the timer was set, the timer
monitoring function initiates a troubleshooting function
in the program.

INIT/AC output

The I NIT and AC outputs are 1 if the appropriate
subprograms are active. They cannot be scanned as
operands but only be shown in the Status display menu.

7-24 4/94 AWB 27-1186-GB Klockner-Moeller

SK Function Block

Program Examples

Be sure to use meaningful block labels in your user
program to facilitate programming and the legibility of
the program.

The following program examples show some typical
applications using the sequential control function block.
These examples use the bottling plant as the basic
application.

Linear step Once the plant is switched on, the controller is in the
sequence Wait state. The individual steps are not carried out until

the start button has been pressed. The program returns
to step 2 "Conveyor belt motor On" from step 4 "Close
valve".

Klockner-Moeller 4/94 AWB 27-1186-GB 7-25

SK Function Block

Program Examples

L inear s t e p

s e q u e n c e

1 •

1 Wait state

Start button pressed?

2 Conveyor belt motor on

Light barrier reached?

3 Conveyor belt motor off/Valve open

Filling quantity reached?

4 Close valve

Flow rate = 0?

Figure 7-7: Linear step sequence

Program example: linear step sequence

"Linear step sequence
SKO-4
S: K1
R: INB 0.0
SINO:
ERR:
SQNO:
TG:

$INIT
SSTART
$M0T_0N
$MOT_OFF
$VALV_0FF

INIT:
AC1
AC2
AC3
AC4
EP

7-26 4/94AWB27-1186-GB Klockner-Moeller

SK Function Block

Program Examples

$INIT "Initialisation of the function block
"Start first step
LKB1
= SKO SINO
EM

$START "Start conditions
"Start button pressed?
L 'START Start button
JCN END
LKB2
= SKO SINO

END
EM

$M0T_0N "Conveyor belt motor
L K 1

= 'MOTOR
"Light barrier reached?
L 1IGHTBAR
JCN END
LKB3
= SKO SINO

END
EM

$MOT_OFF "Conveyor belt motor off,
valve off
LKO
= 'MOTOR
L K 1
= 'VALVE
"Filling volume reached?
L 'FILLQUAN
JCN END
LKB4
= SKO SINO

END
EM

Conveyor belt motor

Light barrier

1st action
Conveyor belt motor

2nd action
Filling valve

Filling quantity

Klockner-Moel ler 4 /94 AWB 27-1186-GB 7-27

SK Function Block

Program Examples

Linear s tep
sequences

$VAW_0FF

END

"Valve off
LKO
= 'VALVE
"Flow = 0?
L 'FLOW
JCN END
L K B 2
= SKO SINO

Filling valve

Flow

F.M

OR step sequence The paint fil l ing plant is p rog rammed to fill either red or
blue paint. A toggle sw i tch selects either the red or blue
paint containers.

Tl

T?

1 Stop conveyor belt

Red paint?

2 Toggle switch to red

Faint container red T4
selected?

4 Open valve

T3 — Blue paint?

3 Toggle switch to blue

Paint container blue
selected?

Figure 7-8: OR step sequence

7-28 4/94 AWB 27-1186-GB Klockner-Moeller

SK Function Block

Program Examples

Only one SK function block is required for the OR step
sequence since only one sequence can be run.

As soon as one of the two transitions (T1 or T3) is
fulfilled, the sequence moves to the appropriate branch.
This branch can then no longer be changed, even if the
other transition was also fulfilled.

The transitions T1 and T3 are programmed at the end of
the first step ($MOT^OFF). A jump destination list is
created for this purpose.

The SINO input is then loaded with the constants 2 or 4.

Program example: OR step sequence

SKO-x

[] S :
[]R:
[b] SINC

.[b] ERR

K1
INB 0.0

):

[b] SQNO:
[] T G :
[$] INIT
[$]AC1
[$]AC2
[$]AC3
[$]AC4

$INIT
$M0T_0FF
$U_RED
$U_BLUE
$VALV_0N

EP

$INIT "Initialisation of the function block
LKB1
= SKO SINO Step sequence 0
EM

Klockner-Moeller 4/94 AWB 27-1186-GB 7-29

SK Function Block

Program Examples

OR step sequence $M0T_0FF

CONTINUE

END

$U_RED

END

$U_BLUE

END

$VALV_0N

"Motor off
LKO
= 'MOTOR
L'RED
JCN CONTINUE
LKB2
= SKO SINO
JPEND

"
L 'BLUE
JCN END
LKB3
= SKO SINO

EM

"Toggle to red
LKB1
= 'TOGG
L 'C0NT_RED
JCN END
LKB4
= SKO SINO

EM

"Toggle to blue
LKB2

= 'TOGG
L 'C0NT_BLUE
JCN END
LKB4
= SKO SINO

EM

"Valve open
L K 1
= 'VALV

Conveyor belt motor
Red paint?

Step sequence 0

Blue paint?

Step sequence 0

Paint toggle
Red paint container

Step sequence 0

Colour toggle
Blue paint container

Step sequence 0

Filling valve

LM

7-30 4/94AWB27-1186-GB Klockner-Moeller

SK Function Block

Program Examples

AND step
sequence with
synchronisation

A paint mixing system is to be implemented in which
both paints are to be filled simultaneously through two
different valves. The metering is variable according to
the colour mix required.

1 Stop conveyor belt

T1

M

Conveyor belt stopped?

2 Open red valve

T2 Red paint proportion T3
reached?

3 Close red valve

Flow=0?

6 Switch on conveyor belt

4

-

Open blue valve

Blue paint proportion
reached?

5 Close blue valve

Figure 7-9: AND step sequence

The entire AND step sequence is divided into several
parallel sequences. Each individual branch requires its
own step sequence control function block which is
called up by the main step sequence.

The convergence of the parallel branches is
synchronised.

Klockner-Moeller 4/94 AWB 27-1186-GB 7-31

SK Function Block

Program Examples

AND step sequence
with synchronisation

A check is made whether the two parallel branches are
in their last step, before the transition to the next step of
the central step sequence is made.

r

SKI

~i

SK2

SK1 and SK2 form
Step two of SK 0

Figure 7-10: Example of a nested AND step sequence

7-32 4/94 AWE* 27-1186-GB Klockner-Moeller

SK Function Block

Program Examples

Program example: AND step sequence

SKO -x Step sequence 0
[] S: K 1
[] R : INBO.O
[b] SINO:
[b] ERR:
[b] SQNO:
[] T G :
[$] INIT: SINIT
[$]AC1: $M0T_0FF
[$] AC2: $MIX
[$] AC3: $M0T_0N

LP

SINIT "Initialisation of SK 0
"Start step 1 of SK 0
LKB1
= SKO SINO Step sequence 0
EM

"Belt motor off
LKO
= 'MOTOR
L 'SPEED Belt speed
BNZ END
"Move to step 2 of step sequence 0
LKB2
= SKO SINO Step sequence 0

EM

$MOT_OFF

END

Klockner-Moel ler 4/94 AWB 27-1186-GB 7-33

SK Function Block

Program Examples

AND step sequence

with synchronisation

;MIX "Mix colours
SK1 -2

MS:
[]R :
[b] SINO:
[b] ERR:
[b] SQNO
[] T G :
[$] INIT:
[$]AC1:
[$] AC2:

SK2-2

[] S :

[I ft
[b] SINO:
[b] ERR:
[b] SQNO
[]TG:
[S] INIT:
[$]AC1:
[$] AC2:

K1
N SKO TG

SINIT1
$RED_0N
$RED_0FF

K1
N SKO TG

SINIT2

$BL_0N
SBLOFF

Step sequence 1

Step sequence 0

Step sequence 2

Step sequence 0

"Synchronisation
"Step sequence 1 already finished?
L SK1 SQNO Step sequence 1
CPKB2
BNE END
"Step sequence 2 already finished?
L SK2 SQNO Step sequence 2
CPKB2
BNE END

END

"Volume flow=0?
L 'FLOW
JCN END

Volume flow

"Start step sequence 0 step 3
LKB3
=SK0 SINO Sequence 0

7-34 4/94 AWB 27-1186-GB Klockner-Moeller

SK Function Block

Program Examples

$M0T_0N "Motor on
L K 1
= 'MOTOR Coneveyor belt motor

EM

SINIT1 "Initialisation of function block 1
"Start step 1 of step sequence 1
LKB1
= SK1 SINO Step sequence 1
EM

SREDJDN "Open valve for red paint
L K 1
= 'V_RED Valve for red paint
L 'R_PR0P Red proportion
JCN END
"Start step sequence 1, step 2
LKB2
= SK1 SINO Step sequence 1

END

END

EM

$RED_0FF "Close valve for red paint
LKO
= 'V_RED Valve for red paint
EM

SINIT2 "Initialisation of function block 2
"Start step 1 of sequence 2
LKB1
= SK2 SINO Step sequence 2
EM

$BL ON "Open valve for blue paint
L K 1
= 'V_BLUE Valve for blue paint
L 'R_PR0P Blue proportion
JCN END
"Start step sequence 2, step 2
LKB2
= SK2 SINO Step sequence 2

LM

$BL0FF "Close valve for blue paint
LKO
= 'V_BLUE Close valve for blue paint
EM

Klockner-Moel ler 4 /94 A W B 27-1186-GB 7-35

7-36 4/94 AWB 27-1186-GB Klockner-Moeller

8 Indirect Addressing

Contents

General 8-3
- Areas of application 8-3
- Basic principles 8-3
- Definition: indirect addressing 8-4
- Operands 8-6

Block transfer and block comparison 8-7
- Block transfer copy mode 8-7
- Block transfer initialize mode 8-8
- Block comparison compare mode 8-9
- Block comparison search mode 8-10

Working with ICPY and ICP 8-11
- Block transfer 8-13
- Block comparison 8-16

Working with the "&" address operator 8-21

Application examples 8-23

Test functions 8-27

- Status indication 8-27

Klockner-Moeller 4/94 AWB 27-1186-GB 8-1

I

8-2 4/94 AWB 27-1186-GB Klockner-Moeller

Indirect Addressing

General

Areas of This manual describes the indirect addressing of
application operands and the functions Block transfer and Block

comparison. These functions are realized by the function
blocks ICPY (transfer) and ICP (comparison) which are
described in detail on the following pages.

The block transfer and block comparison function
blocks are used for indirect addressing and enable copy,
compare and search functions to be carried out. The
programming advantages over direct addressing
provided by these function blocks are:

- Reduction in memory requirements in the user
memory

- Reduction in write operations
- Greater program transparency

The indirect addressing principle can also be used for
the function blocks RDAT, SDAT and SCK.

The number of the function blocks to be used is not
limited. A limit is only given by the capacity of the user
memory. Theoretically, the upper limit of function blocks
is 65535.

Basic principles Direct addressing is the most frequently used
addressing method with programmable controllers. With
this method, the address of the required data is
specified directly so that, for example, the instruction
L MW 234 causes the data that is to be loaded to be
accessed directly from address MW 234. In comparison
to indirect addressing, this method ensures greater data
handling safety in all operations.

With indirect addressing, data contained in the defined
address is interpreted as the address of the data
required for the operation concerned rather than the
actual data itself. Memory locations are therefore
processed which are not actually defined until the
program is running.

Klockner-Moeller 4/94 AWB 27-1186-GB 8-3

Indirect Addressing

General

Definition: indirect
addressing

With direct addressing, the operand is given in addition
to the operation concerned, this operand containing the
address of the data required.

Program memory

Instruction
Operation + Operand

e. g. Data memory

Data

Figure 8-1: Direct addressing

If indirect addressing is used, the address of the data
required is first stored in a cell in the memory (see
Figure 8-2).

This cell can be set, raised or lowered while the program
is running. Indirect Read or Write instructions that
access this data cell take the data stored in it as the
address of the data with which the operation is to be
carried out.

8-4 4/94 AWB 27-1186-GB Klockner-Moeller

Indirect Addressing

General

Program memory

Indirect addressing
Instruction

Operation + Operand

Data memory

Data address

Data

Figure 8-2: Indirect addressing

The contents of the operands in this case serve as a

pointer to the addresses actually required in the data

memory. This means that several different memory

locations can be accessed wi th one single instruct ion.

Only the pointer (operand containing the data address)

needs to be changed with further instructions.

Indirect addressing enables changes to be made in the

operand addresses written in the user program. This

enables operat ions that have to be carried out

repetitively with different operands to be implemented

wi th less program memory required.

Klockner-Moeller 4/94 AWB 27-1186-GB 8-5

Indirect Addressing

General

Operands The following operands can be used as address
operands:
- M Markers
- SD Communication data
- RD Communication data
- Address inputs of other function blocks

8-6 4/94 AWB 27-1186-GB Klockner-Moeller

Indirect Addressing

Block Transfer and Block Comparison

Two function blocks are used for the indirect addressing
function. These are the ICPY (indirect copy) function
block for block data transfers and the ICP function block
(indirect compare) for comparing data blocks.

Block transfer The block transfer function block features two modes
for:

- Copying data fields (see Figure 8-3)
- Initializing data fields (see Figure 8-4)

Block transfer Source
Copy mode Data ran9e '

56h
C7h
53h

Copy

56h
C7h
53h

Figure 8-3: Copy function of the block transfer function block

In the copy mode, the function block makes a copy of a
data field (in Figure 8-3 data field I) with a specified
source address and transfers it to a destination address
in the same data range or to a destination in a different
data range (in Figure 8-3 data range II). The size of the
field to be copied is optional. Between one and 255 data
values can be copied. The data format must be byte.

Destination
Data range II

Klockner-Moeller 4/94 AWB 27-1186-GB 8-7

Indirect Addressing

Block Transfer and Block Comparison

Block transfer Source Destination
Initialize mode Data ran9e' Data range II

56h Initialize

56h
56h
56h

Figure 8-4: Initialize function of the block transfer function block

When the function block is in the initialize mode, the
source is one data cell containing values that are copied
to a data field. The destination data field can contain
between one and 255 data values which must be in byte
format.

This special type of copying function is termed
initializing since one entire data field can be written with
the same data value in one operation of the funct ion
block.

The zeroing of outputs or marker ranges, for example,
can be carried out wi th the initialize funct ion.

Block comparison The block compar ison function block features two
modes for:

- Comparing data fields (see Figure 8-5)
- Searching for data values (see Figure 8-6)

8-8 4/94 AWB 27-1186-GB Klockner-Moeller

Indirect Addressing

Block Transfer and Block Comparison

Block comparison

Compare mode

1st case: Equal

Source
Data range I

56h
C7h
53h
4Ah

Compare

Destination
Data range II

56h
C7h
53h
4Ah

Result:
Data fields are equal

2nd case: Not Equal

56h
C7h
53h
4Ah

Compare

56h
C7h
54h
4Ah

Result:
Data fields not equal:
Abort compare operation
- 3rd value not equal
- Source > Destination

Figure 8-5: Compare function of the block comparison function block

Klockner-Moel ler 4 /94 AWB 27-1186-GB 8-9

Indirect Addressing

Block Transfer and Block Comparison

Block comparison
Compare mode

Block comparison
Search mode

When used in compare mode the function block checks
two data fields in order to determine differences. The
terms source and destination are used also here in the
same way as with the block transfer function block. The
source and destination data field can contain between
one and 255 data values which must be in byte format.

If a difference between the two fields is determined, the
compare operation is aborted and the function block
states whether the destination field is greater or smaller
than the source field for the first unequal value.

If, for example, a data field needs to be monitored for
any changes in its content, this function can be used to
compare the current data with that of the previous cycle.

Source
Data range 1

56h
Search

Destination
Data range II

C3h
54h
56h
56h

Result:
Found at 3rd value

Figure 8-6: Data value search using the block comparison function block

The block comparison module also enables a specified
data value to be searched for in a data field. The result is
given as the offset address for where the value can be
found. The destination data field can contain between
one and 255 data values which must be in byte format.

If a particular article, for example, needs to be searched
for in a stock management program, this function can be
used as the core of the evaluation program.

8-10 4/94 AWB 27-1186-GB Klockner-Moeller

Indirect Addressing

Working with ICP and ICPY

Only marker and communication data ranges can be
accessed by indirect addressing. The access to address
inputs of other function blocks is also permitted. The
system-internal data is protected from unintentional
accesses when the program is running.

This chapter describes how to operate the block transfer
and block comparison function block in the SUCOsoft
package.

The following brief definition of terms is given prior to
the operating instructions for the function block so as to
provide greater clarity and ease of comprehension.

The address operator "&" is used exclusively with these
indirect addressing function blocks and is placed in front
of the operand. It signifies that the operation is related to
the operand address inside the system and not to the
data of the operand as is otherwise the case.

Two data ranges have to be defined in order to use the
indirect addressing function blocks. The source range
(S) and the destination range (D) are marked, each of
these ranges being defined by two variables (see
Figure 8-7):

Klockner-Moeller 4/94 AWB 27-1186-GB 8-11

Indirect Addressing

Working with ICP and ICPY

1. The operand address SADR or DADR;
Data type: Address
in the example [&] SADR: MB 230

2. Number of elements NO:
Data type: Byte
in the example [B] NO: KB 4

[&] SADR -*
Address of the data field

(16 bits = 1 word)

Content of the data field
(8 bits = 1 byte)

MB 229

MB 230

MB 231

MB 232

MB 233

[B] NO

MB 237

Figure 8-7: Definition of a data block

The data type of the operand given under SADR must
be byte. The data type of NO is also byte.

8-12 4/94AWB27-1186-GB Klockner-Moeller

Indirect Addressing

Working with ICP and ICPY

Block transfer
syntax

Representation

Description

Call: ICPY < Function block No. > < -R >

As operand:
ICPY < Function block No. > < Input/output >
-R, if remanent data is required for the operation

Number of elements: 1...255

Execution time:
Due to the hardware structure of the PS 4 200 series the
execution time of this function block heavily depends on
the type of source and destination operands involved.

Approx. values:
MOD 0: (355 + 25 x n) \is
MOD1: (355 + 10 x n) us
n = number of elements

CPY 63
] MOD:

&] SADR:
&] DADR:
B] NO:
[B] ERR:

Inputs:
MOD

SADR

DADR

NO

Outputs:
ERR

Copy/Initialize mode
= 1 Copy data fields
= 0 Initialize data fields
Source address
Start address of source data block from which
the transfer is to begin
Destination address
Destination address to which the source data
is to be transferred or from where initializing is
to begin
Number of elements to be transferred 1-255

= 0 Data limits are permissible
= 1 NO is 0
= 2 SADR parameters incorrectly set
= 3 DADR parameters incorrectly set
= 4 SADR is the same as DADR

Klockner-Moeller 4/94 AWB 27-1186-GB 8-13

Indirect Addressing

Working with ICP and ICPY

Description The ICPY function block supports the transfer of data
blocks within the system. A transfer is always made from
a "source" to a "destination".

The following operands are valid:

Source

M
SD
RD
Address inputs

Destination

M
SD
RD
Address inputs

Data format

Byte

It is therefore not possible to write input image registers
using the block transfer function.

The function block can be used in the copy mode and
the initialize mode which are selected by setting a 1 or a
0 at the MOD input.

The differentiation between address and data is
important with this function block. With typical
operations such as L M 2.2, it is always the data that is
stored in this case in the marker cell which is accessed.
In the case of the block transfer, the source address
SADR from which the copying is to be made and the
destination address DADR must be specified. The
address operator "&" must be used here. This signifies
that the operand behind it is an address and not a data
value.

Copy mode The number of data cells specified by the NO value are
copied from the source address specified by SADR to
the destination address specified by DADR.

In the following example (see Figure 8-8) the data from
marker fields MB 23 to MB 26 is copied to marker field
MB 30 to MB 33.

8-14 4/94 AWB 27-1186-GB Klockner-Moeller

Indirect Addressing

Working with ICP and ICPY

Function block in IL: Marker f ield:

Initialize mode

Source:
Destination:

ICPYO

[] MOD: K1

| [&] SADRi&MB 23

| [&] DADR:&MB 30

IB]

NO: KB4

ERR:

MB 23

MB 24

MB 25

MB 26

MB 27

MB 28

MB 29

MB 30

MB 31

MB 32

MB 33

MB 34

Address:
7Dh

3Bh
64h

A6h

OOh
OOh
OOh
7Dh
3Rh
64h

A6h

OOh

Figure 8-8: Example of the copy mode of the ICPY function block

This involves a transfer of the data stored under address

SADR in a number of data cells specif ied by NO,

beginning with the DADR destination address.

In the fol lowing example (see also Figure 8-9) the marker

field from MB 27 to MB 32 is initialized with the data

value 7Dh which is stored in MB 23.

Function block in IL:

ICPYO
[] MOD: K0
[&] SADR:&MB 23
[&] DADR:&MB 27
[B] NO: KB6
[Bl ERR:

Marker f ield:

MB 23
MB 24
MB 25
MB 26
MB 27
MB 28
MB 29
MB 30
MB 31
MB 32
MB 33
MB 34

7Dh
OOh
OOh
OOh
7Dh
7Dh
7Dh
7Dh
7Dh
7Dh
OOh
OOh

«

Figure 8-9: Example of initialize mode of the ICPY function block

Klockner-Moeller 4/94 AWB 27-1186-GB 8-15

Indirect Addressing

Working with ICP and ICPY

Block comparison
syntax

Call: ICP < Function block > < -R >

As operand:
ICP < Function block > < Input/Output >
-R, if remanent data is required for the operation

Number of
elements: 1...255

Execut ion t ime:
Due to the hardware structure of the PS 4 200 series, the
execut ion t ime of this funct ion block heavily depends on
the type of source and dest inat ion operands involved.

Approx. values:
MOD 0: (244 + 7 x n) LIS

MOD 1 : (264 + 20 x n) LIS

n = number of e lements

Representation

Description

IL

ICP 5
MOD:
SADR:
DADR:
NO:
GT:
EQ:
U:
Q:
ERR:

Inputs:
MOD

SADR

DADR

NO

Block/Single character compar ison
= 1 Compare data f ields
= 0 Search for data value
Source address
Start address of the source data block f rom
which the compar ison is to be made
Destination address
Destination address f rom wh ich the
compar ison is to be made
Number of e lements 1 - 255 to be compared

8-16 4/94 AWB 27-1186-GB Klockner-Moeller

Indirect Addressing

Working with ICP and ICPY

Outputs:
GT Greater Than

= 1 Data value in SADR > data value in
DADR

+ / - signs are not included
EQ Equal

= 1 Data values are identical
+ / - signs are not included

LT Less Than
= 1 Data value in SADR < data value in

DADR
Q Offset output

Indicates the relative offset address of the
unequal value (comparison) or of the found
data value (data value search). The offset from
the beginning of the block is determined
(DADR).
The calculation of the offset is restricted to the
following limits:
0 < = Q < = NO

ERR: = 0 Data limits are permissible
= 1 NOisO
= 2 SADR parameters incorrectly set
= 3 DADR parameters incorrectly set
= 4 SADR is the same as DADR

The coding on the MOD input determines whether a
comparison or a data value search is to be carried out.

Compare mode The block compare mode makes a comparison between
NO elements starting with the source address given by
SADR and the same number of elements starting from
the destination address specified by DADR. If both data
blocks are found to be equal, the Q = NO output and the
EQ output are set to 1.

Klockner-Moeller 4/94 AWB 27-1186-GB 8-17

Indirect Addressing

Working with ICP and ICPY

Compare mode The following applies when the compared data blocks

are equal:

Q = NO; EQ = 1; LT = GT = 0.

If the compared data blocks are not equal, output Q
indicates the location of the unequal data. The EQ
output is set to 0 and the LT and GT output are set
according to the result of the comparison (either 1 or 0).

The following applies when the compared data blocks
are not equal:

0 < Q < NO; EQ = 0; LT and GT depending on the result
of the last comparison.

In the following example (see Figure 8-10) the marker
field from MB 23 to MB 26 is compared with the marker
field from MB 30 to MB 33.

Source:
Destination:

Function block in IL:

ICP 0
[] MOD: K1

[&J UAUn:&IVlD oi l |~~

[] GT:
[] EQ:
[] LT:
[B] Q:
[B] ERR:

Result:
GT =0
EQ =1
LT =0
Q =4

-

Marke

MB 23
MB 24
MB 25
MB 26
MB 27
MB 28
MB 29

—•MB 30
MB 31
MB 32
MB 33
MB 34

- f ield:

7Dh
3Bh
64h
A6h
OOh
OOh
OOh
7Dh
3Bh
64h
A6h
OOh

•4 1

Figure 8-10: Example of the block compare mode of the ICP function block

The two data blocks are identical, this is indicated by
EQ = 1 and Q = NO (run completed).

8-18 4/94 AWB 27-1186-GB Klockner-Moeller

Indirect Addressing

Working with ICP and ICPY

Search mode The data value whose address is SADR is searched for
in the data field of NO elements starting with the
destination address given by DADR.

If this value is found, the location is indicated via output
Q and the output EQ is set (=1).

The following applies when a character is found:

0 < Q < NO; EQ = 1; LT = GT = 0.

If the data value is not found in the block, the output Q is
equal to NO. The EQ output is set to 0 and the outputs
LT and GT are set according to the last comparison.

The following applies when a character is not found:

Q = NO; EQ = 0; LT and GT according to the last
comparison.

In the following example (see Figure 8-11), the value 7Dh
in MB 23 is searched for in the marker field from MB 27
to MB 32.

Function block
inIL:

[]
l&]
[&]
IB]
I I
I I
M
[B]
[B]

MOD: KO
SADR:&MB 23
DADR:&MB 27
NO: KB6
GT:
EQ:
LT:
Q:
ERR:

Result:
Q = 3
LT =0
EQ =1
LT =0

Figure 8-11: Example of a data value search using the ICP function block

The data value 7Dh was found at the address DADR+Q

(here: MB 27+3) and the search was terminated.

Marker f ield:

MB 23
MB 24
MB 25
MB 26
MB 27
MB 28
MB 29
MB 30
MB 31
MB 32
MB 33
MB 34

7Dh
OOh
OOh
OOh
3Dh
8Dh
4Dh
7Dh
5Dh
5Dh
OOh
OOh

Search

Found;
therefore
search
routine
aborted

Klockner-Moel ler 4 /94 AWB 27-1186-GB 8-19

8-20 4/94 AWB 27-1186-GB Kiockner-Moeller

Indirect Addressing

Working with the "&" Address Operator

In order to identify an indirect address, the address
operator "&" is placed in front of the operand
concerned.

e.g. L&MB12

This also applies to symbolic programming

e. g. L& 'Input 1

See the introduction to this chapter for possible
operands.

A sequence beginning with the "&" address operator
must end with one or several allocation instructions to
the address inputs of the function blocks used for
indirect addressing.

e.g. L&MBO.O
= ICPYO SADR
= ICPY6 DADR

The address operands can be processed in word format
in SUCOsoft like normal operands. Addresses can thus
be used with addition, subtraction, multiplication,
division, comparison operations etc. It must be ensured
that only operations are used which can be processed
with word operands (see Chapter 5, IL instructions).

When using the address operator "&", only byte format
is permitted.

All other sequences can only be processed in word
format since, however, the content of the data field
8 bit = 1 byte, but the address for each data field is
16 bit = 1 word.

Example:

1. L &MB0
ADD MW6
SUB MW234

ICPY255 SADR

Klockner-Moeller 4/94 AWB 27-1186-GB 8-21

Indirect Addressing

Working with the "&" Address Operator

2. ICPY255
MOD:
SADR: L &MB26

DIV ICP254 DADR
ROTR
O &MB22

DADR:
NO:
ERR:

Only operands with the "&" address operator are
permissible with the function block parameters SADR,
DADR (for ICPY and ICP).

e. g. ICPY8

[&] SADR: &MB0

[&] DADR: &MB6

The address operator can only be used in byte
operands.

8-22 4/94 AWB 27-1186-GB Klockner-Moeller

Indirect Addressing

Application Examples

Summation The contents of the four marker bytes MB20 to MB23
are added up via the auxiliary marker byte MB30. The
result is written in MW40 (e. g. for averaging).
Data memory (byte)

MB20

MB21

MB22

MB23

1 2 d

3 4 d

5 6 d

7 8 d

MB30

MB40

MB41

(12 34 ^K 7Q\

1 8 0 d

0 0
MW40

Summation program

0010 SSUM "Start of SUM
LKWO
= MW0
= MW40

0011 LOOP "Start of SUM

ICPY5
[] MOD: K1
[&] SADR:&MB20
ADD MB0

[&] DADR:&MB30
[B] NO: KB1
[B] ERR:

LMW30
ADD MW40
= MW40

LMB0
ADD KB1
= MB0

LMB0
CPKB4
BLT LOOP

0012 END "End PM SUM
EM

The summation program was written in the SSUM
function block. The call instruction for the function block
is not shown here.

Klockner-Moeller 4/94 AWB 27-1186-GB 8-23

Indirect Addressing

Application Examples

Multiplication of
delay factor to
mixing time table

Delay factor

Basic mixing
times

Intermediate
marker word

Current
mixing times

MB99
MB100
MB101
MB102
MB103
MB104

MB121

MB199
MB200
MB201
MB202
MB203

A marker f ield contains t ime values for several different
mixing operat ions. Due to the difference in temperature
of the various componen ts added, all the mixing t imes
must be modi f ied by the same factor. This can be
carried out using the ICPY funct ion b lock in the
fo l lowing way:

02 h
72 h
3Eh
6Fh
03 h

E4h
7Ch
DEh
06 h

1 st run

MUL

2nd run

MUL

3rd run

-> MUL

4th run

MUL

Run 1 up to 122 is performed in one PLC cycle

8-24 4/94AWB27-1186-GB Klockner-Moeller

Indirect Addressing

Application Examples

"Printout of file: c: mixtim.q42 dated 2. 3. 94"

00000 "Initialisation
001
002 L INBO.O Scan during 1 st cycle
003 JCN M2
004
005 L KB 0
006 = MB50
007
008 LKB 114
009 = MB100
010
011 L KB 62
012 =MB102
013
014 L KB 111
015 =MB104
016 LKB3

017 =MB106

018
00001 M2
001 "A delay factor < 50 which specifies the
002 "multiplicator for the individual mixing
003 "times is stored in MB99.
004 "The current mixing times are
005 "generated from the product of
006 "the individual mixing time times the delay factor
007
008 L IBO.0.0.0
009 = MB99
010
00002 M3
001 "The current mixing time is now to be
002 "stored in marker field MB 200 to
003 "MB 203.
004 "The ICPY function block is used for this purpose.
005
006 "In each cycle, a mixing time is
007 "copied to auxiliary marker byte
008 "MB 199.0
009
010 ICPY0

Klockner-Moeller 4/94 AWB 27-1186-GB 8-25

Indirect Addressing

Application Examples

Continued 011
012
013
014
015
016
017
00003 M4
001
002
003
004
005
00004 M5
001
002
003
004
005
006
007
008
00005 M6
001
002
003
004
005
006
007
DOB

009
010
011
00006 RESET
001
002
003
00007 END
001

[] MOD: K 1
[&]SADR:&MB100
ADO MB50
[&] DADR: & MB199
[b] NO: KB 1
[b] ERR: QBO.0.1.0

"Calculate current mixing time

LMB199
MUL MB99
= MB199

"Write value in destination range
ICPY1
[] MOD: K1
[&]SADR:&MB199
[&] DADR: & MB200
ADD MB50
[b] NO: KB 1
[b] ERR: QBO.0.2.0

"Increase offset for next cycle

LMB50
CP KB 20
BGT RESET

LMB50
ADD KB 1
= MB50

J P M 3

"Reset Loop counter

L K B O
= MB50

EP

Loop counter

Loop counter

Loop counter

Loop counter

8-26 4/94 AWES 27-1186-GB Klockner-Moeller

Indirect Addressing

Test Functions

Status indication The status indication facility enables data ranges to be
displayed in the form of a table. This is useful for
checking the indirect transfer functions. It is also
possible to show on screen two non-relating data
ranges at the same time (double range).

This "range display" function can be called up in the test
and commissioning of SUCOsoft using the F6 DISPLAY
RANGE function key
F5 ONLINE PROGRAMMING
F9 STATUS DISPLAY
F6 DISPLAY RANGE.

Further entries:
F2 Display range

From: MB 0
To: MB 20

After making this entry, the contents of MB 0 to MB 20
are displayed on screen in byte format.

Klockner-Moeller 4/94 AWB 27-1186-GB 8-27

8-28 4/94 AWB 27-1186-GB Klockner-Moeller

9 Program Examples

Contents

Foreword 9-3

General examples
- Fail-safe programming 9-5
- Creating a configuration file 9-6

Examples with bit sequences
- AND/OR sequence 9-9
- OR/AND sequence 9-10
- Binary divider 9-12
- Fleeting make contact, constant 9-13
- Fleeting make contact, variable 9-14
- Fleeting break contact, constant 9-15
- Fleeting break contact, variable 9-16

Examples with function blocks
- SDAT: Save data in retentive range 9-17
- RDAT: Reload data from retentive range 9-21
- CK, SCK:Summer-/wintertime 9-22
- TR: Rolling shutter control 9-24
- TR: Two-point controller with hysteresis 9-26
- FALARM: Bottling plant 9-30
- CALARM: Encoder 9-33
- TALARM: Encoder 9-34
- TALARM: Encoder with delay 9-36
- TR: Pulse generator 9-38
- C: Down counter 9-41

Klockner-Moeller 4/94 AWB 27-1186-GB 9-1

9-2 4/94 AWB 27-1186-GB Klockner-Moeller

Program Examples

Foreword

This manual gives advice on programming the
SUCOcontrol PS 4 200 series in instruction list (IL) using
program examples. A basic knowledge of control
engineering is assumed.

The solutions of the problems shown in this manual
illustrate the scope of programming possibilities of the
SUCOsoft S 30-S 4-200.

These examples do not claim to be a complete
representation of all programming features and do not
exclude the possibility of other solutions.

Klockner-Moeller 4/94 AWB 27-1186-GB 9-3

9-4 4/94 AWB 27-1186-GB Klockner-Moeller

Program Examples

Fail-safe Programming

The central processing unit of the PS 4 200 series
recognizes whether an external transducer is on (voltage
present). Of course it does not recognize whether this
state comes from a make contact or a break contact,
i. e. whether the transducer has been actuated or not.

To ensure fail-safety in the event of wire breakage, as in
all control engineering, make contacts should be used
for switching on and break contacts for switching off.
For PLC programming, all external break contacts
should be programmed as make contacts
(see Figure 9-1).

L I 0.1
A I 0.2
= Q0.1

+ 24V

Figure 9-1: Fail-safe circuit of the PS 4 200 series

The output Q 0.1 is 1 if the input I 0.1 is activated and the
input I 0.2 is not activated.

This means for the inputs of the PS 4 200 series that the
output Q 0.1 is 1 if the input Q 0.1 and the input I 0.2
a re l .

Klockner-Moeller 4/94 AWB 27-1186-GB 9-5

Program Examples

Creating a Configuration File

The user has to configure the device in the SUCOsoft
S 30-S 4 200 before writing a program for the PS 4 200
series. All devices which are networked or connected by
the user are stated in the "Device configuration" menu.
Figure 9-2 shows a device configuration in which a
PS 4-201-MM1 is connected to three different local LE4
modules. The PS 4-201-MM1 is also connected to a
remote PS 3-AC, an EM4 module with four LE4
modules, and a PS 3-DC. How to create a device
configuration is described in Chapter 1, Device
configuration.

PS4-201-MM1 116-XD1 116-DX1 116-DX1

|pS3-AC

|EM4-201-DX2 116-XD1 116-DX1 116-DXi 116-DX1

- MAIN MENU—PROGRAMMING— >DEUICE CONFIGURATION
F 1 Return F 4 Replace nodule
F 2 Add s t a t i o n F 5 Zoom/Normal
F 3 Add module F 6 Parameter e d i t o r

F 8 D e l e t e
FIB Help

u : l e 4 d x l . k 4 2

Figure 9-2: Device configuration menu

Note!

A device configuration file must be created for
each user program and incorporated in the
user program, irrespective whether the
PS 4 200 series is connected with other
devices or not.

9-6 4/94 AWB 27-1186-GB Klockner-Moeller

Program Examples

Creating a Configuration File

The following program printout shows how the device
configuration file created in SUCOsoft is incorporated in
the user program.

Printout the file: c:examplea.q42 Date 24. 3. 94

00000 BL0CK0 "Incorporate configuration file
001
002 #include"examplea.k42"
003
00001 BL0CK1 "Start of program

Klockner-Moeller 4/94 AWB 27-1186-GB 9-7

s

9-8 4/94 AWB 27-1186-GB Klockner-Moeller

Program Examples

AND/OR sequence

The circuit diagram in Fig. 9-3 contains an "AND" and an
"OR" sequence.

The output of the PS 4 200 series is activated if the
switches are closed on the inputs I 0.0 "AND" I 0.4 "OR"
if the switch is closed on the input I 0.2.

10.0 \ 10.2\

I 0.4\

QO.O

Figure 9-3: Circuit diagram of AND/OR sequence

Printout of file: c:exampleb.q42 Date 29. 3. 94

00000
001
002
003
00001
001
002
003
004
005
006
00002
001
002

BL0CK0

BL0CK1

•

BL0CK2

"Incorporate configuration file

=H=include"exampleb.k42"

"Start of program

LI 0.0 Input 0
A I 0.4 Input 4
0 I 0.2 Input 2
= Q 0.0 Output 0

"End of program

tP

Klockner-Moeller 4/94 AWB 27-1186-GB 9-9

Program Examples

OR/AND sequence

The circuit diagram in Fig. 9-5 contains an "OR" and an
"AND" sequence.

The output Q 1.2.1.0.1 of the LE 4-116-XD 1 is activated if
the switch is closed on the input 11.2.0.0.0 "OR" on the
input 11.2.0.0.3 of the EM 4-201-DX 2 "AND" if the
switch on the input I 0.5 of the PS 4 200 series is closed.

This description shows that the EM 4-201-DX 2 and the
LE 4-116-XD 1 are connected to the PS 4 200 series. In
this case the connection is made via SUCOnet K. The
following figure shows the device configuration.

-0 1
PS 4-201

-1

201-DX2

r-2
201-DX 2

?
116-XD1

11.2.0.0.0 11.2.0.0.3 Q 1.2.1.0.1

Figure 9-4: Device configuration of OR/AND sequence

11.2.0.0 o\
I J

\ 11.2.0.0.3

\ 10.5

• Q 1.2.1.0.1

Figure 9-5: Circuit diagram of OR/AND sequence

9-10 4/94 AWB 27-1186-GB Klockner-Moeller

Program Examples

OR/AND sequence

Printout of file: c:examplec.q42 Date 29. 3. 94

00000

001
002
003
00001
001
002
003
004
005
006
00002
001
002

BLOCK0

BL0CK1

BL0CK2

"Incorporate configuration file

#lnclude"examplec.k42"

"Start of program

L11.2.0.0.0 Input 0EM4
011.2.0.0.3 lnput3EM4
AI 0.5 Input 5 PS4
= 0 1.2.1.0.1 Output 1LE4

"End of program

EP

I
Klockner-Moeller 4/94 AWB 27-1186-GB 9-11

Program Examples

Binary Divider

A binary divider is to be created with the ratio 2:1
according to the following diagram.

10.5

Q0.3
_r J L

Figure 9-6: Signal sequence of the binary divider

With the first H signal on the input I 0.5 the output Q 0.3
is set (= 1); with the second signal the output is reset
(Q 0.3 = 0) and with the next signal the output is set, etc.

Printout of file: c:exampled.q42 Date: 12.4.94

00000
001
002
003
00001
001
002
003
004
005
006
007
008
00002
001
002
003
004
005
006
007
00003
001
002

BL0CK0

BL0CK1

BL0CK2

BL0CK3

"Incorporate configuration file

#lnclude"exampled.k42"

"Start of program

L I 0.5
AN M 0.1
JCN BL0CK2

LN M 0.2
= M0.2

"

L I 0.5
= M0.1

LM0.2
= 0.0.3

"End of program

Fi­

scal input 10.5

Scan input 10.5

9-12 4/94 AWB 27-1186-GB Klockner-Moeller

Program Examples

Fleeting Make Contact, Constant

A fleeting make contact with a constant time is
programmed. When changing from 0 to 1 on the input
10.1, the output Q 0.2 switches to 1 for one program
cycle.The following diagram shows the sequence.

Q0.2 I I

1 cycle

Figure 9-7: Signal sequence of fleeting make contact with constant time

Printout of file: c:examplee.q42 Date: 12.4.94

00000
001
Oil?

003
00001
001
002
003
004
005
DOfi
007
008
00002
001
002

BLOCK0

BL0CK1

BL0CK2

"Incorporate configuration file

#lnclude"examplee.k42"

"Start of program

L I 0.1 Scan input
AN M 0.0
= Q 0.2 Output Q 0

LI0.1 Scan input
= M0.0

"End of program

l-P

I
Klockner-Moeller 4/94 AWB 27-1186-GB 9-13

Program Examples

Fleeting Make Contact, Variable

A fleeting make contact with a variable time is
programmed. When changing from 0 to 1 on the input
10.1, the output Q 0.2 switches to 1 for the duration of
the programmed time (here: 5 seconds). The following
diagram shows the sequence.

10.1

Q0.2

J~i
J L

- H t, h - —H t, |«—

Figure 9-8: Signal sequence of fleeting make contact with variable time

t| is set in the TRO timer

Printout of file: c:examplef.q42 Date: 12.4.94

00000
001
002
003
00001
001
002
003
004
005
006
007
008
009
010
(III
012
013
014
015
016
i l l /
018
019
00002
001
002

BLOCK0

BL0CK1

BL0CK2

"Incorporate conflturation file

#lnclude"examplef.k42"

"Start of program

L I 0.1 Scan input I 0.1
0 Q 0.2 Output Q 0.2

= M0.1

LM0.1
AN M 0.2
= Q 0.2 Output Q 0.2

"The signal length is 5 seconds in this example

TRO -S
[] S: M0.1

[] R:
[] STOP:
[w] I: KW5
[] EQ: M0.2
[w] Q:

"End of program

EP

9-14 4/94AWB27-1186-GB Klockner-Moeller

Program Examples

Fleeting Break Contact, Constant

A fleeting break contact with a constant time is
programmed. When changing from 1 to 0 on the input
10.1, the output Q 0.2 switches to 1 for one program
cycle. The following diagram shows the sequence.

Q0.2 I I

Vcycle
Figure 9-9: Signal sequence of fleeting break contact with constant time

Printout of file: c:exampleg.q42 Date: 13.4.94

00000
001
002
003
00001
001
002
00:!
004
005
006
007
008
009
010
011
00002
001
002

BL0CK0

BL0CK1

BL0CK2

"Incorporate configuration file

#lnclude"exampleg.k42"

"Start of program

LI 0.1
=N M 0.1

LM0.1
AN M 0.0
= 0.0.2

LM0.1
= M0.0

"End of program

LP

Scan input

Output Q 0

Klockner-Moeller 4/94 AWB 27-1186-GB 9-15

Program Examples

Fleeting Break Contact, Variable

A fleeting break contact with a variable time is
programmed. When changing from 1 to 0 on the output
10.1, the output Q 0.2 switches to 1 for the programmed
time (here: 8 seconds). The following diagram shows the
sequence.

io.i i i i _ r

Q.o.2 i i r~

Figure 9-10: Signal sequence fleeting break contact with variable time

t, is set i n the TRO timer

Printout of file: c:exampleh.q42 Date: 13 .4 .94

00000
001
002
003
00001
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
ii? I

022
00002

001
002

BL0CK0 "Incorporate configuration file

#lnclude"exampleh.k42"

BL0CK1 "Start of program

L I 0.1
0 M 0 . 1
AN M 0.4

= M0.1

LN I 0.1
AM 0.1
OQ0.2
AN M 0.4
= 0.0.2

"The signal length is

TRO -S

[] S: Q0.2

[] R:
[] STOP:
[w] I: KW8
[] EQ: M0.4
[w] Q:

BL0CK2 "End of program

EP

Scan input I 0.1

Scan input I 0.1

Output Q 0.2

Output Q 0.2

8 seconds in this example:

Output Q 0.2

9-16 4/94 AWES 27-1186-GB Klockner-Moeller

Program Examples

SDAT: Save Data in Retentive Range

Bottling plant data needs to be saved retentively before
switching off the plant since the RAM of the PS 4-201-
MM1 is not battery backed.This data is contained in the
marker bytes MB 100 to MB 119 and must be saved in
the 64 byte flash EEPROM memory module (ZB 4-160-
SM 1 or ZB 4-128-SF 1) before the plant is switched off.
This is required so that the bottling plant starts with the
same data after it has been switched on again.

The marker bytes MB 100 to MB 119 should be saved on
the segment number 11 of the 64 Kbyte flash EEPROM
memory for retentive marker ranges (cold start retentive
range). This is carried out by activating the input I 0.0 of
the PS 4 200 series.

511
510
509

13
12
11*)
10
9
8
7
6
5
4
3
2
1
0

Figure 9-11: Segment structure of the 64 Kbyte flash EEPROM memory for
saving the retentive marker ranges, which keep their data also with a cold
start

*) 20 bytes are saved unter the segment number 11.

Klockner-Moeller 4/94 AWB 27-1186-GB 9-17

Program Examples

SDAT: Save Data in Retentive Range

Printout of file: c:examplei.q42 Date: 24.3.94

00000 BL0CK0
001
fur,'
003
00001
001
002
00002 BL0CK2
001
00?
003
004
005
(Mil,
007
008
009
010
(ill
OK'
013
014
01',
010
01/'
018
019
020
0/1
022
023
024

00003 BL0CK3
001
002
on:;
004
005
006
007
008
HO'i
010
011
012
013

00004 BL0CK4
001
002

"Incorporate configuration file

#lnclude"examplei.k42"

BL0CK1 "Start of program

"value assignment for retentive marker ranges
"to be saved with the SDATO function block
"in the memory module.
"This assignment is variable.

LI 0.0.1.0.1
A M 0.2
SM 100.0

LI 0.0.1.0.2
A M 0.6
OM0.5
RM 100.0
SM 101.6

L I 0.6
0 M 0 . 5
AI 0.0.1.0.1
SM 119.7
RM 117.3

Input 1 of the 1st LE4 module

Retentive marker for saving

Input 2 of the 1st LE4 module

Retentive marker for saving
Retentive marker for saving

Input 6 of the PS 4 200 series

Input 1 of the 1st LE4 module
Retentive marker for saving
Retentive marker for saving

"Call of the SDATO function block for saving the
"retentive marker range in the flash EEPR0M memory
"module. The marker ranges are saved on segment
"number 11 of the flash EEPROM memory. The
segment length is 20 bytes.

SDATO
[] S: 10.0 Set input
[&] SADR: & MB 100 Source address
[w] SGNO: KW11
[b] LEN: KB 20
[b] ERR: MB 0 Error message on MBO

"End of program

EP

9-18 4 /94 AWES 27-1186-GES Klockner-Moel ler

Program Examples

SDAT: Save Data in Retentive Range

Warning!

If program modifications are made in the
"Device configuration" menu and the IL
program is re-compiled, the retentive data, that
keeps its information also after a cold start, can
be modified after the program transfer. Before
a modification of the device configuration, the
data should thus be written to the flash
EEPROM memory module with the SDAT
function block and written out of the flash
EEPROM memory with the RDAT function
block after the modification. You can find
further descriptions on this operation in
Chapter 1, System parameters.

Klockner-Moeller 4/94 AWB 27-1186-GB 9-19

;

9-20 4/94 AWB 27-1186-GB Klockner-Moeller

Program Examples

RDAT: Reload Data from Retentive Range

With the bottling plant mentioned in the previous
example the data saved retentively must be re-written
from the 64 Kbyte flash EEPROM memory module to the
marker range MB 100 to MB 119 when the plant is
switched on.

The data that is on the segment number 11 in the
64 Kbyte flash EEPROM memory is re-written to the
marker bytes MB 100 to MB 119 by activating the digital
input 10.1 of the PS 4 200. The data can thus be
processed again in the program.

Printout of file: c:examplej.q42 Date: 24.3.94

00000
001
002
003
00001
001
00002
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
00003
001
002
003
004
005
006
007
00004
001
002

BL0CK0

BL0CK1

BL0CK2

BL0CK3

BL0CK4

"Incorporate configuration file

#lnclude"examplej.k42"

"Start of program

"Call the RDATO function block for the regeneration of the
"retentive data of the flash EEPROM memory in the
"marker range MB 100 to MB 119.
"The data is in the flash EEPROM memory on the
"segment number 11
"The segment is 20 bytes.
"The error messages of the RDATO function block are
"written in the marker byte MB 1 for further processing.

RDATO
[] S: 10.1 Set input
[&] • DADR: & MB 100 Destination address
[w] SGNO: KW11
[b] LEN: KB 20
[b] ERR: MB 1 Error message on MB1

"Further program processing

L MB 110 Data from flash EEPROM memory
ADD KB 20
= MB 130

"

"End of program

EP

Klockner-Moeller 4/94 AWB 27-1186-GB 9-21

Program Examples

CK, SCK: Summer/Winter Time

In this example the real-time clock of the PS 4 200
series is to be put forward by one hour in order to switch
from winter to summer time on the 27.3.1994 at 2:00 h.

This operation is to be carried out automatically.

In order to solve this task, the function blocks CKO and
SCKO are required in the user program.

When switching from summer time to winter time and
vice versa, it is not necessary to use the programming
device.

Printout of file: c:examplek.q42 Date: 24.3.94

00000
001
002
003
00001
001
00002
001
002
003
004
005
006
007
008
009
010
011
012
013
014
00003
001
002
003
004
005

BLOCK0

BL0CK1

BL0CK2

BL0CK3

"Incorporate configuration file

#lnclude"examplek.k42"

"Start of program

"Set parameters when the CKO function is to set the
"SCKO function block

LKB0
= MB 2 Minute 0

LKB2
= MB 3 Hour 2

LKB3
= MB 4 Month March

LKB27
= MB 5 Day 27

"The CKO function block has the task of putting forw
"the real-time clock of the PS 4 200 series on
"27.03.1994 at 2:00 h to 3:00 h via its EQ output an
"SCKO function block

9-22 4/94AWB27-1186-GB Klockner-Moeller

Program Examples

CK, SCK: Summer/Winter Time

006
007
008
009
010
011
0I2
013
014
Ol',
n i l ,

017

CK0
[] S:
[x] TIME:
[x] DAY:
[x] DATE:
[w] VDAT:
[w] VTIM:

[] GT:
[] EQ:
[] LT:
[] ERR:

K I

MW4
MW2

MO.O Set SCKO

00004 BL0CK4 "New parameters for SCKO function block in ordc
001
002
mi:;

004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024

"put forward the real-time clock by one hour

LKB94
= MB10

LKB3
= MB 11

LKB27
= MB12

LKB0
= MB13

LKB3
= MB14

LKB0
= MB15

LKB0
= MB16

Year 1994

Month March (3)

Day 27

Weekday (Sunday)

Hour 3 (1 hour forward)

Minute 0

Second 0

00005 BL0CK5 "Put forward real-time clock by one hour via
001
002
003
004
005
006
007

"SCKO function block

SCKO

[] S:
[&] SADR:
[b] ERR:

MO.O
&MB10
MB 20

00006 BL0CK6 "End of program
001
002 EP

Set SCKO
Year 1994
Error message

* *

Klockner-Moeller 4/94 AWB 27-1186-GB 9-23

Program Examples

TR: Rolling Shutter Control

This example describes a simple rolling shutter control.
The rolling shutter at the entrance of a multi-storey car
park should be opened and closed via an electric motor.
This is implemented by a key switch outside and by
pressing a button inside. The rolling shutter closes itself
after a set time has elapsed. A warning lamp is lit which
thus ensures that no car enters the garage while the
shutter is closing.

A light barrier prevents the shutter from closing as long
as a car is in the entrance area. The lighting inside the
garage and the outside lighting in front of the shutter are
kept on automatically for a fixed period after the shutter
is closed.

Printout of file: c:examplel.q42 Date: 25.3.1994

00000
001
002
003
00001
001
002
00002
001
002
003
004
005
006
007
008
009
00003
001
002
003
004
005
00004
001
002
003
004
005

BLOCK0

BL0CK1

BL0CK2

BL0CK3

BL0CK4

"Incorporate configuration file

#lnclude"examplel.k42"

"Start of program

"Control the shutter motor (open)

L10.1 Button "Shutter open"
0 I 0.2 Key button "Shutter open"
0 I 0.5 Light barrier "Car in entrance"
0 Q 0.1 Load contactor "Shutter open"
AN I 0.3 Limit switch "Shutter open"
AN Q 0.2 Load conlactor "Shutter close"
= Q 0.1 Load contactor "Shutter open"

"Control the shutter motor (close)

L M 0.7 Contactor relay 1 "Close delay'
AN Q 0.1 Load contactor "Shutter open"
= Q 0.2 Load contactor "Shutter close"

"Control the warning lamp when the shutter is closed

L M 0.7 Contactor relay 1 "Close delay'
= Q 0.3 Load contactor "Shutter close"

9-24 4/94 AWB 27-1186-GB Klockner-Moeller

Program Examples

TR: Rolling Shutter Control

00005
001
002
003
004
00006
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
00007
001
002
003
004
005
006
007
008
009
010
(I I I
012
013
014
015
016
017
018
019
00008
001
002

BL0CK5 "Control of garage lighting

LM0.6
= 0.0.4

Contactor relay 2 "Time of lighting'
Load contactor "lighting"

BL0CK6 "Set the time for close delay via setpoint potentiometer (P1)

L I 0.3
OM0.7
AN I 0.4
AN I 0.5
= M1.7

TR0-S

[] S:

[] R:
[] STOP:
[w] I:
[] EQ:
[w] Q:

LIAW0
= MW18

M1.7

MW18
M0.7

Limit switch "Shutter open"
Contactor relay 1 "Close delay"
Limit switch "Shutter closed"
Light barrier "Car in entrance"
Contactor relay 3 "Close delay"

Close delay 0-1023 seconds
Contactor relay 3 "Close delay"

Time value 0-1023 seconds
Contactor relay 1 "Close delay"

Time value 0-1023 seconds
Time value 0-1023 seconds

BL0CK7 "Set time for internal and external lighting
"via setpoint potentiometer (P2)

L I 0.3
SM0.6

TR1 -S

[] S:
[] R:
[] STOP:
[w] I:
[] EQ:
[w] Q:

LIAW2
= MW20

LM1.6
RM0.6

M0.6

MW20
M1.6

BL0CK8 "End of program

EP

Limit switch "Shutter open"
Contactor relay 2 "Lighting time"

Lighting time 0-1023 seconds
Contactor relay 2 "Lighting time"

Time value 0-1023 seconds
Contactor relay 4 "Lighting time"

Time value 0-1023 seconds
Time value 0-1023 seconds

Contactor relay 4 "Lighting time"
Contactor relay 2 "Lighting time"

Klockner-Moel ler 4 /94 AWES 27-1186-GB 9-25

Program Examples

TR: Two-point Controller with Hysteresis

A two-point controller with settable hysteresis and scan
time is to be programmed. Hysteresis and scan time are
assigned constant words in the IL program. The setpoint
is defined via the setpoint potentiometer P 1 and the
actual value is read in via the analogue input 0. The
closed-loop controller is enabled via the High signal on
the digital input I 0.0.

Note!

The two-point controller basically corresponds
with the function of a switch which can only be
in the "ON" and the "OFF" status. The two-
point controller, however, does not switch
xd = 0 but, due to an inevitable but also desired
hysteresis, only if xd exceeds the values of the
hysteresis +xu or is less than -xu.

In this example the hysteresis is 1 volt which
corresponds to a constant word of KW 102. The scan
time is one second (KW 1000). These values can be
modified as required. The following diagram shows the
function sequence of the two-point controller.

-> t

Figure 9-12: Function sequence two-point controller with hysteresis

x„ = Hysteresis w ••
xd = System deviation = w - x y •
x = Actual value or controlled variable

Setpoint value or reference variable
Manipulated variable

9-26 4/94 AWB 27-1186-GB Klockner-Moeller

Program Examples

TR: Two-point Controller with Hysteresis

Printout of file: c:examplem.q42 Date: 29.3.94

00000 BL0CK0 "Incorporate configuration file

001
002 #lnclude"examplem.k42"
003
00001 BL0CK1 "Start of program
001
002
00002 BL0CK2 "Initialize the controller parameters
001

no?
003
004
00b
006
00/
008
009
010
011
00003
001

002
003
004
005
006
007
008
009
010
011
00004
001
002
003
004
005
006
007
008
009
010
011
012

"Hysteresis Xu is 1 volt.

LKW102
= MW100 Hysteresis Xu

"Scan time T is 1 second.

LKW1000
= MW102

BL0CK3 "Closed-loop controller

Scan time T

enable
"I 0.0 = H — closed-loop controller active; L — closed-
loop controller disabled

L I 0.0
JC BL0CK4

LK0
= Q0.0

LI 0.0
JCNBL0CK13

Closed-loop controller enable

Manipulated variable "ON" or "OFF

Closed-loop controller enable

BL0CK4 "Setting the scan time T

TR0-MS
[] S: NMO.O

[] R:
[] STOP:
[w] I: MW102
[] EQ: MO.O
[w] Q:

LN M 0.0
JCBLOCK13

Scan time 0.01 to 65.53 seconds
Basic pulse

Scan time T
Basic pulse

Basic pulse

Klockner-Moel ler 4 /94 AWB 27-1186-GB 9-27

Program Examples

TR: Two-point Controller with Hysteresis

00005

001
002
003
004
005
00006
001
002
003
004
005
00007
001
002.
003
004
005
006
007
008
009
010
011
012
013
014
00008
001
002
003
004
005
006
007
008
00009
001
oo;:
003

BL0CK5

BL0CK6

BL0CK7

BL0CK8

BL0CK9

"Read in setpoint value (0-10 volt) via setpoint potentiometer
PI
r I
"(0-1023 increments)

LIAW0
= MW104

Setpoint value x(t)
Digital setpoint value w(t)

"Read in actual value (0-10 volt) via analogue input
"(0-1023 increments)

LIAW4
= MW106

Actual value w(t)
Digital actual value x(t)

" + / - sign calculation and calculation of the
"system deviation xd(t)

LMW100
DIV KW 2
= MW108

LMW106
ADD MW108
= MW110

LMW104
SUBMW110
= MW112

Hysteresis Xu

Auxiliary marker byte 1

Digital actual value x(t)
Auxiliary marker byte 1
Auxiliary marker 2

Digital setpoint value w(t)
Auxiliary marker byte 2
System deviation at t = xd(t)

"Two-point controller calculation

LMW112
BC BL0CK9

LK0
= M0.1
JPBLOCK10

"

LK1
= M0.1

System deviation at t = xd(t)

Auxiliary marker 1

Auxiliary marker 1

9-28 4/94AWB27-1186-GB Klockner-Moeller

Program Examples

TR: Two-point Controller with Hysteresis

00010
001
002
003
004
005
006
007
008
009
010
011
012
013
014
00011
001
002
003
004
00012

001
002
003
004
005
006
007
008
009
010
011
012
00013
001
002

BLOCK10

BL0CK11

BL0CK12

BL0CK13

"Compare hysteresis and system deviation

L KHW FFFF
SUBMW112
ADD KW 1
= MW114

LMW100
CPMW114
BLTBL0CK11

LK0
= M0.2
JPBL0CK12

"

LK1
= M0.2

"

LM0.2
AM 0.1
SM0.3

LM0.2
AN M 0.1
RM0.3

LM0.3
=N Q 0.0

"End of program

FP

System deviation at t = xd(t)

Remainder of system deviation xd(t)

Hysteresis Xu
Remainder of system deviation xd(t)

Auxiliary marker 2

Auxiliary marker 2

Auxiliary marker 2
Auxiliary marker 1
Auxiliary marker 3

Auxiliary marker 2
Auxiliary marker 1
Auxiliary marker 3

Auxiliary marker 3
Manipulated variable "ON" or "OFF"

Klockner-Moel ler 4 /94 AWB 27-1186-GB 9-29

Program Examples

FALARM: Bottling Plant

A light barrier is to be used in a bott l ing plant for
checking whether the bott les are fil led as required. If
more than three bott les are not fi l led correctly, the motor
of the conveyor belt which transports the bott les must
be s topped as soon as possible.

The conveyor belt can only be s topped if it is requested
by the user. This is implerented if, for example, the input
I 0.5 of the PS 4 200 series is connected with a swi tch
which sends a High signal to the PLC.

Printout of file: c:examplen.q42 Date: 6 . 4 . 9 4

00000 BL0CK0
001
no;'
003
00001
001
00002 BL0CK2
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
00003 BL0CK3
001
002
003

'Incorporate configuration file

#lnclude"examplen.k42"

BL0CK1 "Start of program

"Call FALARM0 function block in order to obtain the
"message via the alarm input 10.1 whether the bottles are
"filled correctly.
"The positive edge of the alarm input I 0.1 is evaluated.

Enable alarm function block
FALARM0
[] EN: 10.1
[] ACT: K0
[w] SOU: KW4
[b] ERR:
[w] CNT:
[$] AC: SUP0

"With the fourth edge on the alarm input I 0.1 the SP0
"subprogram is called.

"End of main program

EP

9-30 4/94 AWB 27-1186-GB Klockner-Moeller

Program Examples

FAL7\RM: Bottling Plant

00004 $UP0 "Subprogram in order to stop the conveyor belt if requested
001 "by the user.
002
003 L IP 0.5 Command stop conveyor belt
004 = QP 0.4 Conveyor belt stops
005
00005 BLOCKA "End of subprogram
001
002 EM

I
Klockner-Moeller 4/94 AWB 27-1186-GB 9-31

9-32 4/94 AWB 27-1186-GB Klockner-Moeller

Program Examples

CALARM: Encoder

The signals of a positioning device are to be counted.
The time between the signals is shorter than the cycle
time of the PS 4 200 series. The division ratio on the
CALARMO function block should be 50 so that the feed
rate value is 1/10 mm on the ALARM counter (CNT
output) of the function block.

Printout of file: c:exampleo.q42 Date: 6.4.94

00000
001
002
003
00001
001
00002
001
002
003
004
005
006
007
008
009
010
00003
001
002

BLOCK0 "Incorporate configuration file

#lnclude"exampleo.k42

BL0CK1 "Start of program

"

BL0CK2 "Call CALARMO function block in order to count the signals
"via the I 0.0 input

CALARMO
[] EN: I 0.6
[w] VT: KW50
[w] SOLL: KW1
[b] ERR:
[w] CNT: MW10
[$] AC:

BL0CK3 "End of program

FP

Set function block

Feed rate value in 1/10 mm

,

Klockner-Moel ler 4 /94 AWB 27-1186-GB 9-33

Program Examples

TALARM: Encoder

200 square wave signals are to be output by the
PS 4 200 series for a positioning device. The signal
length is 1 ms and the pulse/pause ratio is 1 : 1.

1 ms 1 ms
h — - h — • !

1
Figure 9-13: Signal sequence for positioning device

The output of the signals is started via the digital input
1 0.3 and the signals are output by the digital output
Q0.0.

Printout of file: c:examplep.q42 Date: 11.4.94

00000 BL0CK0 "Incorporate configuration file
001
002 #lnclude"examplep.k42"
003
00001 BL0CK1 "Start of program
001
00002 BL0CK2 "Fleeting make contact for set condition and
001 "reset condition of the TALARM0 function block
002
003 L10.3 Start TALARM0
004 AN M 3.0
005 = M 3.1
006
007 L10.3 Start TALARM0
008 = M 3.0
009
010 LM3.1
011 S M 2.0 Set condition for TALARM0
012
013 LMO.O
014 R M 2.0 Set condition for TALARM0
015

9-34 4/94 AWB 27-1186-GB Klockner-Moel ler

Program Examples

TALARM: Encoder

00003
001
002
003
004
005
006
007
008
009
010
011
00004

001
002

BL0CK3

BL0CK4

"Call TALARMO in order to output the 200 signals
"(= 400 edges) via the digital output Q 0.0

TALARMO
[] EN: M2.0 Set condition for TALARN
[b] MOD: KB 2
[w] VT: KW1000
[w] SOLL: KW400
[b] ERR:
[w] CNT: MWO

[$] AC:

"End of program

EP

I
Klockner-Moeller 4/94 AWB 27-1186-GB 9-35

Program Examples

TALARM: Encoder with Delay

With a posit ioning device the digital output Q 0.3 of the

PS 4 200 series should be set 1.5 ms after the activation

of the digital input I 0.3. The output Q 0.3 is reset by

activating the digital input I 0.0. The inputs I 0.0 and I 0.3

must be interlocked.

I 0.3

Q0.3

1 0.0 I -

Figure 9-14: Signal sequence positioning with delay

Printout of fi le: c:exampleq.q42 Date: 12 .4 .94

00000 BLOCKO "Incorporate configuration file
001
002 #lnclude"exampleq.k42"
003
00001 BL0CK1 "Start of program
001
00002 BL0CK2 "Fleeting make contact and set condition of the
001
11(1?

iiu'i
004
1105

006
007
(IDH

HID

010
l l l l

012
013
014

TALARM0 function bl(

L IP 0.3
AN IP 0.0
AN M 3.0
= M3.1

L IP 0.3
AN IP 0.0
= M3.0

LM3 .0
SM2.0

)ck

Start TALARM0
Reset Q 0.3

Start TALARM0
Reset Q 0.3

Set condition fc

9-36 4/94 AWB 27-1186-GB Klockner-Moeller

Program Examples

TALARM: Encoder with Delay

00003
001
002
003
004
005
006
nfi7

00004
001
002
003
004
005
006
007

008
009
010
011
00005
001
002
003
00006
001
IK!:'

tm
004
00007

001
002

BL0CK3

BL0CK4

BL0CK5

$UP0

BLOCKA

"Reset condition for output Q 0.3 and
"TALARMO function block

L IP 0.0 Reset Q 0.3
AN IP 0.3 Start TALARMO
R QP 0.3 Output Q 0.3
R M 2.0 Set condition for TALARMO

"Call TALARMO function block to implement a
"delay time of 1.5 ms

TALARMO
[] EN: M2.0 Set condition for TALARMO
[b] MOD: KB1
[w] VT: KW 1500
[w] S0LL: KW1
[b] ERR:
[w] CNT:
[$] AC: $UP0

"End of main program

EP

"Subprogram to set the output Q 0.3 after 1.5 ms

LK1
S QP 0.3 Output Q 0.3

"End of subprogram

EM

Klockner-Moeller 4/94 AWB 27-1186-GB 9-37

Program Examples

TR: Pulse Generator

The application requires a pulse generator with different
pulse/pause time with two function blocks (TRO and
TR1). The pulse should be output via the output Q 0.4.
The time for the H pulse is 4 seconds and for the pause
time 6 seconds. The pulse generator starts automatically
if the controller switches from the "Halt" status to the
"Run" status. The following diagram shows the function
sequence.

)

I I I I I L_

~* M*—** * h — * h *i
6s 4s 6s 4s 6s

Figure 9-15: Signal sequence pulse generator

1) Programmstart
Printout of file: c:exampler.q42 Date: 13.4.94

00000 BL0CK0 "Incorporate configuration file
001
00?
003

#lnclude"exampler.k42"

00001 BL0CK1 "Start of program
001
002
Hii:;

004
005
006
007
008
009
010
011
012
013
014
015

"TRO function block generates the time for the
"L-level (6 seconds).

TR0-S
[] S: NM0.0

[] R:
[] STOP:
[w] 1: KW6
[] EQ: Q0.4 Pulse output
[w] Q:

"TR 1 function block generates the time for the
"H-level (4 seconds)

9-38 4/94 AWB 27-1186-GB Klockner-Moeller

Program Examples

TR: Pulse Generator

016
017
018
019
020
021
022
023
00002
001
002

TR1 -S
[] S: Q0.4
[] R:

[] STOP:
[w] I: KW4
[] EQ: MO.O
[w] Q:

BLOCK2 "End of program

EP

Pulse output

I
Klockner-Moeller 4/94 AWB 27-1186-GB 9-39

9-40 4/94 AWB 27-1186-GB Klockner-Moeller

Program Examples

C: Down Counter

The application requires a down counter with the CO
function block. The CO function block outputs an output
signal if it has reached the counter status "0" after a
predefined number (setpoint value) of signals (30 pulses
in this example) has been input. With more signals the
function block counts down, starting with 65535.

Pulse input:
Set counter:

Reset

I 0.7

I 0.0

10.1 (set counter to 0)

Counter signal: Q 0.5 (counter status = 0)

Printout of fi le: c:examples.q42 Date: 13. 4. 94

00000
001
002
003
00001
001
002
003
004
005
006
007
01)8
(ID!)

010
00002
001
(iD-

BLOCK0

BL0CK1

"Incorporate configuration file

#lnclude"examples.k42"

"Start of program

CO
[] U:
[] D: 10.7 Pulse inuput
[] S: 10.0 Set counter
[] R: 10.1 Reset counter
[w] I: KW30
[] Z: Q0.5
[w] Q:

"End of program

EP

Klockner-Moeller 4/94 AWB 27-1186-GB 9-41

9-42 4/94AWB27-1186-GB Klockner-Moeller

Appendix

Contents

List of figures A-3

List of tables A-7

Index A-9

I
Klockner-Moeller 4/94 AWB 27-1186-GB A-1

A-2 4/94 AWB 27-1186-GB Klockner-Moeller

Appendix

List of Figures

1-1 System parameters menu 1-6

1-2 Device configuration menu 1-11

1-3 Program editor menu 1-13

2-1 Structure of an instruction 2-4

2-2 Input addresses 2-7

2-3 Output addresses 2-8

2-4 Marker addresses 2-9

2-5 Example of a function block 2-21

2-6 Program sequence and data flow during
function block processing 2-25

2-7 Function blocks, types of memories and
function block data storage 2-32

2-8 Function blocks, shifting of data ranges

after inserting new function block data 2-33

2-9 Register overview 2-36

2-10 Overview of sequences 2-46

2-11 Block structure 2-48

2-12 Structure of the main program 2-50

2-13 Program cycle 2-51

3-1 Programming with inserted source file 3-6

3-2 Nested program structure 3-10

3-3 Program module call-ups initiated from
the main program and a program module 3-12

3-4 Program module call-ups from an
"Include" file of the main program 3-14

3-5 Location of main program and program
modules in IL 3-15

3-6 Data transfer main program - program
modules via the marker range 3-23

3-7 Location of program modules in the user

memory 3-31

4-1 Test/commissioning main menu 4-5

4-2 PS 4-200 status menu 4-8

Klockner-Moeller 4/94 AWB 27-1186-GB A-3

Appendix

List of Figures

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

4-14

4-15

4-16

7-1

7-2

7-3

7-4

7-5

7-6

7-7

7-8

7-9

7-10

8-1

8-2

8-3

8-4

Display of the device configuration and
l/Q status

Device status

Diagnostics display for individual devices

Input/output display for individual devices
(here: PS 4-201-MM 1 as slave)

Forcing of outputs

IL status display

Display range

Double range

LIFO/FIFO content display

Dynamic forcing

Online modifications

Online modifications

Program module directory

Date/time

Cyclical processing of the step sequence

Paint filling plant

Step sequence for a filling plant

Processing the sequential control function
block within the user program

Step change indication on TG output

Program example for step change
indication

Linear step sequence

OR step sequence

AND step sequence

Example of nested AND step sequence

Direct addressing

Indirect addressing

Copy function of the block transfer
function block

Initialize function of the block transfer
function block

4-17

4-18

4-18

4-19

4-20

4-23

4-24

4-25

4-26

4-27

4-29

4-30

4-37

4-39

7-6

7-7

7-9

7-21

7-23

7-24

7-26

7-28

7-31

7-32

8-4

8-5

8-7

8-8

A-4 4/94AWB27-1186-GB Klockner-Moeller

Appendix

List of Figures

8-5 Compare function of the block
comparison function block 8-9

8-6 Data value search using the block
comparison function block 8-10

8-7 Definition of a data block 8-12

8-8 Example of the copy mode of the ICPY
function block 8-15

8-9 Example of the initialize mode of the ICPY
function block 8-15

8-10 Example of the block compare mode of
the ICP function block 8-18

8-11 Example of a data value search using the

ICP function block 8-19

9-1 Fail-safe circuit of the PS 4 200 series 9-5

9-2 Device configuration menu 9-6

9-3 Circuit diagram of AND/OR sequence 9-9

9-4 Device configuration of OR/AND sequence 9-10

9-5 Circuit diagram of OR/AND sequence 9-10

9-6 Signal sequence of the binary divider 9-12

9-7 Signal sequence of fleeting make contact
with constant time 9-13

9-8 Signal sequence of fleeting make contact
with variable time 9-14

9-9 Signal sequence of fleeting break contact
with constant time 9-15

9-10 Signal sequence of fleeting break contact
with variable time 9-16

9-11 Segment structure of the 64 Kbyte flash
EEPROM memory for saving the retentive
marker ranges, which keep their data also
with a cold start 9-17

9-12 Function sequence two-point controller

with hysteresis 9-26

9-13 Signal sequence for positioning device 9-34

9-14 Signal sequence for positioning with delay 9-36

9-15 Signal sequence pulse generator 9-38

Klockner-Moeller 4/94 AWB 27-1186-GB A-5

I

?

A-6 4/94 AWB 27-1186-GB Klockner-Moeller

Appendix

List of Tables

Operand overview

Available operators with their appropriate
data types

Available function blocks

Available pre-processor instructions

DSW diagnostics status word

INB information byte

Resolution of analogue values

Operand overview

Error signals at ERR output

2-4

2-18

2-23

2-53

4-9

4-14

4-20

5-3

7-22

Klockner-Moeller 4/94 AWB 27-1186-GB A-7

A-8 4/94 AWB 27-1186-GB Klockner-Moeller

Appendix

Index

A
Abbreviations 5-4
Addition 5-10
Address operator & 8-21
Addressing the operands 2-5
Allocation 5-6
Analogue
- inputs 2-7
- output 2-9
- transducers 4-17
AND 5-8
AND sequence 5-8
AND/OR sequence (example) 9-9
Areas of application 8-3
Auxiliary register 2-36

B
Backup copies 1-16
Binary divider 9-12
Block 2-48
- comparison, ICP 6-26
- comparison 8-16
- structure 2-48
- transfer, ICPY 6-30
- transfer, initialize mode 8-15
- transfer, syntax 8-13
Block comparison
- search mode 8-10

C
C: down counter 9-41
Cabling, check 4-17
CAL4RM: encoder 9-33
Calling the module 3-17
Carry bit 2-38
CK, SCK: summer/winter time 9-22
Code converter:
- Binary to Decimal, BID 6-5
- Decimal to Binary, DEB 6-17

Klockner-Moeller 4/94AWB27-1186-GB A-9

Appendix

Index

Communications data 2-15
Comparator, CP 6-16
Compare mode 8-17
Comparison 5-16
Compiling a progam 1 -15
Compiling the user program 1-15
Conditional
- bit 5-4
- branches 5-13
- jumps 5-24
- returns 5-37
Constants 2-11
Copying data fields 8-7
Copy mode 8-14
Counter
- alarm function block, CAU\RM 6-9
- input 2-7
Create a utilisation table 1 -9
Cycle time 1-7,4-8
- exceed the cycle time 1-7
- setting the cycle time 1-7

D
Data block
Date/time 4-39
- display 4-39
- specify 4-39
Designations 6-4
Destination range 8-11
Device configuration 1-7
- modify 1-7
Diagnostics status word 4-9
Digital inputs 2-7
Direct addressing 8-4
Division 5-18

Edge alarm function block, FALARM 6-19
- encoder with delay 9-38

A-10 4/94 AWB 27-1186-GB Klockner-Moeller

Appendix

Index

End of module 5-21
End of program 5-22
Exclusive OR 5-56

F
Fail-safe programming 9-5
FAL^RM: bottling plant 9-30
FIFO register, status 4-25
First In - First Out
- FIFOB 6-22
- FIFOW 6-24
Fleeting break contact (examples)
- constant 9-15
- variable 9-16
Fleeting make contact (examples)
- constant 9-13
- variable 9-14
Force setting
- dynamic 1-8
Forcing 4-21
Forward/reverse counter, C 6-6
Function block
- additional settings 2-26
- behaviour of the inputs 2-27
- call up 2-26
- dataflow 2-25
- definition 2-21
- incorporation into the user program 2-28
- location 2-24
- organisation 2-24
- parameters 2-13
- program sequence 2-25
- retentive 2-31
- shifting of data ranges after

inserting new module data 2-33
- status display 4-23
- types of memories and

module data storage 2-32

Klockner-Moeller 4/94 AWB 27-1186-GB A-11

Appendix

Index

G
Generator function block 6-60
GOR instruction 2-47

I
ICP/ICPY, check 4-25
INCLUDE instruction 3-5
Incorporating the configuration file 1-14
Indirect addressing 8-4
Indirect compare 8-7
Indirect copy 8-7
Information
- bytelNB 4-14
- data 2-15
Initialize mode 8-15
Initializing data fields 8-7
Inputs 2-6
Inserting reference files 3-7
Inserting source files 3-5
Instruction

- definition 2-3
- line 2-45
- operand section 2-4
- operation section 2-4
- structure 2-4
Instruction set of the program module 3-16
Intermediate results 2-41

K
Key to symbols 6-4

L
Last In - First Out
- LIFOB (Stack register) 6-34
- LIFOW (Stack register) 6-36
LIFO register, status 4-25
Load 5-26
Load auxiliary register 5-23

A-12 4/94 AWB 27-1186-GB Klockner-Moeller

Appendix

Index

M
Main program, structure 2-50
Marker addresses 2-9
Marker range
- content 4-24
- force setting in RUN 1-8
- retentive, set 1 -7
- set
Markers 2-9
Mode selector switch 4-7
Modifications with the PS 4 200 series
in "RUN" 4-29
Multiple program module call 3-13
Multiplication 5-28

N
Negation 5-31
- of operands 2-18
Nested program structure 3-10
Nesting depth with INCLUDE 3-10
Nesting depth with program modules 3-11
No operation 5-30
Number of elements NO 8-12
Number of function blocks 6-3

O
Observe marker states 1 -8
Off-delayed Timer, TF 6-58
On-delayed Timer, TR 6-62
Online program modification
- exit 4-33
- handling 4-31
- include files 4-35
- memory requirement 4-34
- program entry 4-32
- program modules 4-37
- restrictions 4-32
- special features 4-32

Klockner-Moeller 4/94 AWB 27-1186-GB A-13

Appendix

Index

Operand
- address 8-12
- overview 2-4
- status display 4-23
- types 2-3
Operations 2-18
Operators 2-18
OR 5-32
OR/AND sequence (example) 9-10
Order of program modules 3-15
Output addresses 2-8
Overflow bit 2-38

P
Parallel bus markers 2-10
Password
- accessible ranges 1-8
- enter 1-8
- protected ranges 1 -8
Peripheral operands 2-13
Plus/minus 2-38
Possible program module call-ups 5-14
Pre-processor instructions 2-53
Program cycle 2-51
Program module
- advantages 3-3
- call, rules 3-19
- character 3-16
- control function 3-29
- data transfer 3-23
- data transfer with multiple program

module calls 3-22
- execution time 3-19
- independent files 3-21
- memory requirement 3-19
- multiple call 3-26

A-14 4/94AWB27-1186-GB Klockner-Moeller

Appendix

Index

- online programming 3-35
- programming rules 3-20
- program sequence 3-31
- recursive call 3-33
- status display 3-38
- test functions 3-35
Program modules as independent files 3-27
Program processing in working register 2-41
Pulse transmitter, TP 6-61

R
RDAT: Reload data from retentive range 9-21
Real-time clock
Register overview
Reload data, Restore Data, RDAT
Reset
Return RET
Retentive markers
Rotate to the left
Rotate to the right

S
Save
- data, SDAT
SDAT: Saving data in retentive range
Search mode
Select start behaviour
Sequence
- overview
Sequential control module, SK
Set
Setting system parameters
Setting real-time clock, SCK
Shift left with carry
Shift register
- SR
- SRB
- SRW
Shift right with carry

2-11
2-36
6-38
5-34
5-36
4-8
5-38
5-40

6-42
9-17
8-19
1-7
2-25
2-46
6-44
5-42
1-5
6-40
5-46

6-46
6-50
6-52
5-50

5-39

Klockner-Moeller 4/94 AWB 27-1186-GB A-15

Appendix

Index

Shift to the left
Shift to the right
SK sequential control function block
- alternative branch
- A N D sequence
- AND step sequence
- applications
- cyclical processing
- cyclical processing of the step

sequence
- diagnostics
- initialisation
- initial step
- inputs
- nesting
- nesting depth: cascading
- OR sequence
- OR step sequence

(alternative branch)
- outputs
- processing
- representation
- self-maintaining function
- simultaneous branch

(AND sequence)
- simultaneous branch with

synchronization
- status indication
- step
- step condition
- synchronisation
- syntax
- transition
Space
Stack operations
Stack register
Status/diagnostics inputs
Status indication

5-44
5-48

7-5,7-11
7-5
7-12
7-3
7-21

7-6
7-22
7-17
7-5
7-14
7-32
7-13
7-5

7-11
7-14
7-3,7-6, 7-19
7-5, 7-13
7-3

7-5

7-12
7-22
7-5
7-5
7-5, 7-31,7-32
7-13
7-4, 7-5
5-4
2-41
2-36, 2-39
2-14
8-27

A-16 4/94AWB27-1186-GB Klockner-Moeller

Appendix

Index

Status register
Subtraction
Summation
Symbolic operands
System specific operands

2-36
5-52
8-23
2-15
2-13

T
TALARM:
encoder
Encoder with delay
Test functions
Time
- alarm function block, TALARM
- date Comparator, CK
- generator, TGEN
TR
- clock generator
- pulse generator
- rolling shutter control
- two-point controller with hysteresis
Transferring a program to the PLC

U
Unconditional Jump
User program
- activate checksum
- definition
- save version number

V
Voltage failure, behaviour of the
markers

W
Working register

Z
Zero bit

9-34
9-36
4-5

6-54
6-12
6-60

9-38
9-39
9-24
9-26
1-17

5-25

1-6
2-3
1-9

1-8

2-36

2-38

Klockner-Moeller 4/94 AWB 27-1186-GB A-17

ELEV2

 Documentation of programs in IL

 Program file :elev2.q42

 Reference file:elevator.z42

 System parameters :

 Program check in RUN : No

 Start after NOT READY : Halt

 Maximum cycle time in ms : 60 ms

 Aktive marker range : MB4096

 Retentive marker range from : -

 to :
-

 Retentive marker range from : -

 (also after cold start) to : -

 Force marker range from : -

 to :
-

 Version number for user program : 0000

Page 1

ELEV2

ÚÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÂÄ
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³Date ³Name ³Project/Location/Inventory number
³Company/Drawing number ³Page ³
ÃÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÅÄ
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
³Signed ³05/04/2012³S. Noval ³Automation process of an elevator system
³Univ. "Vasile Alecsandri" din Bacau ³1 ³
³Output ³ ³ ³ ³
 ³ ³
³Index ³ ³ ³ ³
 ³ ³
ÀÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÁÄ
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
�

 Directory

Chapter/Page

 00000 control elevator algorithm 2
 00001 $INI Initializare
 00002 $E0
 00003 ET1
 00004 ET2
 00005 ET3
 00006 ET4
 00007 END
 00008 $E1
 00009 END
 00010 $E2
 00011 END
 00012 $E3
 00013 END
 00014 $E4
 00015 END
 00016 $E5
 00017 ET6
 00018 ET7
 00019 ET8
 00020 ET9
 00021 END
 00022 $E6
 00023 END
 00024 $E7
 00025 END
 00026 $E8
 00027 END
 00028 $E9
 00029 END
 00030 $E10
 00031 DOWN
 00032 UP
 00033 EQUAL
 00034 END
 00035 $E11
 00036 END
 00037 $E12
 00038 END

Page 2

ELEV2

ÚÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÂÄ
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÂÄÄÄÄÄÄÄÄÄÄÄÄÄÄ¿
³ ³Date ³Name ³Project/Location/Inventory number
³Company/Drawing number ³Page ³
ÃÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÅÄ
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
³Signed ³05/04/2012³S. Noval ³Automation process of an elevator system
³Univ. "Vasile Alecsandri" din Bacau ³1 ³
³Output ³ ³ ³ ³
 ³ ³
³Index ³ ³ ³ ³
 ³ ³
ÀÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÁÄ
ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÁÄÄÄÄÄÄÄÄÄÄÄÄÄÄÙ
�³Line ³ Program line ³ Operand comment
³Symb./Oper.³M/B³ Terminal ³ Cross-reference file³
ÃÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄ
ÅÄÄÄÄÄÄÄÄÄÄÄÅÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ´
³00000 "control elevator algorithm 2
³ ³ ³ ³ ³
³ 1 #include "jose.k42"
³ ³ ³ ³ ³
³ 2
³ ³ ³ ³ ³
³ 3 SK0 -13 Functie de control secvential
³ ³ ³ ³ ³
³ 4 S: L K 1
³ ³ ³ ³ ³
³ 5 R: INB0.0
³ ³ ³ ³ ³
³ 6 SINO:
³ ³ ³ ³ ³
³ 7 ERR:
³ ³ ³ ³ ³
³ 8 SQNO:
³ ³ ³ ³ ³
³ 9 TG:
³ ³ ³ ³ ³
³ 10 INIT: $INI
³ ³ ³ ³ ³
³ 11 AC1: $E0
³ ³ ³ ³ ³
³ 12 AC2: $E1
³ ³ ³ ³ ³
³ 13 AC3: $E2
³ ³ ³ ³ ³
³ 14 AC4: $E3
³ ³ ³ ³ ³
³ 15 AC5: $E4
³ ³ ³ ³ ³
³ 16 AC6: $E5
³ ³ ³ ³ ³
³ 17 AC7: $E6
³ ³ ³ ³ ³
³ 18 AC8: $E7
³ ³ ³ ³ ³
³ 19 AC9: $E8
³ ³ ³ ³ ³
³ 20 AC10: $E9
³ ³ ³ ³ ³
³ 21 AC11: $E10
³ ³ ³ ³ ³
³ 22 AC12: $E11
³ ³ ³ ³ ³
³ 23 AC13: $E12
³ ³ ³ ³ ³

Page 3

ELEV2
³ 24 EP
³ ³ ³ ³ ³
³00001 $INI "Initializare
³ ³ ³ ³ ³
³ 1 L KB 1
³ ³ ³ ³ ³
³ 2 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 3 EM
³ ³ ³ ³ ³
³00002 $E0 "
³ ³ ³ ³ ³
³ 1 L K 0
³ ³ ³ ³ ³
³ 2 = 'DOWN Actiuni motor jos
³Q 0.2 ³ ³ ³ ³
³ 3 = 'UP Actiuni motor sus
³Q 0.1 ³ ³ ³ ³
³ 4 = M 0.0
³ ³ ³ ³ ³
³ 5 = M 0.1
³ ³ ³ ³ ³
³ 6 = M 0.2
³ ³ ³ ³ ³
³ 7 = M 0.3
³ ³ ³ ³ ³
³ 8 L 'L0 Sensor level 0
³I 0.0 ³ ³ ³ ³
³ 9 JC ET1
³ ³ ³ ³ ³
³ 10 L 'L1 Sensor level 1
³I 0.1 ³ ³ ³ ³
³ 11 JC ET2
³ ³ ³ ³ ³
³ 12 L 'L2 Sensor level 2
³I 0.2 ³ ³ ³ ³
³ 13 JC ET3
³ ³ ³ ³ ³
³ 14 L 'L3 Sensor level 3
³I 0.3 ³ ³ ³ ³
³ 15 JC ET4
³ ³ ³ ³ ³
³ 16 JCN END
³ ³ ³ ³ ³
³00003 ET1 "
³ ³ ³ ³ ³
³ 1 L KB 2
³ ³ ³ ³ ³
³ 2 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 3 JP END
³ ³ ³ ³ ³
³00004 ET2 "
³ ³ ³ ³ ³
³ 1 L KB 3
³ ³ ³ ³ ³
³ 2 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 3 JP END
³ ³ ³ ³ ³
³00005 ET3 "
³ ³ ³ ³ ³
³ 1 L KB 4
³ ³ ³ ³ ³
³ 2 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 3 JP END
³ ³ ³ ³ ³

Page 4

ELEV2
³00006 ET4 "
³ ³ ³ ³ ³
³ 1 L KB 5
³ ³ ³ ³ ³
³ 2 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 3 JP END
³ ³ ³ ³ ³
³00007 END "
³ ³ ³ ³ ³
³ 1 EM
³ ³ ³ ³ ³
³00008 $E1 "
³ ³ ³ ³ ³
³ 1 L KB 0
³ ³ ³ ³ ³
³ 2 = 'ALEVEL
³MB2 ³ ³ ³ ³
³ 3 L KB 6
³ ³ ³ ³ ³
³ 4 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 5 JP END
³ ³ ³ ³ ³
³00009 END "
³ ³ ³ ³ ³
³ 1 EM
³ ³ ³ ³ ³
³00010 $E2 "
³ ³ ³ ³ ³
³ 1 L KB 1
³ ³ ³ ³ ³
³ 2 = 'ALEVEL
³MB2 ³ ³ ³ ³
³ 3 L KB 6
³ ³ ³ ³ ³
³ 4 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 5 JP END
³ ³ ³ ³ ³
³00011 END "
³ ³ ³ ³ ³
³ 1 EM
³ ³ ³ ³ ³
³00012 $E3 "
³ ³ ³ ³ ³
³ 1 L KB 2
³ ³ ³ ³ ³
³ 2 = 'ALEVEL
³MB2 ³ ³ ³ ³
³ 3 L KB 6
³ ³ ³ ³ ³
³ 4 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 5 JP END
³ ³ ³ ³ ³
³00013 END "
³ ³ ³ ³ ³
³ 1 EM
³ ³ ³ ³ ³
³00014 $E4 "
³ ³ ³ ³ ³
³ 1 L KB 3
³ ³ ³ ³ ³
³ 2 = 'ALEVEL
³MB2 ³ ³ ³ ³
³ 3 L KB 6
³ ³ ³ ³ ³

Page 5

ELEV2
³ 4 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 5 JP END
³ ³ ³ ³ ³
³00015 END "
³ ³ ³ ³ ³
³ 1 EM
³ ³ ³ ³ ³
³00016 $E5 "
³ ³ ³ ³ ³
³ 1 L 'P0 Buton level 0
³I 0.4 ³ ³ ³ ³
³ 2 JC ET6
³ ³ ³ ³ ³
³ 3 L 'P1 Buton level 1
³I 0.5 ³ ³ ³ ³
³ 4 JC ET7
³ ³ ³ ³ ³
³ 5 L 'P2 Buton level 2
³I 0.6 ³ ³ ³ ³
³ 6 JC ET8
³ ³ ³ ³ ³
³ 7 L 'P3 Buton level 3
³I 0.7 ³ ³ ³ ³
³ 8 JC ET9
³ ³ ³ ³ ³
³ 9 JCN END
³ ³ ³ ³ ³
³00017 ET6 "
³ ³ ³ ³ ³
³ 1 L KB 7
³ ³ ³ ³ ³
³ 2 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 3 JP END
³ ³ ³ ³ ³
³00018 ET7 "
³ ³ ³ ³ ³
³ 1 L KB 8
³ ³ ³ ³ ³
³ 2 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 3 JP END
³ ³ ³ ³ ³
³00019 ET8 "
³ ³ ³ ³ ³
³ 1 L KB 9
³ ³ ³ ³ ³
³ 2 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 3 JP END
³ ³ ³ ³ ³
³00020 ET9 "
³ ³ ³ ³ ³
³ 1 L KB 10
³ ³ ³ ³ ³
³ 2 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 3 JP END
³ ³ ³ ³ ³
³00021 END "
³ ³ ³ ³ ³
³ 1 EM
³ ³ ³ ³ ³
³00022 $E6 "
³ ³ ³ ³ ³
³ 1 L KB 0
³ ³ ³ ³ ³

Page 6

ELEV2
³ 2 = 'LEVEL
³MB1 ³ ³ ³ ³
³ 3 L K 1
³ ³ ³ ³ ³
³ 4 = M 0.0
³ ³ ³ ³ ³
³ 5 L KB 11
³ ³ ³ ³ ³
³ 6 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 7 JP END
³ ³ ³ ³ ³
³00023 END "
³ ³ ³ ³ ³
³ 1 EM
³ ³ ³ ³ ³
³00024 $E7 "
³ ³ ³ ³ ³
³ 1 L KB 1
³ ³ ³ ³ ³
³ 2 = 'LEVEL
³MB1 ³ ³ ³ ³
³ 3 L K 1
³ ³ ³ ³ ³
³ 4 = M 0.1
³ ³ ³ ³ ³
³ 5 L KB 11
³ ³ ³ ³ ³
³ 6 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 7 JP END
³ ³ ³ ³ ³
³00025 END "
³ ³ ³ ³ ³
³ 1 EM
³ ³ ³ ³ ³
³00026 $E8 "
³ ³ ³ ³ ³
³ 1 L KB 2
³ ³ ³ ³ ³
³ 2 = 'LEVEL
³MB1 ³ ³ ³ ³
³ 3 L K 1
³ ³ ³ ³ ³
³ 4 = M 0.2
³ ³ ³ ³ ³
³ 5 L KB 11
³ ³ ³ ³ ³
³ 6 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 7 JP END
³ ³ ³ ³ ³
³00027 END "
³ ³ ³ ³ ³
³ 1 EM
³ ³ ³ ³ ³
³00028 $E9 "
³ ³ ³ ³ ³
³ 1 L KB 3
³ ³ ³ ³ ³
³ 2 = 'LEVEL
³MB1 ³ ³ ³ ³
³ 3 L K 1
³ ³ ³ ³ ³
³ 4 = M 0.3
³ ³ ³ ³ ³
³ 5 L KB 11
³ ³ ³ ³ ³

Page 7

ELEV2
³ 6 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 7 JP END
³ ³ ³ ³ ³
³00029 END "
³ ³ ³ ³ ³
³ 1 EM
³ ³ ³ ³ ³
³00030 $E10 "
³ ³ ³ ³ ³
³ 1 L 'LEVEL
³MB1 ³ ³ ³ ³
³ 2 CP 'ALEVEL
³MB2 ³ ³ ³ ³
³ 3 BLT DOWN
³ ³ ³ ³ ³
³ 4 BGT UP
³ ³ ³ ³ ³
³ 5 BE EQUAL
³ ³ ³ ³ ³
³ 6 JP END
³ ³ ³ ³ ³
³00031 DOWN "
³ ³ ³ ³ ³
³ 1 L KB 12
³ ³ ³ ³ ³
³ 2 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 3 JP END
³ ³ ³ ³ ³
³00032 UP "
³ ³ ³ ³ ³
³ 1 L KB 13
³ ³ ³ ³ ³
³ 2 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 3 JP END
³ ³ ³ ³ ³
³00033 EQUAL "
³ ³ ³ ³ ³
³ 1 L KB 1
³ ³ ³ ³ ³
³ 2 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³ 3 JP END
³ ³ ³ ³ ³
³00034 END "
³ ³ ³ ³ ³
³ 1 EM
³ ³ ³ ³ ³
³00035 $E11 "
³ ³ ³ ³ ³
³ 1 L K 1
³ ³ ³ ³ ³
³ 2 = 'DOWN Actiuni motor jos
³Q 0.2 ³ ³ ³ ³
³ 3 L 'L0 Sensor level 0
³I 0.0 ³ ³ ³ ³
³ 4 A M 0.0
³ ³ ³ ³ ³
³ 5 = M 0.4
³ ³ ³ ³ ³
³ 6 L 'L1 Sensor level 1
³I 0.1 ³ ³ ³ ³
³ 7 A M 0.1
³ ³ ³ ³ ³
³ 8 = M 0.5
³ ³ ³ ³ ³

Page 8

ELEV2
³ 9 L 'L2 Sensor level 2
³I 0.2 ³ ³ ³ ³
³ 10 A M 0.2
³ ³ ³ ³ ³
³ 11 = M 0.6
³ ³ ³ ³ ³
³ 12 L 'L3 Sensor level 3
³I 0.3 ³ ³ ³ ³
³ 13 A M 0.3
³ ³ ³ ³ ³
³ 14 = M 0.7
³ ³ ³ ³ ³
³ 15 L M 0.4
³ ³ ³ ³ ³
³ 16 O M 0.5
³ ³ ³ ³ ³
³ 17 O M 0.6
³ ³ ³ ³ ³
³ 18 O M 0.7
³ ³ ³ ³ ³
³ 19 JCN END
³ ³ ³ ³ ³
³ 20 L KB 1
³ ³ ³ ³ ³
³ 21 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³00036 END "
³ ³ ³ ³ ³
³ 1 EM
³ ³ ³ ³ ³

³00037 $E12 "
³ ³ ³ ³ ³
³ 1 L K 1
³ ³ ³ ³ ³
³ 2 = 'UP Actiuni motor sus
³Q 0.1 ³ ³ ³ ³
³ 3 L 'L0 Sensor level 0
³I 0.0 ³ ³ ³ ³
³ 4 A M 0.0
³ ³ ³ ³ ³
³ 5 = M 0.4
³ ³ ³ ³ ³
³ 6 L 'L1 Sensor level 1
³I 0.1 ³ ³ ³ ³
³ 7 A M 0.1
³ ³ ³ ³ ³
³ 8 = M 0.5
³ ³ ³ ³ ³
³ 9 L 'L2 Sensor level 2
³I 0.2 ³ ³ ³ ³
³ 10 A M 0.2
³ ³ ³ ³ ³
³ 11 = M 0.6
³ ³ ³ ³ ³
³ 12 L 'L3 Sensor level 3
³I 0.3 ³ ³ ³ ³
³ 13 A M 0.3
³ ³ ³ ³ ³
³ 14 = M 0.7
³ ³ ³ ³ ³
³ 15 L M 0.4
³ ³ ³ ³ ³
³ 16 O M 0.5
³ ³ ³ ³ ³
³ 17 O M 0.6
³ ³ ³ ³ ³
³ 18 O M 0.7

Page 9

ELEV2
³ ³ ³ ³ ³
³ 19 JCN END
³ ³ ³ ³ ³
³ 20 L KB 1
³ ³ ³ ³ ³
³ 21 = SK0 SINO Functie de control secvential
³ ³ ³ ³ ³
³00038 END "
³ ³ ³ ³ ³
³ 1 EM
³ ³ ³ ³ ³

 ********** P R O G R A M E N D *********

Page 10

A
06/01 AWA27-1589

Montageanweisung
Installation Instructions
Notice d’installation

Istruzioni per il montaggio
Instrucciones de montaje

15890601.FM Seite 1 Montag, 15. Januar 2007 3:22 15
1/10

PS4-201-MM1

Abmessungen – Dimensions – Dimensioni – Dimensiones [mm]

UL/CSA

1) p. d. Pilot Duty/Maximum operating temperature 55 °C/
Tightening torque 0.6 Nm/AWG 12-28

Power
Supply

of channels and
Input Rating

of channels and
Output Rating

24 V DC
0.8 A

8 digital
24 V DC
2 analog

6 digital
24 V DC, 0.5 A
24 V DC, 0.5 A p. d.1)

1 analog

A AWB27-1184…
AWB27-1287…

h Das Gerät ist für den industriellen Einsatz
geeignet (l EN 55011/22 Klasse A).
The device is suitable for use in industrial
environments (l EN 55011/22 Class A).
L’appareil a été conçu pour l’emploi en milieu
industriel (l EN 55011/22 classe A).
L’apparecchio è adatto per uso in ambienti
industriali (l EN 55011/22 Classe A).
El aparato es adecuado para uso en ambiente
industrial (l EN 55011/22 clase A).

79

86

45

134.5

85 87
.5
For Immediate Delivery call KMParts.com at (866) 595-9616

06
/0

1
AW

A2
7-

15
89

15890601.FM Seite 2 Montag, 15. Januar 2007 3:22 15
2/10

Frontansicht – Front view – Face avant – Vista frontale – Vista de frente

Offene Gehäuseklappe
Housing cover open
Courvercle ouverte
Calotta della custodia aperta
Tapa abierta

a Batterie
b Reset-Taste
c Stiftleiste für Lokale Erweiterung
d Betriebsarten-Vorwahlschalter S2

a 24-V-DC-Stromversorgung
b Eingang: „Schneller Zähler“,

(3 kHz)
c Alarmeingang
d 8 Digital-Eingänge

24 V DC und 24-V-DC-
Versorgung für die Ausgänge

e Steckbare Schraubklemme

f Statusanzeige der Eingänge
g Statusanzeige der Ausgänge
h 6 Digital-Ausgänge

24 V DC/0,5 A; kurzschlussfest
und überlastsicher
2 Analog-Eingänge (0 bis 10 V)
1 Analog-Ausgang (0 bis 10 V)

i Suconet-K-Schnittstelle/seriell
transparent (RS 485)

j Sollwertgeber P1, P2
k Schalter S1 für Busabschluss-

widerstände
l Programmiergeräte-Schnitt-

stelle (PRG)/seriell transparent
(RS 232)

m Speichermodul
n Statusanzeige der Steuerung

S1

Power Supply
24V 0V

1=Ready
2=Run
3=Not Ready
4=Battery

Suconet K

1 2

1 2 3 4

Digital
Input

Digital
Output

Analog
Input/Output

PS4-201-MM1

.0 Output
Power Supply.1 .2 .3 .4 .5

.0 .1 .2 .3 .4 .5 U0 U1 U10 0VA

.6 .7 24VQ 0VQ

a b d

g

hjk i

c

PRG

f

e

e

n

P1 P2

l

m

b

c

d

a

Reset

1 Halt/Diag.
2 Run
3 Run M-Reset

+

Battery

1
2
3

S2

Diag.
For Immediate Delivery call KMParts.com at (866) 595-9616

15890601.FM Seite 3 Montag, 15. Januar 2007 3:22 15
3/10

06
/0

1
AW

A2
7-

15
89

a 24 V DC power supply
b Input high-speed counter (3 kHz)
c Alarm input
d 8 24 V DC digital inputs and 24 V DC supply

for the outputs
e Plug-in screw terminal
f LED status display for the inputs
g LED status display for the outputs
h 6 24 V DC/0.5 A digital outputs; short-circuit proof

and overload protectetd 2 analog inputs (0 to 10 V)
1 analog output (0 to 10 V)

i Suconet K interface/serial transparent (RS 485)
j Setpoint potentiometer P1, P2
k S1 Switch for bus terminating resistors
l Programming device interface (PRG)/

serial transparent (RS 232)
m Memory module
n LED status display of the PLC

a Alimentation secteur 24 V CC Terre de protection
b Entrée compteur rapide (3 kHz)
c Entrée d’alarme
d 8 entrées digitales 24 V CC et 24 V CC

alimentation pur sorties
e Bornier à vis enfichable
f Afficheur d’état DEL entrées
g Afficheur d’état DEL sorties
h 6 sorties digitales 24 V CC/0,5 A;

protection courts-circuits et surchages
2 entrées analogiques (0 à 10 V)
1 sortie analogique (0 à 10 V)

i Liaison Suconet K/séquentiel transparent (RS 485)
j Module d’entrées de consignes
k S1 interrupteur pour résistance de terminaison

de bus
l Liaison pour appareils de programmation (PRG)/

séquentiel transparent (RS 232)
m Module de mémoire
n Afficheur d’état DEL de l’automate

a Battery
b Reset button
c Terminal for local expansion
d Mode selector switch S2

a Pile
b Bouton RAZ
c Connecteur pour extensions locales
d Sélecteur modes de fonctionnement S2

a 24 V DC alimentazione
b Ingresso contatore veloce 3 kHz
c ingresso interrupt
d 8 ingressi digitali 24 V DC e 24 V DC

alimentazione per uscite
e Morsetto a vite sfilabile
f Visualizzazione di stato a LED degli ingressi
g Visualizzazione di stato a LED degli uscite
h 6 uscite digitali 24 V DC/0,5 A;

protetto da cortocircuito e sovraccarico
2 ingressi analogici (0 a 10 V)
1 uscita analoga (0 a 10 V)

i Interfaccia Suconet K/in serie transparente (RS 485)
j Potenziometro P1, P2
k Interruttore S1 resistenze di terminazione bus
l Interfaccia di programmazione (PRG)/

in serie transparente (RS 232)
m Modulo di memoria
n Visualizzazione a LED di PLC

a 24 V DC alimentación
b Entrada de contador rapido 3 kHz
c Entrada de alarma
d 8 entradas digitales 24 V DC y

24 V DC alimentación para las salidas
e Terminal roscado enchufable
f LED visualización entradas
g LED visualización salidas
h 6 salidas digitales 24 V DC/0,5 A; a prueba de

cortocircuitos y seguridad contra sobrecargas
2 entradas analógicas (0 a 10 V)
1 salida analógica (0 a 10 V)

i Interface Suconet K/en serie transparente (RS 485)
j Encoder
k Interruptor S1 para bus resistancias terminales
l Interface aparatos de programmación (PRG)/

en serie transparente (RS 232)
m Módulo de memoria
n LED visualización del PLC

a Batteria
b Tasto di reset
c Connettore per espansioni locali
d Selettore modo di funzionamento S2

a Pila
b Pulsador Reset
c Regleta de bornes para extensiones locales
d Selector de modo de servicio S2
For Immediate Delivery call KMParts.com at (866) 595-9616

06
/0

1
AW

A2
7-

15
89

15890601.FM Seite 4 Montag, 15. Januar 2007 3:22 15
4/10

Anschlüsse – Connections – Raccordements – Collegamenti – Conexiones

a Schraubklemmen
24-V-DC-Netzanschluss, Anschlussquerschnitt
– flexibel mit Aderendhülse 2 x 0,75 mm2 bis 1,5 mm2

– massiv 2 x 0,75 mm2 bis 2,5 mm2

b Steckbare Schraubklemme
c Anschlussquerschnitte: Alle Klemmen sind für 1 x 1,5 mm2

oder 2 x 0,75 mm2 mit Aderendhülse ausgelegt.
d Stiftleiste für Lokale Erweiterungen LE4
e Suconet-K-Anschluss (RS 485)
f Programmiergeräte-Schnittstelle (RS 232)

+

S1 P1 P2

c

Power Supply

c

b

a

b

d

f e

24V 0V

Suconet K

1 2

.0 .1 .2 .3 .4 .5

.0 .1 .2 .3 .4 .5 U0 U1 U10 0VA

.6 .7 24VQ 0VQ
Output
Power Supply

PRG

1 2

3

Lokale Erweiterung
Local expansion
Extension locale
Espansione locale
Extensión local

Achtung!
Buchsenstecker nur im spannungs-
losen Zustand stecken oder ziehen.

Care!
Always switch off the power supply when
fitting or removing the socket connector.

Attention !
Le connecteur ne doit être branché ou
debranché qu´hors tension.

Attenzione!
Inserire o togliere il connetore solo a tensione
disinserita.

¡Atención!
Enchufar o desenchufar al conector hembra
sólo sin tensión.
For Immediate Delivery call KMParts.com at (866) 595-9616

15890601.FM Seite 5 Montag, 15. Januar 2007 3:22 15
5/10

06
/0

1
AW

A2
7-

15
89

a Screw terminal
24 V DC power supply
Connection cross-section:
– flexible with ferrule: 2 x 0.75 mm2 to 1.5 mm2

– without ferrule 2 x 0.75 mm2 to 2.5 mm2

b Plug-in screw terminal
c Connection cross-sections: All terminals are designed

for 1 x 1.5 mm2 or 2 x 0.75 mm2 with ferrule
d Terminal for LE4 local expander units
e Suconet K connection (RS 485)
f Programming device interface (RS 232)

a Bornier à vis
Alimentation secteur 24 V CC
Section de raccordement :
– avec embout : 2 x 0,75 mm2 à 1,5 mm2

– sans embout : 2 x 0,75 mm2 à 2,5 mm2

b Bornier à vis enfichable
c Section de raccordement : Toutes les bornes

sont conçues pour une section 1 x 1,5 mm2
ou 2 x 0,75 mm2 et douille d’embout.

d Connecteur pour extensions locales LE4
e Raccordement Suconet K (RS 485)
f Liaison pour appareils de programmation (RS 232)

a Morsetti a vite
Alimentazione 24 V DC
Sezione del cavo
– flessibile, con guaina 2 x 0,75 mm2 a 1,5 mm2

– rigido 2 x 0,75 mm2 a 2,5 mm2

b Morsetto a vite sfilabile
c Sezione del cavo: tutti i morsetti sono utilizzabili per

1 x 1,5 mm2 oppure 2 x 0,75 mm2 con guaina
d Connettore per espansioni locali LE4
e Collegamento Suconet K (RS 485)
f Interfaccia di programmazione (RS 232)

a Terminales roscados
Alimentación 24 V DC, Secciónes de conexión:
– flexible con casquillo 2 x 0,75 mm2 a 1,5 mm2
– macizo 2 x 0,75 mm2 a 2,5 mm2

b Terminal roscado
c Secciones de conexión: todos los terminales

están dimensionados para 1 x 1,5 mm2 o bien
2 x 0,75 mm2 con casquillo

d Regleta de bornes para extensiones locales LE4
e Conexión Suconet K (RS 485)
f Interface aparatos de programmación (RS 232)
For Immediate Delivery call KMParts.com at (866) 595-9616

06
/0

1
AW

A2
7-

15
89

15890601.FM Seite 6 Montag, 15. Januar 2007 3:22 15
6/10

Schirmerdung – Earthing the screen – Mise à la terre du blindage –
Collegamento alla terra dello schermo – Conexión a tierra de pantalla

* Signalleitungen (abhängig vom Modul) – Signal cable (depending on module) – Ligne de signaux (en fonction
du module) – Conduttore del segnale (dipendente dal modulo) – Línea de señalización (en función del módulo)

a für Hutschiene – for top-hat rail – pour profilé-
support – per guida – para guía simétrica

b für Montageplatte – for mounting plate – pour
plaque de montage – per piastra di montaggio –
para placa de montaje

PS4/EM4

*

*

a b

M4

ZB4-102-KS1

ZB4-102-KS1

FM 4/TS 35
(Weidmüller)

KLBü 3-8 SC
(Weidmüller)
For Immediate Delivery call KMParts.com at (866) 595-9616

15890601.FM Seite 7 Montag, 15. Januar 2007 3:22 15
7/10

06
/0

1
AW

A2
7-

15
89

Alternative Schirmerdung – Alternative screen earth – Mise à la terre du
blindage au choix – Collegamento alternativo dello schermo a terra –
Puesta a tierra alternativa de la pantalla
Falls die Schirmerdung auf Seite 6/10 aus Platzgründen nicht möglich ist.
In the event that the screen earthing arrangement on Page 6/10 is not possible due to lack of space.
Au cas où la mise à la terre du blindage en page 6/10 est trop encombrante.
Se il collegamento a terra dello schermo di pag. 6/10 richiede troppo spazio.
En caso de que la puesta a tierra de la pantalla en página 6/10 no sea posible por razones de espacio.

PS4/EM4

PS4-...
EM4-...

PS4/EM4

PS4-...
EM4-...

2.5 mm2 (< 11 cm)
For Immediate Delivery call KMParts.com at (866) 595-9616

06
/0

1
AW

A2
7-

15
89

15890601.FM Seite 8 Montag, 15. Januar 2007 3:22 15
8/10

Busabschlusswiderstände – Bus terminating resistors – Résistances de terminaison
de bus – Resistenci di terminazione bus – Resistencias terminales de bus

Batterie – Batery – Pile – Batteria – Pila

Speichermodul – Memmory Module – Module de mémoire – Modulo di memoria –
Módulo de memoria

Schalterstellung im Auslieferungszustand

Factory setting

Position à la livraison

Impostazione di fabbrica

Posición de entrega

S1: 1 ON
2 ON

Achtung!
Nur im eingeschalteten Zustand
stecken oder ziehen.

Attention!
Only fit or remove if switched on.

Attention !
Ni enficher ni retirer que lorsque l’appareil
est sous tension.

Attenzione!
Inserire/togliere solo a tension inserita.

¡Atención!
Meter o sacar sólo con tensión.

Achtung!
Nur im spannungslosen Zustand
stecken oder ziehen.

Attention!
Always switch off the power supply when fitting
or removing.

Attention !
Brancher/débrancher uniquement hors tension.

Attenzione!
Inserire o togliere solo a tensione disinserita.

¡Atención!
Enchufar o desenchufar sólo sin tensión.

S1

On
Off 1 2

P1 P2

1
2

1

2

3

4

For Immediate Delivery call KMParts.com at (866) 595-9616

15890601.FM Seite 9 Montag, 15. Januar 2007 3:22 15
9/10

06
/0

1
AW

A2
7-

15
89

Montage – Fitting – Montaggio – Montaje
auf Montageplatte mit 35-mm-Hutschiene a (senkrecht ohne LE oder waagerecht)
on mounting plate with 35 mm top-hat rail a (vertical without LE or horizontal)
sur plaque de montage avec profilé-support 35 mm a (vertical sans LE ou horizontal)
su piastra di montaggio con guida DIN 35 mm a (verticale senza LE o orizzontale)
sobre placa de montaje con guía simétrica de 35 mm a (vertical sin LE ó horizontal)

auf Montageplatte (senkrecht ohne LE oder waagerecht)
on mounting plate (vertical without LE or horizontal)
sur plaque de montage (vertical sans LE ou horizontal)
su piastra di montaggio (verticale senza LE o orizzontale)
sobre placa de montaje (vertical sin LE ó horizontal)

35

42
.5

4542
.5

a
1

23

ZB4-101-GF1
For Immediate Delivery call KMParts.com at (866) 595-9616

06
/0

1
AW

A2
7-

15
89

15890601.FM Seite 10 Montag, 15. Januar 2007 3:22 15
10/10

Bohrschablone M 1 : 1
Template for holes, scale 1 : 1
Gabarit de perçage, échelle 1 : 1
Dima di foratura, scala 1 : 1
Plantilla para taladros, escala 1 : 1

100

40
.2

5
94

.2
5

15
.2

5
10

0
19

.2
5

M
4

EM
4/

PS
4

Moeller GmbH, Industrieautomation, D-53115 Bonn
© 1997 by Moeller GmbH

Änderungen
vorbehalten

06/01 AWA27-1589 DE13 Doku/Eb
Printed in Germany (01/07)

For Immediate Delivery call KMParts.com at (866) 595-9616

ELEVATOR
 " Printout of file: c:elevator.z42 Date: 3. 4.12"

Symbol Operand M/B Terminal Operand comment
ÄÄÄ
L0 I 0.0 Sensor level 0
L1 I 0.1 Sensor level 1
L2 I 0.2 Sensor level 2
L3 I 0.3 Sensor level 3
P0 I 0.4 Buton level 0
P1 I 0.5 Buton level 1
P2 I 0.6 Buton level 2
P3 I 0.7 Buton level 3
DOWN Q 0.1 Actiuni motor jos
UP Q 0.2 Actiuni motor sus
LEVEL MB1
ALEVEL MB2
 SK0 Functie de control secvential
 INB0.0
 M 0.0
 M 0.1
 M 0.2
 M 0.3
 M 1.1

Page 1

11

M1 LEVEL CONTROL

M2 BUTTON CONTROL

23

24 27

25 28

26 29

0

M3 DOOR CONTROL

30

M0.0=0 ; M0.1=0 ; M0.2=0 ; M0.3=0 ; M0.4=0 ; M0.5=0 ; M0.6=0 ; M0.7=0; M0.8=0 ; M0.9=0
UP.LIGHT=0 ; DOWN.LIGHT=0 ; SEC.FAIL=0 ; EXT.BUT.LIGHT=0 ; CARLIGHT=0

NOP

t = 5s

BRAKE=0 ; DOWN FAST = 1 ; DOWN.LIGHT=1

DOWN FAST = 0 ; DOWN SLOW = 1

t = 5s

BRAKE=0 ; UP FAST = 1 ; UP.LIGHT=1

UP FAST = 0 ; UP SLOW = 1

DOWN SLOW = 0 ; UP SLOW = 0 ; BRAKE=1

 L0*M0.0+L1*M0.1+L2*M0.2+L3*M0.3+L4*M0.4+L5*M0.5+L6*M0.6+L7*M0.7+L8*M0.8+L9*M0.9

 LEVEL>ALEVEL

t=5s

=1

 36 DOWN FAST=0 ; DOWN SLOW=0 ; UP FAST=0 ; UP SLOW=0 ; BRAKE = 1 ; SEC.FAIL=1

38 WIRE+SPLIMIT+BOTTOM+TOP+ENERGY+STOP

 LEVEL<ALEVEL

 =1

 WEIGHT

ALARM=0 ; OPEN DOOR=0 ; CLOSE DOOR=1

 D0*M0.0+D1*M0.1+D2*M0.2+D3*M0.3+D4*M0.4+D5*M0.5+D6*M0.6+D7*M0.7+D8*M0.8+D9*M0.9 U0*M0.0+U1*M0.1+U2*M0.2+U3*M0.3+U4*M0.4+U5*M0.5+U6*M0.6+U7*M0.7+U8*M0.8+U9*M0.9

UO,U1,U2,U3,U4,U5,U6,U7,U8,U9--> UP MOVE SENSORS
DO,D1,D2,D3,D4,D5,D6,D7,D8,D9 --> DOWN MOVE SENSORS

LO,L1,L2,L3,L4,L5,L6,L7,L8,L9--> LEVEL SENSORS

Drawed by

 Checked by

Scale:

Name Date

CP LEVEL & ALEVEL

t=5s

=1

 STOP+WIRE+SPLIMIT+BOTTOM+TOP+ENERGY

AUTOMATION PROCESS
 OF AN ELEVATOR SYSTEM

GRAFCET MAIN CONTROL 1

S. Noval 14/03/2012

0

41

UP FAST=0 ; DOWN FAST=1

DOWN FAST=0 ; DOWN SLOW=1

D0

L0

To stage 36

 STOP+WIRE+SPLIMIT+BOTTOM+TOP+ENERGY

 To transition before stage 36 To transition before stage 36

 ENERGY

To stage 36

[1] [2] [1] [2]

[1] [2]

 LEVEL= ALEVEL

 To stage 30

37

40

 To stage 40

 GRAFCET NUMBER:

 WEIGHT

M3 DOOR CONTROL

OPENBUT.

=1

 WIRE+SPLIMIT+BOTTOM+TOP+ENERGY+WEIGHT+STOP
ALARM=1 ; OPEN DOOR=1

DOOR
CLOSED

39 CLOSE DOOR=0

 WIRE+SPLIMIT+BOTTOM+TOP+ENERGY+STOP

 (TOP+BOTTOM+STOP+SPLIMIT+WIRE)*LEVELS

LEVELS=(L0+L1+L2+L3+L4+L5+L6+L7+L8+L9)

M1

1 2 3 4 5 6 7 8 9 10ALEVEL=0 ALEVEL=1 ALEVEL=2 ALEVEL=3 ALEVEL=4 ALEVEL=5 ALEVEL=6 ALEVEL=7 ALEVEL=8 ALEVEL=9

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9

=1

Drawed by

 Checked by

Scale:

DateName

S.Noval 14/03/2012

GRAFCET LEVEL CONTROL

AUTOMATION PROCESS
OF AN ELEVATOR SYSTEM

2

 GRAFCET NUMBER:

M2

12 13 14 15 16 17 18 19 20 21LEVEL=0
M0.0=1

LEVEL=1
M0.1=1

LEVEL=2
M0.2=1

LEVEL=3
M0.3=1

LEVEL=4
M0.4=1

LEVEL=5
M0.5=1

LEVEL=6
M0.6=1

LEVEL=7
M0.7=1

LEVEL=8
M0.8=1

LEVEL=9
M0.9=1

EQ0 EQ1 EQ2 EQ3 EQ4 EQ5 EQ6 EQ7 EQ8 EQ9

=1

Drawed by

 Checked by

Scale:

 Name

 Date

 EQ0=A0+P0*(A0+A1+A2+A3+A4+A5+A6+A7+A8+A9)

 EQ1=A1+P1*(A0+A1+A2+A3+A4+A5+A6+A7+A8+A9)

 EQ2=A2+P2*(A0+A1+A2+A3+A4+A5+A6+A7+A8+A9)

 EQ3=A3+P3*(A0+A1+A2+A3+A4+A5+A6+A7+A8+A9)

 EQ4=A4+P4*(A0+A1+A2+A3+A4+A5+A6+A7+A8+A9)

 EQ5=A5+P5*(A0+A1+A2+A3+A4+A5+A6+A7+A8+A9)

 EQ6=A6+P6*(A0+A1+A2+A3+A4+A5+A6+A7+A8+A9)

 EQ7=A7+P7*(A0+A1+A2+A3+A4+A5+A6+A7+A8+A9)

 EQ8=A8+P8*(A0+A1+A2+A3+A4+A5+A6+A7+A8+A9)

 EQ9=A9+P9*(A0+A1+A2+A3+A4+A5+A6+A7+A8+A9)

S. Noval 14/03/2012

GRAFCET BUTTON CONTROL

AUTOMATION PROCESS
OF AN ELEVATOR SYSTEM

3

22

=1

EXT.BUT.LIGHT=1 ; CAR LIGHT=1

 GRAFCET NUMBER:

M 3

31

32

33

34

=1

OPEN DOOR=1

OPEN DOOR = 0

t = 10s

CLOSE DOOR=1

 DOOR OPENED

=1

 SECURITY

35

 DOOR CLOSED

CLOSE DOOR=0

=1

SECURITY

 SECURITY
 OPENBUT.

Drawed by

 Checked by

Scale:

Name Date

S. Noval 14/03/2012

GRAFCET DOOR CONTROL

AUTOMATION PROCESS
OF AN ELEVATOR SYSTEM

4

 GRAFCET NUMBER:

0

1 2 3 4

5

6 7 8 9

10

11 12

ALEVEL=0 ALEVEL=1 ALEVEL=2 ALEVEL=3

L0 L1 L2 L3

NOP

=1

DOWN=0 ; UP=0
M0.0=0 ; M0.1=0 ; M0.2=0 ; M0.3=0

=1

P0 P1 P2 P3

LEVEL=0 ; M0.0=1 LEVEL=1 ; M0.1=1 LEVEL=2 ; M0.2=1 LEVEL=3 ; M0.3=1

DOWN=1 UP=1

CP LEVEL & ALEVEL

 L0*M0.0+L1*M0.1+L2*M0.2+L3*M0.3

 LEVEL<ALEVEL

Drawed by

 Checked by

Scale:

Name Date

S. Noval 14/03/2012

GRAFCET SIMULATION
LEVEL 1

AUTOMATION PROCESS
OF AN ELEVATOR SYSTEM

5

 GRAFCET NUMBER:

 LEVEL>ALEVEL LEVEL=ALEVEL

0

1 2 3 4

5

6 7 8 9

10

11 12

MB2=0 MB2=1 MB2=2 MB2=3

I0.0 I0.1 I0.2 I0.3

NOP

=1

Q0.1=0 ; Q0.2=0
M0.0=0 ; M0.1=0 ; M0.2=0 ; M0.3=0

=1

I0.4 I0.5 I0.6 I0.7

MB1=0 ; M0.0=1 MB1=1 ; M0.1=1 MB1=2 ; M0.2=1 MB1=3 ; M0.3=1

Q0.2=1 Q0.1=1

CP MB1 & MB2

 MB1<MB2

 I0.0*M0.0+I0.1*M0.1+I0.2*M0.2+I0.3*M0.3

 MB1>MB2

Drawed by

 Checked by

Scale:

Name Date

S. Noval 14/03/2012

GRAFCET SIMULATION
LEVEL 2

AUTOMATION PROCESS
OF AN ELEVATOR SYSTEM

6

 GRAFCET NUMBER:

MB1=MB2

	PROJECT DESCRIPTION
	planos
	1. POWERMOTOR
	2. MANUALCONTROL
	3. AUTOMCONTROL
	4. PROTECTIONS
	5. BRAKE-LIGHT
	6. SENSLIGHTPOS

	complemento
	PS4 Communicat cables
	PS4-201-MM1
	Sucosoft4_

	4
	ELEV2
	PS4-201-MM1
	REFERENCE FILE

	grafects
	1. MAINGRAFCET
	2. LEVELCONTROL
	3. BUTTONCONTROL
	4. DOOR CONTROL
	5. SIMULATION
	6. SIMULATIONL2

