

UNIVERSIDAD DE VALLADOLID

ESCUELA DE INGENIERIAS INDUSTRIALES

Grado en Ingeniería de Organización Industrial

Linear Programming with SoPlex, SoPlex

complexity and SCIP complexity

Autor:

Luis Pérez, Aurora

 Responsable de Intercambio en la Uva:

Mª Carmen Quintano Pastor

Universidad de destino:

Hochschule Magdeburg-Stendal

Valladolid, agosto de 2016.

TFG REALIZADO EN PROGRAMA DE INTERCAMBIO

TÍTULO: Linear Programming with Soplex, Soplex complexity and SCIP complexity

ALUMNO: Aurora Luis Pérez

FECHA: 21/07/2016

CENTRO: Hochschule Magdeburg-Stendal (Elektrotechnik Institut)

TUTOR: Albert Seidl

Resumen

El objetivo de esta investigación es conocer el modo de operación de SoPlex, un

programa de resolución de problemas de programación lineal, y la evaluación de su

rendimiento. También se hace un estudio muy básico de SCIP, que resuelve

problemas de programación entera mixta.

Primero se expone una visión general de la investigación de operaciones y luego la

investigación se centra en la programación lineal. Como se quiere hacer un estudio

del funcionamiento de SoPlex y SCIP, posteriormente también se trata la complejidad

computacional.

Una vez expuesta la base teórica de la investigación, primero se explica la instalación

de los programas (SCIP Optimization Suite). En el estudio hecho sobre Soplex, se

explican los diferentes formatos que pueden ser utilizados y para analizar su

rendimiento se utilizan problemas típicos de programación lineal. Para el estudio de

SCIP se emplea un ejemplo incluido en la instalación, el problema de las n Reinas.

Palabras clave

SCIP, SoPlex, Programación Lineal (PL), optimización, tiempo de ejecución.

__

Abstract

The purpose of this research is to know how is the operation of SoPlex, a linear

programming solver develop by The Zuse Institute Berlin (ZIB), and the evaluation of

the solver performance. Furthermore, it is done a basic study of the mixed integer

programming solver develop by ZIB, SCIP.

First it is exposed a general view of the operation research and later it is focus on

linear programming. As it is wanted to do a performance study of SoPlex and SCIP,

later it is exposed in which parameters are based the computational complexity and

the different class of problems depending on complexity.

Once it is presented the theoretical basic of this research, it is explained how install

SCIP Optimization Suite (where both solvers are included). In Soplex study, it is

explained the different formats that the solver could solve. To do the complexity study,

it is used some typical linear programming problems. The study of SCIP complexity is

done under an example included in the installation of the program (the Queens

problem).

Keywords

SCIP, SoPlex, Linear Programming (LP), optimization, execution time.

Bachelor Thesis

Business Engineering

Linear Programming with SoPlex, SoPlex

complexity and SCIP complexity

Author:

Luis Pérez, Aurora

 Tutor:

Seidl, Albert

Electrical Engineering Department

Magdeburg, July 2016.

Index

1. Introduction .. 1

2. Operation Research ... 2

2.1. Operation Research Process .. 2

2.2. Tools and Techniques ... 3

2.3. Applications of Operation Research .. 7

2.4. Limitations of Operation Research .. 8

3. Linear Programming .. 9

3.1. Linear Programming Problems .. 10

3.1.1. Product-Mix Problem ... 10

3.1.2. Transport Problem ... 11

3.1.3. Process Selection Problem ... 13

3.1.4. Assignment Problem ... 14

3.2. Solving Linear Programming Problems: The Simplex Method 15

3.2.1. Standard Form of a Linear Programming Problem 15

3.2.2. The Simplex Tableau ... 16

3.2.3. Pivoting ... 18

3.2.4. Simplex method output ... 19

4. Computational complexity ... 20

4.1. Complexity class .. 20

5. SCIP Optimization Suite .. 22

5.1. Installation ... 22

6. SoPlex ... 24

6.1. Introduction ... 24

6.2. Installation ... 24

6.3. SoPlex Operation ... 24

6.3.1. Formats .. 24

6.3.1.1. LP format .. 24

6.3.1.2. MPS format ... 26

6.3.2. Solving a problem with SoPlex .. 28

6.3.3. Linear problems with SoPlex ... 30

6.3.3.1. Example 1 ... 30

6.3.3.2. Example 2 ... 31

6.4. SoPlex performance .. 32

6.4.1. Introduction .. 32

6.4.2. Product-Mix Problem ... 32

6.4.2.1. Program ... 32

6.4.2.2. Testing and results ... 35

6.4.3. Transport Problem ... 40

6.4.3.1. Program ... 40

6.4.3.2. Testing and results ... 41

7. SCIP .. 43

7.1. Installation ... 43

7.2. The Queens Problem .. 43

7.2.1. Mathematical Model ... 43

7.2.2. Testing and results .. 44

8. Conclusion .. 47

Bibliography ... 48

Appendix ... 49

A1. MPS and LP files ... 49

A.2. SoPlex displays on screen ... 52

A.3. C programs ... 55

A.4. Tables .. 65

A.5. SCIP displays on screen ... 71

1

1. Introduction

Every time Operations Research is more used in a fields variety of industry and

business. Thus, it is needed the use of methods and techniques that can give optimal

or acceptable solution to the problems that arise, using different kind of techniques

and solvers.

The purpose of this research is to know how is the operation of SoPlex, a linear

programming solver develop by The Zuse Institute Berlin (ZIB), and the evaluation of

the solver performance. Furthermore, it is done a basic study of the mixed integer

programming solver develop by ZIB, SCIP.

For that reason, first it is exposed a general view of the operation research, with the

different tools and techniques, and later it is focus on linear programming. It is

exposed about the mathematical model language and some examples of these kind

of problems.

As it is wanted to do a performance study of SoPlex and SCIP, later it is exposed in

which parameters are based the computational complexity and the different class of

problems depending on complexity.

Once it is presented the theoretical basic of this research, it is explained how install

SCIP Optimization Suite (where both solvers are included) and the steps to start

running the program.

In Soplex study, it is explained the different formats that the solver could solve and

the way to do that. To do the complexity study, it is used some typical linear

programming problems.

At the end, the study of SCIP complexity is done under an example included in the

installation of the program.

2

2. Operation Research

Since the advent of the industrial revolution, the world has seen a remarkable growth

in the size and complexity of organizations. It has been an increase in the division of

labour and segmentation of management responsibilities in these organizations.

However, it has created new problems as to allocate the available resources to the

various activities in a way that is most effective for the organization as a whole. These

problems and the need to find a better way to solve them provided the environment

for the emergence of Operations Research [1][4].

Operation Research could be defined as modern discipline that uses mathematical,

statistical and algorithms for modelling and solving complex problems, determining

the optimal solution and improving decision-making [2].

The Operation Research started just before World War II in Britain with the

establishment of teams of scientists to study the strategic and tactical problems

involved in military operations. The objective was to find the most effective utilization

of limited military resources by the use of quantitative techniques [1][4].

When the war ended, the success of Operation Research in the war effort spurred in

applying it outside the military as well. By the early 1950s, it had been introduced the

use of Operation Research to a variety of organizations in business, industry, and

government. Two of the factors that played a key role in the rapid growth of Operation

Research were the substantial progress in improving techniques and the computer

revolution, with their ability to perform arithmetic calculations millions of times faster

than a human being can [1][4].

2.1. Operation Research Process

The stages of development of Operation Research are:

- Observe the problem environment.

- Analyse and define the problem.

- Develop a model.

- Select appropriate data input.

- Provide a solution and test its reasonableness.

- Implement the solution.

The first step in the process of Operation Research is the problem environment

observation. Included different activities (conferences, site visit, research,

observations…) will provide sufficient information to formulate the problem.

Once the problem has been observed, it will be analysed and defined the problem.

Furthermore, it must be defined the objectives, uses and limitations of the problem.

The outputs of this step are clear grasp of need for a solution and its nature

understanding.

3

After the model, a representation of some abstract or real situation, must be

developed. The models are mathematical models, which describe systems,

processes in the form of equations and relationships. The model is tested in the field

under different environmental constraints and modified in order to work. Sometimes

the model is modified to satisfy the management with the results.

The model will work appropriately when there is appropriate data input. For that

reason, it must be necessary analysed internal and external data, fact analysis and

opinions, using computer data banks.

With the help of the model and the input data, it will be got a solution. Instead of

implemented the solution, it is used to test the model and to find if there is any

limitations. If the solution is not reasonable or the behaviour of the model is not

proper, the model will be updated and modified. After this process, it will be got the

solution that supports the organizational objectives and it should be implemented.

2.2. Tools and Techniques

To solve the Operation Research models there is a lot of tools and techniques

available. The most important techniques are exposed below.

1) Linear Programming

Linear Programming is a method that try to find the best possible solution in

allocating limited resources to achieve maximum profit or minimum cost. However, it

is applicable only where all relationships are linear.

There are different methods available to solve linear programming problems. The

most used are pivotal algorithms, particularly simplex algorithm.

This method is exposed in the section 3 with more details.

2) Network scheduling

This technique is a special case of the more general linear program that is used to

plan, schedule and monitor large projects. The aim of this technique is minimize

trouble spots (such as delays, interruptions, production bottlenecks, etc.) by

identifying the critical factors.

The different activities and their relationships of the project are represented

diagrammatically with the help of networks and arrows, which is used for identifying

critical activities and path.

The main types of technique in network scheduling are:

- PERT (Program Evaluation and Review Technique). It is used when the

activities time is not known accurately; only probabilistic estimate of time is

available.

- CPM (Critical Path Method). It is used when activities time is know accurately.

4

3) Integer Programming

An integer programming problem is a mathematical optimization or feasibility

program in which some or all of the variables are restricted to be intefgers. Most

problems of practical size are very difficult or impossible to solve (NP-complexity

problems exposed in the section 4).

In many settings the term refers to integer linear programming (IPL), in which the

objective function and the term refers to integer linear programming (ILP), in which

the objective function and the constraints are linear.

4) Non-linear Programming

The non-linear Programming is used when the objective function and the constraints

are not linear. These problems, in general, are much more difficult to solve than the

linear programming problems.

Most (if not all) real world applications require a non-linear model. In order to be make

the problems tractable, they are often approximate using linear functions but limited

to some range, because approximation becomes poorer as the range is extended.

5) Dynamic Programming

Dynamic programming is a method of analysing multistage decision processes. Each

elementary decision depends on those preceding decisions and as well as external

factors.

The process begins in some initial state where a decision is made. The decision

causes a transition to a new state. Based on the starting state, ending state and

decision return is realized. The process continues through a sequence of states until

finally a final state is reached.

The problem is to find the sequence that maximizes the total return. Objectives with

very general functional forms may be handled and a global optimal solution is always

obtained. The number of states grows exponentially with the number of dimensions

of the problem.

6) Stochastic Process

A stochastic process is simply a probability process, that is any process in nature

whose evolution could be analysed successfully in terms of probability.

The model is described in part by enumerating the states in which the system can be

found. The state is like a snapshot of the system at a point time that describes the

attributes of the system. Events occur that change the state of the system.

5

7) Markov Process

Markov process is a stochastic process that permits to predict changes over time

information about the behaviour of a system is known.

This is used in decision making in situations where the various states are defined.

The probability form one state to another state is known and depends on the current

state and is independent of how it has been arrived at that particular state.

8) Simulation

Simulation is a procedure that studies a problem by creating a model of the process

involved in the problem and then through a series of organized trials and error

solutions attempt to determine the best solution. Sometimes this a difficult

consuming procedure.

Simulation is used when actual experimentation is not feasible or solution of model

is not possible.

9) Inventory Theory

Inventories are materials stored, waiting for processing or experiencing processing.

Inventory model make a decisions that minimize total inventory cost. This model

successfully reduces the total cost of purchasing, carrying, and out of stock inventory.

10) Game Theory

The game theory is a set of concepts aimed at decision making in situations of

competition and conflict (as well as of cooperation and interdependence) under

specified rules.

It employs games of strategy but not of chance. A strategic game represents a

situation where two or more participants are faced with choices of action, by which

each may gain or lose, depending on what others choose to do or not to do. The final

outcome of a game, therefore, is determined jointly by the strategies chosen by all

participants.

11) Decision Theory

Decision theory is concerned with making decisions under conditions of complete

certainty about the future outcomes and under conditions such that we can make

some probability about what will happen in future.

Decision theory can be broken into two branches: normative and descriptive.

Normative decision theory gives advice on how to make the best decisions, given a

set of uncertain beliefs and a set of values. Descriptive decision theory analyses how

existing, possibly irrational, agents actually make decisions.

6

It is closely related to the field of game theory. Decision theory is concerned with the

choices of individual agents whereas game theory is concerned with interactions of

agents whose decisions affect each other.

12) Queuing Theory

Queuing theory is the mathematical study of waiting lines or queues. A model is

constructed so that queue lengths and waiting time can be predicted. The objective

is minimizing the cost of waiting without increasing the cost of servicing.

13) Heuristics

Heuristics are techniques that are looking for a good solution with high quality at a

reasonable computational cost, though without guarantee an optimal solution. In

general, not even the degree of error are known.

Heuristics could be classified according to the methods used:

- Construction methods. It is generated a solution (from an empty solution) by

adding components to complete the solution.

- Decomposition methods. The problem is dividing into smaller and the solution

is obtained from the solution of each small problem.

- Reduction methods. It is tried to identify some characteristic of the solution to

simplify the treatment of the problem.

- Inductive methods. It is gotten a solution to the original problem from another

simplified problem.

- Local search methods. It is started from a solution and iteratively will replace

the current solution with a similar solution of better qualiy.

14) Metaheuristics

A metaheuristic is a higher-level heuristic designed to find, generate, or select a

heuristic that may provide a sufficiently good solution to an optimization problem,

especially with incomplete or imperfect information or limited computational

capacity.

The most common techniques are:

- Genetic algorithms. They are adaptive methods based on the genetic process

of living organism. They are mathematical functions or software routines that

takes as inputs the outputs copies and returns as which of them should

generate offspring for the next generation.

- Simulated annealing. It is based on the physic metal heating. The idea is

allowing movements to solutions that deteriorate the objective function to

escape to local optima.

7

- Tabu search. It uses a local search with short-term memory that allows

escaping from local minima and avoiding cycles.

- Ant colony optimization. It is based on the ants behaviour. While each

individual ant has basic capabilities, the colony achieved together intelligent

behaviour. Despite being almost blind insects manage to find the shortest

path between the nest and a food source and return, based on a pheromones

communications (leaving a “trail” that serves as a reference to others.

2.3. Applications of Operation Research

There are voluminous of applications of Operation Research. The following are a sum

up of typical operations research applications to show how widely there techniques

are used today in different areas [3]:

Area Applications

Accounting

- Assigning audit teams effectively

- Credit policy analysis

- Cash flow planning

- Developing standard costs

- Planning of delinquent account strategy

Construction

- Project scheduling, monitoring and control

- Determination of proper work force

- Deployment of work force

- Allocation of resources to projects

Facilities Planning

- Factory location and size decision

- Estimation of number of facilities required

- Hospital planning

- International logistic system design

- Transportation loading and unloading

- Warehouse location decision

Finance

- Building cash management models

- Allocating capital among various alternatives

- Building financial planning models

- Investment analysis

- Portfolio analysis

- Dividend policy making

Manufacturing

- Inventory control

- Marketing balance projection

- Production scheduling

- Production smoothing

8

Marketing

- Advertising budget allocation

- Product introduction timing

- Selection of Product mix

- Deciding most effective packaging alternative

Human Resources

- Personnel planning

- Recruitment of employees

- Skill balancing

- Training program scheduling

- Designing organizational structure more effectively

Purchasing

- Optimal buying

- Optimal reordering

- Materials transfer

Research and

developing

- R & D Projects control

- R & D Budget allocation

- Planning of Product introduction

2.4. Limitations of Operation Research

Operations Research has certain limitations, that are mostly related to the model

building and money and time factors problems involved in its application. Some of

them are as given below:

- Often, it is necessary to simplify the original problem to manipulate and obtain

a solution.

- Most models only consider a single target and often, in organizations, have

multiple objectives.

- There is a tendency not to consider all restrictions on a practical problem,

because the methods of teaching and training give the application of this

science centrally based on small problems for reasons of practical nature.

- Almost never cost-benefit analysis of the solution implementation is done by

the Operation Research. Sometimes the potential benefits are outweighed by

the costs incurring in the development and implementation of a model.

9

3. Linear Programming

A linear programming problem may be defined as the problem of maximizing or

minimizing a linear function subject to linear constraints. The constraints may be

equalities, inequalities or both [5].

The main elements of any constrained optimization problem are variables, the

objective function, constraints and variable bounds.

The variables, also called decision variables, usually represent things that you can

adjust or control and its value are not known when the problem is started. The

variables could be represented like 𝑥1, 𝑥2, … , 𝑥𝑛. The goal is to find values of the

variables that provide the best value of the objective function.

The objective function is a mathematical expression that combines the variables to

express your goal. You will be required to either maximize or minimize the objective

function. It could be written as:

𝑧 = 𝑐1 · 𝑥1 + 𝑐2 · 𝑥2 + ⋯ + 𝑐𝑛 · 𝑥𝑛

Where 𝑐1, 𝑐2, … , 𝑐𝑛 are known real numbers called cost coefficients.

The constraints are mathematical expressions that combine the variables to express

limits on the possible solutions. The way to express the constraints are:

𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 ≤, =, ≥ 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 ≤, =, ≥ 𝑏2

… … …

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 ≤, =, ≥ 𝑏𝑚

Where every restriction could be ≤, =, ≥. The 𝑎𝑖𝑗 coefficient is called the technological

coefficient and 𝑏𝑖 is the independent term.

Only rarely are the variables in an optimization problem permitted to take on any

value from minus infinity to plus infinity. Instead, the variables usually have bounds.

If the bounds are only 𝑥1 ≥ 0, 𝑥2 ≥ 0, … 𝑥𝑛 ≥ 0, it is called non-negativity

constraints, but sometimes the variables have an upper bound (𝑢𝑗), a lower bound

(𝑙𝑗), or both:

𝑢𝑗 ≥ 𝑥𝑗 ≥ 𝑙𝑗

To end, the 𝑅𝑛 point that satisfied all the constraints is called space restrictions or

feasible set.

The Standard Maximun Problem should find a n-vector, 𝑥 = (𝑥1, … , 𝑥𝑛) to maximize

the objective function:

10

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑧 = 𝑐1 · 𝑥1 + ⋯ + 𝑐𝑛 · 𝑥𝑛

subject to the constraints

𝑎11𝑥1 + ⋯ + 𝑎1𝑛𝑥𝑛 ≤ 𝑏1

𝑎21𝑥1 + ⋯ + 𝑎2𝑛𝑥𝑛 ≤ 𝑏2

… … …

𝑎𝑚1𝑥1 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 ≤ 𝑏𝑚

(𝑜𝑟 𝐴𝑥 ≤ 𝑏)

and

𝑥1 ≥ 0, 𝑥2 ≥ 0, … , 𝑥𝑛 ≥ 0

The Standard Minimum Problem tries to find a n-vector, but in that case, to minimize

the objective function:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 = 𝑐1 · 𝑥1 + ⋯ + 𝑐𝑛 · 𝑥𝑛

subject to the constraints

𝑎11𝑥1 + ⋯ + 𝑎1𝑛𝑥𝑛 ≥ 𝑏1

𝑎21𝑥1 + ⋯ + 𝑎2𝑛𝑥𝑛 ≥ 𝑏2

… … …

𝑎𝑚1𝑥1 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 ≥ 𝑏𝑚

(𝑜𝑟 𝐴𝑥 ≥ 𝑏)

and

𝑥1 ≥ 0, 𝑥2 ≥ 0, … , 𝑥𝑛 ≥ 0

Note that the main constraints are written as ≤ for the standard maximum problem

and ≥ for the standard minimum problem.

Linear programming problems could be solved with a graphic if there is two or three

variables. If there is more than three variables, the common way to solve the

problems is the Simplex Method (explained in 3.2. section).

3.1. Linear Programming Problems

The linear programming could be used with different problems to find an optimal

solution. Then it is formulated the mathematical linear programming model of

different problems.

3.1.1. Product-Mix Problem

One of the classic applications of Linear Programming models is the product mix

problem. We consider 𝑛 products involved in the production process and 𝑚 resources

11

which has limited quantities. The goal is to find the production schedule that

maximizes benefits while the amounts of resources avaible are not exceeded and

demand is satisfied.

The parameters involved are:

𝑛 = Number of products in the production process.

𝑚 = Number of resources that are available.

𝑝𝑗 = Selling prize of product j, with 𝑗 = 1, … , 𝑛

𝑐𝑗 = Cost of a unit of product j, with 𝑗 = 1, … , 𝑛

𝑏𝑖 = Quantity of resource 𝑖 available during the period, with 𝑖 = 1, … , 𝑚

𝑎𝑖𝑗 = Units or quantity of resource 𝑖 required to produce a unit of product 𝑗.

𝑢𝑗 = Maximum potential sales of product 𝑗 in the period considered.

𝑙𝑗 = Minimum potential sales of product 𝑗 in the period considered (𝑙𝑗 ≥ 0 ∀𝑗 =

1, … , 𝑛).

The decision variables will be:

𝑥𝑗 = Quantity to produce of product 𝑗 in the period considered.

The mathematical model to solve will be:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑(𝑝𝑗 − 𝑐𝑗) · 𝑥𝑗

𝑛

𝑗=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑎𝑖𝑗 · 𝑥𝑗 ≤ 𝑏𝑖

𝑛

𝑗=1

 ∀𝑖 = 1, … , 𝑚

𝑥𝑗 ≤ 𝑢𝑗 ∀𝑗 = 1, … , 𝑛

𝑥𝑗 ≥ 𝑙𝑗 ∀𝑗 = 1, … , 𝑛

The objective function try to maximize the benefit, that it is calculated as the sum of

the profit margin of each product (prize minus cost) by the product.

The first constraint is the capacity restriction and the others are the bounds of the

variables.

3.1.2. Transport Problem

The transportation problem is concerned with finding the minimum cost of

transporting a single commodity from a 𝑚 number of sources to a 𝑛 number of

destinations.

The data of the model include:

12

- The level of supply at each source and the amount of demand at each

destination.

- The unit transportation cost of the commodity from each source to each

destination.

Since there is only one commodity, a destination can receive its demand from more

than one source. The objective is to determine how much should be shipped from

each source to each destination to minimise the total transportation cost.

The parameters involved are:

𝑚 = Number of sources.

𝑛 = Number of destinations.

𝑎𝑖 = Amount of supply available at source 𝑖

𝑏𝑖 = Demand required at destination 𝑗

𝑐𝑖𝑗 = Cost of transporting one unit between source 𝑖 and destination 𝑗

The decision variable is:

𝑥𝑖𝑗 = Quantity transported from source 𝑖 to destination 𝑗

And the problem to solve will be:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑖𝑗 · 𝑥𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑖𝑗 ≤ 𝑎𝑖

𝑛

𝑗=1

 ∀𝑖 = 1, … , 𝑚

∑ 𝑥𝑖𝑗 ≥ 𝑏𝑖

𝑚

𝑖=1

 ∀𝑗 = 1, … , 𝑛

𝑥𝑖𝑗 ≥ 0 ∀𝑖 ∀𝑗

The first constraint says that the sum of all shipments from a source cannot exceed

the available supply. The second constraint specified that the sum of all shipments

to a destination must be at least as large as the demand.

In the transportation problem is defined the total supply as 𝑆𝑇 = ∑ 𝑎𝑖
𝑚
𝑖=1 , and the total

demand as 𝐷𝑇 = ∑ 𝑏𝑖
𝑛
𝑗=1 . When the total supply is equal to the total demand (𝑆𝑇 =

 𝐷𝑇) then the transportation model is said to be balanced. In a balances

transportation model each of the constraints is an equation, and the problem could

be formulated like that:

13

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑖𝑗 · 𝑥𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑖𝑗 = 𝑎𝑖

𝑛

𝑗=1

 ∀𝑖 = 1, … , 𝑚

∑ 𝑥𝑖𝑗 = 𝑏𝑖

𝑚

𝑖=1

 ∀𝑗 = 1, … , 𝑛

𝑥𝑖𝑗 ≥ 0 ∀𝑖 ∀𝑗

If the problem is not balanced, it will be easier to transform it in a balanced one. If

the total supply is more than the total demand, a dummy demand point will be added.

The dummy demand will be the exceed of supply and the cost associate to this new

point will be zero, because it is not real. These shipments to the dummy demand point

represent the supply capacity unused. They are therefore the slack variables of supply

constraints or capacity.

If the total demand exceed the total supply, the problem is feasible.

3.1.3. Process Selection Problem

In this kind of problems, every product could be produced with different process.

Sometimes the quantity of the products is fixed but other times is necessary to

choose the quantity of each. The unit production cost depend on the process.

Furthermore, there is some resources available in each period, which are used by the

different process.

The problem is to know the quantity of each product are going to be produced in each

process, manufacturing the total demand minimizing cost or maximizing benefits and

considering the resources limits.

The elements in this problem will be:

𝑛 = Number of products in the production process.

𝑚 = Number of process that are available.

𝑑𝑗 = Demand of product j, with 𝑗 = 1, … , 𝑛

𝑏𝑖 = Time available to the process 𝑖, with 𝑖 = 1, … , 𝑚

𝑐𝑖𝑗 = Cost to produce one unit of the product 𝑗 with the process 𝑖 (∞ if it is not

possible)

𝑡𝑖𝑗 = Time to manufacture one unit of the product 𝑗 with the process 𝑖 (0 if it is

not available)

The decision variables will be:

14

𝑥𝑖𝑗 = Quantity of product 𝑗 produced in the process 𝑖.

The mathematical model to solve will be:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑖𝑗 · 𝑥𝑖𝑗

𝑚

𝑖=1

𝑛

𝑗=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑖𝑗 = 𝑑𝑖

𝑚

𝑖=1

 ∀𝑗 = 1, … , 𝑛

∑ 𝑡𝑖𝑗 · 𝑥𝑖𝑗 ≤ 𝑏𝑖

𝑛

𝑗=1

 ∀𝑖 = 1, … , 𝑚

𝑥𝑖𝑗 ≥ 0 ∀𝑗 = 1, … , 𝑛

 ∀𝑖 = 1, … , 𝑚

Other times, there is not specific demand to the production of each product and then,

it is considered the sell prize 𝑣𝑗 of the product 𝑗. In that case, the objective is maximize

the benefit, and the model would be:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑(𝑣𝑗 − 𝑐𝑖𝑗) · 𝑥𝑖𝑗

𝑚

𝑖=1

𝑛

𝑗=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑡𝑖𝑗 · 𝑥𝑖𝑗 ≤ 𝑏𝑖

𝑛

𝑗=1

 ∀𝑖 = 1, … , 𝑚

𝑥𝑖𝑗 ≥ 0 ∀𝑗 = 1, … , 𝑛

 ∀𝑖 = 1, … , 𝑚

3.1.4. Assignment Problem

The general assignment problem is the assignment of 𝑚 labours to 𝑛 machines

minimizing the cost or total efficiency of assignment. In these kind of problems, the

decision variables are 𝑥𝑖𝑗 = 1 if the labour 𝑖 is assigned the machine 𝑗 and 𝑥𝑖𝑗 = 0 if

there is not assigned.

𝑥𝑖𝑗 = {
 1 𝑖𝑓 𝑡ℎ𝑒 𝑙𝑎𝑏𝑜𝑢𝑟 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡ℎ𝑒 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 𝑗
 0 𝑖𝑛 𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒

}

The problem elements are:

𝑚 = Number of labours

𝑛 = Number of machines

15

𝑐𝑖𝑗 = Cost or efficiency to assign the labour 𝑖 to the machine 𝑗.

And the mathematical model are:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ 𝑐𝑖𝑗 · 𝑥𝑖𝑗

𝑛

𝑗=1

𝑚

𝑖=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑥𝑖𝑗 ≤ 1

𝑛

𝑗=1

 ∀𝑖 = 1, … , 𝑚

∑ 𝑥𝑖𝑗 ≥ 1

𝑚

𝑖=1

 ∀𝑗 = 1, … , 𝑛

𝑥𝑖𝑗 ∈ {0,1}

If the number of machines is less than the labours, it should be introduced a fictitious

machine to balance the problem.

The assignment problem is a type of the transport problem, with integer constraints.

3.2. Solving Linear Programming Problems: The Simplex Method

The method used to solve LP problems is the Simplex Method, developed by George

Dantzig in 1947. Beginning at the origin, this algorithm moves from one vertex of the

feasible region to an adjacent vertex in such a way that the value of the objective

function improvement or stays the same; it never gets worse. This movement

continues until the vertex that yields the optimal solution is reached.

The steps of this method could be sumarize in:

- Transform the LP problem in the standard form.

- Create the simplex tableau.

- Make pivoting process.

All this is explained bellow

3.2.1. Standard Form of a Linear Programming Problem

Before starting with the Simplex Method, the LP problem must be in the standard

form:

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (𝑧) = 𝑐1 · 𝑥1 + 𝑐2 · 𝑥2 + ⋯ + 𝑐𝑛 · 𝑥𝑛

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑎11𝑥1 + 𝑎12𝑥2 + ⋯ + 𝑎1𝑛𝑥𝑛 = 𝑏1

𝑎21𝑥1 + 𝑎22𝑥2 + ⋯ + 𝑎2𝑛𝑥𝑛 = 𝑏2

… … …

16

𝑎𝑚1𝑥1 + 𝑎𝑚2𝑥2 + ⋯ + 𝑎𝑚𝑛𝑥𝑛 = 𝑏𝑚

𝑥1 ≥ 0, 𝑥2 ≥ 0, … 𝑥𝑛 ≥ 0

where the objective is maximize, the constraints are equalities and the variables are

all nonnegative.

The matrix in the standard form are:

𝑥 = (

𝑥1

⋮
𝑥𝑛

) 𝑐 = (

𝑐1

⋮
𝑐𝑛

) 𝐴 = (

𝑎11 … 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑚1 … 𝑎𝑚𝑛

) 𝑏 = (
𝑏1

⋮
𝑏𝑚

)

If the problem is not standard, it must be converted as follows:

- If the problem is 𝑚𝑖𝑛 𝑧, convert it into max −𝑧.

- If a constraist is 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + ⋯ + 𝑎𝑖𝑛𝑥𝑛 ≤ 𝑏𝑖, convert it into an equality

constraint by adding a nonnegative slack variable 𝑠𝑖. The resulting constraint

is 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + ⋯ + 𝑎𝑖𝑛𝑥𝑛 + 𝑠𝑖 = 𝑏𝑖, where 𝑠𝑖 ≥ 0.

- If a constraist is 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + ⋯ + 𝑎𝑖𝑛𝑥𝑛 ≥ 𝑏𝑖, convert it into an equality

constraint by subtracting a nonnegative surplus variable 𝑠𝑖. The resulting

constraint is 𝑎𝑖1𝑥1 + 𝑎𝑖2𝑥2 + ⋯ + 𝑎𝑖𝑛𝑥𝑛 − 𝑠𝑖 = 𝑏𝑖, where 𝑠𝑖 ≥ 0.

- If some variable 𝑥𝑗 is unrestricted in sign, replace it everywhere in the

formulation by 𝑥𝑗
′ − 𝑥𝑗

′′, where 𝑥𝑗
′ ≥ 0 and 𝑥𝑗

′′ ≥ 0.

Example. Find the maximum value of 𝑧 = 4 · 𝑥1 + 6 · 𝑥2, where 𝑥1 ≥ 0 and

𝑥2 ≥ 0, subject to the following constrains:

−𝑥1 + 𝑥2 ≤ 11

𝑥1 + 𝑥2 ≤ 27

2 · 𝑥1 + 5 · 𝑥2 ≤ 90

The left-hand side of each inequality is less than or equal to the right-hand

side. Slack variables must be added to the lef side of each equation to

produce the following system of linear equations:

−𝑥1 + 𝑥2 ≤ 11  −𝑥1 + 𝑥2 + 𝑠1 = 11

𝑥1 + 𝑥2 ≤ 27  𝑥1 + 𝑥2 + 𝑠2 = 27

2 · 𝑥1 + 5 · 𝑥2 ≤ 90  2 · 𝑥1 + 5 · 𝑥2 + 𝑠3 = 90

3.2.2. The Simplex Tableau

The simplex method is carried out by performing elementary row operations on a

matrix that it is called the simplex tableau. This tableau consists of the augmented

17

matrix corresponding to the constraint equations together with the coefficients of the

objective function cleared in the form:

𝑧 − 𝑐1 · 𝑥1 − 𝑐2 · 𝑥2 − ⋯ − 𝑐𝑛 · 𝑥𝑛 = 0

 Example.

𝑧 − 4 · 𝑥1 − 6 · 𝑥2 = 0

In the columns of the tableau will be all the variables of the problem, included the

slacks variables. In the rows will be the coefficients of the equalities obtained, one

row for each restriction and the last row with the coefficients of the objective function.

Basic

Variables
𝑥1 … 𝑥𝑛 𝑠1 … 𝑠𝑚 𝑏

𝑠1 𝑎11 … 𝑎1𝑛 1 … 0 𝑏1

… … … … … … …

𝑠𝑚 𝑎𝑚1 … 𝑎𝑚𝑛 0 … 1 𝑏𝑛

 −𝑐1 … −𝑐𝑛 0 0 0

For this initial simplex tableau, the basic variables are 𝑠1, … , 𝑠𝑚, and the nonbasic

variables are 𝑥1, … , 𝑥𝑛.

 Example. Simplex tableau.

Basic

Variables
𝑥1 𝑥2 𝑠1 𝑠2 𝑠3 𝑏

𝑠1 -1 1 1 0 0 11

𝑠2 1 1 0 1 0 27

𝑠3 2 5 0 0 1 90

 −4 −6 0 0 0

 It could be seen that the current solution is: (𝑥1, 𝑥2,𝑠1, 𝑠2, 𝑠3) = (0,0,11,27,90).

To perform an optimality check for a solution represented by a simplex tableau, it is

looked at the entries in the bottom row of the tableau. If any of these entries are

negative, then the current solution is not optimal.

18

3.2.3. Pivoting

Once it is set up the initial simplex tableau for a linear programming problem, the

simplex method consists of checking for optimality and then, if the current solution is

not optimal, improving the current solution.

To improve the current solution, a new basic variables is brought into the solution (it

is called the entering variable). This implies that one of the current basic variabes

must leave, otherwise it would be many variables for a basic solution (called the

departing variable).

The entering and departing variables are chosen as follows:

1) The entering variable corresponds to the smallest (the most negative) entry in

the bottom row of the tableau.

2) The departing variable corresponds to the smallest nonnegative ratio of
𝑏𝑖

𝑎𝑖𝑗
, in

the column determined by the entering variable.

3) The entry in the simplex tableau in the entering variable’s column and the

departing variable’s row is called the pivot

Finally, to form the improved solution, it is applied Gauss-Jordan elimination to the

column that contains the pivot. This process is called pivoting.

 Example. Pivoting

The current solution of the previous section corresponds to a z-value of 0. To

improve this solution, we determine that 𝑥2 is the entering variable, because

-6 is the smallest entry in the bottom row.

Basic

Variables
𝑥1 𝒙𝟐 𝑠1 𝑠2 𝑠3 𝑏

𝑠1 -1 1 1 0 0 11

𝑠2 1 1 0 1 0 27

𝑠3 2 5 0 0 1 90

 −4 −𝟔 0 0 0

To find the departing variable, we locate the 𝑏𝑖’s that have corresponding

positive elements in the entering variables column and form the following

ratios:

11

1
= 11

27

1
= 27

90

5
= 18

The smallest positive ratio is 11, so it is chosen 𝑠1 as the departing variable.

19

Basic

Variables
𝑥1 𝑥2 𝑠1 𝑠2 𝑠3 𝑏

𝒔𝟏 -1 1 1 0 0 11

𝑠2 1 1 0 1 0 27

𝑠3 2 5 0 0 1 90

 −4 −6 0 0 0

The pivot is the entry in the first row and the second column. After, it is used

Gauss-Jordan elimination to obtain the following improved solution:

(

−1 1 1 0 0 11
1 1 0 1 0 27
2 5 0 0 1 90

−4 −6 0 0 0 0

) → (

−1 1 1 0 0 11
2 0 −1 1 0 16
7 0 −5 0 1 35

−10 0 6 0 0 66

)

𝑥2 has replace 𝑠1 in the basis column and the improved solution

(𝑥1, 𝑥2,𝑠1, 𝑠2, 𝑠3) = (0,11,0,16,35) has a z-value of 66 (𝑧 = 4 · 0 + 6 · 11 =

66).

This process continues until it is reached the optimal solution.

3.2.4. Simplex method output

When a linear programming problem is solved by the Simplex Method, it is produced

one of the following outputs:

- The problem has not feasible solutions (non-feasible problem). There is not

set of decision variables values that verified all restrictions.

- The problem has finite optimal solution and it is found by the method. This is

the normal situation and it is found the optimal values of the decision

variables. Two cases could happened: there is only one optimal solution or

there are infinity optimal solutions (alternative optimal solutions).

- The problem is not bounded. There is not a point where the optimum value is

reached, if not there are set of points where the objective function are growing

indefinitely (in a maximum problem) or decreasing indefinitely (minimum

problem), and the maximum or minimum value of the objective function is +∞

or −∞ respectively. Although that case is possible mathematically, in practice

it is unlikely to occur because generally the variables have bounds.

20

4. Computational complexity

The most limited resources in a software production are:

- The execution time

- The memory used to solve the problem

With these two variables is done the study of the computational complexity of the

algorithms.

The complexity of the algorithms is a function of input size of the problem, n. The

elementary steps number (T) that have to do the algorithm will be less equal than a

constant (k) by the function that depends of the size of the problem:

𝑇 ≤ 𝑘 · 𝑓(𝑛)

So the algorithm has a complexity order of 𝑓(𝑛) and it is written as 𝑂(𝑓(𝑛)).

Algorithms, depending of their complexity order, could be classified into two groups:

polynomials o exponentials. A polynomial algorithm is one whose complexity function

is 𝑂(𝑛𝑛) o less. It is called efficient algorithm. Algorithms for which it is not possible

to limit the complexity of polynomial form are called exponential algorithms.

 Notation Name

Polynomial

𝑂(1) Constant

𝑂(log (𝑛)) Logarithmic

𝑂(𝑛) Linear

𝑂(𝑛𝑙𝑜𝑔(𝑛)) Loglinear, Linearithmic, Quasilinear or Supralinear

𝑂(𝑛2) Quadratic

𝑂(𝑛3) Cubic

𝑂(𝑛𝑛) Polynomial

Exponential
𝑂(𝑐𝑛) Exponential

𝑂(𝑛!) Factorial

4.1. Complexity class

Before starting with the complexity class of the problems, it is necessary to clarify the

difference between a deterministic Turing Machine and a non-deterministic Turing

Machine.

The Turing Machine is a hypothetical universal computing machine able to modify its

original instructions by reading, erasing or writing a new symbol on a moving tape of

fixed length that acts as its program.

21

In a deterministic Turing Machine, for each pair (state, symbol), there is at most a

transition to another state. However, in a non-deterministic Turing Machine exists at

least one pair (state, symbol) over a transition to different states.

After this clarification, the class of the problems could be P, NP or NP-hard.

P class (Polynomial-time) contains the decision problems that a deterministic Turing

Machine can solve in a polynomial time. These problems are treatable because they

could be solved in a reasonable time. Most common problems (sorting, searching…)

belong to this class.

NP class (Non-Deterministic Polynomial-time) has the decision problems that a non-

deterministic Turing Machine can solve in polynomial time. As every deterministic

Turing Machine is a particular case of a non-deterministic Turing Maching, each P

problem is too an NP problem: 𝑃 ⊆ 𝑁𝑃. But know if 𝑃 = 𝑁𝑃 or 𝑃 ≠ 𝑁𝑃 is a problem

without solution nowadays.

NP hard problems are NP problems whose complexity is extreme. These problems

are equivalents between each others. It is believed that there are not polynomial

algorithms to solve them (unproved). The travel salesman problem or knapsack

problem are an example of these kind of problems.

22

5. SCIP Optimization Suite

The SCIP Optimization Suite is a toolbox for generating and solving mixed integer

programs. It consists of the following parts [8]:

- SCIP is the mixed integer (linear and nonlinear) programming solver and

constraints programming framework.

- SoPlex is the linear programming solver.

- ZIMPL is the mathematical programming language.

- UG is parallel framework for mixed integer (linear and nonlinear programs).

- GCG is the generic branch-cut-and-price solver.

It can be easily generate linear programs and mixed integer programs with the

modelling language ZIMPL. The resulting model can directly be loaded into SCIP and

solved. In the solution process, SCIP may use SoPlex as underlying LP solver [8].

In this research, it is only used SCIP and SoPlex, and it is not used the ZIMPL

language. Instead, it is used C/C++ and other formats as LP or MPS as it is described

later.

5.1. Installation

The first thing is to know the operating system of the computer. If it is LINUX, the

installation process would be easier, but if it is Windows, we should install in our

computer an emulation of Linux. It must be Cygwin or MinGW.

This research is done under Windows operating system. For that reason, it is decided

to install Cygwin. In the following link (https://cygwin.com/install.html) is possible

to download it (32 bits or 64 bits version). From here only it will be exposed this

alternative.

After the download, it is followed the next steps:

1) Install from the internet.

2) Write the root directory.

3) Write the local package directory.

4) Choose Direct Connection.

5) Choose any available download sites.

6) Select the packages. It is mandatory:

- Devel

- Debug

- KDE

- Shell

- Systems

7) Choose continue and wait until the program is installed.

Then, it must be downloaded the source code of SCIP Optimization Suite. It is needed

a license, free for research proposes.

https://cygwin.com/install.html

23

It is download in a .tgz format. First, that file should be in the local package directory

(by default “home”). The steps will be:

1) Enter in the local package directory

2) Extract the package

E.g.: tar xvf scipoptsuite-3.2.1.tgz

3) In the file extracted, enter make, with the options that it will be needed. In the

installation file is explained all the parameters that it could be set up and

which ones are by default (http://scip.zib.de/doc/html/INSTALL.php).

In this research was set up:

make test LPS=spx ZLIB=false ZIMPL=false READLINE=false

LPS is the LP solver that it is wanted to use. In that case, it was chosen SoPlex

(spx). ZLIB=false disable ZLIB usage, ZIMPL=false disable ZIMPL file reader

and READLINE=false disable readline library, because it was not needed.

After that, SCIP Optimization Suite will be installed.

http://scip.zib.de/doc/html/INSTALL.php

24

6. SoPlex

6.1. Introduction

SoPlex is an optimization package for solving linear programming problems (LPs)

based on an advanced implementation of the primal and dual revised simplex

algorithm. It provides special support for the exact solution of LPs with rational input

data. It can be used as a standalone solver reading MPS or LP format files via a

command line interface as well as embedded into other programs via a C++ class

library [9].

SoPlex has been used in numerous researches and industry projects and is the

standard LP solver linked to the constraint integer-programming solver SCIP [8][9].

6.2. Installation

Once installed SCIP Optimization Suite, it is entered in the directory of that and it

could be seen a soplex-version.tgz format. The steps will be:

1) Extract the package

E.g.: tar xvf soplex-2.2.1.tgz

2) Inside the directory of SoPlex, make test with the options that it will be

needed. In the installation file is defined all the parameters

(http://soplex.zib.de/doc/html/INSTALL.php).

In this research, it was entered:

make test ZLIB=false ZIMPL=false READLINE=false

6.3. SoPlex Operation

As previously mentioned, SoPlex could solve MPS or LP format files by a command

line interface or embedded programs by a C++ library.

This research is focus on solve by a command line interface, for that reason hereafter

it is exposed only this alternative.

First, it is needed writing the problem in a LP or MPS format. As following, it is

explained both and in the section 6.3.3., some examples are written in these formats,

but to study the performance of SoPlex, it is chosen the LP format because is more

intuitive and easier than the MPS format, as it could be seen in the following sections.

6.3.1. Formats

6.3.1.1. LP format

The lp-format is lpsolves native format to read and write lp models [10].

The lp-format input syntax is a set of algebraic expressions and "int" declarations in

the following order:

1) Objective function

http://scip.zib.de/
http://soplex.zib.de/doc/html/INSTALL.php

25

2) Constraints

3) Bounds

4) Declaration

5) End

The objective function is a linear combination of optional variables and constants,

ending with a semicolon. To indicate whether you want it to be minimized or

maximized, this section beginning with one of the keywords:

- max

- maximun

- maximize

- min

- minimun

- minimize

Maximization is the default.

The objective may be given a name by writing before the expressions. If no name is

given, then the objective is name “obj”.

The constraints must begin with one of the keywords:

- subj to

- subject to

- s.t.

- st

A constraint contains an optional name followed by a colon plus a linear combination

of variables and constants followed by a bound type (<,<=,=,>,>=) and the bound

may be a number. There is no semantic difference between “<” and “<=” or between

“>” and “>=”.

Bounds on the variables can be specified in the bound section beginning with one of

the keywords:

- bound

- bounds

The bounds section is optional but should, if present, follow the “subject to” section.

All the variables listed in the bounds section must occur in either the objective or a

contstraint. Each bound definition must begin in a new line.

The default lower and upper bounds are 0 and +∞. A variable may be declared free

with the keywork “free”, which means that the lower bound is −∞ and the upper

bound is +∞. Furthermore it may be assigned a finite lower and upper bound. The

bound definitions for a given variable may be written in one or two lines, and bounds

can be any number or ±∞ (written as +inf/-inf/+infinity/-infinity).

26

The declaration section is optional and it could be to define variables as binary or

define general variables.

The keywords for the first type could be:

- bin

- binaries

- binary

And for the second type:

- gen

- general

Again, all variables listed in the binary or general sections must occur in either the

objective or a constraint.

Finally, and LP-format file must end with the keyword:

- end

Examples of LP format are written in the section 6.3.3.

6.3.1.2. MPS format

The main things to know about fixed MPS format are that it is column oriented (as

opposed to entering the model as equations), and everything (variables,rows, ect.)

gets a name [10].

MPS is an old format, so it is set up as though you were using punch cards. Fields

start in column 2, 5, 15, 25, 40 and 50. Sections of an MPS file are marked by so-

called header cards, which are distinguished by their starting in column 1. The names

that are chosen for the individual entities (constraints or variables) are not important

to the solver.

Following there is a guide to know how to write a MPS file:

Field: 1 2 3 4 5 6

Columns: 2-3 5-12 15-22 25-36 40-47 50-51

 NAME Prob_name

 ROWS

 type name

 RHS

 rhs name row name value row name value

 COLUMS

 column name row value row name value

 BOUNDS

 type bound name column name value

 END DATA

27

There is nothing in MPS format that specifies the direction of optimization. As default,

most MPS codes minimize (SoPlex minimizes as default). If it is wanted to maximize,

it must be written between the NAME section and the ROWS section the following:

OBJSENSE
 MAX

The name record can have any value, starting in column 15.

The ROW section defines the names of all the constraints; entries in column 2 or 3.

The code for indicating row type is as follows:

Type Meaning

E Equality

L Less than or equal

G Greater than or equal

N Objective

N No restriction

The COLUMNS section contains the entries of the A-matrix. All entries for a given

column must be placed consecutively, although within a column the order of the

entries (rows) is irrelevant. Rows not mentioned for a column are implied to have a

coefficient of zero.

The RHS section allows one or more right-hand-side vectors to be defined; there is

seldom more than one.

The optional BOUNDS section is where the bound of variables are specified. When

bounds are not indicated, the default bounds (0 ≤ 𝑥 < ∞) are assumed. The code

for indicating bound type is as follows:

Type Meaning

LO lower bound b <= x (< +inf)

UP upper bound (0 <=) x <= b

FX fixed variable x = b

FR free variable -inf < x < +inf

MI lower bound -inf -inf < x (<= 0)

PL upper bound +inf (0 <=) x < +inf

BV binary variable x = 0 or 1

LI integer variable b <= x (< +inf)

28

UI integer variable (0 <=) x <= b

SC

semi-cont variable x = 0 or l <= x <= b

l is the lower bound on the variable

If none set then defaults to 1

Another optional section called RANGES specifies double-inequalities. Ways to mark

integer variables are also beyond (keywork MARKER and possibly SOS are involved).

The final card must be ENDATA (notice the odd spelling).

Examples of MPS format are written in the section 6.3.3.

6.3.2. Solving a problem with SoPlex

To solve the LP or MPS file, it must be in the bin directory inside the directory of SoPlex

directory, because is where it was installed.

E.g.: C:\cygwin64\home\scipoptsuite-3.2.1\soplex-2.2.1\bin

With the emulation of Linux (Cygwin) it is needed to access to this directory too and

to solve the problem it should be enter the following command line:

./soplex “Nameofthefile”.lp

./soplex “Nameofthefile”.mps

The result that appear in the display is, in general, the number of iterations and the

objective value. However, if it is required other information, it could be entered in the

command line other options.

The general options are:

--readbas=<basfile> Read starting basis form file

--writebas=<basfile> Write terminal basis to file

--writefile=<lpfile>
Write LP to file in LP or MPS format depending on the

extension

--<type>:<name>=<val>
Change parameter value using syntax or settings file

entries

--loadset=<setfile>
Load parameters from settings file (overruled by

command line parameters)

--saveset=<setfile> Save parameters to settings file

--diffset=<setfile> Save modified parameters to settings file

29

To set limits and tolerances:

-t<s> Set time limit to <s> seconds

-i<n> Set iteration limit to <n>

-f<eps> Set primal feasibility tolerance to <eps>

-o<eps> Set dual feasibility (optimality) tolerance to <eps>

To set algorithmic settings:

--readmode=<value> Choose reading mode for <lpfile> (0* - floating-point,

1 - rational)

--solvemode=<value> Choose solving mode (0 - floating-point solve, 1* -

auto, 2 - force iterative refinement)

-s<value> Choose simplifier/presolver (0 - off, 1* - auto)

-g<value> Choose scaling (0 - off, 1 - uni-equilibrium, 2* - bi-

equilibrium, 3 - geometric, 4 - iterated geometric)

-p<value> Choose pricing (0* - auto, 1 - dantzig, 2 - parmult, 3 -

devex, 4 - quicksteep, 5 - steep)

-r<value> Choose ratio tester (0 - textbook, 1 - harris, 2 - fast, 3*

- boundflipping)

(*indicates default)

30

And the display options are:

-v<level> set verbosity to <level> (0 - error, 3 - normal, 5 - high)

-x Print primal solution

-y Print dual multipliers

-X Print primal solution in rational numbers

-Y Print dual multipliers in rational numbers

-q Display detailed statistics

-c Perform final check of optimal solution in original

problem

6.3.3. Linear problems with SoPlex

6.3.3.1. Example 1

A company manufactures desks, tables and chairs. The manufacture of each type of

wood and furniture requires two types of skilled labor: carpentry and finishing. The

amounts of each resource needed to produce each type of furniture and other details

of the problem are given in the table below (the amounts of wood are measured in

feet - table)

Resource Desk Table Chair
Resource

quantity

Wood 8 6 1 48

Finishing hours 4 2 1,5 20

Carpentry hours 2 1,5 0,5 8

Sales prize 60 € 30 € 20 €

Minimum demand 3 1 0

Maximum demand No limits 5 No limits

Assuming that the available resources have already been purchased, find an optimal

solution.

Solution

This is a product-mix problem. There is three products, which are going to be the

variables, and the objective is maximize the benefit.

31

x1 = “Number of desks”

x2 = “Number of tables”

x3 = “Number of chairs”

First, it is necessary writing the LP file (in the appendix, section A.1.1.).

Later, this file must be in the bin directory. In addition to the objective value, it is

wanted to know the quantity of the variables. For that reason, in the command line it

is added “-x”.

 ./soplex –x Example1.lp

The display on screen is written in section A.2.1. of the appendix.

The objective value is 230€ and the value of the variables are:

- x1 (“Number of desk”) = 3 units

- x2 (“Number of tables”) = 1 unit

- x3 (“Number of chairs”) = 1 unit

The iterations number is two and the compilation time is approx. 0 seconds.

This problem could be done in a MPS format too, as in the section A.2.2.

To solve it, it is written in the command line:

./soplex -x example1.mps

And the result is the same as solving the problem with the LP format.

This problem was implemented in Xpress Mosel (another program to Optimization

problems) to be sure that the problem solving with SoPlex was correctly done, and it

gives the same result.

6.3.3.2. Example 2

A company has three factories generating electricity that supply to four cities. Each

factory can supply a limited amount of energy and should satisfy the requirements of

all cities. The following table lists the maximum amounts of energy that can generate

each plant, demand in each city (both data given in millions of kw/h) and costs in €,

sending one million kwh from each plant to each city shown. It is wanted to know the

distribution of energy that minimize the total cost.

 City 1 City 2 City 3 City 4 Capacity

Factory 1 8 6 10 9 35

Factory 2 9 12 13 7 50

Factory 3 14 9 16 5 40

Demand 45 20 30 30

32

Solution

This is a transport problem. There are 3 sources and 4 destinations, so in total there

are 12 decision variables, and the objective is minimize the cost to distribute the

energy.

First, it is written the LP file (in the appendix, section A.1.3.).

And later, it is solved with SoPlex and the result is written in section A.2.2.

The objective function value is 1020 €, and variables values are:

𝑥11 = 0 𝑥12 = 10 𝑥13 = 25 𝑥14 = 0

𝑥21 = 45 𝑥22 = 0 𝑥23 = 5 𝑥24 = 0

𝑥31 = 0 𝑥32 = 10 𝑥33 = 0 𝑥34 = 30

With an MPS format, the result would be the same, but it is not implemented with

that because MPS format is longer and less intuitive than the LP format.

6.4. SoPlex performance

6.4.1. Introduction

This research objective is evaluated the complexity of SoPlex. Then it is necessary to

find a way to create big problems with, at least, one feasible solution.

It is used the C language to program and generate the problems. First, to each kind

of problems, an LP file is generated under a known problem to test if the writing and

format problem would be the correct when SoPlex tried to solve it. Later, the C

program is changed to generate problems with random data, which a feasible

solution.

Chosen problems are Product-Mix and Transportation Problem. As follows it is

explained the steps to generate the problem and it is analysed the results to evaluate

effectiveness of SoPlex.

6.4.2. Product-Mix Problem

6.4.2.1. Program

The first step has been done is create a LP file from a known problem with C language.

The Product-Mix mathematical problem, which has been exposed in the chapter 2, is:

33

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 ∑(𝑝𝑗 − 𝑐𝑗) · 𝑥𝑗

𝑛

𝑗=1

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ∑ 𝑎𝑖𝑗 · 𝑥𝑗 ≤ 𝑏𝑖

𝑛

𝑗=1

 ∀𝑖 = 1, … , 𝑚

𝑥𝑗 ≤ 𝑢𝑗 ∀𝑗 = 1, … , 𝑛

𝑥𝑗 ≥ 𝑙𝑗 ∀𝑗 = 1, … , 𝑛

And the problem has been chosen to try the problem with SoPlex is:

Example: It is going to be process 4 products in 3 different machines. Time (in

minutes) required per unit of each product , the ability of daily operation of

each machine in minutes and quantities to produce minimum and maximum

for each product selling prices and costs per unit produced each product are

in the following table:

 Product 1 Product 2 Product 3 Product 4 Capacity

Machine 1 1 1.5 2 1 450

Machine 2 3 2 0 2 400

Machine 3 2 0.5 3 1 620

Q_min 2 20 30 30

Q_max 200 200 150 100

Prize/unit 25 20 30 15

Cost/unit 10 15 18 5

First it is defined in the C program the variables which will be used. The C program is

in the appendix (A.3.1.).

In the program, it is introduced the values by hand. Later, it is calculated the profit

margin, which is prize minus cost:

𝑣𝑗 = 𝑝𝑗 − 𝑐𝑗 ∀𝑗

Once it is defined and calculated all the parameters, it is proceed to generate the LP

file. It must be written the next line to create it:

 freopen("ProductMixResult.lp","w",stdout);

and, when all the file has been written, it must be closed:

 fclose(stdout);

In the middle, all the characters inside a “printf” are written in the LP file.

34

When the program is compiled, the LP file generated is in the appendix (Section

A.1.4.).

After that, it is tested that the LP file has the correct format running SoPlex, and the

result is in section A.2.3.

The value of the objective function, that is the benefit, is 3.508 € and the number of

each product are:

Product 1 (𝑥1) = 56

Product 2 (𝑥2) = 20

Product 3 (𝑥3) = 134

Product 4 (𝑥4) = 96

Once the format has been tested, it will be used in the following steps the part of the

program that generate the LP file. The other part will be changed with the purpose to

generate an automatically Product-Mix problem.

To generate automatically a random problem with feasible solution, it is generated

first the solution (x), and later the rest of the values. Then it is explained step by step

the procedure.

First, in an external file has been defined the number of products (n), number of

resources (m) and the deviation for the lower and upper bound (later it will be

explained). The program is written in section A.3.2.

After, it is define the matrix’s and vector’s problem. It must be taken into account that

the propose of these research is generate big problems. For that reason, the matrix

and vectors must be defined in the dynamic way, using pointers.

As the problem will be generated by random, there is two possibilities: generating

from a seed or from the computer time. The first option is only enter a number by

hand:

 seed = 4853;
 srand(seed);

With the second option, at the beginning of the program, outside the main function,

it must be included “time.h” and, to generate the random numbers, the date and the

time of the system is taken.

#include <time.h>

int main()
{

 …

 srand(time(NULL));
 …
}

35

The chosen option is the first, because it is the only way to repeat a simulation with

the same values.

The principal problem is generated the capacity of each resource ensuring that there

is, at least, one feasible solution. For that reason, it is generated first the 𝑎𝑖𝑗 matrix

and the random solution (𝑥̃𝑗). With these values is calculated the capacity of each

resource (𝑏𝑖):

𝑏𝑖 = ∑ 𝑎𝑖𝑗 · 𝑥̃𝑗 + 𝑟𝑎𝑛𝑑_𝑛𝑢𝑚𝑏𝑒𝑟

𝑛

𝑗=1

 ∀𝑖 = 1, … , 𝑚

The values of product time in each resource (𝑎𝑖𝑗) will be between 0 and 10 and the

values of the random solution (𝑥̃𝑗) between 0 and 100, all of them integers. To

generate the capacity vector, it is calculated every constraint and later it is added a

random number.

Later, the bounds are calculated. The upper bounds will be the random solution plus

de upper deviation defined in the external file. The lower bounds will be the random

solution less the lower deviation. If the lower bound calculation is negative, it will be

written zero.

𝑢𝑗 = 𝑥̃𝑗 + 𝑢_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 ∀𝑗 = 1, … , 𝑛

{
𝑙𝑗 = 𝑥̃𝑗 − 𝑙𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑖𝑓 𝑥̃𝑗 − 𝑙𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 > 0

𝑙𝑗 = 0 𝑖𝑓 𝑥̃𝑗 − 𝑙𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 ≤ 0
} ∀𝑗 = 1, … , 𝑛

Then, the prize and cost of each resource is generated by random, and the profit

margin is calculated (𝑣𝑗 = 𝑝𝑗−𝑐𝑗).

Now, it could be created a random Product Mix Problem and the LP file to solve with

SoPlex the problem. It is entered:

- n=4

- m=3

- u_desviation=200

- l_desviation=100

- Seed=4853

And the LP file has been generated is in the section A.1.5. To check if the format is

correct, with solve the LP file with SoPlex, and the result is in section A.2.4.

6.4.2.2. Testing and results

Once it is proved that the C programs works correctly, it is made the study of SoPlex

complexity.

36

It is generated big problems, and it is studied the execution time and the memory

used. The execution time is obtained by display on screen, when SoPlex is executed

and gives the results. However, to know the memory used it has been used the

resource monitor of windows. It is taken the memory used before running SoPlex and

the peak while is running. It is calculated the difference, that will be the memory used.

During the execution of the program with difference size of products and machines,

it was discovered that the lines of the LP file must not have more than 8190

characters. At first, that was a problem, because the variables could not be more than

1000 (products number in the product-mix problem). However, the number of

resources do not have limit, because one resource add one row in the LP format and

it does not modified the number of characters in the rows.

In this research, the execution time and the memory used are represented in a graph

in function of the number of products or resources.

Before starting to generate random product-mix problems to evaluate the execution

time and the memory used, it is checked if the parameters of the quantity deviation

have influence or not. It is chosen a number of 500 resources (m=500) and it is

running the program with different number of products and deviations of 50, 200 and

500 (appendix, section A.4.1.).

Later, with the data, it is done the following graph:

Graphical representation of the time as a function of products and the deviation

parameters.

At the begging, it seems that with a lower deviation (50), the execution time is less,

but it is random and depends of the random numbers that the program generates.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

0 200 400 600 800 1000

Ti
m

e
(s

)

Number of products

Time=f(products,500)

50

200

500

37

For that reason, it is concluded that the deviation parameter are not going to

influence in a significant way in the research.

It is started to run the program, to 𝑚 = 100, 200, … ,1000 and 𝑛 = 100, 200, … , 1000,

because we only can execute until 𝑛 = 1000. The data obtained are in section A.4.2.

And with these data, it is created a graph that shows the evolution of the execution

time depending on the resources (m) and the products (n):

Graphical representation of the time as a function of resources and products.

How it could be seen, when the number of resources and products grow, the time

grows in a polynomial way.

To know the order of the polynomial dependence, it is used the excel tool of the trend

line and the R2, which says how good is the regression. In the following table, it can

be seen the R2 for each resource, with a polynomial order of 2 and 3:

Resources R2 (Order=2) R2 (Order=3) Difference

100 0,922 0,9232 0,0012

200 0,9453 0,9453 0

300 0,9793 0,9796 0,0003

400 0,9679 0,9685 0,0006

500 0,8295 0,8414 0,0119

600 0,9655 0,9667 0,0012

700 0,8357 0,8779 0,0422

800 0,9749 0,9763 0,0014

900 0,9395 0,9398 0,0003

0

0,5

1

1,5

2

2,5

3

0 200 400 600 800 1000

Ti
m

e
(s

)

Number of products

Time=f(resources,products)

Resources=100

Resource=200

Resource=300

Resources=400

Resources=500

Resources=600

Resources=700

Resources=800

Resources=900

Resources=1000

38

100 0,972 0,9722 0,0002

As it can be seen, the difference is very small between a polynomial regression of

order 2 and 3. For that reason, the order of the function is 2 and the time grows in a

polynomial way of order two (𝑂(𝑛2)).

The memory used is not represented in a graph because the values obtained are very

small and are not significant.

After, the number of products is set at 1000 (the maximum that can) and the

evolution of the execution time and the memory used are studied increasing the

resources number. It is run the program increasing the number the resources by

thousands (section A.4.3.).

It is represented the execution time in a graph, function of the resources number. As

it could be seen, the execution time grows in a polynomial form of order 2 with a

R2=0.9768.

Graphical representation of the time as a function of resources (by thousands)

Furthermore, it is represented too the memory used function of the resources

number, because now the data are big enough to be representative. The memory

grows in a linear form when the resources are increased (𝑂(𝑛)).

R² = 0,9768

0

50

100

150

200

250

0 2000 4000 6000 8000 10000 12000 14000 16000

Ti
m

e
(s

)

Number of resources

Time=f(resources,1000)

39

Graphical representation of the memory as a function of resources (by thousands)

After that, it is started to run the program by 5 thousand (section A.4.4), to reach the

maximum resources that the computer, where SoPlex had been installed, could run.

The computer has 8 GB of RAM memory and the processor is an intel core i5.

As it could be seen, it was stopped to execute the program when the memory where

near 8 GB and the execution time was around 2 hours.

As following, it is represented the execution time it is confirmed again the polynomial

dependence of order 2 (R2=0.9934) with the resources number:

Graphical representation of the time as a function of resources (by 5 thousands)

The memory used is represented too, and it has a linear dependence with the

resource number:

R² = 0,9973

0

200

400

600

800

1000

1200

1400

0 2000 4000 6000 8000 10000 12000 14000 16000

M
em

o
ry

 (
M

B
)

Number of resources

Memory=f(resources,1000)

R² = 0,9934

0

1000

2000

3000

4000

5000

6000

7000

0 10000 20000 30000 40000 50000 60000 70000 80000

Ti
m

e
(s

)

Number of resources

Time=f(resources,1000)

40

Graphical representation of the memory as a function of resources (by 5 thousands)

If the research was done with another computer more powerful, the number of

resources, that the program would be run, would be more.

With this research, it is demonstrated that the Product-Mix problem belongs to the P

class problems, so it is treatable and could be solved in a reasonable time.

6.4.3. Transport Problem

6.4.3.1. Program

First, it is created a C program of a known transport problem to create the format of

the LP file (section A.3.3). The problem chosen is the Example 2 of the section

6.3.3.2.

It is defined the variables, entering by hand and later it is generated the LP file with

the C program.

The normal way to write the decision variables will be x[i][j], but to use less

characters because of the 8190 characters problem, it is written as xi_j.

Once it is tested that the LP format generated by the C program is correct, it is written

the random generator program.

To generate automatically a random problem with feasible solution, it is generated

first the solution (x), and later the rest of the values. Then it is explained step by step

the procedure and the program is in the appendix (A.3.4.).

First, in an external file has been defined the number of sources (m), number of

destinations (n) and the capacity and demand deviation. So, it is necessary to enter

these values in the program.

R² = 0,9931

0

1000

2000

3000

4000

5000

6000

0 10000 20000 30000 40000 50000 60000 70000 80000

M
em

o
ry

 (
M

B
)

Number of resources

Memory=f(resources,1000)

41

Later, matrix’s and vector’s problem’s are generated in a dynamic way, using

pointers.

As the problem is generated by random, we should introduce one of the two options

explain in the Product-Mix problem program (Section 6.4.2.1.). It is chosen the

second one.

Then, it is started to create the values of the variables. First, the random solution

(𝑥̂𝑖𝑗). It is fixed a maximum value of 50, but it could be whatever. Later, the cost

matrix (𝑐𝑖𝑗), with a maximum value of 20 (it could be whatever too).

To generate the demand vector, for each value of the vector, it is add up all the

variables 𝑥̂𝑖𝑗 that arrive to the destination 𝑗, and it is subtracted a random number

that, at most, has the value of the demand deviation introduced by hand:

∑ 𝑥𝑖𝑗 = 𝑏𝑖 − min (𝑟𝑎𝑛𝑑, 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑑𝑒𝑚𝑎𝑛𝑑)

𝑚

𝑖=1

 ∀𝑗 = 1, … , 𝑛

To generate the capacity vector it is following the same procedure: it is add up all the

variables 𝑥̂𝑖𝑗 that leave the source 𝑖, and it is added a random number that, at most,

has the value of the capacity deviation introduced by hand:

∑ 𝑥𝑖𝑗 = 𝑎𝑖 + min (𝑟𝑎𝑛𝑑, 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦)

𝑛

𝑗=1

 ∀𝑖 = 1, … , 𝑚

To check the program, it is introduced the following values:

- n=4

- m=3

- demand_deviation=10

- capacity_deviation=20

The LP file generated is in section A.1.6. and the solution with SoPlex is in section

A.2.5. of the appendiz.

6.4.3.2. Testing and results

It is executed the program with a large number of sources and destinations, but it is

found a problem: the line size must not be more than 8190 characters. For the

transport problem is a problem, because the objective function is the biggest line,

and it could not be generated as the Product-Mix Problem.

It is execute the program with different numbers of sources and destinations, and the

result is in the section A.4.5.

As maximum, the problem could have around 850 variables with the LP format, to

SoPlex could solved it.

42

For that reason, it could not be done a complexity study of the Transport Problem

writing in a LP format. However, with an MPS format it could be done, because the

line of the file are not going to be more than 100 characters due to the column

orientation of the file.

43

7. SCIP

SCIP is a solver for mixed integer programming (MIP) and mixed integer nonlinear

programming (MINLP). It is also a framework for constraint integer programming and

branch-cut-and-price [8].

A similar technique is used for solving both Integer Programs and Constraints: the

problem is successively divided into smaller subproblems (branching) that are solved

recursively.

Integer Programming and Constraint Programming have different strengths: Integer

Programming have different strengths: Integer Programming uses LP relaxations and

cutting planes to provide strong dual bounds, while Constraint Programming can

handle arbitrary (non-linear) constraints and uses propagation to tighten domains of

variables [8].

SCIP is implemented as C callable library and provides C++ wrapper classes for user

plugins. It can also be used as a standalone program to solve mixed integer programs

given in MPS, LP, flatzinc, CNF, OPB, WBO, PIP, or CIP format. Besides that SCIP can

directly read ZIMPL models [8].

In this project, only an introduction of SCIP is done using one of the examples of the

library (the Queens Problem). With this problem the complexity of SCIP is evaluated

in a basic way.

7.1. Installation

After the installation of SCIP Optimization Suite, SCIP installation is similar to SoPlex

installation. It is entered in the directory of SCIP Optimization Suite, and it is seen a

scip-version.tgz. The steps are:

1) Extract the package

E.g.: tar xvf scip-3.2.1.tgz

2) Inside the directory of SCIP, make test with the options that it will be

needed. In the installation file is defined all the parameters.

In this research, it was entered:

make test ZLIB=false ZIMPL=false READLINE=false

7.2. The Queens Problem

7.2.1. Mathematical Model

The n-Queens problem is based to find a n-queens distribution in a nxn chessboard

without the queens do not attack each other’s. Therefore, it could not be found two

Queens in the same row, column or diagonal.

This problem has two versions. The most simple is to find exactly on feasible solution

for n value. The other version, more difficult, is to find all the feasible solutions.

http://zimpl.zib.de/

44

This can be modeled as a binary program in the following way: let 𝑥𝑖𝑗 ∈ {0,1} denote

whether a queen is placed on the 𝑖 row and the 𝑗 column of the chessboard. Since

the problem is to find a placement, the objective function is irrelevant. It is add,

however, the redundat objective to maximize the number of placed qeens [11]:

max ∑ ∑ 𝑥𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

Now, it is forced exactly one queen to be placed in every column and every row:

∑ 𝑥𝑖𝑗

𝑛

𝑖=1

= 1 𝑗 = 1, … , 𝑛

∑ 𝑥𝑖𝑗

𝑛

𝑗=1

= 1 𝑖 = 1, … , 𝑛

The diagonal rows are a little bit more complicated to write up:

∑ 𝑥𝑖,𝑗+𝑖−1 ≤ 1 𝑗 = 1, … , 𝑛

𝑛−𝑗+1

𝑖=1

∑ 𝑥𝑖+𝑗−1,𝑗 ≤ 1 𝑖 = 1, … , 𝑛

𝑛−𝑖+1

𝑗=1

∑ 𝑥𝑖,𝑛−𝑗−𝑖+2

𝑛−𝑗+1

𝑖=1

≤ 1 𝑗 = 1, … , 𝑛

∑ 𝑥𝑖+𝑗−1,𝑛−𝑗+1 ≤ 1 𝑖 = 1, … , 𝑛

𝑛−𝑖+1

𝑗=1

This model is implemented in the examples with the installation os SCIP. In the

following section is explained how to use and run it.

7.2.2. Testing and results

The Queens problem is one of the examples that SCIP include. When SCIP

Optimization Suite is installed, it should be entered in the SCIP directory first, later in

the examples and, at the end, to the Queens problem:

/scipoptsuite-3.2.1/scip-3.2.1/examples/Queens

45

In this directory, to run the Queens problem the first time, it is introduced in Cygwin

command line:

make test ZLIB=false ZIMPL=false READLINE=false

It is entered the other parameters, as in the SoPlex case, because the SCIP

Optimization suite was installed with that.

The test is done for n=1,2,4,8,16 (display on screen in section A.5.1.). That is define

in the Makefile, so if it is wanted to change the number of Queens, it could be

modified the Makefile and written the dimension of the chessboard (n).

It is wanted to test the execution time of each program depending on n. For that

reason, in the command line is included the command “time”:

time make test ZLIB=false ZIMPL=false READLINE=false

With this command, it is returned three values of time: real time, user time and

system time. The real time refers to elapsed “wall clock time”, like using a stop watch.

The user time plus the system time is the total CPU time, may be more or less than

the real time. The data obtained are in section A.4.6..

The line to n=275 is empty, because the computer was running more than 10 hours,

and it could not solve it.

It is represented the real time and the CPU time as a function of the size of the

chessboard (n):

Graphical representation of the real time as a function of the chessboard size (n)

0

2000

4000

6000

8000

10000

12000

0 50 100 150 200 250 300 350 400 450

R
ea

l T
im

e
(s

)

n

Real Time=f(n)

46

Graphical representation of the CPU time as a function of the chessboard size (n)

As it could be seen, more less both graphics are the same. When the size of the

chessboard grows, the time grows in more less as an exponential function. This is

due to the complexity class of this problem is NP hard. With high sizes, it is impossible

to solve it.

With the case of n=275, it was not found a solution in a time of more than 10 hours.

Probably, it is because that size is more difficult to solve than others, so the graphics

do not follow a strict exponential function, but most of the values yes.

It is tried to solve a problem with n=450, but the program was running more than 16

hours, and it was not found a solution. Probably, because the exponential function is

tending to the infinity.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0 50 100 150 200 250 300 350 400 450

C
P

U
 t

im
e

(s
)

n

CPU time=f(n)

47

8. Conclusion

This research, principal focus on SoPlex, it is exposed one of the ways to solve Linear

Programming problems: with LP or MPS format. As it could be seen along the work,

the LP format has the advantage that is more intuitive and simple, but the problem

is that SoPlex cannot read a file with row of more than 8910 characters. If it is wanted

to solve a problem with a large number of variables, it is a disadvantage and it is

needed to use the MPS format, more difficult and non-intuitive.

In the complexity study of both solvers, SCIP and SoPlex, it is seen very clearly, the

different class problems depending on their complexity and in what is focus every

solver.

SoPlex only can solve Linear Programming problems, so the execution time and

memory used has a polynomial complexity tendency, function of the number of

variables and other parameters.

However, SCIP is focus on mixed integer problems and it can solve NP problems.

When the size of the problems grow, the complexity grows in an exponential way, as

was shown in the example of the Queens Problem.

To sum up, SCIP Optimization Suite is an useful tool to solve Operation Research

problems. If it is wanted to solve a LP problem, SoPlex will be the correct solver and

the execution time and memory used will tend to a polynomial complexity, having

always a solution. However, SCIP will be used to NP-hard problems, so only it will be

found a solution if the size of the problem is not too big, due to the exponential

complexity tendency.

48

Bibliography

[1] Hillier, F. S., Lieberman, G. J., Introduction to Operation Research: MacGraw-Hill

(7th edition).

[2] Taha, H.A., Investigación de Operaciones: Pearson (7ª edition)

[3] Winston, W.L., Investigación de Operaciones, Aplicaciones y algoritmos:

Thompson (4th edition).

[4] Kulej, M., Operation Research: Wrocław University of Technology, 2011.

[5] Chvátal, V., Linear Programming: W.H. Freeman & Co., 1983.

[6] Nahmias, S., Análisis de la producción y las operaciones: McGraw-Hill

Ineramericana México.

[7] Rosenfeld, R., Irazábal, J., Computabilidad, complejidad computacional y

verificación de programas: Edulp, 2013.

[8] http://scip.zib.de/

[9] http://soplex.zib.de/

[10] http://lpsolve.sourceforge.net

[11] Schwarz, C., An introduction to SCIP: University of Bayreuth, 2010.

http://scip.zib.de/
http://soplex.zib.de/
http://lpsolve.sourceforge.net/5.1/lp-format.htm

49

Appendix

A1. MPS and LP files

A.1.1. LP file from example 1 (Section 6.3.3.1)

Maximize

60 x1 + 30 x2 + 20 x3

Subject to

res1: 8 x1 + 6 x2 + 1 x3 <= 48

res2: 4 x1 + 2 x2 + 1.5 x3 <= 20

res3: 2 x1 + 1.5 x2 + 0.5 x3 <= 8

Bounds

x1 >= 3

5 >= x2 >=1

End

A.1.2. MPS file from example 1 (Section 6.3.3.1)

NAME EXAMPLE1

OBJSENSE

 MAX

ROWS

 N OBJ

 L RES1

 L RES2

 L RES3

COLUMNS

 X1 OBJ 60 RES1 8

 X1 RES2 4 RES3 2

 X2 OBJ 30 RES1 6

 X2 RES2 2 RES3 1.5

 X3 OBJ 20 RES1 1

 X3 RES2 1.5 RES3 0.5

RHS

 RHS1 RES1 48 RES2 20

 RHS1 RES3 8

BOUNDS

 LO BND1 X1 3

 LO BND1 X2 1

 UP BND1 X2 5

ENDATA

50

A.1.3. LP file from example 2 (Section 6.3.3.2.)

Minimize

8 x[1][1] + 6 x[1][2] + 10 x[1][3] + 9 x[1][4] + 9 x[2][1] + 12

x[2][2] + 13 x[2][3] + 7 x[2][4] + 14 x[3][1] + 9 x[3][2] + 16

x[3][3] + 5 x[3][4]

Subject to

x[1][1] + x[1][2] + x[1][3] + x[1][4] <= 35

x[2][1] + x[2][2] + x[2][3] + x[2][4] <= 50

x[3][1] + x[3][2] + x[3][3] + x[3][4] <= 40

x[1][1] + x[2][1] + x[3][1] >= 45

x[1][2] + x[2][2] + x[3][2] >= 20

x[1][3] + x[2][3] + x[3][3] >= 30

x[1][4] + x[2][4] + x[3][4] >= 30

Bounds

End

A.1.4. LP file from Product-Mix example (Section 6.4.2.1)

Maximize
15 x1 + 5 x2 + 12 x3 + 10 x4

Subject to
Res1: 1.0 x1 + 1.5 x2 + 2.0 x3 + 1.0 x4 <= 450
Res2: 3.0 x1 + 2.0 x2 + 0.0 x3 + 2.0 x4 <= 400
Res3: 2.0 x1 + 0.5 x2 + 3.0 x3 + 1.0 x4 <= 620

Bounds
200 >= x1 >= 2
200 >= x2 >= 20
150 >= x3 >= 30
100 >= x4 >= 30

End

51

A.1.5. LP file generated from Product-Mix program with random data

Maximize
14x1 +24x2 +28x3 +7x4

Subject to
Res1: 0x1 +5x2 +5x3 +8x4 <= 1326
Res2: 8x1 +4x2 +1x3 +8x4 <= 1248
Res3: 5x1 +5x2 +7x3 +6x4 <= 1579

Bounds
247 >= x1 >= 0
279 >= x2 >= 0
276 >= x3 >= 0
260 >= x4 >= 0

End

A.1.6. LP file from Transport Problem program with random data

Minimize

15 x1_1 + 4 x1_2 + 17 x1_3 + 8 x1_4 + 3 x2_1 + 6 x2_2 + 19 x2_3 +

3 x2_4 + 18 x3_1 + 3 x3_2 + 6 x3_3 + 3 x3_4

Subject to

x1_1 + x1_2 + x1_3 + x1_4 <= 72

x2_1 + x2_2 + x2_3 + x2_4 <= 138

x3_1 + x3_2 + x3_3 + x3_4 <= 112

x1_1 + x2_1 + x3_1 >= 40

x1_2 + x2_2 + x3_2 >= 54

x1_3 + x2_3 + x3_3 >= 113

x1_4 + x2_4 + x3_4 >= 77

Bounds

End

52

A.2. SoPlex displays on screen

A.2.1. SoPlex result of the example 1 (Section 6.3.3.1.)

LP has 3 rows 3 columns and 9 nonzeros.

Simplifier removed 0 rows, 0 columns, 0 nonzeros, 0 col bounds, 0 row
bounds
Reduced LP has 3 rows 3 columns 9 nonzeros
Equilibrium scaling LP
type | time | iters | facts | shift |violation | value
 L | 0.0 | 0 | 1 | 1.75e+01 | 1.90e+01 | 1.49999425e+02
 E | 0.0 | 1 | 2 | 0.00e+00 | 7.50e+00 | 2.20000000e+02
 E | 0.0 | 2 | 3 | 0.00e+00 | 0.00e+00 | 2.30000000e+02
 --- transforming basis into original space
 L | 0.0 | 0 | 1 | 0.00e+00 | 0.00e+00 | 2.30000000e+02
 L | 0.0 | 0 | 1 | 0.00e+00 | 0.00e+00 | 2.30000000e+02

SoPlex status : problem is solved [optimal]
Solving time (sec) : 0.00
Iterations : 2
Objective value : 2.30000000e+02

Primal solution (name, value):
x1 3.000000000
x2 1.000000000
x3 1.000000000
All other variables are zero (within 1.0e-16).

A.2.2. SoPlex result of the example 2 (Section 6.3.3.2.)

LP has 7 rows 12 columns and 24 nonzeros.

Simplifier removed 0 rows, 0 columns, 0 nonzeros, 0 col bounds, 0 row bounds
Reduced LP has 7 rows 12 columns 24 nonzeros
Equilibrium scaling LP
type | time | iters | facts | shift |violation | value
 L | 0.0 | 0 | 1 | 0.00e+00 | 1.25e+02 | 0.00000000e+00
 L | 0.0 | 7 | 2 | 0.00e+00 | 0.00e+00 | 1.02000000e+03
 --- transforming basis into original space
 L | 0.0 | 0 | 1 | 0.00e+00 | 0.00e+00 | 1.02000000e+03
 L | 0.0 | 0 | 1 | 0.00e+00 | 0.00e+00 | 1.02000000e+03

SoPlex status : problem is solved [optimal]
Solving time (sec) : 0.00
Iterations : 7
Objective value : 1.02000000e+03

Primal solution (name, value):
x[1][2] 10.000000000
x[1][3] 25.000000000
x[2][1] 45.000000000
x[2][3] 5.000000000
x[3][2] 10.000000000
x[3][4] 30.000000000
All other variables are zero (within 1.0e-16).

53

A.2.3. SoPlex Result of the Product-Mix example

LP has 3 rows 4 columns and 11 nonzeros.

Simplifier removed 0 rows, 0 columns, 0 nonzeros, 0 col bounds, 0 row
bounds
Reduced LP has 3 rows 4 columns 11 nonzeros
Equilibrium scaling LP
type | time | iters | facts | shift |violation | value
 L | 0.0 | 0 | 1 | 0.00e+00 | 1.68e+03 | 6.80000000e+03
 L | 0.0 | 3 | 2 | 0.00e+00 | 0.00e+00 | 3.50800000e+03
 --- transforming basis into original space
 L | 0.0 | 0 | 1 | 0.00e+00 | 0.00e+00 | 3.50800000e+03
 L | 0.0 | 0 | 1 | 0.00e+00 | 0.00e+00 | 3.50800000e+03

SoPlex status : problem is solved [optimal]
Solving time (sec) : 0.00
Iterations : 3
Objective value : 3.50800000e+03

Primal solution (name, value):
x1 56.000000000
x2 20.000000000
x3 134.000000000
x4 96.000000000
All other variables are zero (within 1.0e-16).

A.2.4. SoPlex Result of the LP file in section A.1.5.

LP has 3 rows 4 columns and 11 nonzeros.

Simplifier removed 0 rows, 0 columns, 0 nonzeros, 0 col bounds, 0 row
bounds
Reduced LP has 3 rows 4 columns 11 nonzeros
Equilibrium scaling LP
type | time | iters | facts | shift |violation | value
 L | 0.0 | 0 | 1 | 0.00e+00 | 1.23e+04 | 1.97020000e+04
 L | 0.0 | 3 | 2 | 0.00e+00 | 0.00e+00 | 7.01704516e+03
 --- transforming basis into original space
 L | 0.0 | 0 | 1 | 0.00e+00 | 0.00e+00 | 7.01704516e+03
 L | 0.0 | 0 | 1 | 0.00e+00 | 0.00e+00 | 7.01704516e+03

SoPlex status : problem is solved [optimal]
Solving time (sec) : 0.00
Iterations : 3
Objective value : 7.01704516e+03

Primal solution (name, value):
x1 36.561290323
x2 230.103225806
x3 35.096774194
All other variables are zero (within 1.0e-16).

54

A.2.5. SoPlex Result of the LP file in section A.1.6.

LP has 7 rows 12 columns and 24 nonzeros.

Simplifier removed 0 rows, 0 columns, 0 nonzeros, 0 col bounds, 0 row
bounds
Reduced LP has 7 rows 12 columns 24 nonzeros
Equilibrium scaling LP
type | time | iters | facts | shift |violation | value
 L | 0.0 | 0 | 1 | 0.00e+00 | 2.84e+02 | 0.00000000e+00
 L | 0.0 | 6 | 2 | 0.00e+00 | 0.00e+00 | 1.25600000e+03
 --- transforming basis into original space
 L | 0.0 | 0 | 1 | 0.00e+00 | 0.00e+00 | 1.25600000e+03
 L | 0.0 | 0 | 1 | 0.00e+00 | 0.00e+00 | 1.25600000e+03

SoPlex status : problem is solved [optimal]
Solving time (sec) : 0.00
Iterations : 6
Objective value : 1.25600000e+03

Primal solution (name, value):
x1_2 54.000000000
x1_3 1.000000000
x2_1 40.000000000
x2_4 77.000000000
x3_3 112.000000000
All other variables are zero (within 1.0e-16).

55

A.3. C programs

A.3.1. Product-Mix program of a known problem

#include <stdio.h>
#include <stdlib.h>

int main()
{
 int i, j;
 int m = 3;
 int n = 4;

 float a[3][4] = { {1,1.5,2,1},{3,2,0,2},{2,0.5,3,1} };

 float b[3] = { 450,400,620 };

 float p[4] = { 25,20,30,15 };

 float c[4] = { 10,15,18,5 };

 int l[4] = { 2,20,30,30 };

 int u[4] = { 200,200,150,100 };

 float v[4];

 for(j=0;j<n;j++)
 {
 v[j] = p[j] - c[j];
 }

 freopen("ProductMixResult.lp","w",stdout);

 /*Objective Function*/

 printf("Maximize \n");

 for(j=0;j<n;j++)
 {
 printf("%.f x%d ", v[j], j+1);

 if(j<n-1)
 {
 printf("+ ");
 }
 }
 printf("\n\n");

 /*Subject to*/
 printf("Subject to \n");

 for(i=0;i<m;i++)
 {
 printf("Res%d: ", i+1);

 for(j=0;j<n;j++)
 {
 printf("%.1f x%d ", a[i][j], j+1);

 if (j<n-1)

56

 {
 printf("+ ");
 }
 }
 printf("<= %.f \n", b[i]);
 }

 printf("\n");

 /*Bounds*/
 printf("Bounds \n");

 for(j=0;j<n;j++)
 {
 printf("%d >= x%d >= %d \n", u[j], j+1, l[j]);
 }

 printf("\n");
 printf("End");

 fclose(stdout);

}

A.3.2. Product-Mix program with random data

#include <stdio.h>
#include <stdlib.h>

int main()
{
 int i, j, m, n;
 int u_deviation, l_deviation;
 float sum;
 float seed;

 FILE *f1;
 int vector[4];
 f1 = fopen("ProductMix_Data.txt", "r");

 if((f1!=NULL))
 {
 for (i = 0;i<4;i++)
 {
 fscanf(f1, "%d", &vector[i]);
 }
 }

 else
 {
 printf("Error opening data file");
 }
 printf("\n");

 n = vector[0];
 m = vector[1];
 u_deviation = vector[2];
 l_deviation = vector[3];

 float **a;

57

 a = (float **)malloc(m * sizeof(float *));

 for (i = 0; i<m; i++)
 {
 a[i] = (float *)malloc(n * sizeof(float));
 }

 float *b;
 b = (float *)malloc(m * sizeof(float));

 float *p;
 p = (float *)malloc(n * sizeof(float));

 float *c;
 c = (float *)malloc(n * sizeof(float));

 float *v;
 v = (float *)malloc(n * sizeof(float));

 int *l;
 l = (int *)malloc(n * sizeof(int));

 int *u;
 u = (int *)malloc(n * sizeof(int));

 float *x;
 x = (float *)malloc(n * sizeof(float));

 seed = 4853;
 srand(seed);

 /*Matrix of product time in each resource*/
 for(i=0;i<m;i++)
 {
 for (j = 0;j<n;j++)
 {
 a[i][j] = rand() % 11;
 }
 }

 /*Random solution*/
 for (j = 0; j < n; j++)
 {
 x[j] = rand() % 101;
 }

 /*Capacity vector*/
 for (i = 0; i < m; i++)
 {
 sum = 0;
 for (j = 0; j < n; j++)
 {
 sum = sum + a[i][j] * x[j];
 }

 b[i] = sum + rand() % 101;
 }

 /*Minimun bound of each product*/
 for(j=0;j<n;j++)
 {

58

 l[j] = x[j] - l_deviation;

 if(l[j]<0)
 {
 l[j] = 0;
 }
 }

 /*Maximun bound of each product*/
 for (j = 0; j<n; j++)
 {
 u[j] = x[j] + u_deviation;
 }

 /*Prize of each product*/
 for(j=0;j<n;j++)
 {
 p[j] = 20 + rand() % 21;
 }

 /*Cost of each product*/
 for(j=0;j<n;j++)
 {
 c[j] = 10 + rand() % 11;
 }

 /*Profit margin of each product*/
 for(j=0;j<n;j++)
 {
 v[j] = p[j] - c[j];
 }

 /* Generate LP file*/

 freopen("ProductMixResult.lp","w",stdout);

 printf("Maximize \n");

 /*Objective Function*/

 for(j=0;j<n;j++)
 {
 printf("%.fx%d ", v[j], j+1);

 if(j<(n-1))
 {
 printf("+");
 }
 }

 printf("\n\n");

 /*Subject to*/

 printf("Subject to \n");

 for(i=0;i<m;i++)

59

 {
 printf("Res%d: ", i+1);

 for(j=0;j<n;j++)
 {
 printf("%.fx%d ", a[i][j], j+1);

 if (j<(n-1))
 {
 printf("+");
 }
 }

 printf("<= %.f \n", b[i]);
 }

 printf("\n");

 /*Bounds*/

 printf("Bounds \n");

 for(j=0;j<n;j++)
 {
 printf("%d >= x%d >= %d \n", u[j], j+1, l[j]);
 }

 printf("\n");
 printf("End");

 fclose(stdout);

}

A.3.3. Transport program of a known problem

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main()
{
 int i, j;
 int m = 3;
 int n = 4;

 int c[3][4] = { {8,6,10,9},{9,12,13,7},{14,9,16,5} };

 int a[3] = { 35,50,40 };

 int b[4] = { 45,20,30,30 };

 /* Generate LP file*/

 freopen("TraProResult.lp","w",stdout);

 printf("Minimize \n");

60

 /*Objective Function*/

 for(i=0;i<m;i++)
 {
 for (j = 0;j<n;j++)
 {
 printf("%dx%d_%d ", c[i][j], i + 1, j + 1);
 if(j<n-1)
 {
 printf("+ ");
 }
 }
 if(i<m-1)
 {
 printf("+ ");
 }
 }

 printf("\n\n");

 /*Subject to*/

 printf("Subject to \n");

 for(i=0;i<m;i++)
 {
 for (j = 0;j<n;j++)
 {
 printf("x%d_%d ", i + 1, j + 1);
 if (j<n - 1)
 {
 printf("+ ");
 }
 }

 printf("<= %d \n", a[i]);
 }

 printf("\n");

 for(j=0;j<n;j++)
 {
 for (i = 0;i<m;i++)
 {
 printf("x%d_%d ", i + 1, j + 1);
 if (i<m - 1)
 {
 printf("+ ");
 }
 }

 printf(">= %d \n", b[j]);
 }

 /*Bounds*/

 printf("Bounds \n");

61

 printf("\n");
 printf("End");

 fclose(stdout);

}

A.3.4. Transport program with random data

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int main()
{
 int i, j, m, n;
 int seed, sum;
 int demand_deviation, capacity_deviation;

 FILE *f1;
 int vector[4];
 f1 = fopen("TraPro_Data.txt", "r");

 if ((f1 != NULL))
 {
 for (i = 0; i<4; i++)
 {
 fscanf(f1, "%d", &vector[i]);
 }
 }

 else
 {
 printf("Error opening data file");
 }
 printf("\n");

 n = vector[0];
 m = vector[1];
 demand_deviation = vector[2];
 capacity_deviation = vector[3];

 int **c;
 c = (int **)malloc(m * sizeof(int *));

 for (i = 0; i<m; i++)
 {
 c[i] = (int *)malloc(n * sizeof(int));
 }

 int *a;
 a = (int *)malloc(m * sizeof(int));

 int *b;
 b = (int *)malloc(n * sizeof(int));

 int **x;

62

 x = (int **)malloc(m * sizeof(int *));

 for (i = 0; i<m; i++)
 {
 x[i] = (int *)malloc(n * sizeof(int));
 }

 seed = 4574;
 srand(seed);

 /*Random solution*/
 for (i = 0; i<m; i++)
 {
 for (j = 0; j<n; j++)
 {
 x[i][j] = rand() % 51;
 }
 }

 /*Cost Matrix*/
 for(i=0;i<m;i++)
 {
 for (j = 0;j<n;j++)
 {
 c[i][j] = rand() % 21;
 }
 }

 /*Demand Vector*/
 for(j=0;j<n;j++)
 {
 sum = 0;
 for(i=0;i<m;i++)
 {
 sum = sum + x[i][j];
 }
 b[j] = sum - rand() % (demand_deviation + 1);
 }

 /*Capacity vector*/
 for(i=0;i<m;i++)
 {
 sum = 0;
 for(j=0;j<n;j++)
 {
 sum = sum + x[i][j];
 }
 a[i] = sum + rand() % (capacity_deviation + 1);
 }

 /* Generate LP file*/

 freopen("TraProResult.lp","w",stdout);

 printf("Minimize \n");

63

 /*Objective Function*/

 for(i=0;i<m;i++)
 {
 for (j = 0;j<n;j++)
 {
 printf("%d x%d_%d ", c[i][j], i + 1, j + 1);
 if(j<n-1)
 {
 printf("+ ");
 }
 }
 if(i<m-1)
 {
 printf("+ ");
 }
 }

 printf("\n\n");

 /*Subject to*/

 printf("Subject to \n");

 for(i=0;i<m;i++)
 {
 for (j = 0;j<n;j++)
 {
 printf("x%d_%d ", i + 1, j + 1);
 if (j<n - 1)
 {
 printf("+ ");
 }
 }

 printf("<= %d \n", a[i]);
 }

 printf("\n");

 for(j=0;j<n;j++)
 {
 for (i = 0;i<m;i++)
 {
 printf("x%d_%d ", i + 1, j + 1);
 if (i<m - 1)
 {
 printf("+ ");
 }
 }

 printf(">= %d \n", b[j]);
 }

 /*Bounds*/

 printf("Bounds \n");

64

 printf("\n");
 printf("End");

 fclose(stdout);

}

65

A.4. Tables

A.4.1. SoPlex result of Product-Mix if the deviation has influenced
Se

ed

R
e

so
u

rc
es

P
ro

d
u

ct
s

q
m

ax

d
es

vi
at

io
n

q
m

in

d
es

vi
at

io
n

It
e

ra
ti

o
n

s

So
lv

in
g

ti
m

e

So
p

le
x

M
em

o
ry

B

ef
o

re
 (

M
B

)

M
em

o
ry

A

ft
e

r
(M

B
)

M
em

o
ry

D
if

er
en

ce

(M
B

)

4853 500 50 500 500 87 0,02 3094 3096 2

4853 500 50 200 200 94 0,02 3133 3133 0

4853 500 50 50 50 84 0 3100 3100 0

4853 500 100 500 500 425 0,05 3076 3076 0

4853 500 100 200 200 330 0,03 3110 3112 2

4853 500 100 50 50 247 0,03 3090 3090 0

4853 500 200 500 500 731 0,12 3104 3104 0

4853 500 200 200 200 892 0,14 3093 3093 0

4853 500 200 50 50 345 0,05 3086 3086 0

4853 500 300 500 500 1009 0,17 3223 3223 0

4853 500 300 200 200 1260 0,19 3220 3220 0

4853 500 300 50 50 876 0,11 3211 3211 0

4853 500 400 500 500 1505 0,25 2881 2885 4

4853 500 400 200 200 1188 0,2 2857 2860 3

4853 500 400 50 50 1893 0,23 2887 2891 4

4853 500 500 500 500 1292 0,36 2864 2864 0

4853 500 500 200 200 1901 0,34 2852 2852 0

4853 500 500 50 50 1329 0,2 2870 2870 0

4853 500 600 500 500 1727 0,39 2859 2864 5

4853 500 600 200 200 2436 0,5 2841 2843 2

4853 500 600 50 50 1976 0,34 2911 2911 0

4853 500 700 500 500 3252 0,88 2896 2904 8

4853 500 700 200 200 2831 0,66 2892 2905 13

4853 500 700 50 50 1360 0,27 2897 2907 10

4853 500 800 500 500 3440 0,78 2937 2946 9

4853 500 800 200 200 5592 1,17 2947 2976 29

4853 500 800 50 50 2603 0,45 2937 2944 7

4853 500 900 500 500 2597 0,61 2945 2979 34

4853 500 900 200 200 3280 0,86 2949 2986 37

4853 500 900 50 50 3982 0,86 2951 2991 40

4853 500 1000 500 500 5357 1,52 2965 3003 38

4853 500 1000 200 200 3616 1,12 2959 3000 41

4853 500 1000 50 50 7030 1,58 2995 3023 28

66

A.4.2. SoPlex result of Product-Mix (resources and products by hundreds)

Se
ed

R
e

so
u

rc
es

P
ro

d
u

ct
s

q
m

ax

d
ev

ia
ti

o
n

q
m

in

d
ev

ia
ti

o
n

It
e

ra
ti

o
n

s

So
lv

in
g

ti
m

e

So
p

le
x

M
em

o
ry

B

ef
o

re
 (

M
B

)

M
em

o
ry

A

ft
e

r
(M

B
)

M
em

o
ry

D
if

er
en

ce

(M
B

)

4853 100 100 500 500 126 0 2587 2587 0

4853 100 200 500 500 170 0,02 2575 2575 0

4853 100 300 500 500 435 0,03 2598 2598 0

4853 100 400 500 500 806 0,05 2595 2597 2

4853 100 500 500 500 691 0,03 2573 2573 0

4853 100 600 500 500 1307 0,06 2590 2590 0

4853 100 700 500 500 567 0,08 2501 2501 0

4853 100 800 500 500 1498 0,12 2484 2487 3

4853 100 900 500 500 1482 0,16 2474 2476 2

4853 100 1000 500 500 1220 0,14 2477 2479 2

4853 200 100 500 500 205 0,01 2449 2449 0

4853 200 200 500 500 239 0,03 2452 2452 0

4853 200 300 500 500 980 0,08 2469 2472 3

4853 200 400 500 500 1081 0,11 2457 2468 11

4853 200 500 500 500 753 0,09 2462 2469 7

4853 200 600 500 500 1440 0,22 2473 2490 17

4853 200 700 500 500 1081 0,17 2477 2488 11

4853 200 800 500 500 1500 0,27 2470 2470 0

4853 200 900 500 500 1645 0,31 1775 1779 4

4853 200 1000 500 500 1707 0,34 1775 1794 19

4853 300 100 500 500 197 0,03 1760 1760 0

4853 300 200 500 500 552 0,05 1760 1762 2

4853 300 300 500 500 596 0,08 1757 1757 0

4853 300 400 500 500 1278 0,16 1759 1759 0

4853 300 500 500 500 1025 0,19 1743 1756 13

4853 300 600 500 500 1376 0,19 1740 1747 7

4853 300 700 500 500 1886 0,33 1742 1744 2

4853 300 800 500 500 2126 0,42 1733 1734 1

4853 300 900 500 500 2407 0,55 1735 1736 1

4853 300 1000 500 500 2356 0,58 1739 1759 20

4853 400 100 500 500 179 0,03 1744 1744 0

4853 400 200 500 500 588 0,09 1746 1746 0

4853 400 300 500 500 1043 0,14 1751 1752 1

4853 400 400 500 500 1739 0,3 1739 1742 3

4853 400 500 500 500 1582 0,31 1742 1746 4

4853 400 600 500 500 2554 0,5 1736 1756 20

4853 400 700 500 500 2130 0,44 1739 1761 22

4853 400 800 500 500 3373 0,73 1736 1764 28

4853 400 900 500 500 3182 0,78 1733 1761 28

67

4853 400 1000 500 500 4024 0,86 1732 1769 37

4853 500 100 500 500 425 0,05 1737 1737 0

4853 500 200 500 500 731 0,12 1736 1736 0

4853 500 300 500 500 1009 0,17 1736 1737 1

4853 500 400 500 500 1505 0,25 1735 1736 1

4853 500 500 500 500 1292 0,36 1734 1736 2

4853 500 600 500 500 1727 0,39 1733 1735 2

4853 500 700 500 500 3252 0,88 1734 1761 27

4853 500 800 500 500 3440 0,78 1732 1758 26

4853 500 900 500 500 2597 0,61 1718 1752 34

4853 500 1000 500 500 5357 1,52 1721 1757 36

4853 600 100 500 500 386 0,08 1722 1723 1

4853 600 200 500 500 763 0,14 1723 1723 0

4853 600 300 500 500 846 0,19 1722 1722 0

4853 600 400 500 500 1009 0,36 1718 1725 7

4853 600 500 500 500 1577 0,34 1718 1722 4

4853 600 600 500 500 2068 0,48 1750 1756 6

4853 600 700 500 500 3218 0,95 1761 1795 34

4853 600 800 500 500 3568 1,12 1762 1800 38

4853 600 900 500 500 3311 1,16 1762 1804 42

4853 600 1000 500 500 5064 1,8 1760 1807 47

4853 700 100 500 500 302 0,06 1753 1754 1

4853 700 200 500 500 505 0,09 1753 1756 3

4853 700 300 500 500 929 0,22 1752 1757 5

4853 700 400 500 500 1150 0,3 1751 1757 6

4853 700 500 500 500 1459 0,41 1746 1775 29

4853 700 600 500 500 2387 0,69 1746 1777 31

4853 700 700 500 500 3684 1,28 1748 1787 39

4853 700 800 500 500 4424 1,91 1749 1792 43

4853 700 900 500 500 3968 1,16 1743 1792 49

4853 700 1000 500 500 3565 1,7 1741 1796 55

4853 800 100 500 500 292 0,06 1783 1783 0

4853 800 200 500 500 472 0,11 1784 1785 1

4853 800 300 500 500 732 0,19 1784 1791 7

4853 800 400 500 500 1198 0,38 1784 1798 14

4853 800 500 500 500 1696 0,45 1787 1804 17

4853 800 600 500 500 1903 0,66 1788 1820 32

4853 800 700 500 500 3016 1,02 1784 1830 46

4853 800 800 500 500 2552 1 1782 1832 50

4853 800 900 500 500 3059 1,23 1778 1833 55

4853 800 1000 500 500 4081 1,78 1776 1840 64

4853 900 100 500 500 277 0,08 1779 1779 0

4853 900 200 500 500 1188 0,27 1778 1783 5

4853 900 300 500 500 1193 0,33 1775 1805 30

68

4853 900 400 500 500 1266 0,44 1784 1814 30

4853 900 500 500 500 1674 0,55 1780 1816 36

4853 900 600 500 500 3454 1,14 1769 1815 46

4853 900 700 500 500 3630 1,36 1773 1823 50

4853 900 800 500 500 2755 1,12 1765 1817 52

4853 900 900 500 500 3522 1,53 1765 1826 61

4853 900 1000 500 500 4017 1,94 1769 1838 69

4853 1000 100 500 500 414 0,09 1771 1772 1

4853 1000 200 500 500 701 0,31 1768 1773 5

4853 1000 300 500 500 1359 0,45 1768 1770 2

4853 1000 400 500 500 1719 0,59 1770 1800 30

4853 1000 500 500 500 2301 0,91 1770 1811 41

4853 1000 600 500 500 1889 1,14 1772 1819 47

4853 1000 700 500 500 3219 1,3 1778 1832 54

4853 1000 800 500 500 6033 2,34 1779 1841 62

4853 1000 900 500 500 6032 2,33 1874 1947 73

4853 1000 1000 500 500 5634 2,84 1873 1950 77

A.4.3. SoPlex result of Product-Mix (resources by thousands, n=1000)

Se
e

d

R
e

so
u

rc
es

P
ro

d
u

ct
s

q
m

ax

d
e

vi
at

io
n

q
m

in

d
e

vi
at

io
n

It
e

ra
ti

o
n

s

So
lv

in
g

ti
m

e

So
p

le
x

M
e

m
o

ry

B
e

fo
re

 (
M

B
)

M
e

m
o

ry

A
ft

e
r

(M
B

)

M
e

m
o

ry

D
if

er
e

n
ce

(M
B

)

4853 1000 1000 500 500 5634 2,84 2835 2914 79

4853 2000 1000 500 500 5998 6,22 2890 3036 146

4853 3000 1000 500 500 8151 12,97 2827 3055 228

4853 4000 1000 500 500 6576 15,23 2749 3091 342

4853 5000 1000 500 500 10056 33,36 2745 3159 414

4853 6000 1000 500 500 8142 34 2742 3234 492

4853 7000 1000 500 500 8261 50,02 2804 3379 575

4853 8000 1000 500 500 11163 67,55 2799 3424 625

4853 9000 1000 500 500 10810 95,88 2819 3508 689

4853 10000 1000 500 500 10390 88,52 2340 3082 742

4853 11000 1000 500 500 10529 114,8 2223 3083 860

4853 12000 1000 500 500 8017 111,2 2192 3117 925

4853 13000 1000 500 500 10342 169,44 2214 3222 1008

4853 14000 1000 500 500 9977 201,12 2192 3291 1099

4853 15000 1000 500 500 10114 202,78 2198 3373 1175

69

A.4.4. Soplex result of Product-Mix (resources by 5 thousands, n=1000)

Se
ed

R
e

so
u

rc
es

P
ro

d
u

ct
s

q
m

ax

d
ev

ia
ti

o
n

q
m

in

d
ev

ia
ti

o
n

It
e

ra
ti

o
n

s

So
lv

in
g

ti
m

e

So
p

le
x

M
em

o
ry

B

ef
o

re
 (

M
B

)

M
em

o
ry

A

ft
e

r
(M

B
)

M
em

o
ry

D

if
er

en
ce

(M
B

)

4853 1000 1000 500 500 5634 2,84 2835 2914 79

4853 5000 1000 500 500 10056 33,36 2745 3159 414

4853 10000 1000 500 500 10390 88,52 2340 3082 742

4853 15000 1000 500 500 10114 202,78 2198 3373 1175

4853 20000 1000 500 500 11604 388,12 2171 3785 1614

4853 25000 1000 500 500 10773 598,09 1961 4093 2132

4853 30000 1000 500 500 11776 854,17 2105 4287 2182

4853 35000 1000 500 500 11410 1254,8 2122 4766 2644

4853 40000 1000 500 500 12892 2015,56 2227 5052 2825

4853 45000 1000 500 500 11864 2126,64 2556 5784 3228

4853 50000 1000 500 500 12454 2278,88 2693 6325 3632

4853 55000 1000 500 500 11859 3119,69 3241 7135 3894

4853 60000 1000 500 500 11698 3472,7 2854 6804 3950

4853 65000 1000 500 500 14156 4594,44 2623 7045 4422

4853 70000 1000 500 500 12723 4992,98 2454 7182 4728

4853 75000 1000 500 500 13058 5948,91 2595 7685 5090

A.4.5. Soplex result of Tranport Problem

Se
e

d

So
u

rc
es

D
e

st
in

at
io

n
s

D
e

m
an

d

D
e

vi
at

io
n

C
ap

ac
it

y
D

e
vi

at
io

n

It
e

ra
ti

o
n

s

So
lv

in
g

ti
m

e

So
p

le
x

M
e

m
o

ry

D
if

er
e

n
ce

(M

B
)

N
u

m
b

er
 o

f
va

ri
ab

le
s

4574 10 10 10 20 21 0 0 100

4574 10 50 10 20 60 0 0 500

4574 10 75 10 20 97 0 0 750

4574 10 80 10 20 108 0 0 800

4574 10 85 10 20 114 0 0 850

4574 10 86 10 20 114 0 0 860

4574 10 87 10 20 Error (more than 8190 characters) 870

4574 10 90 10 20 Error (more than 8190 characters) 900

4574 20 10 10 20 38 0 0 200

4574 20 20 10 20 55 0 0 400

4574 20 30 10 20 68 0 0 600

4574 20 40 10 20 81 0 0 800

4574 20 50 10 20 Error (more than 8190 characters) 1000

4574 30 10 10 20 50 0 0 300

4574 30 20 10 20 64 0 0 600

4574 30 30 10 20 Error (more than 8190 characters) 900

70

A.4.6. SCIP result

n
Real Time User Time System time

CPU
time

min s Total (s) min s Total (s) min s Total (s) Total (s)

25 1,504 1,504 0,246 0,246 0,275 0,275 0,521

50 1,487 1,487 1,123 1,123 0,381 0,381 1,504

75 3,119 3,119 2,918 2,918 0,213 0,213 3,131

100 2 43,175 163,175 2 0,694 120,694 0,694 0,694 121,388

125 7 7,211 427,211 7 1,998 421,998 1,322 1,322 423,32

150 23 12,532 1392,53 23 2,746 1382,75 3,257 3,257 1386,003

175 55 29,116 3329,12 54 43,623 3283,62 6,865 6,865 3290,488

200 1 18,646 78,646 1 17,73 77,73 0,727 0,727 78,457

225 5 38,815 338,815 5 37,262 337,262 1,025 1,025 338,287

250 6 32,592 392,592 6 0,592 360,592 1,385 1,385 361,977

275

300 31 14,512 1874,51 31 0,808 1860,81 3,008 3,008 1863,816

350 68 17,556 4097,56 47 56,074 2876,07 4,153 4,153 2880,227

400 188 37,002 11317 128 56,046 7736,05 9,755 9,755 7745,801

71

A.5. SCIP displays on screen

A.5.1. Queens problem test

for i in 1 2 4 8 16 ; do \
 echo ; echo "Testing the n-queens solver with n = $i" ; \
 bin/queens.cygwin.x86_64.gnu.opt.spx $i || break 1 ; \
 echo ; \
 done

Testing the n-queens solver with n = 1
**
* n-queens solver based on SCIP *
* *
* (c) Cornelius Schwarz (2007) *
**

solution for 1-queens:

D

Testing the n-queens solver with n = 2
**
* n-queens solver based on SCIP *
* *
* (c) Cornelius Schwarz (2007) *
**

solution for 2-queens:

no solution found

Testing the n-queens solver with n = 4
**
* n-queens solver based on SCIP *
* *
* (c) Cornelius Schwarz (2007) *
**

solution for 4-queens:

 --- --- --- ---
| | | D | |
 --- --- --- ---
| D | | | |
 --- --- --- ---
| | | | D |
 --- --- --- ---
| | D | | |
 --- --- --- ---

Testing the n-queens solver with n = 8
**
* n-queens solver based on SCIP *
* *
* (c) Cornelius Schwarz (2007) *
**

solution for 8-queens:

 --- --- --- --- --- --- --- ---
| | D | | | | | | |
 --- --- --- --- --- --- --- ---
| | | | D | | | | |
 --- --- --- --- --- --- --- ---
| | | | | | D | | |
 --- --- --- --- --- --- --- ---
| | | | | | | | D |
 --- --- --- --- --- --- --- ---
| | | D | | | | | |

72

 --- --- --- --- --- --- --- ---
| D | | | | | | | |
 --- --- --- --- --- --- --- ---
| | | | | | | D | |
 --- --- --- --- --- --- --- ---
| | | | | D | | | |
 --- --- --- --- --- --- --- ---

Testing the n-queens solver with n = 16
**
* n-queens solver based on SCIP *
* *
* (c) Cornelius Schwarz (2007) *
**

solution for 16-queens:

 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
| | | | | | | | | | D | | | | | | |
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
| | | D | | | | | | | | | | | | | |
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
| | | | | | | | | | | D | | | | | |
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
| | | | | | | | | | | | | | D | | |
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
| | | | | | | | | | | | | | | | D |
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
| | D | | | | | | | | | | | | | | |
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
| | | | | | | | | | | | | D | | | |
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
| | | | | | | | D | | | | | | | | |
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
| D | | | | | | | | | | | | | | | |
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
| | | | | | | D | | | | | | | | | |
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
| | | | D | | | | | | | | | | | | |
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
| | | | | | | | | | | | | | | D | |
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
| | | | | | | | | | | | D | | | | |
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
| | | | | D | | | | | | | | | | | |
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
| | | | | | | | | D | | | | | | | |
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
| | | | | | D | | | | | | | | | | |
 --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---

