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a b s t r a c t

Population balancemodels represent an accurate and generalway of describing the compli-
cated dynamics of cell growth. In this paper we study the numerical integration of a model
for the evolution of a size-structured cell populationwith asymmetric division.We present
and analyze a novel and efficient second-order numerical method based on the integration
along the characteristic curves. We prove the optimal rate of convergence of the scheme
andwe ratify it by numerical simulation. Finally,we show that the numerical scheme serves
as a valuable tool in order to approximate the stable size distribution of the model.

© 2016 Published by Elsevier B.V.

1. Introduction1

In the framework of the continuum modeling of cell kinetics, cell population balance models have become the most2

important theoretical tool for describing the proliferation of cells taking place in a cell culture. These ones can be included3

in the so-called structured population models which describe the evolution of a population by means of the vital properties4

of individuals (growth, fertility, mortality, division, etc.). Such intrinsic physiological state rates depend on individual5

characteristics (such as age or size) which structure the population. Cell population balance models were considered for the6

first time in the sixties (see, for example, [1,2]) andwere developed rapidly [3–5]. In recent years, they have evolved towards7

more complicated models: several structuring variables, various populations (describing, for example, proliferating and8

quiescent cells or the different stages in a cell-cycle), nonlinear problems (with the consumption of a limited extracellular9

medium), inverse problems to compute the vital functions [6–9].10

When reproduction occurs by fission it seems appropriate to take into account the size of individuals (by whichwemean11

any relevant quantity, like mass, volume, weight, protein or DNA content, etc.). In this work, we suppose that cells are only12

distinguished in terms of this physiological characteristic. The model that arises due to this simplification is still useful in13

order to analyze and understand the cell population dynamics. Cell size varies over time, and maturation can be simulated14
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assuming its increase with the cell-life cycle. To be precise, we consider the cell population balance model proposed by 1

Ramkrishna [10] which considers reproduction by fission into two daughter cells with different size. 2

Theoretical properties of the models such as existence, uniqueness, smoothness of solutions, long-time behavior (with 3

the study of steady states and their stability) could be studied without a solution expression. However, the knowledge of 4

their qualitative or quantitative behavior in a more tangible way is sometimes necessary. Therefore, numerical methods 5

provide a valuable tool to obtain such information. In the case of general structured population models, many numerical 6

methods have been proposed to solve them (see [11,12] and references therein). In the case of cell population balance 7

models different techniques have been used (see [13] and the references therein). However, it is very important to design 8

numerical schemes specially adapted to the characteristics of cell population balance models. 9

Moreover, one of the most important issues in the modelization is whether or not a stable size distribution exists, 10

and many efforts were directed towards describing the most general models which still exhibit a stable type distribution 11

property [14]. 12

In this work we present a second-order characteristics method, based on the numerical scheme developed and analyzed 13

in [13] for the symmetric division case. It is based on the discretization of the integral representation of the solution to 14

the problem along the characteristic curves. Second-order methods maintain a good compromise between the required 15

smoothness of the vital functions based on realistic biological data and the efficiency of the numerical schemes. 16

In Section 2 we introduce the model and Section 3 is devoted to the description of the proposed numerical method. In 17

Section 4 we analyze the convergence of the numerical scheme, and in Section 5 we carry out a representative numerical 18

simulation, including the approximation of the stable size distribution of the model. 19

2. The model 20

We consider a nonnegative minimum cell-size xmin and a maximal size, normalized to 1, at which point every cell might 21

divide or die, so 0 ≤ xmin < 1. We also assume that the environment is unlimited and all possible nonlinear mechanisms 22

are ignored. 23

The problem is given by a conservation law 24

ut(x, t) + (g(x) u(x, t))x = −µ(x) u(x, t) − b(x) u(x, t) + 2
 1

x
b(s) P(x, s)u(s, t) ds, 25

xmin < x < 1, t > 0, (2.1) 26

a boundary condition 27

u (xmin, t) = 0, t > 0, (2.2) 28

and an initial size distribution 29

u(x, 0) = ϕ(x), xmin ≤ x ≤ 1. (2.3) 30

The independent variables x and t represent size and time, respectively. The dependent variable u(x, t) is the size-specific 31

density of cellswith size x at time t . The size of any individual varies according to the following ordinary differential equation 32

dx
dt

= g(x). 33

The nonnegative functions g ,µ and b represent the growth,mortality and division rate, respectively. These are usually called 34

the vital functions and define the life history of the individuals. Note that all of them only depend on the size x (the internal 35

structuring variable). In this case, we also assume that g(x) > 0 for x < 1. 36

The dispersion of sizes at division amongst the twodaughter cells (unequal division) is defined in terms of the partitioning 37

function P(x, y), a probability density function which gives the distribution of the size of a daughter-cell x when the size 38

of the mother is equal to y. Thus
 x2
x1

P(x, y) dx gives the probability for a daughter cell to have size in the interval (x1, x2) 39

knowing that the mother had the size y. Such a distribution verifies the following conditions: 40 1

xmin

P(x, y) dx = 1, P(x, y) = P(y − x, y), P(x, y) = 0, x ≥ y. 41

In an extreme case, if two daughter cells from a mother cell are always identical (equal fission), the partitioning function 42

reduces to the Dirac delta function P(x, y) = δ(x − y/2), leading to the model proposed by Diekmann et al. [15]. 43

In accordancewith the accepted biological point of view, there exists amaximum size. Thismeans that cells will divide or 44

die with probability one before reaching it. To this end, if µ and b are positive and bounded functions, we consider a growth 45

function, introduced by Von Bertalanffy, satisfying limx→1
 x
xmin

ds
g(s) = +∞. Note that if g is a continuous function defined 46

in [xmin, 1] then this hypothesis implies that g(1) = 0. Thus, the solution to the problem will satisfy u(1, t) = 0, t > 0, so 47

we suppose that initially there are no cells of maximum size [16]. 48
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3. Numerical method1

In [17], a useful first-order scheme was proposed to obtain the solution to a generalization of (2.1)–(2.3) when the vital2

functions involved in the problem depend on an abiotic environment that changes with time. The method proposed in that3

workwas based on the discretization of the ordinary differential equations that satisfies the solution along the characteristic4

curves. It is known that a low-order of convergence would produce a lack of efficiency which could be reduced with higher5

order methods. However, the smoothness of the solution to (2.1)–(2.3) is not as high as these last schemes demand. Thus,6

second-order methods present a good balance: they enhance the efficiency even with a lack of regular data.7

In [13], we developed a novel second-order characteristics method based on the discretization of the integral8

representation of the solution to the problem along the characteristic curves for the equal fission model. Here we present9

an adaptation of this method to the more general asymmetric division case.10

Therefore, we define µ∗(x) = g ′(x) + µ(x) + b(x) and denote by x(t; t∗, x∗) the characteristic curve of
∧
Eq. (2.1) which11

takes the value x∗ at the time instant t∗. It is the solution to the initial value problem12 
d
dt

x(t; t∗, x∗) = g(x(t; t∗, x∗)), t > t∗,

x(t∗; t∗, x∗) = x∗.

(3.1)13

In this way, the solution to (2.1) along a characteristic curve is given by14

u(x(t; t∗, x∗), t) = u(x∗, t∗) exp

−

 t

t∗
µ∗ (x(τ ; t∗, x∗)) dτ


15

+ 2
 t

t∗


exp


−

 t

τ

µ∗ (x(s; t∗, x∗)) ds
 1

x(τ ;t∗,x∗)

b(σ )P(x(τ ; t∗, x∗), σ )u(σ , τ )dσ

dτ , t ≥ t∗. (3.2)16

Note that, in this new layout, we have to solve two types of problems: the integration of the equation which defines17

the characteristic curves (3.1) and the solution to Eqs. (3.2) which provides the solution to the problem along those18

characteristics. We use discretization procedures in order to solve them.19

We consider the numerical integration of model (2.1)–(2.3) along the time interval [0, T ]. Thus, given a positive integer20

N , we define k =
T
N and introduce the discrete time levels tn = n k, 0 ≤ n ≤ N . We begin with the integration of (3.1) which21

provides the grid of themethod on the cell-size variable. This grid is nonuniform and invariantwith time because the growth22

rate function is, explicitly, independent of the time variable. However, note that it depends on time implicitly conditioned23

on cell size. It is usually called the natural grid [11]. In this work, we approximate such a grid by using a second-order scheme24

for the numerical integration of (3.1): the modified Euler method providing25

x0 = xmin,

xj+1 = xj +
k
2


g(xj) + g(xj + kg(xj))


, 0 ≤ j ≤ J − 1.

(3.3)26

Integer J represents the index of the last grid point computed at the size interval and is chosen in order to satisfy the condition27

K0 k < 1− xJ ≤ K1 k, with K0 and K1 suitable constants (we refer to [11] for further details). Note that the points (xj, tn) and28

(xj+1, tn+1), 0 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1, belong to the same numerical characteristic curve. Finally, we fix the last grid29

point xJ+1 = 1.30

Then, denoting un
j = u(xj, tn), 0 ≤ j ≤ J + 1, 0 ≤ n ≤ N , let Un

j be a numerical approximation to un
j . We propose a31

one-step method in order to obtain it. Therefore, starting from an approximation to the initial data (2.3) of the problem, for32

example, the grid restriction of the functionϕ, the numerical solution at a new time level is described in terms of the previous33

one. Such a general step is obtained by means of the following second-order discretization of (3.2). For 0 ≤ n ≤ N − 1,34

Un+1
j+1 = exp


−

k
2


µ∗

xj

+ µ∗


xj+1

 
Un
j + kQ

j
k(b · Pj

· Un)


+ kQ
j+1
k (b · Pj+1

· Un+1), 0 ≤ j ≤ J − 1. (3.4)35

In the previous expression,Ql
k(V) represents a quadrature rule to approximate the integral over the interval [xl, 1], 0 ≤ l ≤ J36

of the function with grid values V = [V0, . . . , VJ+1]. In this case b, Pl and Um, represent the vectors with components37

[b(x0), . . . , b(xJ+1)], [P(xl, x0), . . . , P(xl, xJ+1)] and [Um
0 , . . . ,Um

J+1], respectively, and products b · Pl
· Um, 0 ≤ l ≤ J ,38

0 ≤ m ≤ N must be interpreted component-wise. Here, a second order quadrature formula is appropriate. However,39

it should be noted that the magnitude of J is not determined with respect to k. So, in order to decrease the computational40

effort, it is useful to consider a quadrature rule over a suitable subgrid {xjm}
M+1
m=0 , of the grid defined by (3.3), withM = O(k−1)41

nodes. To this end, we construct a subgrid {xjm}
M+1
m=0 such that xj0 = 0, xjM+1 = 1, and42

C0 k ≤ xjl+1 − xjl ≤ C1 k, 0 ≤ l ≤ M,43
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where C0 and C1 are positive constants irrespective of k (for more details we refer to [11]). Finally, for this problem, we 1

propose the following composite trapezoidal quadrature rule on the previous subgrid, modified in the first subinterval by 2

means of the rectangle formula 3

Ql
k(V) = (xjml

− xl) Vjml
+

M
m=ml

xjm+1 − xjm
2


Vjm + Vjm+1


, (3.5) 4

where xjml
is the first node of the subgrid satisfying xjm ≥ xl. 5

Obviously, the approximating values at the minimum and maximum sizes are 6

Un+1
0 = Un+1

J+1 = 0. (3.6) 7

The numerical procedure seems to be implicit. However, if we compute the approximations at the new time level tn+1
8

downwards (that is, first Un+1
J+1 using (3.6), then Un+1

j+1 from J − 1 to 0 using (3.4), and finally Un+1
0 using (3.6) again), it results 9

in an explicit procedure. The reason is that the right hand side values in (3.4) corresponding to the time tn+1 are either zero 10

or previously computed. 11

4. Convergence analysis 12

In this section, we carry out the convergence analysis of the scheme. It is based on the property of consistency of the 13

method. 14

If u is the solution to problem (2.1)–(2.3), we define 15

un
= (un

0, u
n
1, . . . , u

n
J+1), un

j = u(xj, tn), 0 ≤ j ≤ J + 1, 0 ≤ n ≤ N. 16

The local discretization error, τn+1
= (τ n+1

0 , τ n+1
1 , . . . , τ n+1

J+1 ), 0 ≤ n ≤ N − 1 is given by 17

τ n+1
j+1 =

1
k


un+1
j+1 − exp


−

k
2


µ∗

xj

+ µ∗


xj+1

 
un
j + kQ

j
k(b · Pj

· un)


− kQ
j+1
k (b · Pj+1

· un+1)


, 18

0 ≤ j ≤ J − 1, (4.1) 19
20

τ n+1
0 = τ n+1

J+1 = 0. 21

For a vector v = (v0, v1, . . . , vJ+1), we denote by ∥v∥∞ its maximum norm. 22

From now on, C will denote a positive constant which is independent of k, n (0 ≤ n ≤ N) and j (0 ≤ j ≤ J +1); C possibly 23

has different values in different places. 24

Lemma 1. Let g be three times continuously differentiable, functionsµ, b ·P and u be two times continuously differentiable. Then, 25

as k → 0, the following estimates hold 26

∥τn+1
∥∞ = O(k2), 0 ≤ n ≤ N − 1. (4.2) 27

Proof. From (4.1), we obtain 28

|τ n+1
j+1 | ≤

1
k

un+1
j+1 − u


x

tn+1

; tn, xj

, tn+1+ 1

k

u x tn+1
; tn, xj


, tn+1

− kQ
j+1
k (b · Pj+1

· un+1) 29

− exp

−

k
2


µ∗

xj

+ µ∗


xj+1

 
un
j + kQ

j
k(b · Pj

· un)
 , (4.3) 30

0 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1. 31

With respect to the first term on the right-hand side of (4.3), assuming the smoothness of u and g and taking into account 32

that the numerical grid is computed by the modified Euler method, we conclude that 33un+1
j+1 − u


x

tn+1

; tn, xj

, tn+1 ≤ C k3. (4.4) 34

On the other hand, if we observe the second term on the right-hand side of (4.3), the formula (3.2) allows us to write 35u x tn+1
; tn, xj


, tn+1

− kQ
j+1
k (b · Pj+1

· un+1) − exp

−

k
2


µ∗

xj

+ µ∗


xj+1

 
un
j + kQ

j
k(b · Pj

· un)
 36

≤
un

j

 exp


−

 tn+1

tn
µ∗

x

τ ; tn, xj


dτ


− exp


−

k
2


µ∗

xj

+ µ∗


xj+1

 37
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+

2
 tn+1

tn
exp


−

 tn+1

τ

µ∗

x

s; tn, xj


ds

 1

x(τ ;tn,xj)
b(σ ) P(x(τ ; tn, xj), σ ) u(σ , τ ) dσ


dτ1

− k

exp


−

k
2


µ∗

xj

+ µ∗


xj+1


Q

j
k(b · Pj

· un) + Q
j+1
k (b · Pj+1

· un+1)

 . (4.5)2

Thus, we use the regularity of functions µ, b · P and g , the convergence properties of the trapezoidal
∧
quadrature rule and3

the modified Euler method to obtain4 exp


−

 tn+1

tn
µ∗

x

τ ; tn, xj


dτ


− exp


−

k
2


µ∗

xj

+ µ∗


xj+1

5

≤

exp


−

 tn+1

tn
µ∗

x

τ ; tn, xj


dτ


− exp


−

k
2


µ∗

xj

+ µ∗


x

tn+1

; tn, xj
6

+ exp

−

k
2

µ∗

xj
 exp−

k
2

µ∗

x

tn+1

; tn, xj


− exp

−

k
2

µ∗

xj+1

7

≤ C

k3 + k |µ∗


x

tn+1

; tn, xj


− µ∗

xj+1


|


8

≤ C k3. (4.6)9

Next, we bound the second part on the right-hand side of (4.5) as10 2
 tn+1

tn
exp


−

 tn+1

τ

µ∗

x

s; tn, xj


ds

 1

x(τ ;tn,xj)
b(σ ) P(x(τ ; tn, xj), σ ) u(σ , τ ) dσ


dτ11

− k

exp


−

k
2


µ∗

xj

+ µ∗


xj+1


Q

j
k(b · Pj

· un) + Q
j+1
k (b · Pj+1

· un+1)

12

≤ 2


 tn+1

tn
exp


−

 tn+1

τ

µ∗

x

s; tn, xj


ds

 1

x(τ ;tn,xj)
b(σ ) P(x(τ ; tn, xj), σ ) u(σ , τ ) dσ


dτ13

−
k
2


exp


−

 tn+1

tn
µ∗

x

s; tn, xj


ds

  1

xj
b(σ ) P(xj, σ ) u(σ , tn) dσ


14

+

 1

x(tn+1;tn,xj)
b(σ ) P(x(tn+1

; tn, xj), σ ) u(σ , tn+1) dσ

15

+ k

exp


−

 tn+1

tn
µ∗

x

s; tn, xj


ds

  1

xj
b(σ ) P(xj, σ ) u(σ , tn) dσ


16

− exp

−

k
2


µ∗

xj

+ µ∗


xj+1


Q

j
k(b · Pj

· un)

17

+ k


 1

x(tn+1;tn,xj)
b(σ ) P(x(tn+1

; tn, xj), σ ) u(σ , tn+1) dσ − Q
j+1
k (b · Pj

· un+1)

 . (4.7)18

The use of the trapezoidal quadrature rule results in the first term on the right-hand side of (4.7) being O(k3). With respect19

to the second term on the right-hand side of (4.7), we have20 exp


−

 tn+1

tn
µ∗

x

s; tn, xj


ds

  1

xj
b(σ ) P(xj, σ ) u(σ , tn) dσ


21

− exp

−

k
2


µ∗

xj

+ µ∗


xj+1


Q

j
k(b · Pj

· un)

22

≤

exp


−

 tn+1

tn
µ∗

x

s; tn, xj


ds


− exp


−

k
2


µ∗

xj

+ µ∗


xj+1



 1

xj
b(σ ) P(xj, σ ) u(σ , tn) dσ

23

+ exp

−

k
2


µ∗

xj

+ µ∗


xj+1

 
 1

xj
b(σ ) P(xj, σ ) u(σ , tn) dσ − Q

j
k(b · Pj

· un)

 .24
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Thus, taking into account the assumed regularity of the vital functions and solution, the second order convergence of the 1

composite quadrature rule (3.5), and (4.6), we conclude that the previous term is O(k2). 2

Finally, we bound the third term on the right-hand side of (4.7) as follows 3
 1

x(tn+1;tn,xj)
b(σ ) P(x(tn+1

; tn, xj), σ ) u(σ , tn+1) dσ − Q
j+1
k (b · Pj

· un+1)

 4

≤


 xj+1

x(tn+1;tn,xj)
b(σ ) P(x(tn+1

; tn, xj), σ ) u(σ , tn+1) dσ

 5

+


 1

xj+1

b(σ )

P(x(tn+1

; tn, xj), σ ) − P(xj+1, σ )

u(σ , tn+1) dσ

 6

+


 1

xj+1

b(σ ) P(xj+1, σ ) u(σ , tn+1) dσ − Q
j+1
k (b · Pj+1

· un+1)

 . 7

And, we can conclude, as previously shown, that this term is O(k2). 8

Thus, we can settle for the left term on (4.7) 92
 tn+1

tn
exp


−

 tn+1

τ

µ∗

x

s; tn, xj


ds

 1

x(τ ;tn,xj)
b(σ ) P(x(τ ; tn, xj), σ ) u(σ , τ ) dσ


dτ 10

− k

exp


−

k
2


µ∗

xj

+ µ∗


xj+1


Q

j
k(b · Pj

· un) + Q
j+1
k (b · Pj+1

· un+1)

 11

≤ C k3, (4.8) 12

and from (4.6), we observe that the right-hand side of (4.5) isO(k3). The substitution of this bound and (4.4) in (4.3) produces 13

the estimate (4.2). � 14

In the following result, we prove the convergence of the numerical method. We denote the error produced by the 15

numerical approximation as 16

En
= (En

0 , . . . , E
n
J , E

n
J+1), En

j = un
j − Un

j , 0 ≤ j ≤ J + 1, 17

0 ≤ n ≤ N , (remember that un
j are the nodal values of the theoretical solution and Un

j are the numerical approximations 18

obtained by means of the numerical method). 19

Theorem 2. Under the hypotheses of Lemma 1, if ∥E0
∥∞ = O(k2), as k → 0, then 20

∥En
∥∞ = O(k2), 0 ≤ n ≤ N, 21

as k → 0. 22

Proof. From Eqs. (4.1) and (3.4), we have 23

En+1
j+1 = exp


−

k
2


µ∗

xj

+ µ∗


xj+1

 
En
j + kQ

j
k(b · Pj

· En)


+ kQ
j+1
k (b · Pj+1

· En+1) + k τ n+1
j+1 , 24

0 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1. 25

Then, taking into account the smoothness properties of the functions µ∗ and bwe arrive at, 26

|En+1
j+1 | ≤ (1 + C k) |En

j | + C k

∥En

∥∞ + ∥En+1
∥∞


+ k |τ n+1

j+1 |, 27

0 ≤ j ≤ J − 1, 0 ≤ n ≤ N − 1, and then 28

∥En+1
∥∞ ≤ (1 + C k) ∥En

∥∞ + C k ∥En+1
∥∞ + k ∥τn+1

∥∞. 29

0 ≤ n ≤ N − 1. Then, by means of the discrete Gronwall’s lemma, we arrive at 30

∥En
∥∞ ≤ C


∥E0

∥∞ +

n
l=1

k ∥τ l
∥∞


, 31

1 ≤ n ≤ N , and using (4.2) the
∧
estimate holds. �Q3 32
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Fig. 1. Test Problem 1. Approximated second derivative of u.

5. Numerical experiments1

We have checked experimentally the numerical method. In order to incorporate a more realistic behavior, we introduce2

aminimum size a at which cells divide, xmin ≤ a < 1. So, we assume that the division rate b vanishes at the interval [xmin, a].3

Test problem 1. The following experiment shows the optimal rate of convergence obtained with the numerical method.4

It mirrors a similar one introduced in [13] for the symmetric division case.5

We take xmin = 0, and a =
1
4 . We also suppose that there is no cellular death (µ(x) = 0), and we choose the size-specific6

growth rate as g(x) = 0.1 (1 − x). We take the size-specific division rate function7

b(x) = b1


x −

1
4

3

,
1
4

≤ x ≤ 1,8

(coefficient b1 is chosen in order to assure that the maximum value of b(x) is 1). In order to avoid discontinuities caused by9

an incompatible initial condition, we take ϕ satisfying ϕ(0) = ϕ′(0) = ϕ′′(0) = 0. In this experiment, we opt for10

ϕ(x) =


0, if x ∈


0,

1
8


,

ϕ1


x −

1
8

3

(1 − x) , if x ∈


1
8
, 1


,

(5.9)11

(coefficient ϕ1 is chosen in order to assure that the maximum value of ϕ(x) is 1). Note that this is similar to the third test12

problem in [13] for the symmetric division case (we assume that initially there are no cells under 1
8 ). Taking into account13

the special structure of the equal fission model, there existed numerical difficulties in the numerical simulation due to the14

lack of smoothness in the solution to the problem: we did not observe the optimal rate of convergence in the numerical15

approximation. However, as we will see, this test does not provide a remarkable situation in the asymmetric division case.16

With respect to the partitioning function, as in [17], we take17

P(x, y) =


1

β(40, 40)
1
y


x
y

39 
1 −

x
y

39

, if x < y,

0, if x ≥ y,
(5.10)18

where β(x, y) is the classical Euler beta function.19

We do not know the analytical solution to the problem therefore, in order to compare, we take the computed20

approximation with a sufficiently small value of the size step k as the exact solution. In the experiment we compute such21

a solution at the final time T = 1 with k∗
= 4.8828125e−4. If we analyze the (approximated) second derivative of the22

computed solution, we observe in Fig. 1 the required regularity in the hypothesis of the convergence result (aswe previously23

mention, this behavior differs from that of the symmetric division case [13]).24

In Table 1 we present the results obtained with the method for different values of the step size. For each k, we compare25

at the final time T the computed numerical solution UN
k , with the representation of the solution corresponding to k∗ at the26
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Table 1
Test problem 1. Error and numerical convergence order. T = 1.

k Error Order

5e−1 1.808892e−2
2.5e−1 5.061369e−3 1.8
1.25e−1 1.252221e−3 2.0
6.25e−2 3.161828e−4 2.1
3.125e−2 8.003949e−5 2.1
1.5625e−2 1.985401e−5 2.0

coarsest grid obtained with k, UN
k∗ . Therefore, the second column shows the maximum error at the final time with different 1

step sizes; that is 2

ek = ∥UN
k − UN

k∗∥∞. 3

The third column shows the numerical order of convergence, which we compute with the formula 4

s =
log(e2 k/ek)

log(2)
. 5

Results in Table 1 clearly confirm the expected second-order of convergence. 6

Test problem 2. Nowwe present the results obtained in order to study the emerging stable size distribution. For the equal 7

fission case, Diekmann et al. [15], proved the existence of a stable size distribution assuming a certain condition of the growth 8

function: g(2x) < 2 g(x). For the unequal division case, in [17] we have observed the appearance of such asynchronous 9

exponential growth: that is, in the course of time, 10

u(x, t) ≈ C eσ t u∗(x),
 1

xmin

u∗(x) dx = 1, (5.11) 11

where σ is the Malthusian parameter (intrinsic rate of natural increase), and u∗(x) the stable size distribution. Both u∗(x) 12

and σ do not depend on the initial condition and only the constant C depends on ϕ. 13

From (5.11) we can write 14

u(x, t) 1
xmin

u(x, t) dx
≈ u∗(x). (5.12) 15

Then, we can compute an approximation to the stable size distribution by using the numerical solution obtained with 16

the numerical method in the following way: from the numerical solution computed by (3.4)–(3.6), and approximating the 17

integral on the left hand size of (5.12) by means of the composite trapezoidal rule, we can describe the evolution of the 18

frequency of the cell volume distribution which approaches the stable size distributions as 19

Un
j

Q0
k(Un)

≈ U∗

j . (5.13) 20

The following simulation reproduces one of the experiments presented in [17]. As in the previous test, we consider the 21

minimum cell-size xmin = 0, and the minimum size at which a cell divides as a =
1
4 . Again, we choose the mortality rate 22

µ(x) = 0 (there is no cellular death), and the size-specific growth rate g(x) = 0.1 (1 − x). However, this time we use the 23

size-specific division rate function 24

b(x) =


0, if x ∈


0,

1
4


,

g(x)
φb(x)

1 −
 x
1/4 φb(s) ds

, if x ∈


1
4
, 1


,

25

wherewe have considered that each cell has a stochastically predetermined size at which fission has to occur, which is given 26

by a probability density φb [4]. In this case 27

φb(x) = λ



x −

1
4

3

, if x ∈


1
4
,
5
8


,

459
4096

−
9
4


x −

13
16

2

+ 16

x −

13
16

4

, if x ∈


5
8
, 1


,

28

and λ =
81920
3159 . On the other hand, we consider the same partitioning function as in the previous test (5.10). Finally, we have 29

checked with various initial conditions, but here we present the results obtained with (5.9). 30
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Fig. 2. Test problem 2. Numerical stable size distribution u∗ .

We have carried out an extensive numerical experimentation with different final-times T and step-sizes k. We observe1

that T = 200 produces a sufficiently long time simulation in order to provide the stable size distribution bymeans of (5.13).2

For the step-size k = 0.01 we obtain the stable size distribution presented in Fig. 2, the value of the Malthusian parameter3

σ = 0.061519, and the computed value C = 0.440209 associated to the grid restriction of the initial data ϕ.4

6. Conclusions5

The study of cell populations by means of the use of structured population models, and their numerical simulation, are6

current and important topics. In this work we consider a size-structured population balancemodel describing the dynamics7

of a cell population when the reproduction process takes place by division into two unequal parts. The analytical solution of8

this problem is difficult to attain in a general situation and numerical approximations are necessary. There are fewnumerical9

methods adapted to this problem, and the theoretical studies that would validate them are rare. So it is crucial to design and10

analyze innovative numerical procedures.11

In this study we have proposed a new and efficient numerical method in order to attain the solution to this model. It is12

an extension of the one given in [13] for the even case, which could be seen as a particular model when the partitioning13

function is a Dirac delta. The uneven model seems to be more realistic and it does not introduce a lack of smoothness in14

the solution. However, the birth term in the equation involves an integral term that must be approximated by means of a15

suitable quadrature rule. This issue requires a more expensive, slower and harder numerical integration. However, we have16

improved the efficiency of the numerical procedure by using a suitable subgrid of the natural grid in the quadrature rule.17

We have carried out a demonstration of the second-order convergence of the approximate solution to the exact one18

under suitable smoothness hypotheses of the vital functions and the exact solution, and we have corroborated this optimal19

rate experimentally.20

Finally, this numerical method is revealed as a valuable tool for the analysis and approximation of the stable size distri-21

bution of the model.22
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