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SUOWA operators are a new class of aggregation functions that simultaneously generalize weighted means and OWA operators.
They areChoquet integral-based operatorswith respect to normalized capacities; therefore, they possess some interesting properties
such as continuity, monotonicity, idempotency, compensativeness, and homogeneity of degree 1. In this paper, we focus on two
dimensions and show that any Choquet integral with respect to a normalized capacity can be expressed as a SUOWA operator.

1. Introduction

The study of aggregation operators has received special atten-
tion in the last years. This is due to the extensive applications
of these functions for aggregating information in a wide
variety of areas. Two of the best-known aggregation operators
are the weighted means and the ordered weighted averaging
(OWA) operators (Yager [1]). Both classes of functions are
defined by means of weighting vectors, but their behavior
is quite different. Weighted means allow weighting each
information source in relation to their reliability while OWA
operators allow weighting the values according to their
ordering.

Although both families of operators allow solving a wide
range of problems, both weightings are necessary in some
contexts. Some examples of these situations have been given
by several authors (see, for instance, Torra [2–4], Torra and
Godo [5, pages 160-161], Torra and Narukawa [6, pages 150-
151], Roy [7], Yager and Alajlan [8], and Llamazares [9]
and the references therein) in fields as diverse as robotics,
vision, fuzzy logic controllers, constraint satisfaction prob-
lems, scheduling, multicriteria aggregation problems, and
decision-making.

A typical situation where both weightings are necessary is
the following (Llamazares [9]): suppose we have several sen-
sors tomeasure a physical property. On the one hand, sensors

may be of different quality and precision, so a weighted mean
type aggregation is necessary. On the other hand, to prevent
a faulty sensor from altering the measurement, we might
consider an OWA type aggregation where the maximum and
minimum values are not taken into account. A similar situa-
tion occurs when a committee of experts has to assess several
candidates or proposals. On the one hand, a weighted mean
type aggregation is suitable for reflecting the expertness or
the confidence in the judgment of each expert. On the other
hand, an OWA type aggregation allows us to deal with situa-
tions where an expert feels excessive acceptance or rejection
towards some of the candidates or proposals.

Different aggregation operators have appeared in the
literature to deal with this kind of problems. A usual approach
is to consider families of functions parameterized by two
weighting vectors, one for the weighted mean and the other
one for theOWAtype aggregation,which generalizeweighted
means andOWAoperators in the following sense. Aweighted
mean (or an OWA operator) is obtained when the other
weighting vector has a “neutral” behavior; that is, it is (1/𝑛,
. . . , 1/𝑛) (see Llamazares [10] for an analysis of some func-
tions that generalize the weighted means and the OWA oper-
ators in this sense). Two of the solutions having better prop-
erties are the weighted OWA (WOWA) operator, proposed
by Torra [3], and the semiuninorm based ordered weighted
averaging (SUOWA) operator, introduced by Llamazares [9].
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The good properties of WOWA and SUOWA operators
are due to the fact that they are Choquet integral-based
operators with respect to normalized capacities. In the case of
SUOWA operators, their capacities are the monotonic cover
of certain games, which are defined by using the capacities
associated with the weighted means and the OWA operators
and “assembling” these values through semiuninorms with
neutral element 1/𝑛.

Because of their good properties, it seems interesting to
analyze the behavior of SUOWA operators from different
points of view. In this paper, we consider the case of two
dimensions that, although simple, is attractive from a theo-
retical point of view, and we show that any Choquet integral
with respect to a normalized capacity can be expressed as a
SUOWA operator.

The remainder of the paper is organized as follows. In
Section 2 we recall the concepts of semiuninorm and uni-
norm and give some interesting examples of such functions.
Section 3 is devoted to Choquet integral, including some of
the most important particular cases: weighted means, OWA
operators, and SUOWA operators. In Section 4, we give the
main results of the paper. Finally, some concluding remarks
are provided in Section 5.

2. Semiuninorms and Uninorms

Throughout the paper, we will use the following notation:
𝑁 = {1, . . . , 𝑛}; given 𝐴 ⊆ 𝑁, |𝐴| denotes the cardinality
of 𝐴; vectors are denoted in bold and 𝜂 denotes the tuple
(1/𝑛, . . . , 1/𝑛) ∈ R𝑛. We write x ≥ y if 𝑥

𝑖
≥ 𝑦
𝑖
for all 𝑖 ∈ 𝑁.

For a vector x ∈ R𝑛, [⋅] and (⋅) denote permutations such that
𝑥
[1] ≥ ⋅ ⋅ ⋅ ≥ 𝑥[𝑛] and 𝑥(1) ≤ ⋅ ⋅ ⋅ ≤ 𝑥(𝑛).
Semiuninorms are a class of necessary functions in the

definition of SUOWA operators. They are monotonic and
have a neutral element in the interval [0, 1]. These functions
were introduced by Liu [11] as a generalization of uninorms,
which, in turn, were proposed by Yager and Rybalov [12] as a
generalization of 𝑡-norms and 𝑡-conorms.

Before introducing the concepts of semiuninorm and
uninorm, we recall some well-known properties of aggrega-
tion functions.

Definition 1. Let 𝐹 : R𝑛 → R be a function.

(1) 𝐹 is symmetric if 𝐹(𝑥
𝜎(1), . . . , 𝑥𝜎(𝑛)) = 𝐹(𝑥1, . . . , 𝑥𝑛)

for all x ∈ R𝑛 and for all permutation 𝜎 of𝑁.
(2) 𝐹 is monotonic if x ≥ y implies 𝐹(x) ≥ 𝐹(y) for all

x, y ∈ R𝑛.
(3) 𝐹 is idempotent if 𝐹(𝑥, . . . , 𝑥) = 𝑥 for all 𝑥 ∈ R.
(4) 𝐹 is compensative (or internal) if min(x) ≤ 𝐹(x) ≤

max(x) for all x ∈ R𝑛.
(5) 𝐹 is homogeneous of degree 1 (or ratio scale invariant)

if 𝐹(𝑟x) = 𝑟𝐹(x) for all x ∈ R𝑛 and for all 𝑟 > 0.

Definition 2. Let 𝑈 : [0, 1]2 → [0, 1].

(1) 𝑈 is a semiuninorm if it is monotonic and possesses a
neutral element 𝑒 ∈ [0, 1] (𝑈(𝑒, 𝑥) = 𝑈(𝑥, 𝑒) = 𝑥 for
all 𝑥 ∈ [0, 1]).

(2) 𝑈 is a uninorm if it is a symmetric and associative
(𝑈(𝑥,𝑈(𝑦, 𝑧)) = 𝑈(𝑈(𝑥, 𝑦), 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ [0, 1])
semiuninorm.

We denote by U𝑒 (resp., U𝑒
𝑖
) the set of semiuninorms

(resp., idempotent semiuninorms) with neutral element 𝑒 ∈
[0, 1].

SUOWA operators are defined by using semiuninorms
with neutral element 1/𝑛. Moreover, they have to belong to
the following subset (see Llamazares [9]):

Ũ
1/𝑛
= {𝑈∈U

1/𝑛
| 𝑈 (

1
𝑘
,
1
𝑘
)≤

1
𝑘
∀𝑘 ∈𝑁} . (1)

Obviously, U1/𝑛
𝑖

⊆ Ũ1/𝑛. Notice that the smallest and
the largest elements of Ũ1/𝑛 are, respectively, the following
semiuninorms:

𝑈
⊥
(𝑥, 𝑦) =

{{{{{{{

{{{{{{{

{

max (𝑥, 𝑦) if (𝑥, 𝑦) ∈ [1
𝑛
, 1]

2
,

0 if (𝑥, 𝑦) ∈ [0, 1
𝑛
)
2
,

min (𝑥, 𝑦) otherwise,

𝑈
⊤
(𝑥, 𝑦) =

{{{{{{{

{{{{{{{

{

1

𝑘
if (𝑥, 𝑦) ∈ 𝐼

𝑘
\ 𝐼
𝑘+1

, where 𝐼
𝑘
= (
1

𝑛
,
1

𝑘
]
2

(𝑘 ∈ 𝑁 \ {𝑛}) ,

min (𝑥, 𝑦) if (𝑥, 𝑦) ∈ [0, 1
𝑛
]
2

,

max (𝑥, 𝑦) otherwise.

(2)



Mathematical Problems in Engineering 3

In the case of idempotent semiuninorms, the smallest and
the largest elements of U1/𝑛

𝑖
are, respectively, the following

uninorms (which were given by Yager and Rybalov [12]):

𝑈min (𝑥, 𝑦) =
{

{

{

max (𝑥, 𝑦) if (𝑥, 𝑦) ∈ [1
𝑛
, 1]

2
,

min (𝑥, 𝑦) otherwise,

𝑈max (𝑥, 𝑦) =
{

{

{

min (𝑥, 𝑦) if (𝑥, 𝑦) ∈ [0, 1
𝑛
]
2
,

max (𝑥, 𝑦) otherwise.

(3)

In addition to the previous ones, several procedures
to construct semiuninorms have been introduced by Lla-
mazares [13]. One of them, which is based on ordinal sums of
aggregation operators, allows us to get continuous semiuni-
norms. Some of the most relevant continuous semiuninorms
obtained are the following:

𝑈
𝑇L
(𝑥, 𝑦)

=

{{

{{

{

max (𝑥, 𝑦) if (𝑥, 𝑦) ∈ [1
𝑛
, 1]

2
,

max (𝑥 + 𝑦 − 1
𝑛
, 0) otherwise,

𝑈
�̃�
(𝑥, 𝑦) =

{

{

{

max (𝑥, 𝑦) if (𝑥, 𝑦) ∈ [1
𝑛
, 1]

2
,

𝑛𝑥𝑦 otherwise,

𝑈
𝑇M
(𝑥, 𝑦) =

{{{{{{

{{{{{{

{

max (𝑥, 𝑦) if (𝑥, 𝑦) ∈ [1
𝑛
, 1]

2
,

min (𝑥, 𝑦) if (𝑥, 𝑦) ∈ [0, 1
𝑛
)
2
,

𝑥 + 𝑦 −
1
𝑛

otherwise,

𝑈
𝑃
(𝑥, 𝑦) =

{{{{{

{{{{{

{

max (𝑥, 𝑦) if (𝑥, 𝑦) ∈ [1
𝑛
, 1]

2
,

min (𝑥, 𝑦) if (𝑥, 𝑦) ∈ [0, 1
𝑛
)
2
,

𝑛𝑥𝑦 otherwise.

(4)

Notice that the last two semiuninorms are also idempo-
tent. The plots of all these semiuninorms are given, for the
case 𝑛 = 4, in Figures 1–8.

3. Choquet Integral

The notion of Choquet integral is based on that of capacity
(see Choquet [14] and Murofushi and Sugeno [15]). The
concept of capacity resembles that of probability measure
but in the definition of the former additivity is replaced by
monotonicity (see also fuzzy measures in Sugeno [16]). A
game is then a generalization of a capacity where the mono-
tonicity is no longer required.

Definition 3. (1) A game 𝜐 on𝑁 is a set function, 𝜐 : 2𝑁 → R

satisfying 𝜐(⌀) = 0.
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Figure 1: The semiuninorm 𝑈
⊥
for 𝑛 = 4.
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Figure 2: The semiuninorm 𝑈
⊤
for 𝑛 = 4.

(2) A capacity (or fuzzy measure) 𝜇 on 𝑁 is a game on
𝑁 satisfying 𝜇(𝐴) ≤ 𝜇(𝐵) whenever 𝐴 ⊆ 𝐵. In particular,
it follows that 𝜇 : 2𝑁 → [0,∞). A capacity 𝜇 is said to be
normalized if 𝜇(𝑁) = 1.

A straightforward way to get a capacity from a game is to
consider the monotonic cover of the game (see Maschler and
Peleg [17] and Maschler et al. [18]).
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Figure 3: The uninorm 𝑈min for 𝑛 = 4.
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Figure 4: The uninorm 𝑈max for 𝑛 = 4.

Definition 4. Let 𝜐 be a game on𝑁. The monotonic cover of
𝜐 is the set function 𝜐 given by

𝜐 (𝐴) = max
𝐵⊆𝐴

𝜐 (𝐵) . (5)

Some basic properties of 𝜐 are given in the sequel.

Remark 5. Let 𝜐 be a game on𝑁.Then, one has the following:

(1) 𝜐 is a capacity.
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Figure 5: The uninorm 𝑈
𝑇L

for 𝑛 = 4.
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Figure 6: The uninorm 𝑈
�̃�
for 𝑛 = 4.

(2) If 𝜐 is a capacity, then 𝜐 = 𝜐.

(3) If 𝜐(𝐴) ≤ 1 for all 𝐴 ⊆ 𝑁 and 𝜐(𝑁) = 1, then 𝜐 is a
normalized capacity.

Although the Choquet integral is usually defined as a
functional (see, for instance, Choquet [14], Murofushi and
Sugeno [15], and Denneberg [19]), in this paper we consider
the Choquet integral as an aggregation function overR𝑛 (see,
for instance, Grabisch et al. [20, page 181]). Moreover, we
define the Choquet integral for all vectors of R𝑛 instead of
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Figure 7: The uninorm 𝑈
𝑇M

for 𝑛 = 4.
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Figure 8: The uninorm 𝑈
𝑃
for 𝑛 = 4.

nonnegative vectors given thatwe are actually considering the
asymmetric Choquet integral with respect to 𝜇 (on this, see
again Grabisch et al. [20, page 182]).

Definition 6. Let 𝜇 be a capacity on𝑁. The Choquet integral
with respect to 𝜇 is the functionC

𝜇
: R𝑛 → R given by

C
𝜇
(x) =

𝑛

∑
𝑖=1
𝜇 (𝐵
(𝑖)
) (𝑥
(𝑖)
−𝑥
(𝑖−1)) , (6)

where 𝐵
(𝑖)
= {(𝑖), . . . , (𝑛)}, and one uses the convention 𝑥

(0) =
0.

It is worth noting that the Choquet integral has several
properties which are useful in certain information aggrega-
tion contexts (see, for instance, Grabisch et al. [20, pages 192-
193 and page 196]).

Remark 7. Let 𝜇 be a capacity on𝑁. Then,C
𝜇
is continuous,

monotonic, and homogeneous of degree 1. Moreover, it
is idempotent and compensative when 𝜇 is a normalized
capacity.

Notice that the Choquet integral can also be represented
by using decreasing sequences of values (see, for instance,
Torra [21] and Llamazares [9]):

C
𝜇
(x) =

𝑛

∑
𝑖=1
𝜇 (𝐴
[𝑖]
) (𝑥
[𝑖]
−𝑥
[𝑖+1]) , (7)

where𝐴
[𝑖]
= {[1], . . . , [𝑖]}, andwe use the convention𝑥

[𝑛+1] =
0.

From the previous expression, it is straightforward to
show explicitly the weights of the values 𝑥

[𝑖]
by representing

the Choquet integral as follows:

C
𝜇
(x) =

𝑛

∑
𝑖=1
(𝜇 (𝐴

[𝑖]
) − 𝜇 (𝐴

[𝑖−1])) 𝑥[𝑖], (8)

where we use the convention 𝐴
[0] = ⌀.

3.1. Weighted Means and OWA Operators. Weighted means
and OWA operators (Yager [1]) are well-known functions in
the field of aggregation operators. Both families of functions
are defined in terms of weight distributions that add up to 1.

Definition 8. A vector q ∈ R𝑛 is a weighting vector if q ∈
[0, 1]𝑛 and ∑𝑛

𝑖=1 𝑞𝑖 = 1.

The set of all weighting vectors of R𝑛 will be denoted by
W
𝑛
.

Definition 9. Let p be a weighting vector.The weighted mean
associated with p is the function𝑀p : R

𝑛 → R given by

𝑀p (x) =
𝑛

∑
𝑖=1
𝑝
𝑖
𝑥
𝑖
. (9)

Definition 10. Letw be aweighting vector.TheOWAoperator
associated with w is the function 𝑂w : R

𝑛 → R given by

𝑂w (x) =
𝑛

∑
𝑖=1
𝑤
𝑖
𝑥
[𝑖]
. (10)

It is well known that weightedmeans andOWAoperators
are a special type of Choquet integral (see, for instance, Fodor
et al. [22], Grabisch [23, 24], or Llamazares [9]).
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Remark 11. (1) If p is a weighting vector, then the weighted
mean𝑀p is the Choquet integral with respect to the normal-
ized capacity 𝜇p(𝐴) = ∑𝑖∈𝐴 𝑝𝑖.

(2) Ifw is aweighting vector, then theOWAoperator𝑂w is
the Choquet integral with respect to the normalized capacity
𝜇
|w|(𝐴) = ∑

|𝐴|

𝑖=1 𝑤𝑖.

So, according to Remark 7, weighted means and OWA
operators are continuous, monotonic, idempotent, compen-
sative, and homogeneous of degree 1. Moreover, in the case
of OWA operators, given that the values of the variables
are previously ordered in a decreasing way, they are also
symmetric.

3.2. SUOWAOperators. SUOWA operators were introduced
by Llamazares [9] in order to consider situations where both
the importance of information sources and the importance of
values had to be taken into account.These functions are Cho-
quet integral-based operators where their capacities are the
monotonic cover of certain games. These games are defined
by using semiuninorms with neutral element 1/𝑛 and the
values of the capacities associated with the weighted means
and theOWAoperators. To be specific, the games fromwhich
SUOWA operators are built are defined as follows.

Definition 12. Let p and w be two weighting vectors and let
𝑈 ∈ Ũ1/𝑛.

(1) The game associated with p, w, and 𝑈 is the set
function 𝜐𝑈p,w : 2

𝑁 → R defined by

𝜐
𝑈

p,w (𝐴) = |𝐴|𝑈(
𝜇p (𝐴)

|𝐴|
,
𝜇
|w| (𝐴)

|𝐴|
)

= |𝐴|𝑈(
∑
𝑖∈𝐴
𝑝
𝑖

|𝐴|
,
∑
|𝐴|

𝑖=1 𝑤𝑖

|𝐴|
)

(11)

if 𝐴 ̸= ⌀ and 𝜐𝑈p,w(⌀) = 0.

(2) 𝜐𝑈p,w, the monotonic cover of the game 𝜐𝑈p,w, will be
called the capacity associated with p, w, and 𝑈.

Notice that 𝜐𝑈p,w(𝑁) = 1. Moreover, since 𝑈 ∈ Ũ1/𝑛, we
have 𝜐𝑈p,w(𝐴) ≤ 1 for all 𝐴 ⊆ 𝑁 (see Llamazares [9]). There-
fore, according to the third item of Remark 5, 𝜐𝑈p,w is always
a normalized capacity.

Definition 13. Let p and w be two weighting vectors and let
𝑈 ∈ Ũ1/𝑛. The SUOWA operator associated with p, w, and 𝑈
is the function 𝑆𝑈p,w : R

𝑛 → R given by

𝑆
𝑈

p,w (x) =
𝑛

∑
𝑖=1
𝑠
𝑖
𝑥
[𝑖]
, (12)

where 𝑠
𝑖
= 𝜐𝑈p,w(𝐴 [𝑖]) − 𝜐

𝑈

p,w(𝐴 [𝑖−1]) for all 𝑖 ∈ 𝑁, 𝜐𝑈p,w is the
capacity associated with p, w, and 𝑈, and 𝐴

[𝑖]
= {[1], . . . , [𝑖]}

(with the convention that 𝐴
[0] = ⌀).

According to expression (7), the SUOWA operator asso-
ciated with p, w, and 𝑈 can also be written as

𝑆
𝑈

p,w (x) =
𝑛

∑
𝑖=1
𝜐
𝑈

p,w (𝐴 [𝑖]) (𝑥[𝑖] −𝑥[𝑖+1]) . (13)

By the choice of 𝜐𝑈p,w, we have 𝑆
𝑈

p,𝜂 = 𝑀p and 𝑆
𝑈

𝜂,w = 𝑂w

for any𝑈 ∈ Ũ1/𝑛. Moreover, by Remark 7 and given that 𝜐𝑈p,w
is a normalized capacity, SUOWA operators are continuous,
monotonic, idempotent, compensative, and homogeneous of
degree 1.

4. The Results

The use of Choquet integral has become more and more
extensive in the last years (see, for instance, Grabisch et al.
[25] and Grabisch and Labreuche [26]). Although simple, the
case 𝑛 = 2 is interesting from a theoretical point of view.
Thus, for instance, Grabisch et al. [20, page 204] show that,
in this case, any Choquet integral with respect to a normal-
ized capacity can be written as a convex combination of a
minimum, a maximum, and two projections; that is, given a
normalized capacity 𝜇, there exists a weighting vector 𝜆
belonging toW4 such that

C
𝜇
(𝑥1, 𝑥2) = 𝜆1 min (𝑥1, 𝑥2) + 𝜆2 max (𝑥1, 𝑥2)

+ 𝜆3𝑥1 +𝜆4𝑥2.
(14)

In our case, we are going to show that any Choquet
integral with respect to a normalized capacity can be written
as a SUOWA operator. Notice that when 𝑛 = 2, 𝜐𝑈p,w is always
a normalized capacity for any weighting vectors p and w
and for any semiuninorm 𝑈. Therefore, given a normalized
capacity 𝜇, we need to prove that there exist weighting vectors
p and w and a semiuninorm 𝑈 such that

𝜐
𝑈

p,w ({1}) = 𝑈 (𝑝1, 𝑤1) = 𝜇1,

𝜐
𝑈

p,w ({2}) = 𝑈 (𝑝2, 𝑤1) = 𝜇2,
(15)

where we use the notations 𝜇1 and 𝜇2 to denote the values
𝜇({1}) and 𝜇({2}), respectively.

Firstly we are going to show that, in the case of the semi-
uninorms 𝑈

⊥
, 𝑈
⊤
, 𝑈min, and 𝑈max, there exist normalized

capacities which cannot be expressed as SUOWA operators.
For this, we will use the following lemma.

Lemma 14. If 𝑈 ∈ {𝑈
⊥
, 𝑈
⊤
, 𝑈min, 𝑈max}, then 𝑈(𝑥, 𝑦) = 0.5

if and only if 𝑥 = 𝑦 = 0.5.

Proof. Let 𝑈 ∈ {𝑈
⊥
, 𝑈
⊤
, 𝑈min, 𝑈max}. Since 0.5 is the neutral

element of 𝑈, we have 𝑈(0.5, 0.5) = 0.5.
Conversely, suppose 𝑈(𝑥, 𝑦) = 0.5. In Table 1, where 0.5−

stands for a value that belongs to [0, 0.5) and 0.5+ stands for a
value that belongs to (0.5, 1], we show the values taken by the
semiuninorms 𝑈

⊥
, 𝑈min, 𝑈max, and 𝑈⊤ when (𝑥, 𝑦) ∈ [0, 1]

2.
Therefore, if 𝑈(𝑥, 𝑦) = 0.5, then necessarily 𝑥 = 𝑦 = 0.5.
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Table 1: Values taken by 𝑈
⊥
, 𝑈min, 𝑈max, and 𝑈⊤.

𝑥 𝑦 𝑈
⊥
(𝑥, 𝑦) 𝑈min(𝑥, 𝑦) 𝑈max(𝑥, 𝑦) 𝑈

⊤
(𝑥, 𝑦)

0.5− 0.5− 0 min(𝑥, 𝑦) min(𝑥, 𝑦) min(𝑥, 𝑦)
0.5− 0.5 𝑥 𝑥 𝑥 𝑥

0.5− 0.5+ 𝑥 𝑥 𝑦 𝑦

0.5 0.5− 𝑦 𝑦 𝑦 𝑦

0.5 0.5 0.5 0.5 0.5 0.5
0.5 0.5+ 𝑦 𝑦 𝑦 𝑦

0.5+ 0.5− 𝑦 𝑦 𝑥 𝑥

0.5+ 0.5 𝑥 𝑥 𝑥 𝑥

0.5+ 0.5+ max(𝑥, 𝑦) max(𝑥, 𝑦) max(𝑥, 𝑦) 1

Theorem 15. Let 𝜇 be the normalized capacity on 𝑁 = {1, 2}
such that 𝜇1 = 0 and 𝜇2 = 0.5. If 𝑈 ∈ {𝑈

⊥
, 𝑈
⊤
, 𝑈min, 𝑈max},

then there do not exist weighting vectors p and w such that 𝜇 =
𝜐𝑈p,w.

Proof. Given 𝑈 ∈ {𝑈
⊥
, 𝑈
⊤
, 𝑈min, 𝑈max}, consider two weight-

ing vectors p and w such that 𝑈(𝑝2, 𝑤1) = 0.5. By Lemma 14,
we have 𝑝2 = 𝑤1 = 0.5. Therefore, 𝑈(𝑝1, 𝑤1) = 𝑈(0.5, 0.5) =
0.5 and, consequently, 𝑈(𝑝1, 𝑤1) = 0 is not possible.

In each of the following theorems we consider the semi-
uninorms 𝑈

𝑇L
, 𝑈
𝑇M
, 𝑈
�̃�
, and 𝑈

𝑃
, respectively, and we show

that any normalized capacity can be written as a SUOWA
operator associated with appropriate weighting vectors p and
w, which are given explicitly.

Theorem 16. Let 𝜇 be a normalized capacity on 𝑁 = {1, 2}
and let p and w be two weighting vectors defined as follows:

(1) If 𝜇1 + 𝜇2 < 1, then

p = (0.5+ 𝜇1 − 𝜇2
2

, 0.5+
𝜇2 − 𝜇1

2
) ,

w = (𝜇1 + 𝜇2
2

, 1−
𝜇1 + 𝜇2

2
) .

(16)

(2) If 𝜇1 + 𝜇2 ≥ 1 andmin(𝜇1, 𝜇2) < 0.5, then

p =
{

{

{

(𝜇1, 1 − 𝜇1) 𝑖𝑓 𝜇1 > 0.5,

(1 − 𝜇2, 𝜇2) 𝑖𝑓 𝜇2 > 0.5,

w = (𝜇1 +𝜇2 − 0.5, 1.5−𝜇1 −𝜇2) .

(17)

(3) Ifmin(𝜇1, 𝜇2) ≥ 0.5, then

p = (0.5+𝜇1 −𝜇2, 0.5+𝜇2 −𝜇1) ,

w = (max (𝜇1, 𝜇2) , 1−max (𝜇1, 𝜇2)) .
(18)

Then, 𝜇 = 𝜐𝑈𝑇Lp,w ; that is,C𝜇 = 𝑆
𝑈𝑇L
p,w .

Proof. Let 𝜇 be a normalized capacity on𝑁 = {1, 2} and recall
that when 𝑛 = 2, the semiuninorm 𝑈

𝑇L
is defined by

𝑈
𝑇L
(𝑥, 𝑦)

=
{

{

{

max (𝑥, 𝑦) if (𝑥, 𝑦) ∈ [0.5, 1]2 ,

max (𝑥 + 𝑦 − 0.5, 0) otherwise.

(19)

We distinguish the following cases:
(1) If 𝜇1 + 𝜇2 < 1, consider

p = (0.5+ 𝜇1 − 𝜇2
2

, 0.5+
𝜇2 − 𝜇1

2
) ,

w = (𝜇1 + 𝜇2
2

, 1−
𝜇1 + 𝜇2

2
) .

(20)

Then,

𝑈
𝑇L
(𝑝1, 𝑤1) = 0.5+

𝜇1 − 𝜇2
2

+
𝜇1 + 𝜇2

2
− 0.5 = 𝜇1,

𝑈
𝑇L
(𝑝2, 𝑤1) = 0.5+

𝜇2 − 𝜇1
2

+
𝜇1 + 𝜇2

2
− 0.5 = 𝜇2.

(21)

(2) If 𝜇1 + 𝜇2 ≥ 1 and min(𝜇1, 𝜇2) < 0.5, consider

p =
{

{

{

(𝜇1, 1 − 𝜇1) if 𝜇1 > 0.5,

(1 − 𝜇2, 𝜇2) if 𝜇2 > 0.5,

w = (𝜇1 +𝜇2 − 0.5, 1.5−𝜇1 −𝜇2) .

(22)

We distinguish two cases:

(a) If 𝜇1 > 0.5, then

𝑈
𝑇L
(𝑝1, 𝑤1) = max (𝜇1, 𝜇1 +𝜇2 − 0.5) = 𝜇1,

𝑈
𝑇L
(𝑝2, 𝑤1) = 1−𝜇1 +𝜇1 +𝜇2 − 0.5− 0.5 = 𝜇2.

(23)

(b) If 𝜇2 > 0.5, then

𝑈
𝑇L
(𝑝1, 𝑤1) = 1−𝜇2 +𝜇1 +𝜇2 − 0.5− 0.5 = 𝜇1,

𝑈
𝑇L
(𝑝2, 𝑤1) = max (𝜇2, 𝜇1 +𝜇2 − 0.5) = 𝜇2.

(24)

(3) If min(𝜇1, 𝜇2) ≥ 0.5, consider

p = (0.5+𝜇1 −𝜇2, 0.5+𝜇2 −𝜇1) ,

w = (max (𝜇1, 𝜇2) , 1−max (𝜇1, 𝜇2)) .
(25)

We distinguish three cases:

(a) If 𝜇1 > 𝜇2, then

𝑈
𝑇L
(𝑝1, 𝑤1) = max (0.5+𝜇1 −𝜇2, 𝜇1) = 𝜇1,

𝑈
𝑇L
(𝑝2, 𝑤1) = 0.5+𝜇2 −𝜇1 +𝜇1 − 0.5 = 𝜇2.

(26)
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(b) If 𝜇1 = 𝜇2, then

𝑈
𝑇L
(𝑝1, 𝑤1) = max (0.5, 𝜇1) = 𝜇1,

𝑈
𝑇L
(𝑝2, 𝑤1) = max (0.5, 𝜇2) = 𝜇2.

(27)

(c) If 𝜇1 < 𝜇2, then

𝑈
𝑇L
(𝑝1, 𝑤1) = 0.5+𝜇1 −𝜇2 +𝜇2 − 0.5 = 𝜇1,

𝑈
𝑇L
(𝑝2, 𝑤1) = max (0.5+𝜇2 −𝜇1, 𝜇2) = 𝜇2.

(28)

Theorem 17. Let 𝜇 be a normalized capacity on 𝑁 = {1, 2}
and let p and w be two weighting vectors defined as follows:

(1) Ifmax(𝜇1, 𝜇2) < 0.5, then

p = (0.5+𝜇1 −𝜇2, 0.5+𝜇2 −𝜇1) ,

w = (min (𝜇1, 𝜇2) , 1−min (𝜇1, 𝜇2)) .
(29)

(2) If 𝜇1 + 𝜇2 < 1 andmax(𝜇1, 𝜇2) ≥ 0.5, then

p =
{

{

{

(𝜇1, 1 − 𝜇1) 𝑖𝑓 𝜇1 < 0.5,

(1 − 𝜇2, 𝜇2) 𝑖𝑓 𝜇2 < 0.5,

w = (𝜇1 +𝜇2 − 0.5, 1.5−𝜇1 −𝜇2) .

(30)

(3) If 𝜇1 + 𝜇2 ≥ 1 andmin(𝜇1, 𝜇2) < 0.5, then

p =
{

{

{

(𝜇1, 1 − 𝜇1) 𝑖𝑓 𝜇1 > 0.5,

(1 − 𝜇2, 𝜇2) 𝑖𝑓 𝜇2 > 0.5,

w = (𝜇1 +𝜇2 − 0.5, 1.5−𝜇1 −𝜇2) .

(31)

(4) Ifmin(𝜇1, 𝜇2) ≥ 0.5, then

p = (0.5+𝜇1 −𝜇2, 0.5+𝜇2 −𝜇1) ,

w = (max (𝜇1, 𝜇2) , 1−max (𝜇1, 𝜇2)) .
(32)

Then, 𝜇 = 𝜐𝑈𝑇Mp,w ; that is,C
𝜇
= 𝑆
𝑈𝑇M
p,w .

Proof. Let 𝜇 be a normalized capacity on𝑁 = {1, 2} and recall
that when 𝑛 = 2, the semiuninorm 𝑈

𝑇M
is defined by

𝑈
𝑇M
(𝑥, 𝑦) =

{{{{

{{{{

{

max (𝑥, 𝑦) if (𝑥, 𝑦) ∈ [0.5, 1]2 ,

min (𝑥, 𝑦) if (𝑥, 𝑦) ∈ [0, 0.5)2 ,

𝑥 + 𝑦 − 0.5 otherwise.

(33)

We distinguish the following cases:
(1) If max(𝜇1, 𝜇2) < 0.5, consider

p = (0.5+𝜇1 −𝜇2, 0.5+𝜇2 −𝜇1) ,

w = (min (𝜇1, 𝜇2) , 1−min (𝜇1, 𝜇2)) .
(34)

We distinguish three cases:

(a) If 𝜇1 < 𝜇2, then

𝑈
𝑇M
(𝑝1, 𝑤1) = min (0.5+𝜇1 −𝜇2, 𝜇1) = 𝜇1,

𝑈
𝑇M
(𝑝2, 𝑤1) = 0.5+𝜇2 −𝜇1 +𝜇1 − 0.5 = 𝜇2.

(35)

(b) If 𝜇1 = 𝜇2, then

𝑈
𝑇M
(𝑝1, 𝑤1) = min (0.5, 𝜇1) = 𝜇1,

𝑈
𝑇M
(𝑝2, 𝑤1) = min (0.5, 𝜇2) = 𝜇2.

(36)

(c) If 𝜇1 > 𝜇2, then

𝑈
𝑇M
(𝑝1, 𝑤1) = 0.5+𝜇1 −𝜇2 +𝜇2 − 0.5 = 𝜇1,

𝑈
𝑇M
(𝑝2, 𝑤1) = min (0.5+𝜇2 −𝜇1, 𝜇2) = 𝜇2.

(37)

(2) If 𝜇1 + 𝜇2 < 1 and max(𝜇1, 𝜇2) ≥ 0.5, consider

p =
{

{

{

(𝜇1, 1 − 𝜇1) if 𝜇1 < 0.5,

(1 − 𝜇2, 𝜇2) if 𝜇2 < 0.5,

w = (𝜇1 +𝜇2 − 0.5, 1.5−𝜇1 −𝜇2) .

(38)

We distinguish two cases:

(a) If 𝜇1 < 0.5, then

𝑈
𝑇M
(𝑝1, 𝑤1) = min (𝜇1, 𝜇1 +𝜇2 − 0.5) = 𝜇1,

𝑈
𝑇M
(𝑝2, 𝑤1) = 1−𝜇1 +𝜇1 +𝜇2 − 0.5− 0.5 = 𝜇2.

(39)

(b) If 𝜇2 < 0.5, then

𝑈
𝑇M
(𝑝1, 𝑤1) = 1−𝜇2 +𝜇1 +𝜇2 − 0.5− 0.5 = 𝜇1,

𝑈
𝑇M
(𝑝2, 𝑤1) = min (𝜇2, 𝜇1 +𝜇2 − 0.5) = 𝜇2.

(40)

(3) If 𝜇1 + 𝜇2 ≥ 1 and min(𝜇1, 𝜇2) < 0.5, then the proof of
this case is similar to that of the second item inTheorem 16.

(4) If min(𝜇1, 𝜇2) ≥ 0.5, then the proof of this case is
similar to that of the third item inTheorem 16.

Theorem 18. Let 𝜇 be a normalized capacity on 𝑁 = {1, 2}
and let p and w be two weighting vectors defined as follows:

(1) If 𝜇1 + 𝜇2 < 1, then

p =
{{

{{

{

(𝑝1, 𝑝2) ∈W2 𝑖𝑓 𝜇1 = 𝜇2 = 0,

(
𝜇1

𝜇1 + 𝜇2
,
𝜇2

𝜇1 + 𝜇2
) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

w = (𝜇1 + 𝜇2
2

, 1−
𝜇1 + 𝜇2

2
) .

(41)
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(2) If 𝜇1 + 𝜇2 ≥ 1 and min(𝜇1, 𝜇2) < 2max(𝜇1, 𝜇2)(1 −
max(𝜇1, 𝜇2)), then

p =
{

{

{

(𝜇1, 1 − 𝜇1) 𝑖𝑓 𝜇1 ≥ 𝜇2,

(1 − 𝜇2, 𝜇2) 𝑖𝑓 𝜇1 < 𝜇2,

w = (
min (𝜇1, 𝜇2)

2 (1 −max (𝜇1, 𝜇2))
, 1

−
min (𝜇1, 𝜇2)

2 (1 −max (𝜇1, 𝜇2))
) .

(42)

(3) If 𝜇1 + 𝜇2 ≥ 1 and min(𝜇1, 𝜇2) ≥ 2max(𝜇1, 𝜇2)(1 −
max(𝜇1, 𝜇2)), then

p =
{{{

{{{

{

(1 −
𝜇2
2𝜇1
,
𝜇2
2𝜇1
) 𝑖𝑓 𝜇1 ≥ 𝜇2,

(
𝜇1
2𝜇2
, 1 −

𝜇1
2𝜇2
) 𝑖𝑓 𝜇1 < 𝜇2,

w = (max (𝜇1, 𝜇2) , 1−max (𝜇1, 𝜇2)) .

(43)

Then, 𝜇 = 𝜐𝑈�̃�p,w; that is,C𝜇 = 𝑆
𝑈
�̃�

p,w.

Proof. Let 𝜇 be a normalized capacity on𝑁 = {1, 2} and recall
that when 𝑛 = 2, the semiuninorm 𝑈

�̃�
is defined by

𝑈
�̃�
(𝑥, 𝑦) =

{

{

{

max (𝑥, 𝑦) if (𝑥, 𝑦) ∈ [0.5, 1]2 ,

2𝑥𝑦 otherwise.
(44)

We distinguish the following cases:
(1) If 𝜇1 + 𝜇2 < 1, consider

p =
{{

{{

{

(𝑝
1
, 𝑝
2
) ∈W

2
if 𝜇1 = 𝜇2 = 0,

(
𝜇1

𝜇1 + 𝜇2
,
𝜇2

𝜇1 + 𝜇2
) otherwise,

w = (𝜇1 + 𝜇2
2

, 1 −
𝜇1 + 𝜇2
2

) .

(45)

We distinguish two cases:

(a) If 𝜇1 = 𝜇2 = 0, then

𝑈
�̃�
(𝑝1, 𝑤1) = 2 ⋅ 𝑝1 ⋅ 0 = 0 = 𝜇1,

𝑈
�̃�
(𝑝2, 𝑤1) = 2 ⋅ 𝑝2 ⋅ 0 = 0 = 𝜇2.

(46)

(b) If (𝜇1, 𝜇2) ̸= (0, 0), then

𝑈
�̃�
(𝑝1, 𝑤1) = 2

𝜇1
𝜇1 + 𝜇2

𝜇1 + 𝜇2
2

= 𝜇1,

𝑈
�̃�
(𝑝2, 𝑤1) = 2

𝜇2
𝜇1 + 𝜇2

𝜇1 + 𝜇2
2

= 𝜇2.

(47)

(2) If 𝜇1 + 𝜇2 ≥ 1 and min(𝜇1, 𝜇2) < 2max(𝜇1, 𝜇2)(1 −
max(𝜇1, 𝜇2)), then notice that the case max(𝜇1, 𝜇2) = 1 is not
possible. Moreover, we have

min (𝜇1, 𝜇2)
2 (1 −max (𝜇1, 𝜇2))

< max (𝜇1, 𝜇2) . (48)

On the other hand, given that min(𝜇1, 𝜇2) ≥ 1 −max(𝜇1, 𝜇2),
we get

min (𝜇1, 𝜇2)
2 (1 −max (𝜇1, 𝜇2))

≥ 0.5, (49)

and, consequently, max(𝜇1, 𝜇2) > 0.5. Now consider the
following weighting vectors:

p =
{

{

{

(𝜇1, 1 − 𝜇1) if 𝜇1 ≥ 𝜇2,

(1 − 𝜇2, 𝜇2) if 𝜇1 < 𝜇2,

w

= (
min (𝜇1, 𝜇2)

2 (1 −max (𝜇1, 𝜇2))
, 1−

min (𝜇1, 𝜇2)
2 (1 −max (𝜇1, 𝜇2))

) .

(50)

We distinguish two cases:

(a) If 𝜇1 ≥ 𝜇2, then

𝑈
�̃�
(𝑝1, 𝑤1) = max(𝜇1,

𝜇2
2 (1 − 𝜇1)

) = 𝜇1,

𝑈
�̃�
(𝑝2, 𝑤1) = 2 (1−𝜇1)

𝜇2
2 (1 − 𝜇1)

= 𝜇2.

(51)

(b) If 𝜇1 < 𝜇2, then

𝑈
�̃�
(𝑝1, 𝑤1) = 2 (1−𝜇2)

𝜇1
2 (1 − 𝜇2)

= 𝜇1,

𝑈
�̃�
(𝑝2, 𝑤1) = max(𝜇2,

𝜇1
2 (1 − 𝜇2)

) = 𝜇2.

(52)

(3) If 𝜇1 + 𝜇2 ≥ 1 and min(𝜇1, 𝜇2) ≥ 2max(𝜇1, 𝜇2)(1 −
max(𝜇1, 𝜇2)), then max(𝜇1, 𝜇2) ≥ 0.5, and we also have

min (𝜇1, 𝜇2)
2max (𝜇1, 𝜇2)

≥ 1−max (𝜇1, 𝜇2) , (53)

or, equivalently,

1−
min (𝜇1, 𝜇2)
2max (𝜇1, 𝜇2)

≤ max (𝜇1, 𝜇2) . (54)

On the other hand, since min(𝜇1, 𝜇2) ≤ max(𝜇1, 𝜇2), we get

min (𝜇1, 𝜇2)
2max (𝜇1, 𝜇2)

≤ 0.5, (55)
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and, consequently,

1−
min (𝜇1, 𝜇2)
2max (𝜇1, 𝜇2)

≥ 0.5. (56)

Consider now the following weighting vectors:

p =
{{{

{{{

{

(1 −
𝜇
2

2𝜇
1

,
𝜇
2

2𝜇
1

) if 𝜇
1
≥ 𝜇
2
,

(
𝜇
1

2𝜇
2

, 1 −
𝜇
1

2𝜇
2

) if 𝜇
1
< 𝜇
2
,

w = (max (𝜇
1
, 𝜇
2
) , 1 −max (𝜇

1
, 𝜇
2
)) .

(57)

We distinguish three cases:

(a) If 𝜇1 > 𝜇2, then

𝑈
�̃�
(𝑝1, 𝑤1) = max(1−

𝜇2
2𝜇1
, 𝜇1) = 𝜇1,

𝑈
�̃�
(𝑝2, 𝑤1) = 2

𝜇2
2𝜇1
𝜇1 = 𝜇2.

(58)

(b) If 𝜇1 = 𝜇2, then

𝑈
�̃�
(𝑝1, 𝑤1) = max (0.5, 𝜇1) = 𝜇1,

𝑈
�̃�
(𝑝2, 𝑤1) = max (0.5, 𝜇2) = 𝜇2.

(59)

(c) If 𝜇1 < 𝜇2, then

𝑈
�̃�
(𝑝1, 𝑤1) = 2

𝜇1
2𝜇2
𝜇2 = 𝜇1,

𝑈
�̃�
(𝑝2, 𝑤1) = max(1−

𝜇1
2𝜇2
, 𝜇2) = 𝜇2.

(60)

Theorem 19. Let 𝜇 be a normalized capacity on 𝑁 = {1, 2}
and let p and w be two weighting vectors defined as follows:

(1) If 𝜇1 + 𝜇2 < 1 and max(𝜇1, 𝜇2) < 2min(𝜇1, 𝜇2)(1 −
min(𝜇1, 𝜇2)), then

p =
{{{

{{{

{

(1 −
𝜇2
2𝜇1
,
𝜇2
2𝜇1
) 𝑖𝑓 𝜇1 ≤ 𝜇2,

(
𝜇1
2𝜇2
, 1 −

𝜇1
2𝜇2
) 𝑖𝑓 𝜇1 > 𝜇2,

w = (min (𝜇1, 𝜇2) , 1−min (𝜇1, 𝜇2)) .

(61)

(2) If 𝜇1 + 𝜇2 < 1 and max(𝜇1, 𝜇2) ≥ 2min(𝜇1, 𝜇2)(1 −
min(𝜇1, 𝜇2)), then

p =
{

{

{

(𝜇1, 1 − 𝜇1) 𝑖𝑓 𝜇1 ≤ 𝜇2,

(1 − 𝜇2, 𝜇2) 𝑖𝑓 𝜇1 > 𝜇2,

w

= (
max (𝜇1, 𝜇2)

2 (1 −min (𝜇1, 𝜇2))
, 1−

max (𝜇1, 𝜇2)
2 (1 −min (𝜇1, 𝜇2))

) .

(62)

(3) If 𝜇1 + 𝜇2 ≥ 1 and min(𝜇1, 𝜇2) < 2max(𝜇1, 𝜇2)(1 −
max(𝜇1, 𝜇2)), then

p =
{

{

{

(𝜇1, 1 − 𝜇1) 𝑖𝑓 𝜇1 ≥ 𝜇2,

(1 − 𝜇2, 𝜇2) 𝑖𝑓 𝜇1 < 𝜇2,

w

= (
min (𝜇1, 𝜇2)

2 (1 −max (𝜇1, 𝜇2))
, 1−

min (𝜇1, 𝜇2)
2 (1 −max (𝜇1, 𝜇2))

) .

(63)

(4) If 𝜇1 + 𝜇2 ≥ 1 and min(𝜇1, 𝜇2) ≥ 2max(𝜇1, 𝜇2)(1 −
max(𝜇1, 𝜇2)), then

p =
{{{

{{{

{

(1 −
𝜇2
2𝜇1
,
𝜇2
2𝜇1
) 𝑖𝑓 𝜇1 ≥ 𝜇2,

(
𝜇1
2𝜇2
, 1 −

𝜇1
2𝜇2
) 𝑖𝑓 𝜇1 < 𝜇2,

w = (max (𝜇1, 𝜇2) , 1−max (𝜇1, 𝜇2)) .

(64)

Then, 𝜇 = 𝜐𝑈𝑃p,w; that is,C𝜇 = 𝑆
𝑈𝑃

p,w.

Proof. Let 𝜇 be a normalized capacity on𝑁 = {1, 2} and recall
that when 𝑛 = 2, the semiuninorm 𝑈

𝑃
is defined by

𝑈
𝑃
(𝑥, 𝑦) =

{{{{

{{{{

{

max (𝑥, 𝑦) if (𝑥, 𝑦) ∈ [0.5, 1]2 ,

min (𝑥, 𝑦) if (𝑥, 𝑦) ∈ [0, 0.5)2 ,

2𝑥𝑦 otherwise.

(65)

We distinguish the following cases:
(1) If 𝜇1 + 𝜇2 < 1 and max(𝜇1, 𝜇2) < 2min(𝜇1, 𝜇2)(1 −

min(𝜇1, 𝜇2)), then notice that the case min(𝜇1, 𝜇2) = 0 is not
possible. Moreover, min(𝜇1, 𝜇2) < 0.5, and we also have

max (𝜇1, 𝜇2)
2min (𝜇1, 𝜇2)

< 1−min (𝜇1, 𝜇2) , (66)

or, equivalently,

min (𝜇1, 𝜇2) < 1−
max (𝜇1, 𝜇2)
2min (𝜇1, 𝜇2)

. (67)

On the other hand, since min(𝜇1, 𝜇2) ≤ max(𝜇1, 𝜇2), we get

max (𝜇1, 𝜇2)
2min (𝜇1, 𝜇2)

≥ 0.5, (68)

and, consequently,

1−
max (𝜇1, 𝜇2)
2min (𝜇1, 𝜇2)

≤ 0.5. (69)

Consider now the following weighting vectors:

p =
{{{

{{{

{

(1 −
𝜇
2

2𝜇
1

,
𝜇
2

2𝜇
1

) if 𝜇
1
≤ 𝜇
2
,

(
𝜇
1

2𝜇
2

, 1 −
𝜇
1

2𝜇
2

) if 𝜇
1
> 𝜇
2
,

w = (min (𝜇1, 𝜇2) , 1−min (𝜇1, 𝜇2)) .

(70)
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We distinguish three cases:

(a) If 𝜇1 < 𝜇2, then

𝑈
𝑃
(𝑝1, 𝑤1) = min(1−

𝜇2
2𝜇1
, 𝜇1) = 𝜇1,

𝑈
𝑃
(𝑝2, 𝑤1) = 2

𝜇2
2𝜇1
𝜇1 = 𝜇2.

(71)

(b) If 𝜇1 = 𝜇2, then

𝑈
𝑃
(𝑝1, 𝑤1) = min (0.5, 𝜇1) = 𝜇1,

𝑈
𝑃
(𝑝2, 𝑤1) = min (0.5, 𝜇2) = 𝜇2.

(72)

(c) If 𝜇1 > 𝜇2, then

𝑈
𝑃
(𝑝1, 𝑤1) = 2

𝜇1
2𝜇2
𝜇2 = 𝜇1,

𝑈
𝑃
(𝑝2, 𝑤1) = min(1−

𝜇1
2𝜇2
, 𝜇2) = 𝜇2.

(73)

(2) If 𝜇1 + 𝜇2 < 1 and max(𝜇1, 𝜇2) ≥ 2min(𝜇1, 𝜇2)(1 −
min(𝜇1, 𝜇2)), then notice that the case min(𝜇1, 𝜇2) = 1 is not
possible. Moreover, we have

max (𝜇1, 𝜇2)
2 (1 −min (𝜇1, 𝜇2))

≥ min (𝜇1, 𝜇2) . (74)

On the other hand, given that max(𝜇1, 𝜇2) < 1 −min(𝜇1, 𝜇2),
we get

max (𝜇1, 𝜇2)
2 (1 −min (𝜇1, 𝜇2))

< 0.5, (75)

and, consequently, min(𝜇1, 𝜇2) < 0.5. Now consider the
following weighting vectors:

p =
{

{

{

(𝜇1, 1 − 𝜇1) if 𝜇1 ≤ 𝜇2,

(1 − 𝜇2, 𝜇2) if 𝜇1 > 𝜇2,

w

= (
max (𝜇1, 𝜇2)

2 (1 −min (𝜇1, 𝜇2))
, 1−

max (𝜇1, 𝜇2)
2 (1 −min (𝜇1, 𝜇2))

) .

(76)

We distinguish two cases:

(a) If 𝜇1 ≤ 𝜇2, then

𝑈
𝑃
(𝑝1, 𝑤1) = min(𝜇1,

𝜇2
2 (1 − 𝜇1)

) = 𝜇1,

𝑈
𝑃
(𝑝2, 𝑤1) = 2 (1−𝜇1)

𝜇2
2 (1 − 𝜇1)

= 𝜇2.

(77)

(b) If 𝜇1 > 𝜇2, then

𝑈
𝑃
(𝑝1, 𝑤1) = 2 (1−𝜇2)

𝜇1
2 (1 − 𝜇2)

= 𝜇1,

𝑈
𝑃
(𝑝2, 𝑤1) = min(𝜇2,

𝜇1
2 (1 − 𝜇2)

) = 𝜇2.

(78)

(3) If 𝜇1 + 𝜇2 ≥ 1 and min(𝜇1, 𝜇2) < 2max(𝜇1, 𝜇2)(1 −
max(𝜇1, 𝜇2)), then the proof of this case is similar to that of
the second item inTheorem 18.

(4) If 𝜇1 + 𝜇2 ≥ 1 and min(𝜇1, 𝜇2) ≥ 2max(𝜇1, 𝜇2)(1 −
max(𝜇1, 𝜇2)), then the proof of this case is similar to that of
the third item inTheorem 18.

5. Conclusion

SUOWAoperators are a useful tool for dealingwith situations
where combining values by using both a weighted mean and
an OWA type aggregation is necessary. Given that they are
Choquet integral-based operators with respect to normalized
capacities, they have some natural properties such as con-
tinuity, monotonicity, idempotency, compensativeness, and
homogeneity of degree 1. For this reason, it seems interesting
to analyze their behavior from different points of view. In this
paper, we have shown that, in two dimensions, if we consider
one of the following continuous semiuninorms:𝑈

𝑇L
,𝑈
𝑇M
,𝑈
�̃�
,

and 𝑈
𝑃
, then any Choquet integral with respect to a normal-

ized capacity can be expressed as a SUOWA operator associ-
atedwith the chosen semiuninorm and twoweighting vectors
p and w, which are given explicitly.
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