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based on sample cross-correlations between past and squared observations. In this
paper we analyse the effects of outliers on these cross-correlations and, consequently,
on the identification of asymmetric volatilities. We show that, as expected, one isolated
big outlier biases the sample cross-correlations towards zero and hence could hide true
leverage effect. Unlike, the presence of two or more big consecutive outliers could lead
to detecting spurious asymmetries or asymmetries of the wrong sign. We also address
the problem of robust estimation of the cross-correlations by extending some popular
robust estimators of pairwise correlations and autocorrelations. Their finite sample
resistance against outliers is compared through Monte Carlo experiments. Situations
with isolated and patchy outliers of different sizes are examined. It is shown that a
modified Ramsay-weighted estimator of the cross-correlations outperforms other esti-
mators in identifying asymmetric conditionally heteroscedastic models. Finally, the
results are illustrated with an empirical application.
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1 Introduction

One of the main topics that has focused the research of Agustin over a long period
of time is seasonality. However, this is not his only topic of interest. Agustin’s con-
tributions to the Econometric Time Series literature are much broader and include,
among others, the treatment of outliers in time series; see, for example, Maravall and
Pena (1986), Pefia and Maravall (1991), Gémez et al. (1999) and Kaiser and Maravall
(2003). In these papers, Agustin and his coauthors consider the effects and treatment
of outliers in macroeconomic data and, consequently, deal primarily with linear time
series models. However, outliers are also present in the context of financial time series
mainly when they are observed over long periods of time. It is important to note that,
in this framework, the interest shifts from conditional means to conditional variances
and, consequently, to non-linear models. Agustin has also contributions in this area;
see Fiorentini and Maravall (1996) for an analysis of the dynamic dependence of
second order moments.

When dealing with financial data, many series of returns are conditionally
heteroscedastic with volatilities responding asymmetrically to negative and positive
past returns. In particular, the volatility is higher in response to past negative shocks
(‘bad’ news) than to positive shocks (‘good’ news) of the same magnitude. Following
Black (1976) this feature is commonly referred to as leverage effect. Incorporating
the leverage effect into conditionally heteroscedastic models is important to better
capture the dynamic behaviour of financial returns and improve the forecasts of future
volatility; see Bollerslev et al. (2006) for an extensive list of references and Hibbert
et al. (2008) for a behavioral explanation of the negative asymmetric return—volatility
relation. The identification of conditional heteroscedasticity is often based on the sam-
ple autocorrelations of squared returns. Carnero et al. (2007) show that the presence
of outliers biases these autocorrelations with misleading effects on the identification
of time-varying volatilities. On the other hand, the identification of leverage effect is
often based on the sample cross-correlations between past and squared returns. Nega-
tive values of these cross-correlations indicate potential asymmetries in the volatility;
see, for example, Bollerslev et al. (2006), Zivot (2009), Rodriguez and Ruiz (2012) and
Tauchen et al. (2012). In this paper, we analyse how the identification of asymmetries,
when based on the sample cross-correlations, can also be affected by the presence of
outliers.

This paper has two main contributions. First, we derive the asymptotic biases caused
by large outliers on the sample cross-correlation of order # between past and squared
observations generated by uncorrelated stationary processes. We show that k large
consecutive outliers bias such correlations towards zero for 7 > k, rendering the
detection of genuine leverage effect difficult. In particular, one isolated large outlier
biases all the sample cross-correlations towards zero and so it could hide true leverage
effect. Moreover, the presence of two big consecutive outliers biases the first-order
sample cross-correlation towards 0.5 (—0.5) if the first outlier is positive (negative)
and so it could lead to identify either spurious asymmetries or asymmetries of the
wrong sign.

The second contribution of this paper is to address the problem of robust estimation
of serial cross-correlations by extending several popular robust estimators of pairwise
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correlations and autocorrelations. In the context of bivariate Gaussian variables, there
are several proposals to robustify the pairwise sample correlation; see Shevlyakov
and Smirnov (2011) for a review of the most popular ones. However, the literature
on robust estimation of correlations for time series is scarce and mainly focused on
autocovariances and autocorrelations. For example, Hallin and Puri (1994) propose
to estimate the autocovariances using rank-based methods. Ma and Genton (2000)
introduce a robust estimator of the autocovariances based on the robust scale estima-
tor of Rousseeuw and Croux (1992, 1993). More recently, Lévy-Leduc et al. (2011)
establish its asymptotic and finite sample properties for Gaussian processes. Ma and
Genton (2000) also suggest a possible robust estimator of the autocorrelation func-
tion but they do not further discuss its properties neither apply it in their empirical
application. Finally, Terédsvirta and Zhao (2011) propose two robust estimators of the
autocorrelations of squares based on the Huber’s and Ramsay’s weighting schemes.
The theoretical and empirical evidence from all these papers strongly suggests using
robust estimators to measure the dependence structure of time series.

We analyse and compare the finite sample properties of the proposed robust esti-
mators of the cross-correlations between past and squared observations of stationary
uncorrelated series. As expected, these estimators are resistant against outliers remain-
ing the same regardless of the size and the number of outliers. Moreover, even in
the presence of consecutive large outliers, the robust estimators considered estimate
the true sign of the cross-correlations although they underestimate their magnitudes.
Among the robust cross-correlations considered, the modified version of the Ramsay-
weighted serial autocorrelation suggested by Terédsvirta and Zhao (2011) provides the
best resistance against outliers and the lowest bias.

To illustrate the results, we compute the sample cross-correlations and their robust
counterparts of a real series of daily financial returns. We show how consecutive
extreme observations bias the usual sample cross-correlations and could lead to
wrongly identifying potential leverage effect. These empirical results enhance the
importance of using robust measures of serial correlation to identify both conditional
heteroscedasticity and leverage effect.

The rest of the paper is organized as follows. Section 2 is devoted to the analy-
sis of the effects of additive outliers on the sample cross-correlations between past
and squared observations of stationary uncorrelated time series that could be either
homoscedastic or heteroscedastic. Section 3 considers four robust measures of cross-
correlation and compares their finite sample properties in the presence of outliers. The
difficulty of extending the Ma and Genton (2000) proposal to the estimation of serial
cross-correlation is discussed in Sect. 4. The empirical analysis of a time series of daily
Dow Jones Industrial Average index is carried out in Sect. 5. Section 6 concludes the
paper with a summary of the main results and proposals for further research.

2 Effects of outliers on the identification of asymmetries

In this section, we derive analytically the effect of large additive outliers on the sample
cross-correlations between past and squared observations generated by uncorrelated
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stationary processes that could be either homoscedastic or heteroscedastic. The main
results are illustrated with some Monte Carlo experiments.

2.1 Asymptotic effects

Let y;, t = 1,..., T, be a stationary series with finite fourth-order moment that is
contaminated from time T onwards by k consecutive outliers with the same sign and
size, . The observed series is then given by

ey

v+ if t=t,74+1,...,74+k—1
r =
! Vi otherwise.

Denote by r12 (%) the sample cross-correlation of order #, h > 1, between past and
squared observations of z;, which is given by

Zththl (thh - 7) (Zt2 - ?)

ria(h) = — —
\/Zthl (= 2) Zszl(Zzz —72)?

@)

where Z = l ZtT: zrand Z% = l Z;T: 1 z,z. The most pernicious impact of outliers
on r12(h) happens when they are huge and do not come up in the very extremes of the
sample but on such a position that they affect the two factors of the cross-products in
(2). In order to derive the impact of these outliers, we compute the limiting behaviour
of rip(hy whenh+1 <t <T—h—k+1and |w| - o0.

The denominator of ri2(h) in (2) can be written in terms of the original
uncontaminated series yy, as follows

k—1 1 k—1 2
Z i+ Z(erri + 0)? — T Z yr + Z()’IH + o)
teToo i=0 teTo,0 i=0
k—1 1 k—1 2
X | DA ittt = | DD it | )
teTo o i=0 t€To,0 i=0

where Ty, s = {t € {h+1, ..., T}suchthatt #1+s,v+s+1,...,7+s+k—1}.
Since we are concerned with the limit as |w| — oo, we focus our attention on the terms
. . . . 2
with the maximum power of w. Then, it turns out that (3) is equal to (k — "7) Ia)l3 +
o(a)3).
In order to make the calculations simpler, we consider the following alternative

expression of the numerator in (2), which is asymptotically equivalent if the sample
size, T, is large relative to the cross-correlation order, /4,
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fe (3N

t=h+1 t=h+1 t=h+1

When £ is smaller than the number of consecutive outliers, i.e. 2 < k, expression (4)
can be written in terms of the original uncontaminated series y;, as follows

h—1 k—1
D I en A+ D et A O yerioh + D (eti + 0 Gepion + ©)
teTyoNTh i=0 i=h
k+h—1
+ z Vi i Oetion + )
i=k
1
- 2t Z(ym +o) || D vent Z(ym +o) . ©
te’]T;, 0 tET;, h

In expression (5), the terms with the maximum power of w are the third and the fifth
ones, which contain k — 4 and k? terms in >, respectively. Therefore, expression (5)

is equal to (k —h— %) o + o(a)3).
On the other hand, when the order of the cross-correlation is larger than the number
of outliers, i.e. h > k, expression (4) can be written as follows

k—1 k+h—1
D v+ D i H 0 yerin+ D ¥ Gerion H o) +
teTy oNTh.p i=0 i=h
——| D v+ Z(ym +ao) || D vt Z(ym to)|. (6
teTh.0 t€Th

In this case, the term with the maximum power of w is the fourth one, which contains
k? terms in w’. Therefore, expression (6) is equal to —?aﬁ + o(w?).

Consequently, since the product in expression (3) is always positive, the sign of the
limit of the cross-correlations in (2) is given by the sign of its numerator, which in
turn depends on the sign of w, and we get the following result:

sign(w) x (1— h ) ifh <k

k(1—4%)
sign() x £ ifh > k.

(N

lim 7‘12(/’1) =
|w]— 00

Equation (7) shows that the effect of outliers on the sample cross-correlations depends
on: (1) whether the outliers are consecutive or isolated and (2) their sign. In particular,
one single large outlier (k = 1) biases 12 (k) towards zero for all lags regardless of its
sign. Thus, if a heteroscedastic time series with leverage effect is contaminated by a
large single outlier, the detection of genuine leverage effect will be difficult, as it was the
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detection of genuine heteroscedasticity; see Carnero et al. (2007). On the other hand,
a patch of k large consecutive outliers always biases r12(h) towards zero for lags h >
k and, for smaller lags, it generates positive or negative cross-correlations depending
on whether the outliers are positive or negative. For example, if T is large, two huge
positive (negative) consecutive outliers generate a first order cross-correlation tending
to 0.5 (—0.5), being all the others close to zero; see Maronna et al. (2006) and Carnero
et al. (2007) for a similar result in the context of sample autocorrelations of levels and
squares, respectively. Therefore, if a heteroscedastic time series without leverage effect
or an uncorrelated homoscedastic series is contaminated by several large negative
consecutive outliers, the negative cross-correlations generated by the outliers can be
confused with asymmetric conditional heteroscedasticity.! In practice, we will not face
such huge outliers as to reach the limiting values of 713 (k) in (7), but the result is still
useful because it provides a clue on the direction of the bias of the cross-correlations.

So far, we have assumed that the consecutive outliers have the same magnitude and
sign. However, it could also be interesting to analyse the effects of outliers of different
signs on the sample cross-correlations. For instance, one isolated positive (negative)
outlier in the price of an asset at time 7, implies a doublet outlier in the corresponding
return series, i.e. a positive (negative) outlier at time 7 followed by a negative (positive)
outlier at time t + 1. In this case, we will have k = 2 consecutive outliers of opposite
signs, that will be assumed, for the moment, to have equal magnitude, i.e. w; =
lw|sign(w;) and wr4+1 = |w|sign(wy+1). Then, if h = 1 and the outlier size, |w]|,
goes to infinity, the largest contribution to the limit of the numerator of r1(1) given
in (5) is due to the following term

Vet1 + @4 1)? (e + r)

and this is equal to |w|*sign(w;). Therefore, the sign of the limit of the cross-
correlation is the sign of the first outlier: if this is positive and the second is negative,
the limit of r12(1) as |w| — oo will be positive and equals to 0.5, while if the first
outlier is negative and the second is positive, the limit of rj2(1) as |w| — oo will
be negative and equals to —0.5. For 7 > 2, all the cross-correlations 712 (k) will go
to zero. A similar analysis can be carried out if the series is contaminated by k = 3
consecutive outliers of the same size but different signs to know whether the limit of
the cross-correlations is positive or negative.

Note also that the results above are still valid if the outliers have different sizes. In
this case, we can write w; = w + J; in (1) instead of w and the results will be the same
when |w| — oo.

2.2 Finite sample effects

To further illustrate the results in the previous subsection, we generate 1000 artificial
series of size 7 = 1000 by a homoscedastic Gaussian white noise process with unit
variance and by the EGARCH model proposed by Nelson (1991). The EGARCH

! Note that the limits in (7) are valid regardless of whether y; is homoscedastic or heteroscedastic.
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model generates asymmetric conditionally heteroscedastic time series and, according
to Rodriguez and Ruiz (2012), it is more flexible than other asymmetric GARCH-
type models, to simultaneusly represent the dynamics of financial returns and satisfy
the conditions for positive volatilities, covariance stationarity and finite kurtosis. The
particular EGARCH model chosen to generate the data is given by

Yt = Oté&

log(o?) = —0.006 + 0.98 log(o? 1) +0.2(r1| — E(ler1) —0.lery
where ¢, is a Gaussian white noise process with unit variance and, consequently,
E(le;_1]) = +/2/m; see Nelson (1991) for the properties of EGARCH models. The
parameters in (8) have been chosen to imply a marginal variance of y; equal to one
and to resemble the values usually encountered in real empirical applications; see, for
instance, Hentschel (1995) and Bollerslev and Mikkelsen (1999).2

Each simulated series is contaminated first, with a single negative outlier of size
w = —50 at time t = 500, and second, with two consecutive outliers of the same size
but opposite signs, the first negative (w = —50) attime ¢ = 500 and the second positive
(w = 50)attime¢ = 501. Foreachreplicate, we compute the sample cross-correlations
up to order 50 and then, for each lag, 7, we compute their average over all replicates.
The first row of Fig. 1 plots the average sample cross-correlations from the uncontam-
inated white noise process (left panel) and for the uncontaminated EGARCH process
(right panel). The average sample cross-correlations computed from the correspond-
ing contaminated series with one and two outliers are plotted in the second and third
rows, respectively. In all cases, the red solid line represents the true cross-correlations.

As we can see, when a series generated by the EGARCH model is contaminated
with one single large negative outlier, we may wrongly conclude that there is not
leverage effect since all the cross-correlations become nearly zero. On the other hand,
when the series is contaminated with two consecutive outliers of different sign, being
the first one negative, only the first cross-correlation will be different from zero and
approximately equal to —0.5 regardless of whether the series is homoscedastic or
heteroscedastic. Therefore, in this case, we can identify either a negative leverage
effect when there is none (the series is truly a Gaussian white noise) or a much more
negative leverage effect than the actual one (as in the case of the EGARCH model).
Similar results would be obtained if the two outliers were positive, but in this case the
first cross-correlation would be biased towards 0.5. Consequently, we could wrongly
identify asymmetries in a series that is actually white noise or we could identify a
positive leverage effect when it is truly negative as in the EGARCH process.

We now analyse how fast the limit in (7) is reached as the size of the outliers
increases. In order to do that, we contaminate the same 1000 artificial series simulated
before first with one isolated outlier of size {—w} at time ¢ = 500 and second with two
consecutive outliers of sizes {—w, w} located at times r = {500, 501}, where w could

2 We have also performed simulations with other EGARCH models with different parameter values and
with a TGARCH model (Zakoian 1994) with the same variance and kurtosis as the EGARCH model in Eq.
(8). In all these cases, we have obtained similar results that are not displayed here but are available upon
request.
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Fig. 1 Monte Carlo means of sample cross-correlations in simulated white noise (first column) and
EGARCH (second column) series without outliers (first row), with a single negative outlier (second row) and
with two consecutive outliers, negative and positive (third row) of size |w| = 50. The red solid linerepresents
the true cross-correlations

take several values, namely w = {1, 2, ..., 50}. We then compute the average of the
first and second order sample cross-correlations from these contaminated series over
the 1000 replicates. Figure 2 plots the average of 712 (1) (first row) and r12(2) (second
row) against the size of the outlier, w, for the two simulated processes and the two
types of contamination considered. The values of the theoretical cross-correlations for
the uncontaminated processes are also displayed with a red solid line.

As we can see, the sample cross-correlations start being distorted when the outliers
are larger (in absolute value) than 5 standard deviations. Furthermore, when the size of
the outliers is over 20, the corresponding sample cross-correlations are already quite
close to their limiting values (—0.5 in the first order cross-correlation and O in the
second order cross-correlation). Moreover, the size of two consecutive outliers does
not need to be very large to distort the first order sample cross-correlation. However,
a single outlier needs to be of larger magnitude to bias this correlation towards zero.
In homoscedastic series, two consecutive outliers have a tremendous effect on the first
order sample cross-correlation, even if they are not very big, and could lead to wrongly
identify asymmetries in a series that is actually white noise. On the other hand, the first
cross-correlations of a heteroscedastic series contaminated with one single outlier as
big as 15 or 20 could be confused with those of a white noise. Similar results would
be obtained if the series were contaminated with positive outliers but they are not
reported here to save space.
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Fig. 2 Monte Carlo means of sample cross-correlations of order 1 (first row) and of order 2 (second row)
for white noise (first column) and EGARCH series (second column) contaminated with a single negative
outlier and with two consecutive outliers, negative and positive, as a function of the outlier size. The red
solid line represents the true cross-correlation

3 Robust cross-correlations

In the previous section we have shown that the sample cross-correlations between past
and squared observations of a stationary uncorrelated series are very sensitive to the
presence of outliers and could lead to a wrong identification of asymmetries. In this
section we consider robust cross-correlations to overcome this problem. In particular,
we generalize some of the robust estimators for the pairwise correlations described
in Shevlyakov and Smirnov (2011) and one of the robust autocorrelations proposed
by Terésvirta and Zhao (2011). We discuss their finite sample properties and compare
them to the properties of the sample cross-correlations.

3.1 Extensions of robust correlations

A direct way of robustifying the pairwise sample correlation coefficient between two
random variables is to replace the averages by their corresponding nonlinear robust
counterparts, the medians; see Falk (1998). By doing so in the sample cross-correlation
r12(h) in (2) we get the following expression, that is called the sample cross-correlation
median estimator:

medent,... 1)1 (zi—n — med(2))(z? — med(z%))}
MAD(z)MAD(z%)

&)

ri2,comep(h) =
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where med(x) stands for the sample median of x and M AD denotes the sample
median absolute deviation, i.e. MAD(x) = med(|x — med(x)|). Unless otherwise
stated, the median is calculated over the whole sample. When the median is calculated
over a subsample, this is specifically stated, as in (9), where med,e(n+1,..., 7} denotes
the sample median calculated over the subsample indexed by r € {h + 1, ..., T'}.

Another popular robust estimator of the pairwise correlation is the Blomqvist quad-
rant correlation coefficient. The extension of this coefficient to cross-correlations
yields the following expression, that will be called the Blomgvist cross-correlation
coefficient:

T

1
rogh) = > sign(zip — med(2))sign(z; — med(2%). (10)
t=h+1

Estimation of the correlation between two random variables X and Y, denoted by p,
can also be based on a scale approach, by means of the following identity:

. Var(U) — Var(V)
p= Var(U) 4+ Var(V)

X Y X Y
U= (— + —) and V = (— — —) (12)
ox oy ox Oy

are called the principal variables and ox and oy are the standard deviations of X and
Y, respectively. In order to get robust estimators for p, Gnanadesikan and Ketten-
ring (1972) propose replacing the variances and standard deviations in (11) and (12),
respectively, by robust estimators as follows

(1)

where

S2(U) — §2(V)

S2(U) + S2(V) (1)

5=

where S is a robust scale estimator. Depending on the robust estimator S used in
(13), different robust estimators of the correlation may arise. For instance, Shevlyakov
(1997) considers S as the Hampel’s median of absolute deviations and gets the median
correlation coefficient. This estimator extended to compute cross-correlations, called
median cross-correlation coefficient, would be:

rio,mep(h) = (14)

where

_zip —med(2) 22 —med(z?)

" o —med(z) z; —med(z?)
"7 MAD() MAD(z2)

d — _
and v MAD(2) MAD(Z2)
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Finally, in the context of time series, Terdsvirta and Zhao (201 1) propose robust esti-
mators of the autocorrelations based on applying the Huber’s and Ramsay’s weights to
the sample variances and autocovariances. We extend this idea to the cross-correlations
where the two series involved are the lagged levels, z;—p, and their squares, 2[2. In
particular, we focus on the weighted correlation with the Ramsay’s weights using
a slight modification to cope with squares. The resulting weighted estimator of the
cross-correlation of order & proposed is given by

Y12(h)

’”12,W(h) = (15)
Vv1(0)12(0)
where
T _ _
Fia(h) = D i—hs1 Wizh (Zt—h - Zw) wtz(Z,2 —Z72%)
T k)
Diehl wt—hwt2
—\2
_ T
- z;Tzl Wy (Zz — Zw)2 _ pIr w12 (Zt2 - Zz%))
71(0) = - and 7 (0) = s
D1 Wr Doy Wi
with
T
= =1 Wil 72 =1 WiZi
w — ) —_—

Following Terdsvirta and Zhao (2011), we use a = 0.3. By applying the weights
w; to the series in levels, every observation will be downweighted except those equal
to the sample mean. Note that when the weighting scheme is applied to squared
observations, the weights are squared so that bigger squared observations are more
downward weighted than their corresponding observations in levels.

3.2 Monte Carlo experiments

In order to analyse the finite sample properties of the four robust cross-correlations
introduced above, we consider the same Monte Carlo simulations described in
Sect. 2.2. For each replicate, the robust cross-correlations are computed up to lag
50. The first row of Fig. 3 plots the corresponding Monte Carlo averages for the
uncontaminated white noise process (left panel) and for the uncontaminated EGARCH
process (right panel). The second and third rows of Fig. 3 depict the averages of the
robust cross-correlations computed for the same series contaminated with one and two
outliers, respectively. In all cases, the true cross-correlations are also displayed.
Several conclusions emerge from Fig. 3. First, as expected, robust measures of
cross-correlations are resistant to the presence of outliers, either isolated or in patches;
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note that the plots displayed in the first row are nearly the same to those displayed in the
other two rows. Second, in EGARCH processes, the robust cross-correlations estimate
the sign of the true cross-correlations properly but they underestimate their magnitude.
In fact, the first three robust cross-correlations (r12,comEeD, 712, and ri2 MED) esti-
mate asymmetries which are much weaker than the true ones. However, the weighted
cross—correlation, ri2, w, performs quite well because its bias is much lower than those
of the other robust measures even in the presence of two big consecutive outliers. Actu-
ally, the values of r1» w are very close to their theoretical counterparts. This could be
due to the fact that the first three robust measures considered are direct extensions
of the corresponding robust estimators originally designed to estimate the pairwise
correlation coefficient for a bivariate Gaussian distribution. In such framework, some
of these measures, like the Blomqvist quadrant correlation and the median correlation
coefficient are asymptotically minimax with respect to bias or variance. However, in
time series data, and, in particular, in conditional heteroscedastic time series, none of
these assumptions hold and hence the behaviour of these measures is not that good as
postulated for the bivariate Gaussian case. Unlike, the Ramsay-weighted autocorrela-
tion estimator proposed by Terésvirta and Zhao (2011) was already designed to cope
with time series data, and this could be the reason for the good performance of r12 w
in estimating cross-correlations.

White noise EGARCH
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Fig. 3 Monte Carlo means of robust cross-correlations in simulated white noise (first column) and
EGARCH (second column) series without outliers (first row), with a single negative outlier (second row)
and with two consecutive outliers, negative and positive (third row) of size |w| = 50. The red solid line
represents the true cross-correlations
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Table1 Monte Carlo means and standard deviations of several estimators of the first-order cross-correlation
between past and current squared observations from uncorrelated stationary processes

Estimator No outliers w = 0 One single out- Two consecutive out-
lier w = —50 liers w = {—50, 50}

White noise (p12(1) = 0)
ria(1) 0.0014 (0.0313) —0.0009 (0.0168) —0.4548 (0.0112)
r1i2,comep(1) 0.0005 (0.0247) 0.0005 (0.0247) 0.0002 (0.0246)
ri2, (1) 0.0004 (0.0311) 0.0005 (0.0312) 0.0006 (0.0311)
ri2,meDp(1) 0.0014 0.0504) 0.0012 (0.0504) 0.0012 (0.0502)
ri2,w(1) 0.0015 (0.0334) 0.0015 (0.0322) 0.0015 (0.0320)

EGARCH (p12(1) = —0.0662)
ri2(1) —0.0606 (0.0555) —0.0007 (0.0171) —0.4562 (0.0172)
r2,comep (1) —0.0225 (0.0250) —0.0227 (0.0249) —0.0233 (0.0250)
r12,8(1) —0.0309 (0.0301) —0.0303 (0.0308) —0.0311 (0.0307)
ri2,MEp(1) —0.0252 (0.0497) —0.0255 (0.0497) —0.0251 (0.0497)
ri2,w(1) —0.0551 (0.0377) —0.0596 (0.0421) —0.0590 (0.0442)
r12,0(1) —0.0189 (0.0340) —0.0190 (0.0340) —0.0190 (0.0340)

Sample size is T = 1000 and the number of replications is 1000

We also perform a similar analysis to that in Sect. 2.2, by studying the effect
of the size of the outliers on the four robust cross-correlations for the two types of
contamination, namely contamination with one isolated outlier of size {—w} and with
two consecutive outliers of sizes {—w, w}, where w = {1, 2, ..., 50}. The results, which
are not displayed here to save space but are available upon request, are as expected.
Robust cross-correlations remain the same regardless of the size and the number of
outliers. Moreover, they all subestimate the magnitude of the leverage effect, but
the bias in the weighted cross-correlation, ri2 w, is negligible as compared to the
alternative robust cross-correlations considered.

So far, we have analysed the Monte Carlo mean cross-correlograms for different
lags and sizes of the outliers. In order to complete these results, we next study the whole
finite sample distribution of the cross-correlations considered focusing on the first lag.
Table 1 reports the Monte Carlo means and standard deviations (in parenthesis) of the
first order sample cross-correlation, as defined in (2), and of the four robust cross-
correlations introduced in Sect. 3.1, for the two processes, Gaussian white noise and
EGARCH, and for the two types of contamination; Fig. 4 displays the corresponding
box-plots.

As expected, when the series is a homoscedastic Gaussian white noise and there
are no outliers or there is one isolated outlier, all estimators behave similarly and
the sample cross-correlations perform very well. Note that, in this case, the sample
correlation is the maximum likelihood estimator of its theoretical counterpart and
therefore it is consistent and asymptotically unbiased and efficient. Unlike, the robust

3 The results for other lags are available from the authors upon request.
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estimators have, in general, slightly larger dispersion since they are not as efficient as
maximum likelihood estimators. However, when there are two consecutive outliers,
the sample cross-correlation breaks down and it becomes unreliable: its distribution is
completely pushed downwards and it would be estimating a large negative asymmetry
when there is none. Unlike, all the robust estimators considered perform very well in
terms of bias and r12, comep(1) also performs quite well in terms of variance.

When the simulated process is an EGARCH, another picture comes up. When the
series is not contaminated, either the sample cross-correlation, r12(1) , or the weighted
cross—correlation, ri2,w (1), performs better than any of the other robust measures
originally designed to estimate pairwise correlations in bivariate Normal distributions.
However, when the EGARCH series is contaminated by one single negative outlier,
the sample cross-correlation is pushed upwards towards zero, as postulated from the
theoretical results in Sect. 2, and it would be unable to detect the true leverage effect
in the data. The situation becomes even worse in the presence of two consecutive
outliers, where the sample cross-correlation becomes completely unreliable due to its
huge negative bias. As expected, the distribution of all the robust cross-correlations
remain nearly the same regardless of the presence of outliers. However, the estimators
ri2,comep(1), riz,g(1) and ri2 mep(1), in spite of their robustness, are upwards
biased towards zero and so they will underestimate the true leverage effect. Unlike,
the weighted sample cross-correlation with the modified Ramsay’s weights, r12 w (1),
performs surprisingly well in terms of bias, even in the presence of two big outliers.
As it happened with the simulated white noise process, the estimator 12,y gp(1) has
the largest standard deviation of all the estimators considered; see Table 1. Therefore,
it seems that the robust cross-correlation r12 w (1) is preferable to any other mea-
sure considered in this section for the identification of asymmetries in conditionally
heteroscedastic models.

4 Discussion

In the previous section, we analyse the finite sample performance of several robust
estimators of the cross-correlations, including the estimator in (13) with S defined as
the Hampel’s median of absolute deviations. Other possible choices for S are the robust
scale estimators S, and Q, proposed by Rousseeuw and Croux (1993). Shevlyakov
and Smirnov (2011) show that the robust estimator of the pairwise correlation between
bivariate Gaussian variables based on Q,, performs better than other robust correlation
estimators. Ma and Genton (2000) suggest bringing this approach to estimate the
autocorrelation of Gaussian time series. In this section, we show that this extension
is not so straight when the processes involved are non-Gaussian.

Let us consider replacing the scale estimator Sin Eq. (13) by the highly efficient
robust scale estimator Q, proposed by Rousseeuw and Croux (1992, 1993). Given
the sample observations x =(X7, ..., X,;) from a distribution function Fy, the scale
estimator Q,, is based on an order statistic of all (g) pairwise distances and it is defined
as follows:

0,(x) = C(FX){|Xi - X

<Y (16)
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where {X} ) denotes the k-th order statistic of X, k ~ (g) /4 for large n and c(Fy)
is a constant, that depends on the shape of the distribution function Fy, introduced
to achieve Fisher consistency. In particular, if Fy belongs to the location-scale family
Fu.o(x) = F((x — n)/0o), the constant is chosen as follows

c(F) =1/(Kz"(5/8)),

where K is the distribution function of X — X', being X and X’ independent random
variables with distribution function F'; see Rousseeuw and Croux (1993). In particular,
in the Gaussian case (F = ®), the constant is:

c(®) = 1/(v2071(5/8)) = 2.21914.

Although c(Fy) can also be computed for various other distributions, the FORTRAN
code provided by Croux and Rousseeuw (1992) and the MATLAB Library for Robust
Analysis (https://wis.kuleuven.be/stat/robust/LIBRA) developed at ROBUST @Leu-
ven, compute the estimator Q, with the Gaussian constant c(P).4

In the time series setting, Ma and Genton (2000) propose the following robust
estimator of the serial autocorrelation. Let y =(Y1, ..., Y7) be the observations of
a stationary process Y; and let p(h) = Corr(Y;—p,Y:) be the corresponding
autocorrelation function. In this case, the variables X and Y in (12) represent two
variables, Y;_j and Y;, with the same model distribution and, consequently, oy = oy.
Therefore, using identity (12) with oy = oy, plugging the scale estimator Q,, in (13)
and taking into account that Q,, is affine equivariant, i.e. Q,(aX + b) = |a|Q,(X),
the robust estimator of p (k) would be:

07, =07 ,(v)

po(h) = (17)

07, + 07, (¥
where u is a vector of length T — & defined as u = (Y1 + Yp4+1,, ..., Y7—p + Y1)
and v is another vector of length T — h defined asv = (Y1 — Y41, , ..., Y7 — Y7).

Ma and Genton (2000) argue that the estimator pp (k) is independent of the choice of
the constants needed to compute the scale estimators Q, involved in (17). In another
framework, Fried and Gather (2005) use the estimator pp (1) and also state that such
constants cancel out. However, as we show bellow, the constants do not cancel out
in general and this simplification only applies for Gaussian variables. By rewriting
0,(x) = c(Fx)Q}(x) where O (x) = {|X, - Xj|.i< j}(k), the estimator pg (h)
in (17) becomes:

A (Fy) Q3 () — 2(Fy) Q% (V)
2(Fy) Q¥ , () + c2(Fv) Q% , (V)

po(h) = (18)

4 Note that the algorithm in Croux and Rousseeuw (1992) also includes a correction factor to improve
finite sample unbiasednes of Q. We ignore this factor because it does not make any difference to our
discussion.
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where Fy and Fy denote the cumulative distribution functions of Y;_; + Y; and
Y;_n — Y;, respectively. Note that this estimator requires computing ¢(Fy ) and c(Fy ).
As Lévy-Leduc et al. (2011) point out, this is easily done in the Gaussian case, where
c(Fy) = c(Fy) = 2.21914; otherwise, the problem could become unfeasible. More-
over, the constants only cancel out if ¢(Fy) = c(Fy), but this condition is rarely
achieved, unless the process Y; is Gaussian.

Turning back to the estimation of cross-correlations between past and squared
observations of uncorrelated stationary processes, the situation becomes even more
tricky. In this case, the two series involved are the lagged levels, Y;_j;, and its
own squares, Y,z, which are not equally distributed neither Gaussian. Furthermore,
the variables X and Y in (12) will stand for Y;_; and Y,2 and so the constraint
ox = oy no longer holds. Hence, the first step to compute the robust estima-
tor of p1p(h) = Corr(Yi—p, Ytz), based on identities (11) anc/lv(12), will be to

‘standardize’ the two series involved. Let ¥, = ¥;/Qr(y) and Y? = Y?/Qr(y?)
denote the robust ‘standardized’ forms of the series Y; and Ytz, respectively, where

Or(y) = c(Fy)Q%(y) and or(y? = c(FYz)Q’;(yz). The second step will be to
form the vector of sums and the vector of differences:

o Y7+ Y%),

e ?T—h — Y%)

ﬁ=(171+Y,12+],,

V:(?l—Y}%+1,,

The third step will be to calculate the robust variance estimates of these two vectors,
Qsz » (@) and Qsz »(V), respectively, and finally, replace these variance estimators in
(11) and obtain the following estimator of p12(h):

A (Fp) Q2 , (@) — A(Fp) 0%, (¥)
A(Fy) Q3 @) — A(Fp) 05, (%)

r12,0(h) = (19)

where Fj; and Fy denote the cumulative distribution functions of Y;_; + le and
Y, — Y7, respectively.

Therefore, it is clear that the estimator (19) will require computing four constants,
c(Fy), c(Fy2), c(Fg) and c(Fy), but this task seems to be unfeasible. Note that, even
if Y were Gaussian, Y 2 would be no longer Gaussian, neither Y +Y 2norY —Y? would
be. Moreover, even if we could compute the constants in such case, the assumption of
Gaussianity for Y would be unsuitable, because the distribution of financial returns is
known to be heavy-tailed.

To further illustrate what would it happen if we ignored the constants and proceed
as in the Gaussian setting, we repeat the same Monte Carlo experiment described in
previous sections for the EGARCH model, computing for each replicate the estimator
r12,0(1) in (19) with all constants equal to ¢(®). The Monte Carlo means and stan-
dard deviations are reported in the last row of Table 1. As expected, the results are
disappointing: the estimator r13 ¢ turns out to be the most biased among the robust
estimators considered and it also has larger variance than both r12 coyep (1) and

ri2,g(1).
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Hence, one should be very cautious before implementing robust estimators origi-
nally designed for bivariate Gaussian distributions in a time series setting with potential
non-Gaussian variables.

5 Empirical application

In this section we illustrate the previous results by analyzing a series of daily Dow
Jones Industrial Average (DJIA) returns observed from October 2, 1928 to August
30, 2013, comprising 21409 observations. This is the series considered by Charles
and Darné (2014). Figure 5 plots the data. As expected, the returns exhibit the usual
volatility clustering, along with some occasional extreme values that could be regarded
asoutliers, the largest one corresponding to October 19, 1987, when the index collapsed
by —22.6 %. Charles and Darné (2014) apply the procedure proposed by Laurent
et al. (2014) to detect and correct additive outliers in this return series and show
that large shocks in the volatility of the DJIA are mainly due to particular events
(financial crashes, US elections, wars, monetary policies, etc.), but they also find that
some shocks are not identified as outliers due to their occurring during high volatility
periods.

In order to show how the potential outliers can mislead the detection of the leverage
effect, as measured by the cross-correlations between past and squared returns, we use
arolling window scheme, where the sample size used to compute the cross-correlations
is T = 1000. Therefore, we first estimate the cross-correlations over the period from 2
October 1928 to 28 September 1932. When a new observation is added to the sample,
we delete the first observation and re-estimate the cross-correlations. This process is
repeated until we reach the last 1000 observations in the sample, from November 2,
2009 to August 30, 2013. This amounts to considering 20, 410 different subsamples
covering periods of different volatility levels and different types and sizes of outliers.
For instance, the first subsample, runing from 2 October 1928 to 28 September 1932,

-20 - —

1 1 1 1 1 1 1 |
28/09/1932 3/10/1944 2/10/1956 24/09/1968 28/08/1980 13/07/1992 1/06/2004 1/04/2013

Fig. 5 Daily returns of Dow Jones Industrial Average (DJIA) index observed from October 2, 1928 to
August 30, 2013
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sample

-03 - | | | | | robust 1
28/09/1932 3/10/1944 2/10/1956 24/09/1968 28/08/1980 13/07/1992 confidence 1/04/2013
bands

0.1

-0.1

-0.2

03[ | | | | | | T
28/09/1932 3/10/1944 2/10/1956 24/09/1968 28/08/1980 13/07/1992 1/06/2004 1/04/2013

Fig. 6 Sample and robust first order cross-correlations computed with subsamples of size T= 1000 using
a rolling window of both the DJIA daily returns (fop panel) and its outlier-corrected counterpart (bottom
panel). The dates in the x-axis refer to the end-of-window dates

includes outliers associated with the 1929 Stock market crash, while the 139004
subsample, corresponding to observations from 21 March 1984 to 4 March 1988,
includes outliers due to the 1987 Stock market crash. For each subsample considered,
we compute the first order sample cross-correlation, r12(1), using Eq. (2) and the
corresponding robust weighted cross-correlation, r12, w (1), as defined in Eq. (15), for
both the original return series and the outlier-adjusted return series of Charles and
Darné (2014)°. Figure 6 displays the values of these cross-correlations for the 20410
subsamples considered. Note that the dates in the x-axis refer to the end-of-window
dates. Figure 6 also displays the 95 % confidence bands based on the asymptotic
distribution of the sample cross-correlations under the null of zero cross-correlations;
see Fuller (1996). These bands are only shown for guidance, since not all the conditions
for the asymptotic results to hold are fulfilled in our setting. Nevertheless, it is worth
noting that the standard deviation predicted by the asymptotic theory for samples
of size T = 1000 is aproximately 0.032, which is just the value of the standard
deviation of r12,w (1) in our Monte Carlo experiments with a white noise process; see
Table 1.

Several conclusions emerge from Fig. 6. First, this figure clearly reveals how
extreme observations can bias the sample cross-correlation and could lead to a wrong
identification of asymmetries. As expected, the 1st order sample cross-correlation,

5 The results for cross-correlations of orders larger than one are available from the authors upon request.
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r12(1), presents several sharp drops and rises when it is computed for the original
returns (top panel) and it is quite different from its robust counterpart. These changes
are generally associated with the entrance and/or exit of outlying observations in the
corresponding subsample. For instance, the entrance of the “Black Monday” October
19, 1987, where the DJIA sustained its largest 1-day drop (y14804 = —22.61), follow-
ing another large negative return (yj4304 = —4.60), conveys a sudden fall in the value
of r12(1) from nearly zero to a negative value around —0.17. Unlike, the next sudden
rise in the value of r12(1), from nearly —0.11 to a positive value around 0.10, is due to
the consecutive exit from the corresponding subsamples of the “Black Monday” and
two adjacent extreme observations, y14g05 = 5.88 (19/10/1987) and yj4806 = 10.15
(21/10/1987). When these three observations, the first one being negative and the
other two positive, are in the subsample, the value of r12(1) is pushed downwards
to a negative value, but when the first of these observations leaves the sample and
only the positive outliers remain, 12 (1) is pushed upwards to a value even larger than
zero, as postulated by our theoretical result in Sect. 2. Moreover, the bunch of lowest
negative values of r12(1), ranging from —0.25 to —0.3, is related to the entrance/exit
in the corresponding subsamples of two consecutive extreme observations, namely
yga2o = —5.71 (28/5/1962) and ygar3 = 4.68 (29/5/1962), the former being identi-
fied as an outlier in Charles and Darné (2014). According to our theoretical result in
Sect. 2, the entrance of these two observations, the first one being negative and the
second positive, biases downwards the first-order sample cross-correlation, but when
the first of these observations leaves the sample and only the positive outlier remains,
r12(1) is again pushed to a value closer to zero. Similarly, the following sharp rise
in r12(1) from around —0.17 to —0.05 is due to an isolated positive outlier, namely
vg799 = 4.50 (26/11/1963).

Another remarkable feature from Fig. 6 is the difference between the values of the
sample cross-correlation in the top and bottom panels, enhancing the little resistance of
r12(1) to the presence of outliers. Unlike, the weighted cross-correlation, 12, w (1), is
robust to the presence of potential outliers: its values remain nearly the same in the two
panels, indicating that the leverage effect suggested by the sample cross-correlation
could be misleading in some cases.

Noticeable, the weighted robust and the sample 1st order cross-correlations are
quite similar when computed for the outlier-corrected series (bottom panel), but the
latter still exhibits some breaks even in this case. These breaks are associated with
extreme observations that were not identified as outliers neither corrected in Charles
and Darné (2014). For instance, the first sharp drop in r12(1) from around —0.10 to
—0.24 and its immediate rise again to —0.10, have to do with the presence/absence of
two couples of outliers: a doublet positive outlier made up of y;130 = 9.03 (19/4/1933)
and yy131 = 5.80(20/4/1933) and a doublet negative outlier made up of y;j94 = —7.07
(20/7/1933) and yy195 = —7.84 (21/7/1933). A similar situation arises at one of the
last subsamples, where the value of r1>(1) decays towards —0.22; such a big drop is
associated with the entrance of three consecutive extreme observations at the end of
the subsample, namely y20162 = —5.07 (19/11/2008), y20163 = —5.56 (20/11/2008)
and y20164 = 6.54 (21/11/2008), which, according to our theoretical result in Sect. 2,
will bias downwards the first-order sample cross-correlation.

@ Springer



SERIEs

Finally, Fig. 6 highlights that the value of the robust cross-correlation, ri2 w (1),
does not remain constant across all the subsamples considered. This feature suggests
time-varying leverage effects, with periods where r12 w (1) is nearly zero (possibly
indicating no leverage) followed by periods where 12w (1) clearly takes negative
values (leverage effect). In particular, there seems to be three sample periods where
the leverage effect, as measured by r12,w (1), seems to be stronger: a first period at the
beginning of the sample, from April 1933 till June 1936, a second long period that spans
from July 1940 till April 1971, aproximately, and a final period from around September
1989 till the end of the sample. Notice that only along these periods the robust sample
cross-correlations are outside the approximated 95 % asymptotic confidence bands.
Obviously, this feature requires further investigation; see, for instance, the recent
papers of Bandi and Reno (2012), Yu (2012) and Jensen and Maheu (2014) dealing
with time-varying leverage effects.

6 Conclusions

This paper shows that outliers can severely affect the identification of the asymmetric
response of volatility to shocks of different signs when this is performed based on the
sample cross-correlations between past and squared returns. In particular, the presence
of one isolated outlier biases such cross-correlations towards zero and hence could
hide true leverage effect while the presence of two big outliers could lead to detect
either spurious asymmetries or asymmetries of the wrong sign. As a way to protect
against the pernicious effects of outliers, we suggest using robust cross-correlations.
Our Monte Carlo experiments show that, among the robust measures considered in
this paper, the weighted cross-correlation based on a slight modification of the serial
correlation with Ramsay’s weights proposed by Terdsvirta and Zhao (2011), seems
to be the more appropriate when dealing with conditionally heteroscedastic models.
These results are further illustrated in the empirical application. It is shown that the
first order sample cross-correlation between past and squared daily DJIA returns is
harmfully affected by the presence of outliers, while its robust counterpart is not.
In fact, depending on which measure of cross-correlation is used, the detection of
asymmetries could be misleading. It is also shown that some observations which are
not identified as outliers may still have a distorting effect on the identification of
asymmetries in the volatility, enhancing the advantages of using robust methods as a
protection against outliers rather than detecting and correcting them. The empirical
application also prompts to the existence of possible time-varying leverage effects.
We leave this topic for further research along with the problem of robust estimation
of asymmetric GARCH models.
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