
Chapter 1

CONSENSUS-BASED AGGLOMERATIVE
HIERARCHICAL CLUSTERING
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Abstract In this contribution, we consider that a set of agents assess a set of alternatives
through numbers in the unit interval. In this setting, we introduce a measure
that assigns a degree of consensus to each subset of agents with respect to every
subset of alternatives. This consensus measure is defined as 1 minus the out-
come generated by a symmetric aggregation function to the distances between
the corresponding individual assessments. We establish some properties of the
consensus measure, some of them depending on the used aggregation function.
We also introduce an agglomerative hierarchical clustering procedure that is gen-
erated by similarity functions based on the previous consensus measures.
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1. Introduction

When a group on agents show their opinions about a set of alternatives, an
important issue is to know the homogeneity of these opinions. In this chapter
we consider that agents evaluate each alternative by means of a number in the
unit interval. For measuring the consensus in a group of agents over a subset of
alternatives, we propose to aggregate the distances between the corresponding
individual assessments through an appropriate symmetric aggregation func-
tion. This outcome measures the dispersion of individual opinions in a similar
way to the Gini index [19] measures the inequality of individual incomes (see
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Yitzhaki [32]). The consensus measure we propose is just 1 minus the men-
tioned dispersion measure.

The most important is not to know the degree of consensus in a specific
group of agents, but comparing the consensus of different group of agents with
respect to an alternative or a subset of alternatives. This is the starting point of
the agglomerative hierarchical clustering procedure we propose. We consider
as linkage clustering criterion one generated by a consensus-based similarity
function that merges clusters or individuals by maximizing the consensus.

The rest of the chapter is organized as follows. Section 2 contains some no-
tation and basic notions. In Section 3, we introduce and analyze the proposed
consensus measures. Section 4 contains our proposal of consensus-based ag-
glomerative hierarchical clustering. In Section 5, we illustrate the introduced
procedures with an example. Finally, in Section 6, we conclude with some
remarks.

2. Preliminaries

Given y,z ∈ [0,1]k, by y ≥ z we mean yi ≥ zi for every i ∈ {1, . . . ,k}.
Given y ∈ [0,1]k, the decreasing reordering of the coordinates of y is in-
dicated as y[1] ≥ ·· · ≥ y[k]. In particular, y[1] = max{y1, . . . ,yk} and y[k] =
min{y1, . . . ,yk}.

Given a real number y, by byc we denote the integer part of y, i.e., the
greatest integer number smaller than or equal to y.

With #I we denote the cardinality of I. With P2(A) = {I ⊆ A | #I ≥ 2} we
denote the family of subsets of at least two elements.

We begin by defining standard properties of real functions on [0,1]k. For
further details the interested reader is referred to Fodor and Roubens [12],
Calvo et al. [6], Beliakov et al. [4], Torra and Narukawa [27], Grabisch et
al. [20] and Beliakov et al. [3].

Definition 1.1 Let F : [0,1]k −→ [0,1] be a function.

1 F is idempotent if for every y ∈ [0,1] it holds F(y ·1) = y.

2 F is symmetric if for every permutation π on {1, . . . ,k} and every y ∈
[0,1]k it holds F(yπ(1), . . . ,yπ(k)) = F(y).

3 F is monotonic if for all y,z ∈ [0,1]k it holds y ≥ z ⇒ F(y)≥ F(z).

4 F is compensative if for every y ∈ [0,1]k it holds y[k] ≤ F(y)≤ y[1].

5 F is self-dual if for every y ∈ [0,1]k it holds F(1−y) = 1−F(y).

6 F is stable for translations if for all y ∈ [0,1]k and t ∈ [0,1] such that
y+ t ·1 ∈ [0,1]k it holds F(y+ t ·1) = F(y)+ t.
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Definition 1.2

1 Given k ∈N, a function F(k) : [0,1]k −→ [0,1] is called an k-ary aggre-
gation function if it is monotonic and satisfies the boundary conditions
F(k)(0) = 0 and F(k)(1) = 1. In the extreme case of k = 1, the conven-
tion F(1)(y) = y for every y ∈ [0,1] is considered.

2 An aggregation function is a sequence F =
(
F(k)

)
k∈N of k-ary aggrega-

tion functions.

3 An aggregation function F =
(
F(k)

)
k∈N satisfies a property (in particu-

lar, those appearing in Definition 1.1) whenever F(k) satisfies the same
property for every k ∈N.

It is easy to see that for every k-ary aggregation function, idempotency and
compensativeness are equivalent.

For the sake of simplicity, the k-arity is omitted whenever it is clear from
the context.

An interesting class of aggregation functions is the family of OWA opera-
tors, introduced by Yager [29].

A weighting vector of dimension k is a vector w = (w1, . . . ,wk) ∈ [0,1]k

such that
k

∑
i=1

wi = 1.

Definition 1.3 Given a weighting vector w of dimension k, the OWA op-
erator associated with w is the aggregation function Fw : [0,1]k −→ [0,1]
defined as

Fw(y1, . . . ,yk) =
k

∑
i=1

wi · y[i].

Some well-known aggregation functions are specific cases of OWA opera-
tors. With appropriate weighting vectors w = (w1, . . . ,wk) we obtain

1 The maximum, for w = (1,0, . . . ,0).

2 The minimum, for w = (0, . . . ,0,1).

3 The arithmetic mean, for w =
(1

k , . . . ,
1
k

)
.

4 The t-trimmed means:

If t = 1, for w =
(
0, 1

k−2 , . . . ,
1

k−2 ,0
)
.

If t = 2, for w =
(
0,0, 1

k−4 , . . . ,
1

k−4 ,0,0
)
.

. . . .
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5 The median:

(a) If k is odd, for wi =

{
1, if i = k+1

2 ,

0, otherwise.

(b) If k is even, for wi =

{
0.5, if i ∈

{ k
2 ,

k
2 + 1

}
,

0, otherwise.

6 The mid-range, for w = (0.5,0, . . . ,0,0.5).

OWA operators are continuous, idempotent (hence, compensative), sym-
metric, and stable for translations. They have been characterized by Fodor et
al. [11].

Centered OWA operators have been introduced by Yager [31] in order to
give “the most weight to the central scores in the argument tuples and less
weighting to the extreme values”. We now introduce a more general no-
tion than that provided by Yager. It was introduced by Garcı́a-Lapresta and
Martı́nez-Panero [14].

Definition 1.4 Given a weighting vector w of dimension k, the OWA oper-
ator associated with w is centered if the following two conditions are satisfied:

1 wk+1−i = wi for every i ∈ {1, . . . ,k}.

2 wi ≤ w j whenever i < j ≤ b k+1
2 c or i > j ≥ b k+1

2 c.

The first condition is equivalent to the property of self-duality (see Garcı́a-
Lapresta and Llamazares [13, Proposition 5]). The second condition is weaker
than the original of Yager [31], called strongly decaying, that requires strict
inequalities wi < w j.

Yager [31] requires a third condition in the definition of centered OWA op-
erators, inclusiveness: wi > 0 for every i ∈ {1, . . . ,k}. That condition is very
restrictive for our purposes, since it eliminates some interesting OWA operators
as median and trimmed means, among others.

Definition 1.5 An extended OWA (EOWA) operator is a sequence of OWA
operators (Fwk)k∈N with associated weighting vectors wk = (wk

1, . . . ,w
k
k), one

for each dimension k ∈N.

Following Mayor and Calvo [24], Calvo and Mayor [7], Beliakov et al. [4,
pp. 54-56] and Beliakov et al. [3, pp. 73-76]), we can show graphically an
EOWA operator as a weighting triangle where the entries in each row add up
to one:
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w1
1

w2
1 w2

2

w3
1 w3

2 w3
3

w4
1 w4

2 w4
3 w4

4

w5
1 w5

2 w5
3 w5

4 w5
5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

A very useful approach for obtaining the EOWA weights is the functional
method introduced by Yager [30, 31]. Given a BUM function, i.e., a monotonic
function f : [0,1] −→ [0,1] such that f (0) = 0 and f (1) = 1, the associated
EOWA weights are defined as

wk
i = f

(
i
k

)
− f

(
i−1

k

)
, i = 1, . . . ,k. (1)

Yager [31] proposes to generate BUM functions by means of centering func-
tions.

A centering function is a function g : [0,1] −→ R satisfying the following
conditions:

1 g(x) > 0 for every x ∈ [0,1].

2 g(0.5 + x) = g(0.5− x) for every x ∈ [0,0.5].

3 g(x) < g(y) for x < y≤ 0.5 and g(x) < g(y) for x > y≥ 0.5.

Then, the function f : [0,1]−→ [0,1] defined as

f (x) =

∫ x

0
g(y)dy∫ 1

0
g(y)dy

(2)

is a BUM function.

3. Consensus

For measuring the degree of consensus among a group of agents that provide
their opinions on a set of alternatives, different proposals can be found in the
literature (see Martı́nez-Panero [23] for an overview of different notions of
consensus).

In the social choice framework, the notion of consensus measure was in-
troduced by Bosch [5] in the context of linear orders. Additionally, Bosch
[5] and Alcalde-Unzu and Vorsatz [1] provided axiomatic characterizations of
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several consensus measures in the context of linear orders. Garcı́a-Lapresta
and Pérez-Román [15] extended that notion to the context of weak orders and
they analyzed a class of consensus measures generated by distances. Alcantud
et al. [2] provided axiomatic characterizations of some consensus measures in
the setting of approval voting. In turn, Erdamar et al. [8] extended the notion of
consensus measure to the preference-approval setting through different kinds
of distances, and Garcı́a-Lapresta et al. [18] introduced another extension to
the framework of hesitant linguistic assessments.

Let A = {1, . . . ,m}, with m≥ 2, be a set of agents and let X = {x1, . . . ,xn},
with n ≥ 2, be the set of alternatives which have to be evaluated in the unit
interval.

A profile is a matrix

V =


v1

1 · · · v1
i · · · v1

n
· · · · · · · · · · · · · · ·
va

1 · · · va
i · · · va

n
· · · · · · · · · · · · · · ·
vm

1 · · · vm
i · · · vm

n

= (va
i )

consisting of m rows and n columns of numbers in [0,1], where the element va
i

represents the assessment given by the agent a ∈ A to the alternative xi ∈ X .
Let V = (va

i ) be a profile, π a permutation on A, σ a permutation on
{1, . . . ,n}, I ∈P2(A) and /0 6= Y ⊆ X . The profiles V π , Vσ and V−1, and
the subsets Iπ and Yσ are defined as follows:

1 V π = (ua
i ) where ua

i = vπ(a)
i .

2 Vσ = (ua
i ) where ua

i = va
σ(i).

3 V−1 = (ua
i ) where ua

i = 1− va
i .

4 Iπ =
{

π−1(a) | a ∈ A
}

, i.e., a ∈ Iπ ⇔ π(a) ∈ I.

5 Yσ = {xσ−1(i) | xi ∈ Y}, i.e., xi ∈ Yσ ⇔ xσ(i) ∈ Y .

We now introduce a consensus measure associated with a symmetric aggre-
gation function. Given a profile, it assigns a degree of consensus in each subset
of at least two agents with respect to a subset of alternatives.

Definition 1.6 Let F =
(
F(k)

)
k∈N be a symmetric aggregation function.

Given a profile V = (va
i ), the degree of consensus in a subset of agents I ∈

P2(A) over a subset of alternatives /0 6= Y ⊆ X is defined as

CF(V, I,Y ) = 1−F

(∣∣va
i − vb

i

∣∣a,b∈I ,a<b
xi∈Y

)
.
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In Proposition 1.1 we establish some properties of the consensus notion in-
troduced in Definition 1.6. Normalization means that the degree of consensus
is always in the unit interval. Anonymity means that all agents are treated
in the same way. Unanimity establishes necessary and sufficient conditions
for reaching maximum consensus. Maximum dissension establishes necessary
and sufficient conditions for reaching minimum consensus in two agents. Pos-
itiveness establishes that with more than two agents the degree of consensus is
never minimum. Neutrality means that all alternatives are treated in the same
way. And reciprocity means that if all the agents reverse their assessments,
then the degree of consensus does not change.

Proposition 1.1 Let F =
(
F(k)

)
k∈N be a symmetric aggregation function.

The following properties are satisfied:

1 Normalization: CF(V, I,Y ) ∈ [0,1].

2 Anonymity: CF(V π , Iπ ,Y ) = CF(V, I,Y ) for every permutation π on A.

3 Unanimity: If for every xi ∈ Y there exists ti ∈ [0,1] such that va
i = ti

for every a ∈ I, then CF(V, I,Y ) = 1.

Additionally, if F(k)(y) = 0 ⇔ y = 0, for all k ∈ N and y ∈ [0,1]k,
and CF(V, I,Y ) = 1, then for every xi ∈ Y there exists ti ∈ [0,1] such
that va

i = ti for every a ∈ I.

4 Maximum dissension: If
((

va
i = 0 and vb

i = 1
)

or
(
va

i = 1 and vb
i = 0

))
for all xi ∈ Y , then CF(V,{a,b},Y ) = 0.

Additionally, if F(k)(y) = 1 ⇔ y = 1, for all k ∈ N and y ∈ [0,1]k,
and CF(V,{a,b},Y ) = 0, then

((
va

i = 0 and vb
i = 1

)
or
(
va

i = 1 and
vb

i = 0
))

for all xi ∈ Y .

5 Positiveness: If F(k)(y) = 1 ⇔ y = 1, for all k ∈ N and y ∈ [0,1]k,
and #I > 2, then CF(V, I,Y ) > 0.

6 Neutrality: CF(Vσ , I,Yσ ) =CF(V, I,Y ) for every permutation σ on {1, . . . ,n}.

7 Reciprocity: CF(V−1, I,Y ) = CF(V, I,Y ).

PROOF: It is straightforward.

Remark 1.1 Let (Fwk)k∈N an EOWA operator with associated weighting
vectors wk = (wk

1, . . . ,w
k
k), k ∈N. It is easy to check that Fwk(y) = 0 ⇔ y =

0, for every y ∈ [0,1]k, if and only if wk
1 > 0; and Fwk(y) = 1 ⇔ y = 1, for

every y ∈ [0,1]k, if and only if wk
k > 0.

Consequently, any EOWA operator satisfying wk
1 > 0 and wk

k > 0 for every
k ∈N verifies all the properties included in Proposition 1.1. Therefore, when
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considering the EOWA operators generated by the maximum, the minimum,
the trimmed means and the median, the corresponding consensus measures do
not satisfy the strong versions of unanimity and maximum dissension.

For our purposes, an interesting class of EOWA operators is the one gen-
erated by centered OWA operators (in the sense of Definition 1.4) satisfying
wk

1 = wk
k > 0 for every k ∈N.

4. Clustering

There are many clustering algorithms (see Ward [28], Jain et al. [21] and
Everitt et al. [9], among others). Most methods of hierarchical clustering
use an appropriate metric (for measuring the distance between pairs of obser-
vations), and a linkage criterion which specifies the similarity/dissimilarity of
sets as a function of the pairwise distances of observations in the corresponding
sets.

Ward [28] proposed an agglomerative hierarchical clustering procedure, where
the criterion for choosing the pair of clusters to merge at each step is based on
the optimization of an objective function.

Usually, clusters are merged by minimizing a distance between clusters. The
complete, single and average linkage clustering take into account the maxi-
mum, minimum and mean distance between elements of each cluster, respec-
tively. In turn, centroid linkage clustering is based on the distances between
the clusters centroids.

In all the mentioned linkage clustering criteria there is a loss of informa-
tion. In our proposal, clusters are merged when maximizing the consensus
and, consequently, all the information is used for merging clusters.

Definition 1.7 Let F =
(
F(k)

)
k∈N be a symmetric aggregation function.

Given a profile V = (va
i ), the similarity function relative to a subset of alter-

natives /0 6= Y ⊆ X
SY

F :
(
P(A)\{ /0}

)2 −→ [0,1]

is defined as

SY
F(I,J) =

{
CF(V, I∪ J,Y ), if #(I∪ J)≥ 2,

1, if #(I∪ J) = 1.

Remark 1.2 In the extreme case of two agents and a single alternative, the
similarity between these agents on that alternative is just 1 minus the distance
between their assessments. More formally, given an alternative xi ∈ X and two
different agents a,b ∈ A, we have

S{xi}
F ({a},{b}) = CF (V,{a,b},{xi}) = 1−

∣∣va
i − vb

i

∣∣ .
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The agglomerative hierarchical clustering procedure we propose has some
similarities to the ones provided by Garcı́a-Lapresta and Pérez-Román [16,
17], in different settings. Given an aggregation function F =

(
F(k)

)
k∈N and

a profile V = (va
i ), our proposal consists of a sequential process addressed by

the following stages:

1 The initial clustering is A Y
0 = {{1}, . . . ,{m}}.

2 Calculate the similarities between all the pairs of agents, SY
F({a},{b})

for all a,b ∈ A.

3 Select the two agents a,b ∈ A that maximize SY
F and construct the first

cluster AY
1 = {a,b}.

4 The new clustering is A Y
1 =

(
A Y

0 \{{a},{b}}
)
∪
{

AY
1
}

.

5 Calculate the similarities SY
F(AY

1 ,{c}) and take into account the previ-
ously computed similarities SY ({c},{d}), for all {c},{d} ∈A Y

1 .

6 Select the two elements of A Y
1 that maximize SY

F and construct the
second cluster Ai

2.

7 Proceed as in previous items until obtaining the next clustering A i
2 .

The process continues in the same way until obtaining the last cluster, A Y
m−1 =

{A}.
In the case of several pairs of agents or clusters are in a tie, then proceed in

a lexicographic manner in 1, . . . ,m.

5. An illustrative example

In order to illustrate the agglomerative hierarchical clustering procedure in-
troduced in Section 4, consider a set of eight experts A = {1,2,3,4,5,6,7,8}
assessing a set of six alternatives X = {x1,x2,x3,x4,x5,x6} through the follow-
ing profile

V =


1.0 0.9 0.7 0.5 0.5 0.0 0.5 1.0
0.8 0.0 0.6 0.4 0.3 0.8 1.0 0.8
0.6 0.6 0.6 1.0 0.2 0.6 0.7 1.0
0.4 0.4 0.4 0.3 0.9 0.7 0.3 0.7
0.3 0.3 0.7 1.0 0.0 0.9 0.2 1.0
0.0 1.0 0.5 1.0 0.5 0.7 1.0 0.7

 .

In order to show the importance of the aggregation function for defining the
consensus measure that generates the cluster formation, we have considered
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four centered EOWA operators (in the sense of Definition 1.4): the arithmetic
mean, the 1-trimmed mean (or olympic EOWA operator) and two specific cases
generated by the functional method introduced by Yager [30, 31].

The clustering processes have been carried out for the case of all the alter-
natives (Y = X). The outcomes are summarized in the corresponding dendro-
grams.

The dendrograms generated by the arithmetic mean and the 1-trimmed mean
are shown in Figure 1.1 and Figure 1.2, respectively.
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Figure 1.1. Dendrogram obtained with the arithmetic mean.

Figure 1.3 shows the dendrogram that corresponds to consider the EOWA
operator whose weights are given by applying Equation (1) to the BUM func-
tion generated by Equation (2) with the piecewise linear centering function g1
defined as

g1(x) =

{
2x, if 0≤ x≤ 0.5,
2−2x, if 0.5≤ x≤ 1.

In this case, the weights are wk
i =

2(2i−1)

k2 for i≤ k + 1
2

, and wk
i = wk+1−i

if i≥ k + 1
2

.
Similarly, Figure 1.4 shows the dendrogram that corresponds to consider

the EOWA operator whose weights are given by applying Equation (1) to the
BUM function generated by Equation (2) with the parabolic centering function
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Figure 1.2. Dendrogram obtained with the 1-trimmed mean.
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Figure 1.3. Dendrogram obtained with the EOWA operator generated by g1.

g2(x) = 4(x− x2). Now the weights are wk
i =

3k(2i−1)−6i(i−1)−2
k3 for

i≤ k + 1
2

, and wk
i = wk+1−i if i≥ k + 1

2
.
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Figure 1.4. Dendrogram obtained with the EOWA operator generated by g2.

6. Concluding remarks

When a group of agents show their opinions about a set of alternatives, an
interesting problem is to know what is the consensus in the whole group or in a
subset of agents with respect to one or several alternatives. The most important
is not to know the corresponding degrees of consensus, but to compare the
consensus in different subsets of agents and alternatives. With our proposal,
this information can be easily achieved. Even more, the proposed consensus-
based clustering and the corresponding dendrograms provide a rich and visual
picture of the homogeneity in the individual opinions.

The mentioned consensus and clustering procedures are static. However,
in consensus reaching processes the degree of consensus in a specific situa-
tion is only the starting point of a dynamic and iterative process that pursues
to increase the agreement among agents. A consensus reaching process con-
sists of several rounds where a human or virtual moderator may invite some
agents to modify their opinions in order to increase the collective agreement
(see Fedrizzi et al. [10], Saint and Lawson [26], Martı́nez and Montero [22]
and Palomares et al. [25], among others).

These consensus reaching processes and the corresponding clustering anal-
yses can be carried out in the setting of this contribution. The fact that the pro-
posed consensus measure is associated with an aggregation function provides
flexibility to the process. Once are determined the alternatives xi where the de-
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gree of consensus in the whole group of agents, CF(V,A,{xi}), is smaller than
the overall degree of consensus CF(V,A,X), the moderator may invite those
agents whose opinions over xi are quite different to the median assessment to
properly modify their assessments. If these agents move their assessments on
the selected alternatives towards the corresponding median assessments, then
the degree of consensus increases. Due to the monotonicity of the aggregation
function, the overall degree of consensus increases as well. All these changes
can be visualized through the corresponding dendrograms.
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[17] Garcı́a-Lapresta, J.L., Pérez-Román, D. (2016). Consensus-based cluster-
ing under hesitant qualitative assessments. Fuzzy Sets and Systems 292,
pp. 261-273.
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