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Abstract

In this paper we propose a decision-making procedure where the agents judge the
alternatives through linguistic terms such as ‘very good’, ‘good’, ‘acceptable’,
etc. If the agents are not confident about their opinions, they can use a linguistic
expression formed by several consecutive linguistic terms. To obtain a ranking
on the set of alternatives, the method consists of three different stages. The first
stage looks for the alternatives in which the overall opinion is closer to the ideal
assessment. The overall opinion is developed by a distance-based process among
the individual assessments. The next two stages form a tie-breaking process.
Firstly by using a dispersion index based on the Gini coefficient, and secondly by
taking into account the number of best-assessments. The main characteristics
of the proposed decision-making procedure are analyzed.
Keywords: Social Choice; voting systems; linguistic assessments; Majority Judg-
ment; imprecision.

1. Introduction

Social Choice Theory shows that there is no voting system that is able to
rank and choose alternatives in a completely acceptable way. In this regard, the
well-known Arrow’s impossibility theorem [1] shows, with absolute certainty,

Email addresses: edurne@eco.uva.es (Edurne Falcó), lapresta@eco.uva.es (José Luis
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that there is no voting system that simultaneously satisfies several desirable
properties1.

Arrow’s pessimistic result imposes the limits of preference aggregation, but
it does not stop the search for a procedure that fulfills some properties at the
expense of others. One escape route for Arrow’s impossibility theorem consists
in allowing the agents to show their opinions not in a strictly ordinal way, but
through numerical or linguistic assessments. A short review of one of the most
known linguistic decision procedures is detailed below, as well as some of their
extensions. Moreover, we provide an introduction to the issue of the imprecision
of the agents, upon which our process is based. Finally, we summarize the
proposal of the paper.

1.1. Majority Judgment

Balinski and Laraki [2, 3] have proposed a voting system called Majority
Judgment (MJ) which tries to avoid the unsatisfactory result of the Arrow
theorem and allows the voters to assess the alternatives through linguistic terms,
such as ‘excellent’, ‘very good’, ‘good’, etc., instead of ordering the alternatives
by rank. Among all the individual assessments given by the voters, MJ chooses
the median as the collective assessment. Balinski and Laraki also describe a tie-
breaking process which compares the number of assessments above the collective
assessment with those below it.

These authors also carried out an experimental analysis of MJ [4] in Orsay
during the 2007 French presidential election. In that paper the authors show
some interesting properties of MJ and they argue that this voting system is
easily implemented and avoids the need for a second round2, typical of French
presidential elections.

Desirable properties and advantages have been attributed to MJ compared
to the classical Arrow framework of preferences aggregation. Among these ad-
vantages is the possibility that voters show their opinions more faithfully and
properly than in the conventional voting systems.

Besides MJ, other decision-making procedures in which the agents assess
the alternatives through linguistic terms can be found in the literature. For
instance in Garćıa-Lapresta [10] a general voting system that generalizes the
simple majority through linguistic preferences is designed and studied. Simi-
larly, in Garćıa-Lapresta et al. [11, 13] a system which generalizes the Borda
rule [5] is studied.

1.2. Majority Judgment extensions

It is worth pointing out that some authors have shown several paradoxes
and inconsistencies of MJ (see Felsenthal and Machover [9], Smith [27], Garćıa-

1Any voting rule that generates a collective weak order from every profile of weak orders,
and satisfies independence of irrelevant alternatives and unanimity is necessarily dictatorial,
insofar as there are at least three alternatives and three agents.

2If there is no candidate with more than half of the votes, the second round consists of
voting on the two candidates with most votes in the first round.
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Lapresta and Mart́ınez-Panero [12] and Nurmi [22], among others).
In order to reduce some of the drawbacks produced by MJ in small commit-

tees, Garćıa-Lapresta and Mart́ınez-Panero [12] developed a proposal in which
the linguistic information is aggregated by means of centered OWA operators
(Yager [34]), and a 2-tuple fuzzy linguistic representation (Herrera and Mart́ınez
[17]). Another way of thinking was proposed by Zahid [37] who combined MJ
with the Borda Count [5] in order to avoid some other inconveniences of MJ.

Moreover, in Falcó and Garćıa-Lapresta [6, 7] an extension of MJ, based
on the distances between the linguistic terms is proposed. These distances are
induced by the parameterized family of Minkowski metrics and allow us to treat
the problem in a more flexible way. The extension carried out in Falcó and
Garćıa-Lapresta [6] chooses as the collective assessment, a linguistic term that
minimizes the total distance to all the individual assessments (this would be
the median, whenever the Manhattan metric is used). In addition, a method of
choosing a unique collective assessment, in the case that several assessments fulfil
the requirement, is provided. The contribution of Falcó and Garćıa-Lapresta
[6, 7] is also a refinement of the tie-breaking process that not only counts the
number of assessments above and below the collective assessment (the median
in MJ), but which also takes into account the specific assessments (above and
below the collective assessment) by measuring the distances between them and
the collective assessment.

1.3. Imprecise assessments

According to Zimmer [38], people generally prefer to handle the imprecision
with linguistic terms rather than with numbers. Usually opinions are imprecise,
therefore, trying to represent them by using a precise term is meaningless. In
addition, Wallsten et al. [31] have shown empirically how most people are more
comfortable using words rather than numbers to describe probabilities. As a
result of this evidence and reflection, the program computing with words has
been developed, where the agents express themselves through linguistic terms
instead of numbers (see Kacprzyk and Zadrożny [19] and Zadeh [35, 36], among
others).

Although the use of linguistic information brings the design of decision-
making procedures closer to the imprecision that agents face when judging the
alternatives, occasionally, the agents may be unconfident about which linguistic
term to use. For this reason, it is interesting to allow the agents to judge in
a more imprecise way, giving them the option of assessing several consecutive
linguistic terms. For other papers regarding this issue, see Tang and Zheng [28],
Ma et al. [21] and Rodŕıguez et al. [23].

Our proposal concerning the imprecision is based on an adaptation of the
absolute order of magnitude spaces introduced in Travé-Massuyès and Dague
[29], and Travé-Massuyès and Piera [30]; more specifically in the extensions
devised by Roselló et al. [24, 25, 26].

The authors of this paper have previously made an attempt to deal with
imprecise assessments which was also based on the absolute order of magnitude
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spaces (Falcó et al. [8]). In that paper, they used a system of penalization for
the use of a linguistic expression (a linguistic expression is the combination of
several consecutive linguistic terms). The penalization function worked roughly
as follows: the more linguistic terms an agent uses, the more that agent should
be penalized.

1.4. Our proposal

In this paper we set up a decision-making procedure in which agents can
express their assessments of the alternatives using a linguistic term from a pre-
determined linguistic scale. If they are not confident about which term to use,
they can use a linguistic expression created by several consecutive linguistic
terms.

We have assumed that the linguistic scale is uniform and symmetrically
distributed. Thus, the distance between consecutive linguistic terms is assumed
to be the same for all the agents. We have also considered that agents show
their true opinions and they do not act strategically to favor or penalize any
alternative.

The procedure is divided into several stages which will be presented in Sec-
tion 3. Initially, the overall opinion for an alternative is calculated by finding
the set of linguistic expressions that minimize the sum of distances to every
expression given by the agents, for said alternative. Taking into account this
information, the alternatives are ordered by the proximity of their overall opin-
ions to the “ideal” assessment. Thus, the closer an overall opinion is to the
highest linguistic term, the better the alternative would be considered. Since
ties among different alternatives may appear, we present a tie-breaking process.
The tie-breaking process is constructed using a dispersion index based on the
Gini coefficient. The less dispersion there is among agents’ assessments, the
more preferred this alternative will be considered to be. After this stage, some
alternatives can still be in a tie, therefore a further refinement is presented for
the tie-breaking process. If the distance to the “ideal” assessment as well as
the dispersion are the same, the number of highest assessments are counted. If
there is still a tie, the number of second highest assessments are counted, and
so on.

The paper is organized as follows. Section 2 is devoted to introducing the
notation and concepts needed in the rest of the paper. Section 3 includes the
proposed decision-making procedure. In Section 4, some properties of the pro-
cess are analyzed. Section 5 contains the concluding remarks of this paper.

2. Notation and basic notions

Let I = {1, . . . ,m}, with m ≥ 2, be a set of agents and let X = {x1, . . . , xn},
with n ≥ 2, be the set of alternatives which are evaluated. Every agent as-
sesses a linguistic term for each candidate within a linguistic ordered scale
L = {l1, . . . , lg}, where l1 < l2 < · · · < lg . The granularity of L is its car-
dinality #L = g ≥ 2. The linguistic scale is balanced and equispaced between
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consecutive terms. The terms on L can be linguistic terms as ‘excellent’, ‘very
good’, ‘good’, etc.

A binary relation < on a set A 6= ∅ is a weak order (or complete preorder)
if it is complete (a < b or b < a, for all a, b ∈ A) and transitive (if a < b and
b < c, then a < c, for all a, b, c ∈ A). On the other hand, a linear order on
A 6= ∅ is an antisymmetric3 weak order on A. Given a weak or linear order <
on A 6= ∅, the asymmetric and symmetric parts of < are denoted by � and
∼, respectively, i.e., a � b if not b < a, and a ∼ b if a < b and b < a. W (A)
denotes the set of weak orders on A.

Given <∈W (A) , the inverse of < is defined as xi <−1 xj ⇔ xj < xi.

2.1. Linguistic expressions

Based on the absolute order of magnitude spaces introduced by Travé-Massuyès
and Piera [30], we define the set of linguistic expressions as follows

L = {[lh, lk] | lh, lk ∈ L , 1 ≤ h ≤ k ≤ g},

where [lh, lk] = {lh, lh+1, . . . , lk} and [l1, lg] = {l1, . . . , lg} . Given that [lh, lh] =
{lh}, this linguistic expression can be replaced by the linguistic term lh. In this
way, L ⊂ L.

Example 1. Consider the set of linguistic terms L = {l1, l2, l3, l4, l5} with the
meanings given in Table 1.

l1 l2 l3 l4 l5
very bad bad acceptable good very good

Table 1: Meaning of the linguistic terms.

Each linguistic expression has a meaning on its own. For instance, [l2, l4]
means ‘between bad and good’, [l4, l5] means ‘between good and very good’, or
‘at least good’, etc.

For an interpretation of the linguistic expressions based on context-free
grammar, see Rodŕıguez et al. [23].

Adopting the treatment introduced in Roselló et al. [26], the set of all the
linguistic expressions can be represented by a graph GL. In the graph, the lowest
layer represents the linguistic terms lh ∈ L ⊂ L, the second layer represents the
linguistic expressions created by two consecutive linguistic terms [lh, lh+1], the
third layer represents the linguistic expressions created by three consecutive
linguistic terms [lh, lh+2], and so on up to last layer where we represent the
linguistic expression [l1, lg]. As a result, the higher an element is, the more
imprecise it becomes. The vertices in GL are the elements of L and the edges
E − F , where E = [lh, lk] and F = [lh, lk+1], or E = [lh, lk] and F = [lh+1, lk].
The graph representation of Example 1 is included in Fig. 1.

3< is antisymmetric if for all a, b ∈ A such that a 6= b it holds a � b or b � a.
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[l1, l5]

[l2, l5][l1, l4]

[l3, l5][l2, l4][l1, l3]

[l4, l5][l3, l4][l2, l3][l1, l2]

l5l4l3l2l1

Figure 1: Graph representation of the linguistic expressions for g = 5.

When a voter is confident about his opinion on an alternative, he might use
a linguistic term lh ∈ L. Whereas if he is unconfident about his opinion, he
might use a linguistic expression [lh, lk] ∈ L, with h < k. For a more extensive
treatment, see Roselló et al. [24, 25, 26].

Let us note that all the computations in L can be done in Z2 by means of
the injection ψ : L −→ Z2, defined as ψ([lh, lk]) = (k − 1, h− 1). Through the
function ψ we can represent a linguistic expression as a point in the plane. This
function allows us to work in an easier computational setting. For example,
lh ∈ L is identified with (h − 1, h − 1) ∈ Z2, and the linguistic expression
[l3, l5] ∈ L is identified with the point (4, 2) ∈ Z2 (see Fig. 2).

2.2. Distances between linguistic expressions

The distance between two linguistic expressions E ,F ∈ L is defined as the
geodesic distance in the graph GL between their associated vertices and it is
denoted by d(E ,F). The geodesic distance between two vertices in a graph is
the number of edges in one of the shortest paths connecting them.

Remark 1. Taking into account the injection ψ : L −→ Z2, the distance
between two linguistic expressions E and F can be computed in Z2 as the
Manhattan distance4 between the corresponding points ψ(E) and ψ(F):

d(E ,F) = dM (ψ(E), ψ(F)). (1)

4The Manhattan distance in Rq is the function dM : Rq × Rq −→ R defined as

dM ((a1, . . . , aq), (b1, . . . , bq)) =

q∑
k=1

|ak − bk|.
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l1 [l1, l2] [l1, l3] [l1, l4] [l1, l5]

l2 [l2, l3] [l2, l4] [l2, l5]

l3 [l3, l4] [l3, l5]

l4 [l4, l5]

l5

0 1 2 3 4

1

2

3

4

Figure 2: The injection from L into Z2 for g = 5.

Example 2. The distance between the linguistic expressions E = [l1, l3] and
F = {l4} in L, for g = 5, is the length of the shortest path from one vertex to
the other, d(E ,F) = 4: from vertex [l1, l3] to vertex [l2, l3], from vertex [l2, l3]
to vertex l3, from l3 to [l3, l4] and, finally, from [l3, l4] to l4. This path is not
unique, but it is one of those shortest paths (see Fig. 3). Or, by means of Z2

as:

d(E ,F) = dM (ψ(E), ψ(F)) = dM ((2, 0), (3, 3)) = |2− 3|+ |0− 3| = 4.

2.3. The potential

We are now going to introduce the potential of a linguistic expression with
respect to a vector of linguistic expressions (and also with respect to a subset
of linguistic expressions). It is defined as the sum of distances between the
linguistic expression and the components of the vector (the elements of the
subset). It will be very useful to shorten the notation.

Definition 1. Given E ∈ L and y = (y1, . . . , yq) ∈ Lq , the potential of E with
respect to y is defined as

Φ(E ,y) =

q∑
k=1

d(E , yk).

Definition 2. Given E ∈ L and F ⊆ L, the potential of E with respect to F is
defined as

Φ(E , F ) =
∑
F∈F

d(E ,F).
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[l1, l5]

[l2, l5][l1, l4]

[l3, l5][l2, l4][l1, l3]

[l4, l5][l3, l4][l2, l3][l1, l2]

l5l4l3l2l1

Figure 3: Graph representation distance between [l1, l3] and l4 for Example 2.

2.4. The overall opinion

The Fermat point of a triangle is a point such that the total distance from
the three vertices of the triangle to the point is the minimum possible (see
[33]). This Fermat point was generalized in the so-called geometric median or
Fermat-Weber point by Weber [32], and it is the point that minimizes the sum
of distances to the sample points in an Euclidean space. Based on these ideas,
we now introduce a similar notion in the setting of linguistic expressions.

A profile V is a matrix (vpi ) consisting of m rows and n columns of linguistic
expressions, where the element vpi ∈ L represents the linguistic assessment given
by the voter p ∈ I to the alternative xi ∈ X. The set of all possible profiles is
denoted by V. We denote by vi = (v1i , . . . , v

m
i ) ∈ Lm the assessments vector of

xi. Similarly, vp = (vp1 , . . . , v
p
n) ∈ Ln denotes the assessments vector of agent

p for all the alternatives. Then,

V =


v11 · · · v1i · · · v1n
· · · · · · · · · · · · · · ·
vp1 · · · vpi · · · vpn
· · · · · · · · · · · · · · ·
vm1 · · · vmi · · · vmn

 =

 v1

...
vm

 = (v1 · · · vn) .

Definition 3. Given a profile V ∈ V and the assessments vector of xi, vi ∈
Lm, the Fermat set of xi is defined as

FVi = arg min
E∈L

Φ(E ,vi).

In other words,

E ∈ FVi ⇔ ∀F ∈ L Φ(E ,vi) ≤ Φ(F ,vi)

8



and, equivalently,

E ∈ FVi ⇔ ∀F ∈ L
m∑
p=1

d(E , vpi ) ≤
m∑
p=1

d(F , vpi ).

For the sake of simplicity, the superindex V is omitted whenever it is clear from
the context.

The Fermat set Fi contains all the linguistic expressions that minimize the
sum of the distances to all the assessments for xi. This set somehow represents
the overall opinion of xi, and it may contain more than one linguistic expression.
Notice that a linguistic expression can be in the Fermat set although it does not
belong to the assessments vector vi.

Example 3. Consider X = {x1, x2} , I = {1, 2, 3} and g = 5 with the assess-
ments given in Table 2 and Fig. 4.

x1 x2
1 l4 l3
2 [l3, l4] [l3, l4]
3 [l2, l4] [l3, l5]

Table 2: Agents’ assessments in Example 3.

v31

v11

v21

v12

v32

v22

Figure 4: Agents’s assessments for alternatives x1 (left) and x2 (right).

Looking the results given in Tables 3 and 4, where we can see all the po-
tentials for every possible linguistic expression in L, in both cases the linguistic
expression with the minimal potential is [l3, l4]. Then, F1 = F2 = {[l3, l4]}.

3. The decision-making procedure

The proposal is divided in several stages:
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E Φ(E ,v1)
l1 15

[l1, l2] 12
l2 9

[l1, l3] 9
[l2, l3] 6
[l1, l4] 6
l3 5

[l2, l4] 3
[l1, l5] 9
[l3, l4] 2
[l2, l5] 6
l4 3

[l3, l5] 5
[l4, l5] 6
l5 9

Table 3: Potentials with respect to x1.

E Φ(E ,v2)
l1 15

[l1, l2] 12
l2 9

[l1, l3] 9
[l2, l3] 6
[l1, l4] 8
l3 3

[l2, l4] 5
[l1, l5] 9
[l3, l4] 2
[l2, l5] 6
l4 5

[l3, l5] 3
[l4, l5] 6
l5 9

Table 4: Potentials with respect to x2.

1. We calculate the distances from each Fermat set Fi to the linguistic term
lg, for all the alternatives. Then, the alternatives are ordered according
to their proximity to lg. The closer to lg, the better.

2. If ties are present after the first stage, we break them through the dis-
persion of the individual assessments. The lower the dispersion is, the
better.

3. If still some alternatives are in a draw, then we look for the number of
assessments in the best linguistic expression, then the second-best one,
then the third-best one, and so on.

In next subsections we explain all these stages in depth. After every step,
we show how to apply the procedure through the results in the Example 3.

3.1. Closeness to the “ideal” assessment

For every alternative xi ∈ X we calculate its overall opinion by means of the
Fermat set Fi presented in the previous section. Once the overall opinions of the
alternatives have been obtained, we compare it with the best possible result an
alternative can get. The linguistic term lg is always the highest assessment one
alternative can achieve, hence the “ideal” assessment (the closer to the “ideal”,
the better).

Given E ∈ L and F ⊆ L, we denote by d̄(E , F ) the average distance
between E and the elements of F :

d̄(E , F ) =

∑
F∈F

d(E ,F)

#F
.
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Definition 4. Given V ∈ V , the binary relation <V1 on X is defined as

xi <
V
1 xj ⇔ d̄(lg, Fi) ≤ d̄(lg, Fj),

i.e.,

xi <
V
1 xj ⇔

Φ (lg, Fi)

#Fi
≤ Φ (lg, Fj)

#Fj
⇔

∑
E∈Fi

d(lg, E)

#Fi
≤

∑
E∈Fj

d(lg, E)

#Fj
.

For the sake of simplicity, the superindex V is omitted whenever it is clear from
the context and we will denote the binary relation simply as <1 .

Clearly, <1 is a weak order on X.
This order seems natural considering that the closer the assessments are in

average to the linguistic term lg (and thereby with a minimal average distance),
the better the alternative is.

The Technique for Order of Preference by Similarity to Ideal Solution (TOP-
SIS) is a multi-criteria decision analysis method, originally developed by Hwang
and Yoon [18]. As TOPSIS suggests, the chosen alternative should have the
shortest geometric distance from the positive ideal solution and the longest ge-
ometric distance from the negative ideal solution.

The following results establishes how the minimum average distance to the
best linguistic assessment implies also the maximum average distance to the
worst linguistic assessment.

Lemma 1. For all xi, xj ∈ X and V ∈ V it holds

xi <
V
1 xj ⇔ d̄(l1, Fi) ≥ d̄(l1, Fj).

Proof: Since the maximum distance in the graph is d(l1, lg) = 2g − 2, it is
easy to see that d(lg, E) = 2g− 2− d(l1, E), for every E ∈ L. Then, for a subset
E ⊆ L ∑

E∈E
d(lg, E) = #E · (2g − 2)−

∑
E∈E

d(l1, E).

Dividing by the subset cardinality,∑
E∈E

d(lg, E)

#E
=

#E · (2g − 2)

#E
−

∑
E∈E

d(l1, E)

#E
,

or, what it is the same,

d̄(lg, E) = 2g − 2− d̄(l1, E).

Consequently, applying this results on the Fermat sets

d̄(lg, Fi) ≤ d̄(lg, Fj) ⇔ 2g − 2− d̄(l1, Fi) ≤ 2g − 2− d̄(l1, Fj)

⇔ d̄(l1, Fi) ≥ d̄(l1, Fj).�
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As d̄(l1, Fi) ≥ d̄(l1, Fj) ⇔ d̄(lg, Fi) ≤ d̄(lg, Fj) , the relation <V1 follows
TOPSIS idea. Our ranking prefers the alternative whose overall opinion is closer
to the “ideal” assessment and, simultaneously, prefers the alternative whose
overall opinion is further of the “worst” assessment.

Example 4. Coming back to Example 3, the distance to the best assessment
would be the same in both alternatives:

d̄(lg, F1) = d(l5, [l3, l4]) = 3 = d̄(lg, F2).

The first order does not provide a ranking between both alternatives so, the
result is x1 ∼1 x2.

In this case, both overall opinions are the same5 and also are their distances
to the “ideal” assessment. Thus, it is necessary to introduce another step to
break the ties among alternatives. We propose a method based on the Gini
coefficient [15] and the consensus measures introduced by Garćıa-Lapresta and
Pérez-Román in [14].

3.2. Dispersion of the agents’ assessments

Definition 5. Given vi ∈ Lm, the dispersion index of the agents assessing the
alternative xi ∈ X is defined as

δi =

m∑
p=1

Φ (vpi ,vi)

2 · (g − 1) ·m · (m− 1)
,

or in terms of distances,

δi =

m∑
q=1

m∑
p=1

d (vpi , v
q
i )

2 · (g − 1) ·m · (m− 1)
.

The dispersion is calculated through the sum of the potentials of every agent
with respect to the alternative xi. In terms of distances first we calculate for
every agent the distance from his assessment to the other agents’ assessments.
Then, we sum the result for every agent. The denominator role is to normalize
the result.

Proposition 1. The dispersion index δi verifies the following properties:

1. 0 ≤ δi ≤ 1.

5Notice how different overall opinions (or Fermat sets) can also provide a tie among al-
ternatives. For instance, F1 = {[l3, l4]} and F2 = {[l2, l4], [l3, l4], [l2, l5], [l3, l5]} are two
possible Fermat sets which have the same distance to the best assessment. In such a way,
d̄(l5, F1) = 2+3+3+4

4
= 3 = d̄(l5, F2). Then, x1 ∼1 x2.
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2. δi = 1 ⇔ m = 2 and one of the following conditions holds
(a) v1i = l1 and v2i = lg
(b) v1i = lg and v2i = l1.

3. δi = 0 ⇔ v1i = v2i = · · · = vmi .

Proof:

1. Since d(l1, lg) = 2 · (g − 1) is the maximum distance between elements
of L, and m · (m − 1) is the number of eventually non-zero terms in the
numerator of the formula above, then the quotient is between 0 and 1.

2. Taking into account (1) and

δi = 1 ⇔
∑
p∈I

Φ (vpi ,vi) = 2 · (g − 1) ·m · (m− 1),

it is easy to see that if m > 2, the last equality is not possible. Moreover,
if m = 2, then δi = 1 if and only if ( v1i = l1 and v2i = lg) or ( v1i = lg and
v2i = l1).

3. By

δi = 0 ⇔
∑
p∈I

Φ (vpi ,vi) = 0,

and Φ (vpi ,vi) ≥ 0 for all p ∈ I, δi = 0 if and only if Φ (vpi ,vi) = 0 for all
p ∈ I, i.e., v1i = · · · = vmi . �

Given two alternatives xi, xj ∈ X such that the distances from their overall
opinions to the highest assessment are the same, we will prefer that alternative
with the greater agreement taking into account agents’ assessments.

Definition 6. Given V ∈ V , the binary relation <V2 is defined as

xi <
V
2 xj ⇔ δi ≤ δj .

For the sake of simplicity, the superindex V is omitted whenever it is clear from
the context and we will denote the binary relation simply as <2 .

Clearly, <2 is a weak order on X. This order represents the idea of how
an alternative should be preferred if the level of agreement among the agents is
high.

Example 5. Following with Example 3,

δ1 =
Φ (l4,v1) + Φ ([l3, l4],v1) + Φ ([l2, l4],v1)

2 · (5− 1) · 3 · (3− 1)
=

3 + 2 + 3

2 · 4 · 3 · 2 =
1

6
,

δ2 =
Φ (l3,v2) + Φ ([l3, l4],v2) + Φ ([l3, l5],v2)

2 · (5− 1) · 3 · (3− 1)
=

3 + 2 + 3

2 · 4 · 3 · 2 =
1

6
.

Since δ1 = δ2, then x1 ∼2 x2. Again, both alternatives are in a tie.

If there are two alternatives xi, xj ∈ X in a tie, that is xi ∼1 xj and
xi ∼2 xj , because d̄(lg, Fi) = d̄(lg, Fj) and δi = δj , we will consider a sequential
process where the number of best assessments, second-best assessments, etc.
obtained by the tied alternatives are taken into account.
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3.3. Number of best assessments

The idea of best assessment, second-best assessment, etc. assumes that an
order within the set L exists. In this way, we consider an order where we prefer
linguistic expressions closer to the ideal assessment, and, if two elements of L
have the same distance to lg, we prefer the more precise one (with less number
of linguistic terms).

Definition 7. The binary relation <L on L is defined as E <L F if one of
the following conditions holds

1. d(E , lg) < d(F , lg).

2. d(E , lg) = d(F , lg) and #E ≤ #F .

Proposition 2. The binary relation <L is a linear order.

Proof: Clearly, <L is a weak order. For proving antisymmetry, consider
E = [lh, lk] and F = [lr, ls] ∈ L such that E ∼L F , i.e., d(lg, E) = d(lg,F) and
#E = #F . Since d(lg, E) = 2g−(h+k), d(lg,F) = 2g−(r+s), #E = k−h+1
and #F = s− r + 1, we have s = k and r = h, hence, E = F . �

As an example, for g = 5, the linguistic expressions of L are ordered as
follows (see also Fig. 5):

l5 �L [l4, l5] �L l4 �L [l3, l5] �L [l3, l4] �L [l2, l5] �L l3 �L [l2, l4] �L

�L [l1, l5] �L [l2, l3] �L [l1, l4] �L l2 �L [l1, l3] �L [l1, l2] �L l1.

[l1, l5]

[l2, l5][l1, l4]

[l3, l5][l2, l4][l1, l3]

[l4, l5][l3, l4][l2, l3][l1, l2]

l5l4l3l2l1

Figure 5: Linear order in L for g = 5.
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The last step to break the tie between xi and xj is counting how many agents
assessed the alternatives with the linguistic term lg: if this amount of agents is
bigger for xi than for xj , then we will say that xi <V3 xj . If we are still in a tie,
then we will count how many agents assessed the alternatives with the linguistic
expression [lg−1, lg], and so on. It is summarized in the next definition.

Definition 8. Given V ∈ V , the binary relations <V3 , <V4 , . . . are defined as

xi <
V
3 xj ⇔ #{p ∈ I | vpi = lg} ≥ #{q ∈ I | vqj = lg},

xi <
V
4 xj ⇔ #{p ∈ I | vpi = [lg−1, lg]} ≥ #{q ∈ I | vqj = [lg−1, lg]},

. . .

For the sake of simplicity, the superindex V is omitted whenever it is clear from
the context and we will denote the binary relations simply as <3 , <4 , etc.

Clearly, <3, <4, etc. are weak orders on X. Summarizing, the process is
conducted by the lexicographic weak order <V (as until now, the subindex will
be omitted if there is no possibility of confusion) on X defined as xi <V xj if
and only if one of the following conditions holds

1. xi �1 xj .

2. xi ∼1 xj and xi �2 xj .

3. xi ∼1 xj , xi ∼2 xj and xi �3 xj .

4. xi ∼1 xj , xi ∼2 xj , xi ∼3 xj and xi �4 xj .

5. . . .

First, we look for the alternative with an overall opinion closer to the ideal
assessment. If there are alternatives with the same distance, we look for the
alternative with smaller dispersion. If still some alternatives have the same
result, we would look for the one with the bigger number of “best” assessments.

Example 6. The tie-breaking process applied to Example 3 is as follows:
x1 ∼3 x2: #{p ∈ I | vp1 = l5} = 0 = #{p ∈ I | vp2 = l5}.
x1 ∼4 x2: #{p ∈ I | vp1 = [l4, l5]} = 0 = #{p ∈ I | vp2 = [l4, l5]}.
x1 �5 x2: #{p ∈ I | vp1 = l4} = 1 > 0 = #{p ∈ I | vp2 = l4}.
Consequently, x1 � x2.

3.4. An illustrative example

As mentioned before, it is common for agents to be uncertain about which
assessments assign to the alternatives, and sometimes they are more comfortable
using a linguistic expression than a single linguistic term. However, usually
agents are forced to assess a single linguistic term. Example 7 shows how taking
into account the imprecision of the agents can lead to different results than when
they are forced to be precise.
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Alternative
v1i v2i v3i v4i

L L L L L L L L
x1 l3 → l3 [l2, l4] → l3 [l3, l5] → l4 [l3, l5] → l4
x2 [l2, l4] → l3 [l2, l5] → l4 [l2, l5] → l4 l5 → l5

Table 5: Agents’ assessments in the Example 7.

Example 7. Consider I = {1, . . . , 4}, L = {l1, . . . , l5} and X = {x1, x2}.
Table 5 shows two assessments for each agent: their sincere assessments which
consist of linguistic expressions (L column), and the linguistic terms they assess
when they are required to be precise (L column).

If we evaluate the opinions in which the agents assess only one linguistic term,
we obtain that the overall opinions for both alternatives are F1 = {l3, [l3, l4], l4}
and F2 = {l4}. Since

d̄(l5, F1) =
4 + 3 + 2

3
= 3 > 2 =

2

1
= d̄(l5, F2),

we have x2 �1 x1, and then, x2 � x1.
If we now calculate the results when considering the sincere linguistic ex-

pressions given by the agents in L, we obtain that the overall opinions for both
alternatives are F1 = {[l3, l4], [l3, l5]} and F2 = {[l2, l5]}. Since

d̄(l5, F1) =
3 + 2

2
= 2.5 < 3 =

3

1
= d̄(l5, F2),

contrary to the outcome provided by the single-linguistic-term assessments, we
now have x1 �1 x2, and then, x1 � x2.

3.5. Relationship with Majority Judgment

In this subsection we are going to show the relationship between MJ and
the decision-making procedure presented in this paper. Since MJ does not
use multiple linguistic terms, we will consider the special case where all voters
assess a simple linguistic term to each alternative, i.e., vi = (v1i , . . . , v

m
i ) ∈ Lm

for every i ∈ {1, . . . , n}. Let us denote

Nh(xi) = #{p ∈ I | vpi = lh},

for every h ∈ {1, . . . , g}.

Lemma 2. If m is odd and lM ∈ L is the median of the data distribution given
by vi, then

k∑
h=1

Nh(xi) >
m− 1

2
≥

g∑
h=k+1

Nh(xi),

for every k ≥M .
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m

(m− 1)/2 (m− 1)/2

N1 N2 NM NM+1 Ng

l1 l2 lM lM+1 lg

Figure 6: Lemma 2.

Proof: Trivial by the definition of median (see Fig.6).�
Using the definition of Nh and the expression of d in terms of Z2, the po-

tential of a linguistic term with respect to vi can be written as

Φ(lh,vi) = 2

g∑
k=1

Nk(xi)|h− k|.

Lemma 3. If m is odd and lM is the median of the data distribution given by
vi, then

Φ(lM ,vi) < Φ(lM+1,vi) < · · · < Φ(lg,vi).

Proof: Since

Φ(lh,vi)− Φ(lh+1,vi) = 2

g∑
k=1

Nk(xi)(|h− k| − |h− k + 1|).

and

|h− k| − |h− k + 1| =
{
−1, if k ≤ h,

1, if k > h,

we have

Φ(lh,vi)− Φ(lh+1,vi) = −2

h∑
k=1

Nk(xi) + 2

g∑
k=h+1

Nk(xi).

If h ≥M , by Lemma 2, we have

Φ(lh,vi)− Φ(lh+1,vi) ≤ 0.�

The previous lemma can be generalized.

Lemma 4. For every h ∈ N and every non-negative integer h′ satisfying h+
h′ ≤ g − 1, it holds

Φ([lh, lh+h′ ],vi) ≤ Φ([lh, lh+h′+1],vi).
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Proof: Taking into account

Φ([lh, lh+h′ ],vi)−Φ([lh, lh+h′+1],vi) =

g∑
k=1

Nk(xi)(|h+h′−k|− |h+h′−k+ 1|)

and from a similar reasoning as in Lemma 3, the result is proven. �

Proposition 3. If lM is the median of the data distribution given by vi and
lM is in vi, then Fi = {lM}.

Proof: By Lemmas 3 and 4, it holds

Φ(lM ,vi) ≤ Φ(lh,vi) ≤ · · · ≤ Φ([lh, lh+h′ ],vi),

where h = 1, . . . , g and h′ is an integer number satisfying h + h′ ≤ g. Then,
by the definition of Fi, the proposition is proven. �

Proposition 3 proves that in this special case we get the same representative
linguistic term of MJ. The next results are devoted to study the case where m
is even.

Lemma 5. If m is even and la and lb are the linguistic terms at positions m
2

and m
2 + 1 in the data distribution given by vi, respectively, then Φ(la,vi) =

Φ(lb,vi).

Proof: By the definition of la and lb, we have

a∑
h=1

Nh(xi) =

g∑
h=b

Nh(xi) =
m

2
.

On the other hand,

Φ(la,vi)− Φ(lb,vi) = 2

g∑
h=1

Nh(xi)(|h− a|+ |h− b|).

Since

|h− a| − |h− b| =
{

a− b, if h ≤ a,
−(a− b), if h ≥ b,

then, we have

Φ(la,vi)− Φ(lb,vi) = 2

a∑
h=1

Nh(xi)(a− b)− 2

g∑
h=b

Nh(xi)(a− b) = 0.�

Lemma 6. If P = (a, 0), Q = (0, b), R = (c1, c2) ∈ Z2, with 0 ≤ c1 ≤ a and
0 ≤ c2 ≤ b, then dM (P,R) + dM (R,Q) = dM (P,Q).

Proof: By definition of dM , we have dM (P,Q) = a + b. On the other hand,
dM (P,R) = |a−c1|+c2 = a−c1 +c2 and dM (R,Q) = |b−c2|+c1 = b−c2 +c1,
so dM (P,R) + dM (R,Q) = dM (P,Q). �

The next proposition shows that if all voters assess simple linguistic terms
and m is even, then Fi has not to be a singleton of L and the arbitrariness of
choosing the median disappears. See Fig. 7, where the grey zone denotes Fi.
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l1 la lb lg

[la, lb]

la−1 lb+1

. . . . . .

Figure 7: An illustration of Proposition 4.

Proposition 4. If m is even and la and lb are the linguistic terms at positions
m
2 and m

2 + 1 in the data distribution given by vi, respectively, then

Fi = {[lh, lk] | a ≤ h ≤ k ≤ b}.

Proof: If a ≤ h ≤ k ≤ b, by Lemmas 5 and 6 we have Φ(la,vi) = Φ(lb,vi) =
Φ(lh,vi). Let us write F = {[lh, lk] | a ≤ h ≤ k ≤ b}. Since m is even, the data
distribution given by vi includes the median lM ∈ F . From a similar reasoning
as in Proposition 3, it is proven that Fi = F . �

Example 8. This example shows the advantages of the symmetry of sets Fi
when all voters use simple linguistic terms. Consider that two candidates x1
and x2 are graded by four voters with the assessments given in Table 6.

x1 x2
1 l2 l2
2 l2 l3
3 l5 l3
4 l5 l3

Table 6: Agents’ assessments in Example 8.

The overall opinion of x1 is

F1 = {l2, l3, l4, l5, [l2, l3], [l3, l4], [l4, l5], [l2, l4], [l3, l5], [l2, l5]},

and the overall opinion of x2 is F2 = {l3}. Since d̄(l5, F1) = 3 < 4 = d̄(l5, F2),
then x1 �1 x2. However, MJ declares x2 as the winner, in spite of x1 is better
graded by the agents than x2.

4. Properties

In this section, we introduce some interesting properties that are satisfied
by our decision rule.

Definition 9. A decision rule is a mapping ϕ : V −→W (X). The weak order
ϕ(V ) will be denoted by <V .
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In order to introduce some properties that decision rules can satisfy, we need
some pieces of notation and basic notions.

Given a permutation π on I and a profile V = (vpi ) ∈ V, we denote

π(V ) =
(
v
π(p)
i

)
.

Given a permutation σ on {1, . . . , n} and a profile V = (vpi ) ∈ V, we denote

σ(V ) =
(
vpσ(i)

)
, and σ

(
<V
)

is the order <V but taking into account the new

names of the alternatives.
The inverse of a linguistic expression E = [lh, lk] ∈ L is defined as

E−1 = [lg−k+1, lg−h+1].

For g = 5, with the meanings given in Table 1, the inverse of [l2, l3] (‘be-
tween bad and acceptable’) is [l2, l3]−1 = [l5−3+1, l5−2+1] = [l3, l4] (‘between
acceptable and good’); similarly, the inverse of l1 (‘very bad’) is (l1)−1 = l5
(‘very good’).

Given a profile V = (vpi ) ∈ V, its inverse is defined as V −1 =
(
(vpi )−1

)
.

Before introducing in a formal way the properties involved in the result of
the section, we give a rough idea of them.

Anonymity means that if the order of the agents are changed, then the order
over the alternatives should be the same.

Neutrality means that if the names of the alternatives are changed, then the
new order should be the same but with the name of the alternatives changed in
the same way.

Reversal symmetry means that if all the assessments are reversed, then the
outcome is also reversed.

Definition 10. Let ϕ : V −→W (X) be a decision rule.

• ϕ satisfies Anonymity if for every permutation π on I and every V ∈ V
it holds ϕ(π(V )) = ϕ(V ), i.e.,

xi <
π(V ) xj ⇔ xi <

V xj ,

for all xi, xj ∈ X.

• ϕ satisfies Neutrality if for every permutation σ on {1, . . . , n} and every
V ∈ V it holds ϕ(σ(V )) = ϕ(V ), i.e.,

xσ(i) σ
(
<V
)
xσ(j) ⇔ xi <

V xj ,

for all xi, xj ∈ X.

• ϕ satisfies Reversal Symmetry if for every V ∈ V it holds ϕ(V −1) =
(ϕ(V ))−1, i.e.,

xi <
V −1

xj ⇔ xj <
V xi,

for all xi, xj ∈ X.
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Now, two new properties related with a non-constant number of agents or
alternatives are going to be presented.

Given V = (v1 · · · vn) ∈ V and t ∈ {1, . . . , n}, with U = V −vt we denote
the reduced profile where the individual assessments over xt are removed, i.e.,
U = V −vt = (v1 · · · vt−1 vt+1 · · · vn), and up = (up1, . . . , u

p
t−1, u

p
t+1, . . . , u

p
n)

for every p ∈ I.
Given V = (v1 · · · vn) ∈ V and λ ∈ N, with λV we denote the replicated

profile of λ copies of V , defined as λV =
(
v1

(λ times). . . v1 · · · vn (λ times). . . vn
)
.

Independence means that if an alternative is removed, then the order be-
tween other alternatives should remain the same.

Invariance for Replications means that if a profile is replicated, then the final
order should be the same than in the original profile.

Definition 11. Let ϕ : V −→W (X) be a decision rule.

• A decision rule ϕ satisfies Independence if for all xi, xj , xt ∈ X and
U, V ∈ V such that U = V − vt it holds

xi <
V xj ⇒ xi <

U xj .

• ϕ satisfies Invariance for Replications if for all xi, xj ∈ X, V ∈ V and
λ ∈ N it holds ϕ(λV ) = ϕ(V ), i.e.,

xi <
λV xj ⇔ xi <

V xj .

In order to justify the properties of our decision rule, some technical results
are needed. They are presented in the following lemmas.

Lemma 7. For all E ,F ∈ L it holds d
(
E−1,F−1

)
= d(E ,F).

Proof: If E = [lh, lk] and F = [lr, ls], we have

d(E−1,F−1) = dM (ψ(E−1), ψ(F−1)) =

= dM ((g − h, g − k), (g − r, g − s)) = |r − h|+ |s− k|
= |k − s|+ |h− r| = dM ((k − 1, h− 1), (s− 1, r − 1))

= dM (ψ(E), ψ(F)) = d(E ,F).�

Lemma 8. For every V ∈ V it holds E ∈ FVi ⇔ E−1 ∈ FV −1

i .

Proof: By Lemma 7, we have

m∑
p=1

d(E , vpi ) =

m∑
p=1

d(E−1, (vpi )−1).
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Substituting in the definition of Fermat set, we have

E ∈ FVi ⇔ ∀F ∈ L
m∑
p=1

d(E , vpi ) =

m∑
p=1

d(E−1, (vpi )−1) ≤

≤
m∑
p=1

d(F , vpi ) =

m∑
p=1

d(F−1, (vpi )−1).

Consequently,

E ∈ FVi ⇔ ∀F ∈ L
m∑
p=1

d(E−1, (vpi )−1) ≤
m∑
p=1

d(F , (vpi )−1) ⇔ E−1 ∈ FV −1

i .�

Lemma 9. For all xi ∈ X, V ∈ V and λ ∈ N it holds FλVi = FVi .

Proof: E ∈ FλVi is equivalent to

m∑
p=1

d(E , vpi )+ (λ times). . . +

m∑
p=1

d(E , vpi ) ≤
m∑
p=1

d(F , vpi )+ (λ times). . . +

m∑
p=1

d(F , vpi ),

for every F ∈ L, and then to

m∑
p=1

d(E , vpi ) ≤
m∑
p=1

d(F , vpi ), for every F ∈ L, i.e.,

to E ∈ FVi . �

Theorem 1. The decision rule ϕ1 : V −→W (X) defined as ϕ1(V ) = <V1 sat-
isfies Anonymity, Neutrality, Reversal Symmetry, Independence and Invariance
for Replications.

Proof:
The proof of Anonymity, Neutrality and Independence is straightforward.
For proving Reversal Symmetry, we have to justify that for all xi, xj ∈ X

it holds
xi <

V
1 xj ⇔ xj <

V −1

1 xi.

By definition,

xi <
V
1 xj ⇔

∑
E∈Fi

d(lg, E)

#Fi
≤

∑
E∈Fj

d(lg, E)

#Fj
.

We know by Lemma 7 and Lemma 8 that

∑
E∈Fi

d(lg, E)

#Fi
=

∑
E−1∈F−1

i

d((lg)
−1, E−1)

#F−1i

.
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Taking into account the fact that (lg)
−1 = l1, we have

xi <
V
1 xj ⇔

∑
E∈F−1

i

d(l1, E)

#F−1i

≤

∑
E∈F−1

j

d(l1, E)

#F−1j

.

And finally, taking into account d(lg, E) = 2g − 2 − d(l1, E) and Lemma 1, we
have

xi <
V
1 xj ⇔

∑
E∈F−1

i

d(lg, E)

#F−1i

≥

∑
E∈F−1

j

d(lg, E)

#F−1j

⇔ xj <
V −1

1 xi.�

By Independence and Lemma 9, Invariance for Replications is satisfied. �

5. Concluding remarks

The introduction of the new Majority Judgment voting system by Balinski
and Laraki [2, 3] can be considered to be divergent to the classical Arrow ap-
proach [1]. Although in both cases, individual opinions are aggregated in order
to obtain a collective weak order on the set of alternatives, the information pro-
vided by the agents is different. In the Arrow approach, agents are required to
order the alternatives by rank of preference. However, in Majority Judgment,
a common language composed by a small number of linguistic terms is used by
the agents for assessing the candidates one by one.

Imagine two agents rank three alternatives A, B and C in the same order, for
instance BCA. However, it is possible that the opinions of these agents could
be different, for instance the first one could think that B is very good, C is good
and A is acceptable while the second agent thinks that B is good, C is bad and
A is very bad. Within the Arrow framework, this information is not considered
and the opinions of both agents are taken as being equal.

It is worth mentioning that not only voters but also experts are not always
confident about their opinions when they have to declare them using the fixed
terms of a finite scale6. In this paper we have taken the same starting point as
that of Majority Judgment except that we allow agents to be imprecise in their
assessments by using several consecutive linguistic terms, if necessary.

Our proposal is essentially different to that of Majority Judgment which is
based on the median of the individual assessments and a tie-breaking process7.

6For instance, the reviewers of some scientific journals have to select a recommendation
for a paper between the following four modalities: ‘accept’, ‘minor revision’, ‘major revision’
or ‘rejection’. Sometimes, after choosing one of the four possibilities, some reviewers write
‘between major revision and rejection’ or similar sentences in the notes for the editors.

7We should note that our proposal coincides with Majority Judgment in the first stage
when an odd number of agents assess the alternatives using linguistic terms. In this sense,
our proposal can be considered to be an extension of Majority Judgment.
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We have proposed a distance-based aggregation procedure in which the alter-
natives are ordered according to the distances between the overall opinion and
the highest possible assessment. Although our procedure generates fewer ties
than Majority Judgment, they can still appear. So, we have also proposed a
tie-breaking process, first by taking into account the dispersion of individual
assessments, and subsequently by considering the number of best assessments,
etc.

Sometimes social choice theorists advocate the principle that voters should
easily understand how the voting rules work. Surely the simplest and most
popular voting rule is plurality, where each agent votes for his favorite candidate
and the winner(s) is/are the candidate(s) who obtain a greater number of votes.
In spite of its popularity, plurality can be considered to be, in practice, the
worst voting rule (see Laslier [20]). Clearly, simplicity is not the most important
feature of a voting rule.

In group decision-making, it is not essential that the decision processes are
simple, rather that they are flexible and that they consistently manage the
information provided by the agents for generating the collective decisions. Our
proposal is more complicated than plurality and other basic voting rules, but it
is more faithful to the individual opinions. The properties we have proven within
the social choice framework provide initial support to our proposal. The study
of other properties and some comparative analyses with other group decision-
making procedures, specially with Majority Judgment, would be pertinent as
further research.

In numerous real decision problems, experts have to assess the alternatives
through scales with more number of terms in the positive side of the scale than
in the negative one. In this way, it is important to note that Herrera et al. [16]
analyze this problem and provide a methodology based on linguistic hierarchies
and the 2-tuple fuzzy linguistic representation (see Herrera and Mart́ınez [17]).
We leave for further research to deal with unbalanced linguistic term sets within
the metric-based approach we have developed in the present paper. Another
worthy problem to be addressed in future research is the one where the distances
between consecutive linguistic terms are not constant, irrespectively of the scale
being balanced or not.
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