
  

  

Abstract— Childhood obstructive sleep apnea-hypopnea 
syndrome (OSAHS) is a highly prevalent condition that 
negatively affects health, performance and quality of life of 
infants and young children. Early detection and treatment 
improves neuropsychological and cognitive deficits linked with 
the disease. The aim of this study was to assess the performance 
of automated analysis of blood oxygen saturation (SpO2) 
recordings as a screening tool for OSAHS. As an initial step, 
statistical, spectral and nonlinear features were estimated to 
compose an initial feature set. Then, fast correlation-based 
filter (FCBF) was applied to search for the optimum subset. 
Finally, the discrimination power (OSAHS negative vs. OSAHS 
positive) of three pattern recognition algorithms was assessed: 
linear discriminant analysis (LDA), quadratic discriminant 
analysis (QDA) and logistic regression (LR). Three clinical cut-
off points commonly used in the literature for positive diagnosis 
of the disease were applied: apnea-hypopnea index (AHI) of 1, 
3 and 5 events per hour (e/h). Our methodology reached 88.6% 
accuracy (71.4% sensitivity and 100.0% specificity, 100.0% 
positive predictive value, and 84.0% negative predictive value) 
in an independent test set using QDA for a clinical cut-off point 
of 5 e/h. These results suggest that SpO2 nocturnal recordings 
may be used to develop a reliable and efficient screening tool 
for childhood OSAHS. 

I. INTRODUCTION 
Childhood obstructive sleep apnea-hypopnea syndrome 

(OSAHS) is a highly prevalent but under-diagnosed 
condition [1]. It is characterized by prolonged partial 
(hypopnea) and/or intermittent complete (apnea) upper 
airway obstruction during sleep, which lead to gas exchange 
abnormalities and sleep disruption [2]. According to the 
American Academy of Pediatrics, OSAHS affects 1% to 5% 
of children in the general pediatric population [2]. Untreated 
OSAHS has been associated with negative consequences in 
the development and performance of infants and young 
children, reducing overall health and quality of life [1, 3], 
while increasing healthcare use and associated costs [4]. 
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Overnight laboratory polysomnography (PSG) is the gold 
standard test for OSAHS in children [2, 5]. Nevertheless, 
PSG is costly due to the need for a specialized sleep 
laboratory, expensive equipment and trained personnel [1, 6]. 
Furthermore, complete PSG is highly intrusive for children, 
which limits its effectiveness [7]. Thus, there is an increasing 
demand for novel screening tools in the context of childhood 
OSAHS. Main methodologies include sleep-related 
questionnaires, respiratory polygraphy (RP), nap PSG, and 
ambulatory PSG [1, 2, 8]. Despite recent improvements [1], 
questionnaires are usually not sensitive as single screening 
tools. On the other hand, RP and PSG-based approaches do 
not overcome the main limitations of standard PSG. 
Therefore, further research is still needed. An interesting 
approach is the analysis of single-channel sleep-related 
recordings, which reduces cost and complexity. In this 
regard, automated processing of oximetry signals is a 
promising alternative due to its reliability, simplicity, and 
suitability for children [5, 6, 9-12]. 

Previous oximetry-based studies in the context of OSAHS 
diagnosis assessed conventional indices [5, 6, 9-11], common 
statistics [6, 10] and conventional spectral features [10]. 
Similarly, the studies by Garde et al. [10] and Sahadan et al. 
[12] also used the information contained in pulse rate 
recordings from pulse oximetry. In the present research, 
blood oxygen saturation (SpO2) recordings were analyzed. 
Statistical (first-to-fourth moments), spectral (amplitude, 
relative power and power distribution measures), nonlinear 
(irregularity, variability, and complexity measures), and 
conventional indices (number of desaturations from baseline) 
were computed. These metrics have been previously assessed 
in the context of OSAHS diagnosis both in adults [13, 14] 
and children [6]. Fast correlation-based filter (FCBF) is 
proposed for feature selection. FCBF is a variable ranking 
methodology for feature selection independent of the 
classifier subsequently used in the classification stage [15]. 
Linear discriminant analysis (LDA), quadratic discriminant 
analysis (QDA), and logistic regression (LR) are proposed 
for classification [16]. QDA and LR are suitable alternatives 
to conventional LDA in binary classification problems but 
their performances have been weakly assessed in the context 
of childhood OSAHS. We hypothesized that the proposed 
methodology could detect complementary variables and 
provide general classification models useful as screening 
tools for OSAHS in children. The aim of this study was to 
design and assess several binary classifiers using different 
clinical cut-offs for OSAHS in order to analyze the screening 
ability at different severity thresholds. To achieve this goal, 
independent training and test datasets were analyzed. 
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II. SUBJECTS AND SIGNALS UNDER STUDY 

A total of 176 children (97 boys and 79 girls) composed 
our dataset. All children were referred to the Pediatric Sleep 
Unit at the University of Chicago Medicine Comer 
Children’s Hospital (Chicago, IL, USA) due to clinical 
suspicion of suffering from OSAHS. Informed consents to 
participate in the study were obtained and the Institution’s 
Ethical Review Committee approved the protocol. 

Children’s sleep was monitored using a digital 
polysomnography system (Polysmith; Nihon Kohden 
America Inc., CA, USA). SpO2 recordings from PSG 
(sampling frequency 25 Hz) were exported and processed 
offline. Artifacts were automatically removed by means of a 
preprocessing stage. SpO2 values equal to zero and 
differences between consecutive SpO2 samples ≥4% were 
considered artifacts [17]. 

The American Academy of Sleep Medicine rules were 
used to quantify sleep and cardiorespiratory events and derive 
the apnea hypopnea index (AHI), which averages the number 
of events per hour of sleep. Apnea was defined as the absence 
of oronasal airflow during at least 2 respiratory cycles. 
Hypopnea was defined as a decrease ≥50% lasting at least 2 
respiratory cycles, leading to a desaturation ≥3% and/or an 
arousal. In the present study, the AHI-based clinical threshold 
was varied in order to assess the performance of the proposed 
methodology as a screening tool for OSAHS using 
commonly used cut-off points. AHI ≥ 1, 3, and 5 events per 
hour (e/h) from PSG were considered as OSAHS-positive 
[2]. Table I displays demographic and clinical features of the 
dataset taking into account the proposed AHI cut-off 
thresholds for the disease. For each cut-off point, the whole 
population was randomly divided into independent training 
(60%) and test (40%) sets. 

III. METHODOLOGY 
Firstly, each SpO2 recording was parameterized 

computing 17 features: time domain statistics (4), frequency 
domain statistics (6), conventional spectral features (3), 
nonlinear measures (3), and conventional oximetric indices 
(1). Then, a feature selection stage was applied using FCFB. 
An optimum feature subset was derived for each OSAHS cut-
off. Finally, LDA, QDA, and LR models were composed for 
each feature subset. The training set was used for feature 
selection and model optimization whereas the test set was 
used for assessing all classifiers in an independent dataset. 

A.  Feature extraction stage 
The following feature subsets were computed: 
• Time domain statistics [16]. Mean (M1t), variance 

(M2t), skewness (M3t), and kurtosis (M4t) were 
derived from the data histogram of SpO2 amplitudes. 

• Frequency domain statistics [13, 14]. The distribution 
of power spectral density (PSD) amplitudes was 
parameterized by means of first-to-fourth statistical 
moments (M1f-M4f). In addition, the median 
frequency (MF) and spectral entropy (SE) were 
computed to quantify the degree of flatness of the 
power distribution. 

• Conventional spectral features [13, 14]. Total signal 
power (PT) and the peak amplitude (PA) and relative 

power (PR) in the apnea frequency band (0.021 – 
0.040 Hz) were computed from the PSD [18]. 

• Nonlinear measures [13]. Sample entropy (SampEn, 
m=1, r=0.25), central tendency measure (CTM, r=1) 
and Lempel-Ziv complexity (LZC) were computed to 
quantify irregularity, variability and complexity. 

• Conventional oximetric indices [17]. Number of 
desaturations greater than or equal to 3% from 
baseline per hour of recording (ODI3). 

SpO2 recordings were segmented into 1-min length 
epochs before computing the time domain features (each 
feature average value was subsequently obtained) whereas 
the PSD function was estimated using the Welch’s method 
(15000-sample Hanning window, 50% overlap and 214-points 
DFT). 

B. Feature selection stage 
FCBF computes the symmetric uncertainty (SU) to select 

relevant and non-redundant variables [15]. SUi between the i-
th input feature (Xi) and the AHI (Y) is defined as follows: 

 
( , )

( , ) 2 , 1,...,
( ) ( )

i i
i i

i i

IG X Y
SU X Y i p

H X H Y
= =

+
, (1) 

where IG is the information gain and H is the well-known 
Shannon’s entropy. In the first step, FCBF ranks features 
according to their relevance (the higher SUi the more relevant 
feature). Then, a threshold is used to discard irrelevant 
features. In this study, the log criterion was applied, where 
the cut-off is the SU value of the [N/log(N)]-th ranked 
feature. In the second step, redundant features are removed. 
In order to perform the redundancy analysis, 
SUi,j(featurei,featurej) between each pair of remaining ranked 
features (so that SUi ≥ SUj) is computed. Then, feature j is 
removed if SUi,j ≥ SUi due to redundancy. 

C. Feature classification stage 
Conventional statistical pattern recognition techniques 

were used for binary classification: 

TABLE I. CLINICAL CHARACTERISTICS OF THE POPULATION 
USING DIFFERENT CUT-OFF POINTS FOR OSAHS DIAGNOSIS 

AHI ≥ 1 e/h 
 All children OSAHS negative OSAHS positive 

N (n) 176 30 146 
Age (years) 6.95 ± 3.55 8.20 ± 3.28 6.70 ± 3.56 
Males (n) 97 (55.11%) 17 (56.67%) 80 (54.79%) 
BMI (kg/m2) 20.62 ± 7.32 20.48 ± 6.77 20.64 ± 7.45 
AHI (e/h)  0.51 ± 0.31 10.70 ± 18.13 

AHI ≥ 3 e/h 
 All children OSAHS negative OSAHS positive 
N (n) 176 79 97 
Age (years) 6.95 ± 3.55 7.70 ± 3.23 6.36 ± 3.70 
Males (n) 97 (55.11%) 46 (58.23 %) 51 (52.58%) 
BMI (kg/m2) 20.62 ± 7.32 20.31 ± 6.73 20.87 ± 7.79 
AHI (e/h)  1.34 ± 0.80 15.17 ± 20.89 

AHI ≥ 5 e/h 
 All children OSAHS negative OSAHS positive 
N (n) 176 105 71 
Age (years) 6.95 ± 3.55 7.53 ± 3.44 6.10 ± 3.57 
Males (n) 97 (55.11%) 58 (55.23%) 39 (54.93%) 
BMI (kg/m2) 20.62 ± 7.32 20.54 ± 6.70 20.74 ± 8.19 
AHI (e/h)  1.97 ± 1.33 19.31 ± 23.10 
N: number of children; BMI: body mass index 



  

• Linear discriminant analysis (LDA) [16]. Statistical 
classification algorithms based on discriminant 
analysis assume normality to model each class-
conditional density function )|( jcp x  for input 
pattern x and class cj. If homoscedasticity is also 
presumed, i.e. all the class covariance matrices are 
equal (Σj=Σ), then the classification rule is called 
LDA and a linear decision threshold is assumed. 
Equation (2) shows the classification rule, 

( ) ( )1 11 ln ( )
2

T T
j j j j jy P c− −= − +x μ x μ μΣ Σ ,   (2) 

where µj and Σ are the class cj mean vector and 
covariance matrix, respectively. 

• Quadratic discriminant analysis (QDA) [16]. In a 
more general context where it is not possible to 
presume homoscedasticity, the Bayes classification 
rule that minimizes the classification error function 
establishes a quadratic decision boundary between 
classes in the feature space. Equation (3) shows the 
classification rule under these assumptions, 

( ) ( ) ( ) ( )11 1 ln ln ( )
2 2

T

j j j j j jy P c−= − − − − +x x μ x μΣ Σ . (3) 

• Logistic regression (LR) [16]. No a priori normality 
and homoscedasticity of data are presumed. A binary 
LR classifier models the probability density function 
as a Bernoulli distribution. The maximum likelihood 
criterion is used to optimize the coefficients of the 
logistic model. Equation (4) shows the logistic 
classification function: 

( ) )...( 1101
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where β is the vector of coefficients of the LR model. 

D.  Statistical analysis 
The true positive rate (sensitivity, Se), true negative rate 

(specificity, Sp), proportion of positive tests that are true 
positive patients (positive predictive value, PPV), proportion 
of negative tests that are true negative subjects (negative 
predictive value, NPV), and percentage of children correctly 
classified (accuracy, Acc) were computed in order to assess 
the performance of each independent variable and optimum 
LDA, QDA, and LR models. Default classification thresholds 
of 0 (LDA and QDA) and 0.5 (LR) were applied. 

IV. RESULTS 

A. Training set 
The proposed features were computed in order to 

compose the initial feature space. ROC analyses were 
carried out for each single feature to obtain their optimum 
classification thresholds in the training set. Next, optimum 
feature subsets were derived using FCFB.  Table II shows 
the selected features for each diagnostic threshold. Model 
training of LDA, QDA, and LR classifiers was carried out. 

B. Test set 
Table III summarizes the diagnostic performance of each 

single feature in the test set using the threshold derived from 
the training dataset. ODI3 achieved the highest performance 
in terms of accuracy (77.1%) using a threshold for OSAHS 
equal to 1 e/h, whereas PA reached the maximum accuracy 
(77.1%) applying a cut-off equal to 3 e/h and M2t, M1f, and 
PT reached the highest accuracy (82.9%) using a threshold 
equal to 5 e/h. Optimum pattern recognition models for each 
OSAHS cut-off were also assessed in the independent test 
set. Table IV summarizes the performance analysis. Using an 
AHI = 1 e/h for positive OSAHS, the LR model composed of 
features from FCBF achieved an accuracy of 77.1% (91.4% 
Se, 8.3% Sp), whereas 72.9% (61.5% Se, 87.1% Sp) was 
reached using a cut-off equal to 3 e/h. The highest 

TABLE II.  OPTIMUM FEATURE SUBSETS USING FCBF FEATURE SELECTION FOR EACH CUT-OFF POINT FOR OSAHS

Optimum features 
(FCBF) cut-off AHI = 1 e/h cut-off AHI = 3 e/h cut-off AHI = 5 e/h 

Log criterion M2t, M1f, PT, PA, SampEn, ODI3 M2t, M1f, PA, SampEn, ODI3 M2t, PT, PA, SampEn, ODI3 

TABLE III.  DIAGNOSTIC ASSESMENT OF EACH SINGLE VARIABLE FROM THE INITIAL FEATURE SPACE IN THE TEST SET 

cut-off AHI = 1 e/h cut-off AHI = 3 e/h cut-off AHI = 5 e/h Performance 
(%) Se Sp PPV NPV Acc Se Sp PPV NPV Acc Se Sp PPV NPV Acc 

M1t 41.4 100.0 100.0 26.1 51.4 51.3 77.4 74.1 55.8 62.7 71.4 71.4 62.5 79.0 71.4 
M2t 60.3 83.3 94.6 30.0 64.3 71.8 80.7 82.4 69.4 75.7 89.3 78.6 73.5 91.7 82.9 
M3t 53.5 58.3 86.1 20.6 54.3 87.2 41.9 65.4 72.2 67.1 60.7 52.4 46.0 66.7 55.7 
M4t 55.2 50.0 84.2 18.8 54.3 59.0 45.2 57.5 46.7 52.9 50.0 50.0 40.0 60.0 50.0 
M1f 48.3 91.7 96.6 26.8 55.7 66.7 80.7 81.3 65.8 72.9 89.3 78.6 73.5 91.7 82.9 
M2f 50.0 83.3 93.6 25.6 55.7 69.2 77.4 79.4 66.7 72.9 89.3 71.4 67.6 90.9 78.6 
M3f 34.5 50.0 76.9 13.6 37.1 69.2 41.9 60.0 52.0 57.1 50.0 35.7 34.2 51.7 41.4 
M4f 34.5 50.0 76.9 13.6 37.1 69.2 41.9 60.0 52.0 57.1 50.0 50.0 40.0 60.0 50.0 
MF 60.3 41.7 83.3 17.9 57.1 71.8 41.9 60.9 54.2 58.6 71.4 40.5 44.4 68.0 52.9 
SE 53.5 58.3 86.1 20.6 54.3 46.2 71.0 66.7 51.2 57.1 64.3 57.1 50.0 70.6 60.0 
PT 48.3 91.7 96.6 26.8 55.7 66.7 80.7 81.3 65.8 72.9 89.3 78.6 73.5 91.7 82.9 
PA 51.7 91.7 96.8 28.2 58.6 71.8 83.9 84.9 70.3 77.1 89.3 69.1 65.8 90.6 77.1 
PR 58.6 66.7 89.5 25.0 60.0 64.1 64.5 69.4 58.8 64.3 64.3 54.8 48.7 69.7 58.6 
SampEn 53.5 75.0 91.2 25.0 57.1 74.4 74.2 78.4 69.7 74.3 89.3 69.1 65.8 90.6 77.1 
CTM 39.7 75.0 88.5 20.5 45.7 28.2 64.5 50.0 41.7 44.3 32.1 64.3 37.5 58.7 51.4 
LZC 46.6 66.7 87.1 20.5 50.0 66.7 71.0 74.3 62.9 68.6 92.9 66.7 65.0 93.3 77.1 
ODI3 64.7 83.3 95.7 29.4 77.1 74.4 74.2 78.4 69.7 74.3 89.3 69.1 65.8 90.6 77.1 
Se: sensitivity (%); Sp: specificity (%); PPV: positive predictive value (%); NPV: negative predictive value (%); Acc: accuracy (%) 
Features with the highest accuracy for each OSAHS cut-off are highlighted in bold 



  

performance in terms of accuracy was achieved using a cut-
off for OSAHS equal to 5 e/h, where QDA reached 88.6% 
accuracy (71.4% Se, 100.0% Sp). 

V. DISCUSSION AND CONCLUSIONS 
Feature extraction, selection, and classification algorithms 

were assessed in the context of screening for pediatric 
OSAHS using SpO2 recordings obtained during overnight 
polysomnographic evaluations in a clinical setting. All 
feature extraction approaches (time, frequency, linear, and 
nonlinear) were present in all optimum feature subsets from 
FCBF, suggesting the complementarity of the proposed 
methods. Our results suggest that M2t, PA, SampEn, and 
ODI3 are relevant for the disease because they were always 
selected. Similarly, M2t, PA, and ODI3 achieved the highest 
individual performance using the cut-off points 5, 3, and 1 
e/h, respectively. Optimum pattern recognition models 
improved individual features for a cut-off AHI = 5 e/h. The 
highest performance was reached by QDA, which achieved 
71.4% Se, 100.0% Sp and 88.6% Acc in the test set. It is 
important to point out that using this model there are no false 
negatives: if children test positive, then they definitely have 
OSAHS (positive post-test probability of 100%). 

Our results agree with recent studies focused on screening 
methods for OSAHS in children. The study by Sahadan et al. 
analyzed a population of 93 children and achieved 18% Se 
and 97% Sp (cut-off AHI=1 e/h) using pulse rate 
conventional measures from pulse oximetry recordings [12]. 
Similarly, the study by Garde et al. used SpO2 and pulse rate 
from a population composed of 146 children. The proposed 
LDA model achieved 88.4% Se and 83.6% Sp (cut-off 
AHI=5 e/h) in a test set [6]. In [1], Kadmon et al. assessed a 
simplified sleep-related questionnaire for screening OSAHS 
in a population of 85 children. Their method achieved 83% 
Se and 64% Sp (cut-off AHI=5 e/h). 

We should take into account some limitations. The 
population cohort evaluated herein should be expanded in 
order to derive more generalizable conclusions. In addition, 
input parameters of spectral and nonlinear analyses should 
be thoroughly optimized. Finally, additional feature 
selection and classification methods should be assessed. 

In summary, our results suggest that automated analysis of 
overnight SpO2 using suitable features and statistical pattern 
recognition models could improve the performance of 
oximetry as a screening tool for OSAHS in children. 
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