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Abstract— Current study is focused around the potential use 

of oximetry to determine the obstructive sleep apnea-hypopnea 

syndrome (OSAHS) severity in children. Single-channel SpO2 

recordings from 176 children were divided into three severity 

groups according to the apnea-hypopnea index (AHI): AHI<1 

events per hour (e/h), 1≤AHI<5 e/h, and AHI ≥5 e/h. Spectral 

analysis was conducted to define and characterize a frequency 

band of interest in SpO2. Then we combined the spectral data 

with the 3% oxygen desaturation index (ODI3) by means of a 

multi-layer perceptron (MLP) neural network, in order to 

classify children into one of the three OSAHS severity groups. 

Following our MLP multiclass approach, a diagnostic protocol 

with capability to reduce the need of polysomnography tests by 

46% could be derived. Moreover, our proposal can be also 

evaluated, in a binary classification task for two common AHI 

diagnostic cutoffs (AHI = 1 e/h and AHI= 5 e/h). High 

diagnostic ability was reached in both cases (84.7% and 85.8% 

accuracy, respectively) outperforming the clinical variable 

ODI3 as well as other measures reported in recent studies. 

These results suggest that the information contained in SpO2 

could be helpful in pediatric OSAHS severity detection. 

I. INTRODUCTION 

Pediatric obstructive sleep apnea-hypopnea syndrome 
(OSAHS) has emerged as a frequent and concerning medical 
condition in the past 2-3 decades. It is characterized by an 
abnormal breathing pattern during sleep that includes the 
recurrence of apneas (complete airflow cessation) and 
hypopneas (airflow limitation), caused by total or partial 
upper airway obstruction, respectively [1]. Inadequate gas 
exchange characterized by repetitive hypoxia, hypercapnia, 
and accompanied by arousal episodes during the night has 
been suggested as the cause for serious comorbidities related 
to central nervous system and cardiovascular and metabolic 
system [2]. Consequently, several daytime symptoms related 
to OSAHS, such as cognitive and behavioral irregularities as 
well as atypical growth are frequently present and reported 
by parents [3, 4]. Furthermore, the prevalence of OSAHS in 
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children is high, with studies reporting up to 5.7% among 
general pediatric population [4].  

The “gold standard” approach to diagnose OSAHS in 
children is overnight polysomnography (PSG) [4]. However, 
PSG has several limitations since it is both complex and 
costly due to the high number of physiological signals that 
need to be recorded [5]. Additionally, all these signals need 
offline inspection in order to derive the apnea-hypopnea 
index (AHI), which is used to establish whether OSAHS is 
present and its severity. Consequently, PSG is also time-
consuming [6]. Moreover, children often do not tolerate well 
the equipment involved in PSG [7]. 

These limitations have led to the search for simpler 
diagnostic alternatives. Thus, one common approach has 
been the study of the diagnostic ability of reduced sets of 
signals derived from those involved in PSG, such as 
electrocardiography (ECG), photoplethysmography (PPG), 
airflow (AF), or blood oxygen saturation (SpO2) [8-11]. 
Particularly, frequency and time domain analyses of ECG-
derived signals showed utility in pediatric OSAHS diagnosis 
[8]. Moreover, the analysis of pulse transit time variability 
from PPG was successfully used to classify time segments 
into apneic or non-apneic, as well as children into normal 
subjects and OSAHS patients [9]. Additionally, a recent 
study from our research group reported high diagnostic 
ability when combining the oxygen desaturation index (ODI) 
from SpO2 with spectral information from AF [10]. Finally, 
spectral, nonlinear, and statistical features from SpO2 and 
pulse rate variability (PRV) recordings were obtained and 
successfully combined to establish OSAHS in children [11]. 

In this study, however, we focus on the use of the 
information contained in a single-channel SpO2 to help in 
OSAHS severity detection. Our hypothesis is that exclusive 
utilization of data from the SpO2 channel could simplify the 
OSAHS diagnosis and severity assessment in children. 
Hence, the main objective of this preliminary work is to 
evaluate the diagnostic ability of the information contained in 
the SpO2 signal. Specifically, we analyze the spectrum of 
SpO2 recordings from children, divided into three groups 
according to their corresponding AHI. There exists a lack of 
consistency in the literature as to the optimal AHI cutoff to 
determine OSAHS in children, with most of the studies 

applying 1, 3, or 5 events per hour (e/h) [4]. We chose AHI  
1 e/h as the most restrictive cutoff to discard OSAHS and 
AHI ≥ 5 e/h to define a group with the highest OSAHS 
severity. Additionally, we formed another group with those 

patients in the range 1 ≤ AHI  5 e/h, which is recognized as 
the most challenging concerning the decision to implement 
treatment, usually consisting of surgical removal of tonsils 
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Figure 1.  Median PSD for each of the OSAHS severity groups 

 

Figure 2.  p-value vs. frequency for each of the three possible comparisons 
between groups. 

 

and adenoids [2]. Therefore, we here evaluate the spectrum 
of the SpO2 recordings from children in the three groups 
looking for discriminative features. Additionally, we use 3% 
ODI (ODI3) for comparison purposes. Finally, we combine 
the spectral information and ODI3 by means of an artificial 
neural network, a multi-layer perceptron (MLP) [12], in order 
to classify children into one of the three groups. This 
multiclass approach lets us define a protocol which includes 
doubtful subjects, as well as allows the evaluation, at the 
same time, of both AHI=1 e/h and AHI=5 e/h cutoffs from a 
binary classification point of view.  

II. SUBJECTS AND SIGNALS UNDER STUDY 

The study involved SpO2 recordings from 176 children 
(97 males and 79 females). All of them were clinically 
referred to the Pediatric Sleep Unit at the University of 
Chicago Medicine Comer Children’s Hospital (Chicago, IL, 
USA) due to suspicion of OSAHS. The Ethical Committee 
approved the protocol and an informed consent to participate 
in the study was obtained for each child. Overnight PSGs 
were conducted from 20:00 to 08:00. Recordings were 
acquired by means of a digital polysomnography system 
(Polysmith; Nihon Kohden America Inc., CA, USA). 
Detection and quantification of sleep and cardiorespiratory 
events were carried out according to the rules of the 
American Academy of Sleep Medicine [13]. Thus, apnea was 
defined as the absence of oronasal airflow during at least 2 
respiratory cycles. Accordingly, hypopnea was defined as a 
decrease ≥30% in the nasal pressure airflow signal lasting at 
least 2 respiratory cycles, leading to a desaturation ≥3% 
and/or an arousal [13]. As previously stated, children were 
divided into three groups according to their corresponding 

AHI: AHI under 1 e/h (AHI1), AHI in the range [1, 5) e/h 
(AHI[1,5)), and AHI equal or above 5 e/h (AHI≥5). Table I 
summarizes demographic and clinical data from subjects 
according to this division. No statistical significant 
differences (p-value<0.01) were found in age, gender, and 
body mass index (BMI) when applying the non-parametric 
Kruskal-Wallis test to compare the three groups. 

The SpO2 recordings were acquired during PSG at a 
sampling rate of fs = 25 Hz. Artifacts due to children 
movements were automatically removed during 
preprocessing. Thus, SpO2 values equal to zero as well as 
differences between consecutive SpO2 samples ≥4% were 
considered artifacts [14]. Removed samples were substituted 
by interpolated data. ODI3 was estimated as the number of 
desaturations (at least 3%) per hour of sleep time. 

III. METHODOLOGY 

The methodology was divided into three steps. First, a 
spectral analysis of the SpO2 recordings was conducted to 
look for differences among the three groups. Then we 
extracted several spectral features according to this analysis. 
Finally, we combined the spectral data and ODI3 through 
MLP to classify the children into one of the three classes.  

A.  Spectral analysis and feature extraction 

Power spectral density (PSD) was estimated for each 
SpO2 recording by means of the Welch’s method [15]. We 
used a Hamming window of 2

13
 samples (5.5 minutes), 50% 

overlap, and a discrete Fourier transform of 2
14

 samples. Fig. 
1 shows the median PSD for each group of OSAHS severity. 

Higher PSDs can be observed as the severity increases. A 
band of interest (BW) is also shown in the range 0.0137-
0.0473 Hz. This corresponds to the spectral bandwidth in 
which the three groups showed statistical significant 
differences (Mann-Whitney U test) in their PSD amplitude 
values (p-value = 0.01, p-value = 0.0033 after Bonferroni 
correction). In this case, BW is equivalent to the bandwidth 
in which AHI<1 and AHI[1,5) showed significant differences. 
Fig. 2 displays the p-value vs. frequency plots for each of the 
three possible comparisons. The limits of BW are easily 
located as the crosspoints between the AHI<1 vs. AHI[1,5)  p-
value (f) curve and the p-value significance level line (in red). 

 We extracted the following features from the BW of each 
PSD: maximum PSD value (MA), minimum PSD value (mA), 
spectral power (PS, as the area under the PSD at BW), and 
standard deviation of the PSD values (SDf). According to Fig. 
1, higher values were expected in these features as the 
OSAHS severity increases. After feature extraction, each 
subject under study is characterized by a vector xi (i= 1, 2… 

TABLE I.  DEMOGRAPHIC AND CLINICAL DATA 

 All AHI˂1 AHI[1,5) AHI≥5 

# Subjects 176 30 75 71 

Age+ (years) 7.0±3.6 8.2±3.3 7.3±3.5 6.1±3.6 

Male (%) 55.1 56.7 54.7 54.9 

BMI* (kg/m2) 20.6±7.3 20.5±6.8 20.6±6.7 20.7±8.2 

AHI (e/h) - 0.5±0.3 2.6±1.1 19.3±23.1 

BMI: Body Mass Index; AHI: Apnea Hypopnea Index; +p-value=0.016; *p-

value=0.816 



  

M, M = 176) whose 5 components are the corresponding 
values of the four spectral features and ODI3. 

B. Multi-layer perceptron 

MLP is a supervised learning algorithm whose 
architecture is arranged in several interconnected layers 
(input, hidden, and output). These are composed of units 
known as neurons or perceptrons [12]. Each neuron is 
characterized by an activation function g(∙) and their 
connections to neurons from other layers (wi, j). In our case, 
the input layer has five units, corresponding to the number of 
spectral features obtained for each subject (MA, mA, PS, SDf) 
and ODI3. Moreover, since the purpose is to carry out a three-
class classification, three output units with a logistic 
activation function were used. We also implemented a single 
hidden layer, composed of neurons with non-linear activation 
functions. This configuration is known to be able to provide a 
universal function approximation [12]. Since the number of 
neurons in the hidden layer (NH) controls the effective 
complexity of the network [12], we chose a small number, NH 
= 5, to prevent network from overfitting. Thus, the final 
input-layer:hidden-layer:output-layer architecture was 5:5:3 
neurons. The weights wi, j were optimized using the sum of 
squares error function minimization criterion by means of the 
scaled conjugate gradient algorithm [12]. For each subject 
under study, the final classification task was performed by 
assigning the corresponding xi (i= 1, 2…M, M = 176) to the 
class with the highest probability in the output layer. 

C. Statistical analysis 

The non-parametric Kruskal-Wallis test was used to 
assess statistical differences in the spectral features from the 
OSAHS severity groups. A confusion matrix was used to 
evaluate the performance of multiclass MLP. Also, to assess 
the output of MLP from a binary classification point of view, 
sensitivity (Se, percentage of OSAHS-positive subjects 
rightly classified), specificity (Sp, percentage of OSAHS-
negative subjects rightly classified), accuracy (Acc, overall 
percentage of subjects rightly classified), positive predictive 
value (PPV, proportion of positive test results which are true 
positives), negative predictive value (NPV, proportion of 
negative test results which are true negatives), positive 
likelihood ration (LR+, Se/(1-Sp)), and negative likelihood 
ratio (LR-, (1-Se)/Sp) measured the diagnostic ability for 
both AHI=1e/h and AHI=5 e/h cutoffs. All these statistics 
were obtained after leave-one-out cross-validation (loo-cv). 

IV. RESULTS 

Table II displays the values of the spectral features and 
ODI3 for each of the three OSAHS severity groups (mean ± 
standard deviation). All of them showed large statistical 
significant differences when comparing the three groups by 
means of Kruskal-Wallis test. As expected, the five features 
are higher as the OSAHS severity increases. 

Table III shows the confusion matrix resulting from the 
diagnostic ability assessment of the MLP network for the 
three-class classification task (results after loo-cv). A total of 
125 out of 176 subjects were rightly classified in their actual 
class (71.0%). Per classes, 50.0% (15 out of 30) of the 
subjects in AHI<1, 80.0% (60 out of 75) in AHI[1,5), and 
70.4% (50 out of 71) in AHI≥5 were rightly classified. 

Table IV shows the diagnostic ability of MLP and ODI3 
when assessing both the AHI = 1 e/h and AHI= 5 e/h cutoffs 
(results after loo-cv). MLP results are directly derived from 
the confusion matrix. For both cutoffs the global Acc of MLP 
is higher than the corresponding ODI3 (84.7% vs. 78.4% and 
85.8% vs. 76.7%, respectively). In the case of AHI=1 e/h, 
ODI3 is much more specific than MLP, leading to higher 
PPV and LR+. In the case of AHI=5 e/h, however, MLP 
outperforms ODI3 at each statistic. 

V. DISCUSSION AND CONCLUSIONS 

In this work, we have developed an automatic diagnostic 

methodology for pediatric OSAHS severity based on the 

information contained in single-channel SpO2. Features from 

a spectral band of interest and the clinical variable ODI3 

were combined by means of MLP to classify subjects into 

one out of the three OSAHS severity levels. 

 The spectral analysis of the SpO2 signal revealed a band 

of interest (BW=0.0137-0.0473 Hz) in which statistically 

significant differences were found for the three classes. The 

lower limit of BW is consistent with the corresponding band 

of interest in adults (0.014-0.033 Hz, i.e., events lasting from 

30 to 71 s) [16]. Conversely, a higher upper limit was found 

in children, suggesting shorter events as also significant for 

them. This agrees with the higher respiratory rate reported in 

children [17]. However, further analysis is required 

regarding the causes of the differences in both bands.  

The spectral features extracted from BW showed 

statistically significant differences when comparing the three 

TABLE II.   VALUES OF THE SPECTRAL FEATURES AND ODI3 

(MEAN±STANDARD DEVIATION) 

Features AHI˂1 AHI[1,5) AHI≥5 p-value 

ODI3 (e/h) 1.01±1.10 3.21±2.80 16.18±20.78 <10-17 

MA (W/Hz) 7.76±7.41 13.58±16.98 71.61±149.83 <10-12 

mA (W/Hz) 1.44±0.59 2.91±5.23 19.51±70.43 <10-11 

PS (W) (10-1) 7.80±4.32 15.15±21.02 97.74±248.19 <10-13 

SDf  (W/Hz) 1.84±1.81 3.23±4.12 16.31±27.29 <10-11 

 
TABLE III.  CONFUSION MATRIX FOR THE MLP MULTICLASS TASK 

(AFTER LOO-CV) 

  
estimated 

AHI<1 AHI[1,5) AHI≥5 

a
c
tu

a
l AHI<1 15 15 0 

AHI[1,5) 11 60 4 

AHI≥5 1 20 50 

 
TABLE IV.  DIAGNOSTIC ABILITY OF MLP AND ODI3 (BINARY 

CLASSIFICATION AFTER LOO-CV) 

 
Se 

(%) 

Sp 

(%) 

Acc 

(%) 

PPV 

(%) 

NPV 

(%) 
LR+ LR- 

ODI3 
(AHI=1) 

78.1 80.0 78.4 95.0 48.9 3.91 0.27 

ODI3 

(AHI=5) 
69.0 81.9 76.7 79.6 72.1 3.81 0.38 

MLP 
(AHI=1) 

91.8 50.0 84.7 89.9 55.6 1.84 0.16 

MLP 

(AHI=5) 
70.4 96.2 85.8 92.6 82.8 18.5 0.31 

 

 

 



  

classes. All of them reached higher values as the OSAHS 

severity increases. Since the ideal SpO2 time series is a 

constant, close to 100%, the higher PSD values in the 

frequencies correspond to more desaturations and recoveries 

to the baseline. Consequently, higher MA, mA, PS, and SDf 

suggest more desaturation events both in discrete 

frequencies (MA, mA) and in the whole band (PS, SDf), 

which is consistent with the clinically used severity 

classification of OSAHS. 

Our multiclass MLP proposal correctly classified 71% of 

the subjects. Although this overall accuracy is not high 

enough, a deeper study of the subjects wrongly classified 

reveals that the 11 children who belong to AHI[1,5), and were 

assigned to AHI<1, present an AHI of 1.65 ± 0.42 e/h. This 

means that 96.3% of subjects predicted as AHI<1 have no 

OSAHS or a low severity degree. Additionally, the 4 

children from AHI[1,5) assigned to AHI≥5 present an AHI of 

3.0 ± 1.7 e/h, i.e., 100% of children predicted as AHI≥5 have 

severe OSAHS or a higher severity degree comparing with 

the mean of the AHI[1,5) class. Finally, children assigned to 

AHI[1,5) come from the three classes: AHI<1 (15.8%), AHI[1,5) 

(63.2%), and AHI≥5 (21.0%). Consequently, subjects 

assigned to this class should be regarded as inconclusive. A 

screening protocol could be generated from these results as 

follows: i) if MLP predicts AHI<1, discard OSAHS; ii) if 

MLP predicts AHI≥5, consider treatment; iii) if MLP predicts 

AHI[1,5), send to overnight PSG. Since the SpO2 signal is 

easily acquired from an oximeter, such a protocol would 

reduce the need by 46% (81/176) of overnight PSGs. 

Other studies analyzed physiological signals to help in 

pediatric OSAHS diagnosis. All of them reported results 

from a binary classification point of view. Shouldice et al. 

analyzed 50 ECG recordings, reaching 85.7% Se, 81.8% Sp, 

and 84.0% Acc using a quadratic linear discriminant applied 

to 23 features (AHI cutoff = 1 e/h) [8]. Gil et al. assessed the 

diagnostic ability of information contained in 21 PPG time 

series, reporting 75.0 % Se, 85.7% Sp, and 80.0% Acc (AHI 

cutoff = 5 e/h) [9]. Gutiérrez-Tobal et al. combined spectral 

features from 50 AF recordings with ODI3 from SpO2 to 

achieve 85.9% Se, 87.4% Sp, and 86.3% Acc with a logistic 

regression methodology (AHI cutoff = 3 e/h) [10]. Finally, 

Garde et al. reported 83.6 % Se, 88.4% Sp, and 85.0% Acc 

in a 146 subject database by combining 8 features from 

SpO2 and PRV in a linear discriminant [11]. Our MLP 

methodology can be assessed for AHI =1 e/h and AHI = 5 

e/h at the same time (84.7% and 85.8% Acc, respectively). 

Only Gutiérrez-Tobal et al. reported higher Acc. However, 

they used two channels and the AHI cutoff was 3 e/h. 

This work has some limitations that are worthy of 

mention. First, although the number of subjects is not small 

when comparing to other similar studies, more children, 

particularly those with AHI<1 e/h, would be necessary for 

the sake of a proper MLP training. This would include a 

training-test strategy as well as the evaluation of a range of 

neurons in the hidden layer, which was arbitrary set to a low 

value in order to decrease the chances for overfitting. 

Additionally, more subjects would also let us use a training 

set from which we could independently obtain the spectral 

band of interest. However, a loo-cv methodology was used 

to validate our results. Finally, the use of features from time 

domain could complement our findings. One future goal is 

the assessment of features and classification models other 

than those presented in this work using a larger dataset. 

  In summary, we have developed a multiclass MLP 

methodology with capability to help in pediatric OSAHS 

severity screening. The SpO2 features obtained from a 

frequency band of interest, combined with ODI3 through 

MLP, outperform the single diagnostic yield of this clinical 

variable. Our proposal can be also evaluated for binary 

classification purposes, reaching high diagnostic ability 

comparing with recent state-of-the-art studies. Thus, our 

results suggest that the information contained in single-

channel SpO2 is helpful to detect severity categories among 

children with OSAHS that are worthy of mention.  
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