
  

 

Abstract— The aim of this study was to characterize brain 
dynamics during an auditory oddball task. For this purpose, a 
measure of the non-stationarity of a given time-frequency 
representation (TFR) was applied to electroencephalographic 
(EEG) signals. EEG activity was acquired from 20 
schizophrenic (SCH) patients and 20 healthy controls while 
they underwent a three-stimulus auditory oddball task. The 
Degree of Stationarity (DS), a measure of the non-stationarity 
of the TFR, was computed using the continuous wavelet 
transform. DS was calculated for both the baseline [-300 0] ms 
and active task [150 550] ms windows of a P300 auditory 
oddball task. Results showed a statistically significant increase 
(p<0.05) in non-stationarity for controls during the cognitive 
task in the central region, while less widespread statistically 
significant differences were obtained for SCH patients, 
especially in the beta-2 and gamma bands. Our findings 
support the relevance of DS as a means to study cerebral 
processing in SCH. Furthermore, the lack of statistically 
significant changes in DS for SCH patients suggests an 
abnormal reorganization of neural dynamics during an oddball 
task. 

I. INTRODUCTION 

Schizophrenia (SCH) is a psychiatric disorder 
characterized by a cluster of symptoms and signs that vary 
between subjects. These symptoms include hallucinations, 
reduced motivation and delusions, among others [1], 
frequently accompanied by impairment in cognitive 
processing. SCH onset often appears during early adulthood 
[2]. It has an estimated prevalence of 0.5-1% [2]. It has been 
suggested that SCH is associated with abnormal neural 
synchronization and cognitive dysfunctions [3].  

Electroencephalographic (EEG) recordings have been 
used in many studies to study alterations in cognitive 
processing in SCH patients through the analysis of event-
related potentials (ERPs) such as the P300 wave [4]. In this 
regard, several P300 abnormalities were observed in 
comparison to healthy subjects, such as a decrease in P3b 
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(i.e., a subcomponent of P300, a positive going-amplitude 
that peaks around 300 ms after a relevant stimulus) [5]. 

Time-frequency analyses overcome several limitations of 
traditional ERP analyses, such as the lack of simultaneous 
time and spectral information. Time- frequency analyses 
comprise a variety of methods that capture different aspects 
of magnitude and phase of EEG oscillations and provide 
information about neural activity [4]. Several classical 
methods, such as Spectral Entropy (SE) and Median 
Frequency (MF) have been used to analyze transient 
dynamics in neural activity [5], [6]. These studies showed 
differences between SCH patients and healthy controls 
regarding the response to relevant stimuli during an auditory 
oddball task. Specifically, compared to controls, SCH 
patients displayed a reduction of SE changes between 
response and baseline for both target and distractor tones. In 
the case of MF, it was similar for both patients and controls 
in the baseline window, whereas patients showed a 
significantly smaller MF change than controls during the 
active task window [5], [6]. 

In this study, we applied a recent measure to characterize 
the non-stationarity of a time-frequency representation 
(TFR): the Degree of Stationarity (DS). It was introduced by 
Huang et al. [7] and particularized for TFRs by Tong et al. 
[8]. In contrast to classical methods, such as SE or MF, DS is 
a frequency-dependent measure that is able to quantify the 
fluctuations in a TFR. Furthermore, a previous study 
suggested that an increased amount of noise power (NP) is 
associated with cognitive deficit in SCH [9]. Additionally, 
significant NP interference in the modulation of EEG activity 
during a cognitive task was found. This study also suggested 
that an increased amount of NP in the gamma band was 
associated with a decrease in SE change [9]. As DS measures 
the non-stationarity of a TFR, it could be useful in order to 
characterize the noise level at different frequency bands 
during the baseline and response windows, as well as 
assessing possible differences between SCH patients and 
controls.  

The aim of this study was to analyze whether DS could be 
useful to study neural fluctuations and reorganization during 
an auditory oddball task. Furthermore, we also explored 
whether neural dynamics in SCH could be characterized by 
specific patterns of non-stationarity. 

II. MATERIALS 

A. Subjects 

The participants in the study were 20 SCH patients and 
20 healthy controls. The SCH group was formed by 20 
patients (age 32.78±9.49 years, mean ± standard deviation, 
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SD). Patients were diagnosed according to the Diagnostic and 
Statistical Manual of Mental Disorders 5th edition (DSM-V) 
[2]. The control group was formed by 20 healthy volunteers 
(age 33.40±10.55 years, mean ± SD). Patients and controls 
were matched according to age and sex. 

Written informed consent was obtained from SCH 
patients, as well as from healthy controls, after providing full 
written information. The research board of the Valladolid 
University Hospital endorsed the study according to The 
Code of Ethics of the World Medical Association 
(Declaration of Helsinki). 

B. Electroencephalographic Recordings 

EEG recordings were acquired with a BrainVision® 

(Brain Products GmbH; Munich, Germany) system, 
consisting of 32 sensors mounted in an electrode cap 
(Electro-Cap International, Inc.; Eaton, Ohio, USA) and 
placed according to the International 10/20 System. Thirteen 
minute-length recordings were acquired at a sampling rate of 
500 Hz. Participants underwent a three-stimulus auditory 
oddball task. The tones (duration 50 ms, rise and fall time 5 
ms, and intensity 90 dB) were presented to participants in 
random 600 tone series consisting of target (500 Hz tone), 
distractor (1000 Hz tone), and standard (2000 Hz tone), with 
probabilities of 0.20, 0.20, and 0.60 respectively. Participants 
were asked to press a button whenever they heard a target 
tone. Unattended target tones were discarded, that is, only 
target tones followed by a button press were taken into 
account. 

The recordings were referenced over Cz electrode and re-
referenced to the average activity of all active sensors [10], 
yielding a total of 33 channels. Electrode impedance was kept 
under 5 kΩ. Then, each ERP recording was filtered with a 1-
70 Hz finite impulse response (FIR) filter and a 50 Hz notch 
filter. Channels TP9 and TP10 were subsequently discarded 
due to abundant muscle artifacts throughout most recordings, 
reducing the channel count to 31. Afterwards, a two-step 
artifact rejection procedure was conducted. Firstly, an 
independent component analysis (ICA) was carried out to 
decompose ERPs into 31 components; then, after a visual 
inspection, ICA components associated with artifacts such as 
eye blinks were discarded. Secondly, EEG recordings were 
segmented into 1000 ms epochs (-300 ms to 700 ms with 
respect to the stimulus onset, 500 samples per epoch). 
Finally, data were reconstructed and artifacts were 
automatically rejected by means of an adaptive thresholding 
method in order to remove ERP trials displaying amplitudes 
that exceeded a statistically based local threshold [11].  

III. METHODS 

A. Continuous Wavelet Transform 

EEG time-frequency analysis can provide additional 
information that is not apparent in the ongoing EEG. It has 
been revealed that there are event-related changes in the 
magnitude and phase of EEG oscillations at certain 
frequencies [4]. In this study, the method used to compute 
time-frequency maps was the Continuous Wavelet Transform 
(CWT). 

The CWT is a TFR conceptually related to the windowed 
short-term Fourier transform (STFT) [12]. A wavelet is zero-

mean, limited duration waveform that is characterized by 
being relatively localized in both time and frequency. They 
also  have large fluctuating amplitudes during a restricted 
time period and very low amplitude outside of that time range 
[13]. In order to accurately characterize a biological signal, 
such as EEG, it must provide a biologically plausible fit to 
the modeled signal. One such waveform is the Morlet 
wavelet, a Gaussian-windowed sinusoidal wave [3]. 

The CWT is defined as the convolution of x(t) with a 
scaled and translated version of the ‘mother wavelet’ 
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where a is the scale factor, τ is the time interval and h(t) is the 
‘mother wavelet’ [12]. The scale factor was set to include 
frequencies from 1 to 70 Hz in intervals of 0.5 Hz [11]. 

B. Degree of Stationarity 

DS characterizes the non-stationarity of a TFR at each 
frequency. Therefore, it is useful to quantify the fluctuations 
of the neural dynamics in ERPs. It is defined in equation (2), 
through the marginal frequency distribution, tfr(ωi), described 
in equation (3) [8] 
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where tfr(ωi,nΔt) is constant for stationary signals at each ωi, 
that is, tfr(ωi)= tfr(ωi,nΔt). In such a case, DS(ωi) is equal to 
zero. DS(ωi) increases as the signal becomes less stationary at 
a given frequency ωi. 

In this study, DS values were computed using the wavelet 
scalogram (WS) as an estimation of the TFR. The WS is 
calculated as the squared modulus of the CWT coefficients 

     2
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One second-length target trials were decomposed into the 
baseline, defined as the [-300 0] ms window (where 0 marks 
the stimulus onset), and the response [150 550] ms window. 
DS values were computed separately for each of these 
windows and averaged in five frequency bands: theta (θ, 4-8 
Hz), alpha (α, 8-13), beta-1 (β1, 13-19 Hz), beta-2 (β2, 19-30 
Hz) and gamma (γ, 30-70 Hz). Of note, the delta band was 
excluded from the analysis, as its associated wavelet duration 
is longer than hundreds of milliseconds. It requires a window 
length longer than the baseline and response intervals to be 
correctly analyzed [14]. 

C. Statistical Analysis 

Initially, an exploratory analysis was performed to 
analyze data distribution. Normality was tested with a 
Kolmogorov-Smirnov test and homoscedasticity with a 
Levene test. These analyses revealed that the data did not 
meet parametric test assumptions. Therefore, in order to 
analyze the within-group statistical differences between the 
values of DS in the baseline and response windows, the 
Wilcoxon signed rank test was used. A false discovery rate 



  

 
Figure 1. Sensor-level DS maps at baseline and active window for controls and SCH patients at each frequency band 

under study (p-values of the within group differences are shown in the right column). 

(FDR) correction was applied to the p-values in order to 
minimize type I error [15]. 

IV. RESULTS AND DISCUSSION 

DS was computed in the baseline and response windows 
for the five frequency bands previously defined. For every 
subject, DS was initially obtained at every electrode. Then, 
DS values were averaged across all trials for each frequency 
band. The Wilcoxon signed rank test results for healthy 
controls and patients, as well as the average DS of all 
subjects, are shown in Fig. 1. The control group shows a 
statistically significant increase (p<0.05) of DS values 
between the baseline and response windows at several 
electrodes in the central region. This is especially significant 
in the beta-1 and beta-2 bands, which also exhibit the lowest 
degree of stationarity during the baseline window. This result 
is in agreement with previous studies that found a significant 
reorganization of neural dynamics from baseline to active 
window during an auditory oddball task using SE and MF 
[6], as well as Wavelet Entropy [16]. Interestingly, a similar 
pattern of statistical differences appears in all frequency 
bands, which may be partly due to the definition of DS. 

On the other hand, in the SCH group the areas of 
statistically significant change between baseline and response 
values are less widespread, especially in the beta-2 and 
gamma bands. This finding suggests that healthy subjects 
exhibit a greater reconfiguration of brain activity than SCH 

patients during the cognitive task. Indeed, this result can be 
linked to the abnormal neural network reorganization 
previously found in SCH patients during an oddball task [5]. 
In addition, SCH patients show higher DS values during the 
baseline window than healthy controls in the beta-2 band. 
This result indicates a higher non-stationarity in brain 
function during resting state and could be related with the 
cortical hyper-activation previously found in SCH [9].  

As previously stated, DS is a frequency-dependent 
measure, which is helpful to quantify TFR fluctuations across 
a frequency range. In this regard, Fig. 2 shows DS values for 
all SCH patients and controls at electrode Pz across the 
frequency range under study. This property could prove 
useful in order to characterize the evolution of certain non-
stationarity patterns and study their behavior in different 
frequency bands. This would allow a detailed examination of 
which frequencies change the most (or least) in stationarity 
during neural fluctuations and reorganization after an 
auditory oddball task. It would also help evaluate whether 
there are significant differences in change from the baseline 
to the active task window between SCH patients and controls, 
as well as which group exhibits more stationarity before and 
after the task. 

There are some limitations in this study. Firstly, the 
sample size should be increased. Secondly, it would be 
interesting to include other measures of non-stationarity such 



  

 
Figure 2. DS values for controls and SCH patients at 

electrode Pz. The thick black line represents the 
average values. 

as Kullback-Leibler Distance (KLD) [6]. Previous studies 
have found a reduction of the evoked response in the delta 
band [17], so this frequency band could be included in future 
research. Finally, there are other TFRs that could be used as 
well, such as the Hilbert-Huang Transform (HHT) [7] or 
STFT instead of CWT.  

V. CONCLUSION 

To summarize, in this study we applied a novel measure 
that quantifies the non-stationarity of a TFR. Our findings 
suggested that it may prove useful in order to characterize 
neural dynamics during an auditory oddball task. We have 
found non-stationarity changes in the central and lateral 
regions in controls that are less pronounced in patients, which 
may characterize differences in neural dynamics between 
controls and SCH patients. Furthermore, the differences in 
non-stationarity changes between SCH patients and controls 
lead us to suggest that SCH is accompanied by abnormal 
neural network reorganization during an auditory oddball 
task. In conclusion, we have found that DS could prove to be 
a useful tool for characterizing brain dynamics during an 
auditory oddball task by measuring changes in non-
stationarity across a wide frequency band. 
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