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Abstract 

Liquid-liquid displacement porosimetry (LLDP) has been used to characterize several UF 

membranes in a wide range of molecular weight cut-offs (MWCO). A new method to 

convert porosimetric data into pore size distributions and related information has been 

developed based on assuming log-normal pore size distributions. The results of this are in 

good agreement with those from the customary data conversion algorithm (as derived by 

Grabar and Nikitine). The proposed method can also be used when a reduced number of 

experimental data points is available, leading to a significant reduction of data acquisition 

time needed to complete a reliable analysis. 
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1. Introduction 

Membranes and membrane processes are regularly used in industrial applications for both 

gas and liquid separations. These applications cover from separations of particles and 

macromolecules to small ions, and the characteristics of the employed filters vary 

accordingly. For most of the separations based on the application of a pressure gradient 

across the membrane, namely microfiltration (MF), ultrafiltration (UF) and nanofiltration 

(NF), sieving is the main separation mechanism and therefore, the relative size of the 

membrane pores/interstices and the molecules to be retained, is the key factor to control 

separation. The typical membrane structure consists of a separation controlling layer (active 

layer), supported on a more open pore substructure (support layer) intended to give 

mechanical stability and resistance to the resulting membrane.  

A proper knowledge of the porous structure of a membrane is very important to assess its 

separation capabilities. 

This kind of knowledge is the target of multiple characterization methods than can be 

grouped under the term porometries. These methods are based on very different physical 

principles but all of them try to obtain about the pore size distribution (PSD), from which 

important separation parameters such as mean, maximum and minimum pore sizes, 

porosity or pore density can be calculated. Methods based on the bubble point test have 

been gaining recognition due to their unique capabilities. For example these methods test 

the membrane in wet state, very close to the real operation conditions. In addition, the 

information given refers only to active layer pores (even when the support is not detached 

from the whole membrane). 

There are two methods based on the bubble point: the gas-liquid displacement porosimetry 

(GLDP) and the liquid-liquid displacement porosimetry (LLDP), whose main difference 
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relies on the state of the fluids used for displacing the inner liquid. Both techniques have 

been indistinctly named as capillary flow porometry, [1], liquid extrusion porometry, [2], or 

even combined bubble pressure and solvent permeability method, [3, 4], but all of them 

refer to the same principle, [5]. 

Both LLDP and GLDP are well-known and very similar in concept and even in operation 

mode. Nevertheless GLDP has gained general recognition while LLDP is still scarcely 

used, because it is more difficult to operate and less reproducible. Some of the authors have 

been working over in the last years to improve LLDP in an effort to show the potential of 

the method, especially for tight UF and NF membranes where other methods have strong 

difficulties to get reliable results. One of the features of the LLDP that makes it less 

attractive than GLDP is the shape of the distributions it provides. Certainly the nice aspect 

of the GLDP results is a consequence of a continuous measurement procedure. Commercial 

GLDP apparatuses usually divide the experimental range in 256 data points and determine 

corresponding data pairs (flux, pressure), resulting in a very smooth Gaussian distribution. 

The same procedure is not accomplished in LLDP because liquid-liquid equilibrium usually 

takes longer time (the whole experiment should take some hours) and there is no guarantee 

of obtaining superior results to GLDP.  

Different algorithms are used to process data from GLDP and LLDP experiments. Gas-

liquid experiments need to account for different gas flow regimes, namely Knudsen 

molecular flow along with Hagen-Poiseuille convective transport [6]. Moreover, the 

dependence of the gas permeability with applied pressure requires a different experimental 

procedure (wet run followed by dry ones) and different algorithms to convert experimental 

results into pore size information. The algorithms which could be used for processing data 

from LLDP experiments have been reviewed by Morison [7], who found that all of them 
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are very sensitive to experimental errors requiring some smoothing to get reasonable 

distributions. Some authors have performed spline smoothing to get better results from 

LLDP, [8, 9], based on a polynomial fitting that somehow loses the physical meaning. 

The approach in this work is to begin assuming a log-normal PSD and then fit the 

experimental results to such theoretical function. A similar approach was used by 

Aimar et al. [10] to fit log-normal distributions from retention data, sometimes combined 

with moment theory to get more insight into theoretical distributions [11, 12]. Most of the 

membranes found in the market are well described by a log-normal distribution of pore 

sizes, [13], with a continuous range from many very small  pores to few much bigger ones. 

This should lead to a right skewed distribution which is better described by a log-normal 

function. 

 

2. LLDP theory 

2.1. Traditional methods to determine pore number distribution 

The final aim of LLDP characterizations is to determine the PSD of a porous sample, in this 

case a membrane. This technique is based on the Young-Laplace equation which relates the 

surface tension of a fluid inside a capillary with the radius of such capillary. The 

experimental procedure consists in forcing a liquid to enter the pores of a membrane 

previously filled with another immiscible liquid (wetting liquid). 

If a perfect wetting of the membrane by the wetting fluid is assumed, the needed pressure to 

empty a given cylindrical pore is related to the radius of such pore through the so called 

Cantor equation (Eq. (1)) [14]. 

r

 γ2
ΔP   (1) 
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where ΔP is the applied pressure and  the interfacial tension (N/m) between both liquids 

and r the equivalent pore radius. 

This technique accounts for the narrowest section of the pores, because these pore-throats 

effectively govern the fluid transport and the retention capabilities of the membrane, no 

matter how complicated the membrane structure is. 

The increase in the applied pressure is linked to an increase in the flow due to the opening 

of new smaller pores. Therefore, by measuring the equilibrium pressure drop corresponding 

to each increment of flux, the basic experimental information from LLDP is obtained.  

A transport model inside the pores is then required to get the PSD. The Hagen-Poiseuille 

equation through capillary cylindrical pores is regularly used for convective transport of 

liquids inside pores. This geometry assumption is not as restrictive as it may look, since 

many membrane geometries can be simplified to a group of more or less straight cylindrical 

t pores having a radius equal to the narrowest section of the actual pores found in the 

membrane structure. Therefore, the flux Ji (m
3
/m

2
s) associated to the pores of radius ri (m) 

of the membrane, when a transmembrane pressure ΔP (Pa) is applied, is given by the 

Hagen-Poiseuille equation (Eq. (2)). 

ΔP 
l η 8

r  πN
J

4

ii
i   (2) 

where Ni (pore/m
2
) is the pore number density of pores having a radius ri, η (Pa·s) is the 

viscosity of the displacing liquid and l (m) is the length of the pores (usually the active 

layer thickness).This term should include a tortuosity factor for not so regular geometries 

However, the experimental flow values obtained are not associated to a single pore size, but 

to those pores with radii higher or equal to the radius obtained through the Cantor equation 

(Eq. (1)) for the given applied pressure. Thus, Eq. (2) cannot be directly applied to obtain 
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the number of pores of a given pore size and then, more complex mathematical procedures 

have to be carried out in order to discriminate the contribution of each pore size to the 

global flux. Different methods have been developed for that purpose, such as the original 

method of Erbe [15], based on a graphical evaluation, and the method of Grabar and 

Nikitine [14], which has been selected for this work, and it will be briefly explained below 

The volumetric flux for a given ΔP (J(ΔP)) is defined in terms of the number of pores per 

unit area through Eq. (3). 

       dr rf ΔPr,J NΔPJ
maxr

r
nV  (3) 

where N is the total number of pores per unit area (pore/m
2
), JV(r, ΔP) is the volumetric 

flow (m
3
/s) through a single pore of radius r at ΔP and fn(r) is the probability distribution 

function value for a pore of radius r. 

The pore number distribution (n(r)) is defined as the number of pores per unit area and per 

unit radius, and can be calculated using Eq. (4) which is based on the probability 

distribution function fn(r). 

   rf Nrn n  (4) 

Therefore, the number of pores per unit area with radii between rA and rB (NAB) is given by 

Eq. (5). Note that if the limits of integration are 0 and ∞ the result of the integral is the total 

pore population, N. 

    
B

A

B

A

r

r
n

r

r
AB dr rf N dr rn N  (5) 

Taking into account the Hagen-Poiseuille equation and Eq. (4), it is possible to rewrite 

Eq. (3) to obtain the volumetric flux, as long as the variables are assumed to be independent 

of pressure. 
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   



r

4 dr rn r 
l  8

P 
ΔPJ




 (6) 

where the limits of integration are the lowest radius which is opened at the applied 

transmembrane pressure ΔP (given by Cantor equation) and the highest radius of the 

membrane which is denoted as ∞, because probability distribution is 0 for r > rmax. 

According to Grabar and Nikitine method [13], Eq. (6) has to be differentiated, substitute 

radius by pressure using the Cantor equation, and then, calculate the number of pores per 

unit area and per unit radius for a given differential of pressure through Eq. (7). 

 
    









ΔP

J

ΔPd

dJ
 

 γ2 π

ΔP l η 8
rn

5

5

 (7) 

The algorithm derived by Grabar and Nikitine is, essentially, a differential algorithm which 

requires the continuous curve of permeability variation for its derivation. However, 

experimental procedures only give discrete values of flow and pressure, so Eq. (7) has to be 

converted in an incremental equation as follows. 

 
    

















av

av

5

5

av
av

P

J

P

J
 

 γ2 π

P l η 8
rn  (8) 

where the subscript “av” indicates the average value of the variables in the given increment 

and ΔJ and Δ(ΔP) are the increments between two experimental consecutive data pairs, 

ΔJ = Ji-Ji-1 and Δ(ΔP) = ΔPi- ΔPi-1, where the subscript i is the i-th experimental point. The 

ratio ΔJ/Δ(ΔP) is the permeability increment (ΔL) while the ratio Jav/ΔPav is the mean 

permeability (Lav) in that increment. These ratios represent the slope of the porosimetric 

curve in the considered point and the slope of the straight line passing from that point and 

the origin, respectively. 
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In conclusion, from the experimental flow values as a function of pressure and knowing the 

membrane area and thickness, Eq. (8) can be used to get the number of pores per unit area 

and unit radius (n(r)). From this pore number distribution, it is possible to determine several 

membrane parameters as explained in section 2.3. 

 

2.2. New approach to analyze LLDP results 

In  our new approach, the idea is to create a theoretical membrane with a log-normal pore 

number distribution and total pore number density that produces the actual membrane flux 

as function of pressure.  

The first step is to define a suitable probability distribution function (fn(r)) for the 

theoretical membrane. As mentioned above, among the several probability density 

functions, it has been reported that log-normal distribution is suitable for the pore number 

distribution of many membranes [7, 16]. The log-normal distribution is given by Eq. (9). 

 
 

 
  
























2

n
Sln

Rr / ln
 

2

1
-exp 

 π2r  Sln

1
rf  (9) 

where the parameters R (m) and S (dimensionless) are the geometric mean radius or 

location parameter and the geometric standard deviation or scale parameter, respectively. 

Therefore, the pore number distribution of the membrane can be obtained by combining 

Eqs. (4) and (9). 

 
 

 
  
























2

Sln

Rr / ln
 

2

1
-exp 

 π2r  Sln

N
rn  (10) 

where N is the total pore number density (pore/m
2
) which is the third and last parameter of 

this model. 
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Using Eq. (6), which gives the flux for a given transmembrane pressure ΔP, the membrane 

surface area (A) and the pore number distribution given by Eq. (10), the flow at a given 

pressure is obtained as follows. 

 
 

 
 



























r

2

3 dr 
Sln

Rr / ln
 

2

1
-exp r 

 l η Sln  π2 8 

ΔP A π N
ΔPJ  (11) 

The limits of integration are again the radius of the smallest pore which is opened at the 

applied transmembrane pressure ΔP and the radius of the biggest one. 

The next task is to fit N, R and S to the LLDP characterization values in order to make this 

theoretical membrane behaves as closely as possible to the real one 

For that purpose initial values are given to the R, S and N parameters. This step is of great 

importance in real applications (such as in quality control processes), since the fitting 

procedure strongly depends on how close are these values to the final ones. Nevertheless, as 

the goal of this work is to evaluate the feasibility of the proposed approach, the initial 

values of R, S and N were 1.5·10
-9

 m, 1.5 and 5·10
15

 pore/m
2
, respectively, for all the 

membranes and procedures (estimations based on previous knowledge about such values 

for typical membranes). 

LLDP characterizations give discrete pairs of flow and pressure values. Given the initial 

values of R, S and N and using the experimental pressure values, in Eq. (11), a first 

estimate of the flow can be obtained. Usually, calculated flow values are far from the 

experimental ones and new R, S and N values have to be found. For this, an objective 

function was created using the sum of the squared residuals of the k-th flow data, defined as 

the square of the difference between the experimental flow (Jk, experimental) and the flow 

provided by the model (Jk, modelled) as follows. 
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 
2

modelled k,lexperimena k,

2

k JJe   (12) 

The objective function is minimized by the least squares method (using the GRG2 

algorithm as implemented in Microsoft Solver). In this way, the fitted parameters R, S and 

N correspond to a theoretical membrane whose behavior resembles that of the actual 

membrane. 

One of the advantages of this model is that no differentiation of Eq. (3) is needed and thus, 

errors are minimized. In addition, the discrete experimental information is transformed into 

a continuous function, allowing more comprehensive analysis of the resulting distributions, 

which can be compared from the parameters of the resulting log-normal PSD’s. 

 

2.3. Membrane properties from LLDP analysis 

The LLDP results give a pore number distribution as a function of the radius (n(r)), from 

where, it is possible to determine several parameters: 

1) The differential pore number distribution, expressed as a percentage, is given by 

Eq. (13). 

Differential pore number distribution  
 

 

 
100 

N

rn
100 

dr rn

rn
%

0






 (13) 

2) In order to determine the permeability distribution of the membranes, the 

probability distribution function fL(r) (m
-1

) has to be defined to calculate the 

permeability LAB associated to the pores with radius between rA and rB with respect 

to the total permeability (Ltotal). 

 
B

A

r

r
L

total

AB dr rf
L

L
 (14) 
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Taking into account that L=F/ΔP, Eq. (6) can be rewritten, so the integration from 

rA to rB and from 0 to ∞ give LAB and Ltotal, respectively. By combining all the 

equations, the probability distribution function for the permeability can be obtained 

as shown in Eq. (15). 

 
 

 




0
n

4

n

4

L

dr rf r

rf r
rf  (15) 

Therefore, the differential permeability distribution, expressed as percentage, is 

given by Eq. (16). 

Differential permeability distribution  
 

 
100 

dr rf

rf
%

0
L

L




  (16) 

3) Finally the cumulative distributions, expressed as percentage, are the summation of 

the differential distributions from radius zero to radius r. 

4) The asymptotic permeability is the permeability once all the pores have been 

opened and it was already denoted as Ltotal. 

5) The mean radius based on the pore number distribution (<r>number) gives the mean 

pore radius of the membrane weighting the radius of each pore by the number of 

them (Eq. (17)). 

 

 







i

i

i

ii

number
rn

r rn

r  (17) 

6) The mean radius based on the permeability distribution (<r>perm) gives the mean 

pore radius of the membrane weighting the radius of each pore class by the 

permeability related to them (Eq. (18)). 
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 

 







i

iL

i

iiL

perm
rf

r rf

r  (18) 

7) Membrane molecular weight cut-offs (MWCO) can be successfully estimated by 

finding the highest radius of 90 % of the smallest pores (cumulative pore number 

distribution equal to 90 %) and then, matching this radius with that of a dextran 

molecule having the same effective diameter [17]. The procedure has been 

explained in detail elsewhere [17, 18]. 

 

3. Experimental 

3.1. Membranes and sample preparation 

A variety of commercial flat-sheet membranes with MWCO ranging from 5 to 300 kDa 

were characterized by LLDP and the explained technique. The properties of these 

membranes, according to manufacturers, are gathered in Table 1. 

In order to applied LLDP analysis, several membrane coupons were cut in flat disk pieces 

where the effective diameter for the analysis was 36 mm, as defined by the holder size. All 

the analyses were done to the pristine membranes which were conditioned by washing and 

soaking them in Milli-Q water for at least 48 h. Then, previously to the characterization, 

membranes were soaked in the wetting liquid for 12 h. Just before the analysis, the soaking 

was carried out under vacuum (created by a water jet pump) for 45 min to ensure the 

complete wetting of the sample. 

Table 1 

 

3.2. LLDP porosimeter and analysis procedure 
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The LLDP porosimeter was set up and tested at the University of Valladolid [19-21]. Both 

the equipment and the experimental procedure have been comprehensively described 

elsewhere [19]. Nevertheless, the main features are described below. 

The displacing liquid is pumped by the use of a precise syringe pump ISCO-250D which 

allows a very accurate and stable flux without the need of any dampening system. The 

operation mode consists in fixing a determined flow and then, waiting for the pressure to 

stabilize. Increasing the flow stepwise, the experimental pairs of data of flow as function of 

pressure are obtained. As already explained at each equilibrium pressure the pores of a 

given size are opened. 

Evidently the successive pressure increments (more precisely flow increments) should lead 

to higher permeability values until the asymptotic permeability (Ltotal) is reached. This 

asymptotic permeability should correspond to that of the actual membrane for the 

displacing liquid once all the pores have been emptied from the wetting liquid. However, in 

practice, due to uncertainty of experimental data consecutive data points could lead to 

values of decreasing permeability. These permeabilities would be interpreted as newly 

wetted pores which is impossible, thus, the data conversion algorithm eliminates these 

decreasing permeability points. 

 

3.3. Wetting and displacing liquids and physical parameters 

The employed wetting liquid was the alcoholic phase of a two phase mixture of Milli-Q 

water and isobutanol of reagent grade (1:1 w/w) while the displacing liquid corresponds to 

the aqueous phase. The mixture was prepared by mixing proper amounts of water and 

alcohol into a separator funnel, shaking it vigorously and settling it overnight. The 

separated alcohol-rich phase was drained off and used as the wetting liquid and the 
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aqueous-rich phase was used as the displacing liquid. The resulting surface tension between 

both liquids is 1.9 mN/m and the viscosity of the displacing liquid is 8.9·10
-4

 Pa·s, [22]. 

The last parameter, which is needed to convert flux distributions into absolute pore number 

distributions, is the pore length (l) which is estimated as either the thickness of the active 

layer in asymmetric membranes or the membrane thickness for symmetric ones. As this 

value is unknown for the characterized membranes, a pore length of 5 m was assumed. 

This assumption only affects the value of N, but note that the effect of such assumption is 

the same for both the traditional method and the proposed approach since, in any case, both 

actually calculate the ratio N/l. Of course, either technique could be used to evaluate the 

porosity if the length is known and vice versa. 

 

4. Results and discussion 

4.1. Physical meaning of the model parameters 

The proposed analyzing strategy for LLDP results consists in fitting the actual results to an 

ideal membrane which has a log-normal distribution of pores characterized by three 

parameters (N, R and S). The R and S parameters (from the log-normal distribution) define 

the position and shape of the pore number distribution. An increase in R leads to a shift to 

the right of the distribution (higher membrane pores) whereas an increase in S means a 

broadening of the curve which is more significant for the largest pore sizes. On the other 

hand, the N parameter (coming from the Hagen-Poiseuille equation), does not affect the 

shape and features of the pore number distribution, but it is related with the overall flow 

that passes through the membrane. In other words, the higher R and/or S are, the lower N is 
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needed to achieve a certain permeate flux is for a given membrane pore number distribution 

(flux is proportional to fourth power of radius according to Hagen-Poiseuille). 

 

4.2. Fitting the model to the experimental results 

The fitting of R, S and N parameters was carried out for four different membranes with 

very different MWCOs ranging from 5 to 300 kDa (see Fig. 1). Despite the differences in 

flow and pressure among membranes, the model fits very well the obtained experimental 

results with correlation coefficients higher than 0.999 for all membranes. The obtained 

geometric standard deviations are very similar for most of the membranes (from 1.3 to 1.5). 

The mean radius increases, as expected, as the MWCO of the membranes increases, 

following the order HFK-328 (1.5 nm - 5 kDa), UP020 (2.0 nm - 20 kDa), M030 (2.9 nm - 

30 kDa) and M300 (10.2 nm - 300 kDa). The total pore number density fluctuates around 

4·10
16

 pore/m
2
 for the 5, 20 and 30 kDa membranes, but for M300 which has a high mean 

radius and thus, a lower total pore number density (1.3·10
15

) is needed to achieve the given 

flows. 

Therefore, a theoretical membrane defined by the three N, R and S parameters can 

successfully model the flow experimental results of a LLDP analysis for very different 

membranes. 

Figure 1 

 

From the fittings shown in Fig. 1, it is possible to determine the flux or permeability 

distribution. This distribution accounts for the contribution (in percentage) of each pore size 

class to the total permeability. Fig. 2 shows these distributions for the four studied 

membranes. In all cases, the agreement between permeability distributions (shown as bars), 
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coming from direct application of Grabar-Nikitine algorithm to experimental data, and the 

fitted ones (solid lines) is remarkable. 

Figure 2 

 

4.3. Pore number distribution. Model validation 

The pore number distribution as a function of the pore radius is represented for the 

experimental and the modeled membranes to compare the theoretical membrane properties 

to those of the real one (Fig. 3). 

It can be observed that the pore distribution of the HFK-328 theoretical membrane (Fig. 3a) 

fits very well to the Grabar-Nikitine treated data. For the rest of the membranes (Fig. 3), the 

pore size distribution fitting is not perfect but satisfactory. 

In any case, the agreement between traditionally treated and fitted points is not as good as 

that obtained for permeability distributions (Fig. 2).This was predictable since permeability 

distributions come directly from experimental data while pore number ones need a transport 

model inside the pores to be applied (Hagen-Poiseuille). This was one of the conclusions of 

the Charmme Network [23] and is nowadays generally accepted 

The theoretical distribution accurately matches in the area of higher radii whereas for the 

lower ones, there is a lack of experimental points. In any case, the agreement for the bigger 

pores would lead to good enough estimations of MWCO. 

Finally a couple of physical limitations of the experimental apparatus should be pointed out 

because they would explain the lack of accurate experimental information for the smallest 

pores. It is important to consider that small pores are opened at high pressures, which 

sometimes cannot be reached either because of the physical limitations of the equipment 

(maximum pressure) or because the experimental run is automatically stopped when 
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software detects non increasing permeabilities. This last procedure (based on a certain 

tolerance limit introduced by the operator) will prematurely stop the experiment, under 

certain circumstances, closing abruptly the distribution. Moreover, membranes having very 

high permeabilities (a usual target for membrane manufacturers) could lead to exhausting 

the pump reservoir (500 mL) before ending the analysis. 

Figure 3 

 

4.4. Permeability and cumulative permeability distribution 

The experimental and modelled permeability cumulative distribution as well as the actual 

permeability as a function of the pore radius is depicted in Fig. 4. The modelled cumulative 

distributions of the permeability (closed symbols) do not fit the discretized values as well 

as it was seen for the differential permeability distribution. 

The differences lie in the previously observed lack of experimental data for the lowest radii 

(high pressures). This implies that the smallest pores are not taken into account to 

determine their contribution to the global membrane permeability at a given pressure (for a 

given radius) and so, the permeability cumulative distribution is underestimated when using 

the experimental results for low radii. This seems more obvious as mean radius (or the 

MWCO) of the membrane increases, Fig 4d. 

Although the lack of experimental data always appears at low radii, it has a different origin 

depending on the membrane. For instance, there is no data at radii lower than 1.0 nm for the 

HFK-328 membrane, because the measuring equipment cannot exceed 50 bar, whereas for 

the M300 the lowest radius from which there is information is 9.0 nm, as for lower pore 

sizes, higher pressures are needed, lead to decreasing permeabilities that were automatically 

discarded by the setup control software. The contribution of pores around 1 nm to the 
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overall permeability for HFK-328 is much lower to that of the pores around 9.0 nm for the 

M300 membrane. Therefore, the effect is more pronounced as the MWCO increases. 

Nevertheless, the differences found in the individual contribution of each pore size to the 

overall permeability are not relevant to determine its actual value (Fig. 4, open symbols). 

Figure 4 

 

4.5. Advantages of the theoretical model 

Once the model was validated, it can be used to improve results in the characterization of 

any membrane. The most important feature of this model is that it can be applied with a 

small amount of experimental data, allowing the extrapolation of the membrane 

performance throughout the LLDP analysis. This is of great importance, especially in 

quality control areas where saving time and costs are linked and a comprehensive and deep 

characterization should have done previously. Moreover, this model can also be useful to 

characterize many membranes in a short period of time, easing the membrane screening for 

a given process. 

There are several parameters, such as the asymptotic permeability, the mean radius (based 

on either the pore number or the permeability) and MWCO estimation, which are usually 

employed to characterize membranes by LLDP. These parameters together with the fitted 

R, S and N are gathered in Table 2 for the four tested membranes using different number of 

experimental data. For each studied membrane, the first two rows compare the resulting 

LLDP parameters obtained from direct application of Grabar-Nikitine algorithm with all 

the experimental data (row GN) with the same parameters obtained by applying the 

previously explained model/technique (row M). For most studied parameters (asymptotic 

permeability and mean pore radius by permeability and number) modeled results are 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

accompanied by an error estimation (*) which considers values from the Grabar-Nikitine 

algorithm as the exact ones. In the case of MWCO, it makes no sense to compare modeled 

and experimental values as far as we have the nominal values of MWCO given by the 

membrane manufacturers. So in this case, error (**) accounts for differences between 

experimental and nominal values. 

The information coming from manufacturers was considered reliable, despite they do not 

specifically state how cut-off was determined [17]. 

It is also interesting to test if the model still works well when only a small set of the 

experimental data is used in the fitting. In this sense, what has been done is to fit the 

developed model to a reduced number of data. In all cases it has been considered a 

minimum number of six experimental points (except for the last one, ItF, in which only 

three points were used), but the differences rely in which part of the experimental curve are 

those data pairs obtained from. Therefore, row In presents the results of the model applied 

using only the six pairs of flux, pressure data corresponding to the initial part of the 

experiment (corresponding to lower pressures). Next row (It) shows the fitting results using 

only six data pairs acquired at the intermediate section of the experiment. In next row (IF), 

the model was applied using 3 data pairs from the initial part together with the last three 

pairs. Finally, the last procedure accounts for using one data pair at the beginning of the 

experiment, another one at intermediate pressure values and last one from the end of the 

experiment(row ItF).  

Finally, for all these partial procedures (In, It, IF, ItF), the error presented (***) has been 

calculated comparing the values of all the selected parameters with those values obtained 

from the model fitting using all data points (row M).  



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

The asymptotic permeability obtained by the model using all the experimental results (tag 

M) is similar to that experimentally determined for all the membranes, having relative 

errors lower than 6 %. Differences appear when the fittings are conducted using the results 

at low (tag In) and intermediate (tag It) pressures (flows), leading to differences around 10-

20 %, except in the case of the M300 membrane, for which the fitting was not really 

possible in these conditions since errors are above 400 %. Nevertheless, when the fittings 

are conducted either with the data from the beginning (low pressure) and the end (high 

pressure) of the tests (tag IF) or with three distributed pairs of points (tag ItF) the modelled 

asymptotic permeability is again similar to the experimental one (tag GN) and to that 

modelled with all the experimental information (tag M). In fact, differences are lower than 

5 % for all the membranes. 

Larger differences are found when the mean pore radius based on the pore number and on 

the permeability are analyzed. As it was seen in Fig. 3, there is a lack of experimental data 

of the pore distribution at low pore radius. Moreover, the permeability cumulative 

distribution is greatly affected as seen in Fig. 4. Therefore, there are high discrepancies 

between the mean radii values (based on both the pore number and the permeability) from 

the Grabar-Nikitine algorithm (tag GN) and those from the theoretical model (tag M), 

which range from 9 to 42 %. However, it is hard to establish which one of both is closer to 

the actual values for the membrane due to the lack of experimental information for low 

radii. In general, the mean pore radii (based on either the pore number or the permeability) 

obtained through the (In) and (It) procedures differ more from the values obtained using the 

all-data fitting (procedure M) than those using the (IF) and (ItF) procedures. Nonetheless, 

differences are small in general.. The fitting procedures give very good results, especially 

for the HFK-328 membrane. The ranges of the mean pore radius (based on the pore 
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number) are relatively small for all the membranes: 1.1 - 1.6 nm, 1.2 - 2.0 nm, 2.2 - 2.6 nm 

and 8.3 – 11.3 nm for the HFK-328, UP020, M030 and M300 membranes, respectively. 

And a similar observation can be done for the mean pore radius based on permeability. 

Therefore, the possibility of using fewer experimental data to estimate the mean pore radius 

of the membranes using the proposed model is feasible. 

The estimation of the MWCO leads to different conclusions depending on the membranes. 

The estimation of the HFK-328 and M300 membrane MWCOs is more accurate using the 

model (tag M) than using the Grabar-Nikitine algorithm results (GN), while for the UP020 

and M030 membranes the model only allows an estimate of the order of magnitude of 

MWCO. 

One of the shortcomings of applying this model to small amounts of experimental data is 

that the results could be incoherent. For instance, using the procedures (In) and (It) for very 

open UF membranes, such as the M300 membrane, the results are not successful because 

there is a lack of information in the high pressure area which is associated to the asymptotic 

permeability. Therefore, in these cases, a careful analysis of the results should be carried 

out, leading the LLDP experiment to include more high pressure points to avoid such 

errors.   

Table 2 

 

5. Conclusions 

In this work a new approach to fit results from LLDP analysis has been proposed. Instead 

of the usual polynomial fitting equations without physical meaning, a log-normal pore size 

distribution was assumed for the membrane, requiring only three fitting parameters. 
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Comparing the expected behavior of the model with the actual results, the log-normally 

shaped distribution is a reasonable choice. 

The accuracy of the fitting approach has been tested with several polymeric membranes 

having an expected large range of pores, according to the nominal MWCO values. Results 

of the fitting are reasonably good and in accordance with most of the parameters arising 

from traditional LLDP analysis.  

The use of partial data does not guarantee good results or show a clear trend in data 

analysis, in any case this partial analysis do not lead to worse results. 

It must not be forgotten that a good fitting is only possible if good data is collected. 

Whatever is the procedure for measuring or fitting data, LLDP experiments are not and 

they will never be so easy to perform as GLDP ones, where only 5 min are enough to get a 

good pore size distribution. 

On the contrary LLDP experiments need longer time (never less than 1 h), so any approach 

aimed to reduce the number of experimental points, such as that considered in this work, 

requires a reliable data fitting for a possible extensive or commercial use of the technique. 
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Nomenclature 

A: Membrane surface area (m
2
) 
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D∞: Diffusion coefficient of the dextran at infinite dilution in water (m
2
/s) 

ek: Difference between the experimental and the modelled membrane flow (m
3
/s) 

F: Membrane flux (m
3
/m

2
s) 

fL(r): Probability distribution function for the permeability from pores of radius r (m
-1

) 

fn(r): Probability distribution function for the number of pores of radius r (m
-1

) 

J: Membrane flow (m
3
/s) 

l: Pore length 

MWCO: Molecular weight cut-off (Da) 

n(r): Pore number distribution (pore/m
3
) 

N: Total pore number density (pore/m
2
) 

NAB: Pore number density with radii between rA and rB (pore/m
2
) 

ΔP: Transmembrane pressure (Pa) 

R: Geometric mean radius or location parameter (m) 

r: radius (m) 

<r>number: Mean radius based on the pore number distribution (m) 

<r>perm: Mean radius based on the permeability distribution (m) 

S: Geometric standard deviation or scale parameter (dimensionless) 

 

Greek letters 

η: Viscosity (Pa·s) 

: Interfacial tension (N/m) 
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Figure 1 

 
Fig. 1. Experimental results obtained through LLDP (symbols) and fitted model (solid line) 

for HFK-328 (a), UP020 (b), M030 (c), and M300 (d) membranes. 
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Figure 2 

 
Fig. 2. Experimental (bars) and modeled (solid line) permeability distribution of HFK-

328 (a), UP020 (b), M030 (c) and M300 (d) membranes. 

Radius (nm)

0 10 20 30 40

P
er

m
ea

b
il

it
y

 d
is

tr
ib

u
ti

o
n

 (
%

)

Radius (nm)

0 1 2 3 4 5 6 7 8

P
er

m
ea

b
il

it
y

 d
is

tr
ib

u
ti

o
n

 (
%

)

Radius (nm)

0 2 4 6 8 10

P
er

m
ea

b
il

it
y

 d
is

tr
ib

u
ti

o
n

 (
%

)

Radius (nm)

0 1 2 3 4 5 6 7

P
er

m
ea

b
il

it
y

 d
is

tr
ib

u
ti

o
n

 (
%

) (a) (b)

(d)(c)



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Figure 3 

 
Fig. 3. Experimental (bars) and modelled (solid line) pore number distribution of HFK-328 

(a), UP020 (b), M030 (c) and M300 (d) membranes. 
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Figure 4 

 
Fig. 4. Experimental (closed symbols) and modelled (solid line) cumulative permeability 

distribution as well as experimental (open symbols) and modelled (dotted line) permeability 

as function of pore size for the HFK-328 (a), UP020 (b), M030 (c) and M300 (d) 

membranes. 

  

0

20

40

60

80

100

120

0

20

40

60

80

100

0 2 4 6 8 10

P
er

m
ea

b
il

it
y
 (

L
/h

m
2
b

a
r)

C
u

m
u

la
ti

v
e 

p
er

m
ea

b
il

it
y
 (

%
)

Radius (nm)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0

20

40

60

80

100

0 10 20 30 40

P
er

m
ea

b
il

it
y

·1
0

-3
(L

/h
m

2
b

a
r)

C
u

m
u

la
ti

v
e 

p
er

m
ea

b
il

it
y
 (

%
)

Radius (nm)

0

5

10

15

20

0

20

40

60

80

100

0 1 2 3 4 5 6

P
er

m
ea

b
il

it
y
 (

L
/h

m
2
b

a
r)

C
u

m
u

la
ti

v
e 

p
er

m
ea

b
il

it
y
 (

%
)

Radius (nm)

0

20

40

60

80

0

20

40

60

80

100

0 2 4 6 8 10

P
er

m
ea

b
il

it
y
 (

L
/h

m
2
b

a
r)

C
u

m
u

la
ti

v
e 

p
er

m
ea

b
il

it
y
 (

%
)

Radius (nm)

(a) (b)

(d)(c)



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Tables 

 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

Table 1: Membrane properties according to manufacturers. 

Membrane Material Manufacturer MWCO (kDa) 

HFK-328 
Polyethersulfone 

Koch 5 

UP020 Nadir 20 

Minitan M030 
Polysulfone Millipore 

30 

Minitan M300 300 
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Table 2: Main membrane parameters obtained through LLDP. 

Membr. 
Math. 

proced. 

Asymptotic 

permeability 

(L/hm
2
bar) 

Relative 

error (%) 

(* - ***) 

Mean radius - 

Pore number 

(nm) 

Relative 

error (%) 

(* - ***) 

Mean radius - 

Permeability 

(nm) 

Relative 

error (%) 

(* - ***) 

MWCO 

(kDa) 

Relative 

error (%) 

(**) 

R 

(nm) 
S N 

HFK-

328 

GN 16.5 - 1.7 - 2.3 - 6.9 38 - - - 

M 16.5 1
* 1.2 27

* 2.1 9
* 4.7 6 1.5 1.44 3.7·10

16 

In 17.0 3
*** 1.3 8

*** 2.1 3
*** 5.3 7 1.6 1.42 3.3·10

16 

It 17.0 3
*** 1.1 13

*** 2.0 5
*** 3.7 26 1.3 1.48 5.0·10

16 

IF 16.3 1
*** 1.6 28

*** 2.3 11
*** 7.2 43 1.8 1.37 2.2·10

16 

ItF 16.1 2
*** 1.2 1

*** 2.1 1
*** 4.8 3 1.5 1.44 3.5·10

16 

UP020 

GN 72 - 2.8 - 3.5 - 18 8 - - - 

M 77 6
* 1.6 42

* 3.0 17
* 9 56 2.0 1.48 4.3·10

16 

In 87 12
*** 1.2 28

*** 2.5 15
*** 5 75 1.6 1.55 1.0·10

17 

It 68 12
*** 1.9 17

*** 3.2 9
*** 12 41 2.3 1.44 2.7·10

16 

IF 74 4
*** 2.0 24

*** 3.3 11
*** 13 35 2.4 1.42 2.6·10

16 

ItF 76 1
*** 1.5 9

*** 2.9 2
*** 8 62 1.9 1.51 4.9·10

16 

M030 

GN 106 - 3.4 - 3.9 - 27 9 - - - 

M 110 3
* 2.6 22

* 3.3 14
* 19 38 2.9 1.27 3.2·10

16 

In 116 6
*** 2.2 15

*** 3.0 9
*** 14 53 2.5 1.32 5.0·10

16 

It 123 13
*** 2.3 13

*** 3.1 7
*** 15 51 2.6 1.32 5.0·10

16 

IF 110 1
*** 2.5 5

*** 3.3 2
*** 17 43 2.8 1.29 3.5·10

16 

ItF 112 2
*** 2.4 8

*** 3.2 4
*** 16 46 2.7 1.30 3.9·10

16 

M300 

GN 1302 - 13.2 - 19.6 - 629 110 - - - 

M 1322 2
* 8.3 37

* 14.4 27
* 261 13 10.2 1.45 1.3·10

15 

In 10365 700
*** 5.5 34

*** 9.7 33
*** 111 63 6.8 1.46 5.0·10

16 

It 6160 400
*** 4.5 46

*** 9.0 38
*** 78 74 5.8 1.52 4.3·10

16 

IF 1334 1
*** 8.6 5

*** 14.0 3
*** 271 10 10.3 1.41 1.4·10

15 

ItF 1308 1
*** 11.3 37

*** 16.1 12
*** 430 43 12.9 1.35 7.4·10

14 

GN: Experimental results 

M: Fitted with all experimental data 

In: Fitted with the first six pairs of data 

It: Fitted with six pairs of data at intermediate fluxes 

IF: Fitted with the first and last three pairs of data 

ItF: Fitted with the first one, one at the middle and the last one pairs of data 
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