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Abstract

In this paper we shall use the algebraic method known as supersymmetric
quantum mechanics (SUSY QM) to obtain solutions to the Painlevé V (PV)
equation, a second-order nonlinear ordinary differential equation. For this
purpose, we will apply first the SUSY QM treatment to the radial oscillator. In
addition, we will revisit the polynomial Heisenberg algebras (PHAs) and we
will study the general systems ruled by them: for first-order PHAs we obtain
the radial oscillator while for third-order PHAs the potential will be deter-
mined by solutions to the PV equation. This connection allows us to introduce
a simple technique for generating solutions of the PV equation expressed in
terms of confluent hypergeometric functions. Finally, we will classify them
into several solution hierarchies.

Keywords: supersymmetric quantum mechanics, Painlevé equations, exactly
solvable potentials, nonlinear differential equations

(Some figures may appear in colour only in the online journal)

1. Introduction

Nowadays there is a growing interest in studying nonlinear phenomena and their corresp-
onding description. This motivates us to look for the different relations which can be
established between relevant physical subjects and nonlinear differential equations [1]. For
example, the standard treatment for supersymmetric quantum mechanics (SUSY QM) leads to
the Riccati equation [2, 3], which is the simplest nonlinear first-order differential equation
naturally associated with the search of eigenvalues for the Schrödinger Hamiltonian.
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Moreover, there are specific links for particular potentials, e.g., the SUSY partners of the free
particle are connected with solutions of the KdV equation [4]. Is there something similar for
systems different from the free particle?

The answer to this question turns out to be positive, concerning a connection which can
be established between SUSY QM and Painlevé equations [5–9]. Let us note that although
these equations were discovered from strictly mathematical considerations, nowadays they are
widely used to describe several physical phenomena [10]. In particular, the Painlevé V (PV)
equation appears in condensed matter [11], electrodynamics [12], and solid state physics [13].
Moreover, this equation has attracted a lot of attention in the scientific community, thus
leading to new studies about numerical solutions [14], geometric properties [15], q-defor-
mations [16], discrete versions [17], and Bäcklund transformations [18], among others.

On the other hand, since its birth SUSY QM catalyzed the study of exactly solvable
Hamiltonians and gave a new insight into the algebraic structure characterizing them. His-
torically, the essence of SUSY QM was developed first as Darboux transformations in
mathematical physics [19] and later as the factorization method in quantum mechanics
[20–22].

In this paper we are going to explore further the relation established between the SUSY
partners of the radial oscillator and analytic solutions of the PV equation, using an approach
similar to the one previously employed for studying the Painlevé IV (PIV) equation [9, 23–
26]. This link has been found both in the context of dressing chains [5, 6, 27] and in the
framework of SUSY QM [8, 28–31].

The key point of this connection is the following: the determination of general Schrö-
dinger Hamiltonians having fourth-order differential ladder operators requires to find solu-
tions to the PV equation. At the algebraic level this means that the corresponding systems are
characterized by third-order polynomial deformations of the Heisenberg–Weyl algebra, called
briefly polynomial Heisenberg algebras (PHAs).

Reciprocally, if one wishes to obtain solutions to the PV equation first one looks for
systems having fourth-order differential ladder operators; then, the corresponding solutions to
the PV equation can be identified. It is worth to note that the first-order SUSY partners of the
radial oscillator have associated natural fourth-order differential ladder operators, so that
families of solutions to the PV equation can be easily obtained through this approach. Up to
our knowledge, the first works in which it was realized the connection between PHA (called
commutator representation in these papers) and Painlevé equations were [32, 33]. Initially,
both subjects were linked with first-order SUSY QM [5, 6, 27]; later on, this relation was
further explored for the higher-order case [8, 9, 28–31, 34–37].

Let us remark that the need to avoid singularities in the new potential V xk ( ) and the
requirement for the Hamiltonian Hk to be Hermitian lead to some restrictions [8]: (i) first of
all, the relevant transformation function has to be real, which implies that the associated
factorization energy is also real; (ii) as a consequence, the spectrum of Hk consists of two
independent physical ladders, an infinite one departing from the ground state energy E0 of H0,
plus a finite one with k equidistant levels, all of which have to be placed below E0. Regarding
PV equation, these two restrictions imply that non-singular real solutions w z a b c d; , , ,( ) can
be obtained just for certain real parameters a b c d, , , .

From the spectral design point of view, however, it would be important to overcome
restriction (ii) so that some (or all) steps of the finite ladder could be placed above E0. In this
way we would be able to manipulate not just the lowest part of the spectrum [8, 29, 30], but
also the excited state levels, which would endow us with improved tools for spectral
manipulation.
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In this work we are also going to show that this can be achieved if one relaxes restriction
(i) by using complex transformation functions associated to real factorization energies [38],
which will permit us to generate complex solutions to PV equation associated with real
parameters a b c d, , , , as it was done with the PIV equation [8, 23–26]. As a consequence, we
will obtain complex SUSY partner potentials in this case. As far as we know, complex
potentials with real energy spectra, obtained through complex transformation functions
associated with real factorization energies, were first studied by Andrianov et al [38], and later
by Fernández et al [39] for complex factorization energies. In this work we will also generate
complex potentials with some complex energy levels. Furthermore, the method we have
developed to obtain solutions to the PV equation will be implemented as well.

In order to accomplish this, we will show that under certain conditions on the positions
of the k new levels and on the associated Schrödinger seed solutions, the combined results
of SUSY QM (section 2) and PHA (sections 3 and 4) applied to the radial oscillator
(section 5) lead to new solutions to the PV equation. Indeed, we will formulate and prove a
reduction theorem, which imposes the restrictions on the transformation functions to reduce
the natural ladder operators associated with Hk from higher- to fourth-order (section 6).
Then, we will study the properties of the different ladder operators, both the natural and the
reduced ones, in order to analyze the consequences of the theorem. In particular, we will
study the different types of PV solutions that can be obtained with this method
(sections 7–10).

Finally, after having obtained very general formulas for these PV solutions, a classifi-
cation into several hierarchies will be introduced (section 11) in order to compare them with
other solutions which are spread in the literature [35, 40, 41]. This classification is based upon
the special functions used to explicitly write down the PV solutions. We will finish this paper
with our conclusions (section 12).

2. Supersymmetric quantum mechanics

The factorization method, intertwining technique, and SUSY QM are closely related and their
names will be used indistinctly in this work to characterize a specific procedure through
which it is possible to obtain new exactly solvable quantum mechanical systems departing
from known ones.

2.1. First-order SUSY QM

Let H0 and H1 be two Schrödinger Hamiltonians

= - + =H
x

V x j
1

2

d

d
, 0, 1. 2.1j j

2

2
( ) ( )

For simplicity, we are taking natural units such that  = =m 1. Next, let us suppose the
existence of a first-order differential operator +A1 that intertwines H0 and H1 in the way

⎡

⎣⎢
⎤

⎦⎥
= = - ++ + +H A A H A

x
w x,

1

2

d

d
, 2.21 1 1 0 1 1 ( ) ( )

where the superpotential w x1 ( ) is still to be determined. By plugging the explicit expressions
for H H,0 1 and

+A1 into the intertwining relation (2.2) and after some work we arrive to:

= - ¢V x V x w x a, , 2.31 0 1( ) ( ) ( ) ( )
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  ¢ + = -w x w x V x b, , 2 . 2.31 1
2

0( ) ( ) [ ( ) ] ( )

If we define u x0 ( )( ) such that  = ¢w x u u,1
0 0( ) ( ) ( ) , then equations (2.3) are mapped into

⎡

⎣
⎢

⎤

⎦
⎥= -
¢¢

V V
u

u
a, 2.41 0

0

0
( )

( )

( )

- + =u V u u b
1

2
, 2.40

0
0 0 ( )( ) ( ) ( )

i.e., u 0( ) is a solution of the initial stationary Schrödinger equation associated with ò, although
it might not fulfill any boundary condition at all.

Starting from equations (2.3) we obtain that H0 and H1 can be factorized as

 = + = +- + + -H A A H A A, , 2.50 1 1 1 1 1 ( )

where

⎡

⎣⎢
⎤

⎦⎥
º = +- +A A

x
w x

1

2

d

d
, . 2.61 1 1( ) ( ) ( )†

Let us assume that V x0 ( ) is a solvable potential with normalized eigenfunctions y xn
0 ( )( )

and eigenvalues such that Sp = = ¼H E n, 0, 1, 2,n0( ) { }. Besides, we know a non-singular
solution w x,1 ( ) (or, equivalently, a solution u x1

0 ( )( ) without zeroes) to the Riccati
equation (2.3b) (Schrödinger (2.4b)) for  = < E1 0, where E0 is the ground state energy for
H0. Then, the potential V x1 ( ) given in equation (2.3a) (in (2.4a)) becomes determined, and its
normalized eigenfunctions are

 òy µ - =x w y y
u x

aexp , d
1

, 2.7
x

1

0
1 1

1
01 ( )( ) ( )

( )
( )( )

( )


y

y
=

-

+

x
A x

E
b, 2.7

n
n

n

1 1
0

1
1 2

( )
( )

( )
( )( )

( )

with eigenvalues such that Sp = = ¼H E n, ; 0, 1,n1 1( ) { }. An scheme of the way the first-
order SUSY transformation works, and the resulting spectrum, is shown in figure 1. When
this construction is implemented for a pair of well defined self-adjoint Hamiltonians H H,0 1,
we say that the supersymmetry is good or unbroken (see [22]).

2.2. Higher-order SUSY QM

Let us iterate this technique, taking now V x1 ( ) as the potential used to generate a new one
V x2 ( ) through another intertwining operator +A2 and a different factorization energy 2, with
the restriction  < < E2 1 0 once again taken to avoid singularities in the new potentials and
their eigenfunctions. The corresponding intertwining relation reads

=+ +H A A H , 2.82 2 2 1 ( )

which leads to equations similar to (2.3) for V2 and w2:

= - ¢V x V x w x a, , 2.92 1 2 2( ) ( ) ( ) ( )

  ¢ + = -w x w x V x b, , 2 . 2.92 2 2
2

2 1 2( ) ( ) [ ( ) ] ( )
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In terms of u x2
1 ( )( ) such that  = ¢w x u x u x,2 2 2

1
2
1( ) ( ) ( )( ) ( ) we have

⎡

⎣
⎢

⎤

⎦
⎥ = -
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2
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2
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2
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1
2 2

1 ( )
( )

( )

( ) ( ) ( )

Since the solution u2
1( ) of the Schrödinger equation (2.10) is expressed in terms of two

solutions u u,1
0

2
0( ) ( ) of the initial Schrödinger equation associated to  ,1 2 as

µu
W u u

u

,
, 2.112

1 1
0

2
0

1
0

( )
( )( )

( ) ( )

( )

then the potential V2 of equation (2.10) becomes:

= -V x V x
x

W u u
d

d
log , . 2.122 0

2

2 1
0

2
0( ) ( ) ( ) ( )( ) ( )

The eigenfunctions of H2 are given by

 òy µ - µ µx w y y
u x

u

W u u
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2
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( ) ( )
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y

=
-

µ
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x
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1
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y

y y y
=

-
=

- -
µ

+ + +

x
A x

E

A A x

E E

W u u

W u u
c

, ,

,
, 2.13

n
n

n

n

n n

n2 2
1

2
1 2

2 1
0

1 2
1 2

1
0

2
0 0

1
0

2
0

( )
( )

( )

( )

[( )( )]

( )

( )
( )( )

( ) ( ) ( ) ( ) ( )

( ) ( )

and the corresponding set of eigenvalues is Sp  = = ¼H E n, , ; 0, 1,n2 2 1( ) { }. The
scheme representing this transformation is shown now in figure 2.

This iterative process can be continued at will. Thus, let us assume that we know k

solutions u xj
0 ( )( ) of the initial Schrödinger equation associated with  = ¼j k, 1, ,j , where

 <+j j1 . Therefore, we obtain a new solvable Hamiltonian Hk, whose potential reads

Figure 1. Diagram of the first-order SUSY transformation. The final Hamiltonian H1

has the same spectrum as the initial one H0, but with a new level at the factorization
energy 1.
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= - ¼V x V x
x

W u u u
d

d
log , , , . 2.14k k0

2

2 1
0

2
0 0( ) ( ) ( ) ( )( ) ( ) ( )

The eigenfunctions of Hk are given by

y µ
¼

¼
-x

W u u

W u u
a

, ,

, ,
, 2.15k k

k

1
0

1
0

1
0 0k

( )
( )

( )
( )( )

( ) ( )

( ) ( )

y µ
¼

¼
-

-



x
W u u u

W u u

b

, , ,

, ,
,
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k k k

k

1
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2
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1
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( ) ( )

y µ
¼

¼
x

W u u

W u u
c

, ,

, ,
, 2.15k k

k

2
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1
0 01

( )
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( )
( )( )

( ) ( )

( ) ( )

y
y

µ
¼

¼
x

W u u

W u u
d

, , ,

, ,
. 2.15

n
k k n

k

1
0 0 0

1
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( )

( )
( )( )

( ) ( ) ( )
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The corresponding eigenvalues are such that Sp = = ¼ = ¼H E j k n, ; , , 1; 0, 1,k j n( ) { }.
By completeness, let us recall how the Hamiltonians Hj are intertwined to each other

= = ¼+ +
-H A A H j k, 1, , . 2.16j j j j 1 ( )

Then, starting from H0 we have generated a chain of factorized Hamiltonians in the way

 = + = + = ¼+ -
-

- +H A A H A A j k, , 1, , , 2.17j j j j j j j j1 ( )

where the final potential V xk ( ) can be determined through equation (2.14).
We must note now that we can define two kth-order differential operators as

= ¼+ + +B A A a, 2.18k k 1 ( )

Figure 2. Iteration of two first-order SUSY transformations applied to H0 and H1 using
as transformation functions two mathematical eigenfunctions u u,1

0
2
0( ) ( ) of H0 with

factorization energies  < < E2 1 0.
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= ¼- - -B A A b, 2.18k k1 ( )

that intertwine the initial Hamiltonian H0 with the final one Hk as follows

=+ +H B B H a, 2.19k k k 0 ( )

=- -B H H B b. 2.19k k k0 ( )

Therefore, the new Hamiltonian Hk is determined by k seed solutions uj
0( ) of H0 which are

annihilated by +Bk . Equations (2.15) and (2.19) lead to

 y y= - ¼ -+B E E a, 2.20k n n n k n
k0

1
1 2[( ) ( )] ( )( ) ( )

 y y= - ¼ --B E E b. 2.20k n
k

n n k n1
1 2 0[( ) ( )] ( )( ) ( )

These equations immediately lead to the higher-order SUSY QM [2, 42–50]. In this
treatment, the standard SUSY algebra with two generators Q Q,1 2 [51],

d= = =Q H Q Q H i j, 0, , , , 1, 2, 2.21i ss i j ij ss[ ] { } ( )

can be realized from -Bk and +Bk through the definitions

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟= = º =-

-
+

+
- +

+ -

- +Q
B

Q
B

H Q Q
B B

B B

0 0

0
,

0

0 0
, ,

0

0
, 2.22

k

k
ss

k k

k k

{ } ( )

where º ++ -Q Q Q 21 ( ) and º -- +Q Q Qi 22 ( ) . Given that

 = ¼ ¼ = - ¼ -+ - + + - -B B A A A A H H a, 2.23k k k k k k k1 1 1( ) ( ) ( )

 = ¼ ¼ = - ¼ -- + - - + +B B A A A A H H b, 2.23k k k k k1 1 0 1 0( ) ( ) ( )

it turns out that the SUSY generator Hss is a polynomial of degree kth in the Hamiltonian Hs
p

that involves the two intertwined Hamiltonians H0 and Hk,

 = - ¼ -H H H , 2.24ss s
p

s
p

k1( ) ( ) ( )

where

⎛

⎝
⎜

⎞

⎠
⎟=H

H

H

0

0
. 2.25s

p k

0

( )

Before applying the SUSY transformations to the particular potentials we are interested
in, let us study first the polynomial deformations of the Heisenberg–Weyl algebra, which
leads to Hamiltonians with very peculiar spectra. Moreover, for polynomial deformations of
third-order we will arrive naturally to the PV equation.

3. Polynomial Heisenberg algebras

Systems described by (m − 1)th order PHA possess three generators, one of them (the
Hamiltonian H) commutes with the other two (the ladder operators m) in the same way as
the harmonic oscillator Hamiltonian commutes with the creation and annihilation operators,
but the commutator  - +,m m[ ] is a polynomial in H, i.e.

 =  H a, , 3.1m m[ ] ( )

  º + - =- +
-N H N H P H b, 1 , 3.1m m m m m 1[ ] ( ) ( ) ( ) ( )
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where -P Hm 1 ( ) and  º + -N Hm m m( ) are polynomials in H of degrees -m 1 and m

respectively. We can rewrite equation (3.1a) as

 = H H1 , 3.2m m( ) ( )

which is equivalent to equations (2.19) with = = -H H H H, 1k0 and = Bk k for k=m.
These equations mark the connection between SUSY QM and PHA, i.e., we can obtain
systems ruled by these algebras using SUSY transformations. Also, note that N Hm ( ) is the
analogous to the number operator of the harmonic oscillator, which can be factorized as

 e= -
=

N H H , 3.3m

i

m

i

1

( ) ( ) ( )

with ei being the energies associated with the extremal states.
The PHA can be realized through mth-order differential ladder operators, but the degree
-m 1 of the polynomial characterizing the deformation (see commutator in equation (3.1b))

is what defines the order of the PHA. From now on, we will suppose that H has Schrödinger
form and m are mth-order differential ladder operators.

The algebra generated by  - +H, ,m m{ } supplies information about the spectrum of
H H, Sp( ) [28, 48, 52]. In fact, let us consider the mth-dimensional solution space of the
differential equation  y =- 0m , called the kernel of -m and denoted as -m. Then

  y e y= - =+ -

=
H 0. 3.4m m

i

m

i

1

( ) ( )

Since -m is invariant with respect to H, then it is natural to select the formal eigenfunctions
of H as basis for the solution space, i.e., y e y=e eH ii i

. Therefore, yei become the extremal
states of m ladders of formal or mathematical eigenfunctions with spacing D =E 1 that start
from ei. Let s be the number of those states with physical significance, y = ¼e i s; 1, , ;

i
{ }

then, using +m we can construct from them s physical energy ladders of infinite length, as
shown in figure 3(a). There also exist cases where H has a degenerate structure, then the basis
of -m will induce a Jordan cell in its matrix representation and it will be non-diagonalizable.
However, in this work we will not deal with such degenerate cases.

Figure 3. In (a) we show the spectrum for a Hamiltonian with s physical extremal
states, each one of them having associated, in general, one infinite ladder. In (b) we
show an spectrum where yej fulfills condition (3.5) and thus the system has -s 1

infinite ladders and one finite (the jth).
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It is possible that, for a ladder starting from ej, there exists an integer În N such that

 y y¹ =e e
+ - +0, 0. 3.5m

n
m

n1
j j

( ) ( ) ( )

Then, if we analyze the expression   y =e- + 0m m
n

j
( ) we can see that another root of

equation (3.3) must fulfill e e= + nk j , where Î + ¼k s m1, ,{ } and Î ¼j s1, ,{ }.
Therefore, in this case Sp H( ) will contain -s 1 infinite ladders and a finite one with
length n, that starts in ej and finishes at e + -n 1j , as it is shown in figure 3(b).

In conclusion, the spectra of systems described by an -m 1 th( ) -order PHA can have at
most m infinite ladders. Note that the standard annihilation and creation operators a for the
harmonic oscillator together with its Hamiltonian satisfy equations (3.1)–(3.3) for m=1.
Moreover, a higher-order algebra with odd m can be constructed simply by taking
 = =- - + +a Q H Q H a,m m( ) ( ) , where Q H( ) is a real polynomial of H [53]. These defor-
mations are called reducible and in this context they become trivial, since our system already
has operators a fulfilling a lower-order algebra.

Now, it is important to identify the general systems ruled by these PHA. It has been seen that
the difficulties in this study grow with the order of the algebra: for zeroth- and first-order PHA, the
systems turn out to be the harmonic and radial oscillators, respectively [52, 54–56]. On the other
hand, for second- and third-order PHA, the determination of the potentials reduces to find
solutions to the Painlevé IV and V equations [40, 55]. This connection can be used in reverse
order, i.e., first, look for systems which are certainly described by PHA and then find solutions
to the Painlevé equations. This solution method was successfully used for the PIV equation
[7–9, 23–26]. In this work we will expand it to the PV equation. In order to do that, let us see next
the way in which the connection between the third-order PHA and PV equation appears.

4. Third-order PHA: fourth-order ladder operators

Let us suppose that 4 are fourth-order ladder operators, which are factorized as follows:

⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
 = = - - - -+ + + + +A A A A

x
f

x
f

x
f

x
f a

1

4

d

d

d

d

d

d

d

d
, 4.14 4 3 2 1 4 3 2 1 ( )

⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
 = = - - - - - - - -- - - - -A A A A

x
f

x
f

x
f

x
f b

1

4

d

d

d

d

d

d

d

d
. 4.14 1 2 3 4 1 2 3 4 ( )

As we saw in section 3, these are particular cases of the factorization in equation (2.18). Now,
let us build a closed-chain so that each pair of operators - +A A,j j intertwines two Schrödinger
Hamiltonians Hj and +Hj 1 in the way [6]

= =+
+ + - -

+H A A H H A A H, , 4.2j j j j j j j j1 1 ( )

where =j 1, 2, 3, 4. This leads to the following factorizations of the Hamiltonians

= +- +H A A a, 4.31 1 1 1 ( )

 = + = ++ - - +H A A A A b, 4.32 1 1 1 2 2 2 ( )

 = + = ++ - - +H A A A A c, 4.33 2 2 2 3 3 3 ( )

 = + = ++ - - +H A A A A d, 4.34 3 3 3 4 4 4 ( )

= ++ -H A A e. 4.35 4 4 4 ( )
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To accomplish the closed-chain we need the closure condition given by

= - º -H H H1 1. 4.45 1 ( )

In figure 4 we show a diagram representing the transformations and the closure relation.
By making the corresponding operator products of equations (4.3) we obtain the fol-

lowing systems of equations

 ¢ + ¢ = - + -f f f f a2 , 4.5
1 2 1

2
2
2

1 2( ) ( )

 ¢ + ¢ = - + -f f f f b2 , 4.5
2 3 2

2
3
2

2 3( ) ( )

 ¢ + ¢ = - + -f f f f c2 , 4.5
3 4 3

2
4
2

3 4( ) ( )

 ¢ + ¢ = - + - +f f f f d2 1 . 4.5
4 1 4

2
1
2

4 1( ) ( )

In order to simplify notation let us make      a a a= - = - = -, ,1 1 2 2 2 3 3 3 4, and
 a = - + 14 4 1 . If all equations (4.5) are added it is obtained:

+ + + =f f f f x. 4.61 2 3 4 ( )

Since the system is over-determined, a constrain A is going to be employed

a a a a- + - = - + - ºf f f f A. 4.7
1
2

2
2

3
2

4
2

4 3 2 1 ( )

Taking into account (4.6) and (4.7) the system of equations (4.5) can be reduced to a
nonlinear second-order one. Thus, let us denote

º - - º - º +g f f p f f q f f, , , 4.81 2 1 2 2 3 ( )

so that equations (4.5a) and (4.5b) can be written as
a a¢ = - ¢ = - + + +g gp q q q g p2 , 2 , 4.91 2( ) ( )

and the restriction in equation (4.7) becomes
+ + - =xp g x q x A2 , 4.10( )( ) ( )

i.e., we have now the system of three equations (4.9) and (4.10). If we define º -t q x2 and
then solve p from equation (4.10) we arrive at

= - +p
x
A x g t

1
. 4.11[ ( ) ] ( )

By substituting this expression into both equation (4.9), a system of two equations is obtained

⎜ ⎟
⎛

⎝

⎞

⎠
a a¢ = - + - ¢ = +

-
+

-
- + -g

g

x
A x g t t t x

gt A

x

t x
g2 ,

2
4 1.

4.12

1 2[ ( ) ] ( )

( )

Figure 4. Diagram representing the two equivalent SUSY transformations. Above: the
four-step first-order transformation induced by   A A A, ,1 2 3 and A4 . Below: the direct
transformation achieved through the fourth-order operators 4 .
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By defining now two new functions w and v as

= =
-

xt x v x g x
x

w x
,

1
, 4.132

2
( ) ( ) ( )

( )
( )

and making the change x z2 , the system of equations (4.12) becomes

⎜ ⎟
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎞

⎠
a¢ = -

+
-

+ - + - -v
v

z

z w

w
A

v

z

A
a

4 4

1

1
1

2
2

2

1

2
, 4.14

2

2( ) ( )

a
¢ = - +

-
- +w

z
w

A

z
w

vw

z
b1

1

2
1

2
, 4.14

1 2( )
( )

( ) ( )

where now the derivatives are with respect to z. We clear then v from equation (4.14b), derive
this result with respect to z and substitute v and ¢v in equation (4.14a). After a long calculation
we obtain finally a single equation for w given by

⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
 = +

-
¢ -

¢
+

-
+ + +

+
-

w
w w

w
w

z

w

z
aw

b

w
c
w

z
d
w w

w

1

2

1

1

1 1

1
,

4.15

2
2

2
( )

( ) ( )

( )

which is the PV equation with parameters

a a a a
= = - =

-
= -a b c d

2
,

2
,

2
,

1

8
. 4.161

2
3
2

2 4
( )

The spectrum of H could contain four independent equidistant energy ladders starting
from the following extremal states [30]:

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥òy

a
a a

a a
µ

¢
-

¢
- - - - -

¢
+ -e

h g

g

h

h

x

g

g

g

g

g
x

a

2 2 2 2 2
exp

2 2
d ,

4.17

1
1 2

3 1

1

( )

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥òy

a
a

a a
µ

¢
-

¢
- + - -

¢
+ +e

h g

g

h

h

x

g

g

g

g

g
x b

2 2 2 2 2
exp

2 2
d , 4.17

1
2

3 1

2
( )

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥òy

a
µ

¢
+ -e

h

h

h

h
x cexp

2 2
d , 4.17

3

3
( )

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥òy

a
µ

¢
+ +e

h

h

h

h
x dexp

2 2
d , 4.17

3

4
( )

where

= - -h x x g x . 4.18( ) ( ) ( )

Note that the number operator N H4 ( ) for this system will be a fourth-degree polynomial:

e e e e= - - - -N H H H H H . 4.194 1 2 3 4( ) ( )( )( )( ) ( )

From equations (2.23) and (4.1)–(4.4), the energies of the extremal states can be obtained in
terms of the factorization energies as

   e e e e= + = + = + = +1, 1, 1, 1. 4.201 1 2 2 3 3 4 4 ( )

Thus, if we have a solution w of the PV equation (4.15), consistent with the parameters of
equation (4.16), we obtain a system characterized by a third-order PHA. In fact, once we get
w z( ) we can obtain v z( ) from equation (4.14b), then from these two we can obtain t g, using
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equations (4.13). After that we obtain also p from equation (4.11) and q from equation (4.10).
Finally, we can go back to f f f f, , ,1 2 3 4 employing equation (4.6) and definitions (4.8).

Conversely, if a system with fourth-order ladder operators is found, then it is possible to
design a mechanism for generating solutions to the PV equation, similar to the one implemented
for the PIV equation [9, 24, 25]. The key point is to identify once again the extremal states of our
system. Then, from equations (4.17c) and (4.17d) it is straightforward to show that

⎜ ⎟
⎡

⎣⎢
⎛
⎝

⎞
⎠

⎤

⎦⎥

a
y y=

¢
= ¢

y

y

e e
e

e

h x W
2

ln

ln , . 4.21
3

4

3

3 4
( ) { [ ( )]} ( )

Therefore, we obtain an expression for g x( ) given by

y y= - - = - - ¢e eg x x h x x Wln , . 4.22
3 4

( ) ( ) { [ ( )]} ( )

Note that g x( ) is related with the solution w z( ) of the PV equation through

= +w z
z

g z
1 . 4.23

1 2

1 2
( )

( )
( )

Thus, we have introduced a simple recipe to generate solutions to the PV equation, based on
the identification of the extremal states for systems ruled by third-order PHA, which have
differential ladder operators of fourth order.

Before we finish this section, let us point out that in general the solutions w z( ) to the PV
equation will depend on the four parameters involved, i.e., =w w a b c d z, , , ;( ). In addition,
since the general solution of the PV equation cannot be written in terms of standard special
functions, these solutions are called PV transcendents. Nevertheless, for specific values of the
parameters a b c d, , , some of them can actually be expressed in terms of standard special
functions. Solutions of this type which are found in the literature can be given in terms of
rational functions, Laguerre or Hermite polynomials, Weber or Bessel functions, among
others. In this paper we are going to obtain explicit solutions to the PV equation, initially
expressed in terms of the confluent hypergeometric function. Then, we will derive some of the
solution families which are related with other special functions, called solution hierarchies, in
order to compare our results with the ones existent in the literature (see e.g. [26]).

5. SUSY partners of the radial oscillator

In this section we apply the SUSY QM of kth order to the radial oscillator Hamiltonian Hℓ,
which is given by

 = - + +
+

-H
x

x ℓ ℓ

x
ℓ x

1

2

d

d 8

1

2
,

1

2
, 0, 5.1ℓ

2

2

2

2

( )
( )

and whose eigenfunctions ynℓ and associated eigenvalues Enℓ satisfy:

y y y y= = ¥ =H E , 0 0. 5.2ℓ nℓ nℓ nℓ nℓ nℓ( ) ( ) ( )

The subscript ℓ was added to denote the Hamiltonian dependence on the angular momentum
index. Before doing the SUSY treatment, however, let us determine the spectrum of Hℓ

through the usual factorization method [30, 57, 58].
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The radial oscillator Hamiltonian can be factorized in four different ways, the first two are:

= + - = + +- +
+
+

+
-H a a

ℓ
a a

ℓ

2

1

4 2

3

4
, 5.3ℓ ℓ ℓ ℓ ℓ1 1 ( )

with

⎜ ⎟
⎛

⎝

⎞

⎠
º - + a

x

ℓ

x

x1

2

d

d 2
. 5.4ℓ ( )

The commutator of the last two operators is

= +- +a a
ℓ

x
,

1

2
, 5.5ℓ ℓ 2

[ ] ( )

from which we conclude that aℓ are neither ladder operators nor shift-operators, but rather a
mixture of both, since they change the energy E as well as the angular momentum index ℓ. An
alternative definition of the commutator would be

º - =- + - +
+
+

+
-a a a a a a, 1, 5.6ℓ ℓ ℓ ℓ ℓ1 1[ ] ( )

which depends on the index ℓ, i.e., it would be different for each Hamiltonian. However, in
this work we will stick to the standard definition of equation (5.5).

Operators aℓ intertwine Hℓ with -Hℓ 1, creating a hierarchy of Hamiltonians with dif-
ferent ℓ:

⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
= - = +- -

- -
+ +H a a H H a a H

1

2
,

1

2
. 5.7ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ1 1 ( )

Now, let us take an eigenfunction y xnℓ ( ) of Hℓ with eigenvalue Enℓ, as defined in
equation (5.2). Then, from equations (5.7) it is obtained that

⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
y y y y= - = ++ +

-
+
-

-
+ +H a E a H a E a

1

2
,

1

2
. 5.8ℓ ℓ nℓ nℓ ℓ nℓ ℓ ℓ nℓ nℓ ℓ nℓ1 1 1 1( ) ( ) ( ) ( ) ( )

On the other hand, the substitution  - +ℓ ℓ 1( ) produces the other two factorizations,
as well as corresponding changes in the equations. For the factorizations we have

= - - = - +- +
-

- +
+

-
+

-
-H a a

ℓ
a a

ℓ

2

3

4 2

1

4
, 5.9ℓ ℓ ℓ ℓ ℓ1 1 ( )( ) ( )

for the intertwinings

⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
= - = +- -

-
-
-

-
+

-
+

-H a a H H a a H
1

2
,

1

2
, 5.10ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ1 1 ( )

and for the eigenvalue equations

⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
y y y y= - = +- -

-
-
-

+ - +
+

- +
+H a E a H a E a

1

2
,

1

2
.

5.11

ℓ ℓ nℓ nℓ ℓ nℓ ℓ ℓ nℓ nℓ ℓ nℓ1 1 1 1( ) ( ) ( ) ( )

( )

( ) ( )

Neither aℓ nor -
a ℓ are ladder operators, but through them we can build second-order ones, as

can be seen in figure 5, where we show the cases with =ℓ 0, 1, 2, 3, i.e., for Îℓ even
though ℓ could be more general, as we stated in equation (5.1). Now, let us take bℓ as

= = = =-
- +
-

+
- -

-
- +

+
+

- +
+

-
+ +b a a a a b a a a a, . 5.12ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ1 1 1 1 ( )( ) ( )

Then, it is easily shown that = -- -H b b H 1ℓ ℓ ℓ ℓ( ) and = ++ +H b b H 1ℓ ℓ ℓ ℓ( ), i.e., the
following commutators are obeyed
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=  H b b, , 5.13ℓ ℓ ℓ[ ] ( )

which means that bℓ are ladder operators with explicit form given by

⎛

⎝
⎜

⎞

⎠
⎟= + -

+  b
x

x
x

x ℓ ℓ

x

1

2

d

d

d

d 4

1 1

2
. 5.14ℓ

2

2

2

2

( )
( )

It is worth to notice that in the standard formalism of SUSY QM, for ℓ 0 the repla-
cement  - +ℓ ℓ 1( ) transforms the superpotential that leads to an unbroken SUSY into a
different one, for which SUSY is broken (see [22], section 3.3). Concerning solutions of the
Schrödinger equation, this phenomenon just means that the transformation maps the ground
state eigenfunction of Hℓ into a Schrödinger solution for a different factorization energy
which does not satisfy anymore the boundary condition at x=0 (see below.)

Now, we can obtain the eigenstates of Hℓ departing from the ground state y ℓ0 , an
eigenstate of Hℓ such that y =-b 0ℓ ℓ0 . In this system there are two such formal eigenstates that
satisfy y y= =e e+

-
-
-a a 0ℓ ℓ1 1 2

. By solving these first-order differential equations, we obtain:

y eµ - = + ºe
+x x

ℓ
E aexp 4 ,

2

3

4
, 5.15ℓ
ℓ

1 2
1 01

( ) ( )

y eµ - = - + = - +e
-x x

ℓ
E bexp 4 ,

2

1

4
1. 5.15ℓ

ℓ
2

2 02
( ) ( )

As we mentioned earlier, the transformation  - +ℓ ℓ 1( ) maps y ye e1 2
and vice versa.

However, ye1 satisfies the boundary condition (5.2) at x=0 for ℓ 0, but ye2 does not. From
each one of them we can start a ladder of solutions of the Schrödinger equation through the
operator +bℓ , but only one of them is physical.

We can also obtain two formal eigenfunctions of Hℓ which are simultaneously solutions
of the second-order equation y =+b 0ℓ ℓ0 . They satisfy y y= =e e

+
- +
+a a 0ℓ ℓ 13 4( ) , leading to:

y eµ = - = -e
+x x

ℓ
E aexp 4 ,

2

1

4
1, 5.16ℓ

ℓ
1 2

3 03
( ) ( )

Figure 5. Diagram of the action of the first-order shift operators aℓ and -
a ℓ (left). The

horizontal axis represents the angular momentum index ℓ and the vertical one the
energy. The joint action of two appropriate shift operators leads to the second-order
ladder operators bℓ (right).
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y eµ = - - = -e
-x x

ℓ
E bexp 4 ,

2

3

4
, 5.16ℓ
ℓ

2
4 04

( ) ( )

which will be useful later on in our treatment. We can also create from them a ladder of
solutions using the operator -bℓ . Note that for ℓ 0, of those four solutions, only the first one
(5.15a) fulfills the boundary conditions and therefore leads to a ladder of (physical)

eigenfunctions of H ;ℓ the other three formal eigenfunctions of Hℓ supply only mathematical
solutions, but they still lead to solutions of PV equation, as we will show in section 7. In
particular, for y= eℓ 0,

2
neither diverges nor vanishes at x=0, i.e., it does not satisfy the

boundary conditions to be an eigenfunction of Hℓ. The spectrum of the radial oscillator for
ℓ 0 is therefore

= = + + = ¼H E n
ℓ

nSp
2

3

4
, 0, 1, . 5.17ℓ nℓ{ }( ) ( )

A diagram of this spectrum can be seen in figure 6, where we represent both the physical and
formal solutions generated from the extremal states of equations (5.15) and (5.16). Moreover,
an analogue of the number operator can be defined for the radial oscillator as

e e= - - = - + -+ -b b H H H E H E 1 , 5.18ℓ ℓ ℓ ℓ ℓ ℓ ℓ ℓ1 2 0 0( )( ) ( )( ) ( )

which is a polynomial of second degree in Hℓ, i.e., the radial oscillator is ruled by a first-
order PHA.

On the other hand, for- < <ℓ1 2 0 both extremal states of equation (5.15) satisfy the
required boundary conditions. Thus, through +bℓ they give place to two independent ladder of
eigenfunctions of Hℓ . However, the scalar product of the states (5.15) is not zero, which
means that each ladder belongs to a different self-adjoint extension of Hℓ [59]. Only the first
of them, given by equation (5.15), leads to a good supersymmetry for the pair +H H,ℓ ℓ 1.
Nonetheless, despite this indeterminacy, both extremal states will be quite useful for gen-
erating formal solutions to the PV equation in the interval - < <ℓ1 2 0. Moreover, for
= -ℓ 1 2 both of these solutions are degenerated so we do not have two different self-adjoint

extensions and we can also use our treatment to generate PV solutions there.
Now, in order to implement the SUSY transformations, we employ the general solution

of the stationary Schrödinger equation for any factorization energy ò, which is given by
(provided that ℓ is not a half-odd number) [30, 60, 61]

Figure 6. Spectrum of the radial oscillator Hamiltonian Hℓ for ℓ 0. In the upper part,
the blue circles represent the physical solutions starting from E ℓ0 and the red circles
represent the formal ones departing from - +E 1ℓ0 , and we go up from these two
ladders by +bℓ . In the lower part, the purple and orange circles represent formal
solutions starting from -E 1ℓ0 and -E ℓ0 , and we go down from them by -bℓ .
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From these two equivalent expressions of the general solution, we can easily obtain the
form of the functions resulting from equations (5.15) and (5.16) that appear represented in the
diagram in figure 6. They are expressed in terms of associated Laguerre polynomials aLn as

y = = ++ - +x x L x E E n ae 2 , , 5.20n
ℓ x

n
ℓ

n ℓ1
1 4 1 2 2

1 0
2

( ) ( ) ( )

y = = - + +- - - -x x L x E E n be 2 , 1 , 5.20n
ℓ x

n
ℓ

n ℓ2
4 1 2 2

2 0
2

( ) ( ) ( )

y = - = - -+ +x x L x E E n ce 2 , 1 , 5.20n
ℓ x

n
ℓ

n ℓ3
1 4 1 2 2

3 0
2

( ) ( ) ( )

y = - = - -- - -x x L x E E n de 2 , , 5.20n
ℓ x

n
ℓ

n ℓ4
4 1 2 2

4 0
2

( ) ( ) ( )

where we must remember that y n1 are the physical solutions for ℓ 0, while the other ones
are mathematical.

Let us take the solution (5.19a) to make a first-order SUSY transformation. Thus, the
SUSY partner potential of the radial oscillator becomes

= +
+

- V x
x ℓ ℓ

x
u x

8

1

2
ln . 5.211

2

2
( )

( )
[ ( )] ( )

The conditions that must be fulfilled to produce a non-singular transformation are (see [30]):




n> < -
G

G

-

- -
x E0, , , 5.22ℓ

ℓ

ℓ
0

1 2

2

1 2 4

4

( )
( )

( )

and the spectrum of H1 becomes Sp = ¼H E E, , ,ℓ ℓ1 0 1( ) { }.
Let us perform a kth order SUSY transformation through Bk by taking k appropriate

solutions ¼u u, ,k 1{ } in the form given in equation (5.19a), for k factorization energies such
that   < < < <-  Ek k ℓ1 1 0 . The SUSY partner potential of the radial oscillator becomes
now:

= +
+

- ¼ V x
x ℓ ℓ

x
W u u

8

1

2
ln , , , 5.23k k

2

2 1( )
( )

{ [ ( )]} ( )

while its spectrum is given by  = ¼ ¼H E ESp , , , , ,k k ℓ ℓ1 0 1( ) { }. In figure 7 we show
examples of first (left) and second-order (right) SUSY partner potentials of the radial
oscillator.
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We can define now a natural pair of ladder operators Lk for Hk as

= +  -L B b B , 5.24k k ℓ k ( )

that are of +k2 2 th( ) -order and fulfill

=  H L L, . 5.25k k k[ ] ( )

From the intertwining relations we can obtain the analogue of the number operator for the kth
order SUSY partners of the radial oscillator as

 





e= = -

= - + - - - -

+ -

=

+

=

N H L L H

H E H E H H1 1 . 5.26

k k k

j

k

k j

k ℓ k ℓ

j

k

k j k j

1

2 2

0 0

1

( ) ( )

( )( ) ( )( ) ( )

The roots of this polynomial suggest the following: since both  j and  + 1j are in the set,
there is a finite ladder starting and ending at  j. As the index j runs from 1 to k, this means that
Sp(Hk) contains k one-step ladders. Note that E ℓ0 and- +E 1ℓ0 are also roots of N Hk( ), then
Sp(Hk) could have in principle two infinite ladders, but just the one starting from E ℓ0 is
physical. We conclude that - +H L L, ,k k k{ } generates a +k2 1 th( ) -order PHA.

In this article we will work with the simple condition   Ej 0, although it is known that
in second-order SUSY QM we can use two transformation functions with  ,1 2 between two
neighbor energy-levels of Hℓ to produce non-singular transformations (see e.g., [3]).

6. Reduction theorem for the SUSY generated Hamiltonians Hk

In order to implement the prescription pointed out at the end of section 4 to produce solutions
to the PV equation, first of all we need to identify systems ruled by a third-order PHA,
generated by fourth-order ladder operators. Note that for k=1 the operator set - +H L L, ,k k k{ }

of the previous section generates a third-order PHA, i.e., the first-order SUSY partners of the
radial oscillator can be used directly for generating solutions to the PV equation. However, for
>k 1 the set - +H L L, ,k k k{ } generates a PHA of order greater than three. Would it be possible

to identify a subfamily of the kth order SUSY partners of the radial oscillator Hamiltonian
which, in addition of having the natural +k2 2 th( ) -order ladder operators Lk would have
fourth-order ones? If so, we could generate additional solutions to the PV equation. The

Figure 7. Radial oscillator potential (blue) and its SUSY partners for = =k ℓ1, 2,

 = 1 2, and n = -0.59{ (magenta), −0.4 (yellow), 1 (green)} (left plot). The right plot
corresponds to n= = =k ℓ2, 5, 11 , and  = 01 { (magenta), −2 (yellow), −4 (green)}
with = -u b uℓ2 1 and  = - 12 1 .
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answer to this question turns out to be positive, and the conditions required to produce such a
reduction process are contained in the following theorem [9].

Theorem. Let Hk be the kth-order SUSY partner of the radial oscillator Hamiltonian H0

generated by k Schrödinger seed solutions. These solutions ui are connected by the

annihilation operator of the radial oscillator -bℓ as

 = = - - = ¼- -u b u i i k, 1 , 1, , , 6.1i ℓ
i

i
1

1 1( ) ( ) ( )

where u x1 ( ) is a Schrödinger solution without zeroes, given by equation (5.19a) for

 < = +E ℓ 2 3 4ℓ1 0 and


n -

G

G

-

- -
. 6.2

ℓ

ℓ
1

1 2

2

1 2 4

4

1

( )
( )

( )

Therefore, the natural +k th2 2( ) -order ladder operator =+ + + -L B b Bk k ℓ k of Hk turn out to be

factorized in the form

=+ -
+L P H l , 6.3k k k k1 ( ) ( )

where  = - ¼ -- -P H H Hk k k k k1 1 1( ) ( ) ( ) is a polynomial of degree -k 1 in Hk and
+lk is

a fourth-order differential ladder operator

=+ +H l l, , 6.4k k k[ ] ( )

such that

 = - + - - - -+ -l l H E H E H H1 1 . 6.5k k k ℓ k ℓ k k k0 0 1( )( )( )( ) ( )

Proof (by induction). For k=1 the result is straightforward

= =+ +L P H l P H, 1. 6.61 0 1 1 0 1( ) ( ) ( )

Let us suppose now that the theorem is valid for a given k (induction hypothesis) and
then we are going to show that it is also valid for +k 1, i.e., we assume that
=+ -

+L P H lk k k k1 ( ) and we will proof that =+
+

+ +
+L P H lk k k k1 1 1( ) .

From the intertwining technique it is clear that we can go from Hk to +Hk 1 and vice versa
through a first-order SUSY transformation

= =+ +
+

+
+

+
-

+
-

+H A A H H A A H, . 6.7k k k k k k k k1 1 1 1 1 1 ( )

Moreover, it is straightforward to show that

=+
+

+
+ +

+
-L A L A . 6.8k k k k1 1 1 ( )

From the induction hypothesis one obtains

= =+
+

+
+

-
+

+
-

- + +
+ +

+
-

+

+
  



L A P H l A P H A l A , 6.9k k k k k k k k k k k

l

1 1 1 1 1 1 1 1

k 1

( ) ( ) ( )

where

º+
+

+
+ +

+
-l A l A , 6.10k k k k1 1 1 ( )

is a sixth-order differential ladder operator for +Hk 1. A direct calculation leads to

  = - - + - - - -+
+

+
-

+ + + + + + l l H H E H E H H1 1 .

6.11

k k k k k ℓ k ℓ k k k1 1 1
2

1 0 1 0 1 1 1 1( ) ( )( )( )( )

( )
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Note that the last four factors in the right-hand side of this equation are precisely what would
be obtained from the product +

+
+
-l lk k1 1 of the fourth-order ladder operators of +Hk 1. Thus, it is

concluded that

=+
+

+ +
+l q H l , 6.12k k k1 1 1( ) ( )

where +q Hk 1( ) is a polynomial in +Hk 1. By remembering that +
+

+
+l l,k k1 1, and +Hk 1 are

differential operators of sixth, fourth, and second order respectively, one can conclude that
+q Hk 1( ) is linear in +Hk 1. As we already know that k is a root of +q Hk 1( ) we get

= -+
+

+ +
+l H l . 6.13k k k k1 1 1( ) ( )

By substituting this result in equation (6.9) we finally obtain

= - =+
+

- + + +
+

+ +
+L P H H l P H l , 6.14k k k k k k k k k1 1 1 1 1 1 1( )( ) ( ) ( )

which concludes our proof. ,

6.1. Properties of the operators l7k

First of all, let us remember that the natural ladder operators Lk connect just the eigenstates
associated to the initial part of the spectrum Enℓ, but annihilate all the eigenstates for the
newly created levels at i.

On the other hand, the reduced ladder operators lk do actually allow the displacement
between the eigenstates of the finite ladder. Moreover, in the physical sector the operator -lk
annihilates only the eigenstates associated with E ℓ0 (the initial ground state energy) and with
k (the new ground state level), while +lk annihilates only the new eigenstate for the energy 1.
A diagram representing the action of the fourth-order ladder operators lk on the eigenstates of
the SUSY Hamiltonians Hk is shown in figure 8.

6.1.1. Relation with A7k +1. There are interesting relations involving the reduced ladder
operators lk and the first-order intertwining ones +

Ak 1, namely,

=+
+ 

+


+
+A l l A a, 6.15k k k k1 1 1 ( )

=
+
-

+
-

+
l A A l b. 6.15k k k k1 1 1 ( )

Note that these four relations are general, i.e., they can be applied to any eigenstate in the
physical ladders, including those which are annihilated by operators involved in such a
relations. A full diagram can be seen in figure 9.

6.1.2. Analogue of the number operator l +k l �k . Let us recall that the analogue of the number
operator + -b bℓ ℓ acts on the eigenstates yn

0∣ ⟩( ) of the radial oscillator Hamiltonian H0 as a
multiplication by a second degree polynomial in n, i.e.

y y= + -+ -b b n n E2 1 . 6.16ℓ ℓ n ℓ n
0

0
0∣ ⟩ ( )∣ ⟩ ( )( ) ( )

On the other hand, for its SUSY partner Hamiltonians Hk the action of the number operator, built
through the natural +k2 2 th( ) -order ladder operators ( + -L Lk k ), onto the eigenstates of Hk

becomes

⎡

⎣
⎢

⎤

⎦
⎥ y y= + - + - + - -+ -

=
L L n n E n E n E a2 1 1 , 6.17k k n

k
ℓ

i

k

ℓ i ℓ i n
k

0

1

0 0∣ ⟩ ( ) ( )( ) ∣ ⟩ ( )( ) ( )
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y =+ -L L b0. 6.17k k
k

j
∣ ⟩ ( )( )

Now, for the fourth-order ladder operators lk of Hk, the analogue of the number operator + -l lk k

acts onto the eigenstates of Hk as follows

 y y= + - + - - + -+ -l l n n E n E n E a2 1 1 , 6.18k k n
k

ℓ ℓ ℓ k n
k

0 0 1 0∣ ⟩ ( )( )( )∣ ⟩ ( )( ) ( )

      y y= - + - - - -+ -l l E E b1 1 . 6.18k k
k

i ℓ i ℓ i i k
k

0 0 1
i i

∣ ⟩ ( )( )( )( )∣ ⟩ ( )( ) ( )

We should note that the only physical eigenstates which are annihilated by + -l lk k are those
associated with the old ground state energy E ℓ0 and the new lower level k .

6.2. Consequences of the theorem

At the beginning of this section we have proven a theorem that establishes the conditions
under which the following factorization is fulfilled

=+ -
+L P H l , 6.19k k k k1 ( ) ( )

i.e., for the natural ladder operators Lk to be expressed as products of a polynomial of degree
-k 1 in Hk times the fourth-order ladder operators lk . This means that the +k2 1( )th-order

PHA, obtained through a SUSY transformation involving k connected seed solutions as
specified in the theorem, with  = - - = ¼i i k1 , 1, ,i 1 ( ) , can be reduced to a third-order
PHA with fourth-order ladder operators [62].

We recall from section 4 that these algebras are closely related to the PV equation. This
means that when we reduce the higher-order algebras, we open the possibility of obtaining new
solutions of the PV equation, similar to what happens for second-order PHA and PIV equation
[8, 9, 23–26]. In the following sections we will introduce our method to obtain solutions of the PV

Figure 8.Action of the operators lk over the eigenstates of the SUSY Hamiltonians Hk.
Note that = l L1 1 , and one can see that the operator -lk always annihilates the
eigenstates associated with E ℓ0 and k , while +lk annihilates the one associated with 1.
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equation, and then we will see that for some cases they can be written in terms of well known
special functions; this will lead us to classify them into several solution hierarchies.

7. Solutions to PV equation through SUSY QM

As it was pointed out previously, in order to generate solutions to the PV equation we have to
find systems ruled by a third-order PHA, having fourth-order ladder operators. In fact, the key
point of the technique is to identify the four extremal states (either physical or mathematical)
of the system, as well as their associated energies. Once identified, we number these states
arbitrarily (from first to fourth) and use equations (4.22) and (4.23) to calculate the PV
solution and equation (4.16) to determine the parameters. Since both, the PV solution and the
parameters of the equation, are symmetric under the exchanges e e«1 2 and e e«3 4, then
from the =4 24! possible permutations of the four indexes we will get just six different
solutions to the PV equation, some of which could have singularities.

Let us apply the technique next to the radial oscillator potential, then to its first-order
SUSY partners and, finally, to the subfamily of kth order SUSY partners which also have the
fourth order differential ladder operators lk .

7.1. Radial oscillator

We have seen previously that the radial oscillator Hamiltonian has second-order differential
ladder operators bℓ leading to a first-order PHA. We can also construct several pairs of
fourth-order differential ladder operators giving place to a third-order PHA, for example

= +
+

+


+
-L a b a , 7.1ℓ ℓ ℓ4 1 1 1 ( )

although three additional operators can be inferred from figure 5. The analogue to the number
operator becomes in this case:

= + - - -+ -L L H E H E H E1 . 7.2ℓ ℓ ℓ ℓ ℓ ℓ4 4 0 0 1
2( )( )( ) ( )

Figure 9. Action of the operators from equations (6.15) over the eigenstates of the
SUSY Hamiltonians Hk and +Hk 1. We can see that these relations allow the
displacement to any level in the spectrum, including the new eigenstates.
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Its roots suggest naturally three extremal states: two of them are those associated to the first-
order PHA, and another one is the first excited state y ℓ1 of Hℓ with eigenvalue E ℓ1 . The last
one is chosen as the mathematical eigenstate of Hℓ associated to the eigenvalue E ℓ1 , denoted
as y^ℓ1 , such that y y =^W , 1ℓ ℓ1 1( ) . Now, we number them as follows:

y eµ - =e
+x x E aexp 4 , , 7.3ℓ

ℓ
1 2

1 01
( ) ( )

y eµ - = - +e
-x x E bexp 4 , 1, 7.3ℓ

ℓ
2

2 02
( ) ( )

y y e= =e E c, , 7.3ℓ ℓ1 3 13
( )

y y e= =e
^ E d, . 7.3
ℓ ℓ1 4 14

( )

Using these expressions and equations (4.16), (4.22) and (4.23), it is straightforward to obtain
the PV solution with parameters:

=
+

= = -
+

= -a
ℓ

b c
ℓ

d
2 1

8
, 0,

2 7

4
,

1

8
. 7.4

2( )
( )

In equation (4.16) the four parameters of the PV equation are expressed in terms of the four
extremal states energies, but we also have symmetry in the exchanges e e«1 2 and e e«3 4.
Thus from the =4 24! possible permutations of the four indexes we have just six different
solutions to PV equation. Now, by exploring all possible permutations of the indexes which
lead to different PV solutions, the six results contained in table 1 are obtained.

We must remember that, since the radial oscillator is also described by a first-order PHA,
then the third-order case must reduce to the original first-order PHA. Indeed, this is what
happens since = -+ +L b H Eℓ ℓ ℓ4 0( ) and = -- -L H E bℓ ℓ ℓ4 0( ) . The same can be done for the
other three different choices of L4 .

7.2. First-order SUSY partners of the radial oscillator

The first-order SUSY partners of the radial oscillator Hamiltonian possess a pair of natural
fourth-order differential ladder operators

= +  -L A b A , 7.5ℓ4 1 1 ( )

where A1 are the first-order intertwining operators and bℓ are the second-order ladder
operators of section 5. The operators L4 give place to a third-order PHA since

 = = + - - - - -+ -N H L L H E H E H H1 1 . 7.6ℓ ℓ ℓ ℓ ℓ ℓ1 4 4 0 0( ) ( )( )( )( ) ( )

The roots of N H1( ) and the SUSY procedure suggest now the following extremal states: two
of them are the SUSY transformed extremal states of the radial oscillator, another one is the
new ground state created by the SUSY transformation. The last one will be a mathematical
eigenstate of H1 associated to  + 1. Let us choose now the following ordering:

y eµ = +e
+ +A b u a, 1, 7.7ℓ1 11

( )

⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥y eµ - = - +e

+ -A x
x

E bexp
4

, 1, 7.7ℓ
ℓ1

2

2 02
( )

y eµ =e
u

c
1
, , 7.733

( )
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Table 1. Explicit solutions of the PV equation for the six permutations of the extremal states (7.3) of the radial oscillator potential.

Order a8 b8 c4 -w z 1( )

1234 +ℓ2 1 2( ) 0 - -ℓ2 7 −1
1324 4 - +ℓ2 3 2( ) -ℓ2 1 G + - - -

- G +

- + +z ℓ z z

ℓ ℓ z

1 2, 0, 2 2 e

2 1 1 2, 0, 2

ℓ z ℓ1 2 2 1 2( ) ( )

( ) ( )

1423 4 - +ℓ2 3 2( ) -ℓ2 1 - -ℓ z2 1 1( )

2314 +ℓ2 3 2( ) −4 - -ℓ2 3 + + + G + - - G + + + -
G + - + G + -

- +ℓ z ℓ ℓ z ℓ ℓ z

ℓ ℓ ℓ z

2 1 2 2 1 1 2, 2 3 2 2 1 2 e

2 3 2 2 1 1 2, 2

ℓ z1 1 2 2( )[ ( ) ( ) ( )] ( )( )

( ) ( ) ( )

2413 +ℓ2 3 2( ) −4 - -ℓ2 3 - -- ℓ z2 1 21( )
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⎡

⎣
⎢

⎛

⎝
⎜

⎞

⎠
⎟

⎤

⎦
⎥y eµ - =e

+ +A x
x

E dexp
4

, . 7.7ℓ
ℓ1

1
2

4 04
( )

Using these expressions and equations (4.16), (4.22) and (4.23), one can obtain the PV
solution with parameters:

 
=

+ +
= -

- -
= -

+
= -a

ℓ
b

ℓ
c

ℓ
d

4 2 3

32
,

4 2 3

32
,

2 1

4
,

1

8
.

7.8

2 2( ) ( )

( )

In addition, we can permute the indexes to obtain different PV solutions. For the first-order
SUSY partners of the radial oscillator, although the PV solutions can be quickly calculated
with any symbolic software, they are quite large to be written down explicitly; for that reason
we have chosen a simple case, using as seed solution u x( ) the ground state of the radial
oscillator, i.e.,  = E ℓ0 . In this case, of the six possible solutions obtained by permutations,
three of them reduce to zero and the other three become fractions of polynomials. The full
explicit expressions are given in table 2.

7.3. kth-order SUSY partners of the radial oscillator

The kth-order SUSY partners of the radial oscillator Hamiltonian, generated by k seed
solutions which are connected through the second-order ladder operators as

 µ = - - = ¼- -u b u i i k, 1 , 1, , , 7.9i ℓ
i

i
1

1 1( ) ( ) ( )

have fourth-order differential ladder operators lk defining the following analogue of the
number operator:

 = = + - - - - -+ -N H l l H E H E H H1 1 . 7.10k k k k ℓ k ℓ k k k0 0 1( ) ( )( )( )( ) ( )

Its roots suggest that two extremal states of Hk are the SUSY transformed extremal states of the
radial oscillator, another one is the new ground state created by the SUSY transformation at k ,
and the last one is a formal eigenstate of Hk associated to  + 11 . We order them as follows:

y eµ = +e
+ +B b u a, 1, 7.11k ℓ 1 1 11

( )

y eµ - = - +e
+ -B x x E bexp 4 , 1, 7.11k

ℓ
ℓ

2
2 02

[ ( )] ( )

y eµ
¼
¼

=e
-W u u

W u u
c

, ,

, ,
, , 7.11

k

k
k

1 1

1
33

( )

( )
( )

y eµ - =e
+ +B x x E dexp 4 , , 7.11k

ℓ
ℓ

1 2
4 04

[ ( )] ( )

where +Bk is the kth-order intertwining operator.
Using these expressions and equations (4.16), (4.22) and (4.23), the PV solution and its

associated parameters are obtained:

 
=

+ +
= -

- - +

=
- -

= -

a
ℓ

b
k ℓ

c
k ℓ

d

4 2 3

32
,

4 4 2 1

32
,

2 2 3

4
,

1

8
. 7.12

1
2

1
2( ) ( )

( )

In particular, for second-order SUSY (k=2) with  = E ℓ1 1 and u1 being the eigenfunction of
the first excited state of Hℓ , the PV solutions are simple. In fact, by exploring all permutations
of the indexes generating different PV solutions, we obtain the six results contained in table 3.
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8. Real solutions to the PV equation with real parameters

The non-singular SUSY transformations involving real seed solutions, associated with real
factorization energies, have one restriction: the whole finite ladder which is created has to be
placed below the ground state energy of Hℓ, i.e.,   E ℓ1 0 . This kind of transformations gives
place to real solutions to the PV equation with real parameters a b c d, , , . Let us analyze next
some of those solutions and their associated parameters.

8.1. First-order SUSY QM

For the first-order SUSY partners of the radial oscillator we are able to connect directly with
the PV equation and specific parameters Îa b c d, , , , in general. In fact, from
equations (4.16), (4.20) and (7.7), we obtain a b c d, , , in terms of one parameter of the initial
system (E ℓ0 ) and one of the SUSY transformation (1) as follows:

 
=

+
= -

-
=

-
= -a

E
b

E
c

E
d

2
,

2
,

1 2

2
,

1

8
. 8.1

ℓ ℓ ℓ0 1
2

0 1
2

0( ) ( )
( )

Since = +E ℓ 2 3 4ℓ0 , in general the four parameters a b c d, , , depend on  -ℓ 1 2 and
 Î1 . In this section we will study the case where the PV parameters and the factorization
energy are real, i.e.,  Îa b c d, , , , 1 , while in the next sections we will study the complex
case. We must remark that usually in the physical studies of the radial oscillator ℓ is the
angular momentum index and it is restricted by Î +ℓ , but here we employ it just as an aid
mechanism for obtaining solutions to the PV equation; that is why we rather use the
generalized radial oscillator for Îℓ and  -ℓ 1 2. In figure 10, we show a parametric plot
of the three parameters a b c, , as functions of ℓ and 1 (d does not depend on them). On any
point of this surface in the parameter space we can find solutions to the PV equation.

In fact, if we restrict ourselves to real solutions of the PV equation with real parameters
and without singularities in x 0, we also get the restriction   E ℓ1 0 . Moreover, for each
one of those points we have indeed a one-parameter family of solutions, labeled by the
parameter n1 from equation (5.19a) with the restriction (5.22).

Then, we obtain the following 1-SUSY partner potential and the function g x1( ), which is
related with the solution w z( ) of the PV equation:

= +
+

- V x
x ℓ ℓ

x
u x a

8

1

2
ln , 8.21

2

2
( )

( )
[ ( )] ( )

Table 2. Explicit solutions to PV equation for the six permutations of the extremal
states (7.7) for the first-order SUSY partner of the radial oscillator with  = E ℓ0 .

Order a8 b8 c4 -w z 1( )

1234 +ℓ2 3 2( ) 0 - -ℓ2 1 0
1324 4 - +ℓ2 1 2( ) +ℓ2 1 0
1423 4 - +ℓ2 1 2( ) +ℓ2 1 - + -z ℓ z2 1 1( )

2314 +ℓ2 1 2( ) −4 - -ℓ2 5 0
2413 +ℓ2 1 2( ) −4 - -ℓ2 5

- - - + + + -
- - + - + + + - - - -

z ℓ ℓ z ℓ z z z z

ℓ z ℓ z z ℓ z z z z z

8 4 1 2 5 2 2 5 3

8 4 4 3 4 2 5 2 2 8 5 1

3 2 2 2

3 2 2 3 2 3

[ ( ) ( ) ( ) ]

( ) ( ) ( ) ( )

3412 0 - +ℓ2 3 2( ) -ℓ2 3
+ - + -

+ -
z ℓ ℓ ℓ z z

ℓ ℓ ℓ

8 4 2 2 5 15

16 2 1

3 2 2 2

2

[ ( ) ]

( )
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= - -
+

+ ¢g x
x ℓ

x
u x b

2

1
ln , 8.21( ) [ ( )] ( )

where we have added an index to indicate the order of the SUSY transformation. Since g x1( )

is connected with the solution w z1 ( ) of the PV equation through

= +w z
z

g z
1 , 8.31

1 2

1
1 2

( )
( )

( )

then

= +
¢ - + +

w z
zu z

z u z z ℓ u z
1

2

2 2 2
. 8.41

1 2

1 2 1 2 1 2
( )

( )

( ) ( ) ( )
( )

An illustration of several first-order SUSY partner potentials of the radial oscillator V x1 ( ) and
the corresponding solutions w z1 ( ) of the PV equation are shown in figure 11.

8.2. kth-order SUSY QM

With the reduction theorem used to identify the fourth-order ladder operators for the SUSY
partners of the radial oscillator of section 6, we are able to reduce the ( +k2 1)th-order PHA
induced by the natural ladder operators to third-order PHA. Basically, the k transformation
functions have to be connected through the annihilation operator -bℓ and therefore their
energies will be given by  = - -i 1i 1 ( ). This implies that we create a new equidistant
ladder with k steps, one step for each first-order SUSY transformation. There is also the
restriction on the factorization energy that  < E ℓ1 0 .

Figure 10. Surface in the parameter space a b c, ,( ) where there are non-singular real
solutions of the PV equation for the ordering 1234 of the extremal states given in
equation (7.7). We vary the parameters  Î - E10, ℓ1 0( ) and Î -ℓ 1 2, 10( ). The
labels for the legend refer to k=1.

Table 3. Explicit solutions to PV equation for the six permutations of the extremal
states (7.11) for the second-order SUSY partners of the radial oscillator with  = E ℓ1 1 .

Order a8 b8 c4 w z( )

1234 +ℓ2 5 2( ) 0 - +ℓ2 1 0
1324 16 - +ℓ2 1 2( ) +ℓ2 3 0
1423 16 - +ℓ2 1 2( ) +ℓ2 3

- -
- + + + +

z ℓ

z z ℓ ℓ ℓ

4 2 3

2 2 1 4 8 32 2

( )

( )

2314 +ℓ2 1 2( ) −16 - -ℓ2 7 0
2413 +ℓ2 1 2( ) −16 - -ℓ2 7

- + + +
- + + - +

z ℓ ℓ

z z ℓ ℓ ℓ

2 3 2 1

2 2 1 4 2 32

( )( )

( ) ( )

3412 0 - +ℓ2 5 2( ) -ℓ2 5 ¥
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Once again, we need to identify the extremal states of our system. Since the roots of the
polynomial in equation (6.5) are  - + +E E, 1, , 1ℓ ℓ k0 0 1 , then two of them are physical
extremal states, the ones associated with E ℓ0 and k , a mathematical one coming from the
radial oscillator at- +E 1ℓ0 , and another mathematical eigenstate at  + 11 that will make the
new ladder to be finite. The four extremal states are thus given by equation (7.11).

From SUSY QM usual theory [9], we can write ye4 as

y µ - µ
¼ -

¼e
+ +

+
B x x

W u u x x

W u u
exp 4

, , , exp 4

, ,
. 8.5k

ℓ k
ℓ

k

1 2 1
1 2

1
4

[ ( )]
( ( ))

( )
( )

Thus, from equation (4.21) we obtain the auxiliary function h x( ) as

y y= ¢e eh x Wln , , 8.6
3 4

( ) { [ ( )]} ( )

and then from equation (4.22) one arrives at

y y= - - ¢e eg x x Wln , . 8.7
3 4

( ) { [ ( )]} ( )

Therefore, the kth-order SUSY partner potential V xk ( ) of the radial oscillator and its
corresponding g xk ( ) function are

= +
+

- ¼ V x
x ℓ ℓ

x
W u u a

8

1

2
ln , , , 8.8k k

2

2 1( )
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[ ( )] ( )


= - +

- + - ¼ ¼ -
¼ ¼ -

-
+

-
+

g x x
E k W u u W u u x x

W W u u W u u x x

b
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.
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ℓ k k
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k k
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0 1 1 1 1
1 2

1 1 1
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Recall that g xk ( ) is directly related with w zk ( ) through

= +w z
z

g z
1 , 8.9k

k

1 2

1 2
( )

( )
( )

which is a PV transcendent for the parameters

 
=

+
= -

- + -

=
-

= -

a
E

b
E k

c
k E

d

2
,

1

2
,

2

2
,

1

8
. 8.10

ℓ ℓ

ℓ

0 1
2

0 1
2

0

( ) ( )

( )

Figure 11. First-order SUSY partner potential (left) V x1 ( ) of the radial oscillator (black)
and the solutions (right) w z1 ( ) to the PV equation for = =ℓ 1, 11 , and ν1= 0.905{

(blue), 0.913 (magenta), 1 (yellow), 10 (green)}.
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In figure 12 we show some PV transcendents w z2 ( ) obtained through the second-order
SUSY transformation. Furthermore, with the kth-order SUSY QM we are able to expand the
solution space a b c, ,( ) by the inclusion of k. In figure 13 we show a plot of such a solution
space for =k 1, 2, 3, 4.

9. Complex solutions to the PV equation with real parameters

Let us stress that we can use the theorem of section 6 even with complex transformation
functions. The simplest way to implement this is to use a complex linear combination of two
standard linearly independent real solutions with a complex constant l k+ i , with l k Î, ,
i.e.

⎡

⎣
⎢

⎛

⎝
⎜
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 
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u x x F
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, e
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2
;
2

i
2

3 2 4

4
,
3 2

2
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ℓ x
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2
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The result for the real case given in equation (5.19a) is accomplished with the choice



l n k=
G

G
=

+ -

+
, 0. 9.2

ℓ

ℓ

3 2 4

4

3 2

2

( )
( )

( )

Compared with the case when we were only dealing with real solutions that we studied in
the previous section, the restriction   E ℓ1 0 can now be surpassed, which implies that the
solution space for the PV equation becomes even bigger for complex solutions than for real
ones. In table 4 we show the parameters of the six solutions in terms of  ℓ,1 and k, which is
the most general solution of the PV equation that we can find for this case.

The form of the solutions is the same as those of equations (8.8), but now the linear
combination in equation (9.1) is complex. In figure 14 we show two complex PV trans-
cendents associated with real parameters a b c d, , , .

Figure 12. PV solutions w2 generated through second-order SUSY QM. The left plot is
for the parameters n= =ℓ 0, 01 , and  = 1 41 { (blue), -3 4 (magenta), -7 4

(yellow), -11 4 (green)}. The right plot is for  n= =0, 01 1 , and =ℓ 1{ (blue), 3
(magenta), 6 (yellow), 10 (green)}.
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10. Complex solutions to PV equation with complex parameters

We can also obtain complex solutions to the PV equation simply by allowing the factorization
energy in equation (9.1) to be complex. Then, as in the previous section, the solutions will
also be complex but now the parameters a b c, , of the PV equation will also be complex, as
they depend on 1.

For example, in figure 15 we show two complex solutions to the PV equation associated
with the complex parameters (a b c, , ) given by

= - + = + =a b c a
115

4
i
429

16
,

1911

32
i
55

4
,

49

4
, 10.1( )

= - - = - = -a b c b
1881

800
i
27

20
,

119

800
i
3

20
,

3

4
. 10.1( )

11. Solution hierarchies for the PV equation

The solutions w z( ) that we have found for the PV equation are expressed in terms of g x( ) in
equation (8.9), and at the same time g x( ) is expressed in terms of the functions ui in
equation (8.8b). Recall that ui are formal eigenfunctions of the radial oscillator Hamiltonian
with fixed eigenvalues, which are determined only by two complex parameters 1 andl k+ i .
Also remember that all of them are eventually expressed in terms of the confluent hyper-
geometric function F1 1, since u1 is taken as in equation (9.1). Therefore, in the end our
solutions to the PV equation will be written as functions depending on F1 1.

Figure 13. Solution space for the PV equation generated through kth-order SUSY QM
taking  Î - E10, ℓ1 0( ) and Î -ℓ 1 2, 10( ). We show the first four surface solutions
for =k 1, 2, 3, 4{ } (yellow, blue, green and red, respectively).

Table 4. The six permutations of indexes of the extremal states which lead to different
solutions to the PV equation due to the symmetries in the solution space.

Index a32 b32 c4

1234 + +ℓ2 4 31
2( ) - - + - +ℓ k2 4 4 11

2( ) - + -ℓ k2 2 3

1324 k16 2 - +ℓ4 2 1 2( )  - k4 21

1423 - + +ℓ2 4 11
2( ) - + - +ℓ k2 4 4 31

2( ) + -ℓ k2 2 1

2314 + - +ℓ k2 4 4 31
2( ) - - -ℓ2 4 11

2( ) - - -ℓ k2 2 1

2413 +ℓ4 2 1 2( ) - k16 2 - + -k4 2 41

3412 - + -ℓ k2 4 4 11
2( ) - + +ℓ2 4 31

2( ) - -ℓ k2 2 1
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Recall that the Painlevé equations themselves define new special functions, the Painlevé
transcendents, which are precisely the functions that solve the corresponding equation.
Nevertheless, for some particular values of the parameters 1 and l k+ i , they can be
expressed in terms of known special functions. This is useful to define solution hierarchies,
which has been done previously for the PIV equation [9, 26, 63]. Next, we will do a similar
classification for the PV transcendents w z( ). Most of them will correspond to the broad
category of rational solutions, expressed as fractions of polynomials. Let us note that most of
the members of the rational hierarchy are generated by the same SUSY transformations that
give place to the exceptional orthogonal polynomials, which have recently received a lot of
attention [64–70].

11.1. Laguerre polynomials hierarchy

When one of the following two conditions is fulfilled

 n= - + =n
ℓ

a
2

1

4
, 0, 11.11 1 ( )

 n= + +  ¥n
ℓ

b
2

3

4
, , 11.11 1 ( )

Figure 14. Real (solid) and imaginary (dashed) parts of the solution w z1 ( ) to PV
equation for  l= = =ℓ 3, 0, 01 and k = 100 (left) and  l= = =ℓ 2, 2, 01 and
k = G - G1 4 7 4( ) ( ) (right).

Figure 15. Real (solid) and imaginary (dashed) parts of the solution w z1 ( ) to PV
equation for = = +ℓ i3, 1 111 , and l k+ = G - Gi ii 100 5 4 11 9 2 ;( ) ( ) and

= = -ℓ i1, 1 3 51 , and l k+ = - G + Gi ii 1 1 4 3 5 5 2( ) ( ) ( ).
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the confluent hypergeometric function reduces to a Laguerre polynomial due to the following
identity

a
a=

+
- +aL x

n
F n x

1
, 1, . 11.2n

n
1 1( )

( )

!
( ) ( )

Two examples of solutions to the PV equation belonging to this hierarchy are

= - -w z z a1 , 11.31
1 2( ) ( )

a
= -

- -

a

aw z
z L z

L z
b1

2

2 2 2 1
, 11.31

3 2
1

2

1
2

( )
( )

( )
( )

( )

( )

where a = - +ℓ2 1 2( ) .

11.2. Hermite polynomials hierarchy

Take now one of

 n= = + =ℓ n a0, 1 4, 0, 11.41 1 ( )

 n= = +  ¥ℓ n b0, 3 4, . 11.41 1 ( )

We obtain then the Hermite polynomial hierarchy. Two examples of PV transcendents
belonging to this hierarchy are

= -
+ - -

w z
z H z

z H z nzH z
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1 4
, 11.5

n

n n
1
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2

2
2 2 1

( )
( )

( ) ( ) ( )
( )

= +
--

w z
z H z

nH z zH z
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4
. 11.5

n
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1 2
2

2 1 2
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( )

( ) ( )
( )

where H xn ( ) are the Hermite polynomials. In figure 16 we have plotted two members of each
of these two solution families for two values of n. In the plots, it looks like the solutions may
present a singularity at x=0, but this indeed does not happen, as can be proven analytically
using equations (11.5).

11.3. Weber or parabolic cylinder hierarchy

In order to reduce the confluent hypergeometric function F1 1 into a Weber or parabolic
cylinder function mE x( ), the following conditions must be fulfilled:

 m n= = + =ℓ 0, 2 1 4, 0. 11.61 1( ) ( )

Two examples of solutions w z1 ( ) of this hierarchy that are obtained through 1-SUSY are

= -
+ - +

m

m m m- +
w z

z E z

z E z zE z zE z
a1

2

2 1
, 11.71

3 2
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1 1
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( )

( ) ( ) ( ) ( )
( )

= -
+ - +
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z E z

z E z zE z zE z
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11.4. Modified Bessel hierarchy

Under the conditions

m n= - + = =ℓ a4 1 2, 0, 0, 11.81 1( ) ( )

m n= - + = =ℓ b4 3 2, 0, 0, 11.81 1( ) ( )

m n= - =  ¥ℓ c4 1 2, 0, , 11.81 1( ) ( )

m n= + =  ¥ℓ d4 1 2, 0, , 11.81 1( ) ( )

the function F1 1 reduces to the modified Bessel function mI z( ). Two examples of the
corresponding PV transcendents are

m
= -

- -
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m m+
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z I z

z I z z I z
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2 4

8 4 4
, 11.91

3 2 2

2 2 2
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w z

I z

z I z I z
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2 4

4 4
. 11.91

2

1 2
1

2 2
( )

( )

[ ( ) ( )]
( )

We present four examples for each of the two solution families of equations (11.9) in
figure 17.

11.5. Exponential hierarchy

For special values of the parameters of the SUSY transformation, the confluent hypergeo-
metric functions reduces to a polynomial, but there is still the exponential function as a factor
in the general solution u x1 ( ), which could appear in the PV transcendent. The conditions

 n= =  ¥ℓ 1 2, 0, , 11.101 1 ( )

illustrate this situation, with two solutions which are obtained through 1-SUSY given by

= +
-

w z
z

z
a1

exp 2 1
, 11.111

2

1 2
( )

( )
( )

= - +
+ -

w z
z z

z z
b1

2 2 4 4 exp 2
. 11.111

3 2 7 2

2 2
( )

( )
( )

In figure 18 we show these two solutions, which belong to the exponential hierarchy.

Figure 16. Solutions w z1 ( ) belonging to the Hermite polynomials hierarchy given by
equation (11.5a) for =n 0, 1 (blue, magenta) and by (11.5b) for =n 1, 2 (yellow, green).
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11.6. Polynomial hierarchy not from special functions

Usually, there are some conditions for the F1 1 to reduce to an exponential. In such a case, this
exponential together with the one of the general solution u x1 ( ) at the end causes the PV
solution to be a polynomial, but different from any other hierarchy. Two examples are
obtained for

 n= - =
ℓ

a
2

1

4
, 0, 11.121 1 ( )

 n= - -  ¥
ℓ

b
2

3

4
, . 11.121 1 ( )

An explicit PV transcendent of this hierarchy is given by

= -
+

w z
z

ℓ
1

2 1
. 11.131

3 2

( ) ( )

Figure 17. Solutions w z1 ( ) of the PV equation given by equations (11.9) which belong
to the modified Bessel hierarchy. The positive solutions belong the the first family and
negative solutions to the second one for m = 1 (blue), m = 2 (magenta), m = 3

(yellow), and m = 4 (green).

Figure 18. The two PV transcendents w z1 ( ) given by equations (11.11) belonging to the
exponential hierarchy.
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12. Conclusions

In this paper we presented an algebraic technique to solve the PV equation. This method
supplies specific subsets of PV transcendents that are connected with the confluent hyper-
geometric function and other related functions. In order to introduce our procedure, we
revisited the SUSY QM technique with special emphasis in the radial oscillator in section 2
and the PHAs in section 3, particularly the third-order PHA and the related fourth-order
ladder operators in section 4. In the last case, we established the connection of this algebra
with solutions of the PV equation, through four first-order intertwining operators.

Later, we derived the SUSY partners of the radial oscillator and we obtained the natural
ladder operators for these systems in section 5. Then, in section 6 we proved a reduction theorem,
in which we pointed out the requirements for the kth-order SUSY partners of the radial oscillator,
which usually have +k2 2( )th-order ladder operators, to be described as well by reduced fourth-
order ones and therefore related with third-order PHA and the PV equation.

Using the connection between SUSY partners of the radial oscillator and third-order
PHA, in section 7 we were able to implement a method to obtain solutions of the PV
equation, i.e., PV transcendents. We presented the general method for the higher-order SUSY
partners of the radial oscillator and we also worked out explicit solutions coming from the
radial oscillator and its first- and second-order SUSY partners. Then, we obtained real and
complex solutions associated with real parameters a b c d, , , of the PV equation in sections 8
and 9, respectively, as well as complex solutions for complex parameters in section 10.

Finally, in section 11 we classified some of the PV transcendents obtained into solution
hierarchies, according to the special functions they depend on, e.g., Laguerre polynomials,
Hermite polynomials, Weber functions, exponentials, among others.

This work further expands the previous treatment of the authors for the PIV equation [7–
9, 23–26], with the main difference that the connection with the PV equation is more ela-
borated, and working out the explicit solutions becomes increasingly complicated even at
lower orders. We realize also that the classification done here is probably still incomplete, as
there are even further solutions that can be obtained by this method.

The relation between the PV equation and SUSY QM has other potential applications. Let us
mention that some of the fourth-order ladder operators obtained by the reduction theorem describe
a kind of exceptional polynomials. Another example is that, in the context of SUSY QM,
Darboux transformations can be designed to produce a kind of Bäcklund transformations for
different PV equations. We will continue working in this direction in the near future.
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