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A Self-Organized ECM-Mimetic Model Based on an 

Amphiphilic Multiblock Silk-Elastin-Like co-

Recombinamer with a Concomitant Dual Physical 

Gelation Process  

Alicia Fernández-Colino, F. Javier Arias, Matilde Alonso, J. Carlos Rodríguez-Cabello*  

G.I.R. Bioforge, University of Valladolid, CIBER-BBN, Paseo de Belén 11, 47011 Valladolid, Spain 

ABSTRACT. Although significant progress has been made in the area of injectable hydrogels for 

biomedical applications and model cell niches, further improvements are still needed, especially in 

terms of mechanical performance, stability and biomimicry of the native fibrillar architecture found in 

the extracellular matrix (ECM). This work focuses on the design and production of a silk-elastin-based 

injectable multiblock co-recombinamer that spontaneously forms a stable physical nanofibrillar 

hydrogel under physiological conditions. That differs from previously reported silk-elastin-like 

polymers on a major content and predominance of the elastin-like part, as well as a more complex 

structure and behavior of such part of the molecule, which is aimed to obtain well defined hydrogels. 

Rheological and DSC experiments showed that this system displays a coordinated and concomitant dual 

gelation mechanism. In a first stage, a rapid, thermally driven gelation of the co-recombinamer solution 

takes place once the system reaches body temperature due to the thermal responsiveness of the elastin-

like (EL) parts and the amphiphilic multiblock design of the co-recombinamer. A bridged micellar 
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structure is the dominant microscopic feature of this stage, as demonstrated by AFM and TEM. 

Completion of the initial stage triggers the second, which comprises a stabilization, reinforcement, and 

microstructuring of the gel. FTIR analysis shows that these events involve the formation of β-sheets 

around the silk motifs. The emergence of such β-sheet structures leads to the spontaneous self-

organization of the gel into the final fibrous structure. Despite the absence of biological cues, here we 

set the basis of the minimal structure that is able to display such a set of physical properties and undergo 

microscopic transformation from a solution to a fibrous hydrogel. The results point to the potential of 

this system as a basis for the development of injectable fibrillar biomaterial platforms towards a fully 

functional, biomimetic, artificial extracellular matrix and cell niches. 

KEYWORDS. Elastin-like recombinamers, SELR, hydrogel, fibrillar, artificial extracellular matrix . 

 

INTRODUCTION 

The latest trends in materials science involve the strategy of copying the designs found in Nature in the 

laboratory 
1
, since they exhibit extraordinary properties that have been achieved over millions of years 

of evolution. Within this framework, the greatest biomaterials-related challenge in the field of tissue 

engineering is to create biomimetic scaffolds that can act in a similar manner to the extracellular matrix 

(ECM). Given the complexity of the natural ECM, this is a particularly challenging task as the artificial 

ECM (aECM) must reproduce the complex cell-ECM interaction, which includes specific cell adhesion, 

protease sensitivity, and cytokine release, amongst others. In addition, cell-material interactions and the 

group of factors that govern cell fate in the natural ECM are not restricted exclusively to biological 

features, since physical clues are also of relevance. From a structural perspective, the ECM has a 

fibrillar and viscoelastic character, and such biophysical features have been reported to have a 

significant influence on cell behavior 
2-4

. Although the molecular pathways involved in cellular 
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mechanosensitivity are still open to investigation, it is well known that cells sense and respond to the 

stiffness of their environment by converting mechanical inputs into chemical outputs 
5,6

. More recently, 

cell fate related to energy dissipation mediated by enzymatic ECM degradation has also been reported 
7
. 

Such discoveries highlight the importance of controlling both the more obvious biological environment 

of a bioengineered matrix and the physical one.  

One more condition must be added to all those mentioned above, namely that candidate aECMs will 

eventually be implanted, therefore, in addition to being sufficiently functional, they must satisfactorily 

cope with the immune rejection system and not be identified as a foreign body. Furthermore, they 

should be reabsorbed without any damage or stress for growing cells. In light of the above, the creation 

of such aECMs seems to be a major challenge, and more so if we consider that all this must be achieved 

in an injectable formula, in other words a system in a liquid state from which, after implantation 

(injection), all other structures and functions develop; self-organization is a must in this context.  

One interesting group of self-assembling polymers is the elastin-like polymers, and particularly their 

recombinant versions, the elastin-like recombinamers (ELRs) 
8
. ELRs are protein-based materials whose 

composition is inspired by the primary sequence found in natural elastin. Thus, the amino-acid sequence 

of ELRs is commonly constituted by repeats of the (VPGXG) pentapetide, where X is any amino acid 

except proline. ELRs show a reversible LCST (Lower Critical Solution Temperature) phase transition, 

usually known as the inverse temperature transition (ITT) in the context of elastin-like materials, in 

response to temperature. In an aqueous medium, below a characteristic temperature known as the 

transition temperature (Tt), the polymer chain remains soluble. However, above this Tt, the ELR 

assembles hydrophobically and adopts a regular, dynamic, nonrandom structure characterized by the 

presence of type II β turns 
9,10

. Such stimuli-responsive behavior, together with their proven 

biocompatibility 
11

 and their mechanical performance, have positioned these recombinant 
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macromolecules as potential candidates for use in numerous biomedical applications 
12,13

, particularly 

regarding the development of injectable hydrogels, which mainly relies on their ability to respond to 

thermal stimulation. As a result of this property, the recombinamer solution can be injected as a liquid 

but, once inside the organism, it reaches body temperature and consequently undergoes a phase 

transition from solution to gel that can be referred to as thermo-gelling. In general, homo-ELRs tend to 

segregate from solution, thus giving rise to a coacervate. However, for a more effective hydrogel 

formation, ELRs have been designed as multi-block amphiphilic molecules 
14

. Thus, the hydrophilic 

blocks, which do not show LCST behavior under the conditions used, are responsible for water 

retention, whereas the cross-linking function is achieved by the thermally driven folding and 

hydrophobic interaction of the hydrophobic blocks. Following this idea, a thermally controlled 

amphiphilic ELR tetrablock co-recombinamer in which the hydrophobic blocks, which contain 

isoleucine as guest residue, are responsible for the physical cross-linking by means of a bridged micelle 

structure at a microscopic level, has been reported previously 
14

. Glutamic acid is the guest residue in 

the remaining two hydrophilic blocks. However, these hydrogels does not show a fibrillar structure upon 

setting. Additionally, they lose their integrity in contact with an excess of aqueous medium. Under those 

conditions, the gel swells and, finally, at a molecular level, the material goes from a crosslinked 

hydrogel to a micellar dispersion. The weak character of noncovalent interactions is the problem 

common to most physical crosslinking approaches 
15-18

. 

With regard to the fibrillar architecture, polymer processing technologies such as electrospinning have 

been applied to obtain fibers on the nanometric scale 
19

. However, the main handicap of this approach is 

to place cells within a nanofibrillar structure with pore sizes smaller than cellular diameters. As a result, 

strategies that allow nanofibrillar networks to be formed in situ are preferred. An excellent approach for 

obtaining nanofibers takes advantage of molecular self-assembly 
20

 
21

. In this regard, researchers have 

fixed their attention on self-assembled motifs present in Nature, such as coiled-coiled structures, β-sheet 
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structures, or β-hairpins and have incorporated such designs, sometimes with suitable modifications, to 

obtain nanostructures with a well-defined shape.  

In this context, SL motifs have been reported to spontaneously adopt a β-sheet structure, which is 

characterized by its stability 
22,23

. The stable nature of the β-sheet conformation adopted, together with 

their biocompatible nature, has propelled the development of a wide range of silk-inspired materials 
24,25

 

and silk-elastin inspired materials. SELRs have already proven to display a synergic effect in which the 

elastin-like (EL) part, which tends to have a relatively simple composition in the examples found in the 

literature, reduces the degree of crystallinity of the SL blocks while enhancing the elastic properties of 

the combination 
26

. However, the stimuli-responsiveness of the EL block has not been exploited to any 

great extent to date and no complex molecular designs for that block showing advanced functionality 

have been reported. Furthermore, many SELR designs incorporate such a high SL percentage that the 

contribution of the elastomeric portion to the self-assembly process is imperceptible 
27,28

. However, 

experience with SELR designs with a lower SL content has demonstrated that, in such compositions, the 

EL blocks are able to maintain their characteristic thermal transition 
28-30

. One of the main drawbacks 

associated with the use of SL motifs as physical crosslinking domains to obtain injectable hydrogels is 

that the kinetics of β-sheet formation under physiological conditions (aqueous medium, neutral pH and 

37°C) is too slow 
31

. This is clearly different from the kinetics of ELR self-assembly, which is 

practically instantaneous above Tt. An interesting example of SELRs explored for their capacity to 

show dual elastin and silk associations have been reported 
28

. Nevertheless, in that work the ratio SL to 

EL ranged between 15% to 60% so the portion of SL blocks was high and clearly dominated the self-

assembling properties of the molecule giving no much space for exploiting the self-assembling 

peculiarities of the EL blocks. 
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The main aim of this work is to test the possibility of combining the two kinds of self-assembly 

processes to achieve an advanced system in which structure development appears in a multistage and 

predefined sequence with a major contribution to the self-assembling process of the EL part of the 

molecule, which in addition will show a more complex amphiphilic molecular architecture and a higher 

propensity to form stable hydrogels than the previously reported SELRs. Under this general idea we 

seek to obtain a material that, first, an increase in temperature triggers the assembly of EL- blocks (rapid 

hydrophobic association), second, the association of the EL blocks triggers the subsequent association 

of the silk blocks (β-sheet formation) and, simultaneously, fibrillar structures emerge upon maturation 

of the β-sheet associations.  

A new SELR has been designed, produced, and studied to test this hypothesis. The composition of this 

SELR is dictated by a reductionist approach in which the minimal structure displaying the desired 

physical properties is the subject of study, thereby avoiding the incorporation of bioactive domains, that 

can be added later to fully develop the final functionality of the system. The dynamics of gelation, the 

interdependence among stages, the mechanical properties of the thus-formed hydrogels, and the 

structural characteristics at a microscopic and molecular level are reported in this work.  

 

MATERIALS AND METHODS. 

Construction of (EIS)x2 (SELR) and (EI)x2 (ELR) 

Gene synthesis was carried out using standard molecular biology protocols. DNA sequences encoding 

each monomer were contained in a modified version of the cloning vector pDrive (Qiagen), named as 

pDAll, characterized by the engineering of two inverted Eam 1104 I and one SapI restriction sites in the 

poly-linker region. Thus, the DNA sequence encoding each monomer cloned in pDAll vector is flanked 
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by Eam 1104 I and SapI recognition sites in 5´ termini and Eam 1104 I site at 3´ termini.  Sequential 

introduction of the repetitive EL or SL polypeptide-coding gene segments to form fusion genes with a 

fully controlled composition and chain length was carried out using a “recursive directional ligation” 

(RDL) strategy, by using the rectriction type II enzymes Eam 1104 I and SapI . The sequences were 

verified by agarose gel electrophoresis of the restriction fragments generated after enzymatic digestion 

and automated DNA sequencing. Selected genes were sub-cloned into a modified version of pET-25(+) 

expression vector. 

 

(EIS)x2 production and purification 

The modified version of pET-25(+) expression vector containing our gene construction was transformed 

into the E.coli strain BLR(DE3)star (Invitrogen). The resulting recombinant strain was grown at 37ºC in 

the auto-induction medium (Terrific broth) in a 15L bioreactor (Applikon), reaching optical density 

values up to 8 at 600 nm after 12 h. Immediately after, cells where recovered by centrifugation at 4ºC, 

and the cell pellets were resuspended in saline buffer prior disruption (Constant Cell Disruption 

System). The resulting soluble fraction obtained after centrifugation was subjected to the purification 

steps, The purification protocol consisted of sequential rounds of inverse transition cycling (ITC) 

optimized according to the specific characteristics of the (EIS)x2 co-recombinamer. The purity and 

molecular weight of the co-recombinamer were routinely determined by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) and mass spectrometry (MALDI-TOF/MS). The 

amino acid composition was further verified by HPLC analysis. NMR analysis was also carried out in 

order to ensure the absence of non-proteinaceous organic impurities.  
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Visualization of the sol-gel behavior 

In order to check the ability of both recombinamers to rapidly form hydrogels upon increasing the 

temperature, 15 wt. % aqueous solutions of (EIS)x2 and (EI)x2 were prepared by dissolving the pure 

recombinamers in PBS at 4ºC for 6 h. Once the recombinamers were in a sol state at 4ºC, they were 

placed at room temperature. After one minute, the samples were inverted and pictures were taken. 

A solution of (EIS)x2 co-recombinamer at 15 wt. % was loaded into a syringe at 4°C and the tip of the 

syringe removed with a knife. The syringe plunger was then depressed to deposit the co-recombinamer 

solution into the aqueous PBS medium at 37°C. In parallel, a solution of (EI)x2 co-recombinamer was 

subjected to the same procedure as negative control. Photographs were taken at different times in order 

to monitor the evolution of the formed hydrogels. 

In order to check the injectability, a 15 wt.% solution of the (EIS)x2 co-recombinamer at 4°C was 

loaded into a syringe and injected into an aqueous PBS solution at 37°C and neutral pH. Needles with 

diameters ranging from 18G to 23G were used.  

 

Macroscopic properties: Thermal properties 

We decided to use the DSC technique to monitor the formation of irreversible physical cross-links in the 

(EIS)x2 co-recombinamer. DSC experiments were performed using a Mettler Toledo 822e with liquid-

nitrogen cooler. Both temperature and enthalpy were calibrated with a standard sample of indium. The 

solutions for the DSC experiments were prepared at 5, 10 and 15 wt.% in an aqueous buffered solution 

(PBS). 20 µL of the corresponding solution was placed inside a standard 40-µL aluminum pan, sealed 

hermetically, and subjected to annealing treatments comprising incubation at fixed temperatures (5, 10, 

15, 25, 37, 60°C). The samples were analyzed by DSC at different times. The heating program for DSC 
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experiments included an initial isothermal stage (5 min at 0°C for stabilization of the temperature and 

the state of the recombinamers), followed by heating at 5°C/min from 0°C to the desired temperature 

range. The same rate was applied for cooling processes. The enthalpy values for endothermic processes 

were taken as negative and exothermic values as positive. 

In order to quantify the progression rate of the irreversible folding mediated by SL blocks, the 

normalized ratio between the secondary peak (I2) and the main peak (I1) was plotted versus time. These 

curves were fitted to a first-order kinetics, and the rate constant “k” for each annealing temperature was 

obtained. The temperature-dependence of “k” was analyzed using an Arrhenius equation.  

 � = � · �
�
��

	·
 

In the above, “k” is the kinetic constant, “A” is the pre-exponential factor, “R” is the Universal gas 

constant (8.3 J/mol·K), “Ea” is the activation energy (expressed in J/mol), and “T” is the temperature (in 

kelvin). 

 

Macroscopic properties: Rheology 

The mechanical properties of the hydrogels were determined using rheological tests in a controlled 

stress rheometer (AR2000ex, TA Instruments) equipped with a Peltier plate temperature control. 

Conversion of the solution to a gel, known as the sol-gel process, was studied for both (EI)x2 and 

(EIS)x2. A parallel plate geometry with a diameter of 20 mm and a sample volume of 350µL in PBS 

was used. The temperature ramp and gelation kinetics were carried out at a constant strain of 0.1% and a 

frequency of 1 Hz. Temperature ramp experiments were performed in the concentration range 5-15 
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wt.% by heating the sample from 5 to 37°C at a rate of 2.5°C/min; the reverse process (cooling) was 

performed under the same conditions. The gelation kinetics were measured at 37°C.  

The active involvement of the SL blocks in the mechanical performance of the hydrogels was studied. 

To this end, (EIS)x2 was dissolved at 5, 10 and 15 wt.% at 4°C for 6h, and the resulting solutions placed 

in a mold, sealed, and incubated at 37°C for a period of 1, 2, 5, and 10 days. After this time the 

hydrogels (referred to as hydrogels with annealing) were measured in the rheometer at 37°C and 5°C 

using a parallel plate geometry (20 mm diameter). Measurements of G' (elastic or storage modulus) and 

G" (viscous or loss modulus) were performed by varying the frequency (between 0.1 and 10 Hz) in a 

constant strain mode (0.1%). Bulk elastic modulus “K” was calculated by applying the relation between 

“G”, “K”, and the Poisson coefficient (υ) 
32

. Poisson coefficient was estimated to be 0.49 
33

 

(Supplementary Information).  

 

Molecular level: FTIR analysis 

Possible conformational changes in (EIS)x2 due to the annealing treatment were evaluated by FTIR. To 

this end, an (EIS)x2 hydrogel annealed for 3 days and 5 days at 37°C was dried in an oven at 37°C in 

order to obtain a film and thus avoid the interference of water with the FTIR measurement. Moreover, 

since methanol treatment promotes folding in β-sheets, an additional sample, the preparation of which 

involved annealing for 5 days, similar to the previous sample, and an additional treatment with 70% 

methanol for two hours, was measured. Freeze-dried pure co-recombinamer without any annealing 

treatment was also checked as negative control and compared with the (EI)x2 co-recombinamer.  

Fourier Transform Infrared spectroscopy (FTIR) analysis was performed using a Bruker Tensor 27 

spectrometer. For each measurement, 512 scans were co-added with a resolution of 2 cm
-1

 in the 
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wavenumber range from 1400 to 1800 cm
-1

. The statistical significance of the peak shifts observed was 

estimated by a two-way ANOVA followed by Tukey’s multiple comparisons test. 

 

Dynamic Light scattering (DLS) 

Dynamic light scattering measurements were performed using a BI-200SM multiangle goniometer 

(Brookhaven Instrument, Holtsville, NY) with a 33mW He−Ne vertically polarized laser at a 

wavelength of 632.8 nm and a digital correlator (BI-9000AT).  

Solutions of (EI)x2 and (EIS)x2 were prepared by dissolving pure, lyophilized products in MilliQ water 

with 0.05% sodium azide to a concentration of 25 µM. These solutions were kept at 4 °C overnight to 

allow complete dissolution of the proteins. The samples were incubated at 37ºC to allow supramolecular 

assembly to occur, and measured at different time intervals. DLS measurements were performed at a 

scattering angle of 90°C. Co-recombinamer solutions at a concentration of 25 µM were introduced into 

glass cells and stabilized for 10 min at the fixed temperature (5 or 37°C) in a thermostatted decalin bath.  

Volume distributions were determined using a Zetasizer nano ZSP (Malvern Instruments) equipped with 

a 10 mW He−Ne laser at a wavelength of 633 nm. Samples were introduced into polystyrene cuvettes 

and stabilized for 10 min at the desired temperature. Size was obtained from the correlation function, by 

using Cumulant analysis.  

 

Transmission electron microscopy (TEM) 

Nanostructure formation was checked by TEM. Solutions of (EI)x2 and (EIS)x2 were prepared by 

dissolving pure, lyophilized products in MilliQ water to a concentration of 25 µM. These solutions were 
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kept at 4 °C overnight to allow complete dissolution of the proteins. To prevent biological 

contamination, azide was added to a final concentration of 0.05% The sample was incubated at 37ºC to 

allow supramolecular assembly to occur, and an aliquot was taken and measured at different time 

intervals (0, 48 and 96 hours and 7 months). TEM measurements were performed using a JEOL JEM-

1230 electron microscope operating at 120 kV. The specimens were prepared by placing a drop of the 

solution on a plasma-treated carbon-coated copper grid, followed by water evaporation at 37ºC.  

 

Atomic Force Microscopy (AFM) 

Stock solutions of (EI)x2 and (EIS)x2 were prepared by dissolving pure, lyophilized products in PBS to 

a concentration of 25 µM. These solutions were kept at 4°C overnight to allow complete dissolution of 

the proteins. To prevent biological contamination, azide was added to a final concentration of 0.05%. A 

drop (50 µL) of each co-recombinamer at each tested condition (without annealing and with 7 months of 

annealing at 37ºC) was deposited onto a clean graphite (HOPG) surface and dried at 37°C. The dried 

samples were analyzed using a Multimode 8 AFM attached to a Nanoscope V electronics (Bruker) in 

tapping mode.  

 

RESULTS AND DISCUSSION. 

Construction of (EIS)x2 (SELR) and (EI)x2 (ELR) 

The amino-acid sequences of the different constructs (EI)x2 and (EIS)x2 used here are, respectively, (1) 

MESLLP-{[(VPGVG)2-(VPGEG)-(VPGVG)2]10[VGIPG]60}2-V and (2) MESLLP-{[(VPGVG)2- 

(VPGEG)-(VPGVG)2]10[VGIPG]60)-[V(GAGAGS)5G]2}2-V. (EI)x2 is the control ELR, which has 
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the same EL composition as (EIS)x2 but lacks the SL blocks. The construction and purification of 

(EI)x2 has already been reported 
14

. With regard to (EIS)x2, sequential introduction of the repetitive 

polypeptide-coding gene segments to form fusion genes with a fully controlled composition and chain 

length was carried out using the recursive directional ligation (RDL) technique 
34,35

. DNA sequencing 

and restriction mapping analysis showed the correctness of the gene-construction process (Data not 

shown).  

 

(EIS)x2 production and purification  

(EIS)x2 was successfully purified using by an optimized inverse temperature cycling (ITC) 
36

 protocol. 

Production yields of around 170 mg per liter of bacterial culture were achieved. The final product was 

characterized by SDS-PAGE electrophoresis (Figure S1), MALDI-TOF mass spectrometry (Figure S2), 

amino acid analysis (Table S1), and NMR spectroscopy (Figure S3), which confirmed the purity and 

correctness of the biosynthetic process in terms of sequence and molecular mass (See Supporting 

Information). 

According to the literature, many SELRs have been purified by different methods that invariably 

comprise a chromatographic step 
37

. However, chromatography is expensive, requires specialized 

equipment and is difficult to scale up, therefore alternative protocols are preferred. As such, simplified 

purification protocols based on the use of acidic pH combined with ammonium sulfate precipitation 

have been developed 
38

. Although the stimuli-responsive behavior of ELRs is maintained upon 

incorporation into a chimeric fusion protein 
39,40

, such behavior has not been exploited as a feasible 

option for SELR purification since temperature accelerates the irreversible gelation process mediated by 

SL folding. Nevertheless, we have successfully made use of the reversible inverse transition of the 

elastomeric part of (EIS)x2 from soluble to insoluble and, as a result, have managed to purify (EIS)x2 
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using inverse transition cycles. This finding is likely motivated by the proportion of SL blocks to EL 

blocks used in this construct, which is relatively small (the EL blocks clearly dominate the final 

structure) compared to other SELRs found in the literature. This method entails a number of advantages, 

such as low cost and scalability. To the best of our knowledge, this is the first time that a SELR has 

been purified using such an approach.  

 

Visualization of the sol-gel behavior 

15% aqueous solutions of both co-recombinamers have demonstrated their ability to rapidly form 

hydrogels with increasing temperature (Figure 1, a - d). In principle, both co-recombinamers behave the 

same and display a sol-gel transition as the temperature is increased. 

In most physical hydrogels, an excess of water acts as a destabilizing agent for the network of 

noncovalent interactions, therefore their exposure to fluids is considered to have adverse effects. In our 

case, upon exposing the two gels to such a detrimental environment, and despite the initial similarities, 

the two gels display clear differences. To check the stability of (EI)x2 and (EIS)x2 in the presence of an 

excess of aqueous medium, 15 wt.% solutions of both recombinamers at 4ºC were directly added to an 

aqueous PBS medium (pH 7) at 37ºC, as described in the Experimental Section. As shown in Figure 1 e, 

after adding the cold solution to the warm aqueous medium, both solutions promptly showed the 

formation of a hydrogel. However, the stability of these hydrogels with time was clearly different, 

exhibiting striking differences after incubation for only 1 day under these conditions. Thus, the (EI)x2 

hydrogel disaggregated completely and no signs of it were evident, with only a slightly turbid solution 

remaining (Figure 1 f). In contrast, the (EIS)x2 hydrogel did not disaggregate but acquired a more 

robust appearance (Figure 1 g). This latter hydrogel remained stable for at least two months under those 

conditions ( Figure 1 , j) and, from the very beginning and up to the end of the experiment, displayed 
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sufficient consistency to be easily manipulated ( Figure 1 k). Hydrogel degradation was estimated to be 

10% (Suplementary information. Figure S 6).  

  

Figure 1: Pictures showing both the ability to rapidly form hydrogels upon increasing the temperature 

and the stability features of (EI)x2 and (EIS)x2: a) aqueous solution of EI)x2; b) (EIS)x2 hydrogel 

formed upon increasing the temperature; c) aqueous solution of (EIS)x2; d) (EIS)x2 hydrogel formed 

upon increasing the temperature; e) picture taken just after addition of the co-recombinamer solutions to 

the aqueous medium in a 3 mL glass vial; f) to j) pictures taken at different times after adding the co-

recombinamer solutions to the aqueous medium (PBS) in a 3 mL glass vial. k) (EIS)x2 hydrogel 

removed from the aqueous medium after two months.  

The existence of a gelation triggered by a temperature increase suggests the possibility of using these 

hydrogels, and especially (EIS)x2 due to its increased stability, as injectable systems in minimally 

invasive therapeutic approaches. As such, the injectability of a 15 wt.% (EIS)x2 solution (in PBS at 

10ºC) was checked using a battery of needles of different diameters. G18, G19, G21, and G23 needles 

Page 15 of 44

ACS Paragon Plus Environment

Biomacromolecules

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



16 

 

were tested and it was found that the samples were very easily injected using needles of diameters G18 

and G19 and they could also be injected without difficulty using a G21 needle. In contrast, injection 

using a G23 needle was unsuccessful. 

Consequently, all the general properties qualitatively shown above point to the potential of (EIS)x2 as a 

very attractive candidate for use in biomedical applications, where injectability and rapid in situ gelation 

are required, without any restrictions with regard to exposure to fluids.  

In order to quantify the behavior observed upon the visual inspection of both gels, their thermal and 

mechanical properties at the macroscopic level were first studied.   

 

Macroscopic properties: Thermal properties 

The thermal properties of the hydrogels produced by these materials were studied by DSC. DSC has 

proven to be an adequate technique to quantify the ITT, providing values for both the Tt and latent heat 

(∆H). DSC scans were carried out on both (EIS)x2 and (EI)x2 solutions, as detailed in Materials and 

Methods. Figure 2  shows the thermograms for (EIS)x2 (a and b) and (EI)x2, which was used as control 

(c and d). The thermograms labeled with as “0 h” correspond to the thermal behavior found for the 

freshly dissolved co-recombinamers. The Tts estimated from the peak temperatures were 14.4°C for 

(EIS)x2 and 13.0 °C for (EI)x2, and the associated enthalpies for such ITTs were 8.2 and 9.1 J/g, 

respectively. The presence of the hydrophilic amino acid serine in the sequence of the SL motif could be 

responsible for the observed increase in Tt and subsequent decrease in enthalpy of (EIS)x2 with respect 

to (EI)x2. According to the literature, the ITT of the hydrophobic block (VGIPG) in (EI)x2 leads to a 

gel state 
14

. Such gelation is fully reversible since the sol state is recovered simply by lowering the 

temperature below its Tt. The similarity in terms of Tt and enthalpy values, and the similarity of their 
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shapes, leads us to conclude that, for the freshly dissolved solutions, (EIS)x2 presumably experiences a 

thermogelling process similar to that displayed by the control (EI)x2, with the effect of the SL block 

being restricted to a modest shift in the Tt and ∆H values. Moreover, the reversibility of the measured 

thermodynamic process provides further evidence for the correspondence of such process with the ITT 

of the (VGIPG) blocks present in (EIS)x2 (Figure 2, a and b). 

However, when used as an implantable system, this hydrogel will be subjected to a relatively prolonged 

isothermal state at 37ºC during its service time. Therefore, to determine whether the system can 

experience a change in properties during that period, a set of samples annealed at 37ºC for different 

times were also studied by DSC. The changes in the shape of the thermogram for (EIS)x2 are evident 

and dependent on the annealing time. Thus, after incubation at 37°C for 15 h, the endothermic peak 

becomes broader and is characterized by the incipient appearance of a shoulder or secondary endotherm 

at lower temperatures. At longer annealing times the shape of the endotherm evolves further and the 

presence of the secondary peak at a temperature of 11.0°C becomes increasingly clear. After annealing 

at this temperature for 63 h the new peak at 11.0°C becomes the main one, leaving only a slight trace of 

the peak previously seen at 14.4°C. From 87 h on, the shape of the thermogram appears to remain 

unchanged. These results contrast with the behavior of (EI)x2, which exhibited neither peak broadening 

nor the appearance of a secondary peak at any annealing time (Figure 2, c and d). 

On the other hand, the endothermic peak and its associated ITT measured for each annealing time were 

totally reversible and, in a heating-cooling cycle, the endothermic peak transformed into an exothermic 

peak with an identical ∆H and only minor differences in Tt that can easily be explained on the basis of 

the thermal lag of the experimental setup. Moreover, on cooling, this exothermic peak displayed the 

same shape as its counterpart endothermic peak for each fixed condition (co-recombinamer and 

annealing time). Such reversibility further reinforces the association of these endotherms in heating and 

their corresponding cooling exotherms with the EL-block ITT. In addition, since the only difference 
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between (EI)x2 and (EIS)x2 is the presence of SL blocks in the latter, it can be concluded that the 

variation in the shape of the thermogram, which occurs with increasing annealing time at 37°C, must be 

caused by the presence of this block, which somehow exerts an influence on the ITT.  

 

 

 

 

 

 

  

Figure 2: DSC scans for 15 wt.% (EIS)x2 and (EI)x2 solutions after annealing at 37˚C for different 

times. (a) DSC thermograms for heating and (b) cooling processes for (EIS)x2 after annealing at 37 ᵒC 

for. 0, 15, 39, 63, 87, 159, 207 and 327 h. Note the variation in the thermogram shape along annealing 

time. (c) DSC thermogram for heating and (d) cooling processes for (EI)x2 co-recombinamer solution 

after annealing at 37 ᵒC for 0, 15, 63, 87, 159, and 327 h. For (EI)x2, thermogram shape remained 

unchanged. 

It can be concluded that annealing at 37ºC causes the (EIS)x2 gel to split into a bimodal state. Annealing 

causes the emergence of a new state in (EIS)x2 that is characterized by a lower Tt. At a molecular level, 

this must mean that EL blocks in such a state exhibit a lower effective mean polarity, as can be deduced 
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by the shift in Tt to lower values 
41

. Although both states seem to coexist, the increase in annealing time 

seems to promote growth of the state with lower Tt at the expense of the initial one.  

 

Macroscopic properties: Rheology 

Macroscopic observation of the systems clearly indicated that freshly prepared solutions of both co-

recombinamers undergo a rapid gelation process upon increasing their temperature above their Tt.  

Early gelation due to the thermally triggered transition of the (VGIPG) blocks.  

In order to quantify the resulting mechanical properties, freshly prepared 15 wt.% (EI)x2 and (EIS)x2 

(no annealing) solutions were subjected to a rheological study consisting of heating from 5 to 37°C at a 

rate of 2.5°C/min.  

Many criteria have been used in the literature to estimate the gel point 
14,42,43

. The crossover between G´ 

and G´´ is usually considered to indicate the gelation point 
43

. However, the crossing point depends on 

the frequency of the oscillatory experiment and, as a consequence, might be close, but not identical, to 

the Tt 
44

. As such, the gel point was estimated here as the temperature where tanδ shows a peak since 

such a peak is a direct consequence of the molecular rearrangement of the co-recombinamers due to 

their characteristic ITT.   

As shown in Figure 3 (a and c), gel formation unequivocally occurred for both samples in the 

temperature range from 10°C to 20°C, which is evident for both the G´,G´´ and tanδ plots. The 

maximum storage moduli displayed were 1.1·10
3
 Pa and 2.5·10

3
 Pa for (EI)x2 and (EIS)x2, 

respectively. When a cooling ramp from 37°C to 5°C was applied to the same samples, the shear 

modulus decreased, reaching values close to 0 Pa at 5°C (Figure 3 b and d). This reversibility of the 
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gelation process is in agreement with the fact that the increase in modulus was a consequence of the 

reversible transition of the EL block (VGIPG). The observed increase in the storage modulus indicates 

that, although they were not responsible for this reversible gelation, SL motifs did have an effect on the 

final characteristics of the hydrogel formed as a result of the reversible transition of the elastomeric 

portion.  

The values of the loss factor (tanδ) showed a maximum at 13.0°C and 15.8°C for (EI)x2 and (EIS)x2, 

respectively, and such values would be considered to be representative of the transition from liquid to 

gel determined by rheological methods 
45

, since EL moieties undergo conformational changes from an 

extended state to a folded one as the ITT takes place. These molecular rearrangements are associated 

with energy loss in the form of heat. This energy loss is reflected as the subsequent emergence of a peak 

in the loss factor. It is worth noting that such values are close to the Tt values measured by DSC (13.0 

and 14.4°C for (EI)x2 and (EIS)x2, respectively).  
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Figure 3: Storage moduli, loss moduli and tanδ (G´, G´´ and tan(δ)) for (EI)x2 and (EIS)x2 co-

recombinamer solutions (15 wt.%) as a function of temperature: (a) (EI)x2 during heating; (b) (EI)x2 

during cooling; (c) (EIS)x2 during heating; (d) (EIS)x2 during cooling. The samples were heated/cooled 

at 2.5°C/min in the temperature range from 5 to 37°C. Reversible gel formation occurred for both 

recombinamers in the temperature range from 10ºC to 20ºC.  

The effect of concentration on the reversible thermally triggered gelation process was evaluated by 

measuring the mechanical properties. To this end, in addition to the already measured 15 wt.% co-

recombinamer solutions, 5 wt.% and 10 wt.% (EI)x2 and (EIS)x2 solutions were subjected to 

heating/cooling cycles (Table 1). In the case of (EIS)x2, for the 10 wt.% concentration and in the 

temperature range from 10 to 20°C, the formation of a hydrogel took place with a storage modulus of 

150 Pa, which is substantially lower than that obtained for the concentration of 15 wt.%. No gelation 

was observed for the 5 wt.% solution. No gelation was observed for 5 wt.% and 10 wt.% (EI)x2 

solutions, which contrasts with the behavior of the (EIS)x2 co-recombinamer, which was able to gel at 

10 wt.%. These differences between (EI)x2 and (EIS)x2 again point to an influence of the presence of 

the SL block in the early gelation process triggered by the EL blocks (VGIPG). 

 

Table 1: Properties displayed by the (EI)x2 and (EIS)x2 reversible hydrogels according to the co-

recombinamer concentration. Blank cells indicate no gel formation.  

Co-recombinamer Concentration (%) Tgel G´max G´´max 

 

(EI)x2 

5 - - - 

10 - - - 
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15 13.9 1100 430 

 

(EIS)x2 

5 - - - 

10 15.3 150 70 

15 15.8 2500 550 

 

It was therefore concluded that the ITT of the elastomeric part of (EI)x2 and (EIS)x2 leads to the rapid 

and early formation of a hydrogel, although the presence of SL blocks exerts an indirect influence on 

such reversible temperature-triggered gelation.  

Once the reversible nature of the thermogelling process experienced by both recombinamers had been 

confirmed, the gelation time was estimated by rheological methods by application of an isotherm at 37 

ᵒC to a sample initially kept at 5 ᵒC. As shown in Figure 4, the gelation time at 37°C was less than 30s 

for both co-recombinamer solutions. Since the solutions were able to form a gel within such a short 

period, both materials are potential candidates for use as injectable hydrogels. Moreover, such a short 

gelation time would presumably avoid leaking events once the biomaterial is injected, with the 

consequent advantages for its application, such as a reduction in losses and misallocation of active 

components, with a concomitant improvement in treatment efficacy. 
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Figure 4: Isotherms for both co-recombinamer solutions at 37 ᵒC. (a) (EI)x2 at 15 wt.% and (b) (EIS)x2 

at 15 wt.%.  Note the sharp increase in G´ and G´´ values, indicating that the gelation time was less than 

30 s for both recombinamer solutions. 

 

Late gelling mediated by the presence of the SL block: Influence of annealing time on the mechanical 

properties of the hydrogels 

Although the mechanical properties of (EI)x2 do not change with annealing time (results not shown), 

(EIS)x2 hydrogels display a clear increase in mechanical properties with annealing time. Rheological 

studies on (EIS)x2 hydrogels with annealing times of 1, 2, 5 and 10 days at 37°C were performed and 

the results compared with those for the hydrogels without any annealing treatment. As can be seen from 

Figure 5, an increase in annealing time at 37ºC was accompanied by an increase in the mechanical 

properties (G´ and G´´) at both measurement temperatures (5 and 37°C). Such increase in the 

mechanical properties agrees with the previously visualized gelation process (Figure 1). Moreover, 

irrespective of the presence of SL blocks, the EL part remained able to respond to the temperature 

variation, as reflected in the decrease in the moduli (G´ and G´´) upon lowering the temperature from 

37°C to 5°C (Figure 5). These results were consistent with our initial hypothesis that, at 37°C, both 

elastomeric and SL blocks are involved in crosslinking of the hydrogels with annealing. Lowering the 

temperature of the hydrogels to 5°C would exclude the effect of crosslinking by the elastomeric 

(VGIPG) motifs, thereby explaining the observed reduction in the moduli.  
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Figure 5: Rheological properties for (EIS)x2 hydrogels measured at 5°C and at 37°C with different 

annealing times at 37ºC. The data shows an increased in the mechanical properties at both temperatures 

as the annealing time is increased.  

As expected, the mechanical properties displayed by the (EIS)x2 hydrogels are concentration-dependent 

(Figure 6). This is true for both fresh and annealed samples under all annealing conditions. As an 

example, the values for an annealing time of 5 days are plotted in Figure 6. The G´ and G´´ values for 

that annealing time for 5 wt.%, 10 wt.%, and 15 wt.% (EIS)x2 samples showed the expected increase in 

G´ and G´´ as a function of concentration. It should be noted, however, that the trend shown by the shear 

modulus is not linear. The increase in G’ and G’’ (slope of the curves in Figure 6) is higher for higher 

concentrations, thereby indicating that the increase in modulus is not just the proportional consequence 

of the increase in mass of the solid phase of the hydrogel.   
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Figure 6: Representation of G´ (a) and G´´ (b) for (EIS)x2 hydrogels annealed at 37ºC at different 

concentrations. The measurements were carried out at 5 °C and at 37 °C. Note the increase in G´ and 

G´´ values at both temperatures with increasing the concentration.  

In conclusion, the rheology tests performed demonstrate that the (EIS)x2 hydrogel exhibits a dual 

gelling behavior. Thus, (EIS)x2 undergoes an early gelation due to the reversible ITT of the (VGIPG) 

block and then experiences an increase in its consistency as a result of annealing. As the only difference 

between the two materials is the presence of SL blocks in the (EIS)x2, this later maturation must be 

caused by these blocks. The following group of experiments is aimed at gathering information at a 

molecular and microscopic level to unveil the molecular and structural events that give rise to the 

macroscopic properties described above.  

 

Molecular level: FTIR analysis 

An FTIR analysis was performed to detect whether the changes experienced by the (EIS)x2 co-

recombinamer with annealing time and the previously described macroscopic observations are related to 

changes in the conformational state of the molecule. IR spectra were obtained (as described in Materials 

and Methods Section) for samples annealed at 37°C for different times in order to determine whether 

the maturation process on annealing could also be related to molecular events. The FTIR spectra 

obtained are shown in Figure 7. The region of the infrared spectrum between 1600 and 1700 cm
-1

 is 

assigned to the amide I vibration of the peptide backbone 
46-48

. This amide I region corresponds to the 

C=O stretching vibration, which is directly related to the secondary structure of the protein backbone 

and is commonly used for the quantitative analysis of different secondary structures 
49

. Annealed 
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(EIS)x2 samples underwent a shift of the amide I band towards the 1600-1640 cm
-1

 region with respect 

to the control (unannealed (EIS)x2). Thus, while the peak for both (EI)x2 and (EIS)x2 without 

annealing is found at 1626 cm
-1

, that for (EIS)x2 shifts towards lower wavenumbers (1624 cm
-1

) after 

annealing for three days. This shift is more pronounced for the sample annealed for five days (1620 cm
-

1
). This difference is significant (p <0.01). According to the literature, the region between 1600 and 

1640 cm
-1

 is related to the presence of β sheets 
48

. The signals that appear in the region 1640-1660 cm
-1

 

are associated with the presence of random coils and α-helices. The remaining parts of the spectra 

(1660-1690) are dominated by vibrations due to β-turn structures 
48

. Consequently, the observed shift in 

frequency between the control and annealed samples is indicative of the formation of β-sheet structures 

48
.  

On the other hand, methanol treatment has been reported to promote the formation of β-sheets 
50,51

. 

However, no significant differences were detected between the sample annealed for 5 days and that 

annealed for 5 days plus methanol treatment. Therefore, methanol treatment did not further increase the 

displacement of the amide I band toward the region 1640-1600 cm
-1

, thereby indicating that β-sheet 

formation reaches a maximum extension simply by annealing. This fact was also supported by the DSC 

experiments and rheological measurements, with no further changes being detected after annealing for 

five days at 37ºC, thus showing that the maturation phase had reached stability. 

In light of these results, it is evident that the macroscopic differences found between (EI)x2 and (EIS)x2 

are likely caused by the SL block and, more precisely, by its tendency to form β-sheets. As they are 

based on hydrogen bonding, β-sheets provide stronger, more stable, and less dynamic physical cross-

links than those found in a flexible network built exclusively on hydrophobic contacts. The double peak 

found in the DSC endothermic peak upon heating must therefore be understood as the result of an 

increase in the hydrophobic environment of the EL blocks directly linked to SL blocks already 

incorporated into β-sheets. β-sheet formation causes a change in the peptides involved, shifting from a 
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water-soluble to a water-insoluble state. This reflects a decrease in the effective hydrophilicity of the SL 

blocks after incorporation into the β-sheet structure and, therefore, as they are coupled to the EL blocks, 

a decrease in the mean hydrophilicity of the (EIS)x2 molecule as a whole. Additionally, formation of the 

β-sheet structures could also somehow disconnect the hydrophobic EL blocks from the hydrophilic 

ones. In any case, both effects would cause Tt to decrease, as observed.  

In light of the previous results, it is important to question whether the presence of such β-sheets has any 

consequences, in terms of structure growth, at the nanometric and micrometric level. The following set 

of experiments were designed to explore these effects. 

 

 

Figure 7: FTIR absorbance spectra of (EIS)x2 samples: a) FTIR spectrum of amide I and amide II 

region; b) magnified view of the peaks in the amide I region.  Grey: Untreated (EI)x2. Black: Untreated 

(EIS)x2. Green: (EIS)x2 after annealing for three days. Red: (EIS)x2 after annealing for five days. Blue: 
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(EIS)x2 after annealing for five days and treatment with methanol for two hours. The shift towards 

lower wavenumbers with increasing annealing time is indicative of the formation of β-sheets.  

 

Dynamic Light Scattering 

Dynamic Light Scattering (DLS) was performed in order to check whether characteristic and differential 

self-assembled nanostructures were formed by the recombinamers studied as a consequence of an 

increase in temperature above and below Tt and also when annealed at 37ºC at different times. DLS 

measurements were carried out using dilute samples so as to provide information on the basic structural 

elements that might form as a consequence of potential self-assembly processes triggered by the 

formation of hydrophobic contacts and β-sheets.  

Figure 8  shows the intensity measurements obtained for samples at 5 and 37ºC (below and above Tt) 

for both recombinamers after annealing at 37ºC for different times. As regards (EI)x2 without 

annealing, no nanostructure is detected at 5°C, whereas an increase in intensity is observed upon 

increasing the temperature to 37ºC, thus indicating the presence of scattering particles. However, as the 

annealing time increases, the intensity of (EI)x2 remains unchanged for at least 7 months, thereby 

providing evidence for the high stability of these particles and their independency on annealing. In 

contrast, (EIS)x2 exhibits an increase in intensity at both temperatures (5 and 37ºC) with increasing 

annealing time at 37ºC. This increase is not progressive and is more pronounced at shorter annealing 

times (first week), finally stabilizing from 28 days onwards (Figure 8), remaining stable for at least 7 

months. Interestingly, the evolution of intensity with annealing time (Figure 8) seems to follows the 

same trend as that shown by the progression of the rheological properties (Figure 5), although the 

stabilization time is considerably higher for the DLS experiments. This is most likely due to the 

different concentrations used for both techniques (much lower for the DLS experiments).  
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A temperature change from 5 to 37ºC has a clear effect on intensity for the studied annealing time in all 

cases (Figure 8).The intensity increase observed upon increasing the temperature from below to above 

Tt for in (EIS)x2 has a similar value (22.82 ± 2.12 a.u.) to that displayed by (EI)x2 (18.86 ± 0.35 a.u.), 

thereby indicating that the transition of the elastomeric part remains operational during the whole 

annealing period studied at this concentration (25 µM). 

 

Figure 8: Variation in relative scattered light intensity with annealing time for (EI)x2 (triangles) and 

(EIS)x2 (circles). B) Magnified view of the first 45 days of annealing. Measurements were carried out at 

5ºC (blue) and 37ºC (red). The graph indicates an increase in intensity with increasing annealing time 

until stabilization is achieved from 28 days onwards.  

The particle-size and volume distributions for both recombinamers at two different temperatures (5ºC 

and 37ºC) are shown in Figure 9. (EI)x2 nanoparticles with a diameter of 35 nm are formed upon 

increasing the temperature from 5 to 37ºC for both a fresh solution (without annealing) and the sample 

annealed for a long time (7 months). Intermediate annealing times also showed the same particle size 

(result not shown), thereby indicating the long-term stability of these particles as well as their lack of 

evolution. The polydispersity values of 0.05 obtained indicate a low variation in particle size under 

those conditions for (EI)x2. Nanoparticles of a similar size to those formed by (EI)x2 were detected for 

(EIS)x2 under non-annealing conditions and at 37ºC. However, the major difference arising as a result 

of annealing at 37ºC can be seen from the size distribution, which adopts a clearly different and more 
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complex profile, thereby pointing to the existence of a more heterogeneous population, with higher 

polydispersity values of 0.3.  

 

  

Figure 9: Volume distributions measured at 5 and 37ºC for (EI)x2 and (EIS)x2 without annealing and 

after annealing for 7 months at 37ºC: a) (EI)x2 without annealing; B) (EI)x2 after annealing for 7 

months; c) (EIS)x2 without annealing; d) (EIS)x2 after annealing for 7 months. Results show that (EI)x2 

volume profile remains unchanged after annealing, whereas (EIS)x2 adopts a more complex profile, 

suggesting the presence of a more heterogeneous population.  

In light of the above, the differential evolution found initially at the macroscopic level, and subsequently 

at the molecular level for both co-recombinamers has a parallel at the nanometric level. As deduced 

from the DLS measurements, annealing causes substantial changes in the geometrical characteristics of 
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the emerging structures resulting from the two self-assembly processes existing in these samples, i.e., 

hydrophobic associations in both co-recombinamers and β-sheet formation in (EIS)x2. 

 

Microscopic observation 

Transmission electron (TEM) and atomic force microscopy (AFM) were used to visualize the structures 

suggested by the previous LS studies. The TEM images for (EI)x2 indicate the ability of this co-

recombinamer to form spherical nanoparticles. The ability of this kind of amphiphilic ELRs to form 

micelles and spherical vesicles has previously been reported for closely related di- and triblock co-

recombinamers 
52-54

  and other ELRs 
55,56

. The topographical features of these (EI)x2 nanoparticles 

remain unchanged despite increased incubation at 37ºC (Figure 10, a) to d)). These findings are in 

agreement with the DLS measurements, which showed that the scattering patterns were stable for at 

least 7 months. 

The TEM images of (EIS)x2 reveal the emergence along annealing of an additional and different 

structure. Thus, (EIS)x2 is able to self-assemble into nanofibers. The formation of such fibrillar 

structures is not, however, immediate. In agreement with the DLS data, the only structures found for the 

freshly prepared solution (no annealing) are micelles. However, fibers start to appear over time (Figure 

10, e) to h)) and their population increases with annealing time at the expense of the micelle population. 

At intermediate annealing times, the co-existence of both populations is evident (see for example Figure 

10f). The mutual presence of micelles and fibers would be in agreement with the behavior found in DSC 

(Figure 1a and b). Finally, after 96 h at 37ºC, a dense network of nanofibers is present; micelles can no 

longer be visualized and the formed fibers are still present for up to at least 7 months (Figure 10h). Fiber 

diameter distribution is shown in Figure S 8 (Supplementary information).  
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Figure 10: TEM images of the self-assembled nanoparticles formed by (EI)x2 (left) and (EIS)x2 (right) 

after different annealing times: A) and E) 0 h at 37ºC; B) and F) 48 h at 37ºC; C) and G) 96 h at 37ºC; 

D) and H) Seven months at 37ºC. Images show that (EIS)x2 evolves from a micellar to a fiber-like state. 

On the contrary, (EI)x2 invariably displays a spherical shape. Scale bar: 100 nm. 

AFM was used to further observe and confirm such different morphologies. As shown in Figure 11, 

(EI)x2  forms spherical nanoparticles at 37ºC under both conditions (without annealing and after 

annealing at 37ºC for 7 months). In contrast, (EIS)x2 initially self-assembles into spherical nanoparticles 

but, after long annealing times, subsequently adopts a fibril shape. These data corroborate the results 

obtained by DLS and TEM analysis. Interestingly, some of these images may provide clues as to the 

mechanism of transformation of the micellar structures into fibers. In Figure 11 c, which was obtained 

for a freshly prepared (EIS)x2 solution (no annealing), the main structural feature is micelles but the 

alignment of some of these micelles seems to be occurring prior to the fusion and reorganization of the 
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aligned micelles into fibers. The detailed molecular events taking place during this structural transition 

are intriguing and deserve further study. 

Therefore, as can be concluded from the microscopic observations, (EIS)x2 ultimately self-assembles 

into a nanofibrillar morphology in an annealing time-dependent manner. These results are in agreement 

with the DLS measurements. Taking the DLS and TEM/AFM results together, there is clear evidence 

that the increase in the presence of these fibril structures with increasing annealing time results in the 

observed increase in scattering intensity, size distribution profiles, and polydispersity for (EIS)x2 in the 

bulk state.   

Other SELRs have been reported to form nano-objects with different shapes, ranging from nanoparticles 

to nanofibers, depending on the conditions and the SL to EL ratio 
28,57,58

.  Along with the reported 

evidence for other SELRs and their ability to spontaneously form fibers, and considering that the only 

difference between (EI)x2 and (EIS)x2 is the presence of SL blocks in the latter, it can be concluded 

that these blocks are responsible for the ability of these materials to eventually organize into fibrils 

under the conditions studied. Such nanofibrillar structure resembles those present in the natural ECM. 

Therefore, (EIS)x2 has proven to be able to display a complex and orchestrated self-organization 

process initially based on a rapid gelation, which is structurally based on bridged micelles and finally 

evolves into a fibrillar structure. It is noteworthy that such fibrillar structures emerge from a previous 

micelle-based hydrogel rather than from a solid precipitate, as is common in other fiber-forming 

polypeptides 
59

. 
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Figure 11: Representative AFM images of the nanostructures derived from (EIS)x2 and (EI)x2 

deposited on an HOPG surface: a) to c) (EIS)x2 without annealing. Micellar nanostructures are the 

predominant population although incipient fibers are discerned. Scanning windows are 5x5 µm, 2x2 µm 

and 0.5x0.5 µm respectively; d) to f) (EI)x2 without annealing. Images indicate the presence of 

micellar-like nanoparticles. Scanning windows are 5x5 µm, 2x2 µm and 0.5x0.5 µm respectively; g) to 

i) (EIS)x2 after annealing for 7 months. Images show the formation of a nano-fibrillar network. 

Scanning windows are 5x5 µm, 2x2 µm and 0.5x0.5 µm respectively; j) to l) (EI)x2 after annealing for 7 

months. Note that micellar like nanoparticles are still present. Scanning windows are 5x5 µm, 2x2 µm 

and 0.5x0.5 µm respectively.  
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Coupling of the two gelling processes 

Finally, our aim was to determine whether there was any interdependence between the two gelling 

mechanisms displayed by (EIS)x2. Thus, to elucidate whether the folding and fiber-arrangement 

kinetics of the SL motifs present in the (EIS)x2 co-recombinamer was dependent exclusively on the 

temperature or if, by contrast, the conformational state of EL blocks also influenced the folding of the 

SL blocks, a final set of experiments were carried out. The transformation between the micellar gel and 

the fibrous gel is followed by a change in the ratio between the secondary peak (I2) and the main peak 

(I1) in the DSC thermograms, assuming that the secondary peak is related to the content of the fibrous 

phase whereas the primary peak corresponds to the micellar phase. Kinetic analyses were carried out for 

the (EIS)x2 sample at different annealing temperatures (5, 10, 15, 25, and 60°C) above and below Tt. 

The I2/I1 ratio for the different thermograms obtained at different annealing times for each fixed 

temperature can be seen in Figure 12, a. Using these values in a kinetics analysis showed a suitable fit 

for the k values obtained with the Arrhenius equation at annealing temperatures above Tt (Figure 12,b). 

However, when the whole range of temperatures is analyzed, lower temperatures (5 and 10°C) are 

completely out of trend, displaying much lower values, with a clear step around Tt (Figure 12, b). 

According to these data, the kinetics of the transformation from micellar to fibrous gel is influenced by 

both temperature and the conformational state of the co-recombinamer; more specifically, the folded or 

unfolded state of the EL blocks plays a critical role. Therefore, although the formation of β-sheets and 

the fibrillar structure can, in principle, take place without any contribution from the EL blocks, in 

practice this transformation takes place very slowly. However, prior folding of the EL blocks promotes 

an increase in the rate of fibril formation, clearly indicating how these two, in principle, independent 

molecular events are concomitant and strongly connected. We can hypothesize that such concomitant 

interplay between these two molecular events is facilitated by the spatial approximation of the SL 

blocks caused by the micellation driven by the EL blocks. It is also plausible that the recombinant nature 
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of (EIS)x2, which means that all the molecules are identical in all aspects, including the regular 

arrangement of the SL and EL blocks, facilitates this coupling of the two processes. Therefore, 

interestingly, the folding of the EL block is effectively controlling the subsequent self-organization of 

the SL blocks, thus meaning that these two processes are, in practice, consecutive and interdependent.  

  

 

Figure 12: Evaluation of the folding kinetics of SL blocks. a) Representation of the ratio between the 

secondary peak (I2) and the main peak (I1) in the thermograms obtained for (EIS)x2 samples after 

different annealing times at the specified temperatures. b) Representation of the two variables of the 
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Arrhenius equation in order to check the linearity of their dependence.  Data show a suitable fit for the 

“k” values obtained with the Arrhenius equation at annealing temperatures above Tt. 

 

CONCLUSIONS 

(EIS)x2 is constituted by a combination of EL blocks and SL blocks, with the first ones being already 

arranged in a tetrablock, thermally triggered, amphiphilic molecule. Another distinctive feature of this 

composition is that the EL blocks are predominant. As a result of its peculiar composition, this material 

is able to self-organize from a sol state to a fibrous gel state. This atypical sol-gel transition is 

characterized by a complex and orchestrated sequence of molecular events displayed by this molecule. 

This multistage process is initially triggered by an increase in temperature, which induces the self-

assembly of the EL blocks as a result of their characteristic ITT. This first step is distinguished by its 

instantaneity and is dominated by reversible hydrophobic aggregation of the (VGIPG) block. This first 

stage leads to a soft gel (G’=2.5·10
3
 Pa) in which a reversible, bridged micellar structure is the main 

feature. The second stage of this sequence starts at this point: folding of the EL block strongly favors the 

interaction between the SL blocks and the emergence of irreversible beta-sheet structures. These 

markedly alter the mode and stability of the hydrogel, which becomes harder (G’= 1·10
4
 Pa). The 

kinetics of this maturation is slower than that of the first stage. Finally, as a consequence of the 

maturation of the β-sheet arrangements, the hydrogel gives rise to the emergence of a fibrillar structure. 

Furthermore, the nanofibrillar architecture adopted by the complex self-organization process of this co-

recombinamer emulates the structural organization of the native ECM. In addition, their proven 

stability, even in environments with a high fluid content, together with their convenient multistage 

gelation kinetics, makes these hydrogels excellent candidates for use as injectable hydrogels for 

biomedical applications. This potential is further supported by the excellent properties of ELRs in 
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general. Finally, due to the recombinant nature of this SELR, it is easy to build an extensive –battery of  

different bioactive versions that can incorporate, at the gene level, relevant peptide-based biological 

cues such as specific cell-adhesion sequences and metalloprotease recognition sites, amongst others. 

These materials therefore constitute a new versatile family of hydrogels that can be used for many 

different applications and therapies, both in vitro and in vivo, and may also serve as model artificial 

cellular niches for cell studies and production. 

 

SUPPORTING INFORMATION AVAILABLE 

SDS-PAGE analysis, MALDI-TOF spectra, amino acid composition for the (EIS)x2, evaluation of the 

transparency and porous structure by SEM are supplied as Supporting Information. “This material is 

available free of charge via the Internet at http://pubs.acs.org.”  
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