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The hamster has been previously described as a paroxysmal dystonia model, but our strain is currently
recognized as a model of audiogenic seizures (AGS). The original first epileptic hamster appeared spontaneously
at the University of Valladolid, where it was known as the GPG:Vall line, and was transferred to the University of
Salamanca where a new strain was developed, named GASH:Sal.
By testing auditory brainstem responses, the GASH:Sal exhibits elevated auditory thresholds that indicate a
hearing impairment.
Moreover, amplified fragment length polymorphism analysis distinguished genetic differences between the
susceptible GASH:Sal hamster strain and the control Syrian hamsters.
The GASH:Sal constitutes an experimental model of reflex epilepsy of audiogenic origin derived from an
autosomal recessive disorder. Thus, the GASH:Sal exhibits generalized tonic–clonic seizures, characterized by a
short latency period after auditory stimulation, followed by wild running, a convulsive phase, and finally stupor,
with origin in the brainstem.
The seizure profile of the GASH:Sal is similar to those exhibited by other models of inherited AGS susceptibility,
which decreases after six months of age, but the proneness across generations is maintained. The GASH:Sal can
be considered a reliablemodel of audiogenic seizures, suitable to investigate current antiepileptic pharmaceutical
treatments as well as novel therapeutic drugs.

This article is part of a Special Issue entitled Genetic Models-Epilepsy.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Animal models for epilepsy are fundamental for studying epileptic
disorders [1,2]. Although there is no single model of epilepsy that fully
recapitulates the human disease spectrum, those models that are
genetically predisposed to mimic the variable and complex genetic
architecture of epilepsy have proven invaluable [3,4]. Notably, models
susceptible to audiogenic seizures, which are genetically susceptible to
sound-induced reflex seizures, have vastly contributed to the
knowledge of this disease [5–8].

Audiogenic seizures (AGS) are generalized seizures that
reproducibly occur with exposure to a high-intensity sound stimulus.
Vasiliev described the first observations of this disorder in 1924 [9].
niversity of Salamanca, 37007
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They are categorized as generalized seizures originating in themidbrain
and provoked by high-intensity acoustic stimulation [10,11]. Several
authors have attempted to identify the anatomical substrate responsible
for the genesis and propagation of audiogenic seizures. Many point to
the inferior colliculus as being directly responsible for seizure suscepti-
bility because its ablation in rats and mice abolishes AGS permanently
[12–14]. Furthermore, electrical and chemical stimulation of the inferior
colliculus (IC) is observed to trigger a seizure [15].

Although the IC is suggested to be highly involved in generating AGS
[16], the afferent peripheral system has been implicated also because it
has a particular sensitivity to hyperstimulation during development.
Additionally, AGS and priming models have demonstrated functional
abnormalities within the auditory system [17]. Recently, our laboratory
has detected alterations in the auditory pathway in the AGS hamster
strain GPG:Vall, particularly in the olivocochlear neurons and the
inner ear [18].

Susceptibility to AGS has been proposed to be a result of altered
cerebral inhibitory mechanisms [19]. Epilepsies are associated with
amster from Salamanca: The GASH:Sal, Epilepsy Behav (2016), http://
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a disruption in amino acid metabolism, principally gamma-
aminobutyric acid (GABA) [20]. Furthermore, the convulsive action of
certain hydrazides, which reduce glutamate decarboxylase activity,
has prompted questions regarding whether some forms of epilepsy
are due to faults in GABA metabolism. An early comparative study of
healthy persons and patients with epilepsy did not explicitly reveal
any mutations [21], but in recent years, the number of genes associated
with epilepsy has been increasing, with eighty-one representative epi-
leptic syndromes and familial seizures in which causal mutations were
confirmed, listed in the Online Mendelian Inheritance in Man [4]. By
contrast, morphological and biochemical studies conducted in rats
have demonstrated an increase in GABA concentration, GABA-positive
neurons, and total neuron count in the IC in some AGS rat models
[22]. These results suggest that AGS models possess an abnormal
GABAergic system. It is possible that this alteration is due to an in-
creased disinhibition of excitatory neurons during exposure to a trigger
sound [23,24]. On the other hand, a developmental period may exist
during which the cochlea and its function are particularly vulnerable
to hyperstimulation [25].

The administration of amino acids which act as inhibitory neuro-
transmitters (e.g., glycine and taurine), results in a suppression of AGS
[26]. Although variations in glycine levels are not evident, deficits in
taurine are well documented [27].

Audiogenic seizures manifest themselves in several animal spe-
cies, including the dog, mouse, rabbit, rat, and chicken [1,28,29].
Of these species, the rat and mouse have been most prominently
utilized for detailed AGS studies. The majority of existing rat and
mouse lines possess a congenital susceptibility to the manifestation
of AGS. This anomaly is not observed in other mammals and is strict-
ly related to the auditory and motor development of these species.
As such, various rodent lines initially thought to be “resistant” to
AGS may be manipulated to manifest such seizures following in-
tense acoustic stimulation during a “sensitive” or “critical” postnatal
period [25]. This phenomenon of inducing AGS susceptibility is
known as “priming” and was originally described by Henry in
1967 [30]. By contrast, rodent lines that demonstrate an innate sus-
ceptibility (congenital or hereditary) that does not require any
priming sound exposure exist. Examples include the Krushinski
Molodkina line [31], selected in the old Soviet Union; the
genetically epilepsy-prone rat (GEPR), selected in the late 1950s at
the University of Arizona [32]; the Wistar audiogenic rat (WAR)
strain selectively inbred from a strain of AGS Wistar rats at the
Ribeirão Preto School of Medicine at the University of São Paulo,
Brazil [33]; and the DBA (dilute brown agouti coat color) mouse
[34], among others [2,25].

Regarding the hamster, the first references from the literature
alluding to its convulsive symptomology belong to Yoon et al.[35].
This strain was originally categorized as expressing reflex seizures and
designated “sz” for seizure [36]. It was subsequently categorized as
showing dystonia, and its designation was modified to “dtsz” [37].

The hamster genetically prone to epilepsy, GPG:Vall (Gómez–
Palomo–Gómez, Valladolid), exhibited generalized tonic–clonic
seizures, of brainstem origin [38,39], in response to stimulation with
sound of a frequency of 1–20 kHz and an intensity of 60–80 dB. Similar
to what occurs in other animal lines with congenital epilepsy, suscepti-
bility is inversely proportional to age [38] and is dependent on the
sleep–wake cycle, on light and dark fluctuations, and on repeated
sound exposure [40].

The GPG:Vall strain progressively lost fertility and is now extinct.
Prior to that, some individuals were transferred to the University of
Salamanca where a new strain was developed by means of a cross
with a wild-type Syrian hamster (Mesocricetus auratus). The resulting
line was a strain of golden hamsters, the GASH:Sal (genetic audiogenic
seizure hamster, Salamanca), that express audiogenic seizures and are
the subject of the current work, which aimed to further characterize
the GASH:Sal.
Please cite this article as: Muñoz LJ, et al, The genetic audiogenic seizure h
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2. Material and methods

2.1. Experimental animals

This study used 2 strains of Syrian hamsters (M. auratus): the AGS-
susceptible GPG:Vall [22] provided by the University of Valladolid and
the golden Syrian hamsters, Lak:LVG(SYR)BR, from Charles River,
Barcelona, Spain. The animals were housed in the Animal Facility of
the University of Salamanca and followed an ad libitum diet with type
A03 and type A04 meals (Panlab, Barcelona, Spain). Housing was in
European Union (EU) standard type III polycarbonate cages (Tecniplast,
Buguggiate, Italy) in a controlled environment of 30–70% humidity,
19–23 °C, and a light/dark cycle of 14 h light/10 h dark. A total of 4
GPG:Vall and 6 Lak:LVG(SYR)BR (Charles River, Barcelona, Spain)
hamsters were used for the original parental crosses. The animals
were handled according to the recommendations of the European
Convention for the Protection of Experimental Animals (2010/63/EU),
with the approval of the Animal Care and Ethic Committee of the Uni-
versity of Salamanca.

2.2. AGS assessment and seizure analysis

This study assessed both AGS susceptibility and seizure phases. The
age for sound stimulations was established according to existing litera-
ture regarding the AGS model and was set as a chronological age para-
digm of 30, 45, 60, and 180 days. To avoid the influence of the
circadian rhythm, all tests were performed at the same time of day.

The animalswere placed in a cylindrical acrylic arena (height: 50 cm,
diameter: 37 cm) and allowed to acclimate for 1 min. The animals were
then exposed to a continuous white noise of 0–18 kHz and an intensity
of 115 to 120 dB, to induce audiogenic seizures. Exposure continued
until the initiation of wild running or until 20 s had elapsed, whichever
came first. The recorded sound was created using a high-pass filter
(N500 Hz, Bruel & Kjaer #4134 microphone and preamplifier #2619),
digitized at 44.1 kHz, and played by a computer-coupled amplifier
(Fonestar MA-25T, Revilla de Camargo, Spain) and speaker (Beyma
T2010, Valencia, Spain) located above the arena. For each trial, video re-
cordings began 1 min prior to the sound exposure and continued until
the animal recovered from the stupor.

Videos were processed using iMovie software. For each session, the
characteristic progression of the motor seizure and kinetic–postural
components, as well as their duration, was determined, based on our
own observations and references from other audiogenic seizures in
other strains [41,42].

2.3. Seizure-activating nuclei

To obtain the best detail on the neuroanatomical structures implicated
in seizure genesis, we analyzed c-fos expression in both GASH:Sal and
control hamsters after 60 min of sound exposure. The animals were eu-
thanized with pentobarbital (60 mg/kg) and perfused transcardially
with 0.9% saline wash solution followed by 4% paraformaldehyde fixative
solution. Following perfusion, 40-μm coronal serial sections were proc-
essed for immunohistochemistry using similar procedures to those used
in our previous studies of rats [43] and hamsters [44]. Briefly, the sections
were washed and incubated in a rabbit anti-FOS sc-52 primary antibody
solution (1:2500; Santa Cruz Biotechnology, Santa Cruz, CA, USA) diluted
in TBS (Tris-buffered saline) for 24 h at 4 °C. The tissue was then washed
and incubated with a goat biotinylated secondary anti-rabbit antibody.
(1:200, #BA-1000, Vector Labs) for 2 h at room temperature and finally
visualized with the avidin–biotin–peroxidase complex procedure
(Vectastain, Vector Labs) and histochemistry for peroxidase without
heavy-metal intensification. For each brain, all sections were mounted
on slides, dehydrated, and coverslipped. Brain specimens taken from
control animals as well as from GASH:Sal animals were processed simul-
taneously using the samebatchof solutions and incubation times, in order
amster from Salamanca: The GASH:Sal, Epilepsy Behav (2016), http://
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to minimize the variability in the visualization of immunoreactivity and
DAB reaction product. Negative controls were not treated with primary
antibodies, and this resulted in the complete absence of immunolabeling.

All sections were examined with an upright bright-field microscope
(#BX5; Olympus, Center Valley, PA, USA) equipped with a digital cam-
era (SpotRt®; Diagnostic Instruments, Sterling Heights, MI, USA).
Low-magnification images were taken for analysis of immunostained
structures. The photomicrographs shown in the figures were processed
withminormodifications in the brightness and contrast, and the tissue-
free background was removed using Adobe Photoshop® (version 9.0;
Adobe Systems Incorporated, San Jose, CA, USA); these photomicro-
graphs were then assembled in Canvas 7.0 software following the
stereotactic brain atlas for the golden hamster [45].

The densitometric analysis of the labeled structures was carried out
with ImageJ (version 1.42; Rasband, N.S., National Institutes of Health,
Bethesda, Maryland, USA; http://rsb.info.nih.gov/ij).

The optical densities of sections immunostained for Fos proteinwere
compared between groups, allowing us to associate an objective value
with the immunostained intensity. With digitized images, we
performed densitometric analysis of Fos immunoreactive sections by
measuring the integrated optical density in that region (the product of
the mean optical density and the studied area). To do this, we used a
standardized protocol from our laboratory [46], which included sam-
pling, calibrating the optical density imaging (at both the microscope
and camera), measuring the immunostaining optical density of the IC
in different rostrocaudal levels, and standardizing the results. With the
obtained numerical data, a comparative analysis was performed
between controls and the GASH:Sal through the application of the un-
paired Student's t-test for independent samples and by obtaining the
mean standard error of each group studied, with 2 degrees of freedom
and a significance of p ≤ 0.05. Data are reported as the means ± stan-
dard error.
Table 1
Number of animals used in this study in the different experimental approaches.
Abbreviations: LVG(Lak)SYR, control Syrian hamster line from Charles River Laboratory;
GASH:Sal, genetic audiogenic seizure hamster, Salamanca; GPG:Vall, Gómez–Palomo–
Gómez genetically epilepsy-prone hamster, Valladolid.

N AGS
inheritance

Seizure
analysis

ABR Histology AFLP

Control: LVG(Lak)SYR 2 – 8 2 10
GASH:Sal 133 22–81 12 2 12
GPG:Vall 2 – – – –
2.4. Auditory brainstem response (ABR)

Audiometric testing was performed in the Non-Invasive
Neurofunctional Evaluation Service of the Alberto Sols Biomedical
Research Institute (CSIC, Madrid) according to the following protocol.

Auditory brainstem response testing was conducted in a sound-
attenuating chamber using a TDT evoked potential workstation (Tucker
Davis Technologies, Alachua, FL, USA). To obtain the ABR, a hamster was
anesthetizedwith an intraperitoneal injection of ketamine (100mg/kg)
and xylazine (10 mg/kg), and subdermal electrodes were inserted in
the vertex (reference electrode),midline between the two ears (active),
in themastoid region below the right ear (reference) and in the lumbar
region (ground). A free-field Tucker Davis ES1 electrostatic speaker
was positioned directly in front of the animal's ear at a fixed distance
of 5 cm.

Click and tone burst stimuli were generated with SigGen software
(TDT). Click stimuli lasted 0.1 ms and were delivered at 30 pulses per
second (pps). Tone burst (4 to 40 kHz) stimuli lasted 5 ms (2.5 ms for
the rise and decay with no plateau) and were presented at 50 pps.
Data were collected by a real-time processor (RP2, TDT) and analysed
using BioSigRZ software (TDT). The biological signal was bandpass fil-
tered (1500, 300 Hz) and amplified with a four-channel preamplifier
(RA4PA, TDT)with the artifact rejection level set at 99% of the threshold
relative to the maximum voltage input (10 V or input signal). The re-
cording window was 10 ms in duration and was triggered by a timing
pulse from the RP2 at the stimulus onset. Thresholds were determined
by reducing the intensity of the stimulus in 10-dB steps until no
latency-appropriate responseswere evident. The intensity of the stimu-
lus was then increased in 5- or 10-dB steps until a response could once
again be discerned. Threshold was then defined as the lowest intensity
atwhich a latency-appropriate responsewith an amplitude greater than
2 standard deviations above the mean background activity appears.
Please cite this article as: Muñoz LJ, et al, The genetic audiogenic seizure h
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2.5. Hereditary AGS susceptibility

To study the possible hereditary transmission of AGS, a paradigm of
crosses and backcrosses between male GPG:Vall and female golden
Syrian hamsters was established. To determine the phenotype of each
offspring and to classify it as susceptible or not susceptible, the auditory
brain response (ABR) of each parent was measured. We first used the
cross between a male GPG:Vall and a female Lak:LVG(SYR)BR to obtain
the F1 population. After ABR testing of all animals, the integral members
of this generationwere crossed, and the F2 descendantswith the seizure
phenotype were selected for further crossing. Additionally, trial
backcrosses between susceptible F2 individuals and their corresponding
parents were done to evaluate offspring phenotypes. The remaining off-
spring were further crossed between susceptible siblings. Susceptibility
to AGS was determined for all offspring.

2.6. Amplified fragment length polymorphism analysis

The amplified fragment length polymorphism (AFLP) procedure, a
highly sensitive method for detecting polymorphisms in DNA, has be-
come widely used for the identification of genetic variation in strains.
It was performed according to the method described by Vos et al. [47],
with slight modifications for our study. The technique involves five
steps: (I) digestion of the total cellular DNA using two different restric-
tion enzymes, EcoRI and MseI; (II) ligation of the oligonucleotide
adapters; (III) preamplification of EcoRI and MseI fragments with a
combination of an EcoRI and MseI primer with one selective base
each; (IV) a final amplification with additional selective nucleotides
used in the EcoRI and MseI primers (Table 1); and (V) analysis of the
amplified fragments using an automated DNA sequencer.

2.6.1. Sampling
For this study, two strains of Syrian hamsters (M. auratus) were

used: 10 adult (3- to 7-month-old) control AURA hamsters (Janvier,
Le Genest-Saint-Isle, France) and 12 adult (7- to 9-month-old) GASH:
Sal hamsters originated in the Experimental Animal Facility of the Uni-
versity of Salamanca, Spain.

2.6.2. DNA extraction
Genomic DNA was extracted from whole blood using DNAzol®

Genomic DNA Isolation Reagent (#DN127, Molecular Research Center
Inc., Cincinnati, OH, USA) and then purified, with the concentration
being spectrophotometrically estimated with a Spectronic BioMate 3
(Thermo Fisher Scientific, Inc., Europe).

2.6.3. AFLP analysis
Genomic DNA (150 ng) from each samplewas digested in a 20-μl re-

action volume consisting of the following: 1× REact I buffer (#Y90002,
Invitrogen, Carlsbad, CA, USA), EcoRI restriction enzyme (3.6 U)
(#R6011, Promega, Madison, WI, USA), and MseI restriction enzyme
(4.0 U) (#15494-016, Invitrogen). Following digestion, a 20-μl ligation
mix consisting of 1.2 U T4 DNA ligase (#M1801, Promega), 1.8 μM
EcoRI adapter (Isogen Life Sciences, Maarssen, Netherlands), 1.8 μM
MseI adapter (Isogen), and 1× ligase buffer containing 1.0 mM ATP
(#C126, Promega) was added to each of the remaining 20-μl digested
amster from Salamanca: The GASH:Sal, Epilepsy Behav (2016), http://
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DNA samples. The resulting mixture was quickly vortexed and stored
overnight at 4 °C. The product was diluted 1/5 and used as the template
for the subsequent preamplification reaction.

Preamplification with primers with the addition of a single selective
nucleotide was performed in 25-μl reaction volumes consisting of the
following: 5 μl 1/5 diluted ligated DNA, 1× Colorless GoTaq® Reaction
Buffer with MgCl2 (#M792A, Promega), 0.2 mM dNTPs Mix (#U1511,
Promega), 0.3 μM each of the EcoRI and MseI primers (Isogen), and
1.25 U GoTaq® DNA Polymerase (#M3171, Promega). The PCR was
run on a thermocycler (ABI7300, Applied Biosystems, Europe) under
the following amplification conditions: one cycle (1 min at 72 °C), 20 -
cycles (30 s at 94 °C, 1 min at 56 °C, 3 min at 72 °C), and one cycle
(5 min at 72 °C). Selective amplification was performed in 25 μl PCR
mix containing the following: 5 μl 1/20 diluted preamplification
product, 1× buffer GoTaq® (#M792A, Promega) with MgCl2, 1.25 U
GoTaq® DNA Polymerase (#M3171, Promega), 0.2 mM dNTP mix
(#U151A, Promega), 0.5 μM MseI primer, and 0.2 μM EcoRI 6-FAM-
labeled primer (Isogen). Six primer combinations were used (E32/
M48, E32/M58, E32/M60, E35/M48, E35/M58, and E35/M60). Primer
sequences are shown in Table 2. The PCR was run under the following
conditions: one cycle (2 min at 94 °C), 13 cycles [30 s at 94 °C, 1 min
at 65 °C (0.7 °C decrease after each cycle), 90 s at 72 °C], and 25 cycles
(30 s at 94 °C, 1 min at 56 °C, 90 s at 72 °C), and the final extension
was carried out at 72 °C for 5 min.

After selective amplification, 1.0 μl of each PCR product was mixed
with a volume of 9.0 μl formamide and 1.5 μl fluorescent ladder
(60–400 bases, CXR, #DG6221, Promega). Amplified fragment length
polymorphism fragments were run on an ABI Prism 3100 Genetic
Analyzer (Applied Biosystems, Foster City, USA) (Cancer Research
Center, University of Salamanca, Spain). Following fragment separation,
data files for each sample were created with GeneScan analysis soft-
ware (Applied Biosystems) and Genotyper™ version 2.1 (Applied
Biosystems). The data were imported into GeneMarker® software
(Softgenetics LLC, PA, USA) and scored for each primer pair. Unambigu-
ous polymorphic fragments, based on the standard parameter setting
threshold, were scored as 1 for presence and 0 for absence to create a
binary data matrix.

2.7. Statistical analysis

Statistical analysis of the seizure phase duration was performed
using the SPSS software, version 18.0 (SPSS Inc., Chicago, IL, USA). All
mean values were expressed ± the standard error of the mean.
Comparisons between groups were made by analysis of variance
(mixed ANOVA split-plot), with pairwise comparisons Scheffe
(between-subjects analysis) and Bonferroni post hoc test (intrasubject
Table 2
Enzymes and primers used for AFLP analysis.

EcoRI adapters
Eco-ad-5 5′CTCGTAGACTGCGTACC3′
Eco-ad-3 5′ÁATTGGTACGCAGTCTAC3′

Msel adapters
Mse-ad-5 5′GACGTAGAGTCCTGAG3′
Mse-ad-3 5′TACTCAGGACTCAT3′

Preamplification
Eco-pre 5′GACTGCGTACCAATTCA3′
Mse-pre 5′GTAGAGTCCTGAGTAAC3′

Selective amplification
EcoRI primers
E32 5′GACTGCGTACCAATTCA AC3
E35 5′GACTGCGTACCAATTCA CA3′

Msel primers
M48 5′GTAGAGTCCTGAGTAAC AC3′
M58 5′GTAGAGTCCTGAGTAAC GT3′
M60 5′GTAGAGTCCTGAGTAAC TA3′

Please cite this article as: Muñoz LJ, et al, The genetic audiogenic seizure h
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analysis). To compare differences between two means, we used
Student's t-test taking into account Levene's test for equality of
variances. Chi-square analysis was used to compare the percentage of
animals expressing the seizure phenotype across each generation. The
differences between groups were regarded as statistically significant
when p ≤ 0.05.

For AFLP analysis, the GASH:Sal and control hamsters were consid-
ered to be different populations; also, because AFLP analysis produces
multilocus dominant markers, the populations were assumed to be in
Hardy–Weinberg equilibrium. Genetic diversity and population
structure analyses were performed using the software AFLP-SURV
[48]. Total gene diversity (HT), the average gene diversity among popu-
lations (HB = HT − HW) [49], and the average gene diversity within
the populations (HW) based on the approach of Lynch & Milligan [50]
and analogous to Nei's gene diversity [49] and Wright's fixation index
(FST) [51] were calculated. The significance of FST was tested with
1000 random permutations. Dendrograms were constructed based on
Nei's similarity coefficient [52] and the neighbor-joining method [53].

3. Results

3.1. Clinical spectrum of seizures

All AGS-susceptible animals exposed to the acoustic trigger had an
initial latency period that was abruptly interrupted by wild running,
occasionally accompanied by vocalization, urination, salivation, defeca-
tion, and falls. This phase progressed either directly into stupor, in
which the crisis was incomplete, or continued as tonic–clonic seizures,
characterized by the following kinetic–postural sequence:

- Opisthotonus, which entails hyperextension of the back, forelimbs,
and tail; raised ears; and transversal spasms of the hindlimbs

- Generalized tonic–clonic seizures, which entail clonic seizures of the
forelimbs and transversal tonic spasms of the hindlimbs

- Tonic opening and closing of the mouth, dorsoventral flexion of the
neck and trunk, and tonic hyperextension of the forelimbs

- Hyperextension of the trunk and hindlimbs
- Occasional urination, defecation, vocalization, tremors, or testicular
protrusion accompanying a seizure.

The seizures were classified according to the presence or absence of
each phase as well as its duration for each time point (30, 45, 60, and
180 days of age). Seizure severity was scored according to existing
scales or scores established in other rodent models [41,42] and based
on specific kinetic–postural attributes. These motor attributes recur at
variable intervals and can be grouped into four grades from minor to
major severity. Grade 1 is exclusivelywild running. Animals categorized
as grades II to IV (Fig. 1) exhibited a succession of tonic–clonic seizures
that end in postictal stupor.

3.1.1. Phase analysis
At and below 30 days of age, the animals exhibit a shorter postictal

stupor period and less severe seizures, which gradually increase
through 2 months of age. At 45 days of age, the hamsters exhibited
shorter latency periods, and the severity of the seizures also increased.
At 60 days of age, hamsters exhibited the largest number of severe
audiogenic seizures. At 6months, hamsters exhibited only thewild run-
ning, and the seizures were relatively weak. Furthermore, the duration
of the initial latency and stupor period reached their maxima (Figs. 2,3).
The results are quantified for 80 hamsters from generations F2 to F8.

3.2. Seizure-activating nuclei

The inferior colliculus (IC) of GASH:Sal displayed strong immunore-
activity to the Fos protein following sound stimulation. The dorsal
amster from Salamanca: The GASH:Sal, Epilepsy Behav (2016), http://

http://dx.doi.org/10.1016/j.yebeh.2016.03.002
http://dx.doi.org/10.1016/j.yebeh.2016.03.002


Fig. 1.Classification of seizure severity. Grade I: exclusivelywild running, grade II: wild runningwith tonic–clonic convulsions, grade III: addition of foreleg tonic spasms, grade IV: addition
of hindleg tonic spasms.
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(DCIC) and external (ECIC) cortices had the strongest immunoreactivi-
ty, whereas reactivity in the central nucleus (CIC) and intercollicular
commissure, although present, was weaker.
Fig. 2. Evolution of the durations of the different phases of the full seizure (30, 45, 60, and
180 days). Mean phase duration (in seconds, logarithmic scale). Mean duration (in
seconds) of each phase. Maximum and minimum are represented by error bars
(logarithmic scale). Number of animals in each age of evaluation (30, 45, 60, and
180 days of age): latency (81, 75, 15, 71), wild running (74, 73, 18, 72), seizures (65, 65,
28, 64), stupor (23, 23, 4, 21).

Please cite this article as: Muñoz LJ, et al, The genetic audiogenic seizure h
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Immunoreactivity was also present in the periaqueductal gray
(PAG). After the seizure, we also found positive immunoreactivity to
Fos protein in other auditory nuclei, such as the lateral lemniscus and
superior colliculus, but in lower intensity.

In Fig. 4, qualitative differences in immunostaining,when comparing
the two experimental groups, can be seen, based on the topographical
distribution of Fos immunoexpression.

Tissue sections were caudorostrally organized according to the ste-
reotaxic atlas [45] and are illustrated in Fig. 5. To associate an objective
valuewith the immunostaining intensity, wemeasured the optical den-
sity of the IC sections immunostained for Fos protein visualization. We
normalized the results to a region having negative immunostaining,
such as themiddle cerebellar peduncle, in order tominimize any errors.
The data used for analysis were those from the integrated optical densi-
ty. These data indicate that the IC immunostaining of the GASH:Sal
hamsters has greater Fos immunoexpression than the controls
(p b 0.05), especially in the caudal areas, which is occupied mainly by
the external cortex (Fig. 5). The same occurs, to an even greater extent,
with the periaqueductal gray (data not shown).
3.3. Auditory brainstem response

Although the GASH:Sal hamsters displayed audiogenic seizures,
they have profound deafness, with a threshold near 80 dB. In fact, our
results demonstrate that there is sound conductivity, but there is also
amster from Salamanca: The GASH:Sal, Epilepsy Behav (2016), http://
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Fig. 3. Temporal seizure severity. Temporal evolution of seizure severity (stacked bars in percentages of total cases). Grade I: exclusivelywild running (WR), grade II:WR and tonic–clonic
convulsion, grade III: tonic spasms of forelimbs, grade IV: tonic spasms of forelimbs and hindlimbs.
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a significant hearing deficit, as seen in the reduction of response laten-
cies (Fig. 6).

The audiogram was performed by determining the hearing thresh-
old for a series of pure tones of 4–40 kHz. In control animals, audiograms
are very similar in subjects at 3 to 9months of age, with the best thresh-
olds presented for frequencies of 4–16 kHz. In contrast, the GASH:Sal
thresholds for the various frequencies are found to be relatively high
at all ages. As such, to compare absolute and interpeak latencies be-
tween the GASH:Sal and controls, tests were performed using themax-
imum sound intensity of 90 dB.

We calculated the latencies of thefive characteristic peaks of theABR
record, as well as the interpeak latencies I–II, I–III, and I–IV after stimu-
lation and have found that the absolute latencies of the peaks are higher
for GASH:Sal animals at all ages even though there are no significant
Fig. 4. Images detailing Fos immunoreactivity in the inferior colliculus of the control (A) andGAS
ECIC, external cortex of the inferior colliculus.
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differences. Additionally, the interpeak latencies did not differ
significantly between the two populations (Fig. 7).
3.4. AGS as an inheritable disorder

To establish a novel hamster model for epilepsy, selective breeding
with two male GPG:Vall hamsters and two female Lak:LVG(SYR)BR
hamsters successfully produced 18 F1 pups. No F1 pup was positive for
seizure susceptibility. The cross with F1 siblings produced 105 F2 pups,
of which 18 were susceptible to seizures. Backcrossing susceptible F2
pups with F1 produced 12 pups, of which 8 were susceptible. The null
susceptibility of F1 and the approximate 20% susceptibility of F2 suggest
an autosomal recessive pattern of inheritance. Chi-square testing
H:Sal hamsters (B). Note the reduced immunoreactivity found in the control. Abbreviation:

amster from Salamanca: The GASH:Sal, Epilepsy Behav (2016), http://

Image of Fig. 3
Image of Fig. 4
http://dx.doi.org/10.1016/j.yebeh.2016.03.002
http://dx.doi.org/10.1016/j.yebeh.2016.03.002


Fig. 5. A) Plot depicting the caudal–rostral distribution of Fos immunoreactivity after acoustic stimulation in control and GASH:Sal hamsters. The diagrams show the comparison of the
expression in similar sections between controls (left) and GASH:Sal animals (right). The schemes are arranged from caudal (up) to rostral, as indicated by an arrow. Each point is
indicated by a 10-point mark on the studied section. Abbreviations: ECIC, external cortex of the inferior colliculus; 4 V, fourth ventricle; DCIC, dorsal cortex of the inferior colliculus;
CIC, central nucleus of the inferior colliculus; PGA, periaqueductal gray; DNLL, dorsal nucleus of the lateral lemniscus; VNLL, ventral nucleus of the lateral lemniscus; Pn, pons nucleus;
SC, superior colliculus. B) Mean values of the integrated optical density. Error bars represent the semideviation of the standard error. The measurements correspond to sections of the
inferior colliculus (IC) along its extension caudally (C) and rostrally (R). Objectively, the GASH:Sal hamsters show significant greater immunostaining for this protein after the intense
acoustic stimulus (p b 0.05). The inset represents the average values of density of immunostaining through the rostral–caudal axis.
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indicates a significant recessive inheritance (p b 0.01) in both F2 and
backcrossed generations.

3.5. AFLP

Amplified fragment length polymorphism analysis was used to
evaluate the genetic diversity between the two strains of Syrian
hamsters. The digested products of these two genomic DNAs were
obtained by using combined restriction enzymes of EcoRI/MseI. Six
primer pairs were selected to generate the AFLP banding pattern for
each combination, and the polymorphism rate was calculated based on
Fig. 6. Control and GASH:Sal audiograms. Audiograms of GASH:Sal hamsters at three, six,
and fourteen months old, as well as of control hamsters at three and nine months old,
shown as averages with hemistandard deviations. n = 4 for controls; for GASH:Sal, n =
4 at 3 months, n = 2 for 6 months, and n = 1 for 14 months.
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the number of scorable polymorphic bands. The primer combinations
yielded a total of 660 fragments, with an average of 110 loci per primer
combination, and amean fragment size of 185.97 bp. Amean percentage
of 49.28% of the 660 distinguishable bands were polymorphic across all
primer combinations.

Based on the approach of Lynch and Milligan [50], genetic diversity
and population genetic structure were estimated. Overall expected
heterozygosity (HT) was calculated by averaging all loci of the two
populations for each primer combination, ranging from 0.3025 ±
0.0122 to 0.3727 ± 0.0286 and averaging 0.3381. Among the six primer
combinations, the lowest genetic diversity (HW) was exhibited in E32/
M48 and the highest in E35/M60. In this study, the mean FST across all
Fig. 7. Interpeak latency (I–II, I–III, and I–IV) in control andGASH:Sal hamsters at 3months
old. n = 4 controls + 4 GASH/Sal. Histogram shows mean values and hemistandard
deviation bars.
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Table 3
Genetic diversity within and between populations of control and GASH:Sal hamsters. Ab-
breviations: total gene diversity (HT), gene diversity within a population (HW), gene di-
versity between populations (HB), Wright's fixation index (FST).

Primer combinations HT HW HB FST

E32/M48 0.3191 0.2878 0.0310 0.0929
E32/M58 0.314 0.3082 0.0059 0.0177
E32/M60 0.3724 0.3245 0.0479 0.1279
E35/M48 0.3478 0.2989 0.0489 0.1326
E35/M58 0.3025 0.2914 0.0111 0.0366
E35/M60 0.3727 0.3413 0.0313 0.0839
Average 0.3381 0.3087 0.0294 0.0819

Fig. 8. Genetic variability between control and GASH:Sal individuals. Phylogenetic tree
depicting 12 individuals derived from the two initial populations ofMesocricetus auratus.
The AFLP was obtained with the E35/M48 combination and the dendrogram based on
Nei's genetic distance, with 1000 random permutations. Note that the control and
GASH:Sal individuals are grouped in separate branches.
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loci was 0.0839, indicating that approximately 8.4% of the total genetic
variation could be explained by strain differences,whereas the remaining
91.6% was based on differences among individuals. The lowest FST esti-
mate (0.0177) was from E32/M58 and signifies little genetic differentia-
tion within the populations. The E35/M48 presented the highest value
at 0.1329, indicating a moderate genetic difference within the popula-
tions analyzed. Genetic diversity parameters, which include the expected
heterozygosity (HT) and average gene diversity within (HW) and be-
tween populations (HB), as well as Wright's FST, are shown in Table 3.

Analysis of molecular variance showed that the approximate main
variation component (83%) was attributable to within-population
level variance. In terms of interpopulation variability, the overall vari-
ability averaged 17% among the 6 primer combinations. The PhiPT
values that represent the genetic differentiation between pairs of popu-
lations ranged from 0.064 to 0.239, significant at 0.079 and 0.0, respec-
tively. The AMOVA results are listed in Table 4.

To understand the genetic relationships among the two hamster
populations, we used AFLP markers to construct phylogenetic trees by
the neighbor-joining method using Nei's genetic distance values [49].
A dendrogram (Fig. 8) illustrating the genetic similarity among the indi-
vidual samples of E35/M48 showed that all the individuals of the control
laboratory hamster population were grouped into one major cluster.
Additionally, a second major cluster was occupied exclusively by sam-
ples of the GASH:Sal population. Two GASH:Sal singletons were joined
to the basal branch.
4. Discussion

4.1. Audiogenic susceptibility

The obtained results indicated an autosomal recessive pattern of
inheritance based on the consistent susceptibility of all generations.
However, because of the variability in the clinical symptoms, the
possibility that other genes may be affecting susceptibility cannot be
excluded. Seizure susceptibility has been proposed to be determined
by polygenetic inheritance [54], which is influenced by the interaction
Table 4
Analysis of molecular variance (AMOVA) within and among populations of control and
GASH:Sal hamsters. Statistical analysis of the diversity of AFLP between those groups,
reflecting the percentage of variation within or among populations. Abbreviations: d.f.,
degrees of freedom; PhiPT, proportion of variance in the population relative to the total
variance; p, probability; pop., population; Var. est., variance estimation.

Primer
comb. d.f.

Sum of
squares

Mean
squares

Var.
est.

Within
pop.

Among
pop. PhiPT p

E32/M48 14 148.4 32.297 11.473 84% 16% 0.157 0.001
E32/M58 13 126.714 23.207 10.05 94% 6% 0.064 0.079
E32/M60 9 114.3 35.05 14.276 79% 21% 0.207 0.017
E35/M48 11 179.417 51.617 18.18 78% 22% 0.219 0.002
E35/M58 10 91.818 23.966 9.765 87% 13% 0.131 0.030
E35/M60 13 202.429 55.533 17.558 76% 24% 0.239 0.00
Overall Total 83% 17% 0.1695
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of genes related to the susceptibility, expression, modulation, and
temporal expression of seizures.

From the clinical perspective, seizure progression, whether from a
genetically susceptible or kindling model, can be divided into several
phases: wild running, clonic or tonic or tonic–clonic, and postictal non-
reactive [25]. Recently, several anomalies in other behavioral attributes,
such as exploratory activity, have been reported [55]. The latency, pres-
ence of phases, seizure resolution, and kinetic–postural descriptions
have all been utilized as instruments to evaluate audiogenic seizures.
Severity depends on several external factors, including the consistency
and intensity of the stimulus, as well as internal factors such as an
occlusion of the ear. Additionally, innate variables and biological
rhythms of each individual must be considered.

Regarding the initial latency phase, we only observed a difference
between 30-day-old and 6-month-old GASH:Sal hamsters. Comparing
the remaining phases (wild running, convulsions, and stupor) present-
ed by one-month-old animals, there is a stark difference in the clinical
manifestations compared to more advanced ages. This finding suggests
that at 1month of age, the auditory systemhas not completelymatured.

The wild running phase, in which the animal runs quickly in an un-
controlled fashion, constitutes the initial phase. This phase is evident in
all audiogenic seizures, regardless of the severity afterwards. In some
models, this phase manifests as two run cycles. When only one run
cycle is present preceding the convulsions, this means there is a seizure
with a strong severity index. In our case, having applied a short stimulus
(20 s), we were not able to identify the presence of more than one run
cycle [56]. In our study, this was the only constant phase in the experi-
mental observations, meeting one of the premises characterizing audio-
genic seizure models. The variations in latency of this phase, seen in
stimulations performed until 60 days of age, corresponded to a lower
threshold for the severe seizure type,when comparedwith the latencies
observed in the genetic models GEPR and WAR [25]. However, after
6 months, an increase in latency was observed; this could indicate a re-
duced susceptibility, although this finding could also be interpreted as
an auditory deficit of genetic origin that caused damage to the afferent
system or as intrinsic damage caused by the seizure. The tonic–clonic
phase, which follows the wild running phase, is initially characterized
in our animals by the presence of an opisthotonic phase, followed by
clonic convulsion of the forelimbs and concurrent tonic spasms of the
hindlimbs. Animals with a convulsion phase, categorized in our case
amster from Salamanca: The GASH:Sal, Epilepsy Behav (2016), http://

Image of Fig. 8
http://dx.doi.org/10.1016/j.yebeh.2016.03.002
http://dx.doi.org/10.1016/j.yebeh.2016.03.002


9L.J. Muñoz et al. / Epilepsy & Behavior xxx (2016) xxx–xxx
as tonic–clonic or tonic–clonic–tonic, presented latencies of approxi-
mately 10 s for this phase. This fact was taken as further evidence to
classify this line as medium–high in the severity index in comparison
with the GEPR and WAR models.

The tonic phase is considered the most severe manifestation of the
audiogenic seizure. Occasionally, it culminates with the death of the
animal, as seen in DBA/2J mice. However, this is not the case with all
experimental models. In this phase, a sustained hyperextension of the
torso, neck, and extremities is observed. Our animals presented tonic-
like symptoms as previously described, but in no case did mortality
occur. However, mortality after the tonic phase has been described in
the GPG:Vall line [38]. In addition, we observed a shortening of the ini-
tial tonic–clonic period associated with posterior tonic characteristics.
No significant differences were observed in the duration of the
convulsive phase, either animals with the exclusively tonic–clonic com-
ponent or those endingwith the tonic phase. In our case, the unreactive
postictal phase presented significant differences in its diachronic
evolution. First, animals stimulated at 30 days had a shorter average
duration of this phase. They also recovered faster than those animals
tested at 45 or 60 days, in which these durations were similar. At
6 months, the duration of the stupor phase increased. Neuroanatomical
analyses do not show a loss of auditory neurons with aging, leading us
to hypothesize a series of molecular changes without a large impact
on phenotype. No noteworthy variations were observed between gen-
erations. The values for latency and phase duration were quite homog-
enous. Perhaps the selection conducted in the two lines of reduced
genetic heterogeneity eliminated much of the response variability.

In our clinical description, we present evidence of a clear temporal
evolution in the susceptibility of these hamsters to display high severity
seizures. The most sensitive age studied is 2 months old. It appears that
at 6 months, the tendency is inverted again, but the data can also be
interpreted as a defect in the afferent pathway that could be causing a
loss of auditory capacity in the animals. Notably, the sample of this
age was smaller than in the three previous stimulations.

4.2. Auditory nuclei activated after the seizures

It is well known that a sudden and intense auditory stimulus can in-
duce the expression of c-fos in certain brain areas [57] and therefore can
be used as a marker to identify the brain structures involved in several
types of experimental seizure, in general, and of audiogenic seizures,
in particular [58–63]. In our strain, using Fos protein immunoreactivity,
we were able to confirm the involvement of various brainstem nuclei in
the onset and development of audiogenic seizures, including nuclei
such as the PAG and IC (external and dorsal cortices) and, to a lesser ex-
tent, the central nucleus. Densitometric analysis of the IC immunoreac-
tivity against Fos protein showed significant differences between the
GASH:Sal and control hamsters. Fos immunoreactivity in the IC after
the onset of an acute seizure has also been found in various rat [61,62,
64] andmice [65,66]models with audiogenic susceptibility. Many stud-
ies have demonstrated a critical role for the IC at the onset of the AGS in
various lines of susceptible animals [67–76].

The high Fos immunoreactivity in the ECIC is consistent with a key
role in triggering the AGS, since this IC subnucleus has outputs, in
addition to primary acoustic structures, to subcortical integrative senso-
rimotor nuclei [77–80]. Our data also showed significant overexpression
of the c-fos gene in the PAG in the GASH:Sal hamsters, which is consis-
tent with studies in other strains that have AGS (GEPR-9 rats [81],
C57BL/6J mice, and DBA/2J mice [66]). This structure is considered to
be involved in the onset of both the clonic phases of AGS [69,81,82]
and the tonic–clonic [67] phases.

The cuneiform nucleus and the pontine nucleus (Pn) are other
structures in the brainstem presenting increased Fos immunoreactivity,
although to a lesser degree than the IC. According to Klein [65], these
regionsmay receivedirect or indirect inputs from the ECIC andmaybe in-
volved in tonic seizure propagation [62,63]. In short, we can say that the
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immunoreactivity of the Fos protein observed after an acute audiogenic
seizure in the brainstem of the GASH:Sal hamster strain is very similar
to that obtained in other audiogenic strains, using a similar protocol.

4.3. ABR

Our results in GASH:Sal hamsters show that although sound signal
transmission occurs in the auditory pathway, these animals have signif-
icant hearing loss. This characteristic is common in many rodents
exhibiting audiogenic seizures [83,84]. These animals tend to show a re-
duction in their ABR response latencies, even to stimulations at 8 kHz,
which is the optimal frequency for hearing in rats and most rodents
[85]. Mice prone to audiogenic seizures have shown increased excitabil-
ity upon hearing, which is characterized by higher amplitude of the ABR
in the cochlear nucleus and inferior colliculus at intensities above the
hearing threshold [17].

In rats genetically prone to epilepsy (GEPR), the susceptibility to AGS
is associated with higher ABR thresholds and with increased latency of
waves [86].

Changes in the latencies between the peaks of ABR suggest the
presence of additional alterations in the auditory pathwayof susceptible
animals that make them susceptible to AGS, particularly in waves IV–V,
which may involve the IC [87]. In AGS-susceptible rats, the tonotopic IC
bands [88,89] suggest hyperexcitability of afferent and/or intrinsic IC as
well as a change in the functional organization of the central auditory
pathway.

A correlation between hearing loss and susceptibility to seizures
seems to be a constant in animals with audiogenic seizures. Thus,
chickens with audiogenic seizures (White Leghorn) exhibit altered
ABRs, with normal early peaks and late components with increased la-
tency and decreased amplitude [90]; Frings Mgr1 mutant mice (which
have a mutation in the geneMASS1) also show a mild-to-moderate de-
terioration in hearing [91], which appears during early postnatal devel-
opment and continues into old age. Similarly, cats with penicillin-
induced epilepsy show increases in all ABR components [92].

4.4. Genetic variability of GASH:Sal hamsters

Syrian hamsters are commonly used in biomedical research, includ-
ing the experimental induction of tumors, infectious diseases, and other
pathological research. Despite their popularity, few studies have report-
ed the identification of genetic characteristics of these animals [93–95].
Published studies show that the levels of genetic differentiation in wild
golden Syrian hamsters and laboratory strains are low, confirming that
all surviving members of the species M. auratus are derived from a
limited number of parents [93]. Recently, the analysis of microsatellite
loci, used to establish a linkage analysis and to trace patterns of inheri-
tance among populations of wild and laboratory golden hamsters, has
shown a reduction in the genetic variability of the population kept in
laboratories [96]. This reduction is a consequence of the rupture of
Hardy–Weinberg equilibrium in laboratory populations, as well as the
effect of inbreeding, because both lead to increased homozygosity in a
population.

Because of the lack of genetic data for the speciesM. auratus, we used
the AFLP technique to determine the genetic variation between the con-
trol golden hamsters and the GASH:Sal strain. This method has several
advantages over other genomic fingerprint techniques and allowed us
to perform multiple comparisons of DNA regions distributed across an
entire genome, without the need for any prior knowledge of the se-
quence [97]. The genetic diversity revealed in this study is highly rele-
vant to the recently reported AFLP characterization of inbred strains of
mammals [98–104].

More importantly, this study represents thefirst screening of genetic
variability at the genomic level in different lines of laboratory hamsters.
Therefore, it may constitute a starting point for further research involv-
ing the use of AFLPmarkers to relate the genetics of different laboratory
amster from Salamanca: The GASH:Sal, Epilepsy Behav (2016), http://
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strains of hamsters to their phenotypic differences because AFLPs are
based on mutations that cause phenotypic variation by modulating
gene expression and function.

In recent decades, increasing evidence has indicated that complex
genetic factors contribute to a predisposition to epilepsy. Given this
predisposition, likely determined bymultiple genes, genetically suscep-
tible animal models of epilepsy appear to resemble more closely the
generalized epilepsy in humans than do models in which seizures are
experimentally induced. The successful detection of strain-specific
polymorphisms may not only allow for an effective analysis of genetic
variation between populations of this species but also raises the pros-
pect of detecting the genomic markers of epilepsy. Additionally, consid-
ering the lack of genomic information regarding the GASH:Sal strain,
use of the AFLP technique may allow for the genetic characterization
of this strain, with significant genetic differences of approximately 17%
between this strain and the control population. Additional molecular
studies are needed to find the differential genetic substrate that makes
these animals susceptible to suffering epileptic seizures, which are
transmitted by autosomal recessive inheritance.

4.5. Relevance of the model

Although certain motor components of AGS (i.e., wild running) are
not commonly present in human generalized tonic–clonic seizures
(GTCS), we strongly believe this to be a reliable animal model of
epilepsy as substantiated by our own electroencephalographic
recordings [105] of a conspicuous progressive seizure profile similar to
those exhibited by other models of inherited AGS susceptibility and
those exhibited during human GTCS.

The epileptic syndrome displayed by GASH:Sal can be classified
within the sensory-elicited human reflex epilepsies as a type of
sound-induced epilepsy related to musicogenic epilepsies [106] or
telephone-induced seizures [107] appearing in the young adult.
Although perhaps GASH:Sal seizures would be closest to the so-called
“reflex myoclonic epilepsy of infancy”. This refers to syndromes occur-
ring in infants (aged 6–21 months) presenting generalized myoclonic
seizures as reflex responses to auditory and/or tactile stimuli [108].
These epilepsies can be considered less severe than the GASH:Sal syn-
drome since some patients show spontaneous remission. The GASH:
Sal epilepsy could also be related to Dravet's syndrome [109] or severe
myoclonic epilepsy of infancy (associatedwithmutations of the sodium
channel subunit coding genes SCN1A) [110]. It is also connected to
generalized (genetic) epilepsy with febrile seizure plus [111]. These
syndromes share their neonatal appearance and their genetic origin
with the GASH:Sal seizures.

Finally, in addition to being able to reliably reproduce the objective
symptoms and EEG features of the epilepsy syndrome, it is also able to
respond to different antiepileptic drugs (AEDs), such as phenobarbital,
valproic acid, and levetiracetam [112], so the GASH:Sal is a reliable
animal model of epilepsy.

5. Conclusions

The GASH:Sal hamster strain presents susceptibility to audiogenic
seizures with an autosomal recessive inheritance pattern.

Audiogenic seizures are characterized by a short latency period after
auditory stimulation, followed by wild running, a convulsive phase, and
finally stupor, with origin in the brainstem and with IC and PAG playing
additional key roles.

Additionally, GASH:Sal hamsters show a significant hearing deficit,
and from a phylogenetic perspective, the GASH:Sal strain shows
differences of approximately 17% compared to the wild-typeM. auratus.

They have a seizure profile similar to those exhibited by other
models of inherited AGS susceptibility and can be considered a reliable
genetic model of epilepsy.
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