

UNIVERSIDAD DE VALLADOLID ESCUELA DE INGENIERIAS INDUSTRIALES

Grado en Ingeniería Mecánica

Estudio Comparativo entre dos Proyectores de Perfil

Autor:

Sastre Sualdea, Héctor

Tutor:

López Ruíz, Roberto CMeIM/EGI/ICGF/IM/IPF

Valladolid, Febrero 2017.

A mis padres y a los que empezaros conmigo esta aventura y ya no están. Que con cariño me preguntaban qué tal.

Ahora soy yo el que con cariño les dedica este trabajo.

L.C

M.S

RESUMEN

Este trabajo realiza una comparación entre dos equipos de medición por visión al realizar mediciones sobre una plantilla de muestra.

Los equipos de medición a comparar son los dos proyectores de perfiles disponibles en el laboratorio de metrología de la EII, uno de eje horizontal y el otro vertical.

Para poder comparar metrológicamente una medida realizada con un equipo con la misma medida realizada con otro es necesario que éstas se expresen acompañadas de su incertidumbre expandida. Para ello será necesario realizar una evaluación de la incertidumbre de medida para cada medida; y por ello calibrar los equipos de medida. De forma que en la comparación se tenga en cuenta tanto el valor más probable como su incertidumbre de medida.

Adicionalmente a este estudio se realizará otra comparación, esta vez entre medidas diametrales obtenidas mediante el proyector de perfiles de eje horizontal, para determinar de qué manera afecta la forma de tomarlas.

PALABRAS CLAVE.

Metrología

Proyector de Perfiles

Calibración Proyector de Perfiles

Estudio Comparativo

Error de Forma

ÍNDICE DE CONTENIDOS

PARTE I	1
CAPÍTULO 1: OBJETIVOS	2
CAPÍTULO 2: INTRODUCCIÓN	3
Breve Historia de la Metrología	6
Infraestructura Metrológica	8
Infraestructura Metrológica en España	10
PARTE II	13
CAPÍTULO 3: FUNDAMENTOS DE METROLOGÍA	14
Concepto de Medida	14
Medida de una Magnitud	19
Aleatoriedad en las medidas	22
Correcciones	25
Incertidumbre de Medida	27
Trazabilidad y Calibración.	2 9
Evaluación de la Incertidumbre Típica	30
Clasificación de las Medidas	30
Función de Transferencia. Función Modelo	32
Concepto de Incertidumbre Típica	35
Evaluación Tipo A	37
Evaluación Tipo B	39
Propagación de la Incertidumbre	40
Coeficiente de Sensibilidad.	40
Ley de Propagación de Incertidumbres. LPI.	41
Incertidumbre Expandida	43
CAPÍTULO 4: EL PROYECTOR DE PREFILES	46
Introducción	46
Ventajas y Desventajas del Proyector de Perfiles	48
Principales Usos del Proyector de Perfiles	50
Clasificación	52
Elementos Constructivos	54
Proyectores de Perfiles del Laboratorio de Metrología de la EII	57
DADTE III	6.4

	CAPÍTULO 5: INTRODUCCIÓN EXPERIMENTAL	65
	CAÍTULO 6: LA PLANTILLA. CARACTERIZACIÓN METROLÓGICA	66
	CAPÍTULO 7: TOMA DE MEDIDAS SIGMA	68
	CAPÍTULO 8: TOMA DE MEDIDAS DELTEC	71
	CAPÍTULO 9: CALIBRACION DE LOS PROYECTORES	74
	Introducción	74
	Desarrollo Teórico Calibración	75
	Calibración SIGMA	82
	Calibración DELTEC	92
	CAPÍTULO 10: EVALUACIÓN DE LA INCERTIDUMBRE DE LAS MEDIDAS	102
	Introducción	102
	Desarrollo Teórico	103
	Evaluación de la incertidumbre MEDIDAS SIGMA	106
	Evaluación de la incertidumbre MEDIDAS DELTEC	110
	CAPÍTULO 11: MEDIDAS NOMINALES	114
	Introducción	114
	Toma de Medidas Nominales	115
	Desarrollo Teórico	117
	Evaluación de la incertidumbre MEDIDAS NOMINALES	121
	CAPÍTULO 12: COMPARACIÓN	125
	Introducción	125
	Comparación Medidas Eje X	126
	Comparación Medidas Eje Y	129
	Comparación Medidas Diametrales Ø	132
	CAPÍTULO 13: ESTUDIO DEL ERROR DE FORMA	134
	Introducción	134
	Ajuste por Mínimos Cuadrados	135
	Error de Forma	137
	Estudio del Error de Forma	141
	Conclusiones	145
P	ARTE IV	147
	CAPÍTULO 14: CONCLUSIONES FINALES	148
R	IRLIOGRΑΕΊΑ	15/

ÍNDICE DE IMÁGENES

Imagen 1 Infraestructura Metrológica en España [7]	11
Imagen 2 Magnitudes básicas y su dimensión [9]	15
Imagen 3 Unidades básicas y su símbolo [9]	15
Imagen 4 Prefijos del SI [2]	16
Imagen 5 Proceso de Medición [11]	20
Imagen 6 Fallos en la división de escala de un instrumento [5]	22
Imagen 7 Ejemplo de errores de forma [3]	23
Imagen 8 Medición, Corrección e Incertidumbre [3]	26
Imagen 9 Proyector Perfiles eje Vertical [16]	46
Imagen 10 Sistema óptico del proyector [16]	54
Imagen 11 Torreta de Objetivos	55
Imagen 12 Proyector de Perfiles SIGMA	58
Imagen 13 HEINDENHAIN QUADRA CHECK ND 1200	58
Imagen 14 Fuente de Luz y Sistema Óptico	58
Imagen 15 Mesa Soporte	59
Imagen 16 Pantalla de Visualización	59
Imagen 17 Proyector de Perfiles DELTEC	60
Imagen 18 Sistema Óptico	61
Imagen 19 Mesa Soporte y Fuente de Luz (diascópica)	61
Imagen 20 Consola Movimientos de la Mesa y Control Modo de Iluminación	62
Imagen 21 Pantallas de Visualización y Control del Software	62
Imagen 22 Plantilla. Características Geométricas	66
Imagen 23 Acotación y Numeración de la Plantilla	67
Imagen 24 Error de Forma I	138
Imagen 25 Error de Forma II	139

ÍNDICE DE TABLAS

Tabla 1 Valor de $tP(v)$ de la distribución t para v grados de libertad. [8]	45
Tabla 2 Especificaciones SIGMA	57
Tabla 3 Especificaciones DELTEC	60
Tabla 4 Toma de Medidas SIGMA	70
Tabla 5 Toma de Medidas DELTEC	73
Tabla 6 Datos Calibración SIGMA	82
Tabla 7 Composición BPL EJE X SIGMA	83
Tabla 8 Toma de Medidas EJE X SIGMA	84
Tabla 9 Corrección por Calibración EJE X SIGMA	85
Tabla 10 Cálculo de Incertidumbre Corrección por Calibración EJE X SIGMA	
Tabla 11 Composición BPL EJE Y SIGMA	87
Tabla 12 Toma de Medidas EJE Y SIGMA	88
Tabla 13 Corrección por Calibración EJE Y SIGMA	89
Tabla 14 Cálculo de Incertidumbre Corrección por Calibración EJE Y SIGMA	
Tabla 15 Resultados Calibración SIGMA	91
Tabla 16 Datos Calibración DELTEC	92
Tabla 17 Composición BPL EJE X DELTEC	93
Tabla 18 Toma de Medidas EJE X DELTEC	94
Tabla 19 Corrección por Calibración EJE X DELTEC	95
Tabla 20 Cálculo de Incertidumbre Corrección por Calibración EJE X DELEC	
Tabla 21 Composición BPL EJE Y DELTEC	
Tabla 22 Toma de Medidas EJE Y DELTEC	98
Tabla 23 Corrección por Calibración EJE Y DELTEC	99
Tabla 24 Cálculo de Incertidumbre Corrección por Calibración EJE Y DELTEC	100
Tabla 25 Resultados Calibración DELTEC	101
Tabla 26 Datos Técnicos SIGMA	106
Tabla 27 Estimación MEDIDAS SIGMA	107
Tabla 28 Cálculo de Incertidumbre MEDIDAS LINEALES SIGMA	108
Tabla 29 Cálculo de Incertidumbre MEDIDAS ANGULARES SIGMA	109
Tabla 30 Expresión Final MEDIDAS SIGMA	109
Tabla 31 Datos Técnicos DELTEC	110
Tabla 32 Estimación MEDIDAS DELTEC	111
Tabla 33 Cálculo de Incertidumbre MEDIDAS LINEALES DELTEC	112
Tabla 34 Cálculo de Incertidumbre MEDIDAS ANGULARES DELTEC	113
Tabla 35 Expresión Final MEDIDAS DELTEC	113
Tabla 36 Toma de Medidas NOMINAL	116
Tabla 37 Datos Técnicos Proyector LCD (MEDIDAS NOMINALES)	121
Tabla 38 Estimación MEDIDAS NOMINAL	
Tabla 39 Cálculo de Incertidumbre MEDIDAS NOMINALES	123
Tabla 40 Expresión Final MEDIDAS NOMINALES	124
Tabla 41 Tabla COMPARACIÓN COTA 1	126

Tabla 42 Tabla COMPARACIÓN COTA 2	127
Tabla 43 Tabla COMPARACIÓN COTA 3	128
Tabla 44 Tabla COMPARACIÓN COTA 6	129
Tabla 45 Tabla COMPARACIÓN COTA 8	130
Tabla 46 Tabla COMPARACIÓN COTA 9	131
Tabla 47 Tabla COMPARACIÓN COTA 10	132
Tabla 48 Tabla COMPARACIÓN COTA 19	133
Tabla 49 Datos 5 ptos-10 repeticiones	142
Tabla 50 Datos 10 ptos-10 repeticiones	143
Tabla 51 Datos 8 ptos-10 repeticiones	144

ÍNDICE DE GRÁFICOS

Gráfico 1 Gráfico COMPARACIÓN COTA 1	126
Gráfico 2 Gráfico COMPARACIÓN COTA 2	127
Gráfico 3 Gráfico COMPARACIÓN COTA 3	128
Gráfico 4 Gráfico COMPARACIÓN COTA 6	129
Gráfico 5 Gráfico COMPARACIÓN COTA 8	130
Gráfico 6 Gráfico COMPARACIÓN COTA 9	131
Gráfico 7 Gráfico COMPARACIÓN COTA 10	132
Gráfico 8 Gráfico COMPARACIÓN COTA 19	133
Gráfico 9 Gráfico Error de Forma 5 ptos-10 repeticiones	142
Gráfico 10 Gráfico Error de Forma 10 ptos-10 repeticiones	143
Gráfico 11 Gráfico Error de Forma 8ptos-10repeticiones	144

PARTE	Ī
PRESENTACIÓI	N

El objetivo básico que se pretende alcanzar en la elaboración del presente Trabajo de Fin de Grado, es discernir entre cuáles de los equipos de medición óptica disponibles en el Laboratorio de Metrología, resulta más adecuado para la medición de una plantilla de muestra, la cual tiene varias formas geométricas, que la hacen muy adecuada para el aprendizaje en el uso de los equipos de medición por visión.

Los mensurandos utilizados en la comparación de este trabajo serán algunas de las formas geométricas de la plantilla, no todas, aunque sí se expresarán todas de manera metrológica. No ha sido posible comparar todas las cotas de la plantilla ya que de algunas no se pudo obtener su valor nominal, más adelante en el desarrollo experimental se explicará esto.

Las mediciones se realizarán con un proyector de perfiles de eje horizontal marca Sigma, modelo HF500, ya descatalogado, pero de características muy similares al modelo HF600 de la marca estadounidense STARRETT, que la absorbió. Este proyector dispone de un sistema de visualización digital firmado por HEINDENHAIN.

El otro equipo enfrentado en la comparación será un proyector de perfiles de eje vertical firmado por la empresa francesa DELTEC VISION, ya desaparecida, pero continuada por AYONIS.

De los equipos utilizados se hablará más profundamente en capítulos dedicados en exclusiva a sistemas de medición óptica, donde se engloban ambos.

Para la expresión de los resultados y su posterior comparación, será necesaria una evaluación de la incertidumbre la medida, que se realizará siguiendo el documento "Guía para la expresión de la incertidumbre de medida"

Surgido durante la realización de lo anterior, apareció otro segundo objetivo no contemplado al inicio de la realización del presente trabajo, se observó la necesidad de hacer otro estudio comparativo en el que se viese como afecta el número de puntos seleccionados al realizar medidas de diámetros con el proyector de perfiles. Ya que si se toman más de tres puntos el sistema de visualización te realiza un ajuste por mínimos cuadrados que conlleva un error de forma, y se pretende estudiar este error de forma en función del número de puntos que se seleccionen.

CAPÍTULO 2: INTRODUCCIÓN

El hecho de medir permite conocer de forma cuantitativa, las propiedades físicas y químicas de los objetos y el conocimiento sobre su correcta realización es una necesidad fundamental en la práctica de todas las profesiones de tipo científico.

La deriva hacia un mundo cada vez más globalizado, marcado por una férrea competencia en lo comercial, así como en la presión social y gubernamental, ha hecho necesaria una mayor calidad en los productos. Para ello las empresas han tenido que implantar paulatinamente distintas herramientas de calidad que aseguren unos mejores productos.

Una de las principales herramientas para la calidad es el control metrológico.

Se define metrología como la ciencia que engloba todos los aspectos de las mediciones, tanto teóricos como prácticos, en todos los campos de la investigación y desarrollo.

La metrología comprende tres actividades principales: [1]

- Definir las unidades de medida internacionalmente aceptadas, p. ej. el metro.
- Realizar las unidades de medida por métodos científicos, p. ej. la realización del metro mediante láseres estabilizados.
- Establecer cadenas de trazabilidad metrológica entre las distintas mediciones, determinando y documentando el valor y la exactitud de las mediciones y diseminando ese conocimiento, p. ej. la relación existente entre un micrómetro utilizado en un taller de fabricación y el laboratorio que lo ha calibrado queda perfectamente documentada mediante una cadena ininterrumpida de calibraciones.

Como puede apreciarse la metrología se muestra esencial en la investigación científica, que a su vez posibilita la base de la propia metrología y ha de desarrollarse continuamente a fin de ser capaz de dar respuesta a las necesidades de la industria y la sociedad, manteniendo su papel relevante y su utilidad al servicio de la humanidad.

La metrología comúnmente suele considerarse dividida en tres categorías, cada una de las cuales con diferentes niveles de exactitud y complejidad:

La Metrología Científica e Industrial

Son dos de las tres categorías en las que comúnmente se divide la metrología, para garantizar la calidad de muchas actividades y procesos industriales se hacen necesarias las actividades metrológicas de calibración, medición y ensayo, así como establecer las cadenas de trazabilidad metrológica.

La metrología científica se encarga de la custodia mantenimiento y trazabilidad de los patrones, así como la investigación y desarrollo de nuevas técnicas de medición. También se ocupa de los aspectos teóricos y prácticos relacionados con las unidades de medida.

El BIPM¹ distingue nueve campos temáticos en los que se puede dividir la metrología científica:

- Masa
- Electricidad y Magnetismo
- Longitud
- Tiempo y Frecuencia
- Termometría
- Radiaciones ionizantes y Radioactividad
- Fotometría y Radiometría
- Acústica y Vibraciones
- Cantidad de sustancia

Mientras que la metrología industrial se centra en la las medidas aplicadas a la industria. Su principal objetivo es la calibración, control y mantenimiento adecuado de los equipos de medición utilizados en la producción, para garantizar que los productos cumplen las especificaciones técnicas.

Algunas fuentes [1] consideran la existencia de otra categoría: La Metrología Fundamental la cual no tiene una definición internacional, pero supone el nivel más alto de exactitud dentro de un campo dado. La metrología fundamental puede considerarse como el nivel superior de la metrología científica

¹ Bureau International des Poids et Mesures (BIPM) Oficina Internacional de Pesas y Medidas.

Metrología Legal

La tercera de las categorías de la metrología, encargada del conjunto de procedimientos establecidos por el estado con objeto de especificar y asegurar la calidad y credibilidad de las mediciones utilizadas. En cierta forma se encarga de la trasparencia de las medidas y asegurar un comercio limpio.

A trasvés de ella el estado realiza un control metrológico de los instrumentos de medida.

Su principal objetivo es garantizar que los resultados de medida son correctos, cuando se utilizan en:

- -Transacciones oficiales y comerciales.
- -Ámbitos del trabajo, seguridad y salud.

Breve Historia de la Metrología

La Metrología, entendida como la ciencia que se ocupa de las medidas, ha dado solución a las necesidades de la sociedad durante las distintas épocas de la humanidad, por tanto podemos decir que la metrología ha estado ligada a la humanidad desde los orígenes de esta.

Se ha desarrollado paralelamente al desarrollo del conocimiento humano y ha desempeñado, desempeña y desempeñará un papel primordial en múltiples campos de la sociedad, como son la investigación y desarrollo, la fabricación industrial, el comercio, las tecnologías de la salud, etc.

La relación entre la metrología y el progreso tecnológico esta tan ligada que no se entiende la una sin la otra, aunque a niveles de opinión publica la metrología pase completamente desapercibida o incluso desconocida, aquí intentaremos dar una pequeña reseña de como ambas han avanzado conjuntamente a lo largo de la historia. [2]

Si se vuelca la mirada hacia atrás en la historia de la humanidad vemos la necesidad que tuvieron las distintas sociedades en medir y crear unidades especiales de medida para las relaciones comerciales. Por ello, las primeras unidades de media que surgieron fueron las de tipo antropológico, las realizadas con el propio cuerpo humano, hablamos de la palma, la cuarta, el dedo, la pulgada, el pie, etc.; puesto que todo el mundo las podía realizar, era fácil llegar a un entendimiento en la actividad comercial.

Con el tiempo surgió la necesidad de unificar este tipo de medidas, ya que eran muy variables, mediante unidades de medida patrón materializadas, las cuales se conservaban cuidadosamente como elementos de referencia para esclarecer cualquier diferencia, y se fueron desarrollando más y más en la búsqueda de una medida estable y universalmente reproducible.

Un claro ejemplo de la importancia en el uso de estos patrones, en tiempos remotos, lo encontramos en el Antiguo Egipto, en el que si los arquitectos reales se olvidaban calibrar el patrón de longitud (su unidad era el codo real del faraón) se les podía condenar a pena de muerte.

El aumento en el uso de estos sistemas de unidades que nacieron con un elevado carácter localista, provoco gran confusión cuando estas sociedades mejoraron su nivel de comunicación y comenzó la necesidad de intercambiar mercancías, cada una medida con un sistema de unidades distinto.

En la cultura griega y romana, había multitud de aspectos de la vida cotidiana que eran necesarios de una regulación, como los relacionados con la agrimensura,

pesaje de mercancías, medición del tiempo, etc. Pero todo ello sin contribuir a un incremento del conocimiento en la ciencia de las medidas.

Ya en la alta edad [3] media, Carlo Magno (742-814) intentó unificar los pesos y medidas en Francia, pero sin éxito, aunque si tuvo gran éxito posterior, su creación de dos patrones la toesa y la pila de Carlomagno que se enlazan con las unidades de longitud y peso que posteriormente fueron introducidas en el Sistema Métrico Decimal, elaborado en 1789.

En 1840 tras la decisión, fundamentalmente promovida por Francia, de construir un sistema de pesas y medidas estable y confiable, lejos de los modelos antiguos, plagados de limitaciones antropológicas, se favorece la adopción del Sistema Métrico Decimal, en Europa y Sudamérica, con la excepción de Gran Bretaña y sus, por aquel entonces, colonias, especialmente Estados Unidos.

En España se establece el Sistema Métrico Decimal por la ley de pesas y medidas del 19 de julio de 1849, publicada en *La Gaceta de Madrid* el 22 de julio. Sin embargo igual que ocurrió en muchos otros países no se alcanzó una notable implantación popular del sistema métrico hasta el siglo XX.

En 1875 se celebra la Convención del Metro y en 1889 la primera Conferencia General de Pesas y Medidas (CGPM) que, periódicamente, realiza reuniones entre los estados miembros y asociados, con el fin de mantener y actualizar el Sistema Métrico Decimal. En la 11ª CGPM, ocurrida en 1960, se establece el Sistema Internacional de Unidades (SI)

Lo que favoreció el empleo de métodos y conceptos científicos que hicieron progresar la metrología, dando fundamentos a los patrones y mejorándolos progresivamente, consiguiéndose consecuentemente una mejora en la calidad de las medidas y lográndose la producción industrial moderna.

Mediante la ciencia, las medidas evolucionan y se adaptan para dar respuesta a las necesidades de la las diferentes civilizaciones a lo largo de la historia, hasta dar lugar al mundo que conocemos hoy.

Esta estrecha relación continuará reforzándose, en el futuro. Actualmente existen diferentes líneas de investigación que pueden desencadenar cambios directos en las propias definiciones de las unidades, ligándolas a la medida de constantes fundamentales. Estamos viendo uno de los momentos más apasionantes de la historia de la metrología en el que nuevos caminos inexplorados traerán consigo nuevos avances en la industria y la tecnología. [4]

Ahora bien, los sistemas y las unidades deben ser definidos antes de hablar de mediciones. La necesidad de armonizar y establecer sistemas equivalentes se hizo obvia a nivel mundial. Esta armonización se inició en París con la Convención del Metro en 1875, pero continúa realizándose actualmente.

Infraestructura Metrológica

En 1875 se celebró en París "La Convención del Metro" en la que se decidió crear una comisión científica de carácter permanente, el "Bureau International de Poids et Mesures" (BIPM).

Los representantes de los Gobiernos de los estados miembros se reúnen cada cuatro años, cuando se celebra la "Conferencia General de Pesos y Medidas" (CGPM).

La CGPM examina el trabajo realizado por el BIPM y por los Institutos Nacionales de Metrológica (INM) y emite recomendaciones sobre nuevas determinaciones metrológicas fundamentales y sobre cuestiones propias del BIPM.

A su vez, la CGPM elige a dieciocho representantes para el "Comité International des Poids et Mesures" (CIPM) que se reúne anualmente y que se encarga de supervisar el BIPM y cooperar con otras organizaciones internacionales. Está constituido de diez comités consultivos en los que el presidente de cada uno de ellos suele ser un miembro del CIPM y los demás son representantes de los INM y otros expertos

Institutos Nacionales de Metrología. INM. [1]

Representan internacionalmente al país ante los institutos metrológicos nacionales de otros países, las Organizaciones Metrológicas Regionales (OMR) y el BIPM.

Son designados oficialmente por el gobierno de cada país para desarrollar y mantener los patrones nacionales de medida, de una o más magnitudes.

Las tareas que realizan los INM no son iguales, algunos pueden llevar a cabo las realizaciones primarias de las unidades de medida básicas y derivadas, mientras que otros pueden realizar algunas unidades a través de patrones secundarios con trazabilidad a otros INM.

Por norma general se encargan de las siguientes funciones:

- La diseminación de las unidades del SI a los laboratorios acreditados, la industria, etc.
- La investigación y desarrollo de nuevos y mejores patrones de medida y métodos de medición.
- Participar en las comparaciones al más alto nivel internacional

- Mantener una visión general de la jerarquía nacional sobre trazabilidad/calibración.

A su vez el INM podrá nombrar a otros institutos del país para que mantengan patrones nacionales específicos, estos se denominan "Institutos Designados"

Organizaciones Metrológicas Regionales. OMR [1]

Los distintos INM se engloban y vez, y se dirigen por las Organizaciones Metrológicas Regionales (OMR).

Sus labores pueden discrepar en función de la región, pero por lo general incluyen:

- Coordinar las comparaciones de patrones nacionales de medida.

- Cooperar en la investigación y desarrollo de la metrología.

- Facilitar la trazabilidad a las realizaciones primarias del SI.

- Cooperar en el desarrollo de infraestructura metrológica de los países de

la región.

Formación y asesoría conjunta.

- Compartir capacidades e instalaciones técnicas.

Las OMR existentes actualmente son:

• EURAMET: Europa Occidental

COOMET: Europa Central y Asia Menor

SADCMET: Sur de África

APMP: Asia y Oceanía

• SIM: América

9

Infraestructura Metrológica en España

En España, las realizaciones prácticas de las unidades de medida (patrones nacionales) y su diseminación al resto de usuarios de la metrología se realiza por el Centro Español de Metrología (CEM) y sus laboratorios asociados, por tanto es el escalafón de la pirámide metrológica en España.

Es el INM español y representa a la metrología española frente al resto de institutos nacionales de otros países, las OMR y el BIMP.

El Centro Español de Metrología fue creado en 1985, se transforma por ley en organismo autónomo de carácter comercial e industrial, estas son algunas de sus principales funciones: [5]

- Custodia y conservación de los patrones nacionales de medida
- Establecimiento y desarrollo de las cadenas oficiales de calibración
- Ejercicio de las funciones de administración del control metrológico
- Habilitar oficialmente laboratorios asociados
- Ejecución de proyectos de investigación y desarrollo en materias de metrología
- Formación de especialistas en metrología

La diseminación de las unidades de medida se realiza mediante el concurso de laboratorios de calibración, estos han de ser acreditados por la Entidad Nacional de Acreditación (ENAC). Este conjunto de Laboratorios, junto con la propia ENAC es el principal pilar sobre el que se sustenta la infraestructura metrológica en España. [6]

Esta infraestructura se encarga de dar validez a todas las medidas realizadas en España así como la compatibilidad de estas con las realizadas fuera.

En el siguiente esquema se pretende aclarar este sistema metrológico español.

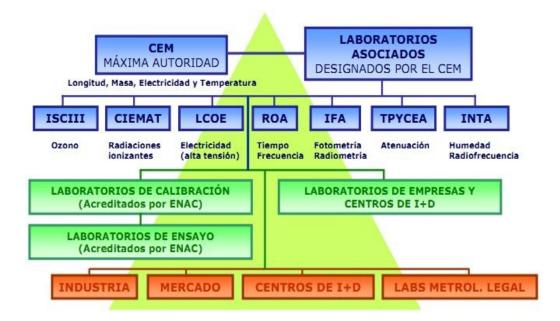


Imagen 1 .- Infraestructura Metrológica en España [7]

Todos los integrantes de esta infraestructura trabajan coordinadamente para que el máximo ente de la pirámide pueda desarrollar adecuadamente sus funciones.

Para que esto ocurra se planteará necesario, en alguno de los niveles de la estructura, realizar una comparación entre medidas tomadas con distintos instrumentos, como se ha realizado en el presente trabajo.

Por tanto la comparación entre instrumentos de medida para discernir que equipos son más idóneos a la hora de realizar unas mediciones u otra se muestran de vital importancia en el trabajo diario de cualquier entidad involucrada en la anterior infraestructura.

Por tanto se considera sumamente importante para los laboratorios acreditados conocer que equipo de los disponibles es más adecuado para una determinada medición, bien sea porque tiene menores desviaciones, menores incertidumbres o porque repite mejor, etc.

A continuación haremos una breve introducción a los aspectos fundamentales de la metrología sobre los cuales se sustenta toda esta infraestructura.

PARTE II DESARROLLO TEÓRICO

CAPÍTULO 3: FUNDAMENTOS DE METROLOGÍA

El objetivo de una medición es determinar el valor del mensurando, esto es el valor de la magnitud particular bajo medición. Por tanto la medición comienza con una definición adecuada del mensurando, del método de medida y del procedimiento de medida. [8]

Concepto de Medida

Los entes poseen propiedades que pueden medirse y expresar su resultado mediante un número y una unidad, estas propiedades reciben el nombre de MAGNITUDES. Generalmente se expresa el valor de una magnitud como el producto de un número por una UNIDAD

Esta unidad es una cantidad que se adopta comúnmente como referencia de dicha magnitud, es decir, no es más que el valor particular de la magnitud considerada, tomada como referencia. El número es la cantidad de veces que la magnitud considerada contiene a la magnitud de referencia, o dicho de otra forma es la división entre el valor de la magnitud considerada y la unidad. Una magnitud determinada se puede expresar en varias unidades diferentes.

Para cada magnitud definimos una unidad y mediante el proceso de medida se le asigna unos valores a esas unidades. La medida es ese número acompañado de esa unidad.

Para poder establecer un sistema de unidades, como puede ser el Sistema Internacional de Unidades, el SI, es necesario desarrollar un sistema de magnitudes en el que mediante una serie de ecuaciones se establezcan relaciones entre magnitudes. Por tanto se hace necesario la elección de un pequeño grupo de unidades a las que denominaremos UNIDADES BASICAS y definir las unidades de todas las demás magnitudes, la UNIDADES DERIVADAS, como relaciones matemáticas de las unidades básicas. De manera análoga se habla de MAGNITUDES BÁSICAS y MAGNITUDES DERIVADAS aunque esta división no es fundamental para el conocimiento científico y es convencional, si lo es para las unidades, siendo fundamental que las unidades básicas se definan con especial cuidado, para tener un Sistema de Unidades bien sustentado.

El número de magnitudes derivadas de interés para la ciencia y la tecnología puede extenderse sin límites y es lo que hará a media que se desarrollen nuevos campos de la investigación humana.

El Sistema Internacional de Unidades, SI, fue establecido y definido por la Conferencia General de Pesas y Medidas, la CGPM, en su 11ª edición, en el año 1960.

Las magnitudes básicas empleadas en el SI son longitud, masa, tiempo, intensidad de corriente eléctrica, temperatura termodinámica, cantidad de sustancia e intensidad luminosa. Las magnitudes básicas se consideran independientes, por convención. Las unidades básicas correspondientes del SI, elegidas por la CGPM, son el metro, el kilogramo, el segundo, el amperio, el kelvin, el mol y la candela. Relaciones matemáticas basadas en productos de potencias, que describen las relaciones algebraicas que definen las magnitudes derivadas, de estas unidades básicas nos crean las unidades derivadas. [9]

Las magnitudes físicas se agrupan en un conjunto de dimensiones, por convenio cada una de las siete magnitudes básicas tiene su propia dimensión, a modo de ejemplo:

Magnitud básica	Símbolo de la magnitud	Símbolo de la dimensión
longitud	<i>l, x, r</i> , etc.	L
masa	m	M
tiempo, duración	t	Т
intensidad de corriente eléctrica	I, i	1
temperatura termodinámica	T	Θ
cantidad de sustancia	n	N
intensidad luminosa	$I_{ m v}$	J

Imagen 2 .- Magnitudes básicas y su dimensión [9]

A su vez, las unidades básicas del SI son:

Magnitudes básicas		Unidades SI básicas		
Nombre	Símbolo	Nombre	Símbolo	
longitud	<i>l, x, r</i> , etc.	metro	m	
masa	n, x, r, ctc.	kilogramo	kg	
tiempo, duración	t t	segundo	s s	
corriente eléctrica	I, i	amperio	A	
temperatura termodinámica	T	kelvin	K	
cantidad de sustancia	n	mol	mol	
intensidad luminosa	$I_{ m v}$	candela	cd	

Imagen 3 .- Unidades básicas y su símbolo [9]

A su vez, la CGPM ha adoptado una serie de prefijos que se usan para los múltiplos y submúltiplos decimales de las unidades del SI, muy utilizados cuando los valores de las magnitudes son mucho más grandes o mucho más pequeños que la unidad.

Factor	Nombre	Símbolo	Factor	Nombre	Símbolo
10 ¹	deca	da	10-1	deci	d
10^{2}	hecto	h	10-2	centi	c
10^{3}	kilo	k	10 ⁻³	mili	m
10 ⁶	mega	M	10 ⁻⁶	micro	μ
10 ⁹	giga	G	10-9	nano	n
10^{12}	tera	T	10 ⁻¹²	pico	p
10^{15}	peta	P	10 ⁻¹⁵	femto	f
10^{18}	exa	E	10 ⁻¹⁸	atto	a
10^{21}	zetta	Z	10 ⁻²¹ 10 ⁻²⁴	zepto	Z
10^{24}	yotta	Y	10 ⁻²⁴	yocto	у

Imagen 4 .- Prefijos del SI [2]

Como se ha comentado anteriormente, cualquier sistema de unidades, aquí el Sistema Internacional se fundamenta en la definición de las unidades básicas, vamos a ver a continuación y de manera general, sus definiciones. [9]

Las definiciones oficiales de estas unidades son realizadas por la CGPM, y varían según avanza la ciencia.

Unidad de Longitud (metro)

La primera definición del metro se realizó en 1989, y estaba basada en el prototipo internacional de platino irradiado, el cual todavía se conserva en las oficinas del BIMP, pero en la 11ª CGPM, celebrada en 1960, fue sustituido por una definición basada en la longitud de onda de una radiación de Kripton 86, ya que se mejora la exactitud de la definición, al realizarse esta mediante técnicas interferométricas.

Pero en la 17^a CGPM, celebrada en 1983, se estableció la actual definición:

El metro es la longitud de la trayecto recorrido en el vacío por la luz durante un tiempo de 1/299 792 458 de segundo.

Definiéndose la velocidad de la luz en el vacío como 299 792 458 metros por segundo.

Unidad de Masa (kilogramo)

En la 1ª CGPM de 1889 se aprobó el prototipo internacional del kilogramo como un patrón fabricado en platino irradiado, que se conserva en el BIMP. Su actual definición es la siguiente:

El kilogramo es la unidad de masa; es igual a la masa del prototipo internacional del kilogramo.

Pero debido a que puede estar sometido a la inevitable contaminación superficial, pequeñas partículas que se pueden adherir a su superficie, su masa de referencia es la que posee inmediatamente después de una limpieza y lavado mediante un método específico.

Unidad de Tiempo (segundo)

Las primeras realizaciones eran proporcionadas por los astrónomos, basadas en el año trópico 1900. Pero investigaciones experimentales demostraron que una transición entre dos niveles de energía de un átomo o de una molécula, podría realizarse y reproducirse con una exactitud muy superior; y sobre ella se fundamenta la actual definición:

El segundo es la duración de 9 192 631 770 periodos de la radiación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del átomo de cesio 133.

Estando el átomo de cesio en un estado sin perturbar por radiaciones de cuerpo negro, es decir a 0 K

Unidad de Intensidad de Corriente Eléctrica (amperio)

Antes de celebrarse la primera CGPM ya había habido algún intento por "internacionalizar" las unidades eléctricas de corriente y resistencia, pero no fue hasta la 9ª CGPM, celebrada en 1948, se adoptó el amperio como unidad de intensidad de corriente eléctrica y se optó por esta definición:

El amperio es la intensidad de una corriente constante que, manteniéndose en dos conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y situados a una distancia de 1 metro uno del otro, en el vacío, produciría entre estos conductores una fuerza igual a 2 × 10-7 newton por metro de longitud.

Unidad de Temperatura Termodinámica (kelvin)

En 1954, durante la 10° CGPM, se estableció su actual definición basándose esta en el punto triple del agua, asignándole el valor de 273.16 K por definición. En la 13° CGPM la unidad adquirió su símbolo definitivo, K, eliminándose el °K y se definió definitivamente como:

El kelvin, unidad de temperatura termodinámica, es la fracción 1/273,16 de la temperatura termodinámica del punto triple del agua.

Unidad de Cantidad de Sustancia (mol)

Siguiendo las propuestas dadas por la IUPAC y la ISO, en 1969 el CIPM dio una definición del mol que finalmente fue adoptada en la 14ª CGPM, celebrada el año 1971.

- 1. El mol es la cantidad de sustancia de un sistema que contiene tantas entidades elementales como átomos hay en 0,012 kilogramos de carbono 12; su símbolo es "mol".
- 2. Cuando se emplee el mol, deben especificarse las entidades elementales, que pueden ser átomos, moléculas, iones, electrones u otras partículas o grupos especificados de tales partículas.

Unidad de Intensidad Luminosa (candela)

Hasta 1948, que se celebró la 9ª CGPM, las unidades de intensidad luminosa estaban basadas en patrones de llama o de filamento incandescente, pero ese mismo año fueron sustituidos por patrones basados en la luminancia del emisor de radiación de Plank a la temperatura de congelación del platino, se la denominó candela y su símbolo es cd.

Pero en 1979, debido a las dificultades experimentales para realizar un emisor de radiación de Plank a altas temperaturas y las nuevas posibilidades ofrecidas por la radiometría se adoptó una nueva definición para la candela:

La candela es la intensidad luminosa, en una dirección dada, de una fuente que emite una radiación monocromática de frecuencia 540 × 1012 hercio y cuya intensidad energética en dicha dirección de 1/683 vatio por estereorradián.

Atendiendo a la última edición del VIM [10] medir es el proceso que consiste en obtener experimental uno o varios valores que pueden ser atribuidos razonablemente a una magnitud, las mediciones son de aplicación a magnitudes cuantitativas.

Medir supone una comparación de magnitudes con el uso de un resultado de medida, un procedimiento de media y un sistema de medida calibrado conforme a un procedimiento de medida especificado, incluyendo las condiciones de medida.

Entre los elementos principales que intervienen en la medición de cualquier magnitud física se pueden encontrar los siguientes:

Mensurando

O magnitud particular sujeta a medición. [10]

Instrumento de Medida

Dispositivo utilizado para realizar mediciones, sólo o asociado a uno o varios dispositivos suplementarios [10] Puede ser un instrumento indicador, el propio instrumento nos muestra el valor de la magnitud medida, o una medida materializada, el instrumento reproduce de forma constante durante su utilización un valor asignado de la magnitud.

El conjunto de varios instrumentos de medida así como de otros dispositivos, ensamblados y preparados para obtener valores medidos, de magnitudes de distintas naturalezas, se denomina sistema de medida

Procedimiento de medida. Método de Medida

Descripción detallada de una medición, en lo referente a principios de medida, que es el fenómeno que sirve de base a la comparación, este fenómeno puede ser de naturaleza física, química o biológica; al método de medida, que es la secuencia lógica de operaciones utilizadas en la medición, hay varias clasificaciones de los métodos de medida como métodos de sustitución, diferenciales, de cero... o métodos directos o indirectos; basado en un modelo de medida y que incluye los cálculos necesarios para obtener el resultado de medida.

Generalmente se documenta con suficiente detalle y se le suministra al operador para que pueda realizar la medición.

Operador

Persona encargada de realizar la media, que la realizará siguiendo el procedimiento de medida, anteriormente definido.

Resultado de la Medición

Conjunto de valores de una magnitud atribuidos a un mensurando, incluyendo cualquier otra información relevante. Se acostumbra a expresarse como un valor medido único, que es el valor más probable que razonablemente puede ser atribuido al mensurando, y una incertidumbre de medida, de esta incertidumbre de medida hablare más detalladamente en capítulos siguientes.

A modo de resumen tenemos:

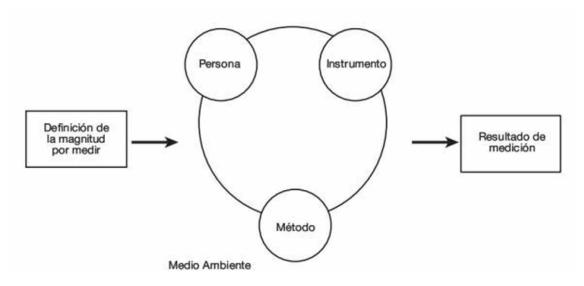


Imagen 5 .- Proceso de Medición [11]

Además de estas, existe otra muy importante, que interviene en gran medida en la calidad de la medición que es:

Magnitudes de Influencia

En el esquema anterior del proceso de medición aparece como medio ambiente. Se las denomina así a todas aquellas magnitudes que no forman parte del objeto directo de la medición pero que inevitablemente están presentes durante la medición [10]. Estas magnitudes hacen que las mediciones resulten más o menos imperfectas, por lo que hay que analizarlas y ver la influencia de las mismas sobre el resultado de medida, pudiendo en ocasiones obviarlas o en otras corregirlas para mitigar sus efectos en el resultado de medida. [3]

Volveremos a hablar de estas magnitudes de influencia y de cómo mitigar su efecto a través de correcciones.

Además, para que el resultado de medición sea representativo, se hace necesario establecer las condiciones de referencia en las que se realizó la medición además de especificar los valores de las magnitudes de influencia, más adelante se hablara de esto.

Lo que nos obliga a tener bien definidas las magnitudes de influencia, así como aplicar correcciones si fuese necesario; utilizar instrumentos adecuados y perfectamente calibrados que garantice trazabilidad al patrón nacional; tener perfectamente el mensurando; y la utilización de un procedimiento de medida concreto, que facilite la labor al operador.

El resultado de cualquier medición posee cierta naturaleza aleatoria, sus causas se pueden agrupar en: [3]

- a) Imperfecciones del propio instrumento de medida
- b) Definición inexacta del mesurando
- c) Uso incorrecto del instrumento
- d) Otras causas. Magnitudes de influencia

a) Imperfecciones del propio instrumento de medida.

Aquí se encuentran las debidas a una mala graduación de la escala del instrumento, en los instrumentos analógicos puede deberse al desplazamiento del cero o a la resolución del dispositivo visualizador.

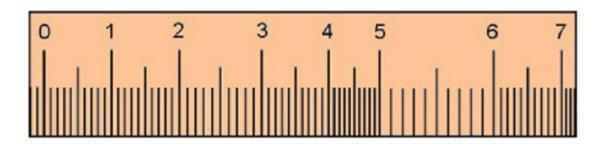


Imagen 6 .- Fallos en la división de escala de un instrumento [5]

b) Definición inexacta del mesurando.

Siempre que la propia imperfección del mesurando pueda ser apreciada por el instrumento habrá que tenerla en cuenta, aquí nos referimos a errores de forma, como en la imagen que habrá que discernir cual será el mensurando de todos los posibles.

Se trata de un cilindro con diferentes diámetros en diferentes alturas.

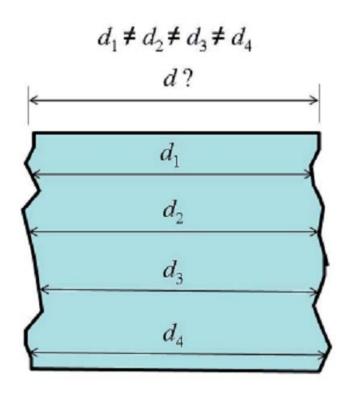


Imagen 7 .- Ejemplo de errores de forma [3]

c) Uso incorrecto del instrumento

Debida a un mal uso del mismo por parte del operador, debida a su vez a falta de experiencia del operario, un mal procedimiento de medida, etc...

d) Otras causas. Magnitudes de Influencia.

Las causas más importantes que causan la aleatoriedad en las medidas y que no pueden incluirse en cualquier otro grupo son las magnitudes de influencia, anteriormente mencionadas. Como se ha dicho son magnitudes que no son objeto de la medición pero que inevitablemente están presentes y alteran el resultado de medición.

Un claro ejemplo de ellas es la temperatura, la mayoría de cuerpos varían sus dimensiones al variar su temperatura, por tanto, al medir hay que tener en cuenta la temperatura de medición (que engloba tanto la temperatura del mesurando, como la del instrumento de medida, así como la del ambiente)

Pero lo más importante son las variaciones diferenciales entre el mesurando y la escala de medida del instrumento

Cuando los valores de las magnitudes de influencia en un proceso de medida se sitúan en un cierto intervalo alrededor del valor de referencia, se dice que las magnitudes de influencia se encuentran bajo control.

Esta es la base del acondicionamiento de las salas de medida en el entorno de los 20±0.5 °C.

No obstante, aun estando bajo control, los valores de las magnitudes de influencia no son constantes ni uniformes por lo que puede producirse dispersión en las medidas.

La variabilidad de las medidas debida a las pequeñas fluctuaciones en los valores de las magnitudes de influencia, aun bajo control, será más perceptible cuanto menor sea la resolución del instrumento de medida. Se produce dispersión en las medidas siempre que E (resolución, escala del instrumento) sea suficientemente pequeña, es decir, la resolución del instrumento puede llegar a enmascarar la variabilidad, dispersión de las medidas debida a las variaciones en los valores de influencia.

Otras causas de la variabilidad en las medidas suponiendo que las magnitudes de influencia fuesen idealmente constantes (estuvieran bajo control) son:

- Instrumento de medida
- Mensurando
- Operador

Debido a lo anteriormente dicho, a su naturaleza aleatoria, el valor resultante de la medición no puede asignarse mediante un único valor. La mejor manera de caracterizar un mensurando es facilitar un parámetro de centrado y otro de dispersión.

$$y \pm U$$

Donde y es el valor medio y U es la incertidumbre de medida. El valor que mejor representa al mensurando pertenecerá al intervalo, lo que quiere decir que existe una elevada probabilidad, en la mayoría de las ocasiones se hablará de certeza de que el valor se encuentre entre y+U e y-U

Como se ha comentado, las pequeñas fluctuaciones de los valores de las magnitudes de influencia, hablando siempre bajo condiciones de repetibilidad (mismo procedimiento de medida, mismo operador, mismo instrumento de medida, mismas condiciones de operación, mismo lugar, mismo objeto y mismo lugar, durante un periodo corto de tiempo) [10], son una de las causas de la dispersión de los resultados de medida, siempre que la escala del instrumento de medida lo aprecie.

Pero debido a que no siempre se realizan las medidas con los mismos valores en las magnitudes de influencia, se muestra necesario establecer unos valores de referencia en las magnitudes de influencia que resultan significativas, para poder comparar las mediciones de un mismo mensurando.

En ingeniería mecánica se estableció como temperatura de referencia 20°C, es a esta temperatura a la que deben realizarse las mediciones dimensionales. Pero debido a la imposibilidad de mantener estos 20°C de manera constante, en el espacio y en el tiempo, aparece una variabilidad en la temperatura que traslada al mensurando contribuye a su dispersión.

Hay más magnitudes de influencia a parte de la temperatura, y será necesaria especificar sus condiciones de referencia según su influencia final en el resultado de medida, se explica la temperatura por ser la más representativa y la que está más presente en la metrología dimensional.

Sin embargo no siempre se realizan las mediciones en las condiciones de referencia, por ello se recurre a las correcciones.

La introducción de correcciones incrementa la complejidad de las medidas pues el modelo de corrección no siempre es sencillo ni bien conocido. Por lo que se recomienda no realizar correcciones cuando los modelos de comportamiento del sistema mensurando-instrumento con las magnitudes de influencia son complejos o dudosos [3]

El hecho de aplicar correcciones implica además la medición de nuevas magnitudes que a su vez tendrán sus propias correcciones, por ende la medición se vuelve más compleja. Por ello se vuelve necesario discernir cuales son las magnitudes de influencia significativas y actuar sobre ellas.

Decir además, que por muy exacta que sea la corrección, el valor del mensurando corregido será sensiblemente parecido al que se obtendría en las condiciones de referencia, no iguales, ya que estas correcciones se basan en medidas que son también son inciertas y en un modelo con mayor o menor fiabilidad. Por consiguiente siempre quedará una corrección residual que agrupa la imperfección

de las correcciones aplicadas junto con las no realizadas y que contribuirá a la incertidumbre de la medida.

Existen otros tipos de corrección a aplicar a la medida, distinta, en su naturaleza, a las debidas a las magnitudes de influencia; son las correcciones encargadas de asegurar la trazabilidad metrológica, de estos temas se hablara más adelante.

En el siguiente esquema se pretende afianzar estos conceptos.

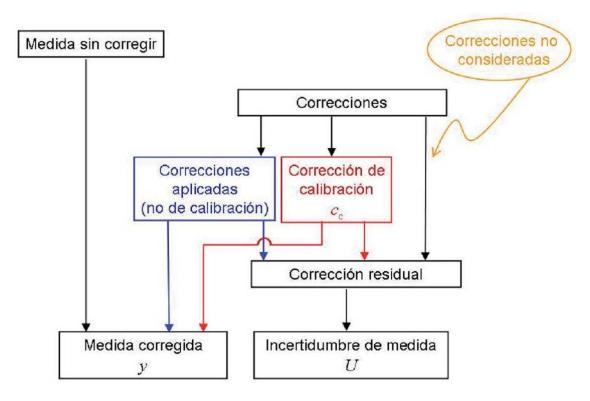


Imagen 8 .- Medición, Corrección e Incertidumbre [3]

En este esquema se han simplificado las contribuciones a la incertidumbre de medida, habría más, habría que ampliar el modelo para tener en cuenta otros efectos, entre ellos la dispersión de las indicaciones al repetir las mediciones, la contribución de la resolución del instrumento, etc. A continuación se muestran las que nombra la GUM:

Como se lleva comentando a lo largo de todo el capítulo, la aleatoriedad en las medidas implica que el resultado de medida sea definido mediante un parámetro de centrado y otro de dispersión.

$$y \pm U$$

Ya se han mencionado algunas de las posibles causas de esta dispersión de los valores que razonablemente pueden ser atribuidos al mensurando, pero aquí se pretende dar un enfoque más exhaustivo y sistematizado, basándonos en todo momento en la Guía para la Expresión de la Incertidumbre de Medida. GUM. [8], actualmente uno de los documentos con mayor aceptación mundial sobre el tema.

Una medida sin una indicación cuantitativa de la calidad del resultado de medida es inservible, para ello utilizamos la Incertidumbre, incertidumbre significa duda, duda sobre la validez del resultado, lo que ya nos está dejando entrever que no vamos a ser capaces de conocer el resultado exacto de una medición.

La definición de incertidumbre que nos ofrece la GUM, es "parámetro asociado al resultado de una medida, que caracteriza la dispersión de los valores que razonablemente pueden ser atribuidos al mensurando"

Algunas de las fuentes de incertidumbre típicas que nos encontramos:

- a) definición incompleta del mensurando;
- b) realización imperfecta de la definición del mensurando;
- c) muestra no representativa del mensurando;
- **d)** conocimiento inadecuado de los efectos de las condiciones ambientales sobre la medición, o medición imperfecta de dichas condiciones ambientales;
- e) lectura sesgada de instrumentos analógicos, por parte del operador;
- f) resolución del instrumento de medida;
- g) valores inexactos de los patrones de medida o de los materiales de referencia;
- h) valores inexactos de constantes y otros parámetros obtenidos de fuentes externas, utilizados en el algoritmo de tratamiento de datos;
- i) aproximaciones y suposiciones establecidas en el método y procedimiento de medición;
- j) variaciones en la repetición de las observaciones del mensurando bajo condiciones aparentemente idénticas.

Estas fuentes no son independientes y pueden contribuir a su vez entre ellas.

La evaluación de la incertidumbre asociada a una medición es fundamental para, posteriormente, poder comprobar la conformidad de un producto.

Una cadena de trazabilidad es una cadena ininterrumpida de comparaciones, todas ellas con incertidumbres determinadas, que garantiza que el resultado de media o el valor de un patrón está ligado a referencias en niveles superiores hasta alcanzar el patrón primario. [10]

El usuario final puede obtener la trazabilidad al patrón primario a través del Instituto de Metrología Nacional o a través de Laboratorios asociados.

La calibración por su parte son el conjunto de operaciones que se realizan según un procedimiento y en unas condiciones determinas que determinan la relación existente entre los valores de una magnitud indicados por un determinado instrumento o medida materializada, y los correspondientes valores de la magnitud realizados por patrones. Con el fin de conocer las diferencias existentes entre el instrumento o patrón a calibrar (denominado calibrando) y el elemento de referencia.

El resultado de la calibración queda plasmado en un documento, denominado certificado de calibración en el que se especifica, según sea el calibrando:

- Un patrón: el valor de este y su incertidumbre
- Un instrumento: la corrección y su incertidumbre en los puntos de calibración.

Es muy frecuente adjuntar el certificado de calibración, a los instrumentos de medida o patrones, o al menos plasmarlos en una pegatina.

Evaluación de la Incertidumbre Típica

En primer lugar conviene aquí matizar una distinción, que se comentó anteriormente, entre los distintos tipos de medidas, pues en función de uno u otro como veremos existirá una determinada función de transferencia y por tanto la evaluación de la incertidumbre cambiará.

Clasificación de las Medidas.

En función de cómo se obtiene el resultado de la medición se distinguen dos tipos de medidas.

Medidas Directas.

Se dice que la medida o medición es directa cuando disponemos de un instrumento de medida que la obtiene comparando la variable a medir con una de la misma naturaleza física. Se compara directamente la longitud del objeto con la longitud del patrón marcado en el instrumento.

Medidas Indirectas.

En multitud de ocasiones no es posible realizar una medida directa, ya que existen variables que no se pueden medir por comparación directa debida a la propia naturaleza de la variable, ya que no existen patrones para ella o por el simple hecho de ser muy grande o muy pequeña, etc. [12]

Por tanto se recurre a una relación funcional entre las distintas variables que intervienen y que se pueden medir (medidas directas)

Esta relación funcional es fundamental, en la obtención del resultado de medida, es fundamental que describa perfectamente todas las variables que intervienen en la obtención final del mensurando.

Pretender evaluar el proceso de medición de manera exacta y completa es una tarea prácticamente imposible. Por lo tanto se hace necesaria la simplificación del fenómeno físico o de la situación real atendiendo a las características más relevantes e influyentes en el resultado de medida. Para ello se hace necesaria la creación de un modelo para la medición. Este sería el Modelo Físico.

La transducción de este modelo al mundo matemático se realiza por la función de transferencia o función modelo. El modelo matemático supone las aproximaciones originadas por la representación imperfecta o limitada de las variables involucradas. [13]

Si consideramos la medición como un proceso se observan distintas magnitudes de entrada, que se denotaran por:

$$X_i$$

Con i tomando valores desde 1 hasta N, siendo N el número de magnitudes de entrada.

Los valores de las magnitudes de entrada pueden ser resultados de mediciones recientes, o tomadas de fuentes como certificados, manuales, etc.

Si el mesurando se denomina con Y, la relación entre las magnitudes de entrada y el mensurando viene dada por la función:

$$Y=f(X_1,X_2,\dots,X_N)$$

Pudiendo aplicarse este formalismo para mensurandos escalares, vectoriales y matriciales, (hablándose, en estos dos últimos casos, de matrices de transferencia). En el presente texto solo se dará tratamiento a los mensurandos escalares.

Denotándose por x_i , (minúscula), el mejor estimador posible de la magnitud de entrada X_i (mayúscula).

El mejor estimador del valor del mensurando es el que resulta de calcular el valor de la función f con el mejor estimador cada magnitud de entrada,

$$y=f(x_1,x_2,\dots,x_N)$$

Con frecuencia el mejor estimador del mensurando Y se toma como el promedio de varios valores y_i obtenidos a partir de diversos conjuntos de valores de las mejores estimaciones de las magnitudes de entrada.

Función de Trasferencia Medida Directa.

Si el Mensurando es una medida directa se distinguen dos funciones de transferencia según apliquemos o no correcciones.

Si aplicamos un Modelo de corrección global nula (sin correcciones) la función de transferencia es tan sencilla como:

$$Y \approx X_1$$

Con X_1 siendo la lectura que nos da el instrumento directamente.

En el caso de apliquemos un modelo con correcciones, en el que se tienen en cuenta las magnitudes de influencia relevantes, la función de transferencia será de la forma:

$$Y = f(X_1, X_2, \dots, X_N)$$

Siendo X_1 la lectura que nos da el instrumento; y $X_2, ..., X_N$ las distintas correcciones aplicadas.

A modo de ejemplo:

Si se desea determinar la longitud de una determinada pieza mediante un pie de rey y tiene pensado aplicarse correcciones al redondeo de escala, a la temperatura y al propio pie de rey, obtenida en su calibración, la función modelo será:

$$L \equiv Y = f(X_1, C_E, C_{T^2}, C_C) = X_1 + C_E + C_{T^2} + C_C$$

Función de Transferencia. Medida Indirecta.

Si el mensurando es una medida indirecta se obtiene a través de una relación funcional entre magnitudes de entrada de medidas directas, como las explicadas anteriormente.

$$Y=\phi(X_1,X_2,\dots,X_N)$$

Con X_1, X_2, \dots, X_N variables de medidas directas, obtenidas como se ha explicado antes.

A modo de ejemplo:

Para determinar la resistencia eléctrica que hay entre dos puntos de un conductor eléctrico se utiliza la función de transferencia mundialmente conocida como ley de Ohm.

Para ello se necesitara la lectura dada por el voltímetro, y la dada por el amperímetro, dos medidas directas, a las que en este ejemplo aplicaremos correcciones.

$$R = \frac{V}{I} = \frac{V + C_{EV} + C_{CV}}{I + C_{EA} + C_{CA}}$$

Con correcciones aplicadas debidas al redondeo de escala, y a la calibración tanto del voltímetro (V) como del amperímetro (A).

La función modelo se usa para determinar el resultado de una medición, valor más probable e incertidumbre de la medida; abordaremos ahora la incertidumbre de la medida.

Como consecuencia a la aleatoriedad de las medidas, comentada anteriormente, se trabaja con estimaciones, la estimación del mensurando Y, denotada por y, está formada por las estimaciones de las magnitudes de entrada:

$$y = f(x_1, x_2, \dots, x_N)$$

Y como las estimaciones de los valores de las magnitudes de entrada no son exactas (son estimaciones) el valor estimado del mensurando tampoco lo será y aquí es donde entran en juego las incertidumbres.

En general el resultado de una medición es sólo una aproximación (una estimación) del valor del mensurando, y solo se haya completo cuando está acompañado de una declaración acerca de la incertidumbre de dicha estimación.

La incertidumbre típica es la incertidumbre del resultado de una medición, expresada en forma de desviación típica. [13]

La desviación típica asociada al resultado de medida y, se la denomina incertidumbre típica combinada y se representa por $u_c(y)$, se determina a partir de la desviación típica asociada a cada estimación de entrada x_i , denominada incertidumbre típica y representada por $u(x_i)$

A modo de resumen de lo hasta ahora comentado.

$$Y = f(X_1, X_2, ..., X_N) \to y = f(x_1, x_2, ..., x_N)$$
$$u_c(y) = f[u(x_1), u(x_2), ..., u(x_N)]$$

Tanto las estimaciones de las magnitudes de entrada x_i , como su incertidumbre típica $u(x_i)$, se obtienes mediante una distribución de valores posibles de la magnitud de entrada X_i .

Esta distribución de los valores posibles puede seguir una distribución de frecuencias, obtenida a partir de una serie de observaciones o puede seguir una distribución supuesta a priori.

Según [8], se distinguen dos métodos principales para cuantificar las fuentes de incertidumbre: el *Método de Evaluación Tipo A,* basado en un análisis estadístico de una serie de observaciones, mientras que el *Método de Evaluación Tipo B* se basa en todos los conocimientos previos disponibles acerca de esa magnitud de entrada.

Cabe mencionar que no existe ninguna diferencia en la naturaleza de los componentes que resultan de cada uno de los tipos de evaluación ya que ambos se basan en distribuciones de probabilidad solo que las evaluaciones tipo A se estima una distribución basándose en una serie de mediciones obtenidas del mismo proceso de medición y las tipo B se supone una distribución en base a la experiencia o conocimientos previos.

La incertidumbre de una magnitud de entrada X_i , la cual se ha obtenido a partir de una serie de observaciones repetidas bajo condiciones de repetibilidad, se obtiene en base a la dispersión de los valores.

Si se realizan n mediciones independientes, en valores $q_1, q_2, ..., q_n$, el mejor estimador x_i para el valor X_i , es la media aritmética.

$$x_i = \bar{q} = \frac{1}{n} \cdot \sum_{j=1}^n q_j$$

La dispersión de los resultados de la medición q_1,q_2,\ldots,q_n para la magnitud de entrada X_i se determina por su desviación típica experimental.

$$s(q) = \sqrt{\frac{1}{n-1} \cdot \sum_{j=1}^{n} (q_j - \overline{q})^2}$$

La incertidumbre típica experimental $u(x_i)$ de X_i se obtiene como la desviación típica experimental de la media aritmética.

$$u(x_i) = s(\bar{q}) = \frac{s(q)}{\sqrt{n}} = \frac{1}{\sqrt{n}} \cdot \sqrt{\frac{1}{n-1} \cdot \sum_{j=1}^{n} (q_j - \bar{q})^2}$$

No es posible establecer un número ideal de repeticiones, pues este dependerá de cada medición, de sus condiciones y exigencias pero si pueden darse unas condiciones generales. [13]

- Un aumento del número de repeticiones n, disminuirá la incertidumbre típica ya que esta es proporcional a $1/\sqrt{n}$
- Un aumento del número de repeticiones aumentara el tiempo y coste de la medición lo que a veces es contraproducente.
- En muy pocas ocasiones se recomiendan realizar más de 10 repeticiones
- Para caracterizar la influencia que el número de repeticiones tiene en la incertidumbre expandida hay que calcular los grados efectivos de libertad los cuales nos indican la fiabilidad de la evaluación de la incertidumbre típica tipo A

$$v_i = n - 1$$

Algunas fuentes de incertidumbre que se evalúan con este método son la repetibilidad de las lecturas, la reproducibilidad y las obtenidas al hacer una regresión lineal por ejemplo.

Tanto la estimación x_i de una magnitud de entrada X_i , la cual no ha sido obtenida a partir de observaciones repetidas, como la incertidumbre típica $u(x_i)$ se establecen usando información externa u obtenida experiencia, usando toda la información disponible acerca de la naturaleza y variabilidad de X_i

Estas fuentes de información pueden ser:

- Certificados de calibración
- Normas o literatura
- Valores de mediciones anteriores
- Manuales del instrumento, especificaciones del instrumento
- La experiencia o el conocimiento general del comportamiento y características del sistema de medición.

Algunos ejemplos de evaluaciones tipo B se encuentran cuando:

- Solo se dispone de un único valor de la variable de entrada,(medida destructiva)
- Cuando la variable de entrada se supone que sigue una distribución de probabilidad.
- La estimación se obtiene a partir de especificaciones del fabricante o certificados de calibración y la incertidumbre viene dada como un múltiplo especifico de una desviación típica.

Propagación de la Incertidumbre

La combinación de las contribuciones a la incertidumbre de todas las fuentes de incertidumbre es la incertidumbre típica combinada $u_c(y)$, la cual contiene toda la información esencial sobre la incertidumbre del mensurando Y

La contribución de cada fuente de incertidumbre $u_i(y)$ a la incertidumbre típica combinada dependerá de la incertidumbre típica $u(x_i)$ de la propia fuente y del impacto de esta sobre el mensurando establecido a través de un coeficiente de sensibilidad c_i

$$u_i(y) = c_i \cdot u(x_i)$$

Coeficiente de Sensibilidad.

El coeficiente de sensibilidad cuantifica cuanto es de sensible el mensurando con respecto a variaciones de la magnitud de entrada correspondiente. Pueden ser determinados de dos maneras:

Determinados a partir de una relación funcional

Si la relación funcional entre las magnitudes de entrada y el mensurando está plasmada en un modelo matemático $Y = f(X_1, X_2, ..., X_N)$ el coeficiente de sensibilidad c_i se calcula como:

$$c_i = \frac{\partial f(X_i, \dots, X_N)}{\partial X_i} \bigg|_{X_1 = x_1 \dots X_N = x_N}$$

Determinados por otros medios

Si la relación entre la magnitud de entrada y el mensurando no está representada por una relación funcional, el coeficiente de sensibilidad se obtiene por una estimación del impacto de X_i en Y manteniendo constantes las demás magnitudes de entrada. Determinando el cambio de Y producido por un cambio en X_i , obtenido de una medición o a partir de información disponible, según:

$$c_i = \frac{\Delta Y}{\Delta X_i}$$

Teniendo en cuenta el desarrollo en serie de Taylor de primer orden en torno al valor esperado, gracias a las propiedades de la varianza podemos obtener la ley de propagación de Incertidumbres (LPI) la cual facilita la estimación de estas. [14]

$$u_c^2(y) = \sum_{i=1}^N \left[\frac{\partial f}{\partial X_i} \right]^2 \bigg|_{x_i} u^2(x_i) + 2 \sum_{i=1}^{N-1} \sum_{j=i+1}^N \frac{\partial f}{\partial X_i} \bigg|_{x_i} \frac{\partial f}{\partial X_j} \bigg|_{x_j} u(x_i, x_j)$$

La ley de propagación de varianzas se puede aplicar cuando:

- Solamente haya una magnitud de salida en el modelo matemático
- La relación funcional pueda expresarse mediante un modelo matemático explicito, es decir de la forma $Y = f(X_i)$
- Se pueden calcular la esperanza matemática y las incertidumbres típicas de las magnitudes de entrada.
- El modelo sea una buena aproximación a un desarrollo lineal en torno al mejor estimador de las magnitudes de entrada.

Si se trabaja con modelos no lineales se puede hacer una aproximación de segundo orden de la serie de Taylor anterior o incluso obtener los valores de la esperanza matemática y varianza sin aproximaciones, soluciones mucho más complejas que la LPI.

Para estos casos se han elaborado algunos documentos suplementarios a la GUM, para la evaluación de incertidumbres por otros métodos distintos a la LPI, uno de los cuales recoge el cálculo de la incertidumbre mediante el método de Montecarlo [15] útil para modelos lineales y no lineales.

LPI para magnitudes de entrada no correlacionadas.

El termino correlación se refiere a los casos en que las mediciones de dos magnitudes de entrada están ligadas, ya sea porque existe una tercera magnitud que influye sobre ambas, porque se usa el mismo instrumento para medir o por alguna otra razón.

Estadísticamente hablando, se dice que dos variables son independientes cuando la probabilidad asociada a una de ellas no depende de la otra, es decir son variables aleatorias independientes.

En el caso de que no exista correlación entre las magnitudes de entrada, la incertidumbre típica combinada $u_c(y)$ se calcula mediante la LPI como:

$$u_c^2(y) = \sum_{i=1}^N u^2(y_i)$$

Desarrollando más obtenemos

$$u_c(y) = \sqrt{\sum_{i=1}^{N} [c_i \cdot u(x_i)]^2} = \sqrt{\sum_{i=1}^{N} \left[\frac{\partial f}{\partial X_i} \cdot u(x_i) \right]^2}$$

Vemos que el segundo término de la LPI, en el que aparecen las magnitudes de entrada correlacionadas desaparecen.

LPI para magnitudes de entrada correlacionadas.

En este caso, el segundo término de la LPI no desaparecería, quedando entonces:

$$u_c^2(y) = \sum_{i=1}^N \left[\frac{\partial f}{\partial X_i} \right]^2 \bigg|_{x_i} u^2(x_i) + 2 \sum_{i=1}^{N-1} \sum_{j=i+1}^N \frac{\partial f}{\partial X_i} \bigg|_{x_i} \frac{\partial f}{\partial X_j} \bigg|_{x_j} u(x_i, x_j)$$

A fin de no explayarnos mucho en el presente TFG, no se abordará con más detenimiento.

Aunque la incertidumbre típica combinada $u_c(y)$ puede ser utilizada para caracterizar la incertidumbre de un resultado de medida, generalmente es necesario establecer un intervalo en el interior del cual pueda esperarse encontrar, con alta probabilidad, los infinitos valores que razonablemente pueden ser atribuidos al mensurando.

Si utilizásemos la incertidumbre típica combinada $u_c(y)$ para definir dicho intervalo, (y-u,y+u) la probabilidad de encontrar el valor verdadero dentro de este intervalo seria baja ya que en el supuesto de que la función de distribución del mensurando y sea una función normal, estamos hablando de un 68.3% [14]

Para aumentar la probabilidad hasta valores más útiles de cara a la toma de decisiones, se multiplica la incertidumbre típica combinada por un número denominado factor de cobertura, con lo cual el intervalo aumenta.

$$U = k \cdot u_c$$

La incertidumbre expandida U indica entonces un intervalo que representa una fracción p de los valores que razonablemente pueden ser atribuidos al mensurando. El valor de p es llamado el nivel de confianza y es elegido a conveniencia.

Generalmente se elige el nivel de confianza de manera que corresponda a un factor de cobertura como un número entero de desviaciones típicas en una distribución normal. [13]

Por ejemplo, en una distribución normal, K=1 corresponde a p=68.27% mientras que K=2 a p=95.45%.

Grados de libertad.

Con gran frecuencia, los valores del mensurando Y así como los valores de las magnitudes de entrada X_i siguen una distribución normal. Sin embargo, el mejor estimador del mensurando, la media aritmética (obtenida por muestreo de n mediciones) dividida entre su desviación estándar sigue una distribución t de Student, la cual coincide con una distribución normal cuando n tiende a infinito pero difiere notablemente de ella con n pequeños.

La manera de caracterizar esta distribución t de Sudent es mediante los grados de libertad.

Teniendo esto en cuenta será necesario ampliar el intervalo correspondiente al nivel de confianza p, por lo que tenemos:

$$U = t_p(\nu) \cdot u_c$$

El valor $t_p(\nu)$ se encarga de ampliar el intervalo correspondiente al nivel de confianza p de la distribución y su valor siempre será igual o mayor que el factor k tomado de una distribución normal. Su valor se encuentra tabulado.

Si hay suficientes fuentes de incertidumbre que siguen una distribucion de probabilidad conocida, el Teorema del Límite Central, permite aproximar la distribucion resultante del mensurando por una distribucion normal. Esta aproximación será mejor cuanto mayor sea el numero de fuentes y sus contribuciones sean similares, independientemente de la forma particular de las distribuciones. [13]

Si la disponibilidad de información está limitada, debido a un número pequeño de observaciones se hace necesario el uso de la distribución t de Student para determinar la incertidumbre expandida de manera rigurosa.

De cierta manera el número ν de grados de libertad asociado a una distribución de una magnitud (X_i o Y) puede considerarse una medida de incertidumbre de la incertidumbre de esa magnitud. Cuanto mayor sea ν la estimación de la incertidumbre será más confiable

El número efectivo de grados de libertad v_{ef} del mensurando tiene en cuenta el número de grados de libertad v_i de cada fuente de incertidumbre.

En las contribuciones a la incertidumbre tipo A, los grados de libertad v_i depende del número de observaciones realizadas de tal forma que

$$v_i = n - 1$$

Mientras que para contribuciones a la incertidumbre tipo B, al ser conocidas previamente a través de otras formas distintas al control estadístico se consideran

$$\nu_i \to \infty$$

El cálculo de los grados efectivos de libertad se realiza mediante la expresión de Welch-Satterthwaite:

$$v_{ef} = \frac{u_c^4(y)}{\sum_{i=1}^{N} \frac{u_c^4(y)}{v_i}}$$

No obstante siempre que se cumplan las hipótesis para aplicar el Teorema del Limite Central y la distribución del mensurando pueda aproximarse a una distribución normal y además el número de observaciones sea elevado (n \geq 10) la muestra sea suficientemente fiable los $v_{ef}=\infty$ y $t_p(v)=2$. Como se ha realizado en todos los cálculos de incertidumbre realizados en este TFG.

En la siguiente tabla se expresan tabulados los valores de $t_p(\nu)$ en función de los ν_{ef} para distintos intervalos de confianza.

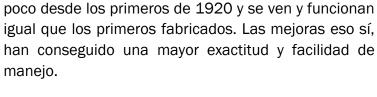
Grados de libertad	Fracción p (%)					
ν	68,27 a)	90	95	95,45 a)	99	99,73 a)
1	1,84	6,31	12,71	13,97	63,66	235,80
2	1,32	2,92	4,30	4,53	9,92	19,21
3	1,20	2,35	3,18	3,31	5,84	9,22
4	1,14	2,13	2,78	2,87	4,60	6,62
5	1,11	2,02	2,57	2,65	4,03	5,51
6	1,09	1,94	2,45	2,52	3,71	4,90
7	1,08	1,89	2,36	2,43	3,50	4,53
8	1,07	1,86	2,31	2,37	3,36	4,28
9	1,06	1,83	2,26	2,32	3,25	4,09
10	1,05	1,81	2,23	2,28	3,17	3,96
11	1,05	1,80	2,20	2,25	3,11	3,85
12	1,04	1,78	2,18	2,23	3,05	3,76
13	1,04	1,77	2,16	2,21	3,01	3,69
14	1,04	1,76	2,14	2,20	2,98	3,64
15	1,03	1,75	2,13	2,18	2,95	3,59
16	1,03	1,75	2,12	2,17	2,92	3,54
17	1,03	1,74	2,11	2,16	2,90	3,51
18	1,03	1,73	2,10	2,15	2,88	3,48
19	1,03	1,73	2,09	2,14	2,86	3,45
20	1,03	1,72	2,09	2,13	2,85	3,42
25	1,02	1,71	2,06	2,11	2,79	3,33
30	1,02	1,70	2,04	2,09	2,75	3,27
35	1,01	1,70	2,03	2,07	2,72	3,23
40	1,01	1,68	2,02	2,06	2,70	3,20
45	1,01	1,68	2,01	2,06	2,69	3,18
50	1,01	1,68	2,01	2,05	2,68	3,16
100	1,005	1,660	1,984	2,025	2,626	3,077
00	1,000	1,645	1,960	2,000	2,576	3,000

a) Para una magnitud z descrita por una distribución normal de esperanza matemática μ_z y desviación típica σ , el intervalo $\mu_z \pm k\sigma$ comprende respectivamente las fracciones p = 68,27%; 95,45 % y 99,73 % de la distribución, para los valores k = 1.2 y 3

Tabla 1 .- Valor de $t_P(\nu)$ de la distribución t para ν grados de libertad. [8]

CAPÍTULO 4: EL PROYECTOR DE PREFILES

Introducción


Un proyector de perfiles ("profile projector", en inglés) también denominado en ocasiones comparador óptico ("optical comparator" en inglés) es un equipo medidor de dimensiones y formas por amplificación óptica, que permite la realización de medidas directas con o sin desplazamiento sobre una pantalla de proyección.

Es el equipo de medición óptica más utilizado en la industria ya que es un excelente medio para medir piezas pequeñas a través de la visualización de su imagen amplificada de una manera rápida y sencilla.

El primer proyector de perfiles fue desarrollado por James Hartness y Porters Russell, halla por 1920, como medio para realizar inspecciones de piezas roscadas.

En las siguientes décadas estos rudimentarios equipos fueron evolucionando, mejorándose y ampliando el alcance de su uso, ya no solo eran utilizados para inspeccionar piezas roscadas si no que podían utilizarse en engranajes, piezas que por sus dimensiones se hacía compleja su inspección, etc.

Pero aun con esta evolución y mejora los proyectores de perfiles han cambiado muy

El auge en el uso y desarrollo de los proyectores de perfiles vino a raíz de la segunda guerra mundial, en la que la industria bélica los utilizo en numerosas aplicaciones; además la incipiente industria del automóvil empezó a utilizarles como instrumentos de fácil y rápida inspección, con lo que hacía 1950 se habían convertido en instrumentos básicos de medición.

Avances posteriores desarrollados entre 1960 y 1970 introdujeron la detección automática de bordes y la capacidad de lectura digital; mejoras destinadas a mejorar su funcionalidad, así como mejoras en la calidad de imagen y la posibilidad de automatizar la máquina y posibilitar la integración de la tecnología

Imagen 9 .- Proyector Perfiles eje Vertical [16]

informática en el sistema.

El proyector de perfiles, es una herramienta de inspección segura y versátil, que se consolidó velozmente como una sólida alternativa para una gran cantidad de aplicaciones, tanto que en la actualidad resultan indispensables como equipamiento de muchos de los campos de la producción de alta calidad. [17]

Ventajas y Desventajas del Proyector de Perfiles

La gran variedad de operaciones que se pueden realizar con los proyectores de perfiles fundamentan su gran versatilidad, que es sin duda su principal ventaja.

Los proyectores en sus aplicaciones como instrumentos de inspección presentan gran cantidad de características meritorias:

- La visualización en la pantalla permite la inspección de varias dimensiones y características de la pieza al mismo tiempo (siempre que estén en el mismo plano de proyección)
- La utilización de plantillas permite comparar distintas formas de una manera rápida y precisa.
- Varias maneras de realizar las mediciones, ya sea en sobre la imagen proyectada en la pantalla o sobre reglas graduadas en los ejes de medición; tanto de manera analógica como digital.
- La posibilidad de acoplar detectores de arista que detectan el paso de luz a sombra y viceversa e incluso la posibilidad de automatizar el proceso de inspección.
- Los sistemas de medición por contacto, en especial los fijos, como calibres y micrómetros, están sujetos a desgaste mientras que en los proyectores de perfiles el desgaste es nulo, además al no haber contacto eliminamos la posibilidad de dañar o marcar la pieza a medir.
- Un ahorro de costes en la medición al realizarse esta de manera rápida y sin desgaste del equipo, cosa que ocurre en los calibres y micrómetros.
- La introducción de visualizadores de cotas y electrónicas de evaluación permite la inspección y medición de gran cantidad de formas geométricas de una manera rápida gracias a las numerosas funciones que incorporan para la adquisición de datos de medición y su posterior evaluación estadística de valores medios. Así como la posterior comparación con diseños CAD.
- La proyección de la imagen sobre la pantalla, si es lo suficientemente amplia, permite que varios operadores la contemplen al mismo tiempo con lo que se pueden realizar inspecciones en grupo.

A su vez, el uso de proyectores de perfiles en la inspección de piezas presenta algunas desventajas, que no enmascaran en ningún momento sus múltiples ventajas:

Por enumerar algunas desventajas:

- La limitación del uso del proyector de perfiles como dispositivo fijo, ya que son instrumentos bastante pesados y robustos no diseñados para ser transportados, aunque algunos fabricantes sí que pueden fabricar bajo pedido, algunos más pequeños y relativamente portátiles.
- El haz luminoso, así como la fuente de luz, que aun contando con un filtro de calor y refrigeración propia, pueden provocar el calentamiento de la pieza objeto de medición.
- Si bien hemos comentado antes su nulo desgaste en su uso, comentar también que las lámparas del haz luminoso son propensas a fundirse, debido al elevado calor que generan, y es necesario una limpieza del filtro de polvo así como su sistema de refrigeración.

Principales Usos del Proyector de Perfiles

Se distinguen distintos usos que se le pueden dar al proyector de perfiles en función de la manera en la que se realiza la inspección.

Inspección por Observación.

Este es el primer uso que se le dio, y por el que fue diseñado. Permite la observación nítida de superficies, contornos, texturas, acabados superficiales, rebabas, etc.

Inspección por Comparación.

También de los primeros usos que se le dio en la industria, de ahí que se le llame en ocasiones comparador óptico. Permite la rápida inspección de formas estándar, como ángulos, radios, perfiles de rosca, engranajes, mediante plantillas.

Así como realizar un control de tolerancias a través de plantillas pasa no pasa.

La utilización de estas plantillas es una manera rápida y económica de medir dimensiones de los perfiles.

Actualmente, la tendencia al uso de estas plantillas es cada vez, ya que las electrónicas de evaluación permiten realizar la comparación informáticamente, de una manera mucho más rápida, precisa y económica.

Mediciones sobre la Pantalla de Visualización.

Sobre la propia pantalla del proyector de perfiles, teniendo en cuenta la amplificación del sistema, se pueden realizar mediciones tanto lineales (con el uso de escalas graduadas translucidas) como angulares (con el goniómetro asociado al movimiento de rotación de la pantalla.

Este modo de uso del proyector de perfiles ha quedado en desuso frente al que describimos a continuación.

Mediciones sobre Movimientos.

Teniendo en cuenta los movimientos de la mesa de trabajo a través de los ejes X e Y, utilizando tanto dispositivos analógicos (mesas micrométricas) como dispositivos

digitales (encoders lineales y sistemas de visualización de cotas o electrónicas de evaluación).

Esta manera de usar el proyector de perfiles es la manera más moderna, permite una reducción en el tiempo y coste de la medición, así como una automatización de la medición.

Clasificación

Se distinguen dos maneras posibles de clasificar los modelos comerciales de proyectores de perfil, atendiendo a la orientación del haz luminoso y al tipo de iluminación utilizada en la proyección. Pudiendo bajo pedido construirse otros que no se engloban en esta clasificación. [18]

Según la orientación del eje del haz luminoso

Proyector de Perfiles de eje Vertical

En esta construcción, el haz luminoso incide verticalmente sobre el elemento a medir. La pieza se sitúa sobre mesas de cristal y a través de ella se transmite el haz. Como las mesas son de cristal, el peso y dimensiones de las piezas suelen ser menores que en la siguiente construcción.

Estos proyectores suelen tener campos de medida pequeños, con hasta 200 o 300 mm como máximo en cada eje de medida, que se denominan X e Y manteniendo el Z para el enfoque.

Suelen tener mayores exactitudes que los siguientes.

- Proyector de Perfiles de eje Horizontal

En esta construcción el haz luminoso incide horizontalmente sobre el elemento a medir. Este tipo de proyectores permiten la medición de piezas más grandes y pesadas, teniendo campos de medida de hasta 500mm por eje.

Es típico encontrarlos en configuraciones donde todo el sistema de sustentación e iluminación se encuentra en un lateral del proyector.

En este caso el campo de medida lo forman los ejes X y Z, mientras que el Y se deja para el enfoque.

Según el tipo de iluminación utilizada para la proyección

- <u>Iluminación diascópica. Proyección por luz transmitida</u>

En este caso el haz luminoso se transmite a través de la pieza, proyectando el contorno o silueta situada en el plano focal en la pantalla de observación.

- <u>Iluminación episcópica (proyección por luz reflejada)</u>

Aquí el haz luminoso incide sobre la superficie de la pieza, reflejando la imagen iluminada en la pantalla. La calidad de la imagen depende principalmente dela calidad superficial de la pieza.

Es muy probable que ambos tipos de iluminación se den en el mismo proyector de perfiles y actualmente muchos fabricantes ofrecen equipos con ambos tipos de iluminación.

Los principales componentes de un proyector de perfiles son: la fuente de luz, el sistema óptico, la mesa soporte de las piezas y la pantalla de visualización.

Fuente de Luz

Con objeto de producir una correcta iluminación de la pieza, ya sea episcópica o diascópica, se utilizan lámparas de alta intensidad, tradicionalmente halógenas, actualmente led; ya que las halógenas se calientan bastante y es necesario refrigerarlas y el flujo de calor proveniente de esta refrigeración puede alterar las dimensiones de la pieza a medir. Por ello se suelen colocar filtros de calor y aislamiento térmico en las carcasas que aíslan las lámparas.

Debido a la temperatura a la que trabajan y a los ciclos térmicos a los que están expuestas es usual que se fundan y haya que cambiarlas, siendo muy común de encontrar en distintos fabricantes.

Sistema Óptico

Encargado de producir la amplificación de la imagen y su posterior proyección en la pantalla de visualización.

Está compuesto por el grupo colimador y las lentes de ampliación y transmisión.

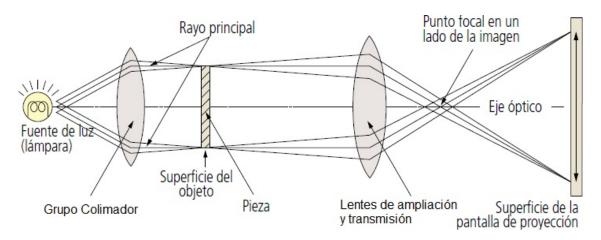


Imagen 10 .- Sistema óptico del proyector [16]

- Grupo Colimador

Se encarga de dirigir el haz luminoso procedente de la fuente de iluminación y hacer que todos los rayos del haz sean paralelos, es decir tengan la misma dirección, con el fin de crear un haz de intensidad uniforme.

Su principal función es eliminar los efectos no deseados de los rayos de luz dispersos que casan halos y bordes borrosos.

- Sistema de amplificación y transmisión

Conjunto de lentes que se encarga de amplificar y proyectar la imagen ya haya sido obtenida por proyección episcópica o diascópica. Estas

amplificaciones tienen por objeto la visualización de pequeños detalles o características de la pieza así como facilitar el enrase sobre sus contornos. Estas lentes con frecuencia van montadas sobre una torreta con lo que es posible variar los aumentos de una manera muy rápida. Los aumentos suelen ir desde 10x hasta 200x.

En la imagen de la derecha se muestra una de estas torretas.

Imagen 11 .- Torreta de Objetivos

Mesa Soporte

Al igual que la pantalla de visualización, el campo de medida que define, es una característica representativa del proyector de perfiles. Sobre ella se sitúa la pieza objeto de medición y gracias a ella se sitúa la característica observable en el plano focal.

Tiene movimiento en los tres ejes, siendo dos de ellos utilizados para desplazarnos por la pieza y el tercero utilizado para el enfoque.

Los movimientos pueden realizarse de manera manual o estar motorizados.

Si el proyector de perfiles es vertical ésta será de cristal, mientras que si es horizontal podrá ser metálica, con frecuencia tiene una serie de hendiduras en cola de milano que facilitan el soporte y fijación de las piezas objeto de medición.

Pantalla de Visualización

Elemento que posibilita la representación de la imagen, sobre el aparece o bien la imagen reflejada o el contorno de la pieza, según el tipo de iluminación empleada. Su tamaño es representativo del proyector y esta estandarizado, posee unos clips sobre los cuales se montan las plantillas en el caso de que fueran necesarias.

Suele estar fabricada de vidrio esmerilado, lo que la confiere una textura que favorece la visualización y evita los deslumbramientos.

En algunos modelos, para mejorar la visualización suele incluir una pequeña visera o parasol y en otros además se incluye una pequeña cortina para que haya oscuridad y se aprecie mejor la imagen.

En algunos modelos suele estar fija a la bancada pero en otros puede rotar, lo que posibilita la medición de ángulos gracias a un goniómetro con indicación analógica o digital.

También es frecuente sobre ellas, en el centro de ella, sobre la cruceta un detector óptico de arista, que detectara el paso de luz a sombra o viceversa, lo que agiliza el uso.

Los equipos utilizados para la elaboración de este TFG se encuentran en el aula de metrología FASA RENAULT de la EII sede Paseo del Cauce.

A continuación se muestran las especificaciones de los equipos así como algunas fotografías de los mismos.

	FABRICANTE	SIGMA	ACTUAL STARRETT
PROYECTOR DE PERFILES	MODELO	HF 500	HF600
	TIPO	HORIZONTAL	
	ILUMINACIÓN	DIASCOPICA	
	OBJETIVOS	10x / 50x / ¿?x	
	CAMPO DE MEDIDA	300 X 200 mm	
	Ø PANTALLA	500 mm	
Z	MARCA	HEINDENHAIN	
.UACIO	MODELO	ND 1200 QUADRA- CHECK	
ELECTRÓNICA DE EVALUACION	RESOLUCIÓN	0,001 mm	
	MEDICIÓN	2-D	
ECTRÓ	PROGRAMABLE	SI	
111	DISPLAY	MONOCROMO	

Tabla 2 .- Especificaciones SIGMA

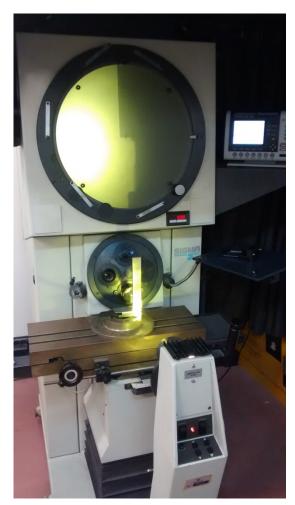


Imagen 12 .- Proyector de Perfiles SIGMA

Imagen 13 .- HEINDENHAIN QUADRA CHECK ND 1200

Imagen 14 .- .- Fuente de Luz y Sistema Óptico

Imagen 15 .- Mesa Soporte

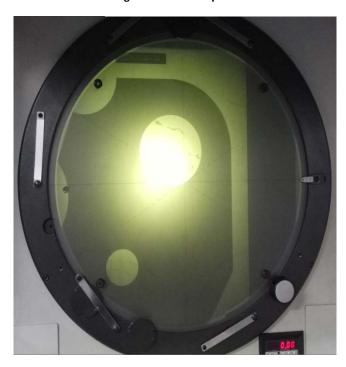


Imagen 16 .- Pantalla de Visualización

El otro proyector de perfiles enfrentado en la comparación, podría ser englobado en la categoría de microscopio de medición o microscopio de taller, pero al poseer un sistema de iluminación diascópica (luz transmitida) y a que su actual fabricante denomina a estos equipos como comparadores ópticos o proyectores de perfiles digitales, he decidido hacerles un tratamiento como proyectores de perfiles convencionales.

	FABRICANTE	DELTEC VISION	ACTUAL AYONIS
	MODELO	V 410	
FILES	TIPO	VERTICAL	
DE PER	ILUMINACIÓN	DIASCÓPICA / EPISCÓPICA	
PROYECTOR DE PERFILES	AUMENTOS	DE 40x A 180x EN 5 ZOOMS	
PROY	CAMPO DE MEDIDA	300 X 200 mm	
	PANTALLA	17"	
	RESOLUCIÓN	0,001 mm	

Tabla 3 .- Especificaciones DELTEC

Imagen 17 .- Proyector de Perfiles DELTEC

Imagen 18 .- Sistema Óptico

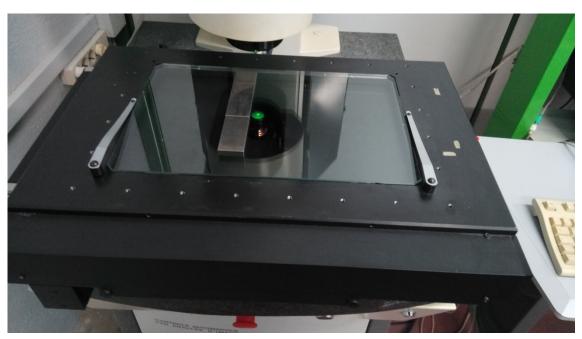


Imagen 19 .- Mesa Soporte y Fuente de Luz (diascópica)

Imagen 20 .- Consola Movimientos de la Mesa y Control Modo de Iluminación

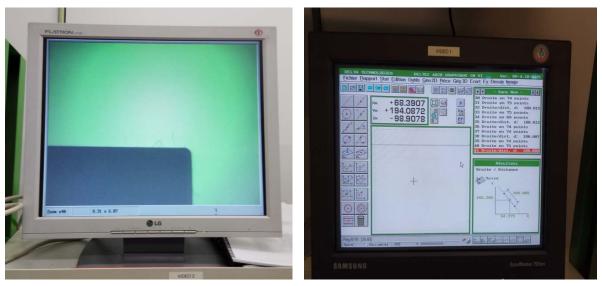


Imagen 21 .- Pantallas de Visualización y Control del Software

PARTE III.

DESARROLLO EXPERIMENTAL

CAPÍTULO 5: INTRODUCCIÓN EXPERIMENTAL

En esta serie de capítulos, pertenecientes al desarrollo experimental del TFG, se abordan todos los procedimientos que han sido necesarios para alcanzar los objetivos anteriormente descritos.

A modo de resumen, se procederá a la comparación metrológica entre dos proyectores de perfiles disponibles en el laboratorio de metrología de la EII, sede Paseo del Cauce, a la hora de medir una plantilla de muestra.

Para discernir qué equipo es mejor de los dos disponibles se tomara como referencia, las medidas nominales obtenidas en un proyector de perfiles del Laboratorio de Control Dimensional LCD, y se realizara una comparación gráfica.

Para dicha comparación será necesaria una evaluación de la incertidumbre de las medidas tomadas, y por tanto calibrar los proyectores del aula de metrología, el proyector del LCD ya tiene trazabilidad al patrón nacional.

También se realizará con uno de los proyectores un estudio del error de forma en la medición de círculos en función del número de puntos que se seleccionan para su medición.

CAÍTULO 6: LA PLANTILLA. CARACTERIZACIÓN METROLÓGICA.

La plantilla sobre las que se realizan las mediciones que se usarán en la comparación es una plantilla, que a modo de muestra, viene incluida al adquirir el Heindenhain nd 1200 Quadra Check. La cual pose varias formas geométricas que la hacen muy adecuada para aprender el manejo de las distintas funciones del Quadra Check.

La plantilla, la cual se ha supuesto de acero, es de muy fino espesor, lo cual ayuda a que los haces de luz de los proyectores no diverjan, con lo que visualización en la pantalla nos muestra una imagen nítida y muy contrastada. Esta es la principal causa por la que opto por ella para la realización del estudio.

Además, para facilitar su manipulación y colocación en los proyectores e impedir su deterioro se encuentra enmarcada y posee una base, la cual se puede desmontar fácilmente.

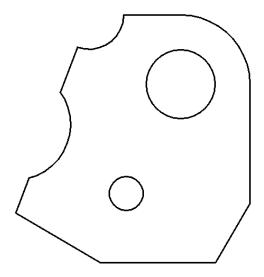


Imagen 22 .- Plantilla. Características Geométricas.

En la imagen anterior se muestran las características geométricas de la plantilla a estudio. Para facilitar luego la expresión de los resultados, se numeraran las cotas que se utilizarán luego en la comparación.

En la siguiente imagen se muestra tanto la plantilla debidamente acotada como la numeración de las cotas que se seguirá a lo largo de la comparación.

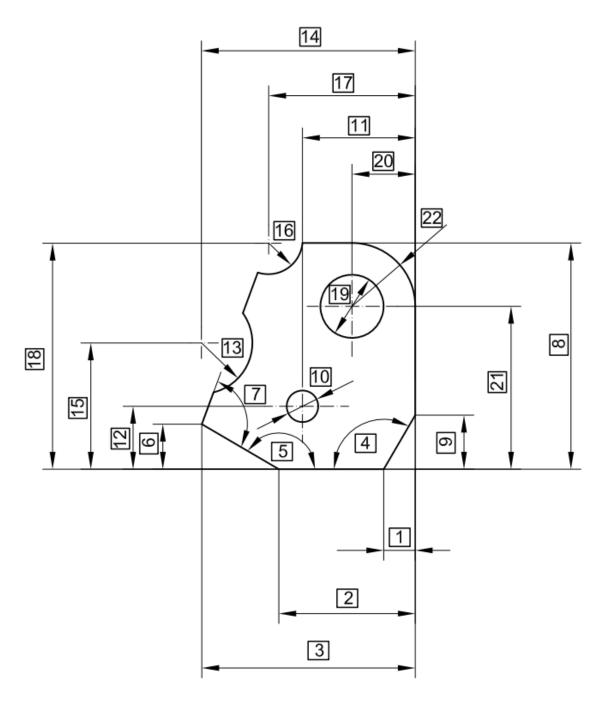


Imagen 23 .- Acotación y Numeración de la Plantilla

El orden elegido en la numeración no ha sido al azar, sino que pretende también seguir una secuenciación en la realización de las medidas. De forma que siempre se realicen siguiendo el mismo procedimiento de medida en todos los proyectores. De esta forma solo se estudiara en la reproducibilidad de las medidas las debidas al equipo empleado pues al seguir siempre el mismo procedimiento es como si siempre midiese el mismo operario.

CAPÍTULO 7: TOMA DE MEDIDAS SIGMA

Se empezará con los datos tomados con el proyector de perfiles SIGMA por ser las que se realizaron cronológicamente antes.

Se procederá a presentar las medidas de forma tabulada presentando la media y la desviación típica muestral. Se realizaron diez repeticiones a fin de que la muestra fuese suficientemente fiable a la hora de realizar la evaluación de la incertidumbre.

El modo de iluminación en ambos proyectores fue por luz transmitida (diascópica), ya que este proyector sólo dispone de este modo.

Atendiendo al manual de funcionamiento del Heindenhain ND1200 Quadra-Check [19] se han realizado las siguientes operaciones iniciales con el fin de reducir el error coseno en la medición.

Piezas desalineadas resultan de errores de medición coseno. Para convertir las coordenadas de la maquina en coordenadas piezas y compensar desalineaciones que pudiera presentar la pieza, y por tanto reducir el error coseno, se utiliza la función desviación.

Cada vez que se medía la pieza la secuencia de operaciones realizada para compensar la desalineación de la pieza con respecto a un eje de medición era:

- Pulsar la tecla DESVIACIÓN (SKEW)
- Palpar una arista recta de la pieza en un eje de medición, en nuestro caso era el eje X
- Palpar una segunda arista recta, perpendicular a la primera.
- Construir el punto origen como intersección de las dos rectas anteriores, y poner a cero los ejes en él.

Realizadas estas operaciones, se procedía a la medición de la plantilla siguiendo, como ya se ha comentado, el orden establecido en la medición de las características geométricas.

El procedimiento de medida seguido ha sido el mismo en ambos proyectores.

La secuencia de operaciones era:

Realizar las operaciones de alineamiento anteriores.

- Medir todas las características geométricas de la plantilla y anotar los resultados.
- Resetear la memoria, borrar los registros.
- Y repetir estas operaciones hasta diez veces.

Todas las características geométricas diametrales o radiales fueron realizadas con 3 ptos para no tener errores de forma.

También se optó en la mayoría de los casos por palpar los puntos siempre en el paso de claro a oscuro y evitando en todo lo posible las holguras de los husillos.

TOMA	DE MEDID	AS SIGMA										
СОТА						MEDIDA					MEDIA	DESVIACIÓN
COTA	1	2	3	4	5	6	7	8	9	10	IVILDIA	TÍPICA
1 (mm)	6,337	6,345	6,311	6,303	6,342	6,333	6,347	6,315	6,327	6,336	6,3943	0,0569
2 (mm)	27,688	27,699	27,707	27,721	27,751	27,726	27,749	27,722	27,688	27,700	27,6400	0,2070
3 (mm)	43,095	43,105	43,057	43,075	43,115	43,114	43,139	43,099	43,103	43,085	43,1750	0,1980
4 (º)	120,039	119,831	119,885	119,727	119,941	119,909	119,884	119,677	119,924	119,938	120,0170	0,2500
5 (º)	150,080	150,164	149,995	150,052	150,062	150,073	150,107	150,049	150,066	149,939	149,7100	0,2590
6 (mm)	8,866	8,880	8,864	8,840	8,848	8,858	8,847	8,860	8,876	8,904	8,9181	0,0710
7 (º)	99,862	99,951	100,153	100,016	99,904	99,964	99,986	99,933	99,890	100,101	99,9380	0,3860
8 (mm)	45,640	45,575	45,625	45,651	45,652	45,674	45,669	45,662	45,661	45,670	45,6660	0,0232
9 (mm)	10,969	11,042	10,983	11,009	10,992	10,999	11,011	11,083	11,014	11,012	10,9950	0,0447
10 (mm)	6,350	6,340	6,372	6,338	6,338	6,340	6,339	6,338	6,338	6,338	6,3973	0,0214
11 (mm)	22,808	22,846	22,799	22,802	22,835	22,832	22,847	22,813	22,802	22,809	22,8060	0,0710
12 (mm)	12,667	12,668	12,635	12,657	12,658	12,673	12,670	12,663	12,676	12,680	12,6740	0,0248
13 (mm)	9,996	10,036	9,925	9,883	9,930	9,925	9,894	9,955	10,119	10,112	10,1490	0,0631
14 (mm)	43,004	43,052	42,946	42,901	43,015	42,984	42,990	42,958	43,084	43,045	43,0870	0,1190
15 (mm)	25,240	25,298	25,137	25,137	25,149	25,175	25,134	25,219	25,362	25,366	25,3560	0,0539
16 (mm)	6,278	6,238	6,369	6,266	6,317	6,252	6,328	6,303	6,268	6,304	6,3711	0,0784
17 (mm)	29,968	29,666	29,678	29,651	29,711	29,668	29,710	29,646	29,595	29,616	29,5830	0,1490
18 (mm)	45,603	45,584	45,643	45,578	45,628	45,582	45,651	45,630	45,626	45,641	45,6880	0,0804
19 (mm)	12,468	12,524	12,608	12,605	12,628	12,556	12,509	12,640	12,560	12,637	12,7410	0,0221
20 (mm)	12,785	12,799	12,651	12,724	12,736	12,694	12,788	12,696	12,691	12,674	12,6310	0,1110
21 (mm)	32,994	32,945	32,894	32,964	32,948	32,915	32,928	32,962	32,944	32,956	32,9790	0,0193
22 (mm)	12,781	12,710	13,006	12,754	12,929	12,811	12,756	12,837	12,763	12,609	12,6740	0,0137
Tª (ºC)	22,6	22,5	22,5	22,6	22,5	22,6	22,7	22,7	22,8	22,8		

Tabla 4 .- Toma de Medidas SIGMA

CAPÍTULO 8: TOMA DE MEDIDAS DELTEC

El segundo equipo utilizado para medir la plantilla fue el DELTEC. Al igual que antes se presentarán las medidas, realizadas en diez repeticiones, de las cotas de la plantilla de manera tabulada y se explicará brevemente el procedimiento de medida con este equipo.

Al igual que en el otro proyector se realizan una serie de operaciones iniciales, realizadas según el manual de usuario [20] con el fin de reducir el error coseno en las mediciones.

Básicamente consisten en trasladar las coordenadas en la referencia máquina a la referencia pieza.

La secuencia de operaciones iniciales fue:

- Se define una recta en el eje X, sobre la arista deseada de la pieza.
- Se define otra recta en el eje Y, sobre la arista deseada de la pieza.
- Se define un punto cualquiera sobre la pieza
- En la pestaña pieza: Definir origen en Z y se selecciona el punto de antes
- En la pestaña pieza: Definir alineamiento XY y seleccionamos la recta en el eje X, definida anteriormente.
- Se crea la intersección de las dos rectas definidas anteriormente y obtenemos un punto.
- En la pestaña pieza; Definir origen XY y seleccionamos el punto anterior, el cual se convierte en el origen de la referencia pieza.

De esta forma se trabaja en la referencia pieza y la pieza queda debidamente alineada con lo que se reduce en todo lo posible el error coseno.

Una vez realizadas estas operaciones, se procede a la medición de las distintas formas geométricas de la plantilla, en el orden establecido.

El procedimiento seguido con este proyector es idéntico al utilizado anteriormente salvo por algunas excepciones.

Al tener un software de evaluación de los datos de medición más complejo las características diametrales o radiales se tomaron con una opción llamada *multi- points* (multipuntos) en el que se palpan automáticamente gran cantidad de

puntos. Con lo que estas características geométricas si tendrán error de forma (en el ajuste por mínimos cuadrados).

Recalcar además que este hecho facilita mucho las cosas en cuanto a la rapidez y facilidad de realizar las mediciones pudiendo llegar a ser un atributo diferenciador de gran peso en la posterior comparacíon.

ТОМА	DE MEDIDA	AS DELTEC										
СОТА						MEDIDA					MEDIA	DESVIACIÓN
COTA	1	2	3	4	5	6	7	8	9	10	IVIEDIA	TÍPICA
1 (mm)	6,337	6,345	6,311	6,303	6,342	6,333	6,347	6,315	6,327	6,336	6,3296	0,01518
2 (mm)	27,688	27,699	27,707	27,721	27,751	27,726	27,749	27,722	27,688	27,700	27,7151	0,02276
3 (mm)	43,095	43,105	43,057	43,075	43,115	43,114	43,139	43,099	43,103	43,085	43,0987	0,02281
4 (º)	120,039	119,831	119,885	119,727	119,941	119,909	119,884	119,677	119,924	119,938	119,8755	0,10646
5 (º)	150,080	150,164	149,995	150,052	150,062	150,073	150,107	150,049	150,066	149,939	150,0587	0,06025
6 (mm)	8,866	8,88	8,864	8,84	8,848	8,858	8,847	8,86	8,876	8,904	8,8643	0,01879
7 (º)	99,862	99,951	100,153	100,016	99,904	99,964	99,986	99,933	99,890	100,101	99,9760	0,09240
8 (mm)	45,64	45,575	45,625	45,651	45,652	45,674	45,669	45,662	45,661	45,67	45,6479	0,02965
9 (mm)	10,969	11,042	10,983	11,009	10,992	10,999	11,011	11,083	11,014	11,012	11,0114	0,03199
10 (mm)	6,350	6,340	6,372	6,338	6,338	6,340	6,339	6,338	6,338	6,338	6,3431	0,01080
11 (mm)	22,808	22,846	22,799	22,802	22,835	22,832	22,847	22,813	22,802	22,809	22,8193	0,01877
12 (mm)	12,667	12,668	12,635	12,657	12,658	12,673	12,67	12,663	12,676	12,68	12,6647	0,01275
13 (mm)	9,996	10,036	9,925	9,883	9,930	9,925	9,894	9,955	10,119	10,112	9,9775	0,08567
14 (mm)	43,004	43,052	42,946	42,901	43,015	42,984	42,990	42,958	43,084	43,045	42,9979	0,05459
15 (mm)	25,24	25,298	25,137	25,137	25,149	25,175	25,134	25,219	25,362	25,366	25,2217	0,09200
16 (mm)	6,278	6,238	6,369	6,266	6,317	6,252	6,328	6,303	6,268	6,304	6,2923	0,03955
17 (mm)	29,968	29,666	29,678	29,651	29,711	29,668	29,710	29,646	29,595	29,616	29,6909	0,10397
18 (mm)	45,603	45,584	45,643	45,578	45,628	45,582	45,651	45,63	45,626	45,641	45,6166	0,02750
19 (mm)	12,468	12,524	12,608	12,605	12,628	12,556	12,509	12,640	12,560	12,637	12,5735	0,05948
20 (mm)	12,785	12,799	12,651	12,724	12,736	12,694	12,788	12,696	12,691	12,674	12,7238	0,05184
21 (mm)	32,994	32,945	32,894	32,964	32,948	32,915	32,928	32,962	32,944	32,956	32,9450	0,02783
22 (mm)	12,781	12,710	13,006	12,754	12,929	12,811	12,756	12,837	12,763	12,609	12,7956	0,11092
Ta (oC)	21,8	21,8	21,6	21,6	21,6	21,6	21,7	21,8	22,0	22,0		

Tabla 5 .- Toma de Medidas DELTEC

CAPÍTULO 9: CALIBRACION DE LOS PROYECTORES

Introducción

Para la posterior evaluación de la incertidumbre de las medidas obtenidas con los proyectores necesitaremos antes conocer los valores de la incertidumbre expandida de los instrumentos, para ello procedemos a su calibración.

Al realizar la calibración obtendremos los valores de la corrección así como las incertidumbres, quedándonos luego para realizar los cálculos en la evaluación de la incertidumbre, con la suma de la máxima corrección e incertidumbre.

Primeramente expondremos el desarrollo teórico que se seguirá, el cual se engloba dentro del marco referencial de [18] para luego mostrar los datos de forma tabulada.

Ambos proyectores se calibraron en su escala longitudinal, para los ejes X e Y. No se calibraron otras escalas (la angular) por la ausencia de bloques Patrón Angulares. Sólo se realizó la calibración para el modo de iluminación por luz transmitida (diascópica)

Para la calibración de los proyectores se usaron unos Bloques Patrón Longitudinales, a partir de ahora BPL, los cuales estaban disponibles en el laboratorio de metrología.

Primero se expondrá la calibración del proyector SIGMA, y luego la del DELTEC, pero ambos comparten desarrollo teórico que es lo que vamos a presentar en este capítulo.

Desarrollo Teórico Calibración

La calibración se realiza mediante BPL de longitudes nominales tales que cubren de forma aproximadamente equidistante el campo de medida de cada uno de los ejes. En los casos en los que no sea suficiente con un único bloque se procede a la adhesión de varios.

Los BPL utilizados están fuera de la cadena metrológica, están sin calibrar, pero para la realización de este trabajo no es importante, ya que en ningún momento se pretende dar trazabilidad al patrón nacional a los proyectores.

A la hora de trabajar con sus incertidumbres expandidas se usará la Capacidad de Medida y Calibración CMC, de los BPL del LCD. [21]

Pasos a seguir.

- Primeramente se seleccionan los BPL que se utilizaran en la calibración, se limpian perfectamente utilizando papel y una mezcla de alcohol y éter al 50% (esta proporción puede variar entre distintos laboratorios)
- Se sitúan los patrones ya limpios cerca del proyector.
- Los BPL se van situando sucesivamente sobre la mesa soporte, procediéndose a su alineamiento y enrase. Se realizan 10 repeticiones, es muy aconsejable siempre un número par de repeticiones, para que haya el mismo número de repeticiones en un sentido del eje que en el otro.

Se optó por la elección de 10 puntos de calibración para cada eje, con dimensiones que aproximadamente cubren todo el campo de medida del instrumento.

Las mediciones se realizaron utilizando las posibilidades que nos ofrecen las electrónicas de evaluación de los datos, se utilizaron en ambos proyectores las herramientas de *medir distancia*, midiéndose la distancia entre dos puntos en el SIGMA mientras que en el DELTEC se midió la distancia entre dos rectas tomadas sobre las aristas del BPL.

La forma de llevar a cabo estas repeticiones siempre fue la misma, consistía en ir alternando sucesivamente las mediciones en un sentido de medida y en otro, de forma que al terminar las diez repeticiones se tenían cinco en cada sentido del eje.

En todo momento se prestó también especial cuidado al realizar la medición a que el husillo siempre "empujará" en el mismo sentido del eje. Porque al cambiar el sentido (por ejemplo cuando te has pasado) implica que actué la pequeña holgura existente lo cual no es aconsejable.

De esta forma se ha intentado minimizar en todo lo posible la acción de las holguras en los husillos.

Para una mayor descripción del proceso véase la referencia [18]

Toma y Tratamiento de los Datos.

Primeramente se definirán unos términos y luego se expresará la función modelo de la calibración.

- l_{j_i} la medida i-ésima en el punto de calibración j-ésimo, en el eje que se está calibrando.
- n numero de repeticiones en cada punto de calibración.
- $l_{pj_{20}}$ el valor certificado a 20 °C del patrón empleado en el punto de calibración j.
- α_p el coeficiente de dilatación del patrón considerado. En este caso el del acero ($\alpha_p=11.5\cdot 10^{-6}$ °C $^{-1}$)
- \bar{l}_i valor medio de calibración en el punto j

$$\bar{l}_j = \frac{1}{n} \sum_{i=1}^n l_{j_i}$$

- C_{ci} corrección por calibración (desviación) en el punto j de calibración.

Con todo esto la función modelo de la calibración queda:

$$C_{cj} = l_{pj_{20}} - \bar{l}_j + \sum Correctiones$$

Si la desarrollamos más tenemos

$$C_{cj} = l_{pj_{20}} - \bar{l}_j + C_{T^a} + C_E + C_{termometro}$$

Siendo:

- C_{T^2} la corrección por temperatura:

$$C_{T^{\underline{a}}} = l_{pj_{20}}(\alpha_p \cdot (t-20))$$

Con $t=\frac{t_f+t_i}{2}$ siendo t_f y t_i las temperaturas final e inicial en el punto de calibración j

- C_E la corrección por redondeo de escala
- C_{termometro} la corrección del termómetro, obtenida en su calibración.
 Pero al utilizar nosotros un modelo de corrección global nula para el termómetro, no la tendremos en cuenta, trabajaremos con una

incertidumbre expandida del termómetro que englobe la máxima corrección.

Si desarrollamos más tendremos:

$$C_{cj} = l_{pj_{20}}(1 + (\alpha_p \cdot (t-20)) - \bar{l}_j + C_E + C_{termometro})$$

Si tenemos en cuenta que la corrección por redondeo de escala es una variable aleatoria que sigue una distribución uniforme centrada en el intervalo $\left[\frac{-e}{2},\frac{e}{2}\right]$ lo cual implica que su esperanza matemática es cero, así como que no se trabajará con la corrección del termómetro sino que esta se englobará en su incertidumbre; la **función modelo de la calibración** finalmente queda:

$$C_{cj} = l_{pj_{20}}(1 + (\alpha_p \cdot (t-20)) - \bar{l}_j)$$

Cálculo de Incertidumbres

Todo el tratamiento referente al cálculo de incertidumbres en la calibración, así como en el resto del trabajo, se ha efectuado siguiendo lo establecido en la guía GUM [8]

Se han considerado las siguientes contribuciones a la incertidumbre:

- 1.- Debida a la magnitud de entrada \bar{l}_i (valor medio observado)
 - 1.1.- Repetibilidad

$$u(x_i) = \frac{s_j}{\sqrt{n}}$$

$$c_i = -1$$

1.2.- Resolución o Escala del instrumento. Teniendo en cuenta la resolución longitudinal e del instrumento y considerando el máximo error posible cometido debido a la resolución es $\frac{e}{2}$

$$u(x_i) = \frac{e}{\sqrt{6}}$$

$$c_{i} = -1$$

2.- Debida al patrón utilizado

$$u(x_i) = \frac{U_{certificado}}{k}$$

$$c_i = 1 + (\alpha_n \cdot (t - 20) \approx 1$$

En el caso de componer BPL

$$\frac{U_{certificado}}{k} = \sqrt{\sum \left(\frac{U_{certificado_i}}{k_i}\right)^2}$$

3.- Debida al desconocimiento del coeficiente de dilatación dentro de una variación de temperatura Δt °C ($\Delta t = t - 20$)

$$u(x_i) = \frac{\delta \alpha_p}{\sqrt{3}}$$

$$c_i = l_{pj_{20}}(t - 20)$$

Con $\delta \alpha_p = 1 \cdot 10^{-6} \, {}_{^{\mbox{$ 0$}}} {\cal C}^{-1}$

4.- Debida a la Incertidumbre en longitud, debida a la variación

 $\delta t = \left(t_{\rm f} - t_i\right)$ (Diferencia de temperaturas final e inicial) del patrón

$$u(x_i) = \frac{\delta t}{2\sqrt{3}}$$

$$c_i = l_{pj_{20}} \alpha_p$$

5.- Incertidumbre en longitud, debida a la incertidumbre en el conocimiento de t, por causa de la incertidumbre de medida del termómetro utilizado.

$$u(x_i) = \frac{U_{termometro}}{k}$$
$$c_i = l_{pj_{20}} \alpha_p$$

Finalmente la incertidumbre típica combinada es:

$$u_c(y)_j = \sqrt{\sum_{i=1}^N [c_i \cdot u(x_i)]^2}$$

Desarrollando llegamos a

$$\begin{split} u_c(y)_j &= \\ &= \sqrt{\left[\left(-1 \cdot \frac{S_i}{\sqrt{n}}\right)^2 + \left(-1 \cdot \frac{e}{\sqrt{6}}\right)^2 + \left(1 \cdot \frac{U_{certificado}}{k}\right)^2 + \left(l_{pj_{20}}(t-20) \cdot \frac{\delta\alpha_p}{\sqrt{3}}\right)^2 + \left(l_{pj_{20}}\alpha_p \cdot \frac{\delta t}{2\sqrt{3}}\right)^2 + \left(l_{pj_{20}}\alpha_p \cdot \frac{U_{termometro}}{k}\right)^2} \end{split}$$

La expresión entonces para la incertidumbre expandida es entonces:

$$U_j = k \cdot u_c(y)_j$$

Con k = 2 ya que:

- n=10 lo que implica que la muestra es suficientemente fiable, se cumple la hipótesis de fiabilidad
- Hay al menos tres contribuciones de incertidumbre que siguen una distribución de probabilidad conocida y el Teorema del Limite Central permite aproximar la distribución resultante de la corrección por calibración a una distribución normal. Se cumple la hipótesis de normalidad.

Calibración SIGMA

A continuación se presentan los datos recogidos en la calibración y más tarde se hará el cálculo de la incertidumbre. Todo de manera tabulada.

DA	тоѕ					
RESOLUCIÓN	0,	001 mm				
CAMPO DE MEDIDA	300	x 200 mm				
<i>U_{BPL}</i> [21]	(0,16+0,0015 L) μm con L en mm ²	BPL de acero grados 1 y 2				
BPL utilizados (mm)	INCERTIDUMBRE	RE EXPANDIDA BPL (μm)				
10		0,175				
20		0,190				
30		0,205				
50	0,235					
70		0,265				
80		0,280				
90		0,295				
200		0,460				
300		0,610				
α_p	11,5 · 10 ⁻⁶ °C ⁻¹					
$U_{TERMOMETRO}[22]$	0,3:	1 ºC (K=2)				

Tabla 6 .- Datos Calibración SIGMA

 $^{^{2}}$ Aun siendo sólo válida vara BPL con longitudes nominales comprendidas entre $0.5~mm \leq L \leq 100mm$ por no disponer de otra se ha usado también para los BPL de longitudes nominales de 200 y 300 mm.

CALIBRACIÓN EJE X

EJE	Х
LONGITUD	300 mm
LONGITUD NOMINAL BPL (mm)	composición de BPL
30	30
60	50 + 10
90	90
120	90 + 30
150	80 + 70
180	80 + 70 + 30
210	200 + 10
240	200 + 10 + 30
270	200 + 70
300	300

Tabla 7 .- Composición BPL EJE X SIGMA

	EJE X															
CAMPO D	DE MEDIDA= 300 mm															
PUNTO J	LONGITUD NOMINAL BPL (mm)	Tª INICIAL (ºC)	1	2	3	4	MEDIDA 5	AS (mm) 6	7	8	9	10	Tª FINAL (ºC)	MEDIA (mm)	DESVIACIÓN TÍPICA (mm)	Tª MEDIA (ºC) t
1	30	22,0	29,962	29,940	29,936	29,972	29,969	29,900	29,916	29,931	29,953	29,984	22,2	29,9463	0,026521	22,10
2	60	22,2	59,948	59,913	59,895	59,938	59,987	59,979	59,980	59,988	59,956	59,957	22,3	59,9541	0,031645	22,25
3	90	22,3	89,964	89,939	89,930	89,940	89,950	89,982	90,017	89,970	89,988	89,974	22,4	89,9654	0,026622	22,35
4	120	22,4	120,129	120,134	120,129	120,089	120,099	120,127	120,136	120,118	120,110	120,117	22,5	120,1188	0,015505	22,45
5	150	22,5	150,026	150,034	149,985	150,017	149,996	149,986	149,991	149,986	149,984	149,992	22,6	149,9997	0,018720	22,55
6	180	22,6	180,047	180,064	180,012	180,052	179,982	180,096	180,088	180,079	180,065	180,092	22,7	180,0577	0,036627	22,65
7	210	21,0	210,028	210,010	210,038	210,061	210,064	210,056	210,050	210,031	210,048	210,076	22,7	210,0462	0,019657	21,85
8	240	22,7	239,973	239,937	239,947	240,001	240,011	239,995	239,996	239,962	239,956	239,948	22,8	239,9726	0,026345	22,75
9	270	22,8	269,998	269,957	269,978	269,980	270,002	270,008	269,998	269,995	269,981	269,983	22,9	269,9880	0,015070	22,85
10	300	23,0	299,948	299,939	299,938	299,951	299,946	299,942	299,968	299,970	299,950	299,967	23,0	299,9519	0,012142	23,00

Tabla 8 .- Toma de Medidas EJE X SIGMA

Valor certificado Patrón (mm) $l_{pj_{20}}$	Valor corregido patrón (mm) $l_{pj_{20}}(1+(lpha_p\cdot(t-20))$	Media (mm) $ar{l}_j$	CORRECCIÓN (μ m) $C_{cj} = l_{pj_{20}}(1+(lpha_p\cdot(t-20))-ar{l}_j$
30	30,0007245	29,9463	54,4245
60	60,0015525	59,9541	47,4525
90	90,00243225	89,9654	37,0322
120	120,003381	120,0947	-91,3190
150	150,0043988	149,9837	20,6988
180	180,0054855	180,0632	-57,7145
210	210,0044678	210,0462	-41,7323
240	240,00759	239,9726	34,9900
270	270,0088493	269,988	20,8492
300	300,01035	299,9519	58,4500

Tabla 9 .- Corrección por Calibración EJE X SIGMA

						INCERTIDUM	IBRE TÍPICA $u(x_i)$			INCERTIDUMBRE COMBINADA (μ m) $u_c(y)_j$	
MEDIA (mm)	DESVIACION TÍPICA (mm)	Tª MEDIA (ºC) t	δt=tf-ti (ºC)	REPETIBILIDAD (μm)	RESOLUCIÓN (μm)	BPL (μm)	DESCONOCIMIEN TO DEL COEFICIENTE DE DILATACIÓN (ºC-1)	VARIACIÓN DE TEMPERATURA BPL (ºC)	TERMÓMETRO (ºC)	$= \sqrt{\sum_{i=1}^{N} [c_i \cdot u(x_i)]^2}$	INCERTIDUMBRE EXPANDIDA (μ m) $U_j = k \cdot u_c(y)_j$
29,9463	0,026521	22,10	0,2	8,386504081	0,408246581	0,103	5,77334E-07	0,057733387	0,155	8,397060332	16,79412066
59,9541	0,031645	22,25	0,1	10,00709341	0,408246581	0,205	5,77334E-07	0,028866694	0,155	10,0175151	20,03503019
89,9654	0,026622	22,35	0,1	8,418438679	0,408246581	0,148	5,77334E-07	0,028866694	0,155	8,429622253	16,85924451
120,1188	0,015505	22,45	0,1	4,903025632	0,408246581	0,250	5,77334E-07	0,028866694	0,155	4,926339985	9,852679969
149,9997	0,018720	22,55	0,1	5,919886857	0,408246581	0,273	5,77334E-07	0,028866694	0,155	5,9402005	11,880401
180,0577	0,036627	22,65	0,1	11,58252007	0,408246581	0,375	5,77334E-07	0,028866694	0,155	11,59577775	23,19155549
210,0462	0,019657	21,85	1,7	6,216064194	0,408246581	0,318	5,77334E-07	0,490733791	0,155	6,237541746	12,47508349
239,9726	0,026345	22,75	0,1	8,330874134	0,408246581	0,420	5,77334E-07	0,028866694	0,155	8,351438754	16,70287751
269,9880	0,015070	22,85	0,1	4,765583934	0,408246581	0,363	5,77334E-07	0,028866694	0,155	4,796755357	9,593510714
299,9519	0,012142	23,00	0	3,839677724	0,408246581	0,305	5,77334E-07	0	0,155	3,873346817	7,746693635
				$u(x_i) = \frac{s_j}{\sqrt{n}}$	$u(x_i) = \frac{e}{\sqrt{6}}$	$u(x_i) = \frac{U_{bpl}}{k}$	$u(x_i) = \frac{\delta \alpha_p}{\sqrt{3}}$	$u(x_i) = \frac{\delta t}{2\sqrt{3}}$	$u(x_i) = \frac{U_{term}}{k}$		
				$c_i = -1$	$c_i = -1$	$c_i \approx 1$	$c_i = l_{pj_{20}}(t - 20)$	$c_i = l_{pj_{20}}\alpha_p$	$c_i = l_{pj_{20}} \alpha_p$		

Tabla 10 .- Cálculo de Incertidumbre Corrección por Calibración EJE X SIGMA

CALIBRACIÓN EJE Y

EJE	ΕY
LONGITUD LONGITUD NOMINAL BPL	200 mm composición
(mm)	de BPL
20	20
40	10 + 30
60	50 + 10
80	80
100	90 + 10
120	90 + 30
140	90 + 50
160	90 + 70
180	80 + 70 + 30
200	90 + 80 + 30

Tabla 11 .- Composición BPL EJE Y SIGMA

	EJE Y															
САМРО І	DE MEDIDA= 200 mm															
	LONGITUD	Τ <u>a</u>					MEDIDA	AS (mm)					T₫		DESVIACIÓN	Τ <u>a</u>
PUNTO J	NOMINAL BPL (mm)	INICIAL (ºc)	1	2	3	4	5	6	7	8	9	10	FINAL (ºC)	MEDIA (mm)	TIPICA (mm)	MEDIA (ºC) t
1	20	22,2	19,961	19,976	19,995	19,975	19,961	19,950	19,940	19,947	19,973	19,976	22,2	19,9654	0,016701	22,20
2	40	22,2	39,955	39,981	39,982	39,962	39,957	39,975	39,954	39,980	39,987	39,978	22,3	39,9711	0,012671	22,25
3	60	22,3	59,930	59,914	59,928	59,969	59,970	59,944	59,934	59,936	59,962	59,981	22,3	59,9468	0,022190	22,30
4	80	22,3	79,985	80,002	80,001	80,007	79,978	80,001	79,996	79,967	79,985	80,029	22,4	79,9951	0,017304	22,35
5	100	22,4	99,958	99,947	99,947	99,977	99,988	99,977	99,966	99,983	100,003	99,977	22,5	99,9723	0,017932	22,45
6	120	22,6	119,928	119,925	119,967	119,918	119,923	119,964	119,964	119,995	119,976	119,986	22,6	119,9546	0,028535	22,60
7	140	22,6	139,952	139,954	139,939	139,944	139,904	139,945	139,963	139,957	139,976	139,985	22,6	139,9519	0,022113	22,60
8	160	22,6	159,971	159,981	159,948	159,911	159,927	159,940	159,941	159,964	159,982	159,990	22,6	159,9555	0,026150	22,60
9	180	22,7	179,964	179,949	179,942	179,948	179,936	179,976	179,995	180,000	179,986	179,978	22,7	179,9674	0,022887	22,70
10	200	21,9	199,942	199,910	199,938	199,959	199,963	199,963	199,967	199,978	199,968	199,964	22,0	199,9552	0,019860	21,95

Tabla 12 .- Toma de Medidas EJE Y SIGMA

Valor certificado Patrón (mm) $l_{pj_{20}}$	Valor corregido patrón (mm) $l_{pj_{20}}(1+(lpha_p\cdot(t-20))$	Media (mm) $ar{l}_j$	CORRECCIÓN (μ m) $\mathcal{C}_{cj} = l_{pj_{20}}(1+(\alpha_p\cdot(t-20))-ar{l}_j$
20	20,000506	19,9654	35,1060
40	40,001035	39,9711	29,9350
60	60,001587	59,9468	54,7870
80	80,002162	79,9951	7,0620
100	100,0028175	99,9723	30,5175
120	120,003588	119,9546	48,9880
140	140,004186	139,9519	52,2860
160	160,004784	159,9555	49,2840
180	180,005589	179,9674	71,0890
200	200,004485	199,9552	49,2850

Tabla 13 .- Corrección por Calibración EJE Y SIGMA

						INCERTIDUM	IBRE TÍPICA $u(x_i)$			INCERTIDUMBRE COMBINADA (μ m) $u_c(y)_j$	
MEDIA (mm)	DESVIACION TÍPICA (mm)	Tª MEDIA (ºC) t	δt=tf- ti (ºC)	REPETIBILIDAD (μm)	RESOLUCIÓN (μm)	BPL (μm)	DESCONOCIMIEN TO DEL COEFICIENTE DE DILATACIÓN (ºC-1)	VARIACIÓN DE TEMPERATURA BPL (ºC)	TERMOMETRO (ºC)	$= \sqrt{\sum_{i=1}^{N} [c_i \cdot u(x_i)]^2}$	INCERTIDUMBRE EXPANDIDA (μ m) $U_j = k \cdot u_c(y)_j$
19,9654	0,016701	22,20	0	5,281376642	0,408246581	0,095	5,77334E-07	0	0,155	5,297983532	10,59596706
39,9711	0,012671	22,25	0,1	4,00677147	0,408246581	0,190	5,77334E-07	0,028866694	0,155	4,031994902	8,063989805
59,9468	0,022190	22,30	0	7,017072345	0,408246581	0,205	5,77334E-07	0	0,155	7,031926805	14,06385361
79,9951	0,017304	22,35	0,1	5,472011538	0,408246581	0,140	5,77334E-07	0,028866694	0,155	5,489004971	10,97800994
99,9723	0,017932	22,45	0,1	5,67064479	0,408246581	0,235	5,77334E-07	0,028866694	0,155	5,690175978	11,38035196
119,9546	0,028535	22,60	0	9,023608824	0,408246581	0,250	5,77334E-07	0	0,155	9,036298001	18,072596
139,9519	0,022113	22,60	0	6,992724648	0,408246581	0,265	5,77334E-07	0	0,155	7,009642529	14,01928506
159,9555	0,026150	22,60	0	8,269363165	0,408246581	0,280	5,77334E-07	0	0,155	8,284167585	16,56833517
179,9674	0,022887	22,70	0	7,237505242	0,408246581	0,375	5,77334E-07	0	0,155	7,25870323	14,51740646
199,9552	0,019860	21,95	0,1	6,280083022	0,408246581	0,390	5,77334E-07	0,028866694	0,155	6,305411027	12,61082205
				$u(x_i) = \frac{s_j}{\sqrt{n}}$	$u(x_i) = \frac{e}{\sqrt{6}}$	$u(x_i) = \frac{U_{bpl}}{k}$	$u(x_i) = \frac{\delta \alpha_p}{\sqrt{3}}$	$u(x_i) = \frac{\delta t}{2\sqrt{3}}$	$u(x_i) = \frac{U_{term}}{k}$		
				$c_i = -1$	$c_i = -1$	$c_i \approx 1$	$c_i = l_{pj_{20}}(t - 20)$	$c_i = l_{pj_{20}}\alpha_p$	$c_i = l_{pj_{20}} \alpha_p$		

Tabla 14 .- Cálculo de Incertidumbre Corrección por Calibración EJE Y SIGMA

Interpretación de los Resultados.

Como en el trabajo habitual con el proyector resulta complejo, o no deseable, aplicar las correcciones obtenidas; se opta por trabajar con una incertidumbre de calibración ampliada, que englobe la máxima corrección encontrada en la calibración, en valor absoluto. De esta forma como incertidumbre de calibración se usará:

$$U = U_{j max} + |C_{C max}|$$

CALIBRACIÓN SIGMA

EJE X	
$U_{j\;max}$	23,19155549 (μm)
$ C_{C max} $	91,3190 (μm)
$U = U_{j max} + C_{C max} $	110 (μm) K=2

EJE Y	
$U_{j\;max}$	16,56833517 (μm)
$ C_{C max} $	71,0890 (μm)
$U = U_{j max} + C_{C max} $	88 (μm) K=2

Tabla 15 .- Resultados Calibración SIGMA

Calibración DELTEC

A continuación se presentan los datos recogidos en la calibración y más tarde se hará el cálculo de la incertidumbre. Todo de manera tabulada.

DA ⁻					
RESOLUCIÓN	0,	.001 mm			
CAMPO DE MEDIDA	300 x 200 mm ³				
<i>U_{BPL}</i> [21]	$(0,16+0,0015 \text{ L}) \mu \text{m}$ con L en mm 4 BPL de acero grados				
BPL utilizados (mm)	INCERTIDUMBRE EXPANDIDA BPL (μm)				
10	0,175				
20	0,190				
30	0,205				
50	0,235				
70		0,265			
80	0,280				
90	0,295				
α_p	$11,5 \cdot 10^{-6} {}^{\circ}C^{-1}$				
$U_{TERMOMETRO}[22]$	0,33	1 ºC (K=2)			

Tabla 16 .- Datos Calibración DELTEC

³ Ante la no disponibilidad de los BPL de 200 y 300 mm en la calibración de este equipo, el Eje X sólo se calibrará hasta 200 mm.

⁴ Aun siendo sólo válida vara BPL con longitudes nominales comprendidas entre $0.5~mm \le L \le 100mm$ por no disponer de otra se ha usado también para los BPL de longitudes nominales de 200 y 300 mm.

CALIBRACIÓN EJE X

EJE X							
LONGITUD	200 mm						
LONGITUD NOMINAL BPL (mm)	composición de BPL						
20	20						
40	10 + 30						
60	50 + 10						
80	80						
100	90 + 10						
120	90 + 30						
140	90 + 50						
160	90 + 70						
180	80 + 70 + 30						
200	90 + 80 + 30						

Tabla 17 .- Composición BPL EJE X DELTEC

	EJE X															
CAMPO D	DE MEDIDA= 200 mm															
	LONGITUD	Tª	Tª MEDIDAS (mm)									Τ <u>a</u>		DESVIACIÓN	Tª	
PUNTO J	NOMINAL BPL (mm)	INICIAL (ºC)	1	2	3	4	5	6	7	8	9	10	FINAL (ºC)	MEDIA (mm)	TÍPICA (mm)	MEDIA (ºC) t
1	20	20,7	19,978	19,984	19,977	19,980	19,978	19,980	19,985	19,980	19,979	19,982	20,7	19,9803	0,002627	20,70
2	40	20,7	39,973	39,980	39,975	39,975	39,972	39,974	39,981	39,974	39,971	39,975	20,7	39,9750	0,003197	20,70
3	60	20,7	59,975	59,973	59,971	59,961	59,961	59,974	59,977	59,974	59,981	59,973	20,8	59,9720	0,006394	20,75
4	80	20,8	79,993	79,995	80,001	79,997	79,992	79,995	79,994	79,994	80,000	79,999	20,9	79,9960	0,003091	20,85
5	100	20,9	99,976	99,978	99,982	99,979	99,984	99,981	99,980	99,982	99,983	99,980	20,9	99,9805	0,002415	20,90
6	120	21,0	119,973	119,975	119,979	119,978	119,976	119,974	119,978	119,977	119,976	119,977	21,0	119,9763	0,001889	21,00
7	140	21,0	139,980	139,983	139,985	139,983	139,988	139,922	139,989	139,986	139,986	139,984	21,0	139,9786	0,020057	21,00
8	160	21,0	159,993	159,991	159,990	159,988	159,985	159,986	159,986	159,987	159,990	159,989	21,1	159,9885	0,002550	21,05
9	180	21,1	180,030	180,026	180,033	180,038	180,011	180,001	180,015	180,011	179,999	180,001	21,1	180,0165	0,014362	21,10
10	200	21,2	199,999	199,997	200,003	200,002	199,995	199,998	200,005	200,003	199,998	200,002	21,2	200,0002	0,003225	21,20

Tabla 18 .- Toma de Medidas EJE X DELTEC

Valor certificado Patrón (mm) $l_{pj_{20}}$	Valor corregido patrón (mm) $l_{pj_{20}}(1+(lpha_p\cdot(t-20))$	Media (mm) $ar{l}_j$	CORRECCIÓN (μ m) $\mathcal{C}_{cj} = l_{pj_{20}}(1+(\alpha_p\cdot(t-20))-ar{l}_j$
20	20,000161	19,9803	19,8610
40	40,000322	39,9750	25,3220
60	60,0005175	59,9720	28,5175
80	80,000782	79,9960	4,7820
100	100,001035	99,9805	20,5350
120	120,00138	119,9763	25,0800
140	140,00161	139,9786	23,0100
160	160,001932	159,9885	13,4320
180	180,002277	180,0165	-14,2230
200	200,00276	200,0002	2,5600

Tabla 19 .- Corrección por Calibración EJE X DELTEC

					INCERTIDUMBRE TÍPICA $u(x_i)$					INCERTIDUMBRE COMBINADA (μ m) $u_c(y)_j$	INCERTIDUMBRE
MEDIA (mm)	DESVIACION TÍPICA (mm)	Tª MEDIA (ºC) t	δt=tf- ti (ºC)	REPETIBILIDAD (μm)	RESOLUCIÓN (μm)	BPL (μm)	DESCONOCIMIEN TO DEL COEFICIENTE DE DILATACIÓN (ºC-1)	VARIACIÓN DE TEMPERATURA BPL (ºC)	TERMOMETRO (ºC)	$= \sqrt{\sum_{i=1}^{N} [c_i \cdot u(x_i)]^2}$	EXPANDIDA (μ m) $U_j = k \cdot u_c(y)_j$
19,9803	0,002627	20,70	0	0,830656518	0,408246581	0,095	5,77334E-07	0	0,155	0,926774931	1,853549863
39,9750	0,003197	20,70	0	1,011042917	0,408246581	0,190	5,77334E-07	0	0,155	1,094485293	2,188970585
59,9720	0,006394	20,75	0,1	2,022085833	0,408246581	0,205	5,77334E-07	0,028866694	0,155	2,065430379	4,130860758
79,9960	0,003091	20,85	0,1	0,977518314	0,408246581	0,140	5,77334E-07	0,028866694	0,155	1,06165312	2,123306241
99,9805	0,002415	20,90	0	0,76375722	0,408246581	0,235	5,77334E-07	0	0,155	0,873954602	1,747909205
119,9763	0,001889	21,00	0	0,597211543	0,408246581	0,250	5,77334E-07	0	0,155	0,734133468	1,468266936
139,9786	0,020057	21,00	0	6,342404774	0,408246581	0,265	5,77334E-07	0	0,155	6,356911192	12,71382238
159,9885	0,002550	21,05	0,1	0,806220079	0,408246581	0,280	5,77334E-07	0,028866694	0,155	0,914470437	1,828940875
180,0165	0,014362	21,10	0	4,541749259	0,408246581	0,375	5,77334E-07	0	0,155	4,563913668	9,127827336
200,0002	0,003225	21,20	0	1,019796698	0,408246581	0,390	5,77334E-07	0	0,155	1,115650359	2,231300718
			1	$u(x_i) = \frac{s_j}{\sqrt{n}}$	$u(x_i) = \frac{e}{\sqrt{6}}$	$u(x_i) = \frac{U_{bpl}}{k}$	$u(x_i) = \frac{\delta \alpha_p}{\sqrt{3}}$	$u(x_i) = \frac{\delta t}{2\sqrt{3}}$	$u(x_i) = \frac{U_{term}}{k}$		
				$c_i = -1$	$c_i = -1$	$c_i \approx 1$	$c_i = l_{pj_{20}}(t - 20)$	$c_i = l_{pj_{20}}\alpha_p$	$c_i = l_{pj_{20}} \alpha_p$		

Tabla 20 .- Cálculo de Incertidumbre Corrección por Calibración EJE X DELEC

CALIBRACIÓN EJE Y

EJE Y						
LONGITUD	200 mm					
NOMINAL BPL (mm)	composición de BPL					
20	20					
40	10 + 30					
60	50 + 10					
80	80					
100	90 + 10					
120	90 + 30					
140	90 + 50					
160	90 + 70					
180	80 + 70 + 30					
200	90 + 80 + 30					

Tabla 21 .- Composición BPL EJE Y DELTEC

	EJE Y															
CAMPO D	DE MEDIDA= 200 mm															
	LONGITUD	Tª					MEDIDA	AS (mm)					Τ <u>a</u>		DESVIACIÓN	T₫
PUNTO J	NOMINAL BPL (mm)	INICIAL (ºC)	1	2	3	4	5	6	7	8	9	10	FINAL (ºC)	MEDIA (mm)	TÍPICA (mm)	MEDIA (ºC) t
1	20	21,2	19,975	19,979	19,982	19,982	19,980	19,976	19,980	19,982	19,975	19,971	21,2	19,9782	0,003765	21,20
2	40	21,2	39,967	39,984	39,976	39,969	39,972	39,975	39,972	39,971	39,974	39,977	21,3	39,9737	0,004762	21,25
3	60	21,3	59,966	59,961	59,962	59,963	59,967	59,971	59,973	59,968	59,963	59,967	21,3	59,9661	0,003929	21,30
4	80	21,3	79,986	79,985	79,982	79,980	79,981	79,988	79,994	79,994	79,992	79,987	21,3	79,9869	0,005152	21,30
5	100	21,3	99,974	99,977	99,981	99,979	99,981	99,985	99,982	99,981	99,983	99,978	21,3	99,9801	0,003178	21,30
6	120	21,3	119,970	119,973	119,979	119,980	119,977	119,973	119,974	119,973	119,977	119,979	21,4	119,9755	0,003342	21,35
7	140	21,4	139,981	139,980	139,978	139,983	139,983	139,975	139,976	139,975	139,977	139,981	21,4	139,9789	0,003107	21,40
8	160	21,4	160,005	160,007	160,010	160,008	159,998	160,000	160,002	160,000	160,003	160,002	21,4	160,0035	0,003894	21,40
9	180	20,2	180,011	180,013	180,004	180,014	180,016	180,009	180,010	180,017	180,014	180,015	20,2	180,0123	0,003889	20,20
10	200	20,7	199,987	199,99	199,989	199,989	199,987	199,985	199,985	199,983	199,984	199,992	20,7	199,9871	0,002885	20,70

Tabla 22 .- Toma de Medidas EJE Y DELTEC

Valor certificado Patrón (mm) $l_{pj_{20}}$	Valor corregido patrón (mm) $l_{pj_{20}}(1+(lpha_p\cdot(t-20))$	Media (mm) $ar{l}_j$	CORRECCIÓN (μ m) $C_{cj} = l_{pj_{20}}(1 + (\alpha_p \cdot (t-20)) - \bar{l}_j$
20	20,000276	19,9782	22,076
40	40,000575	39,9737	26,875
60	60,000897	59,9661	34,797
80	80,001196	79,9869	14,296
100	100,001495	99,9801	21,395
120	120,001863	119,9755	26,363
140	140,002254	139,9789	23,354
160	160,002576	160,0035	-0,924
180	180,000414	180,0123	-11,886
200	200,00161	199,9871	14,510

Tabla 23 .- Corrección por Calibración EJE Y DELTEC

					INCERTIDUMBRE TÍPICA $u(x_i)$					INCERTIDUMBRE COMBINADA (μ m) $u_c(y)_j$	INCEPTIOUMER
MEDIA (mm)	DESVIACION TÍPICA (mm)	Tª MEDIA (ºC) t	δt=tf- ti (ºC)	REPETIBILIDAD (μm)	RESOLUCIÓN (μm)	BPL (μm)	TO DEL COEFICIENTE DE DILATACIÓN (ºC-1)	VARIACIÓN DE TEMPERATURA BPL (ºC)	TERMOMETRO (ºC)	$= \sqrt{\sum_{i=1}^{N} [c_i \cdot u(x_i)]^2}$	INCERTIDUMBRE EXPANDIDA (μ m) $U_j = k \cdot u_c(y)_j$
19,9782	0,003765	21,20	0	1,190696328	0,408246581	0,095	5,77334E-07	0	0,155	1,262318509	2,524637018
39,9737	0,004762	21,25	0,1	1,505903628	0,408246581	0,190	5,77334E-07	0,028866694	0,155	1,571785931	3,143571863
59,9661	0,003929	21,30	0	1,242300901	0,408246581	0,205	5,77334E-07	0	0,155	1,323632053	2,647264106
79,9869	0,005152	21,30	0	1,629235078	0,408246581	0,140	5,77334E-07	0	0,155	1,685429392	3,370858784
99,9801	0,003178	21,30	0	1,004980462	0,408246581	0,235	5,77334E-07	0	0,155	1,109899112	2,219798223
119,9755	0,003342	21,35	0,1	1,056717034	0,408246581	0,25	5,77334E-07	0,028866694	0,155	1,160093193	2,320186386
139,9789	0,003107	21,40	0	0,982619923	0,408246581	0,265	5,77334E-07	0	0,155	1,096554722	2,193109445
160,0035	0,003894	21,40	0	1,231521513	0,408246581	0,280	5,77334E-07	0	0,155	1,327294469	2,654588938
180,0123	0,003889	20,20	0	1,229715762	0,408246581	0,375	5,77334E-07	0	0,155	1,348885181	2,697770361
199,9871	0,002885	20,70	0	0,912255701	0,408246581	0,390	5,77334E-07	0	0,155	1,072835434	2,145670868
				$u(x_i) = \frac{s_j}{\sqrt{n}}$	$u(x_i) = \frac{e}{\sqrt{6}}$	$u(x_i) = \frac{U_{bpl}}{k}$	$u(x_i) = \frac{\delta \alpha_p}{\sqrt{3}}$	$u(x_i) = \frac{\delta t}{2\sqrt{3}}$	$u(x_i) = \frac{U_{term}}{k}$		
				$c_i = -1$	$c_i = -1$	$c_i \approx 1$	$c_i = l_{pj_{20}}(t - 20)$	$c_i = l_{pj_{20}}\alpha_p$	$c_i = l_{pj_{20}} \alpha_p$		

Tabla 24 .- Cálculo de Incertidumbre Corrección por Calibración EJE Y DELTEC

Interpretación de los Resultados.

Como en el trabajo habitual con el proyector resulta complejo, o no deseable, aplicar las correcciones obtenidas; se opta por trabajar con una incertidumbre de calibración ampliada, que englobe la máxima corrección encontrada en la calibración, en valor absoluto. De esta forma como incertidumbre de calibración se usará:

$$U = U_{j max} + |C_{C max}|$$

CALIBRACIÓN DELTEC

EJE X	
$U_{j\;max}$	12,71382238 (μm)
$ C_{C max} $	28,5175 (μm)
$U = U_{j \max} + C_{C \max} $	41 (μm) K=2

EJE Y	
$U_{j max}$	3,370858784 (μm)
$ C_{C max} $	34,797 (μm)
$U = U_{j max} + C_{C max} $	38 (μm) K=2

Tabla 25 .- Resultados Calibración DELTEC

CAPÍTULO 10: EVALUACIÓN DE LA INCERTIDUMBRE DE LAS MEDIDAS

Introducción

Para poder llevar acabo la comparación de las medidas obtenidas en los dos proyectores y discernir qué equipo es más adecuado, se hace necesario acompañar las medidas de un valor razonable (no exacto, ya que los equipos no han sido calibrados al patrón nacional) de incertidumbre.

En este capítulo se describen las fuentes de incertidumbre que se han tenido en cuenta así como su cuantificación siguiendo en todo momento las directrices marcadas por la Guía para la Expresión de la Incertidumbre de Medida GUM [8]

Como las medidas tomadas con ambos proyectores presentan las mismas contribuciones a la incertidumbre compartirán el desarrollo teórico, en el que se presentan éstas. Más adelante en el capítulo se cuantificarán para cada medida y proyector.

Todas las medidas tomadas son medidas directas por lo que su función modelo será de la forma:

$$L = l_j + \sum Correctiones$$

Con:

- l_i la medida tomada, realizándose n=10 repeticiones.

Como correcciones se han tendido en cuenta:

- $C_{T^{\underline{a}}}$ la corrección por temperatura:

$$C_{T^a} = l_j(\alpha \cdot (t-20))$$

Con $t=\frac{t_f+t_i}{2}$ siendo t_f y t_i las temperaturas final e inicial de la serie de repeticiones.

- C_E la corrección por redondeo de escala
- C_{termometro} la corrección del termómetro, obtenida en su calibración. Pero al utilizar nosotros un modelo de corrección global nula para el termómetro, no la tendremos en cuenta, trabajaremos con una incertidumbre expandida del termómetro que englobe la máxima corrección.
- C_{instrumento} la corrección del proyector obtenida en su calibración. Pero como se ha optado por no aplicar correcciones del instrumento en las medidas sino trabajar con una incertidumbre del instrumento expandida no se aplicará.

_

Con todo esto la función modelo queda:

$$L = l_i + C_{T^a} + C_E + C_{termometro} + C_{instrumento}$$

Si tenemos en cuenta que las dos últimas son nulas y que al realizar la estimación, la mejor estimación de una serie de medidas es su esperanza matemática y que la corrección de escala es una variable aleatoria que sigue una distribución uniforme

en el intervalo cerrado $\left[\frac{-e}{2},\frac{e}{2}\right]$ y por tanto su esperanza matemática es 0, la estimación del mensurando quedará

$$\hat{L} = \bar{l}_j(1 + \alpha(t - 20))$$

Por lo que el mensurando se expresará finalmente como:

$$L = \hat{L} \pm U$$

Se han considerado las siguientes contribuciones a la incertidumbre:

- 1.- Debida a la magnitud de entrada \bar{l}_i (valor medio observado)
 - 1.1.- Repetibilidad

$$u(x_i) = \frac{s_j}{\sqrt{n}}$$

$$c_{i} = 1$$

1.2.- Resolución o Escala del instrumento. Teniendo en cuenta la resolución longitudinal e del instrumento y considerando el máximo error posible cometido debido a la resolución es $\frac{e}{2}$

$$u(x_i) = \frac{e}{\sqrt{6}}$$

$$c_{i} = 1$$

2.- Debida a la Incertidumbre en longitud, debida a la variación

 $\delta t = \left(t_f - t_i\right)$ Diferencia de temperaturas final e inicial. Dilataciones contracciones de la plantilla

$$u(x_i) = \frac{\delta t}{2\sqrt{3}}$$

$$c_i = \overline{l_i} \alpha$$

3.- Incertidumbre en longitud, debida a la incertidumbre en el conocimiento de t, por causa de la incertidumbre de medida del termómetro utilizado.

$$u(x_i) = \frac{U_{termometro}}{k}$$
$$c_i = \overline{l_j} \alpha$$

4.- Incertidumbre debida al instrumento utilizado al realizar las medidas.

$$u(x_i) = \frac{U_{instrumento}}{k}$$
$$c_i = 1$$

Finalmente la incertidumbre típica combinada es:

$$u_c(y) = \sqrt{\sum_{i=1}^{N} [c_i \cdot u(x_i)]^2}$$

Desarrollando llegamos a

$$u_c(y) = \sqrt{\left[\left(1 \cdot \frac{s_i}{\sqrt{n}}\right)^2 + \left(1 \cdot \frac{e}{\sqrt{6}}\right)^2 + \left(\overline{l_j} \alpha \cdot \frac{\delta t}{2\sqrt{3}}\right)^2 + \left(\overline{l_j} \alpha \cdot \frac{U_{term}}{k}\right)^2 + \left(1 \cdot \frac{U_{inst}}{k}\right)^2\right]}$$

La expresión entonces para la incertidumbre expandida es entonces:

$$U_i = k \cdot u_c(y)$$

Con k = 2 ya que:

- n=10 lo que implica que la muestra es suficientemente fiable, se cumple la hipótesis de fiabilidad
- Hay al menos tres contribuciones de incertidumbre que siguen una distribución de probabilidad conocida y el Teorema del Limite Central permite aproximar la distribución resultante de la corrección por calibración a una distribución normal. Se cumple la hipótesis de normalidad.

Evaluación de la incertidumbre MEDIDAS SIGMA

De acuerdo al desarrollo teórico expuesto anteriormente y con los datos recogidos en la medición con el proyector sigma, recogidos en la tabla 1, en este capítulo se realiza la cuantificación de la incertidumbre en las medidas tomadas con el proyector SIGMA.

Para una mayor comodidad se realizará de manera tabulada.

	DATOS TÉCNICOS							
RESOLUCIÓN U instrumento				U termómetro	Coeficiente dilatación			
LINEAL	ANGULAR	EJE X EJE Y		0.24.06				
0,001 mm	0,001 ⁹ 110 μm 88 μm k=2 k=2		-	0,31 ºC K=2	$\alpha = 11.5 \cdot 10^{-6} \ C^{-1}$			

Tabla 26 .- Datos Técnicos SIGMA

TOMA	DE MEDIDAS	SIGMA	FUNCIÓN MODELO
СОТА	MEDIA $ar{l}_j$	DESVIACIÓN TÍPICA	FUNCIÓN MODELO $\widehat{L}=ar{l}_j(1+lpha(t-20))$
1 (mm)	6,3943	0,0569	6,39449
2 (mm)	27,6400	0,2070	27,64083
3 (mm)	43,1750	0,1980	43,17629
4 (º)	120,0170	0,2500	120,02059
5 (º)	149,7100	0,2590	149,71448
6 (mm)	8,9181	0,0710	8,91837
7 (º)	99,9380	0,3860	99,94099
8 (mm)	45,6660	0,0232	45,66737
9 (mm)	10,9950	0,0447	10,99533
10 (mm)	6,3973	0,0214	6,39749
11 (mm)	22,8060	0,0710	22,80668
12 (mm)	12,6740	0,0248	12,67438
13 (mm)	10,1490	0,0631	10,14930
14 (mm)	43,0870	0,1190	43,08829
15 (mm)	25,3560	0,0539	25,35676
16 (mm)	6,3711	0,0784	6,37129
17 (mm)	29,5830	0,1490	29,58388
18 (mm)	45,6880	0,0804	45,68937
19 (mm)	12,7410	0,0221	12,74138
20 (mm)	12,6310	0,1110	12,63138
21 (mm)	32,9790	0,0193	32,97999
22 (mm)	12,6740	0,0137	12,67438
$t = \frac{t_f + t_i}{2}$ (°C)	22,6		
$\delta t = (t_f - t_i)$ (°C)	0,2		

Tabla 27 .- Estimación MEDIDAS SIGMA

		INCERT	IDUMBRE TÍPICA	$u(x_i)$		INCERTIDUMBRE COMBINADA (µm)	
СОТА	REPETIBILIDAD (μm)	RESOLUCIÓN (μm)	VARIACIÓN TEMPERATURA	TERMOMETRO	PROYECTOR (μm)	$u_c(y) = \sum_{i=1}^{N} [c_i \cdot u(x_i)]^2$	INCERTIDUMBRE EXPANDIDA (μ m) $U = k \cdot u_c(y)$
20171	(р)	(μ)	(ºC)	(5)	(μ)	$\sqrt{\sum_{i=1}^{i=1}}$	
1	17,99323277	0,408246581	0,057733387	0,155	55	57,86988	115,73976
2	65,45868513	0,408246581	0,057733387	0,155	55	85,49857	170,99715
3	62,61265535	0,408246581	0,057733387	0,155	55	83,33973	166,67947
6	22,45201278	0,408246581	0,057733387	0,155	44	49,39898	98,79797
8	7,336432344	0,408246581	0,057733387	0,155	44	44,60930	89,21861
9	14,13528128	0,408246581	0,057733387	0,155	44	46,21659	92,43317
10	6,767226386	0,408246581	0,057733387	0,155	0	6,77953	13,55906
11	22,45201278	0,408246581	0,057733387	0,155	55	59,40757	118,81514
12	7,842393195	0,408246581	0,057733387	0,155	44	44,69530	89,39060
13	19,95383107	0,408246581	0,057733387	0,155	0	19,95801	39,91601
14	37,63083831	0,408246581	0,057733387	0,155	55	66,64268	133,28536
15	17,04455618	0,408246581	0,057733387	0,155	44	47,18775	94,37550
16	24,79208171	0,408246581	0,057733387	0,155	0	24,79544	49,59089
17	47,11760428	0,408246581	0,057733387	0,155	55	72,42400	144,84799
18	25,42453278	0,408246581	0,057733387	0,155	44	50,81903	101,63805
19	6,988584258	0,408246581	0,057733387	0,155	0	7,00050	14,00100
20	35,10103406	0,408246581	0,057733387	0,155	55	65,24760	130,49520
21	6,103152769	0,408246581	0,057733387	0,155	44	44,42314	88,84627
22	4,332289789	0,408246581	0,057733387	0,155	0	4,35148	8,70297
	$u(x_i) = \frac{s_j}{\sqrt{n}}$	$u(x_i) = \frac{e}{\sqrt{6}}$	$u(x_i) = \frac{\delta t}{2\sqrt{3}}$	$u(x_i) = \frac{U_{term}}{k}$	$u(x_i) = \frac{U_{inst}}{k}$		
	$c_i = 1$	$c_i = 1$	$c_i = \overline{l_j} \alpha$	$c_i = \overline{l_j} \alpha$	$c_i = 1$		

Tabla 28 .- Cálculo de Incertidumbre MEDIDAS LINEALES SIGMA

		INCERT	INCERTIDUMBRE COMBINADA (º)	INCEPTIOUNADDE			
СОТА	REPETIBILIDAD (º)	RESOLUCIÓN (º)	VARIACIÓN TEMPERATURA (ºC)	TERMOMETRO (ºC)	PROYECTOR	$u_c(y) = \sqrt{\sum_{i=1}^{N} [c_i \cdot u(x_i)]^2}$	INCERTIDUMBRE EXPANDIDA ($^{\circ}$) $U = k \cdot u_c(y)$
4	0,079056383	0,000408247	0,057733387	0,155	0	0,079057767	0,15812
5	0,081902413	0,000408247	0,057733387	0,155	0	0,081903925	0,16381
7	0,122063055	0,000408247	0,057733387	0,155	0	0,122063886	0,24413

Tabla 29 .- Cálculo de Incertidumbre MEDIDAS ANGULARES SIGMA

	EXPRESIÓN FINAL de las MEDIDAS SIGMA						
СОТА	$\hat{L} = \bar{l}_j(1 + \alpha(t - 20))$	$U = k \cdot u_c(y)$	$\hat{L} \pm U$				
1 (mm)	6,394493396	0,115739761	6,39 ± 0,12				
2 (mm)	27,64082644	0,170997148	27,64 ± 0,17				
3 (mm)	43,17629093	0,166679468	43,18 ± 0,17				
4 (º)	120,0205885	0,158115533	120,02 ± 0,16				
5 (º)	149,7144763	0,163806861	149,71 ± 0,16				
6 (mm)	8,918366651	0,098797966	8,918 ± 0,098				
7 (º)	99,94098815	0,244127476	99,94 ± 0,24				
8 (mm)	45,66736541	0,089218606	45,667± 0,089				
9 (mm)	10,99532875	0,092433172	10,995 ± 0,092				
10 (mm)	6,397491279	0,013559059	6,397 ± 0,014				
11 (mm)	22,8066819	0,118815143	22,80 ± 0,12				
12 (mm)	12,67437895	0,089390599	12,674 ± 0,089				
13 (mm)	10,14930346	0,039916014	10,149 ± 0,040				
14 (mm)	43,0882883	0,133285358	43,09 ± 0,13				
15 (mm)	25,35675814	0,094375496	25,357 ± 0,094				
16 (mm)	6,371290496	0,049590885	6,371 ± 0,050				
17 (mm)	29,58388453	0,144847993	29,58 ± 0,14				
18 (mm)	45,68936607	0,101638055	45,69 ± 0,10				
19 (mm)	12,74138096	0,014000996	12,741 ± 0,014				
20 (mm)	12,63137767	0,130495199	12,63 ± 0,13				
21 (mm)	32,97998607	0,088846275	32,980 ± 0,089				
22 (mm)	12,67437895	0,008702965	12,6740 ± 0,0087				

Tabla 30 .- Expresión Final MEDIDAS SIGMA

Evaluación de la incertidumbre MEDIDAS DELTEC

De acuerdo al desarrollo teórico expuesto anteriormente y con los datos recogidos en la medición con el proyector sigma, recogidos en la tabla 2, en este capítulo se realiza la cuantificación de la incertidumbre en las medidas tomadas con el proyector DELTEC.

Para una mayor comodidad se realizará de manera tabulada.

DATOS TÉCNICOS									
RESOL	LUCIÓN	U termómetro	Coeficiente dilatación						
LINEAL	ANGULAR	EJE X	EJE Y	0.34.06					
0,001 mm	41 µm 38 µm			0,31 ºC K=2	$\alpha = 11,5 \cdot 10^{-6} \ C^{-1}$				

Tabla 31 .- Datos Técnicos DELTEC

TOMA	DE MEDIDAS	DELTEC	FUNCIÓN MODELO
СОТА	MEDIA $ar{l}_j$	DESVIACIÓN TÍPICA	$\hat{L} = \bar{l}_j (1 + \alpha (t - 20))$
1 (mm)	6,3296	0,0152	6,32973
2 (mm)	27,7151	0,0228	27,71567
3 (mm)	43,0987	0,0228	43,09959
4 (º)	119,8755	0,1065	119,87798
5 (º)	150,0587	0,0602	150,06181
6 (mm)	8,8643	0,0188	8,86448
7 (º)	99,9760	0,0924	99,97807
8 (mm)	45,6479	0,0297	45,64884
9 (mm)	11,0114	0,0320	11,01163
10 (mm)	6,3431	0,0108	6,34323
11 (mm)	22,8193	0,0188	22,81977
12 (mm)	12,6647	0,0128	12,66496
13 (mm)	9,9775	0,0857	9,97771
14 (mm)	42,9979	0,0546	42,99879
15 (mm)	25,2217	0,0920	25,22222
16 (mm)	6,2923	0,0396	6,29243
17 (mm)	29,6909	0,1040	29,69151
18 (mm)	45,6166	0,0275	45,61754
19 (mm)	12,5735	0,0595	12,57376
20 (mm)	12,7238	0,0518	12,72406
21 (mm)	32,9450	0,0278	32,94568
22 (mm)	12,7956	0,1109	12,79586
$t = \frac{t_f + t_i}{2}$ (9C)	21,8		
$\delta t = (t_f - t_i)$ (9C)	0,2		

Tabla 32 .- Estimación MEDIDAS DELTEC

		INCERT		INCERTIDUMBRE COMBINADA (μm)			
СОТА	REPETIBILIDAD (μm)	RESOLUCIÓN (μm)	VARIACIÓN TEMPERATURA (ºC)	TERMOMETRO (ºC)	PROYECTOR (μm)		INCERTIDUMBRE EXPANDIDA (μ m) $U = k \cdot u_c(y)$
1	4,800891921	0,408246581	0,057733387	0,155	20,5	21,05861	42,11723
2	7,196321705	0,408246581	0,057733387	0,155	20,5	21,73025	43,46050
3	7,214209604	0,408246581	0,057733387	0,155	20,5	21,73618	43,47236
6	5,94049673	0,408246581	0,057733387	0,155	19	19,91121	39,82241
8	9,376559544	0,408246581	0,057733387	0,155	19	21,19166	42,38332
9	10,11614214	0,408246581	0,057733387	0,155	19	21,52912	43,05824
10	3,413836519	0,408246581	0,057733387	0,155	0	3,43816	6,87632
11	5,936754802	0,408246581	0,057733387	0,155	20,5	21,34623	42,69247
12	4,03330484	0,408246581	0,057733387	0,155	19	19,42767	38,85533
13	27,09111513	0,408246581	0,057733387	0,155	0	27,09419	54,18838
14	17,26220054	0,408246581	0,057733387	0,155	20,5	26,80299	53,60598
15	29,09276804	0,408246581	0,057733387	0,155	19	34,74990	69,49981
16	12,50684306	0,408246581	0,057733387	0,155	0	12,51350	25,02701
17	32,87645655	0,408246581	0,057733387	0,155	20,5	38,74633	77,49266
18	8,697575528	0,408246581	0,057733387	0,155	19	20,90011	41,80021
19	18,80781463	0,408246581	0,057733387	0,155	0	18,81224	37,62449
20	16,39351439	0,408246581	0,057733387	0,155	20,5	26,25193	52,50387
21	8,801452843	0,408246581	0,057733387	0,155	19	20,94355	41,88710
22	35,07687358	0,408246581	0,057733387	0,155	0	35,07925	70,15850
	$u(x_i) = \frac{s_j}{\sqrt{n}}$	$u(x_i) = \frac{e}{\sqrt{6}}$	$u(x_i) = \frac{\delta t}{2\sqrt{3}}$	$u(x_i) = \frac{U_{term}}{k}$	$u(x_i) = \frac{U_{inst}}{k}$		
	$c_i = 1$	$c_i = 1$	$c_i = \overline{l_j} \ \alpha$	$c_i = \overline{l_j} \alpha$	$c_i = 1$		

Tabla 33 .- Cálculo de Incertidumbre MEDIDAS LINEALES DELTEC

		INCERT	INCERTIDUMBRE COMBINADA (º)	INCEPTIOUNAPPE			
СОТА	REPETIBILIDAD (º)	RESOLUCIÓN (º)	VARIACIÓN TEMPERATURA (ºC)	TERMOMETRO (ºC)	PROYECTOR (º)		INCERTIDUMBRE EXPANDIDA ($^{\circ}$) $U = k \cdot u_c(y)$
4	0,033664861	0,000408247	0,057733387	0,155	0	0,033668109	0,067336217
5	0,019051870	0,000408247	0,057733387	0,155	0	0,019058381	0,038116763
7	0,029220791	0,000408247	0,057733387	0,155	0	0,019058381	0,058448522

Tabla 34 .- Cálculo de Incertidumbre MEDIDAS ANGULARES DELTEC

	EXPRESIÓN FINAL de las MEDIDAS DELTEC						
СОТА	$\hat{L} = \bar{l}_j(1 + \alpha(t - 20))$	$U = k \cdot u_c(y)$	$\widehat{L} \pm U$				
1 (mm)	6,32973	0,042117228	6,330 ± 0,043				
2 (mm)	27,71567	0,043460498	27,716 ± 0,044				
3 (mm)	43,09959	0,043472358	43,100 ± 0,044				
4 (º)	119,87798	0,067336217	119,878 ± 0,067				
5 (º)	150,06181	0,038116763	150,062 ± 0,038				
6 (mm)	8,86448	0,039822414	8,864 ± 0,040				
7 (º)	99,97807	0,058448522	99,978 ± 0,058				
8 (mm)	45,64884	0,042383324	45,649 ± 0,043				
9 (mm)	11,01163	0,043058239	11,012 ± 0,043				
10 (mm)	6,34323	0,00687632	6,3432 ± 0,0069				
11 (mm)	22,81977	0,042692469	22,820 ± 0,043				
12 (mm)	12,66496	0,038855332	12,665 ± 0,039				
13 (mm)	9,97771	0,054188382	9,978 ± 0,054				
14 (mm)	42,99879	0,053605979	42,999 ± 0,054				
15 (mm)	25,22222	0,069499808	25,222 ± 0,070				
16 (mm)	6,29243	0,025027008	6,292 ± 0,025				
17 (mm)	29,69151	0,077492659	29,692 ± 0,078				
18 (mm)	45,61754	0,041800215	45,618 ±0,042				
19 (mm)	12,57376	0,03762449	12,574 ± 0,038				
20 (mm)	12,72406	0,052503866	12,724 ± 0,053				
21 (mm)	32,94568	0,041887098	32,946 ± 0,042				
22 (mm)	12,79586	0,070158498	12,796 ± 0,070				

Tabla 35 .- Expresión Final MEDIDAS DELTEC

CAPÍTULO 11: MEDIDAS NOMINALES

Introducción

Para poder realizar la comparación entre los equipos se plantea necesario conocer los valores nominales de la plantilla, para ello se medirá la plantilla con otro equipo distinto, uno que esté perfectamente calibrado y tenga trazabilidad.

Este equipo ha sido uno de los proyectores de perfiles disponibles en el LCD, un proyector de perfiles de eje vertical marca NIKON.

Este proyector no disponía de ninguna electrónica de evaluación, por lo que no ha sido posible la medición de algunas características geométricas de la plantilla como pueden ser todos los posicionamientos de los centros de los círculos o la medida de algunos radios (los que corresponden a arcos menores a medio arco de circunferencia). Por lo que estas cotas finalmente no se tendrán en cuenta en la comparación, en el capítulo siguiente, en el que se realizará la comparación volveremos a comentar este hecho.

En este capítulo se presentarán los datos obtenidos con este proyector, los que a partir de ahora denominaremos nominales y se realizará todo el tratamiento de los datos y su posterior análisis de incertidumbre.

Se seguirá lo expuesto en el desarrollo teórico del capítulo anterior, salvo que en este caso, al estar situado el proyector en una sala con temperatura acotada, he considerado despreciable en los cálculos la corrección por temperatura, pero por lo demás, los datos obtenidos por todos los proyectores comparten el desarrollo teórico del capítulo anterior.

Toma de Medidas Nominales

Se procederá a presentar las medidas de forma tabulada presentando la media y la desviación típica muestral. Se realizaron diez repeticiones a fin de que la muestra fuese suficientemente fiable a la hora de realizar la evaluación de la incertidumbre.

El modo de iluminación fue por luz transmitida (diascópica).

TOMA DE	MEDIDAS N	OMINAL	ES									
СОТА						MEDIDA					MEDIA	DESVIACIÓN
COTA	1	2	3	4	5	6	7	8	9	10	IVILDIA	TÍPICA
1 (mm)	6,347	6,398	6,413	6,385	6,415	6,384	6,388	6,363	6,373	6,393	6,3859	0,02106
2 (mm)	27,711	27,752	27,757	27,782	27,795	27,805	27,808	27,801	27,784	27,785	27,778	0,03010
3 (mm)	43,126	43,114	43,127	43,107	43,137	43,125	43,11	43,112	43,107	43,12	43,1185	0,01008
4 (º)						NO REALIZADA	c					
5 (º)						NO REALIZADA						
6 (mm)	8,898	9,011	9,037	9,011	9,057	9,035	9,062	9,056	9,047	9,056	9,027	0,04890
7 (º)						NO REALIZADA	.S					
8 (mm)	45,673	45,691	45,654	45,686	45,712	45,687	45,712	45,712	45,707	45,698	45,6932	0,01919
9 (mm)	10,936	10,977	10,921	10,919	10,912	10,927	10,936	10,96	10,966	10,965	10,9419	0,02314
10 (mm)	6,391	6,391	6,411	6,405	6,404	6,397	6,403	6,407	6,399	6,404	6,4012	0,00661
11 (mm)												
12 (mm)												
13 (mm)												
14 (mm)						NO REALIZADA	c					
15 (mm)						NO REALIZADA	.5					
16 (mm)												
17 (mm)												
18 (mm)												
19 (mm)	12,742	12,76	12,743	12,734	12,743	12,718	12,734	12,736	12,744	12,745	12,7399	0,01072
20 (mm)												
21 (mm)		NO REALIZADAS										
22 (mm)												
Tª (ºC)	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0	20,0		

Tabla 36 .- Toma de Medidas NOMINAL

Desarrollo Teórico

Todas las medidas tomadas son medidas directas por lo que su función modelo será de la forma:

$$L = l_j + \sum Correctiones$$

Con:

- l_i la medida tomada, realizándose n=10 repeticiones.

Como correcciones se han tendido en cuenta:

- $C_{T^{\underline{a}}}$ la corrección por temperatura:

$$C_{T^{\underline{a}}} = l_i(\alpha \cdot (t - 20))$$

Con $t = \frac{t_f + t_i}{2}$ siendo t_f y t_i las temperaturas final e inicial de la serie de repeticiones.

En este caso, al realizarse las medidas en condiciones de referencia se la considerará despreciable y no se tendrá en cuenta.

- C_E la corrección por redondeo de escala
- C_{termometro} la corrección del termómetro, obtenida en su calibración. Pero al utilizar nosotros un modelo de corrección global nula para el termómetro, no la tendremos en cuenta, trabajaremos con una incertidumbre expandida del termómetro que englobe la máxima corrección.
- C_{instrumento} la corrección del proyector obtenida en su calibración. Pero como se ha optado por no aplicar correcciones del instrumento en las medidas sino trabajar con una incertidumbre del instrumento expandida no se aplicará.

Con todo esto la función modelo queda:

$$L = l_j + C_{T^2} + C_E + C_{termometro} + C_{instrumento}$$

Si tenemos en cuenta que las dos últimas son nulas, que las medidas se han realizado en condiciones de referencia (20°C) con lo que la corrección por temperatura es despreciable y que al realizar la estimación, la mejor estimación de una serie de medidas es su esperanza matemática y que la corrección de escala es una variable aleatoria que sigue una distribución uniforme en el intervalo cerrado $\left[\frac{-e}{2},\frac{e}{2}\right]$ y por tanto su esperanza matemática es 0, la estimación del mensurando quedará

$$\hat{L} = \bar{l}_i$$

Por lo que el mensurando se expresará finalmente como:

$$L = \hat{L} \pm U$$

Se han considerado las siguientes contribuciones a la incertidumbre:

- 1.- Debida a la magnitud de entrada \bar{l}_i (valor medio observado)
 - 1.1.- Repetibilidad

$$u(x_i) = \frac{s_j}{\sqrt{n}}$$

$$c_{i} = 1$$

1.2.- Resolución o Escala del instrumento. Teniendo en cuenta la resolución longitudinal e del instrumento y considerando el máximo error posible cometido debido a la resolución es $\frac{e}{2}$

$$u(x_i) = \frac{e}{\sqrt{6}}$$

$$c_{i} = 1$$

2.- Debida a la Incertidumbre en longitud, debida a la variación

 $\delta t = \left(t_f - t_i\right)$ Diferencia de temperaturas final e inicial. Dilataciones contracciones de la plantilla

$$u(x_i) = \frac{\delta t}{2\sqrt{3}}$$
$$c_i = \overline{l_i} \alpha$$

En este caso al realizarse las mediciones en condiciones de referencia no hay una variación en las temperaturas inicial y final considerable (como mucho será de 2°C) con lo que esta contribución se considerará despreciable.

3.- Incertidumbre en longitud, debida a la incertidumbre en el conocimiento de t, por causa de la incertidumbre de medida del termómetro utilizado.

$$u(x_i) = \frac{U_{termometro}}{k}$$
$$c_i = \overline{l_i} \alpha$$

4.- Incertidumbre debida al instrumento utilizado al realizar las medidas.

$$u(x_i) = \frac{U_{instrumento}}{k}$$
$$c_i = 1$$

Finalmente la incertidumbre típica combinada es:

$$u_c(y) = \sqrt{\sum_{i=1}^{N} [c_i \cdot u(x_i)]^2}$$

Desarrollando llegamos a

$$u_c(y) = \sqrt{\left[\left(1 \cdot \frac{s_i}{\sqrt{n}}\right)^2 + \left(1 \cdot \frac{e}{\sqrt{6}}\right)^2 + \left(\overline{l_j} \alpha \cdot \frac{\delta t}{2\sqrt{3}}\right)^2 + \left(\overline{l_j} \alpha \cdot \frac{U_{term}}{k}\right)^2 + \left(1 \cdot \frac{U_{inst}}{k}\right)^2\right]}$$

La expresión entonces para la incertidumbre expandida es entonces:

$$U_i = k \cdot u_c(y)$$

Con k = 2 ya que:

- n=10 lo que implica que la muestra es suficientemente fiable, se cumple la hipótesis de fiabilidad
- Hay al menos tres contribuciones de incertidumbre que siguen una distribución de probabilidad conocida y el Teorema del Limite Central permite aproximar la distribución resultante de la corrección por calibración a una distribución normal. Se cumple la hipótesis de normalidad.

Evaluación de la incertidumbre MEDIDAS NOMINALES

De acuerdo al desarrollo teórico expuesto anteriormente y con los datos recogidos en la medición nominal, plasmados en la Tabla 31, en este capítulo se realiza la cuantificación de la incertidumbre en las medidas NOMINALES

Para una mayor comodidad se realizará de manera tabulada como lleva haciéndose a lo largo de todo el trabajo.

DATOS TÉCNICOS PROYECTOR LCD									
RESOLUCIÓN U instrumento [23] U termómetro Coeficiente dilatación									
LINEAL	LINEAL ANGULAR EJE X EJE Y								
0,001 mm	NO UTILIZADA	3,0μm k=2	0,31 ºC K=2	$\alpha = 11.5 \cdot 10^{-6} C^{-1}$					

Tabla 37 .- Datos Técnicos Proyector LCD (MEDIDAS NOMINALES)

TOMA DE MDEDIDAS NOMINAL		NOMINAL	FUNCIÓN MODELO
СОТА	MEDIA $ar{l}_j$	DESVIACIÓN TÍPICA	$\hat{L} = \bar{l}_j$
1 (mm)	6,3859	0,02106	6,3859
2 (mm)	27,7780	0,03010	27,7780
3 (mm)	43,1185	0,01008	43,1185
4 (º)			
5 (º)			
6 (mm)	9,0270	0,04890	9,0270
7 (º)			
8 (mm)	45,6932	0,01919	45,6932
9 (mm)	10,9419	0,02314	10,9419
10 (mm)	6,4012	0,00661	6,4012
11 (mm)			
12 (mm)			
13 (mm)			
14 (mm)			
15 (mm)			
16 (mm)			
17 (mm)			
18 (mm)			
19 (mm)	12,7399	0,01072	12,7399
20 (mm)			
21 (mm)			
22 (mm)			
$t = \frac{t_f + t_i}{2}$ (°C)	20,0		
$\delta t = (t_f - t_i)$ (°C)	0,0		

Tabla 38 .- Estimación MEDIDAS NOMINAL

		INCERT		INCERTIDUMBRE COMBINADA (μm)			
СОТА	REPETIBILIDAD (μm)	RESOLUCIÓN (μm)	VARIACIÓN TEMPERATURA (ºC)	TERMOMETRO (ºC)	PROYECTOR (μm)		INCERTIDUMBRE EXPANDIDA (μ m) $U = k \cdot u_c(y)$
1	6,659031973	0,408246581	0	0,155	1,25	6,78763	13,57525
2	9,518335985	0,408246581	0	0,155	1,25	9,60874	19,21748
3	3,18762726	0,408246581	0	0,155	1,25	3,44821	6,89641
4				0,155			
5				0,155			
6	15,46454579	0,408246581	0	0,155	1,5	15,54249	31,08497
7				0,155			
8	6,067722603	0,408246581	0	0,155	1,5	6,26370	12,52740
9	7,318797629	0,408246581	0	0,155	1,5	7,48208	14,96415
10	2,091236845	0,408246581	0	0,155	1,5	2,60575	5,21150
11				0,155			
12				0,155			
13				0,155			
14				0,155			
15				0,155			
16				0,155			
17				0,155			
18				0,155			
19	3,390977208	0,408246581	0	0,155	1,25	3,63702	7,27403
20				0,155			
21				0,155			
22				0,155			
	$u(x_i) = \frac{s_j}{\sqrt{n}}$	$u(x_i) = \frac{e}{\sqrt{6}}$	$u(x_i) = \frac{\delta t}{2\sqrt{3}}$	$u(x_i) = \frac{U_{term}}{k}$	$u(x_i) = \frac{U_{inst}}{k}$		
	$c_i = 1$	$c_i = 1$	$c_i = \overline{l_i} \alpha$	$c_i = \overline{l_i} \alpha$	$c_i = 1$		

Tabla 39 .- Cálculo de Incertidumbre MEDIDAS NOMINALES

	EXPRESIÓN FINAL de las MEDIDAS NOMINALES						
СОТА	$\widehat{L}=ar{l}_{j}$	$U = k \cdot u_c(y)$	$\hat{L} \pm U$				
1 (mm)	6,3859	0,013575253	6,386 ± 0,014				
2 (mm)	27,7780	0,01921748	27,778 ± 0,019				
3 (mm)	43,1185	0,006896414	43,1185 ± 0,0069				
4 (º)							
5 (º)							
6 (mm)	9,0270	0,03108497	9,127 ± 0,031				
7 (º)							
8 (mm)	45,6932	0,012527398	45,693 ± 0,013				
9 (mm)	10,9419	0,014964152	10,941 ± 0,015				
10 (mm)	6,4012	0,005211501	6,4012 ± 0,0052				
11 (mm)							
12 (mm)							
13 (mm)							
14 (mm)							
15 (mm)							
16 (mm)							
17 (mm)							
18 (mm)							
19 (mm)	12,7399	0,007274034	12,7400 ± 0,0073				
20 (mm)							
21 (mm)							
22 (mm)							

Tabla 40 .- Expresión Final MEDIDAS NOMINALES

CAPÍTULO 12: COMPARACIÓN

Introducción

En este capítulo se realiza la comparación de las medidas de los dos proyectores a estudio (el SIGMA y el DELTEC) frente a las medidas NOMINALES realizadas con el proyector NIKON del LCD.

Se realizará la comparación de manera tabulada y de forma gráfica de forma que se aprecie claramente las desviaciones de las mediciones respecto de su valor nominal así como el valor de sus incertidumbres.

En el capítulo conclusiones se volverá a mencionar lo expuesto en este capítulo pero se intentará además dar algunas causas posibles del por qué ya que como todas las medidas a comparación comparten las mismas contribuciones a la incertidumbre global se puede aislar sus contribuciones diferenciadoras y achacar a estas los valores de incertidumbre en la comparación. De tal forma que no solo se dirá que equipo es el más indicado para medir una determinada característica geométrica, sino también el por qué.

En el capítulo conclusiones se explicará nuevamente esto.

СОТА	EJE			
1	Х	NOMINAL	SIGMA	DELTEC
	$\hat{L} + U$ (mm)	6,400	6,51	6,373
	\widehat{L} (mm)	6,386	6,39	6,330
	$\widehat{L}-U$ (mm)	6,372	6,27	6,287
	U (mm)	0,014	0,12	0,043
componentes diferenciadoras (mm)	$u(y_i) = 1 \cdot \frac{s_j}{\sqrt{n}}$	0,00665903	0,01799323	0,004800892
compo diferenc (m	$u(y_i) = 1 \cdot \frac{U_{inst}}{k}$	0,00125	0,0575	0,0205
		DESVIACIÓN (mm) $\hat{L}_{NOMINAL} - \hat{L}$	-0,004	0,056

Tabla 41 .- Tabla COMPARACIÓN COTA 1

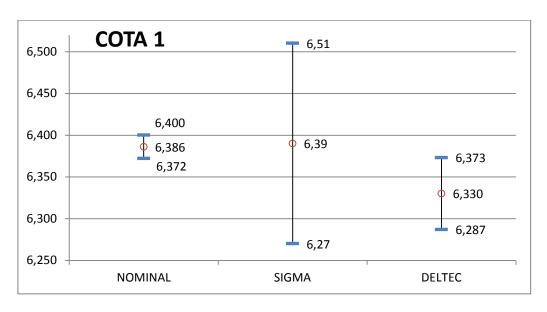


Gráfico 1 .- Gráfico COMPARACIÓN COTA 1

СОТА	EJE			
2	Х	NOMINAL	SIGMA	DELTEC
	$\hat{L} + U$ (mm)	27,797	27,81	27,760
	\widehat{L} (mm)	27,778	27,64	27,716
	$\widehat{L}-U$ (mm)	27,759	27,47	27,672
	U (mm)	0,019	0,17	0,044
componentes diferenciadoras (mm)	$u(y_i) = 1 \cdot \frac{s_j}{\sqrt{n}}$	0,009518335985	0,06545868513	0,007196321705
compo diferenc (m	$u(y_i) = 1 \cdot \frac{U_{inst}}{k}$	0,00125	0,0575	0,0205
		DESVIACIÓN (mm) $\hat{L}_{NOMINAL} - \hat{L}$	0,138	0,062

Tabla 42 .- Tabla COMPARACIÓN COTA 2

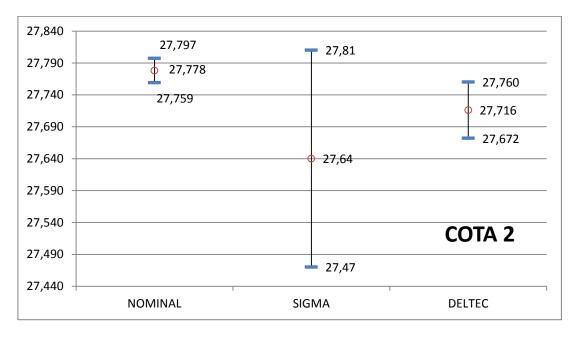
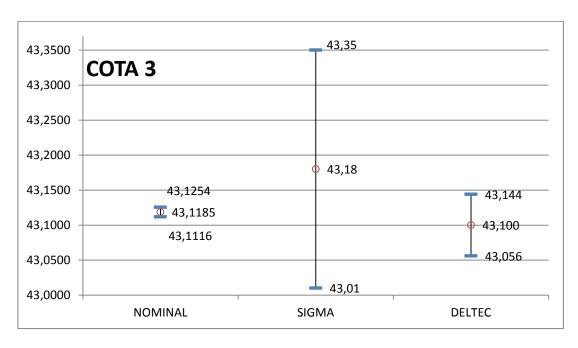



Gráfico 2 .- Gráfico COMPARACIÓN COTA 2

СОТА	EJE			
3	Х	NOMINAL	SIGMA	DELTEC
	$\hat{L} + U$ (mm)	43,1254	43,35	43,144
	\widehat{L} (mm)	43,1185	43,18	43,100
	$\widehat{L}-U$ (mm)	43,1116	43,01	43,056
	U (mm)	0,0069	0,17	0,044
componentes diferenciadoras (mm)	$u(y_i) = 1 \cdot \frac{s_j}{\sqrt{n}}$	0,00318762726	0,06261265535	0,007214209604
	$u(y_i) = 1 \cdot \frac{U_{inst}}{k}$	0,00125	0,0575	0,0205
		DESVIACIÓN (mm) $\hat{L}_{NOMINAL} - \hat{L}$	-0,0615	0,0185

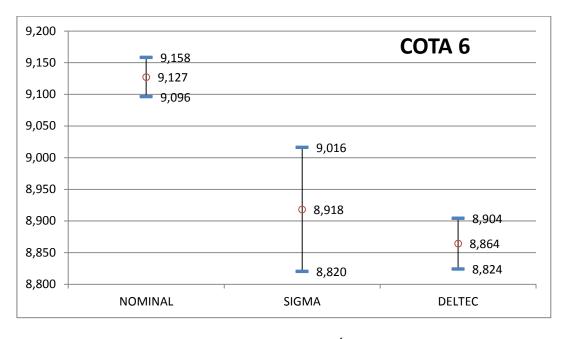

Tabla 43 .- Tabla COMPARACIÓN COTA 3

Gráfico 3 .- Gráfico COMPARACIÓN COTA 3

СОТА	EJE			
6	Y	NOMINAL	SIGMA	DELTEC
	$\hat{L} + U$ (mm)	9,158	9,016	8,904
	\widehat{L} (mm)	9,127	8,918	8,864
	$\widehat{L}-U$ (mm)	9,096	8,820	8,824
	U (mm)	0,031	0,098	0,040
componentes diferenciadoras (mm)	$u(y_i) = 1 \cdot \frac{s_j}{\sqrt{n}}$	0,01546454579	0,02245201278	0,00594049673
	$u(y_i) = 1 \cdot \frac{U_{inst}}{k}$	0,0015	0,044	0,019
		DESVIACIÓN (mm) $\hat{L}_{NOMINAL} - \hat{L}$	0,209	0,263

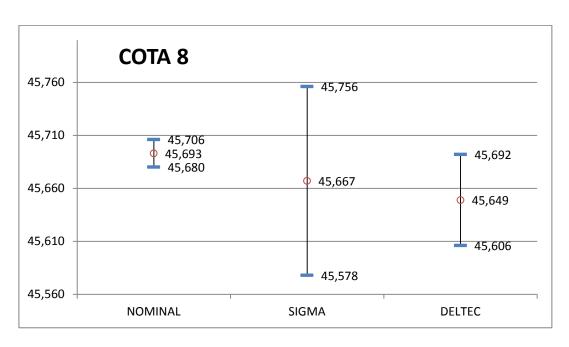

Tabla 44 .- Tabla COMPARACIÓN COTA 6

Gráfico 4 .- Gráfico COMPARACIÓN COTA 6

СОТА	EJE			
8	Υ	NOMINAL	SIGMA	DELTEC
	$\hat{L} + U$ (mm)	45,706	45,756	45,692
	\widehat{L} (mm)	45,693	45,667	45,649
	$\widehat{L}-U$ (mm)	45,680	45,578	45,606
	U (mm)	0,013	0,089	0,043
componentes diferenciadoras (mm)	$u(y_i) = 1 \cdot \frac{s_j}{\sqrt{n}}$	0,006067722603	0,007336432344	0,009376559544
	$u(y_i) = 1 \cdot \frac{U_{inst}}{k}$	0,0015	0,044	0,019
		DESVIACIÓN (mm) $\hat{L}_{NOMINAL} - \hat{L}$	0,026	0,044

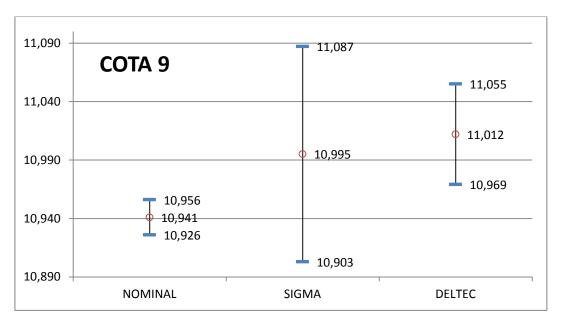

Tabla 45 .- Tabla COMPARACIÓN COTA 8

Gráfico 5 .- Gráfico COMPARACIÓN COTA 8

СОТА	EJE			
9	Y	NOMINAL	SIGMA	DELTEC
	$\hat{L} + U$ (mm)	10,956	11,087	11,055
	\widehat{L} (mm)	10,941	10,995	11,012
	$\widehat{L}-U$ (mm)	10,926	10,903	10,969
	U (mm)	0,015	0,092	0,043
componentes diferenciadoras (mm)	$u(y_i) = 1 \cdot \frac{s_j}{\sqrt{n}}$	0,007318797629	0,01413528128	0,01011614214
	$u(y_i) = 1 \cdot \frac{U_{inst}}{k}$	0,0015	0,044	0,019
		DESVIACIÓN (mm) $\hat{L}_{NOMINAL} - \hat{L}$	-0,054	-0,071

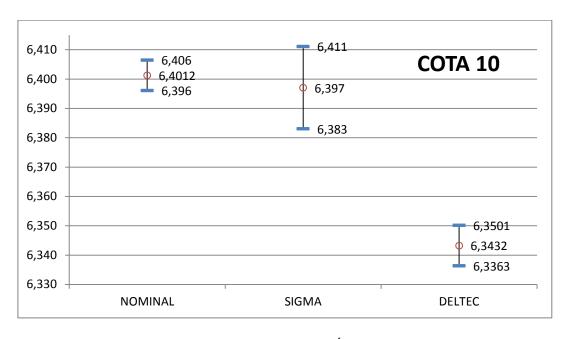

Tabla 46 .- Tabla COMPARACIÓN COTA 9

Gráfico 6 .- Gráfico COMPARACIÓN COTA 9

СОТА	EJE			
10	Ø	NOMINAL	SIGMA	DELTEC
	$\hat{L} + U$ (mm)	6,406	6,411	6,3501
	\hat{L} (mm)	6,4012	6,397	6,3432
	$\widehat{L}-U$ (mm)	6,396	6,383	6,3363
	U (mm)	0,0052	0,014	0,0069
componentes diferenciadoras (mm)	$u(y_i) = 1 \cdot \frac{s_j}{\sqrt{n}}$	0,002091236845	0,006767226386	0,003413836519
	$u(y_i) = 1 \cdot \frac{U_{inst}}{k}$	0,0015	≈0	≈0
		DESVIACIÓN (mm) $\hat{L}_{NOMINAL} - \hat{L}$	0,0042	0,058

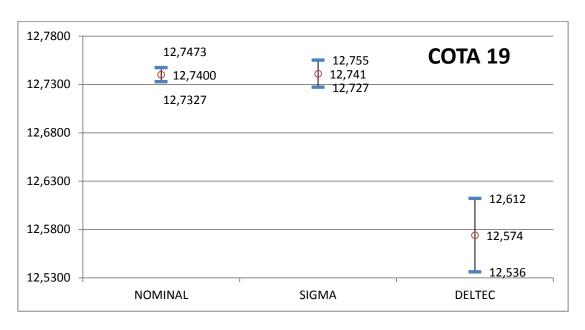

Tabla 47 .- Tabla COMPARACIÓN COTA 10

Gráfico 7 .- Gráfico COMPARACIÓN COTA 10

СОТА	EJE			
19	Ø	NOMINAL	SIGMA	DELTEC
	$\hat{L} + U$ (mm)	12,7473	12,755	12,612
	\widehat{L} (mm)	12,7400	12,741	12,574
	$\widehat{L}-U$ (mm)	12,7327	12,727	12,536
	U (mm)	0,0073	0,014	0,038
componentes diferenciadoras (mm)	$u(y_i) = 1 \cdot \frac{s_j}{\sqrt{n}}$	0,003390977208	0,006988584258	0,01880781463
	$u(y_i) = 1 \cdot \frac{U_{inst}}{k}$	0,00125	≈0	≈0
		DESVIACIÓN (mm) $\hat{L}_{NOMINAL} - \hat{L}$	-0,001	0,166

Tabla 48 .- Tabla COMPARACIÓN COTA 19

Gráfico 8 .- Gráfico COMPARACIÓN COTA 19

CAPÍTULO 13: ESTUDIO DEL ERROR DE FORMA

Introducción

Surgido durante la realización de lo anterior, apareció otro segundo objetivo no contemplado al inicio de la realización del presente trabajo,

Se observó la necesidad de hacer otro estudio comparativo en el que se viese como afecta el número de puntos seleccionados al realizar medidas de diámetros con el proyector de perfiles SIGMA. Ya que si se toman más de tres puntos la electrónica de evaluación de los datos te realiza un ajuste por mínimos cuadrados que conlleva un error de forma. En el caso de seleccionar tres puntos el error de forma es nulo.

En este capítulo se pretende estudiar este error de forma en varios casos prácticos, esto es, se realizarán mediciones del mismo diámetro seleccionando distintos número de puntos y se compararán los resultados, a fin de encontrar cual es el mejor número de puntos a la hora de medir una característica diámetro; el mejor número posible y realizable ya que el mejor número sería tomar infinitos puntos.

Teniendo esto en cuenta lo que se pretende entonces es ver cómo afecta el número de puntos seleccionados al error de forma.

Lo primero que se planteará en el capítulo será un desarrollo teórico en el que se explicará los fundamentos del ajuste por mínimos cuadrados para finalmente plantear el estudio que se ha realizado.

Ajuste por Mínimos Cuadrados

Un ajuste de una curva consiste en encontrar una curva que contenga a la serie de puntos y que cumpla una serie de restricciones, en este caso al ser por mínimos cuadrados la restricción es que el error cuadrático medio (definido más adelante) sea lo más bajo posible.

Los puntos se presentan en la forma de pares ordenados (variable independiente, variable dependiente) y la restricciones que en este método se imponen es que la curva que contiene los pares ordenados se aproxime a ellos de acuerdo al criterio del mínimo error cuadrático.

A continuación se expondrá el desarrollo teórico de este método para el plano real.[24]

Siendo los pares ordenados de puntos

$$\{(x_k, y_k)\}_{k=1}^n$$

Y siendo

$$\left\{f_j(x)\right\}_{j=1}^m$$

Una base de m funciones base, linealmente independientes. Se desea encontrar una función f(x) combinación lineal de las funciones base que sea de la forma:

$$f(x) = c_1 f_1(x) + c_2 f_2(x) + \dots + c_m f_m(x) = \sum_{j=1}^m c_j f_j(x)$$

Tal que

$$f(x) \approx y_k^{5}$$

Por tanto, el método consiste en determinar los m coeficientes

$$\left\{c_j(x)\right\}_{j=1}^m$$

Si se desea además que la función aproximada de la mejor aproximación a los pares de puntos en base a minimizar la acumulación del error individual (en cada par ordenado) sobre el conjunto total de puntos.

Este error individual de la función f(x) en un par (x_k, y_k) es

$$e_k = y_k - f(x_k)$$

⁵ Si se realizara una interpolación sería de la forma $f(x) = y_k$ mientras que si fuera una regresión sería de la forma $f(x_i) = y_i + \varepsilon_1$

Pero como el rango de la aproximación es todo el conjunto de pares $\{(x_k, y_k)\}_{k=1}^n$ el error total sobre todo el conjunto de puntos se suele definir como el error cuadrático medio:

$$E_{cm}(f) = \sqrt{\frac{\sum_{k=1}^{n} (e_k)^2}{n}}$$

En la aproximación por mínimos cuadrados es este error el que se desea minimizar o equivalentemente su radicando.

Si desarrollamos más este error tenemos

$$E_{cm}(f) = \sqrt{\frac{\sum_{k=1}^{n} (e_k)^2}{n}} = \sqrt{\frac{1}{n} \sum_{k=1}^{n} (y_k - f(x_k))^2} = \sqrt{\frac{1}{n} \sum_{k=1}^{n} \left(y_k - \sum_{j=1}^{m} c_j f_j(x) \right)^2}$$

Si atendemos solo al radicando a la hora de minimizar el error cuadrático medio tenemos que el error cuadrático es igual a:

$$E_{C} = \sum_{k=1}^{n} \left(y_{k} - \sum_{j=1}^{m} c_{j} f_{j}(x) \right)^{2}$$

De tal forma que los coeficientes c_j que minimizan tanto E_C como E_{Cm} pueden ser calculados derivando e igualando a cero E_C con lo que obtenemos un sistema de m ecuaciones con m incógnitas.

$$\frac{\partial E_c}{\partial c_i} = \sum_{k=1}^{n} 2(y_k - \sum_{j=1}^{m} c_j f_j(x_k))(-f_i(x_k) = 0$$

Lo que hace la electrónica de evaluación es calcular el radio/diámetro de la circunferencia así como las coordenadas de su centro.

La manera que tiene de hacerlo es mediante un ajuste por mínimos cuadrados, anteriormente comentado, que tiene la forma siguiente:

Si partimos de que la ecuación de la circunferencia en el plano sigue la siguiente ecuación.

$$r^2 = (x - x_c)^2 + (y - y_c)^2$$

Con:

r el radio de la circunferencia.

 (x_c, y_c) las coordenadas del centro, en la referencia utilizada.

Por tanto serán necesarios tres puntos de la circunferencia para calcular tanto el radio como el centro y por tanto obtener la ecuación de la circunferencia.

Ahora bien si se utilizan más de tres puntos para definirla, la electrónica de evaluación hará un ajuste por mínimos cuadrados para ajustar una curva al conjunto de puntos introducidos.

Siguiendo el planteamiento anterior y de manera superficial, el cálculo que realiza la electrónica de evaluación es de la forma:

$$f(x) = y_c + \sqrt{r - (x - x_c)^2}$$

$$E_C = \sum_{i=1}^n (y_i - f(x_i)^2) = \sum_{i=1}^n (y_i - y_c - \sqrt{r - (x - x_c)^2})^2$$

Con n el número de puntos utilizado.

Ahora hace:

$$\frac{\partial E_c}{\partial x_c} = 0 \quad \frac{\partial E_c}{\partial y_c} = 0 \quad \frac{\partial E_c}{\partial r} = 0$$

Y obtiene un sistema de tres ecuaciones y tres incógnitas con el que obtiene finalmente (x_c, y_c) y r.

Además, en los casos en los que n>3 también te proporciona el error de forma F, el cual se define como:

$$F = r_{MAX} - r_{MIN}^{6}$$

Siendo:

 r_{MAX} La circunferencia concéntrica a la obtenida por mínimos cuadrados que pasa por el punto más alejado y tiene por tanto

el diámetro máximo.

 r_{MIN} La circunferencia concéntrica a la obtenida por mínimos cuadrados que pasa por el punto menos alejado y tiene por

tanto el diámetro menor.

En la siguiente imagen se entienden mejor estos términos.

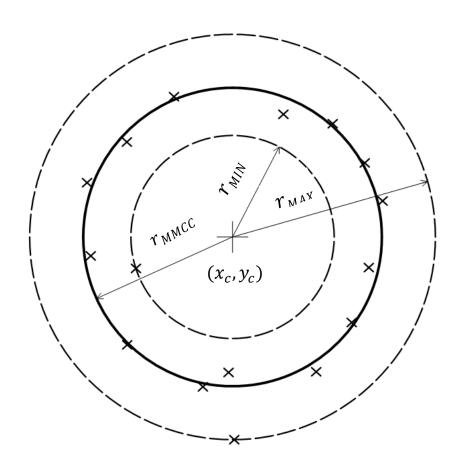


Imagen 24 .- Error de Forma I

⁶ Esta es una de las formas más habituales de calcular el error de forma, además el proyector DELTEC es la que utiliza, por ello se ha supuesto que el SIGMA también y se ha optado por ella.

Como se puede apreciar, este F está relacionado con los puntos que se han utilizado para el ajuste por mínimos cuadrados, con su variabilidad, $S_{i\,PUNTOS}$ en torno a los valores centrados que nos dan el \emptyset_{MMCC} y su centro.

Intentemos explicar esto con la ayuda de la siguiente imagen.

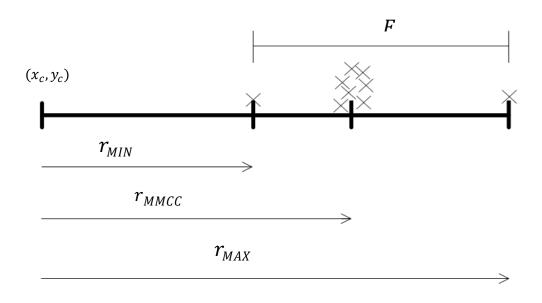


Imagen 25 .- Error de Forma II

Estos puntos, estas x, se obtienen evaluando cada par ordenado de puntos en la ecuación de la circunferencia, conocido ya la posición del centro de la circunferencia obtenida por mínimos cuadrados.

Si evaluamos cada par ordenado en

$$r = \sqrt{((x - x_c)^2 + (y - y_c)^2)^2}$$

O en su equivalente para el diámetro

$$\emptyset = 2 \cdot \sqrt{((x - x_c)^2 + (y - y_c)^2)}$$

Obtenemos un r / \emptyset ; si observamos, vemos que hay una relación entre estos x, estos r / \emptyset , y F.

Hay una relación entre la dispersión de estos r / \emptyset con respecto al r_{MMCC} / \emptyset_{MMCC} y F. Pero no entre \emptyset_{MMCC} y F

Si se pudiesen ver los puntos, se evaluaban en la ecuación de la circunferencia y se estudia la dispersión de los r / Ø con respecto al r_{MMCC} / Ø_{MMCC} y se podría observar la relación entre esta dispersión, el error de forma y el número de puntos. Que es lo que inicialmente se buscaba.

Pero la electrónica de evaluación del proyector no muestra los puntos que se han utilizado para la aproximación por mínimos cuadrados, solo muestra

 $\emptyset_{\mathit{MMCC}}$ La aproximación por MMCC que ha calculado

F El error de forma

n El número de puntos empleado

 (x_c, y_c) La posición del centro en el sistema de referencia utilizado

Por tanto no se va a poder estudiar la relación entre el número de puntos empleado en la aproximación por mínimos cuadrados y su error de forma. Al no haber ninguna relación entre \emptyset_{MMCC} y F.

Pero se intentará comprobar si existe algún tipo de relación entre los valores que sí muestra la electrónica de evaluación.

Estudio del Error de Forma

El principal objetivo a la hora de abordar este estudio fue intentar encontrar una relación entre este error de forma y los puntos empleados en la medición de la circunferencia.

Pero ya se ha demostrado que no va a ser posible, en su lugar lo que se va a intentar a hacer es observar si existe alguna tendencia entre el error de forma y la variabilidad en los diámetros obtenidos en una serie de repeticiones.

Este error de forma nos da una idea de la calidad geométrica de la circunferencia aproximada por mínimos cuadrados, cuanto mayor sea F implica que nuestra circunferencia aproximada se parece menos a una circunferencia, pudiendo parecerse ésta a un óvalo, elipse, etc.

Por tanto si los diámetros obtenidos en nuestra serie de mediciones tienen mucha variabilidad implica que algunos de ellos no se parecen mucho a una circunferencia teórica, y por tanto debe de haber errores de forma altos.

Lo que se pretende demostrar en este estudio es:

$$\uparrow S_{i \emptyset} \rightarrow \uparrow F$$

Esta relación no se muestra bilateral, a simple vista, ya que puede darse el caso de que todos los diámetros que hemos obtenido en la serie de repeticiones tengan poca variabilidad pero algún punto de los utilizados en la aproximación por MMCC este bastante alejado con lo que tendríamos un error de forma grande.

Para intentar demostrar esta afirmación y su unilateralidad se han realizado una serie de mediciones de uno de las circunferencias de la plantilla de muestra, introduciendo en la electrónica de evaluación (HEINDENHAIN QUADRA-CHECK) distinto número de puntos. Y se han graficado la dispersión de los diámetros y el error de forma.

Estos han sido los resultados:

	5 ptos - 10 repeticiones	
medida	Ø (mm)	F (mm)
1	12,728	0,013
2	12,709	0,026
3	12,724	0,010
4	12,727	0,025
5	12,701	0,015
6	12,727	0,011
7	12,729	0,015
8	12,712	0,019
9	12,7	0,013
10	12,718	0,019
Si	0,01128669	0,00554176

Tabla 49 .- Datos 5 ptos-10 repeticiones

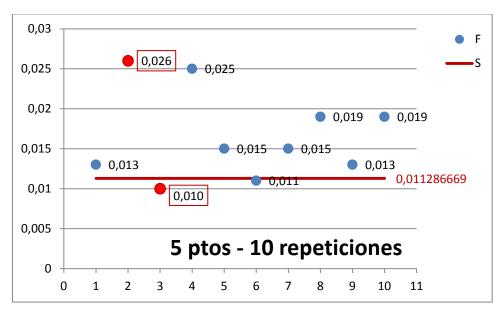


Gráfico 9 .- Gráfico Error de Forma 5 ptos-10 repeticiones

En este caso observamos que la variabilidad en los \emptyset es del mismo orden que los errores de forma, lo que nos indica que no hemos medido muy bien. Lo ideal es tener siempre la variabilidad en los \emptyset menor que el error de forma y en este caso son del mismo orden.

Esto nos evidencia que

$$\uparrow S_{i \emptyset} \to \uparrow F$$

	10 ptos - 10 repeticiones	
medida	Ø (mm)	F (mm)
1	12,716	0,013
2	12,715	0,024
3	12,711	0,014
4	12,711	0,022
5	12,713	0,033
6	12,726	0,029
7	12,721	0,020
8	12,710	0,019
9	12,718	0,033
10	12,709	0,031
Si	0,00541603	0,00746548

Tabla 50 .- Datos 10 ptos-10 repeticiones

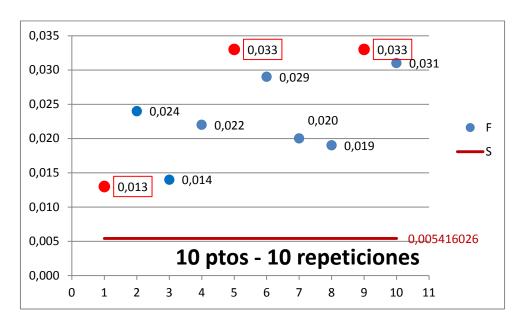


Gráfico 10.- Gráfico Error de Forma 10 ptos-10 repeticiones

En este caso se observa que aunque la variabilidad en los Ø es muy baja seguimos teniendo errores de forma altos, lo que nos indica que la relación anterior no es bilateral.

Esto seguramente sea debido a que de los 10 ptos que cogemos al medir alguno está más alejado, pero los \emptyset ajustados por MMCC son muy parecidos tienen baja variabilidad, y por eso aparecen errores de forma altos

	8 ptos - 10 repeticiones	
medida	Ø (mm)	F (mm)
1	12,713	0,014
2	12,721	0,017
3	12,715	0,022
4	12,715	0,033
5	12,708	0,017
6	12,698	0,020
7	12,723	0,031
8	12,722	0,016
9	12,704	0,026
10	12,702	0,026
Si	0,00879962	0,00656252

Tabla 51 .- Datos 8 ptos-10 repeticiones

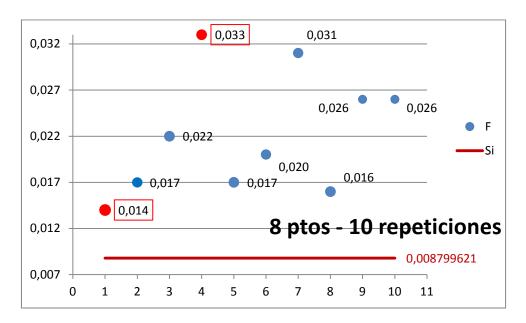


Gráfico 11 .- Gráfico Error de Forma 8ptos-10repeticiones

Este caso es idéntico al anterior pero con una variabilidad en los \emptyset aún más baja que en el anterior. Vemos que aun así tenemos errores de forma altos.

Conclusiones

Dado que no se disponen de los puntos que se introducen en el ajuste por mínimos cuadrados, no se conocerá la variabilidad de estos con respecto al diámetro obtenido por mínimos cuadrados, y como el error de forma es función de esta variabilidad, no se ha podido estudiar la influencia que tiene en el error de forma el número de puntos introducidos.

Se deja como línea futura de investigación un estudio más exhaustivo, intentando obtener los puntos introducidos en el ajuste, calculado sus diámetros concéntricos a la que se ha obtenido en el ajuste, y viendo su variabilidad.

Y mediante un análisis de regresión estimar la relación entre el número de puntos cogido, la variabilidad en los diámetros calculados y el error de forma.

Finalmente en el estudio alternativa que se ha encontrado, se ha demostrado la no reciprocidad de:

$$\uparrow S_{i \emptyset} \rightarrow \uparrow F$$

Pero no se ha encontrado ninguna relación entre el error de forma y el número de puntos utilizado.

Lo que sí ha revelado es que al aumentar el número de puntos seleccionados, reducimos la variabilidad en los diámetros, lo que nos indica que medimos con mayor calidad.

Pero también aumentamos la variabilidad en los errores de forma, las circunferencias ajustadas no se parecen mucho entre ellas. Esto puede ser debido a que cuantos más puntos introducimos más afecta la mano del operario, ya que se cansa y hace una selección de puntos de menor calidad.

PARTE IV

CONCLUSIONES FINALES

CAPÍTULO 14: CONCLUSIONES FINALES

En un primer momento se pretendía hacer una conclusión tajante en cuanto a la idoneidad general de un equipo frente a otro, la realización de este TFG ha demostrado que no será posible, ya que en algunas ocasiones será mejor un equipo y en algunas otras.

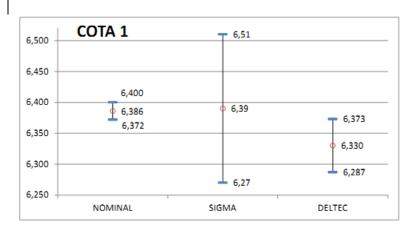
Mostrar las componentes de incertidumbre, que difieren de un equipo a otro:

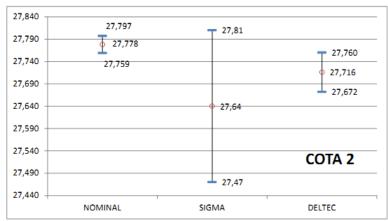
- La repetibilidad
- La Incertidumbre del Equipo

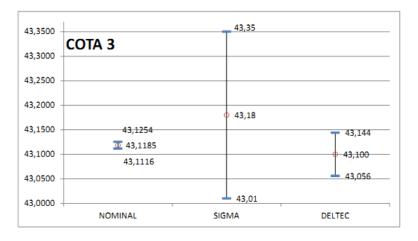
Puede hacernos una idea, de el por qué son así los resultados en la comparación, pudiendo un equipo repetir mejor que otro, tener menor incertidumbre, etc.

Las tendencias generales en la comparación son que las desviaciones, respecto el valor nominal, son menores, en la mayoría de las cotas a analizar, en el SIGMA, mientras que las incertidumbres son menores en el DELTEC.

Aunque esto no es representativo en absoluto a la hora de hacer una elección tajante.

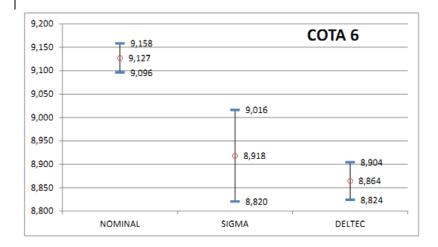

Por regla general, lo ideal es que en las gráficas de las comparaciones las incertidumbres de cada medida se solapen entre sí, si en algún caso no ocurre y se desea usar ese equipo para realizar la medida pudiera ampliarse la incertidumbre del instrumento de forma que la incertidumbre de la medida ya si se solapen y las medidas sean identificables y representativas entre sí.

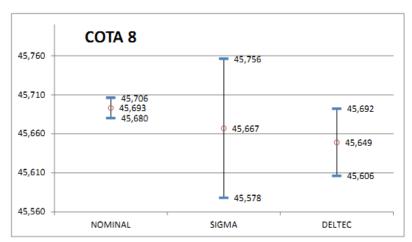

La principal causa de incertidumbre en las medidas tomadas es debida al instrumento utilizado en la cual va englobada la máxima corrección por calibración, pero como al realizar la corrección hemos usados BPL no calibrados, no sabes si esta corrección es debida al instrumento utilizado o a los BPL, por tanto está comparación solamente tiene sentido entre los valores tomados con los proyectores DELTEC y SIGMA, ya que están calibrados con los mismos bloques.

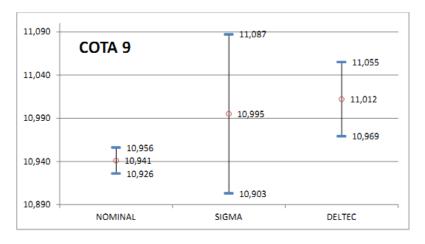

En el caso de las medidas NOMINALES no, ya que han sido tomadas con un proyector calibrado y tienen trazabilidad, en el cual sabemos que toda la incertidumbre del instrumento ha sido debida al propio instrumento, no a los bloques.

Teniendo esto en cuenta y en el sentido más amplio de una comparación, solo se podrán comparar por un lado, los proyectores SIGMA y DELTEC. Ya que carece de todo sentido intentar comparar un equipo trazado con otros que no. De una manera más individualizada tendríamos:

COTAS Eje X

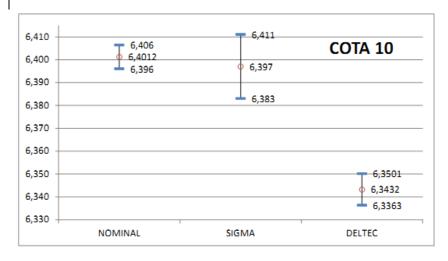


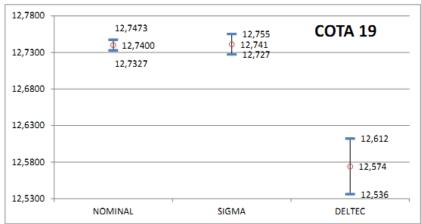

En este caso vemos que todas las medidas son comparables entre si, aunque solo nos fijaremos en las tomadas con el DELTEC y SIGMA, ya que han sido tomadas con proyectores calibrados con los mismos bloques y carecen de trazabilidad.


Las incertidumbres siempre son mayores en el SIGMA a causa de su mayor incertidumbre que en el DELTEC.

Mientras que la desviaciones son mejores con el proyector SIGMA salvo en el caso de la cota 2.

COTAS Eje Y





En este caso vemos que las medidas tomadas con los proyectores SIGMA y DELTEC si son comparables entre sí, y para este eje tenemos menores desviaciones con el proyector SIGMA que con el DELTEC, aunque tengamos más incertidumbre, debida a que este equipo tiene mucha más incertidumbre.

COTAS Ø

En este caso vemos que las medidas tomadas con los proyectores no son comparables entre ellas, vemos que la desviación es mucho mejor en el SIGMA. En esta escala toda la incertidumbre en la comparación provendrá de la repetibilidad, ya que no se ha considerado incertidumbre del instrumento en esta escala y por ello las incertidumbres de las medidas son del mismo orden.

Teniendo todo esto presente vemos que el equipo DELTEC siempre tiene una incertidumbre más pequeña que el SIGMA aunque tiene mayores desviaciones.

En mi opinión la elección final de un equipo u otro vendrá dada por la necesidad requerida en el momento de utilizarlo:

- Si se desea medir rápidamente y estamos trabajando con tolerancias amplias se podrá utilizar el SIGMA, lo cual concuerda con su concepción, es un proyector más robusto, más espartano, que le permite estar cerca de los puestos de fabricación.
- Mientras que si trabajamos con tolerancias más estrechas, necesitaremos un equipo con baja incertidumbre, con lo que optaríamos por el DELTEC.

En base a esto, se deja a la elección del Técnico Metrólogo la utilización de un equipo u otro.

En cuanto al estudio del error de forma, no poder alcanzar los objetivos previstos de identificar la relación existente entre el número de puntos seleccionados y el error de forma deja un extraño sabor de boca.

En su lugar, el estudio planteado logra demostrar la relación planteada aunque de manera superflua además se ha visto la influencia del operario en los errores de forma.

Se dejará como línea futura de investigación un estudio, de marcado carácter estadístico. Para, conociendo los puntos utilizados en la circunferencia, encontrar mediante un análisis de regresión la relación entre el número de puntos y el error de forma.

- [1] *Metrology in short,* 3ª edición, Julio 2008, 2ª edición en español, Centro Español de Metrología (CEM), CENAM, INDECOPI
- [2] Introducción a la Historia de la Metrología, Carlos Enrique Granados, Apuntes Curso de Doctorado, ETSII, UPM.
- [3] Sánchez Pérez, A.M, 2012, "La Metrología y su Necesidad", e-medida Revista Española de Metrología, Vol. 1 N°1, pp 15-27.
- [4] del Campo Maldonado, M.D y Robles Carbonell, J.A, 2012, "La Metrología, Motor de Innovación Tecnológica y Desarrollo Industrial", e-medida Revista Española de Metrología, Vol. 1 N°1, pp 29-40.
- [5] Marbán, R.M y Pellecer, J.A, 2003, *Metrología Legal*, Organización de Estados Americános OEA, Guatemala.
- [6] Infraestructura Metrológica en España, CEM, Octubre 2016, recurso en línea de: http://www.cem.es/cem/metrologia/sistema_metrologico_espanol
- [7] Muñoz Bueno, R., 2011, "Introducción a la Metrología. Tema1: Introducción", LMM-ETSII-UPM.
- [8] JCGM, 2008, Evaluación de Datos de Medición. Guía para la Expresión de la Incertidumbre de Medida, Trad. CEM, 2008, 1ª ed, CEM, Madrid
- [9] Oficina Internacional de Pesas y Medidas, 2008, El Sistema Internacional de Unidades, 2ª Edición.
- [10] Centro Español de Metrología, 2012, Vocabulario Internacional de Metrología Conceptos Fundamentales y Generales, y Términos Asociados, 3ª edición.
- [11] Figueroa Montaño, A., Ramírez Sánchez, H.U, y Alcalá Gutiérrez, J., 2014, *Introducción a la Metodología Experimental,* 1ª edición, Pearson, México.
- [12] Mediciones Directas e Indirectas, Noviembre 2016, recurso en línea de: https://www.scribd.com/doc/108469929/Mediciones-Directas-e-Indirectas
- [13] Schmid, W.A., y Lazos Martínez, R.J., 2000, Guía para Estimar la Incertidumbre de la Medición, 1ª edición, CENAM, México.
- [14] Pérez Hernández, M.M, 2012, "Estimación de Incertidumbres. Guía GUM", emedida Revista Española de Metrología, Vol. 1 N°3, pp 113-130.

- [15] JCGM, 2008, Evaluación de los Datos de Medición –Suplemento 1 de la Guía para la Expresión de la Incertidumbre de Medida- Propagación de Distribuciones Aplicando el Método de Monte Carlo, Trad. CEM, 2010, 1ª ed, CEM, Madrid.
- [16] Mitutoyo México, 2016, *Mitutoyo Catalogo de Instrumentos de Medición,* No. ES2016, Mitutoyo mexicana, México.
- [17] Historia del Proyector de Perfiles, Diciembre 2016, recurso en línea de: http://www.monografias.com/trabajos93/caracterizacion-metrologica-electronica/caracterizacion-metrologica-electronica.shtml#ixzz4TERM6GQE
- [18] Centro Español de Metrología, 1999, Procedimiento DI-001 para la Calibración de Proyectores de Perfiles, 1ªed, CEM, Madrid.
- [19] Heindenhain, Modo de empleo HEINDENHAIN QUADRA-CHECK ND 1200.
- [20] Delta Technologies. Document de Formation Deltec Vision.
- [21] ENAC, 2013, Anexo Técnico Acreditación N°65/LC10.042.
- [22] LCD, Certificado de calibración Termómetro.
- [23] LCD, Certificado de Calibración Proyector de Perfiles, Nº5661, ENAC 3871
- [24] Juárez, H. y León, A., nd, Algebra Lineal Numérica, Mínimos Cuadrados y Optimización, Departamento de Matemáticas UAM, México.