
Pervasive and Mobile Computing 38 (2017) 154–165

Contents lists available at ScienceDirect

Pervasive and Mobile Computing

journal homepage: www.elsevier.com/locate/pmc

Open source hardware based sensor platform suitable for
human gait identification
César Llamas, Manuel A. González, Carmen Hernández, Jesús Vegas ∗

Universidad de Valladolid, Escuela Ingeniería Informática, Paseo de Belén 15, 47011 Valladolid, Spain

a r t i c l e i n f o

Article history:
Received 11 December 2015
Received in revised form 11 May 2016
Accepted 7 July 2016
Available online 18 July 2016

Keywords:
Open source hardware
Sensor network
Gait identification

a b s t r a c t

Most initiatives about embedded sensing capabilities in computational systems lead to de-
vise an ad hoc sensor platform, usually poorly reusable, as a first stage to prepare a data
corpus or production prototype. In this paper, an open source hardware platform for sens-
ing is described. This platform was intended to be used in data acquisition for gait identi-
fication, and is designed in a way general enough so many other projects could reuse the
design to accelerate prototyping. The platform is based on popular open source hardware
and software like Arduino andRaspberry Pi usingwell known languages and libraries. Some
experimental results about the throughput of the overall system are reported showing the
feasibility of acquiring data from up to 6 sensors with a sampling frequency no less than
118 Hz.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction and objectives

The design and development of a sensor platform are usually the starting point in almost every project related to
biomedical research and pervasive computing. This kind of infrastructure, known as sensor network [1], is in the focus of
the research community for several years, resulting in an assortment of proposals for each field of application, like in the
case of e-Health, activity recognition or gait identification.

To start modeling human gait, as considered by our research workgroup, a suitable dataset with properly qualified data
on human motion is required. There exist several datasets that vary in the domain of application and size, as stated in a
recent review by Moore et al. [2]. Our group intends to contribute in the same terms with a dataset consisting of samples
of acceleration and angular velocity measured on the main joints of the human locomotor system oriented to activity
recognition.

These types of research initiatives take shape usually in two stages: a first one of experimental nature, intended to obtain
data and prepare the corresponding algorithms to solve the task, and a following second one in what a system is deployed
in a real scenario ready to be used. Ho et al. [3] named these stages Learning and Developing phases, respectively. In the
learning phase the work is focused on exploring the capability of sensors and in the ways they may be integrated. In order
to do this, different options regarding embedded platforms and sensors available in the market are assessed for the project
requirements and the resource availability. In the developing phase the requirements of the sensor network are re-stated
from the lessons learned in the first stage (in this case, the authors reported that new HF and UHF RFID components were
added) to be applied in the case of study.

∗ Corresponding author. Fax: +34 983423671.
E-mail addresses: cllamas@infor.uva.es (C. Llamas), manuelgd@termo.uva.es (M.A. González), chernan@infor.uva.es (C. Hernández),

jvegas@infor.uva.es (J. Vegas).

http://dx.doi.org/10.1016/j.pmcj.2016.07.003
1574-1192/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.pmcj.2016.07.003
http://www.elsevier.com/locate/pmc
http://www.elsevier.com/locate/pmc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.pmcj.2016.07.003&domain=pdf
mailto:cllamas@infor.uva.es
mailto:manuelgd@termo.uva.es
mailto:chernan@infor.uva.es
mailto:jvegas@infor.uva.es
http://dx.doi.org/10.1016/j.pmcj.2016.07.003


C. Llamas et al. / Pervasive and Mobile Computing 38 (2017) 154–165 155

Following this methodology, the first stage of the research involves the acquisition of data needed to explore options
and confirm hypotheses. Their requirements are relatedmainly to the flexibility and affordability of the proposal, given that
the subject of study usually compels some modifications regarding the type of sensing and characteristics of the data to be
acquired. For example, Ohgi reported in [4] that two prototypes were built to incorporate different kinds of sensors to the
data logger.

In a second stage, the development phase, an ad hoc sensor platform must be designed and produced with specific
requirements related with the regular use, like wearability, power consumption and wireless connectivity. In relation to
this issue, Benbasat and Paradiso hold in [5] how they tend to discard the electronic boards used in the prototype and the
redesign the circuitry depending on the particular physical constraints of the system. Another example is the development
shown in [6] that was designed under physical constraints of weight, waterproof and hydrodynamics given that it would be
attached to a swimmer using a waist belt, while it was based in a previously developed system intended to identify the type
of stroke [7] using a different experimental data acquisition platform.

Every sensor platform is an investment where all requirements are not usually known in advance, so many times it must
be re-engineered during the experimental phase. In [3] due the cost of hardware, an RFID simulator reader was developed
and used instead of a physical RFID reader. In some cases, the projects are devised using only one sensor platform, due to
the cost and complexity of its design and manufacturing, restraining, therefore, the capabilities of the experimental phase
because of the requirements of the deployment phase.

This paper details our findings on the architecture of a sensor platform based on open source hardware and software. This
kind of foundation allows us fast prototyping, especially in the research phase, with flexible, inexpensive, general purpose
hardware and software components. Nowadays, open-source interest makes possible the creation of open-source scientific
devices made of free open-source software on top of open-source microcontrollers [8]. This, combined with 3D printing
facilities, allows us to dispose of highly sophisticated scientific equipment while driving down the cost of research tools.

Themain contribution of this paper is the design and implementation of an open source sensor based platform suitable to
be used in data acquisition oriented to the human gait analysis. Our proposal is general enough to be employed in a similar
situationwhere a portable, low cost, open source and remotely operated platformwould be required. Bandwidth and power
consumption measures are provided based on tests with an actual prototype which can be used to assess the suitability of
our proposal in some other applications.

The remainder of the paper is organized as follows: Section 2 summarizes some findings about this area, and digs in the
requirements of other similar initiatives. Section 3 describes the architecture and the design proposed by our team. Section 4
exposes the implementation of our system and themain performance details of it. Section 5 discusses ourmain findings and
prospects some suggestions for the future designs.

2. State of the art

Along the last years of developing of sensor networks and sensor platforms, independently of its field of application,
there seems to be some agreement on themain issues and constraints of these systems. In [9] the authors list the challenges
established in the development of the pervasive healthcare systems, being a main fact that several issues concern to the
development of the sensor platform. Among the topics highlighted by the authors are the need of interoperability and the
intention of simplifying the deployment and enhance the scalability. These goals are completely alignedwith the conclusions
of Akyildiz et al. [1], that stated that flexibility, affordability and flowing deployment are some the desired goals related to
the success of sensor networks. Moreover, the authors identify the main constraints and requirements in the development
of these systems, such as fault tolerance, scalability, cost, hardware, topology change, environment and power consumption.

Lo and Yang, in [10] state that most hardware platforms for pervasive healthcare applications are proprietary designs.
They hold that this lack of interoperability and standards tampers the development of pervasive sensing applications. Two
directions have been followed to resolve this: propose a compact modular platform, and develop an open source based
platform. One example of the design of a modular platform is reported in [5] where the modularity is the basis to overcome
the problems of developing systems of sensors from scratch, sharing portions of their hardware and software infrastructure.
The design of amodular sensor platformwill allow us to (a) encapsulate the knowledge, (b) to reduce the repetition of circuit
design, and (c) to simplify prototyping. In this particular case, the author of [5] developed a set of hardwaremodules or panes
which could be combined to obtain the desired sensor system. They extended the modularity also to the software, where
each of those panes should be associated with blocks of code (or a library) that could be included in the main code when the
sensor pane was attached to the processor pane.

This topic of software modularity is at the foundation of a main result in the field of networked sensors: the operating
system TinyOS.1 In [11] the authors point to the lack of system software support as the main problem to cope with when
gathering off-the-shelf components to build a prototype. The main contribution of [11] to this matter is the development
of the tiny micro threaded operating system TinyOS. TinyOS design addresses two important restrictions: intensive
concurrency and efficient modularity. The hardware chosen for the first version was the very limited ATMEL 90LS8535
4 MHz processor with 8 kB of flash memory as the program memory and 512 bytes of SRAM as data memory. The

1 http://tinyos.net.

http://tinyos.net


156 C. Llamas et al. / Pervasive and Mobile Computing 38 (2017) 154–165

reasons of its election were its small physical size, a modest active power load and a tiny load when inactive. TinyOS was
released into the public domain under the BSD license, and is well known that this could be the main reason of its wide
spreading in this area. A considerable number of sensor platforms and networks employ TinyOS as their software basis in
a wide variety of application fields. One of the most representative initiatives could be the wireless sensor platform for
non-invasive biomedical research SHIMMER [12]. In this work, the authors identify as a key factor to be addressed the
need for heterogeneous sensing capabilities while minimizing the complexity of the hardware and software development,
validation as well as to support it in order to be able to work with a platform approach where the sensing capability can be
modified via physical and software device configuration. This is the role played by TinyOS. In this case, the core element of
the board is theMCU of Texas Instrument MSP430which has been widely used in wireless sensors [13]. At the present time,
TinyOS runs on top of three microcontrollers: ATMEL 90LS8535, ATmega128, and Intel XScale PXA27, and is the foundation
for more than 14 different sensor platforms.

Another initiative, which promotes the use of open-source software in this area is DexterNet [14] which supports SPINE,
an open-source signal processing library. This library installed on the body sensors and on the mobile station manages the
data collection, the processing, and transmission of the data, and can be controlled via commands issued from the station.
This station runs over Linux and SPINE is portable across TinyOSmote platforms. These two characteristics are fundamental
to understand the evolution in the development of the sensor platforms: they are converging towards the use of open source
software over a well stated and known base as TinyOS, and their interactionwith systems running Linux. All these examples
have in common the advantage of using open-source software, while they are restricted to use proprietary hardware.

Along the last years, several initiatives of open-source hardware have been promoted. Following the definition of OSHWA
(TheOpen SourceHardware Association),2 ‘‘Open Source Hardware (OSHW) is a term for tangible apparatus –machines, devices,
or other physical things – whose design has been released to the public in such a way that anyone can make, modify, distribute,
and use those things’’. As is highlighted by Rubow in [15], The Field Programmable Gate Arrays, FPGAs, permit a hardware
development process that resembles closely with the software development process. This eases the updates and changes
on the hardware. More and more, FPGAs are becoming a staple for hardware and embedded system designers. In 2013
the OSHWA conducted a survey to know the more important criteria considered by the practitioners in this area when
using an open-source hardware component instead a proprietary one [16]. The experts regarded as the more important
(a) the ability to personalize, repurpose and customize, (b) the availability of design files and documentation, and (c) the
community support. These conditions also serve in our case of a sensor platform, especially in the experimental phase of the
project.

Although the number of users of proprietary platforms is considerable, the size of the community of the OSHW initiative
is several times bigger, due to the use of general purpose software (in terms of OS and code languages and libraries) in a
highly configurable hardware.

One of the most successful OSHW projects has been the Arduino3 project [15,17]. Arduino is an open-source electronics
platform based on easy-to-use, hardware and software. This flexibility and open source philosophy (both hardware and
software) have produced a big impact on the community of designers, and the different versions of Arduino are at the core
of awide list of different types of projects.Many add-ons in the formof shields have also been producedwhichmake possible
to connect external components such as sensors and actuators. Some examples of these projects combine the Arduino
and the sensors with a Raspberry Pi single board computer which can act controlling the data acquisition, processing and
communications unit [18,19].

In this paper,we propose to use not only open-source software, but also open-source hardware, to build a sensor platform
based on an Arduino and Raspberry Pi running Linux. This can be used in the experimental phase of a sensor based project
because of its reusability and engineering flexibility, what can be taken advantage of in this kind of project, where several
experiments must be done consecutively in the time, thus permitting a fast prototype development.

3. The open source hardware sensor platform

Modeling systems as the one described in this work is usually made up of two main descriptive levels, a high-level one
that describes the main agents of the system, their relations, functionality and other requirements; and a second more
detailed one that relates the former items to hardware and software components. Specifying such kind of system is a quite
an endearing task if done too abstract.

In order to fulfill our demands, the design model must reflect a whole set of facilities that, for the sake of simplicity, have
been split into threemain parts, or layers as depicted in Fig. 1. Therefore, both the designmodel and the low level implemen-
tation of the systemmust comply a set of requirements due to the election of this structure. Concerning the non-functional
description of the system, the whole system must fulfill the next requirements: (i) distribution, (ii) portability, (iii) hetero-
geneity and (iv) extensibility for data acquisition mechanisms. Further requirements that are also relevant are (v) resilience
and (vi) openness.

2 http://oshwa.org.
3 http://arduino.cc.

http://oshwa.org
http://arduino.cc


C. Llamas et al. / Pervasive and Mobile Computing 38 (2017) 154–165 157

Fig. 1. High level model of the system comprising (a) an acquisition layer, (b) a computer infrastructure layer and (c) a user operation layer.

Following this, a detailed designmodel is required in order to specify how the system is going tomeet the aforementioned
requirements through a detailed description of the technology to be used. The remainder of this section deals with a
description of a use case of our system from which a high level specification is given, followed by the description of the
design model.

3.1. Use case: gait data acquisition

The application that our system is intended for is the acquisition of physical measures on acceleration and rotational
speed involved in the human gait. The measuring will be obtained through MEM sensors attached to specific places in the
locomotor apparatus of a subject of study under the form of a wearable device. This device will store the data acquired in
each session until the user downloads it to a long term storage. This subject will be prompted by the conductor of the session
to perform several actions and activities according to a protocol defined in the dataset specification. In order to the scenery
to be the more natural as possible the study subject will not be capable to interact with the system in any way. So all the
operations on the system is performed by another person that acts as the operator of the operating layer of our acquisition
system. This layer must allow the operator to control the process (starting, stopping, pausing and labeling data) through a
remote wireless handheld device such as a tablet with an Internet connection via WiFi.

The data acquisition process would take place outside of a conventional laboratory, for example, in the dependencies
of a building or even outdoors. Therefore, the system intended must face some challenges such as portability, autonomy
and Internet connectivity. It is foreseeable that a session will produce a considerable amount of data in real time, then the
acquisition unit must have some local storage and processing capabilities of data.

At the end of such kind of sessions, the data must be dumped in a persistent storage service from the short term storage
of the wearable device in order to be properly curated and exploited afterwards.

3.2. High level model

Fig. 1 depicts the components of the OSHWSP (Open Source Hardware Sensor Platform) and how they are connected [20].
This high level view consists of three layers: a mobile capturing layer composed of any portable unit intended to capture
field data, that we call acquisition layer; an infrastructure layer acting as broker between the acquisition layer and the rest
of the system, which provides facilities needed for the internal functioning of the platform, and the operation layer, that
provides control facilities for the user to acquiring data. Also, the infrastructure layer includes a stable storage for all the
data acquired. Following, all the layers of the model are described starting from the operation layer.

The operation layer (see Fig. 1(c)) stands for the part of the systemunder direct control of the user. The core functionalities
of this layer deal with the usual actions on an experimental session of acquiring data [21]. A basic approach to the operation
of these kind of systems must permit to start, to stop, and pause the acquisition, query the status of the subsystem and to
retrieve data series to a local host. In addition, this layer would include some other secondary capabilities like the ability to
add metadata to describe the conditions of the acquisition. This possibility is quite useful whenever labeling observations
are required, for example regarding activity recognition.

It must be emphasized that requiring that this layer interacts through Internet with the rest of the system, mainly
the infrastructure layer, could be a main achievement on the usability of the overall system allowing the remote control
operation in a wider scenery. This matter has a quite important effect on the design of the system.

The acquisition layer comprises the terminal elements in charge of interfacingwith the electronic sensors, and the sensors
themselves. Any kindof sensor, in order to beusable by the system,must be integrated into this layer, at least at a logical level.
This assertion seems quite obvious in the case of devices specially designed to hold sensors, but it is the consequence of a



158 C. Llamas et al. / Pervasive and Mobile Computing 38 (2017) 154–165

convention arisenwhen dealingwith sensors included in smartphones, tablets or laptopswhich could just have autonomous
applications that comply with acquisition and storing necessities.

The infrastructure layer (see Fig. 1(b)) plays a core part of the system providing services for the acquisition and the
operation layers. In particular, it serves as a communication agent for the operation layer and as communication facilitator
for the acquisition layer. First, regarding the operation layer, the infrastructure layer makes possible that the end user acts
over the acquisition layer translating his/her actions performed in the operation layer, behaving this way as an agent of
the user. Second, the infrastructure layer facilitates the necessary connectivity for the sensors comprised on the acquisition
layer. In addition to these services, the infrastructure layer must provide a persistent storage to handle data and metadata,
along with robustness in an environment of mobile communications and the Internet.

3.3. The OSHW sensor platform design

Our design, while complying with the former requirements, must be specified more precisely in a detailed model when
it will be implemented. The three layers of our top level model gather, each one of them, a homogeneous set of features
hence helping to simplify the elicitation of the system requirements while decouples their dependencies. Data acquisition
layer (Fig. 1(a)) is physically located close to the subject whose data are to be acquired; the computing infrastructure layer
(Fig. 1(b)) encompasses the main functionalities ascribed to infrastructure services such as web services, database services
and communication; the third layer (Fig. 1(c)) portrays end user interface related requirements, that could include web
client applications, mobile applications or any other user application. A full description of each one of them is detailed as
follows.

3.3.1. User operating layer
Utilizing this layer the user must be able to control (start, pause, query the status or stop) the data acquisition, visualize

raw data, decide when and where store data, and specify names and any other relevant metadata to the data acquisition.
This facility could be oriented towards a production process or to some kind of prospective or academic target, such as
preparing a biometric data corpus. Common to any use the acquisition could be aimed, an acquisition control interface and
a persistent access interface are needed. Eventually, the end user will enact this kind of actions by interacting through a
JavaScript enabled web front end, a mobile application or via a software user agent embedded in any other larger system.

In this paper, we focus on the specification of the two inner layers and proposing an exposed interface at the computing
infrastructure layer, general enough to support any other end user operation component. This design, besides complying
with the former requirements, must deal with other challenges drawn from using network facilities: location and access
transparency, quality of service and new fault modes.

3.3.2. Infrastructure layer
The infrastructure layer provides the system with some necessary resources to ensure any necessary properties of

the system such as distribution, portability, transparency, resilience and so on. Therefore, this subsystem serves as an
intermediation layer between the acquisition and the user operation. Internally, this subsystem consists of stable services
located in well known nodes that manage resources available to the other two layers.

At the core the services offered to the operation layer are: (A.i) a unified access mechanism for the operation of the
acquisition process, as for example through an ad-hoc RESTful protocol, although some other well-known standard, i.e. OPC,
can be implemented; (A.ii) an intermediate data storage that permits an offline on demand retrieval of data collected on an
acquisition session, alleviating the capacity and bandwidth requirements of the other two layers; (A.iii) a translation service
to provide data access transparency on the basis of a common data format that could wrap raw data, time and metadata in
manageable units. There exists a big sort of possible formats, ranging from low level ones like CSV, XML or JSON to other
more elaborated like OPC, DirFile, CDF, Fits, and the like. In our case a plain text file formatted in CSV was implemented.

The acquisition layer can benefit from the infrastructure layer in two basic sets of services: (B.i) registry and discovery
services and (B.ii) connection services. Registry services are necessary for the components apart from the acquisition element
in order to initiate an interactionwith the rest of the system; discovering services permit the acquisition component to access
some other service of the infrastructure layer. Acquisition devices with full connection capabilities are not usually found in
the context of sensor platforms, apart from smartphones considered as a high level measuring device. This kind of parts has
usually limited connectivity (serial line, Bluetooth, Ant, RFID) capabilities and a strong dependency from another connected
device, these types of issues make connection services a key part of the infrastructure layer.

3.3.3. Acquisition layer
Those devices of the system that collect the data through sensors from the physical domain and place them in a temporary

storage are part of the acquisition layer. These elements use the core services of the infrastructure layer in order to perform
commands such as those resulting fromanenduser instruction, or towrite down thedata into thepersistent store. Therefore,
these devices require a communication infrastructure so as to integrate into the system.

Since there are many different ways in which a given device could be assembled into a layered communication
architecture, we assume that there exists usually a protocolwhich integrates any component in a reasonablemanner. From a



C. Llamas et al. / Pervasive and Mobile Computing 38 (2017) 154–165 159

Fig. 2. High level design of the acquisition and infrastructure layers comprising the mobile and the static subsystems of our proposal, respectively.

design viewpoint, we consider three kinds of devices: (A) full connected to Internet devices, such as smartphones; (B) limited
connected devices attending the network technology, like those using Bluetooth, Zigbee, or RFID; (C) limited connected
devices attending other limitation not related to the technology but due to some restriction enforced by e.g. a firewall, a
router or simply an access point.

At first glance, the most attainable scenery consists of devices of the type (A), due to the use of WiFi or a smartphone
connectivity. Moreover, it is even possible to deploy a public component accessible from the user operation layer wherever
it would be located, as may be, for example, from a simple script in a web page.

4. Implementation of the OSHW sensor platform

The design of the sensor platform that we present in this paper faces two serious challenges, on the one hand it must
ensure the free movement of the sensorized subject (a human being, in our case of interest) must be assured, so that the
person could walk as close as possible to its natural movement, on the other hand the end user interface must be acted
by an external observer that assess the validity of the data acquisition. In other words, an operator that observes the
subject instructs the system to collect samples using a control panel and eventually, the system enacts on the sensor set
the command to acquire data.

As stated in the previous section (Section 3), our design must meet some non functional requirements, being robustness
the most valuable of them. With this goal in mind, the functionality of each component of the mobile subsystem, being this
element a fragile one, has been kept very simple. Therefore the exposed interface of the mobile part is a minimalist one, as
it is embodied in the corresponding protocol.

A pervasive non-functional requirement of our design is also a commitmentwith the open source requirement. Although
what is open source hardware and what not is a controverted notion, as proven from controversy even in the Raspberry Pi
community [22], we have tried to adhere to the most common consensus [23].

Fig. 2 depicts the high level design of the platform. This design consists of two subsystems, a portable one (a) and a
permanent immobile one (b). The portable subsystem has got a WiFi adaptor in order to communicate with other hosts
from the system using an ordinary communication infrastructure. In this way, the operating range of the system is, in most
cases, wide enough. In any other setting, an ad-hoc WiFi network with a mobile access point can be used without a glitch.

The actual portable subsystem (acquisition unit) including sensors, Arduino and Raspberry Pi assembly actually worn by
a test subject is depicted in Fig. 3. In Fig. 4 the components of the system and their connection are depicted. Queried some
test subjects about if the cables and the way the sensors were attached to their body could affect some perturbation in their
mobility or obstruct their gait, their answers were favorable after a small period of adaption.

The project is publicly available at http://percomp.github.io/oshwsp/ where the actual implementation of the system is
detailed.

One of the issues that posed more problems in our design were communications. Whereas the almost only noticeable
complication in fully connected devices using mobile-telephony communications are moving into white spots, using
an infrastructure domain WiFi network with a quite good coverage present two obvious drawbacks. First, while many
institutions encourage a BYOD initiative (like Eduroam does), IoT usual devices like ours is not adequately taken into
account, lacking a proper authentication domain; so that our system must be ascribed to a researcher’s identity. Second,
the connection requirements that these kind of systems need could collide with the actual security policy established by
the institution. Our institution offers a quite good ‘‘Eduroam’’ WiFi coverage that sticks to [24] that outlines a clearly client
oriented settingwith a limited service connectivity in terms of ports and type of traffic. Therefore, offering any kind of public
service, like for example a RESTful API, by the mobile subsystem must be attained in an indirect way through a reciprocal
connection that initiates in the infrastructure attached subsystem. In order to cope with this issue a websocket design [25],
quite popular in the development of smartphone applications, has been devised. In this way, the client websocket process
on themobile subsystem (Fig. 2 (a)) issues a suitable connection request with awell-knownHTTP infrastructure side service
(Fig. 2(b)); on accepting this request, an upgrade request is negotiated [25]. The resulting effective communication channel
is a full-duplex one, where a simple high level protocol is commanded from the static layer to the mobile layer. Regarding

http://percomp.github.io/oshwsp/


160 C. Llamas et al. / Pervasive and Mobile Computing 38 (2017) 154–165

Fig. 3. Snapshots with actual platform: (a) actual acquisition unit with wired sensors and (b) a subject attired with sensors to proceed into the acquisition
phase.

Fig. 4. Connection of the elements: sensors, Arduino, Raspberry Pi, infrastructure server and user operation devices.

the interaction of both sides of the connection, an accessible protocol has been designed bearing inmind that one of themost
sensitive parts in almost every distributed system is the design of the protocol. A good protocol design practice advocates
for simplicity [26], so our protocol adheres to this rule through a limited set of primitives:

• STATUS—inquire acquisition subsystem status.
• START—request to record data into the transient buffer.
• STOP—request to stop data recording and turn the transient buffer into the permanent store. The buffer is cleared.
• PAUSE—request to stop data recording into the transient buffer.
• COPY—request to copy the contents from the temporary store in the acquisition subsystem into a long term persistent

data store in the static subsystem.

4.1. Static subsystem

The static part of our system stands on a workstation server connected to the Internet. With a conservative provision
of several tens of Gbyte of persistent storage requirements, one mobile acquisition platform and one end user client per



C. Llamas et al. / Pervasive and Mobile Computing 38 (2017) 154–165 161

time when creating the data corpus, almost every usual PC is capable to serve the requirements. In our case we prepared
a portable PC with Ubuntu 14.04 LTS, equipped with an Intel i5 processor and a main memory with 4 Gb capacity. The
operating file system partition and the user partition are formatted, respectively in ext2 and JFS. A 100 Mbps 10BaseT plug
offers Internet connectivity to our system.

GCC was used to develop a Web service in C Language. Special care has been taken in order to preserve a low resource
consumption profile. To ease the software design task the ‘‘Mongoose’’ web development framework4 was adopted and our
binary build of libMongoose is included in our project. This framework is somehowpopular in the C open source community,
is written in plain C Language and released by its developer with a GPLv2 license.

4.2. Mobile subsystem

The basic requirements of the sensor part of our project can be summarized as follows:

• The whole platform must consist of six identical sensor units, each one of these containing a three axes digital
accelerometer unit and a three axis digital gyroscope unit. Therefore, each sensor unit presents 6 degrees of freedom
(6DOF) and must to be deployed on different part of the body of a study subject.

• Each sensor must have a sensitivity ≥10 bits with a measuring range of ±4 g and ±1000 deg/s in its accelerometers and
gyroscopes, respectively.

• The sampling period Ts must be ≤10 ms.

Several approaches considering the control and connection of the sensors to our platform were studied, including
wireless and of-the-shelf embedded commercial and open source existing solutions. Most recent systems opt for the
less intrusive sensor systems using wireless approximations as shown by Mukhopadhyay [27] using Bluetooth and alike
technologies and a minimum set of sensors. However, after several back of the envelope calculations and proofs of concept
with smartphones and our own hardware we intended to build a very small and affordable system that could ensure low
latency round-robin communication, speed and time accuracy.

Acquisition and communication facilities of the acquisition unit are deployed into two separate hardware components in
order to ensure the resilience of the system to possible failures produced by the instability of software and communications.
These two components are: (i) a Raspberry-Pi based device in charge of the communications with the static subsystem and
the serial interface with the other component, and (ii) an Arduino UNO board with a properly wired connection shield
(Arduino Proto Shield5) and the sensor units. Some other technologies to connect both elements were considered, mainly
Bluetooth, but according to our bandwidth requirements, we opted for a wired serial communication as it will be discussed
later. Obviously our proposal does not exclude other connection possibilities between these two devices. The Arduino board
dialogs with the breakouts containing the sensors at a low level protocol. The joint budget of these components amounts a
total of no more than EUR 60, without including the sensors.

Arduino plays a fundamental role in this assembly due to its excellent features for the low level development in
the communication with the sensors. In spite of this, Arduino presents several lacks regarding clock speed, storage
capabilities and network communication. There exist some other successful cases in what the pairing Arduino–Raspberry Pi
complements each other, resulting a more comprehensive, flexible and affordable solution [28]. In this case, the Raspberry
Pi acts a base station as occurs in our proposal, for the acquisition unit, being the main difference communicating with the
Arduino the use of a wireless technology. Even more, the Raspberry Pi adds some qualities concerning the usage of the
acquisition unit through network delays and jitters. This allows an asynchronous mode of operation through the storage of
the Raspberry Pi.

There are other popular approaches with the same requirements than the combination of Arduino and Raspberry-Pi
like Arduino-Yun and Arduino-Edison. Both alternatives are hybrid composite systems that merge an Arduino interface to
sensors and another microcomputer in which a high level operating system acting as coordinator is deployed. For example,
the Arduino-Yun platform, an Arduino UNO and an Atheros AR9331 basic configuration running OpenWrt Linux are put
together on the sameboard. This joint system is very stable and open source, but a closed solution around a specific operating
systemunlikemost Raspberry Pi solutions. On the other hand, a development board for Arduino-Edison, apart from software
considerations, is evenmuchmore expensive (>EUR120) than the Arduino-Yun alternative (∼EUR80). Evenmore, although
Arduino-Edison could be considered open source software the hardware design lacks openness.

The board included in our system ismade up of a Raspberry Pi B+, a USBWiFi donglewith a popular chipset (EW-7811Un)
and a 8 Gb, class 4, SD card containing the Raspbian operating system (v7.0/Wheezy) and the user file system. The hardware
is powered by a battery pack of modest capacity, and is configured to boot in unattended mode. Also, the initialization of
the service component and the network connection to the static subsystem is fully automated.

In the same way as for the static subsystem, Gcc was used to develop the software side of the system, in the purse of a
portable, robust and low footprint design. This server is in charge of the dialog with the Arduino platform and coordinates
these activities with the command issued by the static subsystem using the primitives settled at the end of the first part of

4 https://code.google.com/p/mongoose/.
5 https://www.arduino.cc/en/Main/ArduinoProtoShield.

https://code.google.com/p/mongoose/
https://www.arduino.cc/en/Main/ArduinoProtoShield


162 C. Llamas et al. / Pervasive and Mobile Computing 38 (2017) 154–165

this section. The design of the server is multithreaded, and takes advantage of shared memory and stream resources. These
are needed to devise an asynchronous solution as required by the serial connection (involved in the Arduino dialog) and the
Websocket protocol (needed to communicate with theWebsocket server of the static subsystem). Unix facility cuwas used
to manage the serial connection with Arduino, which simplifies the usual serial handshake and flow control. The library
‘‘libWebsockets’’,6 was employed to assist the development of the websocket part. libWebsocket is a rare example of C
Language client library to programwebsockets and is very appropriate, although its programming is not so straightforward
like in Mongoose (which lacks this client part). Temporal and persistent storage are obtained from the local user space file
system, that has proven to be fast enough for our requirements.

4.3. Data acquisition component

Our solution gathers six breakouts from DroTek (Avignon, France)7 including, each one of them a MPU6000 chip from
Invensense Inc. (San Jose, CA).8 MPU6000 [29] is a usual device designed for mobile systems like smartphones and tablets,
and, although it is not used in our development, it has a dedicated motion processor that makes it very popular in the drone
home brew community. For our purposes, MPU6000 is a 6DOF (plus a temperature sensor) unit equipped with an external
SPI interface and an internal I2C expansion interface. Our election of this device was biased by its SPI interface that offers
some advantages to our design: (i) it permits many different devices on the same physical bus, at the cost of one extra wire
for each unit; (ii) it supports a quite high speed communication, up to 8MHz for our election; (iii) with an appropriatewiring
and connector allows us to wire up to 1.20 m (4 feet) at 1 MHz; and (iv) the protocol is simple and its implementation in
Arduino is fast enough. USB 3.0 cables and connectors were used in our design, as shown in Fig. 4, due to the five-wire
requisite of the SPI interface and also to take advantage of the shielding and quality of cable and connectors [30] employed,
even though a usual USB 2.0 could be enough.

Arduino and Raspberry Pi boards are actually connected through aUSB serial based connection (see Fig. 4)which provides
a TTY communication at 115200 bps. Some other wireless possibilities were considered, especially using the ESP8266
module that offers a WiFi connection, and interfaces with Arduino through serial pinout connection. Some consideration
prevented us to not use it: although this module can operate at 115200 bps, it is not an enough reliable connection, losing
data depending on environmental factors. Even more, it is not capable to cope with every WiFi configuration as in our
case, as described in the first part of Section 4. As well as, a Raspberry Pi was intended to be very close to the subject, the
more natural solution to communicate both devices could be a serial wired connection. A 115200 bps connection is the
maximum advisable standard speed for the Raspberry Pi and a quite demanding one of the control loop and timers on the
Arduino side (as we could verify using the standard serial library). The Arduino code spins around the main control loop
procedure loop(). In this function, the samples from the sensors are acquired and packaged into a timestamped frame
(nanoseconds). This data frame is stuffed conveniently to prevent control sequences used by the serial protocol between
Arduino and Raspberry Pi. Extensive tests made under these conditions allow us to ensure a steady speed of 120 frames
per second with each one of them comprising a 8 byte integer timestamp and six values (accelerometers and gyroscopes
samples) of 2 byte integers for each one of the six sensor units. The Arduino side sends data in binary format comprising
the former bytes, start/stop codes and escape sequences giving a total of 90 bytes in case of the shortest frame. Better
results could be expected by using proprietary libraries and the Atmel Studio development tools for AVR offered by Atmel.
Nevertheless, although Atmel Studio is a nice and free of charge development environment, we pursue the open source
hardware requirement for our design.

4.4. Experimental measures

Table 1 details the power consumption of the system measured at the input of the power source. As can be seen from
the data, most of the power is consumed by Raspberry-Pi component. The peak current drainage was observed mainly at
boot time and when any wifi communication was observed. The Arduino subsystem drains a minimal amount of current
while acquiring data. A quite typical battery with 2000 mAh would account for an autonomy of more than three hours of
continuous use.

In order to make use of this data acquisition device, the observed sampling frequency attainable by the system was
thoroughly measured depending on the of the used USB connection baud rate and the results are presented in Table 2.

To make these measures the systemwas tested during a lapse of time long enough to consider the statistical significance
of the data acquired from the sensor units. In these experiments, were considered serial speeds from 19200 to 115200 bps,
and in each scenery, there were read from 1 to 6 6DOF sensors. The period was calculated based on the difference of time
between two consecutive samples, inmicroseconds, with aminimumof 1000 samples for eachmeasure. For 6 6DOF sensors,
with 19200 bps this implied 60 s but using 115200 bps required 8 s of readings.

6 https://libwebsockets.org.
7 http://www.drotek.fr.
8 http://www.invensense.com.

https://libwebsockets.org
http://www.drotek.fr
http://www.invensense.com


C. Llamas et al. / Pervasive and Mobile Computing 38 (2017) 154–165 163

Table 1
Voltage and current consumption measured at the power source input. Measured voltage without load:
V = 5.13 V.

Load Voltage (V ) Current (I) Peak current (Ip)

Raspberry-pi 5.07 ± 0.04 V 366 ± 20 mA 540 ± 20 mA
Arduino 5.11 ± 0.04 V 61 ± 2 mA 72 ± 2 mA
Raspberry-pi + Arduino 5.06 ± 0.04 V 438 ± 20 mA 480 ± 20 mA

Table 2
Experimental measures on sampling frequencies attainable on the system for some baud rates of the USB connection
between Arduino and Raspberry Pi boards depending on the number of 6DOF sensors considered.

Speed of the bus (bps) Number of 6DOF sensors Frequency (Hz)
Maximum
guaranteed

Percentile 99 Maximum
attainable

19200

1 83.61 87.34 91.48
2 49.31 51.95 53.39
3 36.27 36.27 37.69
4 27.86 28.27 29.13
5 22.89 23.16 23.74
6 19.62 19.62 20.03

38400

1 160.26 174.54 182.70
2 101.09 103.82 106.70
3 71.18 72.50 75.35
4 55.73 56.52 58.23
5 45.25 46.31 47.46
6 38.83 39.23 40.04

57600

1 255.26 267.02 279.40
2 154.80 158.76 163.28
3 106.93 110.90 115.21
4 86.48 86.48 89.09
5 70.03 70.82 72.57
6 59.38 60.01 61.25

115200

1 509.87 532.08 557.85
2 301.57 308.74 326.11
3 217.54 221.61 230.20
4 170.53 173.01 177.97
5 140.06 141.58 145.07
6 118.74 119.92 122.48

Table 2 shows those values admissible jointly by the API of the Raspberry Pi and Arduino. There is some evidence also on
the influence of the libraries Serial and SPI available on the Arduino and the compiler. The lower the frequency of the Serial
interface, the higher the delay accumulation of the sensor initialization phase. This can be related to the timers involved in
the SPI bus library, and in the case of 9600 bps this totals more than 30 s, leading the Raspberry OS kernel to abort the USB
Serial on the Raspberry Pi phase, due to the Arduino resetting naturally on establishing connections through USB. Anyway,
as there is no reason to choose so low frequencies when there are higher ones available, this case can be left out.

Fig. 5 shows the data collected in Table 2. This figure eases to check the feasibility of an experimental setting considering
the number of sensors and the serial bus baud rate. In this way, it is even possible to try to extrapolate the attainable
frequencies for a few more sensors in case this was necessary.

Therefore, given an experimental setting with 4 6DOF sensor units and at least 50 readings per second of each one, if
someone wants to use our platform could decide to use a 38400 bps. So the control loop on the Arduino part would be freed
to accomplish some other tasks as filtering, coding, or whatever needed.

In relationwith the influence of the baud rate to themaximumattainable acquisition frequencywe can conclude that this
sampling frequency is proportional to the baud rate, for a given number of sensors. However, being the number of sensors
an important term in the maximum sampling frequency in each curve, to double the number of sensors does not cut in half
the sampling frequency. This fact leads us to think that a limiting factor of the sampling frequency is the time consumed in
the serial interface between Arduino and Raspberry Pi possibly due to limitations in the Arduino library. Using amore clever
programming and software tools provided by Atmel could perhaps deliver better results.

5. Discussion and conclusions

As stated in Section 1 of this paper, to deal with any kind of research project in what the gathering of physical
measurements provided by sensors is a basic requirement could involve a serious problem of design and development of a
software and hardware solution. This setting is especially hard to address if the sensor system must provide solid samples



164 C. Llamas et al. / Pervasive and Mobile Computing 38 (2017) 154–165

Fig. 5. Sampling frequencies (percentile 99%) measured on the system for baud rates of the USB connection between Arduino and Raspberry Pi boards
and in terms of the number of sensors to read. The vertical axis is presented in a log2() scale. Upper bar and lower bar stand for absolute upper and lower
frequencies observed in working out all the data, respectively.

and notify a condition error outcome in case of a system fault. The design and construction of such kind of system could
become a challenging and time consuming stage for a usual research group given that this kind of competence is out of the
area of expertise of most researchers, like in our workgroup.

The experience collected in the bibliography and social network databases by the whole community of software and
hardware designers and researchers state that addressing this problem poses two sequential stages: exploration (learning
phase) and then utilization (developing phase) of prototypes and final systems where the key characteristics for a successful
outcome are flexibility, robustness and open source design. It is well known in computing related engineering that the
workplace where most interesting and fruitful solutions arise is in the domain of the open source communities in which
experts present their experience and innovative ideas selflessly in the same way the traditional scientific communities do,
in a better way than of the closed and proprietary environments.

Open source hardware and software designs possibly does not always produce the most optimized answer to a problem,
but in most cases are a key part to solve the task in a flexible manner. This paper describes a requirement model general
enough for many sensor platforms in their learning phase, and also a corresponding implementation of the former model.
Our platform is compound on each part of open source hardware and software and the design is conceived bearing in mind
having high freedom alternatives, as can also be seen in the case of the mobile subsystem. At the sensor connection level a
design adapted to a very particular task is devised, while depending on the acquisition task could have lead us to another
quite different solution. The feasibility of the platform has been proved in a scenery of data acquisition related with the
human gait identification.

Tracing back the main milestones of this project allows us to appreciate the standing up iterative nature of the learning
and developing phases, as stated in the introduction section.

5.1. Future work

More work has to be done in order to obtain a more robust and capable platform.
In relation with the enhance or upgrading of our system, there are many interesting hot topics that could be developed

further in the future. Among the aspects we have planned to improve the platform we consider to lessen the size of
the portable subsystem, and enhance the form factor upgrading processing boards with newer processors capable of
working with lighter Linux versions and the integration with flexible communication mechanisms based on messaging
communicationmiddleware. Also some effort must be done to increase the bandwidth of the data acquisitionwhile keeping
low the power demand, improve its ability to be worn regarding cables and how to attach the sensors to the body, and the
integration of new sensor units using the standard BLE 4.0 programming service stacks.

Simultaneously, we intend to promote the construction of a collaborative dataset for human gait analysis using this
system. This dataset will be usable for the open research community. Also, this could serve as an example of the advantages
using open source hardware and software in collaborative projects regarding the construction of public datasets.



C. Llamas et al. / Pervasive and Mobile Computing 38 (2017) 154–165 165

Acknowledgment

This work has been done in the Pervasive Computation Research Laboratory (PERCOMP Lab) at the University of
Valladolid.

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

References

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey, Comput. Netw. 38 (2002) 393–422. http://dx.doi.org/10.
1016/S1389-1286(01)00302-4, arXiv:1004.3164.

[2] J.K. Moore, S.K. Hnat, A.J. van den Bogert, An elaborate data set on human gait and the effect of mechanical perturbations, PeerJ 3 (2015) e918.
http://dx.doi.org/10.7717/peerj.918.

[3] L. Ho, M. Moh, Z. Walker, T. Hamada, C.-F. Su, A prototype on RFID and sensor networks for elder healthcare: progress report, in: Proceedings of the
2005 ACM SIGCOMM workshop on Experimental Approaches to Wireless Network Design and Analysis, 2005, pp. 70–75. http://dx.doi.org/10.1145/
1080148.1080164.

[4] Y. Ohgi, 62.3: Microcomputer-based acceleration sensor device for sports biomechanics, IEEE Sensor (2002) 699–704.
[5] A.Y. Benbasat, J.a. Paradiso, A compact modular wireless sensor platform, in: 2005 4th International Symposium on Information Processing in Sensor

Networks, IPSN 2005 2005 (C) 2005, pp. 410–415. http://dx.doi.org/10.1109/IPSN.2005.1440958.
[6] D.A. James, N. Davey, J. Hayes, From conception to reality: A wearable device for automated swimmer performance analysis, SPIE (2003) 371–378.
[7] N.P. Davey, Signal analysis of accelerometry data using gravity-basedmodeling, Proc. SPIE 5274 (2004) 362–370. http://dx.doi.org/10.1117/12.530184.
[8] J.M. Pearce, Building research equipment with free, open-source hardware, Science 337 (2012) (2012) 1303–1304. http://dx.doi.org/10.1126/science.

1228183.
[9] H. Alemdar, C. Ersoy,Wireless sensor networks for healthcare: A survey, Comput. Netw. 54 (15) (2010) 2688–2710. http://dx.doi.org/10.1016/j.comnet.

2010.05.003.
[10] B.P.L. Lo, G.-z. Yang, Key technical challenges and current implementations of body sensor networks, in: 2nd International Workshop on Body Sensor

Networks, London, 2005.
[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, K. Pister, System architecture directions for networked sensors, ACM SIGOPS Oper. Syst. Rev. 34 (2000)

93–104. http://dx.doi.org/10.1145/384264.379006.
[12] A. Burns, B.R. Greene, M.J. McGrath, T.J. O’Shea, B. Kuris, S.M. Ayer, F. Stroiescu, V. Cionca, SHIMMER, a wireless sensor platform for noninvasive

biomedical research, IEEE Sens. J. 10 (9) (2010) 1527–1534. http://dx.doi.org/10.1109/JSEN.2010.2045498.
[13] B.P.L. Lo, S. Thiemjarus, R. King, Body sensor network a wireless sensor platform for pervasive healthcare monitoring, Archit. Des. 13 (2005) 77–80.

http://dx.doi.org/10.1007/s11036-007-0017-1.
[14] P. Kuryloski, a. Giani, R. Giannantonio, K. Gilani, R. Gravina, V.-P. Seppa, E. Seto, V. Shia, C. Wang, P. Yan, a.Y. Yang, J. Hyttinen, S. Sastry, S. Wicker,

R. Bajcsy, DexterNet: An open platform for heterogeneous body sensor networks and its applications, in: 2009 Sixth International Workshop on
Wearable and Implantable Body Sensor Networks http://dx.doi.org/10.1109/BSN.2009.31.

[15] E. Rubow, Open source hardware: Examples of OSH projects, Int. J. Sol. Syst. Stud. (2008) 1–5. http://dx.doi.org/10.1039/b822248g.
[16] OSHW community survey 2013, http://www.oshwa.org/oshw-community-survey-2013/ (accessed: 16.04.15).
[17] T. Kubitza, N. Pohl, T. Dingler, S. Schneegaß, C.Weichel, A. Schmidt, Ingredients for a newwave of ubicomp products, IEEE Pervasive Comput. 12 (2013)

5–9. http://dx.doi.org/10.1109/MPRV.2013.51.
[18] M. Swan, Sensor mania! the internet of things, wearable computing, objective metrics, and the quantified self 2.0, J. Sensor Actuator Netw. 1 (2012)

217–253. http://dx.doi.org/10.3390/jsan1030217.
[19] Q. Li, D. Han, O. Gnawali, P. Sommer, B. Kusy, Demo abstract: Twonet - large-scale wireless sensor network testbed with dual-radio nodes, in: Pro-

ceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, ACM, 2013, pp. 2–3. http://dx.doi.org/10.1145/2517351.2517440.
[20] C. Llamas, K. Ottogalli, C. Hernández, M.A. González, J. Vegas, Sistema móvil basado en open source hardware para la adquisición de datos de

movimiento humano, Act. J. Comput. Empotrada 2015 (2015) 109–114.
[21] M. Bächlin, M. Plotnik, D. Roggen, I. Maidan, J.M. Hausdorff, N. Giladi, G. Tröster, Wearable assistant for parkinson’s disease patients with the freezing

of gait symptom, Trans. Inf. Technol. Biomed. 14 (2) (2010) 436–446. http://dx.doi.org/10.1109/TITB.2009.2036165.
[22] Raspberrypi is open hardware??, https://www.raspberrypi.org/forums/viewtopic.php?t=55777&p=422729 (accessed: 08.12.15).
[23] Open source hardware, https://en.wikipedia.org/wiki/Open-source_hardware (accessed: 08.12.15).
[24] M. Milinović, eduroam Policy Service Definition. Technischer Bericht, GEANT, 2012.
[25] I. Fette, A. Melnikov, The websocket protocol, RFC 6455 (Proposed Standard) 2011.
[26] G.J. Holzmann, Design and Validation of Computer Protocols, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1991.
[27] S.C. Mukhopadhyay, Wearable sensors for human activity monitoring: A review, IEEE Sens. J. 15 (3) (2015) 1321–1330. http://dx.doi.org/10.1109/

JSEN.2014.2370945.
[28] S. Ferdoush, X. Li,Wireless sensor network systemdesign using raspberry pi and arduino for environmentalmonitoring applications, Procedia Comput.

Sci. 34 (2014) 103–110. the 9th International Conference on Future Networks and Communications (FNC’14)/The 11th International Conference on
Mobile Systems and Pervasive Computing (MobiSPC’14)/Affiliated Workshops.

[29] I. Inc, Mpu-6000 and mpu-6050. product specification. revision 3.4, Tech. rep., Invensense Inc. 2013.
[30] Intel corporation and others, USB 3.0 specification revision 1.0 nov. 12 2008.

http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
http://dx.doi.org/10.1016/S1389-1286(01)00302-4
arXiv:1004.3164
arXiv:1004.3164
arXiv:1004.3164
http://dx.doi.org/10.7717/peerj.918
http://dx.doi.org/10.1145/1080148.1080164
http://dx.doi.org/10.1145/1080148.1080164
http://dx.doi.org/10.1145/1080148.1080164
http://dx.doi.org/10.1145/1080148.1080164
http://dx.doi.org/10.1145/1080148.1080164
http://dx.doi.org/10.1145/1080148.1080164
http://dx.doi.org/10.1145/1080148.1080164
http://dx.doi.org/10.1145/1080148.1080164
http://refhub.elsevier.com/S1574-1192(16)30095-5/sbref4
http://dx.doi.org/10.1109/IPSN.2005.1440958
http://refhub.elsevier.com/S1574-1192(16)30095-5/sbref6
http://dx.doi.org/10.1117/12.530184
http://dx.doi.org/10.1126/science.1228183
http://dx.doi.org/10.1126/science.1228183
http://dx.doi.org/10.1126/science.1228183
http://dx.doi.org/10.1126/science.1228183
http://dx.doi.org/10.1126/science.1228183
http://dx.doi.org/10.1126/science.1228183
http://dx.doi.org/10.1126/science.1228183
http://dx.doi.org/10.1126/science.1228183
http://dx.doi.org/10.1016/j.comnet.2010.05.003
http://dx.doi.org/10.1016/j.comnet.2010.05.003
http://dx.doi.org/10.1016/j.comnet.2010.05.003
http://dx.doi.org/10.1016/j.comnet.2010.05.003
http://dx.doi.org/10.1016/j.comnet.2010.05.003
http://dx.doi.org/10.1016/j.comnet.2010.05.003
http://dx.doi.org/10.1016/j.comnet.2010.05.003
http://dx.doi.org/10.1016/j.comnet.2010.05.003
http://dx.doi.org/10.1016/j.comnet.2010.05.003
http://dx.doi.org/10.1016/j.comnet.2010.05.003
http://dx.doi.org/10.1016/j.comnet.2010.05.003
http://dx.doi.org/10.1145/384264.379006
http://dx.doi.org/10.1109/JSEN.2010.2045498
http://dx.doi.org/10.1007/s11036-007-0017-1
http://dx.doi.org/10.1109/BSN.2009.31
http://dx.doi.org/10.1039/b822248g
http://www.oshwa.org/oshw-community-survey-2013/
http://dx.doi.org/10.1109/MPRV.2013.51
http://dx.doi.org/10.3390/jsan1030217
http://dx.doi.org/10.1145/2517351.2517440
http://refhub.elsevier.com/S1574-1192(16)30095-5/sbref20
http://dx.doi.org/10.1109/TITB.2009.2036165
https://www.raspberrypi.org/forums/viewtopic.php?t=55777\&p=422729
https://en.wikipedia.org/wiki/Open-source_hardware
http://refhub.elsevier.com/S1574-1192(16)30095-5/sbref24
http://refhub.elsevier.com/S1574-1192(16)30095-5/sbref26
http://dx.doi.org/10.1109/JSEN.2014.2370945
http://dx.doi.org/10.1109/JSEN.2014.2370945
http://dx.doi.org/10.1109/JSEN.2014.2370945
http://dx.doi.org/10.1109/JSEN.2014.2370945
http://dx.doi.org/10.1109/JSEN.2014.2370945
http://dx.doi.org/10.1109/JSEN.2014.2370945
http://dx.doi.org/10.1109/JSEN.2014.2370945
http://dx.doi.org/10.1109/JSEN.2014.2370945
http://dx.doi.org/10.1109/JSEN.2014.2370945
http://refhub.elsevier.com/S1574-1192(16)30095-5/sbref28

	Open source hardware based sensor platform suitable for human gait identification
	Introduction and objectives
	State of the art
	The open source hardware sensor platform
	Use case: gait data acquisition
	High level model
	The OSHW sensor platform design
	User operating layer
	Infrastructure layer
	Acquisition layer


	Implementation of the OSHW sensor platform
	Static subsystem
	Mobile subsystem
	Data acquisition component
	Experimental measures

	Discussion and conclusions
	Future work

	Acknowledgment
	References


