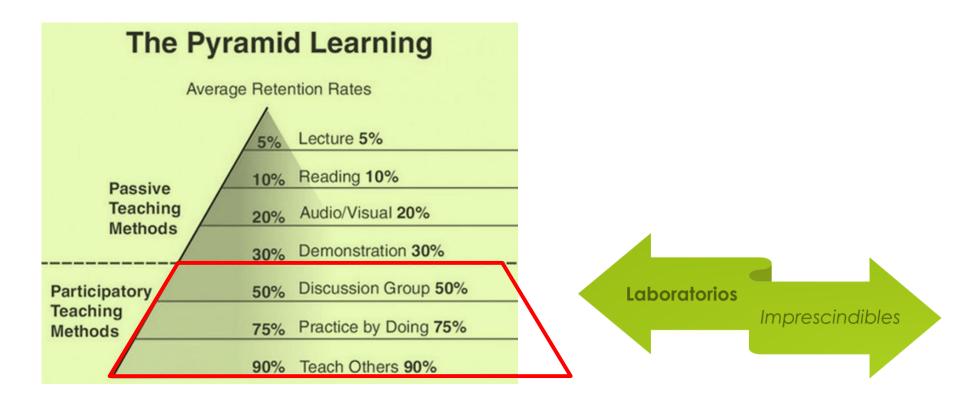


USO DE DISPOSITIVOS MÓVILES PARA EXPERIMENTACIÓN EN FÍSICA


M.J. Santos¹, C. Prieto², M.A. González³, M.A. González⁴, A. Hernández⁵, M.D. Merchán⁶, C. Rodríguez², A. Queiruga-Dios⁵

Departamento de Física Aplicada, Universidad de Salamanca, España.
 Departamento de Física Fundamental, Universidad de Salamanca, España.
 Departamento de Física de la Materia Condensada, Universidad de Valladolid, España.
 Departamento de Física Aplicada, Universidad de Valladolid, España.
 Departamento de Matemática Aplicada, Universidad de Salamanca, España.
 Departamento de Química Física, Universidad de Salamanca, España.

Vamos a usar el móvil

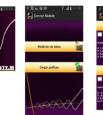
Aprendizaje

Laboratorio clásico/smartphones

	LABORATORIO CLÁSICO	SMARTPHONE	
Espacio	Limitado	Ilimitado	
Tiempo	Limitado	24h	
Equipamientos	Costosos	Barato	
Mantenimiento	Personal	Sencillo	
Motivación	Irregular	Alta	

Física con smartphones

SENSOR GROWTH IN SMARTPHONES



Física con smartphones

- Múltiples posibilidades usando los distintos sensores del móvil
- Unido a apps diseñadas para la docencia

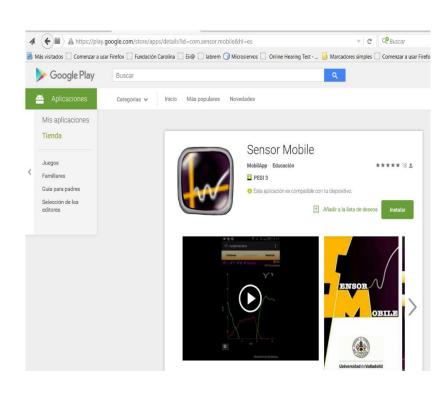
2012

2013

SENSOR GROWTH IN SMARTPHONES

2010

2011


4 idiomas, múltiples sensores simultáneamente

2014

2015+

App: Sensor Mobile

https://play.google.com/store/apps/details?id=com.sensor.mobile

Para empezar... Acelerómetro

Guardar (csv)

Acelerómetro

Magnetómetro

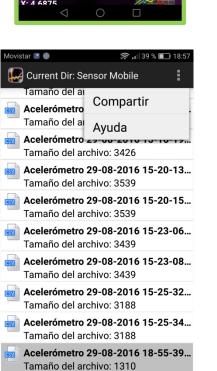
Sensor de luz

Ayuda

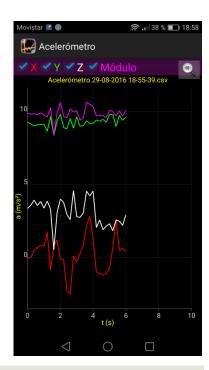
Sensor proximidad

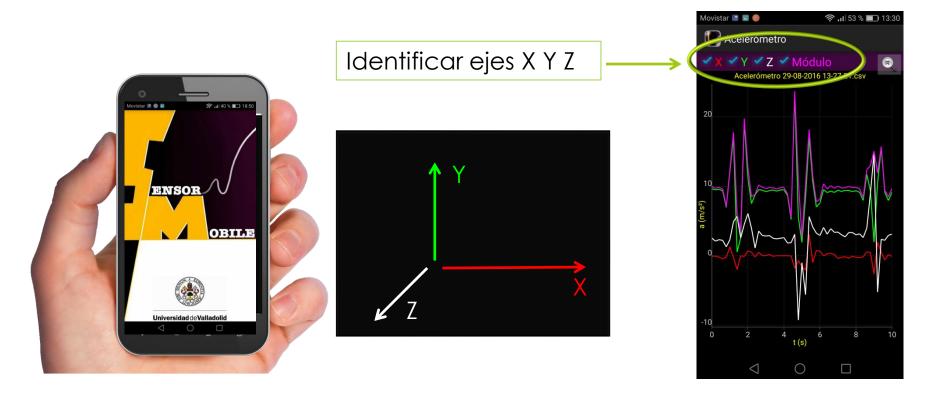
Compartir

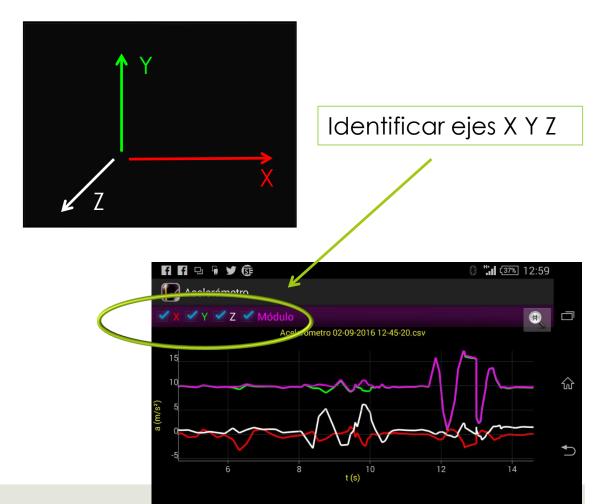
Movistar 💹 🕕

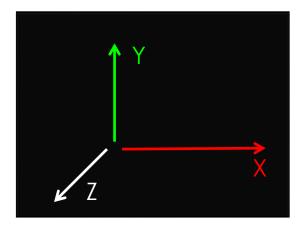

Continuar

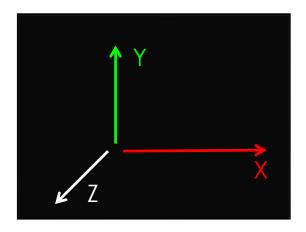
Acelerómetro







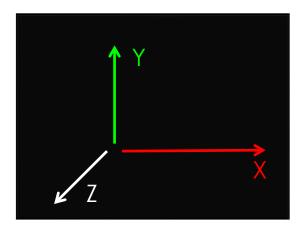

1 Identificar los ejes de coordenadas en nuestro dispositivo:



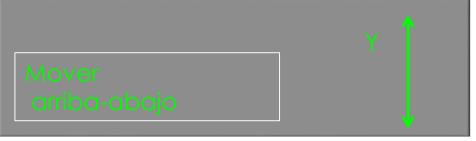
Identificar ejes X Y Z



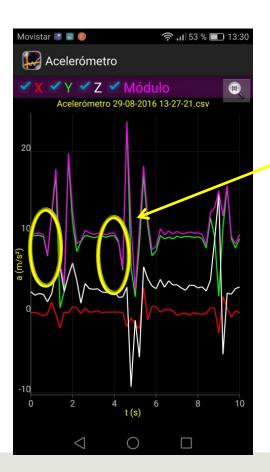




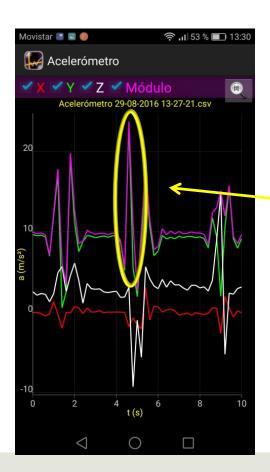
Identificar ejes X Y Z



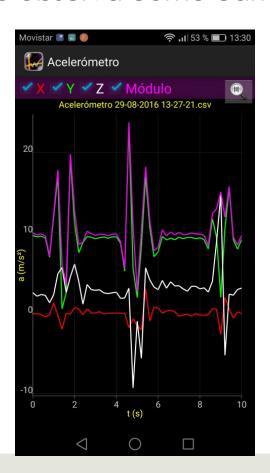
Identificar ejes X Y Z


Se observa cómo cambia la aceleración al dar un salto

Interpretación de los puntos significativos:


① g inicial

Se observa cómo cambia la aceleración al dar un salto


- 1 g inicial
- ② Impulso inicial: "dejar caer el móvil"

Se observa cómo cambia la aceleración al dar un salto

- 1) g inicial
- ② Impulso inicial: "dejar caer el móvil"
- ③ Salto hacia arriba: aumenta aceleración
- 4 Salto hacia abajo: disminuye aceleración

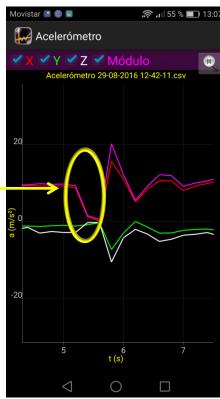
Se observa cómo cambia la aceleración al dar un salto

- ① g inicial
- ② Impulso inicial: "dejar caer el móvil"
- 3 Salto hacia arriba: aumenta aceleración
- 4 Salto hacia abajo: disminuye aceleración

Se deja caer libremente (...o casi) un móvil metido en una

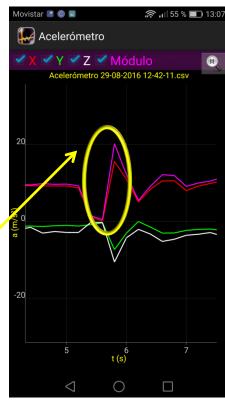
bolsa de plástico.

Interpretación de los puntos significativos:


1) g inicial

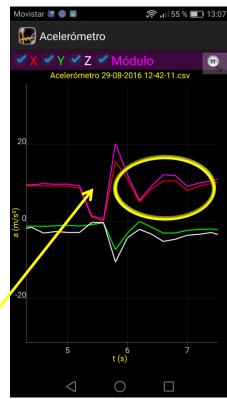
□ Se deja caer libremente (...o casi) un móvil metido en una

bolsa de plástico.


- 1 g inicial
- ② Brusca caída de la aceleración, hasta que llega a prácticamente cero.

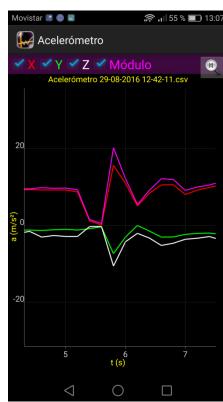
□ Se deja caer libremente (...o casi) un móvil metido en una

bolsa de plástico.


- 1 g inicial
- 2 Brusca caída de la aceleración, hasta que llega a prácticamente cero.
- 3 La extensión total de la cuerda provoca sobre el teléfono una fuerza brusca que incrementa la lectura del acelerómetro a valores de prácticamente 20 m/s²

□ Se deja caer libremente (...o casi) un móvil metido en una

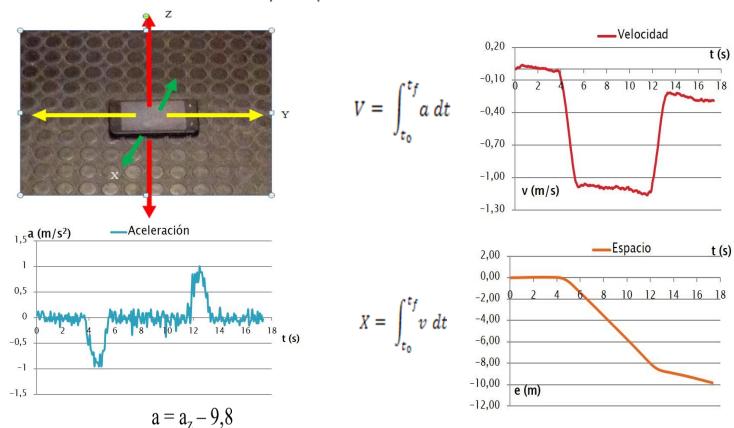
bolsa de plástico.


- ① g inicial
- ② Brusca caída de la aceleración, hasta que llega a prácticamente cero.
- 3 La extensión total de la cuerda provoca sobre el teléfono una fuerza brusca que incrementa la lectura del acelerómetro a valores de prácticamente 20 m/s²
- 4 para volver con alguna oscilación al valor de partida.

□ Se deja caer libremente (...o casi) un móvil metido en una

bolsa de plástico.

- 1 g inicial
- ② Brusca caída de la aceleración, hasta que llega a prácticamente cero.
- 3 La extensión total de la cuerda provoca sobre el teléfono una fuerza brusca que incrementa la lectura del acelerómetro a valores de prácticamente 20 m/s²
- (4) para volver con alguna oscilación al valor de partida.

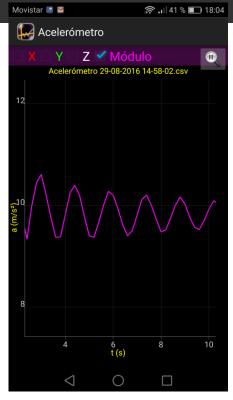


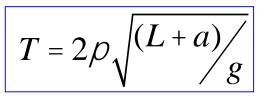
Ejemplo 3: subiendo en ascensor


- ¿Cómo afecta el movimiento del ascensor a la aceleración?
- Si cuando el ascensor acelera dejamos caer el móvil ¿qué aceleración experimenta en el momento de soltarlo?
- Hay que tomar los datos

Ejemplo 3: subiendo en ascensor

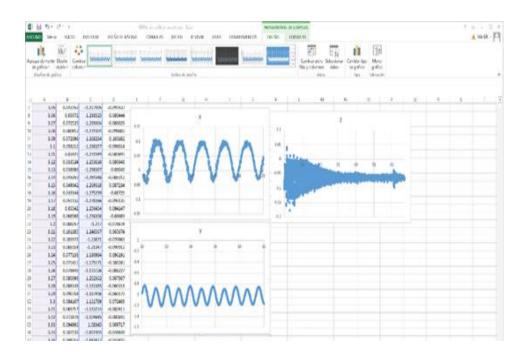
Aceleración, velocidad y espacio recorrido




Ejemplo 4: el móvil como péndulo

mg cos φ

De la variación regular de la aceleración se puede extraer el período



Mediante ajuste lineal de T² frente a L se puede obtener g

Ejemplo 4: el móvil como péndulo

Ejemplo 5: combinación de acelerómetro y giróscopo

Mi experiencia consistirá en medir la aceleración que un niño puede llegar a experimentar en este tipo de atracción y la velocidad angular que adquirirá al efecturar volteretas en el aire.

	t(s)	X	Y	Z M	ódulo
	38,285472	-0,3077	9,8451	-3,0766	10,
	38,301056	0,3077	13,2294	-4,3072	13,9163
	38,443646	0,6153	21,2285	-8,3068	22,8042
	38,443871	1,2306	35,6885	-10,7681	37,7
	38,498008	0,6153	37,8421	-6,4608	38,3946
	38,635176	-1,846	28,6124	-4,3072	28,9936
	38,635404	-0,3077	5,2302	1,2306	5,3818
	38,726701	-1,846	7,6915	-3,9996	8,8636
	38,837626	-0,3077	8,6145	-3,9996	9,
	38,837851	-0,3077	8,6145	-2,1536	8,8849
	38,916055	0	7,9991	-2,1536	8,284
	39,03713	-0,3077	7,3838	-2,7689	7,8919
	39,037719	0	6,1532	-2,1536	6,5192
	39,116286	-0,3077	5,8455	-1,846	6,1378
	39,24936	-0,3077	5,8455	-1,846	6,1378
	39,249524	-0,3077	5,2302	-1,5383	5,4604
	39,318173	0,3077	5,8455	-1,2306	5,9816
	39,433855	0	4,9225	-1,2306	5,074
	39,439893	-0,3077	4,9225	-1,2306	5,0834
	39,515113	0	5,5379	-0,6153	5,572
	39,634335	0	4,9225	-1,846	5,2573
ı	39,640735	0,3077	4,9225	-1,5383	5,1665
П	39,719029	-0,3077	4,3072	-1,2306	4,
١	39,884688	0	4,9225	-0,923	5,0083
۱	39,884866	0	4,3072	-2,1536	4,8156
	39,919793	0	5,5379	-1,2306	5,673
	40,041823	0	5,5379	-1,846	5,8374
	40,04449	0	6,4608	-1,846	6,7194
	40,115687	-0,3077	6,4608	-2,7689	7,0359
	40,239277	-0,6153	7,3838	-1,846	7,6359
	40,253187	-0,3077	7,6915	-3,0766	8,2897
	40,317487	-0,6153	7,9991	-2,7689	8,4872
	40,430366	-0,923	8,6145	-2,7689	9,0955
	40,450406	-0,923	9,8451	-3,9996	10,

ANÁLISIS

Podemos comprobar que el valor de la aceleración del eje Y es prácticamente el mismo al valor del módulo (la linea naranja y la verde oscura son prácticamente coincidentes), por lo que queda demostrado que el salto se efectúa en el eje Y.

*Los valores de la aceleración marcados en la tabla serían los más próximos a los siguientes momentos del salto (por orden): 1)Justo en la posición de equilibrio antes de subir.

2)Arriba del todo.

3)En la posición de inicio.

4)Por debajo de la posición de inicio (debido a la fuerza que se ejerce sobre la cama elástica al caer).

5)En la posición de inicio nuevamente.

Trabajos realizados por estudiantes

Aplicaciones para móvil

- Sonómetro (AudiA): Mide el

¿Cómo afecta la gravedad al precio de un diamante?

Vamos a analizar como en función de en que lugar de

Conclusiones

La utilización de los sensores de los teléfonos móviles en combinación con aplicaciones diseñadas específicamente para la docencia permite al profesor disponer a muy bajo coste de un amplio conjunto de experiencias que pueden ser realizadas dentro o fuera del laboratorio

Los alumnos
trabajan con sus
dispositivos móviles,
una herramienta
que dominan y que
les permite conectar
la ciencia que se
aprende en el aula
con los fenómenos
en su entorno
cotidiano.

El uso de **Sensor Mobile**, aplicación desarrollada con fines
específicamente docentes, ha resultado intuitiva para los estudiantes y ha proporcionado unas prestaciones muy elevadas.

Conclusiones

Los trabajos realizados por los estudiantes han puesto de manifiesto su implicación en el estudio de la materia, el incremento del grado de madurez al enfrentarse a la comprensión de fenómenos físicos en situaciones no preparadas en un laboratorio, la adquisición de habilidades para el análisis y tratamiento de los datos obtenidos y para la interpretación de los resultados.

En definitiva, consideramos que este tipo de experiencias aporta grandes ventajas facilitando el aprendizaje de la física.

Con un abanico grande de posibilidades limitadas únicamente por los conocimientos y la imaginación de los usuarios.

Referencias

- González, M. Á., da Silva, J. B., Cañedo, J. C., Huete, F., Martínez, Ó., Esteban, D., ... & González, M. Á. Doing physics experiments and learning with smartphones. In Proceedings of the 3rd International Conference on Technological Ecosystems for Enhancing Multiculturality (pp. 303-310). ACM. (2015).
- González, M. Á., González, M. Á., Martín, M. E., Llamas, C., Martínez, Ó., Vegas, J., ... & Hernández, C. Teaching and Learning Physics with smartphones. Journal of Cases on Information Technology, 17(1), 31-50, (2015).
- https://play.google.com/store/apps/details?id=com.sensor.mobile
- **□** ...

Agradecimientos

Los autores agradecen la financiación a la Universidad de Salamanca a través de Proyectos de Innovación y Mejora Docente del curso 2015/16 (ID2015/0248)

Colaboración profesores Universidad de Valladolid

- Dr. Manuel Ángel González Delgado
- Dr. Miguel Ángel González Rebollo
- Universidad de Valladolid Diseño Apps

Servicio Producción e Innovación Digital de la Universidad de Salamanca