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ABSTRACT
The synthesis of amide (butyl, cyclohexyl, and phenyl) modified silica
and the use as stationary phases in sequential injection chromatogra-
phy are described. The system was tested on the isocratic separation of
seven sulfonamides (sulfachloropyridazine, sulfadimethoxine, sulfame-
thazine, sulfamethoxazole, sulfamethoxypyridazine, sulfaquinoxaline,
and sulfathiazole) using each stationary phase with mobile phases
composed of acetonitrile/water at a flow rate of 0.45 mL min−1. A mixed
mode retention mechanism of sulfonamides in the stationary phases
was obtained, including dipole-dipole, π-π, and hydrogen bonding
interactions. The most appropriate phase for the separation of
sulfonamides was phenylamide. The chromatographic behavior was
confirmed using density functional theory of the interaction between
sulfamethoxazole and the stationary phases.
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Introduction

In recent decades, new analytical methodologies have developed to obtain precise, accurate,
and economic results in a short period of time. Flow methods are generally fast, robust, and
flexible. These methods are used to manipulate, mix, and transport samples and reagents
for the development of reactions using a microscale approach (Idris 2010, 2014). Their
extreme versatility distinguishes them from other analytical techniques because they pro-
vide fast, accurate, and precise results. Sequential injection chromatography (SIC) is a
well-established technique that integrates a short separation column into a sequential injec-
tion analysis (SIA) flow system (Chocholouš, Solich, and Šatínský 2007). SIC has already
been consolidated as a good alternative to high performance liquid chromatography
(HPLC) for the analysis of mixtures at low-pressures (Chocholouš, Solich, and Šatínský
2007; González-San Miguel et al. 2009; Idris 2010). The use of the 8-port selection valve
allows the combination of a series of reagents or samples. The low pressure syringe pump
allows the modification of the speed and the direction of the flow.

CONTACT Jose A. Rodríguez jara.uaeh@gmail.com; josear@uaeh.edu.mx Area Academica de Quimica, Universidad
Autonoma el Estado de Hidalgo, Carr. Pachuca Tulancingo km 4.5, Pachuca, Hidalgo 42076, Mexico.
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This paper is part of a special issue on Automated Flow Injection Based Analytical Techniques organized by Dr. Paraskevas
Tzanavaras of Aristotelian University of Thessaloniki.
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In general, monolithic columns are used as stationary phases because of their low resistance
to flow due to the high porosity of monolithic materials. Silica C18 (Chocholouš et al. 2011,
2013), polymer-based (polyacrylamide gels), synthetic organic materials (acrylate resins),
natural polymers (cellulose), and preparative columns have been used for SIC (Šatínský
et al. 2003; Guiochon 2007; Jangbai et al. 2012). The SIC separations are performed using sam-
ple volumes and flow rates between 10 and 200 µL and from 0.5 to 2.4mL min−1, respectively,
and the available pressures of the relief valve are currently 250–500 psi (Idris 2014). However,
the low pressures supported by the SIC system limit their application. The high porosity due to
the presence of macropores allows the use of higher flow rates, thus reducing the analysis time.
The mesopores form a fine porous structure and provide a larger surface active area than used
in high efficiency separations (Minakuchi et al. 1997; Gritti and Guiochon 2004). On the other
hand, packed columns have the advantage of using stationary phases with different functional
groups (Unger, Skudas, and Schulte 2008).

SIC methodologies have been developed for the analysis of pharmaceutical formulations,
urine, blood serum, water, and food. The most commonly stationary phase employs C18
monolithic columns (25� 4.6mm) (Fernández et al. 2008; Infante, de Prá Urio, and Masini
2011; Koblová et al. 2011). The use of fused-core-packed columns of higher dimensions
(30� 4.6mm, particle size 2.7 µm) has also been studied with: amide, C18, and phenyl-
hexyl for the determination of phenolic acids using a valve which supports pressures up
to 1000 psi (Chocholouš et al. 2013). The use of smaller particles (2 µm) has been described
forming thin layers on the inner wall of minicolumns using silica-coated magnetite of
different polarity (Ibarra et al. 2013).

Separations with stationary phases that contain different functional groups such as
amide, amine, ester, and urea in which there may be hydrogen bonding and intermolecular
interactions has been proposed for applications in hydrophilic interaction liquid chroma-
tography (Kirkland 2004; Snyder, Dolan, and Carr 2004; Rimmer and Sander 2009). These
stationary phases, with mixed mode interactions, have been applied to the analysis of polar
compounds such as carbohydrates (Churms 1996), peptides (Cai et al. 2012), proteins
(Guo, Li, and Frey 2014), and catecholamines (Aturki et al. 2011).

The use of modified silica with aliphatic and aromatic amides may be an alternative to
improve the retention of low molecular weight molecules. Currently, there is a minimal
amount of information regarding the use of amide modified silica stationary phases for sep-
aration of sulfonamides by SIC. Therefore, the present work evaluates the characteristics of
retention on stationary phases that contain butyl, cyclohexyl, and phenyl amides in SIC sys-
tems. The functional groups promote additional interactions between the stationary phase
and the analyte which improves chromatographic behavior. Sulfonamides are widely used
for treatment of bacterial infections in humans and animals. Hence, the development of ana-
lytical methods useful in environmental (Seifrtová et al. 2009; García-Galán, Díaz-Cruz, and
Barceló 2013) and food (Kishida and Furusawa 2001; Ibarra et al. 2014) samples is required.

Experimental

Reagents and solutions

Silica gel 60 (40–60 µm, surface area 460–520m2 g−1) was purchased from Merck KGaA
(Darmstadt, Germany). 3-(Aminopropyl) trimetoxysilane (99%), triethylamine (99%),
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methyl acrylate (99%), butylamine (99.5%), cyclohexylamine (99%), and Aniline (99%),
were obtained from Sigma (St. Louis, MO, USA). HPLC-grade acetonitrile, methanol,
anhydrous toluene, and ethanol were from J.T. Baker (Phillipsburg, NJ, USA) and water
from a Milli-Q system (Millipore, Bedford. M.A, USA) was used throughout the
experiments.

Sulfachloropyridazine (99.4%), sulfadimethoxine (99.8%), sulfamethazine (99.8%), sul-
famethoxazole (99%), sulfamethoxypyridazine (99.2%), sulfaquinoxaline (99.1%), and
sulfathiazole (99.9%) were obtained from Sigma (Steinheim, Germany). The standard solu-
tions were prepared in acetonitrile and stored at 4°C and renewed weekly. Working stan-
dard solutions with the sulfonamides were daily prepared in acetonitrile-water (1:1 v/v). A
20mg L−1 solution of each sulfonamide was used for optimization of the separation and
evaluation of the columns. The chromatography separation was evaluated under isocratic
conditions.

Synthesis of stationary phases

Silica gel (3.0 g) was suspended in 40ml of HCl (3mol L−1), refluxed for 8 h, filtered, and
washed with ultrapure water until a neutral pH value was obtained. The solid was filtered
and allowed to dry at 120°C overnight (Li et al. 2013).

Activated silica (3.0 g) was mixed with 30ml of anhydrous toluene, 0.5ml of trimethy-
lamine, and 3ml of 3-(Aminopropyl) trimetoxysilane and refluxed for 24 h. The 3-
(Aminopropyl) trimetoxysilane-bonded silica was filtered and thoroughly washed with
toluene followed by ethanol (3� 10mL) and dried at 60°C for 12 h. The dried solid was
immersed in 60mL methyl acrylate/methanol (1:1, v/v) and stirred under nitrogen at
50°C for 2 h. The product was filtered and washed with methanol to obtain ester group
modified silica (Xu et al. 2013).

The solid phase with the ester group was reacted with 30mL primary amines in meth-
anol solution (1:1, v/v) and stirred at 50°C for 8 h. The products were filtered and washed
with methanol to obtain different amide groups with aliphatic chains. All the derived pro-
ducts SP-1 (aniline), SP-2 (butylamine), and SP-3 (cyclohexylamine), were washed and
dried (60°C, 8 h).

Sample preparation

The methodology was tested in the analysis of urine samples. 1.0mL of urine, containing
10 and 30mg L−1 of sulfamethoxazole, was mixed with 2.0mL of acetonitrile in a poly-
propylene centrifuge tubes (10ml). The mixture was vortex mixed for 5min (Barnstead/
Thermolyne, IA, USA). The mixture was centrifuged for 15min at 3200 rpm, and the
supernatant was analyzed by the SIC system (Chen, Wu, and Wu 2015)

Equipment

The SIC system (Figure 1) consisted of a programmable speed burette multisyringe (10mL;
MicroBu 2030, Crison) that was used to aspire and dispense the reagents solutions. An
eight-way selection valve (Pump 2060, Crison) connected to a high density polypropylene
mini-column of 50� 4.5mm was packed with the synthesized solid phases: SP-1, SP-2, and
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SP-3. The mini-column was slurry-packed with the different stationary phases. The
extremities on the column were fitted with glass microfiber filters with a pore size of
2.7 µm (Whatman, Grade GF/D). 2.0mL of a modified silica suspension in acetonitrile
(25m gmL−1) were suctioned using a vacuum pump. The column was conditioned by
passing acetonitrile:water (1:1, v/v) through the column at a flow rate of 0.3mL min−1 over
30min. This home-made mini-column supported a system pressure of 100 psi.

The column was connected to a ultraviolet-visible spectrophotometer (Lambda 40, Perk-
ing-Elmer), coupled to a quartz cell of 18 µL internal volume and 1.0 cm path-length
178.712QS flow-through detector cell Hellma (Muellheim/Baden, Germany). Omnifit
polytetrafluoroethylene tubing (0.8mm i.d.) connected the components of the flow system.
The instrument devices were controlled by Autoanalysis 5.0 software (Sciware systems SL,
Spain).

Infrared characterization of the synthesized solid phases were performed using a Perkin-
Elmer Fourier Transform Infrared Spectrophotometer model IRDM. The samples were
analyzed as KBr (1%) sample pellets. The morphological analysis of the solid phase was
performed using a JEOL JSM-820 scanning electron microscope (SEM; JEOL Inc., Peabody,
MA, USA).

Analytical cycle

Initially, the solid phase was conditioned by passing a mobile phase composed of acetoni-
trile/water (1:1) through the column at a flow rate of 0.3mL min−1 during 30min. The SIC
system began with an aspiration of a 40 µL aliquot of sample (port 2) to the holding coil
(HC) ,and transport towards the mini-column (port 1), at a flow rate of 0.45mL min−1

for 20min, while the signal was recorded at 270 nm.

Density functional theory

A theoretical study was conducted to evaluate interactions between the synthesized
stationary phases (aniline, butylamine, and cyclohexylamine) with sulfamethoxazole as
target molecule. All calculations were performed using the dftbþ (Aradi, Hourahine,
and Frauenheim 2007) and deMon2k (Geudtner et al. 2012) computational chemistry
packages. Density-functional tight-binding was used to find the most stable

Figure 1. Schematic of SIC for determination of sulfonamides: MP, mobile phase; Sy, Syringe Pump;
HC, holding coil; SV, selection valve; S, sample; MC, mini-column; D, detector; and W, waste.
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conformations of the functionalized silica molecules using the simulated annealing
technique starting from random conformations for the three types of molecules. The
forces for the annealing of the functionalized silica fragments were calculated with the
self-consistent-charge density-functional tight-binding (Elstner et al. 1988) theory using
the MATSCI and 3ob sets of Slater-Köster parameters (Gaus, Goez, and Elstner 2013;
Gaus et al. 2014). A linear cooling schedule from 1200 to 10 K was applied using a
Nose-Hoover chained thermostat. Local optimization of the annealed geometries with
the auxiliary density functional theory (Köster, Reveles, and del Campo 2004) was per-
formed using the deMon2k package in order to find the most stable conformation of
each pair. The sulfamethoxazole molecule was also optimized with the deMon2k package
starting from the crystallographic geometry reported in the Crystallography Open
Database (Crystallography.net 2014). Molecular dynamics simulations of the optimized
sulfamethoxazole molecule and optimized silica fragments were performed at 300 K at
the density-functional tight-binding level in order to find the most favorable orienta-
tions. The five most stable orientations were selected from each trajectory and optimized
with the deMon2k program at the generalized gradient approximation level including
dispersion corrections. The adsorption energies were calculated as the difference
between the energy of the interacting molecules and the sum of the isolated silica and
sulfamethoxazole energies.

Results and discussion

Preparation and characterization of the solid phase

One of the most important characteristics of the prepared stationary phases with the
synthesized solids is the retention mechanism of the analytes through hydrogen bonding,
electrostatic interactions, and hydrophobic interactions. Three different stationary phases
were synthesized using different amides with aliphatic chains that were evaluated for
sulfonamide retention. Infrared spectra of the compounds were obtained in order to ident-
ify the presence of the functional groups in the modified silica gel.

Figure 2 shows the infrared spectra of the modified and unmodified silica. The spectrum
for the SP-0 sample (unmodified silica) contained a stretching band at 1300–1000 cm−1

assigned to the siloxane group (Si-O-Si) and a stretching band at 3453 cm−1 attributed
to the vibration of the silanol group (Si-OH). A bending band at 1645 cm−1 was attributed
to the H2O contained in the silica gel. The spectra of SP-1, SP-2, and SP-3 samples showed
a band attributed to the flexion of N-H 1650–1515 cm−1 and a band corresponding to the
vibration of C=O at 1695–1650 cm−1 characteristic of the amide group. Additionally, the
SP-1 shows two bands above 3020 cm−1 and 3600 cm−1 corresponding to the ¼C‒H vibra-
tions of the phenyl group. The infrared spectra indicate the presence of the desired amides
in the solids.

The amide groups may interact among themselves via hydrogen bonding and interact
with the mobile phases components through polar interactions. The aliphatic chain pre-
sented hydrophobic characteristics and dipole-dipole interactions while the phenyl group
may interact through a π-π stacking mechanism (Croes et al. 2005).

The morphology of the solid phases was studied by scanning electron microscopy
(SEM). As shown in Figure 3, an amorphous solid was obtained. The particle size for
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the stationary phases was higher than 10 µm in all cases. The synthesized solids possessed
suitable characteristics for their use in SIC systems with low pressures.

Chromatography studies

Separation of highly polar and basic compounds is an analytical challenge on traditional
hydrophobic stationary phases (McCalley 2010). The development of a new analytical
method requires the evaluation of the effects of variables for the system. In order to

Figure 2. Infrared spectra of the modified silica materials: (1) SP-0 Activated silica; (2) SP-1 phenyla-
mide; (3) SP-2 butylamide, and (4) SP-3 cyclohexylamide.

Figure 3. Micrographs for the solid phases: (a) SP-0 and (b) SP-1.
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investigate its hydrophobic-hydrophilic retention properties, acetonitrile/water was used as
mobile phase. The parameters evaluated were the composition of the mobile phase and
stationary phases.

The mobile phase composition was studied to obtain optimal conditions for the separ-
ation of the seven sulfonamides. In this study, four different mobile phase compositions
were tested: acetonitrile: water (90:10, 70:30, 50:50, 30:70 v/v) using the different mixed
solid phases synthesized. The percentage of acetonitrile in the mobile phase significantly
affected the resolution of the sulfonamides, whose respective partition coefficient octa-
nol-water (log P) are shown in Table 1 (Gonzales and Usher 2009; Dioumaeva 2013). In
all cases, decreases in acetonitrile concentration improved the resolution of all stationary
phases. However, when the separation was performed using a ratio less than 50:50, the
retention times were higher than 20min. According to the results, the use of this relation-
ship imparts a compromise between a decrease of the organic solvent consumption and the
resolution of the signals.

Figure 4 shows the chromatograms obtained in the separation of sulfonamides with the
three solid phases. The chromatograms obtained in all cases show an effective separation of
the analytes. However, the partition of each sulfonamide varied according to the interac-
tion with the functional groups in the stationary phases. Figure 4a shows the separation
performed with phenylamide, where the main interactions are π-π stacking and hydrogen
bonds. On the other hand, Figure 4b shows the butylamide chromatogram; retention
involves hydrophobic interaction with the butyl group, whereas cyclohexylamide (Figure
4c) contributed through a dipole-dipole interaction.

The chromatographic behaviors were calculated from retention time, retention factor K′,
peak resolution, peak symmetry, number of theoretical plates and height equivalent to a
theoretical plate (HETP) as recommended by the Food and Drug Administration, U.S.
(1994). The chromatographic parameters for the columns are shown in Table 2. The
successful separation of the sulfonamides is not only attributed to the best physical proper-
ties of the columns (i.e., shorter diffusion path and partial porosity) but to the different
structures in the stationary phases that enabled differential interactions with the analytes
(Croes et al. 2005; Zhang et al. 2014).

The SP-1 presents a higher number of theoretical plates attributed to the efficiency of
the column in the separation, but its resolution between the peaks decreases as the reten-
tion time increases. This loss of resolution affects the selectivity (separation factor), the
efficiency, and the retention (capacity factor). Unlike SP-2 and SP-3, which presented an
adequate resolution >1.5, SP-2 presents the characteristics ideal for chromatographic sep-
aration of sulfonamides. According to (Zhao et al. 2007), the log P vs log K’ presents a lin-
ear relation in reversed phase separation based on hydrophobic interactions. The graphic

Table 1. Octanol-water partition coefficient (log P) for sulfonamides.
Name log P Reference

Sulfaquinoxaline 1.70 Dioumaeva (2013)
Sulfacloropyridazine 1.36
Sulfadimethoxine 1.56
Sulfamethazine 0.43 Gonzales and Usher (2009)
Sulfamethoxazole 1.58
Sulfamethoxypyridazine 1.01
Sulfathiazole 0.35
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obtained using the amide stationary phases, does not show this tendency, which confirms
the presence mixed mode interactions during the separation.

Table 3 shows various liquid chromatography techniques used for separation of sulfo-
namides. The most common strategy is based on reverse phase mode in HPLC with

Figure 4. Chromatograms obtained from the analysis of sulfonamides by SIC with a mobile phase of
acetonitrile:water 50:50, 20mg L−1 standard, injection volume of 40 µL, flow rate of 0.45ml min−1, and
ultraviolet detection at 270 nm. Synthesized solid phase: (a) SP-1, Phenylamide; (b) SP-2, Butylamide;
(c) SP-3, Cyclohexylaminde; (d) urine sample at a concentration of 15.4mg L−1 (sulfamethoxazole), as
stationary phase using phenylamide. Peaks: (1) sulfathiazole; (2) sulfamethazine; (3) sulfamethoxypyrida-
zine; (4) sulfacloropyridazine; (5) sulfamethoxazole; (6) sulfadimethoxine; and (7) sulfaquinoxaline.

Table 2. Chromatographic parameters of SIC process of the separation the sulfonamides: (1) sulfathia-
zole; (2) sulfamethazine; (3) sulfamethoxypyridazine; (4) sulfacloropyridazine; (5) sulfamethoxazole; (6)
sulfadimethoxine; and (7) sulfaquinoxaline.

Stationary phase 1 2 3 4 5 6 7
Retention time SP-1: Phenylamide 4.5 8.3 10.6 12.2 15.9 17.2 18.6

SP-2: Butylamide 3.9 6.5 9.0 11.6 14.5 17.2 20.0
SP-3: Cyclohexylamide 4.0 5.8 6.6 8.0 14.8 16.9 20.0

Retention factor K0 SP-1: Phenylamide 1.02 2.60 3.60 4.30 5.90 6.40 7.10
SP-2: Butylamide 1.2 2.5 3.8 5.2 6.6 8.1 9.5
SP-3: Cyclohexylamide 1.5 2.6 3.1 4.0 8.2 9.5 11.5

Peak resolution >1.5
(Limit)

SP-1: Phenylamide 6.1 4.2 2.4 6.1 1.8 2.3 –
SP-2: Butylamide 2.4 2.4 2.1 2.4 2.0 2.1 –
SP-3: Cyclohexylamide 2.0 0.9 1.7 7.8 2.6 3.8 –

Peak symmetry 0.8-1.5
(Limit)

SP-1: Phenylamide 0.96 1.05 0.99 1.08 0.93 0.96 1.04
SP-2: Butylamide 1.01 0.99 0.97 1.01 0.98 0.98 0.96
SP-3: Cyclohexylamide 1.03 0.97 1.01 0.98 0.94 0.96 0.98

Number of theoretical plates SP-1: Phenylamide 571 6143 3740 5590 12785 10276 10443
SP-2: Butylamide 177 861 965 1261 2876 1524 10741
SP-3: Cyclohexylamide 288 694 1039 1299 4808 7643 8223

Height equivalent to a
theoretical plate (µm)

SP-1: Phenylamide 87.5 8.1 13.4 8.9 3.9 4.8 4.7
SP-2: Butylamide 281.7 58.0 51.8 39.6 17.4 32.8 4.6
SP-3: Cyclohexylamide 173.2 72.0 48.1 38.4 10.4 6.5 6.1

Resolution: 1/2; 2/3;3/4; 4/5; 5/6; 6/7.
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octadecyl- (C18) and octyl- (C8) stationary phases with particles sizes less than 5 µm. The
mobile phases used were composed by acetonitrile and acid aqueous phases and the sep-
aration were generally performed using gradients. The analysis time of sulfonamides was
similar than the values obtained using gradient elution modes. In SIC, the use of a
fused-core stationary phase of pentafluorophenylpropyl has been described in combination
with gradient elution with a mobile phase similar to the approach for HPLC.

The separation using SIC with amide stationary phases allows a lower resolution com-
pared with separation using lower particles sizes. However, this methodology is a competi-
tive strategy that can be used to analyze complex samples such as urine which usually
contains one or two sulfonamides. In order to corroborate the usability, a urine sample
was analyzed by SIC using the phenylamide stationary phase because it had the highest
number of theoretical plates. The Figure 4(d) shows the chromatogram obtained from
the analysis of a real sample. A concentration of 15.4mg L−1 was found in the sample.
The average recoveries obtained from the analysis of the fortified sample with sulfamethox-
azole with 10 and 30mg L−1 were 97.3� 2.56% and 101� 3.46%, respectively. The pre-
cision of the methodology, expressed as relative standard deviation (RSD, n¼ 3), was
less than 5% in all cases.

Molecular modeling

In order to evaluate the possible interactions in the synthesized stationary phases, a theor-
etical study was conducted using sulfamethoxazole as the target molecule. Figure 5 shows
the most stable orientation for each substituent. The corresponding adsorption energies are
reported in Table 4. The average adsorption energy of the five most stable conformers is
also shown in the last column of Table 4. Figure 5(a–c) show that hydrogen bonds are
formed between the sulfamethoxazole molecule and the substituent of the silica fragments.
In the case of butylamide, at least two hydrogen bonds are formed as shown in Figure 5(a),
and for cyclohexylamide and phenylamide, at least one hydrogen bond is formed as shown

Figure 5. Most stable orientation of sulfamethoxazole: (a) butylamide, (b) cyclohexylamide, and (c)
phenylamide and the functionalized silica fragment.

ANALYTICAL LETTERS 685

D
ow

nl
oa

de
d 

by
 [

U
ni

 A
ut

on
om

a 
de

l E
st

ad
o 

de
 H

id
al

go
] 

at
 0

7:
43

 2
3 

Fe
br

ua
ry

 2
01

6 



in Figure 5(b) and (c). These hydrogen bonds are around 2.0°Å for the O-H⋯H interac-
tion and from 2.1 to 2.3°Å for the N-H⋯H interaction. The large adsorption energies for
all three types of substituents indicate that Van der Waals interactions and possibly π aro-
matic interactions have large contributions to the adsorption energies.

Conclusions

Three modified amide silica solids were synthesized. The solids were used as stationary
phases for the separation of sulfonamides by sequential injection chromatography under
isocratic conditions. The mixed interaction mechanism allowed the separation of the sul-
fonamides. The best chromatographic performance was obtained using silica modified with
phenylamide in which π-π interaction is preferential, although hydrophobic interactions
and hydrogen bonding may coexist. The SIC system has the advantages of being economic
to use because of their low pressures required, lower reagent consumption ,and low cost
equipment compared with high performance liquid chromatography.
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