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Abstract  

The study aimed at investigating the effects of molecular weight(peak molecular 

weight, Mp, 83, 192 and 650 kDa) and level (1.3, 2.6 and 3.9 g/100 g flour basis) of 

enriched in β-glucan (BG) concentrates (from oat and barley) added into rice flour 

gluten-free (GF) doughs on their viscoelastic and pasting properties, as well as the 

quality parameters of bread and the in vitro starch digestibility. A purification 

process of a commercial BG concentrate, followed by  an acid hydrolysis step were 

employed to reduce the content of interfering excipients (e.g. maltodextrins) and 

obtain preparations with a range of molecular weights. BG-enriched GF breads of 

improved quality, that can fulfil the EFSA claims (ingest of 3 g of BG per day with a 

daily bread intake of ∼200 g of bread), were obtained, exhibiting slower starch 

digestibility (in vitro assay) dependent on the molecular weight and concentration of 

BG. With the higher Mp BG used, showing the largest impact on dough rheology 

characteristics and having a greater potential for health benefits, higher specific 

volume and lower bread crumb hardness were noted among the GF breads. The 

medium and lowest Mp BG also had an influence on dough rheological behavior and 

bread quality attributes. The rapidly available glucose of the bread decreased from 

81g/100 g to 72g/100 g as result of the 3.9g/100 g addition of the highest Mp BG in 

the GF formulations. 



Keywords:   Gluten free bread; pasting properties; oscillatory test, creep-recovery 

test; digestible starch. 

1. Introduction 

In recent years β-glucans (BG) have received significant consumer and research 

attention because their consumption has been linked with certain health benefits 

recognized by EFSA (EFSA 2011). These health claims have largely contributed to 

increased consumption of cereal based foods, such as breads, muffins, pasta and 

breakfast cereals, mostly whole flour products (Wolever et al., 2010). However, 

celiacs cannot ingest wheat, barley or even oat, the main sources of this dietary fiber, 

since they are not gluten-free grains. The BG enrichment of gluten-free breads to 

fulfil the requirements for the above EFSA claims can be achieved by addition of BG 

concentrates obtained from these cereals by means of water extraction processes that 

cannot co-solubilize the allergenic storage proteins of the prolamin fraction (Perez-

Quirce, Collar & Ronda, 2014; Ronda, Perez-Quirce, Angioloni & Collar, 2013; 

Ronda, Perez-Quirce, Lazaridou & Biliaderis, 2015).  

The demand for gluten-free (GF) products steadily increases as a result of enhanced 

consumer education on diet related pathogenic conditions. Despite the current 

demand for development of food products with improved nutritional quality, the GF 

products often receive only marginal attention from a nutrient-rich formulation point 

of view. The enrichment of GF breads with BG, does hold a special interest among 

the vulnerable population of celiac patients which also encounters a significant 

incidence rate of other associated chronic diseases, such as obesity-metabolic 

syndrome and diabetes due to their higher fat and calorie denser diets compared to 

the general population (Cronin & Shanahan, 1997). 

The functionality and physiological properties of cereal BG are strongly related to 

their viscosity, which depends on the molecular weight (Mw), fine structure, 

concentration and physical state of the polysaccharide (Lazaridou & Biliaderis, 2007; 

Wolever et al., 2010). Generally, high Mw BG are reported to enhance the viscosity 

of the liquid in the upper digestive tract (digesta) and, thereby, it is beneficial for 

exerting many physiological activities (Wood, 1994); it reduces the peak blood 

glucose response (Regand, 2009) and attenuates the glycemic response and the in 

vitro starch digestion (Thondre, Monro, Mishra & Henry, 2010). Overall, the Mw 



and amount of BG solubilised in the gut might be critical in its capacity to reduce 

glucose release and transport as a function of the increased viscosity of the digesta 

and reduced motility (Regand, Chowdhury, Tosh, Wolever & Wood, 2011).  

Previous studies have shown a great variability in the effect of BG on dough 

viscoelastic behaviour and bread quality characteristics of wheat flour bakery items 

(Brennan & Cleary, 2007; Cleary, Andersson & Brennan, 2007; Skendi, Biliaderis, 

Papageorgiou & Izydorczyk, 2010) and GF products (Hager et al., 2011; Lazaridou, 

Duta, Papageorgiou, Belc & Biliaderis, 2007; Perez-Quirce, 2014; Ronda et al., 

2013), depending on dough water and BG contents. A loss of quality when GF 

breads are fortified with BG is partially related to their Mw, as a result of enhanced 

water-binding and viscosity (Perez-Quirce et al., 2014; Ronda et al., 2015). Thus, 

although the Mw is a key determinant of the health promoting potential of BG, 

addition of high levels of high Mw BG preparations can be a challenge for food 

producers because of their low solubility and high viscosity, affecting detrimentally 

the dough handling properties and the sensory attributes of the final product. These 

negative changes could be avoided by incorporating lower BG concentrations and/or 

BG preparations of lower Mw (Kennan et al., 2007). However, with lower Mw BG, a 

reduction in physiological responses is anticipated (Cleary et al., 2007).  

The effects of Mw on GF dough and bread quality have mostly been studied by 

means of commercial BG concentrates, often of low purity. In this context, the BG-

enrichment is accompanied by addition of high amounts of other substances, such as 

maltodextrins, present in the commercial product (∼72g/100 g). Maltodextrins could 

have adverse effects, such as weakening of the dough network structure (Witczak, 

Korus, Ziobro & Juszczak, 2010) or dough stickiness, and thereby modify the true 

effects caused by BG itself (Ronda et al., 2015). Moreover, maltodextrins, being 

starch hydrolysis products, can aggravate the glycemic responses of the final 

products since they are a form of readily digestible carbohydrates. Thus, a 

comprehensive study of the effects of Mw and amount of highly concentrated BG on 

GF dough and bread properties is required.   

This study reports on the enrichment in BG of a commercial BG concentrate by 

means of a purification protocol and a reduction of their Mw by acid hydrolysis of 

the polysaccharides in a paste form of the enriched BG preparation. Under properly 



selected hydrolysis conditions the production of a tailor-made lower Mw BG 

preparation was feasible. Moreover, this study aimed at investigating the effects of 

Mw and level of the BG preparations introduced into rice flour GF doughs on their 

viscoelastic and pasting properties and the quality parameters of the resultant breads, 

bread volume and firmness. The impact of BG enrichment on the in vitro starch 

digestibility of breads was also assessed.  

 

2. Materials and methods 

2.1. Materials 

Rice flour (12.5 g/100 g moisture, 0.46 g/100 g ash, 7.5 g/100 g protein, 0.49 g/100 g 

fat and 79.1 g/100 g starch) was supplied by Herba Ricemills S.L.U (Tarragona, 

Spain). Salt, sugar, and sunflower oil were purchased from the local market. 

Hydroxypropyl-methyl-cellulose (HPMC) 4KM was a gift from Dow Chemical 

(Midland, USA).  

Barley (1→3)(1→4)-β-D-glucan (BBG)(Glucagel™), a low Mw BG, was given as a 

free sample from DKSH (Hamburg, Germany). The oat (1→3)(1→4)-β-D-glucan 

concentrate (OBG) (Promoat™) which was a high Mw BG preparation, was supplied 

by Biovelop AB (Kimstad, Sweden). The proximate composition of these materials 

as given by the suppliers was:  for BBG, 2.52 g/100 g moisture, 4.75 g/100 g soluble 

protein, 1.43 g/100 g ash, 1.32 g/100 g fat, >85 g/100 g total carbohydrates, and >72 

g/100 g BG; for OBG, 6 g/100 g moisture, 54-56 g/100 g carbohydrates (dextrin), 

<4.5 g/100 g protein, 1-3 g/100 g ash and 0.5-1 g/100 g fat, and 33-36 g/100 g BG. 

The gluten content of the commercial BBG and OBG samples was analyzed by the 

ELISA test based on the R5 antibody; for OBG, the gluten content was under the 

detection limit (<6.2 mg/kg), while for BBG 1.76 g/kg, which rendered the latter BG 

concentrate as not gluten-free. Nevertheless, the BBG was included in this study as a 

raw material for evaluation of the effect of BG Mw on the rice flour-based gluten-

free dough formulations since it is technically feasible to obtain a gluten-free barley 

BG concentrate (Ronda et al., 2013). 

2.2. β-glucan isolation and characterization 



The OBG was of relatively low purity in BG (33-36 g/100 g). Hence, for this study 

further purification of this preparation was carried out, by a modification of the 

method of Lazaridou, Biliaderis, Micha-Screttas & Steele (2004) to obtain a 

preparation with much higher BG concentration (~70 g/100 g) as shown in Figure 1; 

this concentrate was designated as HWB. Following the method of Sibakov et al. 

(2013) with some modifications, an amount of this enriched HWB concentrate was 

subsequently hydrolyzed by a 8 g/100 mL  phosphoric acid solution at 82 oC acting 

for 25 min to obtain a second BG preparation with a desired medium Mw (MWB). 

The hydrolysis step was carried out at high solids level (paste like mixture) to more 

effectively control the degradation rate, yielding the preferred Mw of the 

polysaccharide. The entire purification/isolation protocol is outlined in detail in Fig 

1. The β-glucan content and the apparent peak molecular weight (Mp) of the isolated 

BG preparations were determined using the mixed-linkage (1→3)(1→4)β-D-glucan 

assay kit purchased from Megazyme (Megazyme International Ireland Ltd., Co., 

Bray, Ireland) as well as a high performance size exclusion chromatography system 

with a refractive index detector, respectively. The running conditions of the 

chromatography and the sample preparation are described in detail elsewhere 

(Lazaridou et al., 2004; Lazaridou, Marinopoulou, Matsoukas & Biliaderis, 2014). 

The low Mw BG (LWB) preparation used in this study for bread enrichment was the 

commercial product Glucagel (BBG), having an adequate BG content (72 g/100 g) 

for the requirements of the present work. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Flowchart of purification of the commercial β-glucan and hydrolysis process. MW: Molecular Weight; HWB: β-glucan of high molecular weight; 
MWB: β-glucan of medium molecular weight. 



2.3. Dough preparation and breadmaking 

A straight dough process was performed for the breadmaking using the following 

ingredient formulation expressed on a 100 g rice flour basis: 6 g oil, 5 g sucrose, 2 g 

HPMC, 1.8 g salt and 3 g dried yeast. The levels of BG incorporated into this 

formulation were 0 (control), 1.3, 2.6 and 3.9 g/100 g (rice flour basis) of pure BG by 

adding different amounts of BG preparations according to their BG contents and 

added on top of the other ingredients. The amounts of added water to the dough were 

adapted according to the BG level based on the findings of our previous work 

(Ronda et al., 2015) and were 92, 105, 120 and 130 g/100 g (rice flour basis) with 

increasing BG content from 0 to 3.9 g/100 g. Dough rheological tests were 

performed without inclusion of yeast in the formulated doughs in order to obtain 

stable readings (avoiding CO2 evolution). BG samples were hydrated in hot water 

(40-45 ºC) prior to their mixing with the remaining dough ingredients. The GF dough 

and breadmaking procedures are described in detail elsewhere (Ronda et al., 2015). 

After baking, breads were removed from the pan and stored for one hour at room 

temperature before any analysis. 

2.4. Evaluation of dough rheology  

2.4.1. Fundamental rheology 

Oscillatory and creep-recovery tests were carried out at least in duplicate and 

triplicate, respectively with a RheoStress 1 rheometer (Thermo Haake, Karlsruhe, 

Germany) following the same procedure described in detail elsewhere (Ronda et al., 

2013; 2015). A stress sweep from 0.1 to 200 Pa at 1 Hz and 25 oC was performed to 

establish the linear viscoelastic region (LVR). Frequency sweep data were fitted to a 

power law model as previously described by Ronda et al. (2013). The recorded 

viscoelastic parameters, G1’ and G1’’, and tan δ1, represent the elastic and viscous 

moduli and the loss tangent, respectively, at a frequency of 1 Hz. The a, b and c 

exponents quantify the dependence of the dynamic moduli and the loss tangent on 

the oscillation frequency. 

Creep tests were performed by imposing a step of shear stress of 50 Pa, exceeding 

the LVR, for 60 s. In the recovery phase, the stress was suddenly removed and the 

sample was allowed for 180 s to recover the elastic (instantaneous and retarded) part 



of the deformation. Creep data are described in terms of creep compliance, J, which 

is defined as the strain divided by the stress applied. The data from creep and 

recovery tests were modelled to the 4- and 3-parameter Burger’s models, 

respectively (Lazaridou et al., 2007; Ronda et al., 2013). Concerning the calculated 

parameters, J0 is the instantaneous compliance, J1 is the retarded elastic or 

viscoelastic compliance, λ1 is the retardation time and η0 is the steady viscosity 

(estimated from the creep step). Additionally, Jmax is the maximum creep compliance 

obtained at the end of the creep step and Jsteady, the steady-state compliance in the 

recovery step, calculated by subtracting the compliance value at the terminal region 

of curve (where dough recovery reached equilibrium) from the Jmax. Recovery (%) 

was calculated as 100·( Jsteady/Jmax). 

2.4.2. Pasting properties  

Viscometric profiles of formulated and then lyophilized rice flour doughs (without 

yeast) were obtained with a Rapid Visco Analyser (RVA-4, Newport Scientific, 

Warriewood, Australia) using the ICC Standard 162 protocol. The re-hydrated 

freeze-dried samples were transferred into RVA canisters and processed as 

previously described by Ronda et al. (2013). These tests were carried out in 

triplicate. 

2.5. Evaluation of bread quality 

Bread volume was determined in duplicate by a Volscan profiler 300 analyser 

(Stable Microsystems, Godalming, UK). Breads were weighed immediately after 

removal from the pan once cooled down. Crumb hardness was determined in 

duplicate with a TA-XT2 texture analyser (Stable Microsystems, Surrey, UK) using 

the software “Texture Expert”. An aluminum 20 mm diameter cylindrical probe was 

employed in a compression test at 1 mm/s speed test and deformation level up to 50 

%. Crumb hardness (N) was calculated from the maximum force of the curves. 

Analysis was carried out at 20 ± 3 ºC on bread slices, with 20 mm thickness, taken 

from the center of each loaf. 

2.6. In vitro starch digestibility of breads 

In vitro starch enzymatic digestibility of breads was measured according to the 

modified method of Englyst, Hudson & Englyst (2000). The hydrolyzed glucose 



released by digestive enzymes at 20 min (G20) and 120 min (G120) and the total 

glucose (TG) content were determined by the glucose oxidase/peroxidase 

colorimetric method. The free sugar glucose (FGS) content was also determined 

through a separate test following the procedure proposed by Englyst et al. (2000). 

From these tests, rapidly digested starch (RDS), slowly digestible starch (SDS), 

resistant starch (RS), total starch (TS) and rapidly available glucose (RAG) were 

calculated. Starch digestibility rate index (SDRI) was computed from the percentage 

of RDS in TS of the breads. This test was carried out in quadruplicate. 

2.7. Statistical analyses 

Statgraphics Centurion v.16 (Bitstream, Cambridge, MN, USA) software was used 

for the non-linear regressions and for Pearson correlation analysis. STATISTICA 

package (Tulsa, OK, EEUU) v.6 was used for ANOVA analysis. Fisher’s least 

significant difference (LSD) test was adopted to evaluate significant differences 

(p<0.05) among samples. Homogeneity of variance was checked for each studied 

variable. 

 

3. Results and discussion 

The three BG preparations (LWB, MWB and HWB) employed in this study largely 

differed in molecular size, having peak molecular weight values of 83 kDa, 192 kDa 

and 650 kDa (Fig. 2) and BG contents of 72 g/100 g, 68 g/100 g and 73 g/100 g, 

respectively.  

3.1. Fundamental rheology of bread doughs 

The effect of addition of enriched BG concentrates on rheological properties of GF 

doughs prepared with the optimum hydration level (to maximize the bread making 

performance of the composite doughs) was investigated in this study. The elastic 

modulus values (1439 Pa<G'1<11187 Pa) were higher than those of viscous modulus 

(690 Pa<G''1<3120 Pa), and the values for tan δ1 were <1 for the dough formulations 

(Table 1). Both moduli slightly increased with frequency; this dependence, which is 

quantified by the ‘a’ and ‘b’ exponents, calculated from G' and G'' fittings to the 

power law model, became less pronounced with BG addition (Table 1). The visco-



elastic behaviour of all doughs corresponded to solid-like materials, in agreement 

with earlier findings on GF doughs enriched with BG concentrates (Lazaridou et al., 

2007; Ronda et al., 2015). 

 
 
Figure 2. HPSEC elution profiles and peak molecular weight (Mp) (slanted arrows) 
of the eluting peaks of enriched in β-glucan concentrates added to the GF bread 
formulations, as detected by RI. The vertical arrows indicate the elution time of the 
peak fraction of seven (1→3)(1→4)-β-D-glucan standards (Mp: 0.15, 0.33, 0.83, 
1.86, 3.40, 4.66 and 9.41 x 105) used for plotting of the molecular weight-elution 
volume standard curve (inset). LWB: β-glucan of low molecular weight; MWB: β-
glucan of medium molecular weight; HWB: β-glucan of high molecular weight. 



Table 1. Effects of molecular weight and level of added β-glucan on viscoelastic parameters of β-glucan-enriched rice flour-based (gluten-free) 
doughs and specific volume and crumb hardness of breads. 

BG Mp CONTROL LWB MWB HWB 
SE BG level  (g/100 g  flour basis) 0 1.3 2.6 3.9 1.3 2.6 3.9 1.3 2.6 3.9 

O
sc

ill
at

or
y 

te
st

 

G'1(Pa) 3361 c 3243 c 2465 b 9745 e 1439 a 1729 a 3228 c 3128 bc 5936 d 11187 f 250 
a 0.283 e 0.279 de 0.282 de 0.167 a 0.276 de 0.245 cd 0.219 bc 0.308 e 0.227 bc 0.199 ab 0.016 
G''1(Pa) 1512 d 1418 d 1025 c 2436 f 702 ab 690 a 956 bc 1536 d 2002 e 3120 g 106 
b 0.337 f 0.306 def 0.333 ef 0.256 ab 0.293 bcde 0.278 abcd 0.251 a 0.322 ef 0.300 cde 0.268 abc 0.014 
tan δ1=G''/G' 0.449 e 0.437 de 0.417 de 0.250 a 0.488 f 0.403 d 0.297 bc 0.492 f 0.337 c 0.279 ab 0.016 
c 0.054 cd 0.027 abc 0.051 bcd 0.089 e 0.017 ab 0.033 abc 0.032 abc 0.014 a 0.073 de 0.069 de 0.012 

C
re

ep
-r

ec
ov

er
y 

te
st

s 

C
re

ep
 p

ha
se

 J0 (10--4 Pa-1) 2.2 ab 3.0 c 3.0 c 2.2 ab 4.0 d 6.9 f 6.0 e 1.7 a 2.7 bc 1.9 a 0.2 
J1 (10--4  Pa-1) 40.5 e 37.0 de 30.7 c 4.2 a 20.4 b 40.1 e 18.8 b 34.5 cd 6.2 a 2.6 a 1.6 
λ 11.3 e 11.8 e 11.6 e 8.1 bcd 5.2 a 6.6 abc 9.1 d 10.8 e 8.2 bcd 6.6 abc 0.6 
η0 (103 Pa·s) 2.4 a 2.7 a 2.4 a 162.1 d 1.0 a 1.4 a 37.3 b 2.4 a 124.3 c 376.3 e 11 
Jmax (10--4 Pa-1) 309 bc 254 b 337 c 10 a 640 e 461 d 39 a 310 bc 14 a 6.2 a 23 

R
ec

ov
er

y 
ph

as
e 

J0 (10--4 Pa-1) 4.7 bc 6.2 c 5.7 c 3.7 ab 4.2 abc 13.9 e 10.1 d 4.9 bc 4.6 abc 2.8 a 0.7 
J1 (10--4 Pa-1) 19.3 c 21.3 cd 18.2 c 1.9 a 37.3 e 37.7 e 10.1 b 22.6 d 3.7 a 1.6 a 1.6 
λ 14.7 a 19.0 d 16.8 c 28.38 f 16.6 c 18.26 d 15.4 ab 18.3 d 15.8 bc 20.8 e 0.5 
Recovery (%) 7.6 ab 10.3 b 7.1 ab 56.0 d 5.3 a 9.73 b 50.9 c 7.9 ab 60.7 e 73.0 f 0.8 

Pa
st

in
g 

pr
op

er
tie

s Peak viscosity (cp) 998 de 800 b 665 a 602 a 986 de 951 cd 789 b 1080 f 912 c 1032 ef 21 
Trough viscosity (cp) 833 c 659 b 555 a 504 a 881 c 859 c 706 b 992 d 831 c 965 d 19 
Breakdown (cp) 165 f 142 e 110 d 98 bcd 105 cd 92 bcd 83 ab 88 abc 81 ab 67 a 7 
Final Viscosity(cp) 1630 c 1182 b 967 a 887 a 1799 d 1610 c 1257 b 2107 e 1908 d 1874 d 40 
Setback (cp) 798 c 524 b 413 a 383 a 919 d 751 c 552 b 1115 e 1076 e 909 d 33 
Peak Time (min) 6.103 a 6.035 a 6.035 a 6.035 a 6.335 b 6.365 b 6.430 bc 6.535 bc 6.333 b 6.665 c 0.085 
Pasting Temp.(ºC) 88.0 a 90.5 b 92.2 bc 92.7 c 91.8 bc 91.9 bc 92.7 c 92.3 bc 91.0 bc 93.1 c 0.67 

Bread 
properties 

Specific volume 
(g/100mL) 

2.60 c 3.08 e 2.69 d 2.04 a 3.03 e 2.70 d 2.46 b 3.17 f 2.63 c 2.60 c 0.019 

Hardness (N) 2.38 d 1.21 a 1.90 bc 6.53 f 1.37 a 1.67 ab 3.71 e 1.63 ab 2.63 d 2.22 cd 0.16 

BG: β-glucan; Mp: peak molecular weight; LWB: β-glucan of low molecular weight (83 kDa); MWB: β-glucan of medium molecular weight (192 kDa); HWB: β-glucan of high molecular weight 
(650 kDa). The parameters from oscillatory tests correspond to the fitting of experimental measurements to power law model. The parameters from creep-recovery tests correspond to the fittings to 

Burger’s model. Values in the same row with a letter in common are not significantly different (p > 0.05). SE: Pooled standard error obtained from ANOVA analysis. Oscillatory tests and bread 
measurements were made at least in duplicate; creep-recovery tests were carried out at least in triplicate. 



Both viscoelastic moduli, G' and G'', increased with BG addition to the doughs, with 

the extent of these changes being dependent on the Mp of BG, in accordance with the 

observations made by Cleary et al. (2007) and Ronda et al. (2015) for wheat-based, 

and GF rice flour-based doughs, respectively. The increments of moduli with respect 

to the control dough were larger for HWB, (averaged increasesof 201%- and 147% 

for G'1 and G''1 respectively), than MWB increases of 63.4%, and 51.8% for G'1 and 

G''1 ) and LWB (increases of 153%-, and 108% for G'1 and G''1 -). This can be 

probably due to the large increase of water absorption capacity of the dough when 

high levels of high Mw BG preparations are included in the GF formulation (Ronda 

et al., 2015). Cleary et al. (2007) observed the same behavior in wheat doughs 

fortified with high Mw barley BG. According to the data, the G1' and G1'' moduli of 

the MWB fortified doughs exhibited the lowest G1' and G1'' values among the three 

different BG samples. The barley LWB preparation indeed exhibits molecular 

features that could promote interchain (segmental) associations leading to gel 

formation due to its higher DP3 content (Lazaridou et al., 2004) and the much lower 

molecular weight compared to the oat BG preparations (MWB, HWB); formation of 

a gel network structure by barley BG could explain the higher consistency and 

strength of the respective doughs at an optimized hydration level compared to their 

MWB counterparts (Table 1). The enhancement of solid-like behavior of doughs 

with increased levels of oat BG concentrates is opposed to previous findings (Ronda 

et al., 2015) where similar tan δ1 values were reported for all levels of BG added to 

the GF doughs; this was attributed to a weakening effect of the maltodextrins present 

in the oat commercial BG concentrate (Witczak et al., 2010). The reduction of such 

excipients in the oat BG preparations of the present study could be responsible for 

the strengthening effect when the MWB and HWB were added to the GF doughs.  

The obtained creep-recovery curves were similar to those previously found for rice 

flour and gluten-free doughs fortified with BG into the LVR (Ronda et al., 2013; 

2015) or outside the LVR (Lazaridou & Biliaderis, 2007). Both, the level and the Mp 

of the incorporated BG affected the creep–recovery parameters (Table 1). However, 

the effect on creep data was not proportional to the Mp of the added BG. High levels 

of LWB led to lower instantaneous (J0) and retarded (J1) elastic compliances 

(p<0.05) than those of MWB fortified doughs, associated to a lower deformation of 

the dough when submitted to a constant stress, probably due to the higher gelation 



capacity of the LWB preparation. These elastic compliances values were similar to 

those obtained for the HWB, which is probably attributed to its ability to form highly 

viscous (pseudoplastic) solutions (Lazaridou et al., 2004; Lazaridou & Biliaderis, 

2007). 

Dough formulations with high elasticity, as manifested by low J0 and J1 compliances, 

could restrict dough expansion and lead to lower volume breads (Perez-Quirce et al., 

2014). The elastic compliances of BG-formulated doughs although did not follow a 

clear trend with BG level, however, showed the lowest values for the highest levels 

of added BG preparations (Table 1). For the dough maximum compliance values, 

Jmax, there was a decrease with increasing levels of added BG. A clear opposite trend 

was noted for the evolution of the steady state viscosity, ηo, which is measured from 

the reciprocal of flowability of the material at the end of the applied load in the creep 

test; it increased from 2.4 kPa·s for the control dough to the 376 kPa·s for the highest 

addition level of HWB, explaining the higher resistance to deformation under a 

constant stress of the latter sample; the former is in agreement with findings reported 

elsewhere, where high Mw β-glucans had significant higher viscosities in aqueous 

systems compared to their lower molar mass counterparts (Lazaridou et al., 2004; 

Mikkelsen et al., 2010). The recovery of the dough, when the stress was released, 

increased from <10% for the control dough to >70% for the HWB-fortified dough 

(Table 1). Taken into account that only the elastic part of the viscoelastic behavior 

can be recovered after application of a stress, this means that the 3.9g/100 g BG-

fortified doughs exhibited the most pronounced elastic behavior among all dough 

formulations. These data are consistent with the much lower tan δ values observed by 

the oscillatory testing for all the 3.9g/100 g BG fortified doughs (Table 1). 

 3.2. Pasting properties 

The impact of Mp and BG level on the RVA primary parameters is evidenced by the 

significant changes on the pasting and gelling behaviour of BG-enriched rice flour-

based doughs (Table 1). Major single effects on cooking and cooling parameters 

were noted for the LWB GF formulation. With addition of LWB there was a 

significant (p<0.05) decrease of the peak (from 20 % to 40 %), breakdown (from 14 

% to 41 %), final (from 27 % to 46 %) and setback (from 34 % to 52 %) viscosities, 

compared to control, in accordance with findings reported for wheat flour substituted 



with 2.5 and 5 g/100 g BG (Brennan & Cleary, 2007). A similar tendency was noted 

with incorporation of the MWB although this effect was significant at the highest 

level of substitution. A slight and opposite trend was observed in the case of HWB 

addition. Brennan & Cleary (2007) proposed that barley BG could limit the available 

water within the paste mixture and hence limit the swelling of the starch granules, 

leading to greater retention of granular integrity and a reduction in gelatinization. A 

synergistic effect for the peak viscosity of rice starch and BG composite aqueous 

dispersions was reported by Banchathanakij & Suphantharika (2009) and interpreted 

by assuming that the system is biphasic, with the BG located entirely in the 

continuous phase; as a result, its concentration increases as the volume of the phase 

accessible to the soluble hydrocolloid is reduced, due to swelling of the starch 

granules during pasting. The changes observed in the present study could be 

explained by a combination of these two phenomena, the water binding and the 

thickening of the continuous phase caused by BG addition; such opposing 

contributions to viscosity changes vary with the molecular weight and level of the 

soluble BG. It is also important to note that in the present work, compared to 

aforementioned studies, real dough systems were examined by RVA which consist of 

many flour ingredients, all contributing to the rheological responses. 

The pasting temperature (PT) increased significantly with BG addition, regardless its 

Mp. The effect of fibres on the PT could be interpreted on the basis of the changes 

induced on granule swellingand amylose leaching processes responsible for 

commencement of starch pasting (Mira, Eliasson & Persson, 2005). The observed 

decrease of breakdown with the inclusion of fibres denoted an increase in the paste 

resistance to cooking and a less intense shear thinning behavior; the latter implies 

less starch granule rupturing during cooking in the RVA. It was also noted that, the 

breakdown viscosity decreased with increasing Mp and BG fortification level. 

The final viscosity (FV) decreased significantly, from 27 % to 46 % with LWB 

addition. Similarly, the setback viscosity decreased, up to 52 % reduction (at 3.9 

g/100 g added BG); such behavior can be attributed to a restriction of amylose 

retrogradation in the presence of LWB. However, the MWB and HWB oat BG 

showed different behavior; i.e., at the lowest level of added BG there was an increase 

in FV (10 % and 30 % for MWB and HWB, respectively), while with further 

addition of BG lower FV values of the gelled BG-containing doughs were recorded. 



Similar responses were noted for the setback viscosities. In general, it is clear that 

with inclusion of high amounts of soluble dietary fibres in the composite mixtures, 

the intermolecular associations within the starch network upon cooling are 

weakened. 

3.3. Evaluation of bread quality 

The specific volume of breads was positively affected by the addition of BG at low 

levels; at 1.3 g/100 g  bread specific volume increased (17–22 %) compared to the 

control bread, regardless the molecular weight of the BG preparation. However, 

fortification of the GF doughs with higher amounts of BG (up 3.9 g/100 g) reduced 

successively the loaf volume (Table 1). The lowest specific volume was presented 

for breads enriched with 3.9 g/100 g LWB (Table 1 and Figure 3). Therefore, it 

seems that the structuring ability of the BG depends on its molecular weight and 

primarily on its concentration. The possible cause of the lowest specific volume of 

LWB could be the increased gelation potential of the BG that increases the rigidity of 

the doughs and thereby results in a lower dough expansion and loaf volume. The less 

pronounced loaf volume reduction with increasing contents of MWB and HWB 

preparations derived from the OBG concentrate could be attributed to the reduction 

and/or elimination of the maltodextrins in these samples; apparently, the addition of 

maltodextrins has a strong weakening effect on structure of GF dough and increases 

its susceptibility to deformation (Witczak et al., 2010). Other researchers have 

reported a significant decrease up to 50 % in loaf volume and height with the 

inclusion of BG into wheat-based bread formulations (Brennan & Cleary, 2007; 

Cleary et al., 2007; Hager et al., 2011); such a decline was more pronounced at 

higher levels of fortification. Skendi et al. (2010) demonstrated a dependence of loaf 

volume on the molecular size and concentration of barley BG added to the dough, as 

well as on the quality of wheat flour base used in the formulations. Other authors 

obtained the greatest reduction in loaf volume when a high Mw BG was added to 

wheat flour doughs (Cleary et al., 2007). Brennan & Cleary (2007) observed that 

enrichment of dough with soluble BG preparations imparts reduced extensibility, 

which would limit oven spring. BG added to wheat doughs can interrupt the 

continuity of the gluten network (Skendi et al., 2010). In our case, the water amount 

added to the GF doughs was adjusted in such a way that BG enriched doughs showed 

neither the highest consistency nor the lowest compliances. The specific volume was 



correlated positively (p<0.001) to tan δ1 values (r=0.91) and to the exponents a 

(r=0.91) and b (p<0.05, r=0.69) as well as negatively to c (p<0.001; r=-0.81) and the 

percentage of compliance recovery (p<0.05; r=-0.70). The above relations mean that 

the higher the viscous-like behavior of the GF dough, with a structure more 

dependent on frequency, and the lower the ratio of elastic to total deformation under 

an applied stress, the higher the specific volume of the bread, at least within the 

range of values obtained for these variables in the current work.  

 

CONTROL (0%BG) 3.9% LWB 

  

3.9% MWB 3.9% HWB 

  
Figure 3. Cross-sections of gluten-free breads formulated with β-glucan preparations 
at the maximum level tested (3.9 g/100 g flour). BG: β-glucan; Mw: Molecular 
Weight; LWB: β-glucan of low molecular weight (83 kDa); MWB: β-glucan of 
medium molecular weight (192 kDa); HWB: β-glucan of high molecular weight (650 
kDa). 

 

 

Enriched breads at the highest BG content showed the highest crumb hardness (Table 

1); the highest value among the three different BG preparations was noted for the 

LWB samples, probably due to the lower loaf volume and the greater gelling 

potential of the LWB; correlation analysis showed that crumb hardness was 

negatively correlated with specific volume (p<0.001; r=-0.89). A higher bread 

volume usually corresponds to higher amounts of air retained in the dough structure 



during proofing and baking, and this generally yields lower crumb hardness. Hager et 

al. (2011) also found a softening effect on the crumb with the incorporation of an oat 

BG preparation. Crumb hardness was further correlated (negatively) with the 

exponent a (p<0.01; r=-0.80) and the tan δ1 (p<0.01; r=-0.77) values of the dough, 

and positively correlated with the c (p<0.05; r=0.69) parameter of the dough 

3.4. In vitro starch digestibility of breads 

Table 2 shows the effect of inclusion of the three BG preparations at the lowest and 

highest concentration studied on the in vitro starch digestibility of the GF rice breads. 

Free sugar glucose (FSG) contents (g/100 g dry basis) of breads enriched with the 

lowest Mp BG were significantly lower (p<0.05) among all breads analyzed. Taken 

into account that sugar was added to the dough formulation at 5 g/100 g level (rice 

flour basis) the low final concentration (<1 g/100 g) found in breads means that 

sucrose was largely used by yeast during fermentation. Rapidly available glucose 

(RAG) and rapidly digestible starch (RDS) values for breads with the lowest 

concentration of BG (1.3 g/100 g) were not different from the control regardless of 

the BG molecular weight. However, with increase of BG concentration there was a 

significant decrease of rapidly released glucose from starch by the digestive enzymes 

for MWB and HWB fortified breads, in agreement with previous in vivo studies 

(Stamataki et al., 2016). For RAG and RDS, the lowest values were achieved at the 

highest concentration of HWB, 72 g/100 g and 64 g/100 g versus 81 g/100 g and 72 

g/100 g in the control bread, respectively (Table 2), in agreement with a previous 

study (Hager et al., 2011). The digestible starch (DS) showed a small decrease in the 

presence of BG, yet large in cases of LWB and HWB inclusion at 3.9 g/100 g level. 

As for the resistant starch (RS), at the highest fortification levels of BG, regardless of 

Mp, there was a significant increase. The starch digestibility rate index (SDRI), 

which quantifies the starch digestion rate irrespective of the bread total starch 

content, showed a significant decrease in breads fortified with MWB and HMW 

preparations when the highest BG levels were used; this effect was enhanced with 

the increase of molecular weight of the BG preparation; at 3.9 g/100 g addition of 

HWB the SDRI decreased from 93 % (control) to 85 %. These observations related 

to the reduced rate and extent of starch digestion in the in vitro starch digestibility 

assays can be attributed to viscosity effects, as modulated by the concentration and 



molecular weight of the BG preparation (C x Mw ); such trends have been also 

reported by Regand et al. (2011) for similar food products.  

 

Table 2. Starch fractions FSG and RAG expressed as g/100 g of total solids of the 
gluten-free breads (in vitro digestion). 
 

BG Mp CONTROL LWB MWB HWB 
 

SE 
BG level  
(g/100 g  flour 
basis) 

0 1.3 3.9 1.3 3.9 1.3 3.9 

FSG  0.84 b 0.32 a 0.38 a 0.96 b 0.60 ab 0.93 b 0.96 b 0.2 
RAG 80.5 c 79.5 c 78.0 bc 80.0 c 75.5 b 77.7 bc 71.5 a 1.4 
RDS  71.7 c 71.3 c 69.8 bc 71.2 c 67.4 b 69.1 bc 63.5 a 1.3 
SDS  4.9 b 2.4 a 1.8 a 3.8 ab 7.6 c 4.9 b 8.6 c 1.2 
DS  76.5 c 73.7 ab 71.6 a 75.0 bc 75.0 bc 74.4 b 72.0 a 1.3 
RS  0.0 a 1.4 abc 4.6 d 0.6 ab 1.6 bc 2.0 bc 2.9 cd 1.0 
TS  76.3 ab 75.1 ab 76.2 ab 75.6 ab 76.6 b 76.1 ab 74.9 a 1.0 
SDRI  93.3 c 94.8 c 91.6 bc 95.5 c 88.0 ab 91.4 bc 85.0 a 0.02 

BG: β-glucan; Mp: peak molecular weight; LWB: β-glucan of low molecular weight (83 
kDa); MWB: β-glucan of medium molecular weight (192 kDa); HWB: β-glucan of high 
molecular weight (650 kDa). FSG: Free glucose and sucrose; RAG = rapidly available 
glucose; RDS = rapidly digestible starch; SDS = slowly digestible starch; DS = digestible 
starch; RS = resistant starch; TS = total starch; and SDRI = starch digestion rate index 
(100· RDS/TS). SE: Pooled standard error from ANOVA analysis. Values with a letter in 
common in the same column are not significantly different (p > 0.05). The tests were made 
at least in quadruplicate. 
 

 

4. Conclusions 

This study examined the potential impact of three different BG samples varying in 

their molecular weight and origin (oat and barley), but of similar purity, on physical 

and nutritional quality of rice flour based doughs and breads (gluten-free). A 

purification process of a commercial BG concentrate was adopted for the 

fortification of dough formulations to avoid the interference of other excipients 

present in this preparation and make clear the true impact of the BG addition in the 

composite formulation. Furthermore, it allowed the production of BG samples of 

reduced molecular weight by controlled acid hydrolysis of BG in a concentrated 

aqueous paste form. This study demonstrates the feasibility for production of BG-

enriched GF breads with acceptable quality attributes that can fulfill the EFSA claim 



(cholesterol lowering effect for daily consumption of 3 g BG with ~ 200 g of 

fortified bread). It also indicated that formulation optimization (molecular weight and 

concentration of BG, as well as dough water content) is required to properly target 

for specific quality attributes of the end-product, while ensuring the full health 

potential of this physiologically active polysaccharide. Moreover, the use of high 

molecular weight BG preparations in bakery items must be preferred as it is well 

documented the relation between viscosity enhancement and hypoglycemic and 

hypocholesterolemic effects. Apparently, in the present study, at maximum 

fortification level (to justify the health claim requirements) acceptable quality 

characteristics (crumb texture) were noted with the highest molecular weight 

preparation. Finally, the results of this work can find special interest among the 

celiac patients who usually encounter great difficulty to access functional products, 

especially gluten free bakery items, with enhanced health benefits and acceptable 

sensory properties.  
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