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1. Introduction

Many applications such as weather prediction, underwater acoustic or
earth geophysics concern with wave problems in unbounded domains.

We consider dispersive waves propagating in (−∞,∞)× [a, b], a two di-
mensional strip. The south and north boundaries of the strip are denoted by
ΓS and ΓN . Inside the strip, we consider the Klein-Gordon equation,

∂2t u− c2∇2u+ s2u = f. (1)

Here c = c(x, y) is the given wave speed, s = s(x, y) the medium dispersion
coefficient and f(x, y, t) is a given source.

Our results hold when, outside a compact region Ω0, the speed c and the
dispersion coefficient are constant and the source f vanishes. However, for the
sake of simplicity, we only consider examples which satisfy this assumption
in the whole strip (−∞,∞)× [a, b].

On the south and north boundaries we consider Neumann boundary con-
ditions,

∂yu = 0, on ΓS andΓN . (2)

Finally, we consider the initial conditions,

u(x, y, 0) = u0(x, y), ∂tu(x, y, 0) = v0(x, y), (3)

which satisfy the boundary conditions on ΓS and ΓN , and vanish outside Ω0.
The numerical approximations of these problems need to reduce the com-

putation to a finite domain. Therefore, we truncate the infinite domain by
introducing the west artificial boundary ΓW , located at x = xW , a ≤ y ≤ b,
and the east artificial boundary ΓE at x = xE , a ≤ y ≤ b. We denote by Ω
the computational domain bounded by ΓN ∪ΓW ∪ΓS∪ΓE , such that Ω0 ⊂ Ω.

The function u satisfies the Klein-Gordon equation (1) inside Ω, the Neu-
mann boundary condition (2) on ΓS and ΓN , and the initial conditions (3)
in Ω. It is necessary to define suitable artificial boundary conditions on
the artificial boundaries ΓW and ΓE. For this, there are several possibil-
ities, but we have focused on the so called Absorbing Boundary Condi-
tions, which are designed to produce small reflections inside the computa-
tional domain and to have local character. The ABCs are built in order to
achieve, after the discretization, a stable, accurate, efficient and easy to im-
plement scheme. There exists a wide literature on this subject, see the works
[5, 6, 10, 13, 14, 15, 16, 17] and the review papers [9, 11, 12, 26].
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As an alternative, it can be considered first a space discretization of the
problem and then obtain ABCs for the discrete problem. We have worked in
this sense for example in [2, 3, 4].

In this paper, we have considered the Hagstrom-Warburton high-order
ABCs, a modified version of the Higdon ABCs [18, 19]. These ABCs use
auxiliary variables to avoid high derivatives in their formulation [16, 17].
Arbitrary order of absorption P can be achieved by introducing P auxiliary
variables φj, j = 1, . . . , P , satisfying the recursive relations

(a0∂t + c∂x)u = a0∂tφ1,
(aj∂t + c∂x)φj = (aj∂t − c∂x)φj+1, j = 1, . . . , P,
φP+1 = 0,

(4)

in the vicinity of ΓE . The parameters aj have to be chosen. We consider
aj = 1 for all j, following the recommendation done in [8] and the remark in
[13] in which the authors find this choice satisfactory in general. Other choices
of the parameters could be considered, see for example [17] and Section 6 in
this paper.

From the assumption that the initial conditions have compact support
away from ΓW and ΓE, we have,

φj(y, 0) = 0, ∂tφj(y, 0) = 0 on ΓW ,ΓE.

From (2) and the recursive relations (4), the conditions

∂yφj(a, t) = ∂yφj(b, t) = 0,

can be deduced.
In [15], it is established that the H-W ABCs of order P given by (4) may

be rewritten as

(∂t + c∂x)u = ∂tφ1, (5)

∂2t φ1 = c2(
1

2
∂2yφ0 +

1

4
∂2yφ1 +

1

4
∂2yφ2)− s2(

1

2
φ0 +

1

4
φ1 +

1

4
φ2), (6)

∂2t φj = c2(
1

4
∂2yφj−1 +

1

2
∂2yφj +

1

4
∂2yφj+1)− s2(

1

4
φj−1 +

1

2
φj +

1

4
φj+1), j = 2, . . . , P,(7)

u = φ0, φP+1 = 0. (8)

On the boundary ΓW , the equation (5) has to be replaced by (∂t−c∂x)u =
∂tφ1, but the other conditions (6)-(8) are the same.
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The H-W high-order ABCs permit to approach the exact solution with
an arbitrary order of absorption P . Increasing the order P causes only a
linear rising of the computational cost. However, sometimes the accuracy of
the numerical solution is limited by the space and time discretization error,
above all for the two dimensional case.

The space discretization is reached by means of finite differences on a
uniform grid, with fourth order inside the computational domain. For the
time discretization, we propose a fourth order exponential splitting method
which improves the computational efficiency of the time integration. The
combination of the exponential splitting scheme with H-W ABCs is not a
trivial matter and, as far as we know, it has not made before. The splitting
choice is specific for the problem here considered and it involves to make sev-
eral momentous decisions. We split the auxiliary variables and the function
u on the spatial nodes and, we make a splitting in order to obtain an explicit
and simple to implement method. We show the improvement by comparing
our splitting scheme with the standard fourth-order four-stage Runge-Kutta
method used in [17]. Useful overviews of splitting methods can be found in
the review papers [7, 22]. Other interesting references are [23, 24].

We notice that it is possible to use higher order space discretizations,
(cf. [15]), along with higher order exponential splitting methods designed
similarly to the one used in this work.

The paper is organized as follows. Section 2 is devoted to introduce the
spatial discretization and the time exponential splitting method which we
propose, along with some properties of stability in the discrete energy norm
which show the feasibility of this full discretization. For this, a simple one
dimensional problem with periodic boundary conditions is used. In Section
3, we build the exponential splitting time method for the one dimensional
case problem when the ABCs are added. A similar splitting method, for the
two dimensional case, also with ABCs, is proposed in Section 4. Numerical
experiments for one and two dimensional Klein-Gordon equations are pre-
sented in Section 5. Finally, a brief Section 6 is devoted to conclusions and
future works.

2. Preliminaries

In this section, we present the space discretization and the splitting tech-
nique used for the time integration. For the sake of simplicity, we consider the
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one dimensional Klein-Gordon equation with periodic boundary conditions.
The H-W ABCs are added in the following sections.

Therefore, the problem studied here is

∂2t u(x, t) = c2∂2xu(x, t)− s2u(x, t), xW ≤ x ≤ xE ,

u(xW , t) = u(xE, t),

∂xu(xW , t) = ∂xu(xE , t),

with initial conditions

u(x, 0) = u0(x), ∂tu(x, 0) = v0(x).

2.1. Spatial discretization

For the spatial discretization, second order derivatives are approximated

by fourth order finite differences. For N > 0, let h =
xE − xW

N
be the size

step and xj = xW + (j − 1)h, j = 1, . . . , N + 1, the nodes of the spatial
discretization. We denote uj(t) = u(xj , t), then

d2

dt2
u1 =

c2

h2

(
− 1

12
uN +

4

3
uN+1 − 5

2
u1 +

4

3
u2 − 1

12
u3

)
− s2u1,

d2

dt2
u2 =

c2

h2

(
− 1

12
uN+1 +

4

3
u1 − 5

2
u2 +

4

3
u3 − 1

12
u4

)
− s2u2,

d2

dt2
uj =

c2

h2

(
− 1

12
uj−2 +

4

3
uj−1 − 5

2
uj +

4

3
uj+1 − 1

12
uj+2

)
− s2uj, j = 3, . . . , N − 1,

d2

dt2
uN =

c2

h2

(
− 1

12
uN−2 +

4

3
uN−1 − 5

2
uN +

4

3
uN+1 − 1

12
u1

)
− s2uN ,

d2

dt2
uN+1 =

c2

h2

(
− 1

12
uN−1 +

4

3
uN − 5

2
uN+1 +

4

3
u1 − 1

12
u2

)
− s2uN+1.

We rewrite this problem as a first order ordinary differential system,

d

dt

[
uh

vh

]
=

[
0 I
A 0

] [
uh

vh

]
, (9)

where uh = [u1, . . . , uN+1]
T , vh = d

dt
uh, I is the identity matrix of dimension
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N + 1, A =
c2

h2
B − s2I, and

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−5

2

4

3
− 1

12
− 1

12

4

3
4

3
−5

2

4

3
− 1

12
− 1

12

− 1

12

4

3
−5

2

4

3
− 1

12
. . .

. . .
. . .

. . .
. . .

− 1

12

4

3
−5

2

4

3
− 1

12

− 1

12
− 1

12

4

3
−5

2

4

3
4

3
− 1

12
− 1

12

4

3
−5

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

Proposition 1. The matrix

A =
c2

h2
B − s2I

is symmetric negative definite.

Proof. Since the matrix B in (10) is symmetric, this is also true for the matrix
A. Moreover, B is a circulant matrix, and the exact value of its eigenvalues
is given by (see [20]),

λj = −5

2
+

4

3
exp(

2πij

N + 1
)− 1

12
exp(

4πij

N + 1
)

− 1

12
exp(

(N − 1)2πij

N + 1
) +

4

3
exp(

N2πij

N + 1
), j = 0, . . . , N.

By using a straightforward calculation, we deduce that

λj = −5

2
+

8

3
cos(

2πj

N + 1
)− 1

6
cos(

4πj

N + 1
)

= −5

2
+

8

3
cos(

2πj

N + 1
)− 1

6

(
2 cos2(

2πj

N + 1
)− 1

)

= −7

3
+

8

3
cos(

2πj

N + 1
)− 1

3
cos2(

2πj

N + 1
).
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Then, if p(x) = −7
3
+ 8

3
x− 1

3
x2,

σ(B) ⊂ {p(x) : x ∈ [−1, 1]} = [−5− 1

3
, 0].

Finally, the eigenvalues of the matrix A are

σ(A) = { c
2

h2
μ− s2, μ ∈ σ(B)},

and we deduce the result.

From Proposition 1, the discrete energy

Eh(t)(u,v) =
h

2
(vTv − uTAu), (11)

is a norm and, since, for the solution of (9),

dEh

dt
(t) = h

duh

dt

T d2uh

dt2
− h

duh

dt

T

Auh

= h
duh

dt

T (
d2uh

dt2
− Auh

)
= 0,

the discrete energy norm is conserved and the problem (9) is well posed. Its
exact solution is given by[

u(t)
v(t)

]
= exp

(
t

[
0 I
A 0

])[
u(0)
v(0)

]
, t ≥ 0.

2.2. Time discretization: exponential splitting method

By using the exact solution of (9), we deduce that[
u(t+ k)
v(t+ k)

]
= exp

(
k

[
0 I
A 0

])[
u(t)
v(t)

]
, t ≥ 0, k > 0.

The main idea of splitting methods for the time integration of ordinary dif-
ferential equations involves to separate the system into several parts, being
each of them easily integrable. More precisely, given the initial value problem

d

dt
u(t) = g(u), u(0) = u0 ∈ R

D, (12)

with g : RD −→ R
D, splitting methods require three steps [22]:
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1. choosing the functions gi such that g =
n∑

i=1

gi, and the equations

d

dt
u(t) = gi(u), u(0) = u0, i = 1, . . . , n

can be easily integrated.

2. solving exactly each equation d
dt
u(t) = gi(u),

3. combining the solutions of the intermediate problems to achieve a good
approximation of (12).

We propose to split[
0 I
A 0

]
=

[
0 I
0 0

]
+

[
0 0
A 0

]
=M1 +M2.

Now, in order to solve exactly the problems

d

dt

[
uh

vh

]
=Mi

[
uh

vh

]
, i = 1, 2,

we use that M2
i = 0 for i = 1, 2 and then,

exp(kM1) =

[
I kI
0 I

]
, exp(kM2) =

[
I 0
kA I

]
.

To advance a step of size k in time, we use the second order Strang splitting

ψk : exp(k(M1 +M2)) ≈ exp(
k

2
M1) exp(kM2) exp(

k

2
M1),

which, applied to [u,v]T , leaves to

ψ
[1]
k/2 : exp(

k

2
M1)

[
u
v

]
=

[
u+

k

2
v

v

]
,

ψ
[2]
k : exp(kM2)

[
u+

k

2
v

v

]
=

⎡
⎢⎣ u+

k

2
v

v + kAu+
k2

2
Av

⎤
⎥⎦ ,

ψ
[1]
k/2 : exp(

k

2
M1)

⎡
⎢⎣ u+

k

2
v

v + kAu+
k2

2
Av

⎤
⎥⎦ =

⎡
⎢⎣ u+ kv +

k2

2
Au+

k3

4
Av

v + kAu+
k2

2
Av

⎤
⎥⎦ .
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That is, the Strang splitting time integrator is given by

exp(k

[
0 I
A 0

]
) ≈

⎡
⎢⎣ I +

k2

2
A kI +

k3

4
A

kA I +
k2

2
A

⎤
⎥⎦ :=M(k,−A).

In this way, we have obtained an explicit method which is easily imple-
mented. However, it is not unconditionally stable and the stability has to be
studied. That is, the size of the powers of M(k,−A) has to be bounded in
the matrix norm associated to the discrete energy norm. For this, we write
the discrete energy (11) as

Eh(t)(u,v) =
h

2

(
vT · v + ((−A)1/2u)T ((−A)1/2u))

= ||[(−A)1/2u,v]||2 = ||Q[u,v]T ||2 := ||[u,v]||Q,
where,

Q =

[
(−A)1/2 0

0 I

]
.

Therefore,

||Mn(k,−A)||Q = ||QMn(k,−A)Q−1||2
= || (QM(k,−A)Q−1

)n ||2
= ||Rn(k(−A)1/2)||2, (13)

where,

R(ω) =

⎡
⎢⎢⎣

1− ω2

2
ω − ω3

4

−ω 1− ω2

2

⎤
⎥⎥⎦ ,

is called the stability matrix.
The study of the boundedness of the powers (13) is not easy in general

(cf. [1]) but, in order to accomplish this, a necessary condition is that the
eigenvalues of k(−A)1/2 = ck

h
(−B+ s2h2

c2
I)1/2 must be in the stability interval

{ω > 0 : ρ(R(ω)) ≤ 1},
where ρ(R(ω)) is the spectral radius of R(ω). In our case, ρ(R(ω)) can be
easily calculated and we can deduce the interval of stability.
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Proposition 2. The spectral radius of R(ω) satisfies

ρ(R(ω)) ≤ 1,

if, and only if, ω ∈ [0, 2].

Proof. Since

R(ω) = (1− ω2

2
)I +

⎡
⎣ 0 ω − ω3

4

−ω 0

⎤
⎦ ,

we deduce that, when ω ∈ [0, 2], the eigenvalues of R(ω) are the complex
numbers given by

λ1(ω) = (1− ω2

2
) + iω

√
1− ω2

4

λ2(ω) = (1− ω2

2
)− iω

√
1− ω2

4
.

It is clear that these eigenvalues satisfy |λj(ω)| = 1 for j = 1, 2 and any
ω ∈ [0, 2].

On the other hand, when ω > 2, the eigenvalues of R(ω) are the real
numbers given by

λ1(ω) = (1− ω2

2
) + ω

√
ω2

4
− 1

λ2(ω) = (1− ω2

2
)− ω

√
ω2

4
− 1.

Since λ1(ω)λ2(ω) = 1, we deduce that ρ(R(ω)) > 1. �
From Propositions 1 and 2, we obtain that the stability condition

ck

h

√
5 +

1

3
+
s2h2

c2
< 2

has to be satisfied. This will be reached, for sh small enough, when

ck

h
<

2√
5 + 1/3

≈ 0.866. (14)

Our numerical experiments corroborate that stability is achieved when the
time step k is chosen to meet (14).

In following sections, where ABCs will be added, a more complicated
splitting has to be used, and a similar condition for stability will be estab-
lished numerically.
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3. One dimensional Klein-Gordon equation with H-W ABCs

The one dimensional Klein-Gordon equation has its own interest. Among
its scope of applications are the propagation of transverse waves in strings,
cables on linearly elastic springs and torsional and axial waves in beams on
elastic substrate [21]. On the other hand, it is convenient to start considering
the exponential splitting method in this simpler equation and translate the
method to the two-dimensional case.

The problem in one dimension reduces to

∂tu(xW , t) = c∂xu(xW , t) + ∂tφ
W
1 , (15)

∂2t u(x, t) = c2∂2xu(x, t)− s2u(x, t), xW < x < xE , (16)

∂tu(xE , t) = −c∂xu(xE , t) + ∂tφ
E
1 , (17)

d2

dt2
φW
1 = −s2(1

2
φW
0 +

1

4
φW
1 +

1

4
φW
2 ), (18)

d2

dt2
φW
j = −s2(1

4
φW
j−1 +

1

2
φW
j +

1

4
φW
j+1), j = 2, . . . , P, (19)

d2

dt2
φE
1 = −s2(1

2
φE
0 +

1

4
φE
1 +

1

4
φE
2 ), (20)

d2

dt2
φE
j = −s2(1

4
φE
j−1 +

1

2
φE
j +

1

4
φE
j+1), j = 2, . . . , P, (21)

u(xW , t) = φW
0 , φW

P+1 = 0, u(xE, t) = φE
0 , φE

P+1 = 0, (22)

with the initial conditions

u(x, 0) = u0(x), ∂tu(x, 0) = v0(x),

φW
j (0) = 0, φE

j (0) = 0, ∂tφ
W
j (0) = 0, ∂tφ

W
j (0) = 0.

3.1. Spatial discretization

For N > 0, let h =
xE − xW

N
be the size step and xj = xW + (j − 1)h,

j = 1, . . . , N + 1, the nodes of the spatial discretization. We denote uj(t) =
u(xj, t). Spatial derivatives from u3 to uN−1 in (16) are approximated by
fourth order central finite differences as in Section 2, and for u2 and uN by
fourth order one-sided finite differences. For u1 and uN+1 spatial derivatives
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in (15) and (17) are approximated by fourth order one-sided finite differences.
In this way, we obtain a semidiscrete ordinary differential problem given by,

d

dt
u1 =

c

h

(
−25

12
u1 + 4u2 − 3u3 +

4

3
u4 − 1

4
u5

)
+
d

dt
φW
1 ,

d2

dt2
u2 =

c2

h2

(
11

12
u1 − 5

3
u2 +

1

2
u3 +

1

3
u4 − 1

12
u5

)
− s2u2,

d2

dt2
uj =

c2

h2

(
− 1

12
uj−2 +

4

3
uj−1 − 5

2
uj +

4

3
uj+1 − 1

12
uj+2

)
− s2uj, j = 3, . . . , N − 1,

d2

dt2
uN =

c2

h2

(
− 1

12
uN−3 +

1

3
uN−2 +

1

2
uN−1 − 5

3
uN +

11

12
uN+1

)
− s2uN ,

d

dt
uN+1 =

c

h

(
−1

4
uN−3 +

4

3
uN−2 − 3uN−1 + 4uN − 25

12
uN+1

)
+
d

dt
φE
1 ,

and the ordinary differential equations (18)-(21) for the auxiliary variables.

3.2. Time integration

We start rewriting the problem of Subsection 3.1 as a first order ordinary
differential system

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎣

u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′

⎤
⎥⎥⎥⎥⎥⎥⎦
=M

⎡
⎢⎢⎢⎢⎢⎢⎣

u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′

⎤
⎥⎥⎥⎥⎥⎥⎦
=

[
M11 M12

M21 0

]
⎡
⎢⎢⎢⎢⎢⎢⎣

u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′

⎤
⎥⎥⎥⎥⎥⎥⎦
, (23)

where u = [u1, . . . , uN+1]
T , u′ = [

d

dt
u2, . . . ,

d

dt
uN ]

T , φφφW = [φW
1 , . . . , φ

W
P ]T ,

φφφE = [φE
1 , . . . , φ

E
P ]

T , (φφφW )′ = [
d

dt
φW
1 , . . . ,

d

dt
φW
P ], (φφφE)′ = [

d

dt
φE
1 , . . . ,

d

dt
φE
P ]

T

and M a square matrix of dimension 2N + 4P , with submatrices

M11 =

⎡
⎣ c

h
A1 0 0
0 0 0
0 0 0

⎤
⎦ ,M12 =

⎡
⎣ A2 A3 A4

0 IP 0
0 0 IP

⎤
⎦ ,M21 =

⎡
⎣ A5 0 0

−s2A6 −s2A7 0
−s2A8 0 −s2A7

⎤
⎦ ,
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in which A1 is a (N + 1)× (N + 1) matrix with all elements zero except in
the first and last rows,

A1 =

⎡
⎢⎢⎢⎣

−25

12
4 −3

4

3
−1

4
0

−1

4

4

3
−3 4 −25

12

⎤
⎥⎥⎥⎦ ;

A2 is the (N + 1)× (N − 1) matrix,

A2 =

⎡
⎣ 0
IN−1

0

⎤
⎦ ,

where 0 denotes a row vector of N − 1 zeros, IN−1 is the identity matrix of
dimension N − 1; A3 is the (N +1)×P matrix with all elements zero except
the position (1, 1) which is equal to 1; A4 is the (N + 1)× P matrix with all
elements zero except the position (N + 1, 1) which is equal to 1; A5 is the
matrix given by

A5 =
c2

h2
Mx − s2AT

2 ,

where Mx is the (N − 1)× (N + 1) matrix

Mx =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

11

12
−5

3

1

2

1

3
− 1

12

− 1

12

4

3
−5

2

4

3
− 1

12
. . .

. . .
. . .

. . .
. . .

− 1

12

4

3
−5

2

4

3
− 1

12

− 1

12

1

3

1

2
−5

3

11

12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
;

13



A6 is the P × (N +1) matrix with all elements zero except the position (1, 1)
which is equal to 1/2; A7 is a P × P given by

A7 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

4

1

4
1

4

1

2

1

4
. . .

. . .
. . .

1

4

1

2

1

4
1

4

1

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and finally A8 is the P × (N + 1) matrix with all elements zero except the
position (1, N + 1) which is equal to 1/2.

We propose one splitting so that the matrix of each intermediate problem
has a simpler exponential, in a similar way to the one explained in Section
2. Concretely, we consider two steps g = g1 + g2. The step 1 is

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎣

u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′

⎤
⎥⎥⎥⎥⎥⎥⎦
=M1

⎡
⎢⎢⎢⎢⎢⎢⎣

u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′

⎤
⎥⎥⎥⎥⎥⎥⎦
=

[
M11 M12

0 0

]
⎡
⎢⎢⎢⎢⎢⎢⎣

u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Now we try to reach exp(kM1) = I2N+4P + kM1 +
∞∑
n=2

kn

n!
Mn

1 .

Taking into account that An
1 =

(
−25

12

)n−1

A1, then for n ≥ 2,

Mn
1 =

⎡
⎢⎢⎣

( c
h
)nAn

1 0 0
0 0 0
0 0 0

( c
h
)n−1An−1

1 A2 ( c
h
)n−1An−1

1 A3 ( c
h
)n−1An−1

1 A4

0 0 0
0 0 0

0 0

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
( c
h
)n(−25

12
)n−1A1 0 0

0 0 0
0 0 0

( c
h
)n−1(−25

12
)n−2A1A2(

c
h
)n−1(−25

12
)n−2A1A3(

c
h
)n−1(−25

12
)n−2A1A4

0 0 0
0 0 0

0 0

⎤
⎥⎥⎦ .
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Therefore,

exp(c
k

h
A1) = IN+1 +

∞∑
n=1

kn

n!

( c
h

)n
(
−25

12

)n−1

A1

= IN+1 − 12

25

(
−1 + exp

(
−25

12
c
k

h

))
A1

= IN+1 + ηkA1,

being ηk = −12

25
(−1 + exp(−25

12
c
k

h
)).

Denoting B = A1A2 the (N + 1)× (N − 1) matrix

B =

⎡
⎢⎢⎢⎣

4 −3
4

3
−1

4
0

−1

4

4

3
−3 4

⎤
⎥⎥⎥⎦ ,

kA2 +

∞∑
n=2

kn

n!

( c
h

)n−1
(
−25

12

)n−2

B

= kA2 +
h

c

(
−12

25

)2 ∞∑
n=2

kn

n!

( c
h

)n
(
−25

12

)n

B

= kA2 +
h

c

(
−12

25

)2(
−1 + k

c

h

25

12
+ exp

(
−25

12
c
k

h

))
B

= kA2 +
h

c

(
−12

25

)(
ηk − k

c

h

)
B := Bk.

Noting that A1Ai = −25

12
Ai, for i = 3, 4,

kAi +

∞∑
n=2

kn

n!

( c
h

)n−1
(
−25

12

)n−1

Ai

=
h

c
ηkAi.

Summarizing,

exp(kM1) =

⎡
⎢⎢⎣

IN+1 + ηkA1 0 0
0 IP 0
0 0 IP

Bk
h
c
ηkA3

h
c
ηkA4

0 kIP 0
0 0 kIP

0 IN−1+2P

⎤
⎥⎥⎦ .
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Therefore, flow ψ
[1]
k (its non constant part) is

ψ
[1]
k :

u(t + k) = u(t) + ηkA1u(t) +Bku
′(t) + h

c
ηkA3(φφφ

W )′(t) + h
c
ηkA4(φφφ

E)′(t),
φφφW (t+ k) = φφφW (t) + k(φφφW )′(t),
φφφE(t+ k) = φφφE(t) + k(φφφE)′(t).

The step 2 corresponds to

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎣

u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′

⎤
⎥⎥⎥⎥⎥⎥⎦
=M2

⎡
⎢⎢⎢⎢⎢⎢⎣

u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′

⎤
⎥⎥⎥⎥⎥⎥⎦
=

[
0 0
M21 0

]
⎡
⎢⎢⎢⎢⎢⎢⎣

u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′

⎤
⎥⎥⎥⎥⎥⎥⎦
.

In this case,

[
0 0
M21 0

]2
= 0 and, exp(k

[
0 0
M21 0

]
) =

[
IN+1+2P 0
kM21 IN−1+2P

]
.

Hence the flow ψ
[C]
k means

ψ
[2]
k :

u′(t+ k) = u′(t) + kA5u(t),
(φφφW )′(t+ k) = (φφφW )′(t) + k(−s2)A6u(t) + k(−s2)A7φφφ

W (t),
(φφφE)′(t+ k) = (φφφE)′(t) + k(−s2)A8u(t) + k(−s2)A7φφφ

E(t).

3.2.1. Combining the two steps and increasing the order by composition

Once we have chosen the steps and we have solved exactly each step,
there is still missing combining these solutions to obtain an approximation
of the solution of (23). We consider the second order Strang splitting

S [2]
k = ψ

[1]
k/2 ◦ ψ[2]

k ◦ ψ[1]
k/2, (24)

used in Section 2.
Numerical integrators of arbitrarily high order can be obtained by com-

position of S [2] [25, 27]. For example, in the numerical experiments of Section
5 we have considered the fourth order integrator S [4]

S [4]
k = S [2]

αk ◦ S [2]
βk ◦ S [2]

αk, with α =
1

2− 21/3
, β = 1− 2α. (25)
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We remark that it is possible to save some computational cost in (25) by

join together the last step in the composition of S [2]
αk and the first one in S [2]

βk

and similarly, the last one in the composition of S [2]
βk and the first one in S [2]

αk.
That is,

S [4]
k = ψ

[1]
αk/2 ◦ ψ[2]

αk ◦ ψ[1]
αk/2 ◦ ψ[1]

βk/2 ◦ ψ[2]
βk ◦ ψ[1]

βk/2 ◦ ψ[1]
αk/2 ◦ ψ[2]

αk ◦ ψ[1]
αk/2,

= ψ
[1]
αk/2 ◦ ψ[2]

αk ◦ ψ[1]
(α+β)k/2 ◦ ψ[2]

βk ◦ ψ[1]
(α+β)k/2 ◦ ψ[2]

αk ◦ ψ[1]
αk/2. (26)

4. Two dimensional Klein-Gordon equation with H-W ABCs

We approach here the two dimensional case, more computationally ex-
pensive than the previous one dimensional case.

4.1. Spatial discretization

For the sake of simplicity, we consider the same size step in both directions

x and y, that is, for a value of N , h =
xE − xW

N
and M =

b− a

h
. Let

xj = xW +(j−1)h, j = 1, . . . , N +1, and yl = a+(l−1)h, l = 1, . . . ,M +1,
be the nodes of the spatial discretization. This produces a uniform grid in
the computational domain with M + 1 rows and N + 1 columns. We denote
ujl(t) = u(xj, yl, t). In this way, there is a matrix of unknowns. On the other
hand, we consider φrl = φr(yl), r = 1, . . . , P , and l = 1, . . . ,M + 1, on west
and east boundaries.

As in the one dimensional case, second order spatial derivatives in the
direction x, ∂2x ujl, from j = 3 to N − 1, are approximated by fourth order
central finite differences and, for j = 2 and N , by fourth order one-sided
finite differences. First order spatial derivatives ∂x u1l and ∂x uN+1,l are ap-
proximated by fourth order one-sided finite differences.

We assume that the unknowns associated with nodes on south and north
boundaries have been removed using Neumann boundary conditions. Spatial
derivative in the direction y, ∂2y ujl, from l = 3 to M − 1, are approximated
by fourth order central finite differences. For l = 2 and M , fourth order
one-sided finite differences and Neumann boundary condition are used to
obtain the approximation to ∂2y uj2 and ∂2y ujM . We explain this process in
the case of ∂2y uj2. First, fourth order one-sided finite differences for ∂2yuj2
are considered,

∂2yuj2 ≈
1

h2

(
11

12
uj1 − 5

3
uj2 +

1

2
uj3 +

1

3
uj4 − 1

12
uj5

)
, (27)
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and third order one-sided finite differences for ∂yuj1,

∂yuj1 ≈ 1

h

(
−11

6
uj1 + 3uj2 − 3

2
uj3 +

1

3
uj4

)
.

Since ∂yuj1 = 0, uj1 is substituted by
6

11
(3uj2 − 3

2
uj3 +

1

3
uj4) in (27), and

we achieve

∂2yuj2 ≈
1

h2

(
−1

6
uj2 − 1

4
uj3 +

1

2
uj4 − 1

12
uj5

)
.

For the auxiliary variables corresponding to the west and east boundaries,
spatial derivatives ∂2y φr(yl) are approximated following the same criterion.

4.2. Time integration

Let it be uj the column j without the first and last components, φφφW
j and

φφφE
j the column vectors corresponding to the auxiliary variable j on west and

east boundary respectively, without the first and last components. We con-

sider u = [uT
1 , . . . ,u

T
N+1]

T , u′ = [
d

dt
uT
2 , . . . ,

d

dt
uT
N ]

T , φφφW = [(φφφW
1 )T , . . . , (φφφW

P )T ]T ,

φφφE = [(φφφE
1 )

T , . . . , (φφφE
P )

T ]T , (φφφW )′ = [
d

dt
(φφφW

1 )T , . . . ,
d

dt
(φφφWP )T ]T and finally

(φφφE)′ = [
d

dt
(φφφE

1 )
T , . . . ,

d

dt
(φφφE

P )
T ]T .

Rewriting the problem of Subsection 4.1 as a first order ordinary differ-
ential system

d

dt

⎡
⎢⎢⎢⎢⎢⎢⎣

u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′

⎤
⎥⎥⎥⎥⎥⎥⎦
= M

⎡
⎢⎢⎢⎢⎢⎢⎣

u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′

⎤
⎥⎥⎥⎥⎥⎥⎦
=

[ M11 M12

M21 0

]
⎡
⎢⎢⎢⎢⎢⎢⎣

u
φφφW

φφφE

u′

(φφφW )′

(φφφE)′

⎤
⎥⎥⎥⎥⎥⎥⎦
, (28)

and M a square matrix of dimension (2N + 4P )(M − 1), with submatrices

M11 =

⎡
⎣ c

h
A1 0 0
0 0 0
0 0 0

⎤
⎦ ,M12 =

⎡
⎣ A2 A3 A4

0 IP (M−1) 0
0 0 IP (M−1)

⎤
⎦ ,M21 =

⎡
⎣ A5 0 0

A6 A7 0
A8 0 A7

⎤
⎦ ,
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where, by denoting ⊗ to the Kronecker product of matrices, A1 = A1⊗IM−1,

A2 = A2⊗IM−1, A3 = A3⊗IM−1, A4 = A4⊗IM−1 and A5 =
c2

h2
Mx⊗IM−1+

AT
2 ⊗ A9, A6 = A6 ⊗A9, A7 = A7 ⊗A9, A8 = A8 ⊗ A9,

A9 =
c2

h2
My − s2IM−1,

My =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1

6
−1

4

1

2
− 1

12
11

12
−5

3

1

2

1

3
− 1

12

− 1

12

4

3
−5

2

4

3
− 1

12
. . .

. . .
. . .

. . .
. . .

− 1

12

4

3
−5

2

4

3
− 1

12

− 1

12

1

3

1

2
−5

3

11

12

− 1

12

1

2
−1

4
−1

6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

In order to obtain an explicit method with intermediate problems with
simple exponentials, we consider an exponential splitting method based in
two steps similar to the ones for the one dimensional case.

ψ
[1]
k :

u(t + k) = u(t) + ηkA1u(t) + Bku
′(t) + h

c
ηkA3(φφφ

W )′(t) + h
c
ηkA4(φφφ

E)′(t),
φφφW (t+ k) = φφφW (t) + k(φφφW )′(t),
φφφE(t+ k) = φφφE(t) + k(φφφE)′(t),

ψ
[2]
k :

(φφφW )′(t+ k) = (φφφW )′(t) + kA6u(t) + kA7φφφ
W (t),

(φφφE)′(t+ k) = (φφφE)′(t) + kA8u(t) + kA7φφφ
E(t),

(29)

where Bk = Bk ⊗ IM−1. The formulas (29) are very similar to the ones
displayed in the one dimensional case.

Finally, we combine the previous steps to obtain a fourth order in time
splitting method by using the same formulas (24), (25) and (26) used for the
one dimensional case in Section 3.
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4.3. Analysis of the efficiency of the algorithm

Here, we only take into account the matrix vector products in the algo-
rithm described in Subsection 4.2. Step 1 requires (N + 2P + 19)(M − 1)
products, that is NM +2PM +O(N) +O(M) +O(P ) products. Regarding
step 2, A5u, (N−1)(16+9(M−3)) products are needed. As for A6u, A7φφφ

W ,
A8u and A7φφφ

E , 6P (8 + 5(M − 3)) products are necessary. Altogether, step
2 requires 9NM + 30PM +O(N) +O(M) +O(P ) products.

When we combine steps 1 and 2 using the second order Strang splitting
(24) and (25) to obtain fourth order in time, using the formula (26), we
repeat four times step 1 and three times the step 2. Therefore, we need
31NM + 98PM + O(N) + O(M) + O(P ) products for every step in time.

Moreover, if the last step in the composition of S [2]
αk for one step and the

first one in S [2]
αk for the next step are joined together (ψ

[1]
αk/2 ◦ ψ[1]

αk/2 = ψ
[1]
αk),

only three times of step 1 are needed, and then the products for one step are
30NM + 96PM +O(N) +O(M) +O(P ).

5. Numerical experiments

In this section, we want to study the stability, the efficiency and the
performance of H-W ABCs when the dispersion coefficient varies. We use
the full discretization explained in the previous sections taking advantage
of the efficiency of the fourth order in time exponential splitting integrator,
above all in the two dimensional case.

5.1. One dimensional case

We consider the discretization of the problem (15)-(22), described in Sec-
tion 3, with initial conditions

u0(x) =

⎧⎨
⎩

(x+ 0.2)3(0.2− x)3

(0.2)6
, −0.2 < x < 0.2,

0, otherwise,

v0(x) = 0,

with compact support contained in the computational interval [−1/4, 1/4].
The sixth order polynomial in u0 is chosen so that u0 ∈ C1([−1/4, 1/4]). We
have set c = 1 and final time T = 4.

We have computed numerically the stability limit time step kl. In the
considered domain we take h = 1/2N . Table 1 shows that for N = 50
the influence of s2 in the stability limit time step can be seen for big values

20



N=50 N=100 N=200
s2 = 0 0.006808 0.003404 0.001702
s2 = 1 0.006808 0.003404 0.001702
s2 = 20 0.006808 0.003404 0.001702
s2 = 50 0.006808 0.003404 0.001702
s2 = 100 0.006808 0.003404 0.001702
s2 = 200 0.006804 0.003404 0.001702
s2 = 400 0.006792 0.003403 0.001702

Table 1: Stability limit time step kl.

N=50 N=100 N=200
s2 = 0 0.6808 0.6808 0.6808
s2 = 1 0.6808 0.6808 0.6808
s2 = 20 0.6808 0.6808 0.6808
s2 = 50 0.6808 0.6808 0.6808
s2 = 100 0.6808 0.6808 0.6808
s2 = 200 0.6804 0.6808 0.6808
s2 = 400 0.6792 0.6806 0.6808

Table 2: Ratio stability limit kl/h.

as s2 = 200 and s2 = 400. For N = 100, the influence of s2 is noticed for
s2 = 400 and, for N = 200 the influence is not significant for the values
of s2 considered. In short, when sh is small enough, the influence of s2

in the stability is negligible, which is coherent with the stability condition
established for the one dimensional periodic case. Table 2 displays the ratio
kl/h as function of s2 and N .

The error of the full discrete problem with H-W ABCs is made up of
three types of errors. A first error depends on the accuracy of the spatial
discretization, a second error is due to the time numerical integration, and
a third error is caused by the incorporation of the ABCs. In the following
experiments, we consider the time step k = 10−4. In this way, the error
coming from the time numerical integration is negligible compared to the
other two errors.

In order to measure the error of absorption associated with the ABCs, for
each numerical solution uh of the test problem, a reference solution uh,ref , in
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a longer domain [−1/4−5/2, 1/4+5/2] is generated. For the final time con-
sidered, no reflections of the reference solution reenter in the computational
domain [−1/4, 1/4]. We use Emax = ||uh−uh,ref ||∞ to measure the error in
each time where the numerical solution is calculated.

We want to study the influence of the dispersion coefficient. In Figure 1
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Figure 1: Emax versus s2 for N = 200, k = 10−4, T = 4 for P = 4 and P = 10.

we have set N = 200 and we have displayed the maximum error in T = 4
versus s2, for P equal to 4 and 10. Taking P = 4, it can be seen that the
error increases when the dispersion does. This behavior is similar to the one
observed in [14]. However, for P = 10, a better behavior of the error can be
noted.

It seems that the ABCs are able to absorb the solution for large values
of the dispersion coefficient if we use a big enough order of absorption. To
corroborate this, we carry out numerical experiments with s2 = 20. In Figure
2, we have shown, for s2 = 20, Emax versus t for N = 50, N = 100 and
N = 200 for the values of P = 4, 6, 8. For fixed N , the error decreases when
P increases until the level of accuracy of the discretization is achieved. If one
wants reduce the error, one must refine the space discretization. Until about
t = 1.5, the errors for P = 4, P = 6 and P = 8 are similar, but afterward,
the error for P = 4 is larger. Similarly, until about t = 2.5 the errors for
P = 6 and P = 8 are similar, but later the error for P = 6 is larger. For
small times, a low order P is sufficient to achieve the level of accuracy of the
spatial discretization. Whenever longer times are considered higher order P
are needed to saturate the accuracy of the spatial discretization.
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Figure 2: Emax versus t for N = 50, N = 100 and N = 200.

5.2. Two dimensional case

We consider the problem described in Section 4 with initial conditions

u0(x, y) =

⎧⎨
⎩

(x+ 0.2)3(0.2− x)3(y + 0.2)3(0.2− y)3

(0.2)12
, −0.2 < x, y < 0.2,

0, otherwise,

and v0(x, y) = 0, with compact support contained in the computational
domain [−1/4, 1/4] × [−1/4, 1/4]. The polynomial in u0 is chosen so that
u0 ∈ C1([−1/4, 1/4]× [−1/4, 1/4]).

We set c = 1 and final time T = 4. The level curves of the numerical
solution uh, for the step size h associated to N = 200, have been displayed
in Figure 3, for P = 40, and the time values 0, 0.25, 0.3, 0.6, 1 and 4.

We have computed numerically the stability limit time step kl in a similar
way to the one made for the one dimensional case. In the considered domain
we take h = 1/2N . From Table 3, it can be observed that, the influence of
s2 in the stability limit time step is not significant when sh is small enough,
which is coherent with the stability condition established for the one dimen-
sional periodic case. Table 4 displays the ratio kl/h as function of s2 and N .
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Figure 3: uh for times 0, 0.25, 0.3, 0.6, 1 and 4.

Now, we study the efficiency of the splitting scheme by comparing with
the fourth-order four-stage Runge-Kutta method. Since we take N =M , we
deduce from Subsection 4.3 that the computational cost of one step in time
for the algorithm described in Subsection 4.2 is 3(10N2 + 32PN) +O(N) +
O(P ) = 30N2 + 96PN +O(N) + O(P ) products. For the Runge-Kutta the
computational cost of the productMw requires 10N2+32PN+O(N)+O(P )
products too. But for the splitting method this has to be done three times
for each step, while for the four-stage Runge-Kutta method it is necessary
do it four times for each step, 40N2 + 128PN +O(N) +O(P ).

Figure 4 displays the maximum error in T = 4 versus CPU time for the
exponential splitting integrator and the fourth-order four-stage Runge-Kutta
method, for s2 = 1. A reference solution has been computed by using the
fourth-order four-stage Runge-Kutta method with N = 1600, k = 4/27200
and P = 50. For both methods we have used the following values of N and k:
N = 50 and k = 4/850, N = 100 and k = 4/1700 and N = 200, k = 4/3400.
It can be seen that, for the same level of accuracy, the splitting method is
less costly than the Runge-Kutta method.

We have ran both algorithms for several values ofN and we have measured
the computational cost in terms of CPU time. Table 5 shows the CPU ratio
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N=50 N=100 N=200
s2 = 0 0.004821 0.002410 0.001204
s2 = 1 0.004821 0.002410 0.001204
s2 = 20 0.004820 0.002410 0.001204
s2 = 50 0.004820 0.002408 0.001204
s2 = 100 0.004818 0.002408 0.001204
s2 = 200 0.004816 0.002408 0.001204
s2 = 400 0.004812 0.002408 0.001204

Table 3: Stability limit time step kl.

N=50 N=100 N=200
s2 = 0 0.4821 0.4820 0.4816
s2 = 1 0.4821 0.4820 0.4816
s2 = 20 0.4820 0.4820 0.4816
s2 = 50 0.4820 0.4816 0.4816
s2 = 100 0.4818 0.4816 0.4816
s2 = 200 0.4816 0.4816 0.4816
s2 = 400 0.4812 0.4816 0.4816

Table 4: Ratio stability limit kl/h.

r for the Runge-Kutta method and the splitting method. It can be seen that
the behavior for the splitting method is better than the expected from the
analysis of the products required. Maybe, this can be due to the fact that the
splitting method uses smaller sparse matrices, which permits faster location
of non zero elements.

Finally, we are again interested on checking the error of absorption com-
mitted by the ABCs in a similar way to the one dimensional case. We take
k = 10−4 to achieve a time integration error negligible. The reflections are
measured comparing the numerical solution uh on the computational domain
[−1/4, 1/4] × [−1/4, 1/4] with the numerical solution on a longer domain
[−1/4−5/2, 1/4+5/2]× [−1/4, 1/4] for the same step size h. In the interval
of times [0, 4], there are not reflections of uh,ref on the computational domain.
We denote by Emax the maximum of the absolute value of the difference
between uh and uh,ref on the computational domain.

In the two dimensional case we are also interested in the influence of the
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Figure 4: Emax versus CPU time for the exponential splitting integrator and the fourth-
order four-stage Runge-Kutta method.

N 50 100 200 400 800 1600
r 1.6638 1.6334 1.6864 1.5192 1.6034 1.5239

Table 5: CPU ratio for the Runge-Kutta method and the splitting method.

dispersion coefficient. We have displayed in Figure 5 the maximum error in
T = 4 versus s2, for N = 200, and P equal to 10 and 40. It can be observed
that there are almost no difference among distinct values of s2. For P = 10,
errors are large, but taking P = 40, errors decrease in a suitable way. If
enough big order of absorption is used, the ABCs are able to absorb the
solution also in the two dimensional case.

To study in more detail the evolution of the error versus the time, we
have set s2 = 1 and we have shown in Figure 6, the time evolution of Emax,
for N = 50, N = 100, and N = 200, for the values of P = 10, P = 20 and
P = 40. In this two dimensional case, the use of the exponential splitting
method of Section 4 has done possible to reach very small errors due to the
time integration (cf. [14, 15]). Then, the situation is similar to the one
dimensional case. For fixed N , the error decreases when P increases until
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Figure 5: Emax versus s2 for N = 200, k = 10−4, T = 4 for P = 10 and P = 40.

the level of accuracy of the spatial discretization is achieved. However, higher
orders of P are needed. Until about t = 0.5, the errors for P = 10, P = 20
and P = 40, almost coincide, but for bigger times, errors for P = 10 grow.
During a time later, the errors for P = 20 and P = 40, are similar, whereas
between t = 1.5 and t = 2.5, the errors for P = 20 increase. It seems that,
in this interval of time, the level of accuracy of the spatial discretization is
reached with P = 40.

6. Conclusions and future work

We have obtained a time integrator for the Klein-Gordon equation with
Hagstrom-Warburton high-order absorbing boundary conditions based on
exponential splitting techniques. This time scheme has good stability prop-
erties and is more efficient than other standard time integrators. Using this
method we are able to study the influence of the dispersion coefficient.

As future work, we consider the study of the properties of this method
as geometric integrator. For this, the incorporation of the optimal choice
of the parameters of the ABCs for long time computation obtained in [17]
is essential. Moreover, the use of exponential splitting time integrators for
other equations could be considered.
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