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Barrier for the reaction Xzo++Xzt}+ -X4o + in alkali-metal clusters related to electron density
at the bond midpoint of the supermolecule (X2p+)p
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Using the extended Thomas-Fermi version of density-functional theory (DFT), calculations are
presented for the barrier for the reaction Nazp++Na2p+~Na~ +. The deviation from the simple
Coulomb barrier is shown to be proportional to the electron density at the bond midpoint of the super-
molecule (Na2p )2. An extension of conventional quantum-chemical studies of homonuclear diatomic
molecular ions is then effected to apply to the supermolecular ions of the alkali metals. This then allows
the Na results to be utilized to make semiquantitative predictions of position and height of the maximum
of the fusion barrier for other alkali clusters. These predictions are confirmed by means of similar DFT
calculations for the K clusters.

I. INTRODUCTION

Sattler et al. ' found experimentally that Coulomb
repulsion in multiply charged clusters may result in
fission into fragments with smaller charges: the so-called
Coulomb explosion. Since that time, work by several
groups has helped a lot in clarifying the nature of the
Coulomb explosion. In earlier work, a combination
of density-functional theory (DFT} and the jellium model
has been employed to study some specific fission channels
for doubly charged clusters. A key aspect to understand
charged-cluster fission is that this is a barrier-controlled
process.

The present work is concerned solely with symmetric
fission. As a specific example we consider the fission of
Na40

+ into Na20++Na20+. Our intention is to analyze
the fission barrier. However, for reasons which will be-
come clear below, it is more convenient to focus on the
opposite process in which two Na20+ clusters fuse to
form Na4O +. In other words, we consider the barrier for
the fusion of two singly charged identical clusters. Using
the same model as in Ref. 5, calculations will first be
presented of the deviation, h(R ) say, between the barrier
preventing the fusion of Na20++Na2O+ into Na40

+ and
the simple Coulomb barrier e 1'R. (R indicates the sepa-
ration between the centers of the two Na2p clusters. }
These results are then analyzed, using recent progress in
the quantum chemistry of homonuclear diatomic mole-
cules, in terms of the electron density, p (R ) say, at the
midpoint of the bond in the supermolecule (Na2p+ ) at

separation R. It is found that b, (R) is proportional to
p (R ) over a substantial range of cluster separation R.

Motivated by the success for the (Na2p+ }z supermolec-
ular ion of arguments paralleling those of conventional
quantum chemistry, an extension of the work of Lauren-
zi is proposed for predicting semiquantitatively the dis-
placement of the maximum, and indirectly also the
height, of the fusion barrier for the reaction
K2p+ +K2p+ ~K4p + (and similar reactions for other al-
kali elements) from that of the sodium case. These pre-
dictions are then tested by direct DFT calculations on the
K system.

Symmetric cluster fusion has also been studied by
Schmidt and co-workers' '" and by Saito and Ohnishi. '

These authors, however, were interested in the fusion of
colliding neutral clusters, in which case the primary
quantity of interest in our work, namely the Coulomb-
derived fusion barrier, is absent.

II. DEVIATION OF FUSION BARRIER FROM SIMPLE
COULOMB BARRIER DUE TO CHEMICAL

RONDING IN (Naacp+ }2

We calculate the energy of the supermolecular ion
(Na2p+)2 using the density-functional formalism and the
jellium-background model. ' The positive ionic back-
ground of each Nazo+ cluster is assumed to be a spherical
jellium (with constant positive density) of radius
R =r,N' where N=20 and r„ the usual electron densi-
ty parameter, is equal to 4 a.u. At moderate separations
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R between the centers of the two clusters the electronic
cloud is shared by the two components of the super-
molecule. This bonding cloud lowers a little the fusion
barrier compared to the purely Coulombic barrier.

For the energy we have used an extended Thomas-
Fermi approximation, namely,

E [p]= T+ U„+UJ, + U +E„, .

T is the kinetic energy of the electronic cloud, given as
the sum of the local Thomas-Fermi term and the lowest-
order density gradient correction (Hartree atomic units
are used throughout the paper)

T[ ]
—f d3& 5/3+ p5n ~ (~p)'

8 p

with ck =
—,', (3m ) . U„ is the classical electrostatic en-

ergy of the electrons,

1 p(r)p(r') dz
I
r —r'

I

U, is the electrostatic interaction between the electrons
and the positive jellium background, U. is the self-
interaction of the jellium background, and finally E„,[p]
is the sum of the exchange and correlation energies of the
electrons. For this term we have used a local-density ap-
proximation; the exchange part is the standard Dirac
tenn and Wigner's interpolation formula has been used
for the correlation energy. ' p(r) in the above expres-
sions is the electron density distribution, and the value of
the constant I, in Eq. (2) will be discussed later.

For a given separation R between the two Nacho+ clus-
ters, the minimization of E[p] of Eq. (1) with respect to
the density, subject to normalization of the density, leads
to an Euler-Lagrange equation which expresses the con-
stancy of the chemical potential p, (R ) through space:

~ (~p)'
y(R )= Sck [p(r;R—)[ +—

2
—— + V(r;R ) .k &

8 2 4

(3)
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FIG. l. Barrier for the fusion reaction
Na&0++Na20+~Na~ +. The zero of energies is the energy of
the two Na20+ clusters at infinite separation. The pure
Coulomb interaction is also plotted for comparison.

our model corresponds to the configuration in which the
positive jellium backgrounds of the two Na2o clusters
just touch each other. This point is indicated by the 0
symbol in Fig. 1. This circle has been smoothly joined
by a dashed line to the energy of the fused cluster Na40 +,
which is plotted on the left-hand side.

The pure Coulomb barrier e /R, obtained if the two
Na20 clusters interact like point charges, is also plotted
in the figure. We observe that the true fusion barrier de-
viates more and more from the Coulomb barrier as the
separation R decreases. We have calculated the deviation
b,R of the fusion barrier from the Coulomb barrier. The
results presented in Fig. 2 show this deviation plotted
against the integrated midpoint density p . We define

p by

p' =f fp(x, y, z=0)dx dy,

0.050

As emphasized in Ref. 6, this equation relates p(R ), in

particular, to the bond midpoint electron density
p(0;R)—:p (R) and its derivatives Vp and V' p at the
same point, plus the electrostatic potential V„(0;R ),
which is one part of V(r;R)~, o in Eq. (3). The other
part, the exchange-correlation potential V„, is taken in a
local-density approximation, and hence is again deter-
mined solely by the bond midpoint density. The notation
above indicates that we take the origin of coordinates at
the bond midpoint. It is useful to notice that our model
has axial symmetry around the bond axis.

Integrating the Euler equation (3) (the interested reader
should consult Ref. 5 for full details) we have calculated
the energy of the supermolecular ion (Na2o+ )z as a func-
tion af separation R. The results for the fusion barrier
B "(R) of the process Nazo++Nazo+~Na4o + (using
A, =O.5) have been plotted in Fig. 1, where the zero of en-

ergies is the energy of the two Na2o+ clusters at infinite

separation. The point of closest approach calculated in
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FIG. 2. Deviation h(R ) of fusion barrier for
Na2o+ +Na2O+ ~Na40'+ with respect to Coulomb barrier
versus the bond midpoint density p . With the origin at the
middle of the line joining the centers of the two fragments and z

along the bond axis, p is specifically given by the integral in

Eq. (4) of the text.
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that is, we integrate the density over the perpendicular
plane bisecting the bond axis of the supermolecular ion

(Na2o }2. There is a striking proportionality between

b, (R ) and p', which is well represented by the straight
line through the origin

6=0.139p

The value A, =O. 5 in the density gradient term has been
empirically found to be appropriate for describing some
properties of simple metal clusters, ' as well as to fit the
total energy of free atoms. ' Though it has not been done
in the same detail as for A, =0.5, the case A, =1 has also
been explored. A, is the original value proposed by von
Vfeizsacker' and gives a correct description of the elec-
tron density in the "tail" region of a finite system (atom,
molecule, or cluster). The slope in Eq. (5) is found to be
very insensitive to A, , the estimated slope for A, = 1 being
0.143. Due to the insensitivity of Eq. (5} to A, we antici-
pate that this equation will be a result of some generality.

Only p' (R } appears in Eq. (5), but nevertheless it is

tempting to suppose that the basic origin of the very sim-

ple result (5) must lie in the chemical potential Eq. (3)
used at the bond midpoint r =0. We have checked there-
fore that d(R ) correlates with p,(R ) —Ju( ~ ), but we have
not plotted the results, since Fig. 2 and Eq. (5) represent a
more practical correlation.

In conventional diatomic molecules, the binding-
energy curve has a minimum at intermediate interatomic
separations which gives the equilibrium separation be-
tween the two atoms forming the molecule. In the super-
molecular ion (Naze+ )z we also have this bonding contri-
bution, which leads to the deviation b,(R ) of the fusion
barrier from the pure repulsive Coulomb interaction
e /R. It is, in fact, this bonding term that is responsible
for keeping the height of the fusion barrier finite.

formally defines R, . Then the work of Laurenzi leads to
the (formally} exact result, for a diatomic molecule built
from atoms of atomic number Z,

BR,
BZ

Re cZ
Z R2g&2

e

Here E' ' is the force constant. The remaining quantity e
in Eq. (7) is given by:

c =1+ R,
(8)

where

4= ( U„(Z,R ) }—( U„(atom 1}) —( U„(atom 2) } .

Here U„ is the electron-electron interaction energy,
whose exact calculation is equivalent to the complete
solution of the many-electron problem. Obviously ap-
proximations are therefore necessary in this term. By
means of Thomas-Fermi-like approximations, Laurenzi
argues that the second term on the rhs of Eq. (7) corre-
lates strongly with the first term, and indeed cancels
two-thirds of it, to yield the result

BR, 1 R,
BZ g 3 Z

(10)

Unfortunately, although Nz is a strongly bound mole-
cule, its isoelectronic homonuclear molecular ions in the
periodic table, namely C2 and 02+, are unbound.
Thus a direct test of the usefulness of the approximate re-
sult (10) is still lacking in conventional quantum-chemical
systems.

III. EXTRAPOLATION OF CONVENTIONAL QUANTUM
CHEMISTRY TO PREDICT THE POSITION

AND HEIGHT OF THE FUSION-BARRIER MAXIMUM
THROUGH THE ALKALI-METAL SERIES

From the fusion barrier for the reaction
Na20++Na20+~Na40 +, plotted in Fig. 1, we see that
the position of the maximum is given by a separation
R, =28.71 a.u. between the centers of the two Na2O+

ions, while the maximum height 8 "(R,)=8," is 0.032
a.u. The aim of the argument below is to attempt, from
these results for Na, ta predict the way in which R, and
8," will vary through the alkali-metal series Na, K, Rb,
and Cs.

A. Conventional quantum chemistry for homonuclear diatomic
molecular ions

Let us start from known results in can ventional
quantum-chemical systems which are isoelectranic, with
N the fixed number af electrons. If R, now represents the
minimum in the total molecular energy E(R ), then

dE
dR, '

BR, 1 R,
~p+ 3 p+

(12)

In the Appendix, a model employed earlier' is used ta

B. Heuristic generalization of Eq. (10) to supermolecular ions

In the model of Ref. 5, for given size N, the saddle
point R, of the fusion barrier leading to Xz + depends
only on the metal species, characterized by the jeBium
density p+, which is usefully expressed in terms of the
customary length r, by

p+=3 j4m.r, .

As one goes from Na to Cs, r, varies from 4 to 5.7 a.u. ,
representing a substantial density variation by a factor
greater than 2. Nevertheless, it is tempting to ask wheth-
er, from the results for the fusion barrier for the reaction
Na2O++Na2O+~Na40 + described in Sec. II, one can
make approximate predictions of the trends of R, and the
barrier height through the alkali-metal series.

Using the jellium madel, it is p+ itself that is playing
here the role of the atomic number Z. This suggests im-
mediately the heuristic generalization of the approximate
quantum-chemical Eq. (10) to read
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regain Eq. (12) directly, without the need to rewrite Eq.
(10).

Equation (12) makes the qualitative prediction that as
one considers a decrease in p+ from Na towards K, the
position of the maximum of the barrier for symmetric
fusion will move to larger R, . Since this means that the
true fusion barrier will deviate from the Coulomb barrier
at larger R for K than for Na, one is led to anticipate that
the fusion-barrier height will be reduced in going from
Na to K.

0.04 .;

0.00;

~ —0.04 '-

C. Test of predictions for K20++ K20+ ~K40 +

Integrating Eq. (12) we obtain

R, =xp+'". (13)

+ t
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In Fig. 3 we have plotted this function. The constant A
was fixed by requiring that the function passes through
the point corresponding to Na: R, =28.71 a.u. ,

p+ =0.003 73 a.u. This point is explicitly marked on the
curve. The curve can be used to predict R, for the reac-
tion K20 +K2p K40 +, in which case p+=0.00216
a.u. The predicted separation is R, =34.3 a.u. A similar
calculation for Rb and Cs gives R, =38.05 a.u. and
R, =40.8 a.u. respectively.

To test the validity of Eq. (12) we have performed a
density-functional calculation of the barrier for the fusion
reaction in the K case. The results have been plotted in
Fig. 4. The barrier maximum occurs at R =35.38 a.u. ,
which agrees reasonably well with the predicted value
from Eq. (13).

The qualitative prediction of Eq. (A6) of the Appendix
has also been tested. This equation predicts a decrease of
the height of the fusion barrier from Na to K. This is,
indeed, the result of the density-functional calculation: a
decrease of 8 "(R, ) from 0.032 to 0.028 a.u.

FIG. 4. Barrier for the fusion reaction K,D++K~o+ ~K40'+.
The pure Coulomb interaction is also plotted for comparison.

IV. SUMMARY AND CONCLUSIONS

The main findings of the present paper are as follows:
(i) The deviation h(R ) of the fusion barrier for the re-

action Na20++N20+ ~Na~ + from the simple Coulomb
barrier correlates linearly, and to high accuracy, with the
integrated bond midpoint electron density p' of the su-

permolecule over a substantial range of cluster separation
R.

(ii) The slope of b, versus p is insensitive to the
strength A, of the von Weizsaker inhomogeneity kinetic-
energy contribution in the DFT employed. This suggests
that this correlation should be robust against refined
DFT calculations.

(iii) The quantum-chemical result (10) for homonuclear
diatomics has the analogue proposed in Eq. (12) for the
position R, of the fusion-barrier maximum. This correct-
1y predicts the trend in R, as the jellium density p+
changes from the value for Na to that for K.

(iv) As an indirect consequence of (iii) above, the bar-
rier height decreases as one goes from Na to K: this has
been confirmed by performing DFT calculations of the
reaction K20 +Kzo —+K4o

+ + 2+

It should be interesting to test the correlations revealed
in this paper within full DFT, that is, solving the Kohn-
Sham equations. Two new eff'ects would appear in such a
case that could somewhat a8'ect the present results. One
is the occurrence of electronic-shell effects which led to
magic numbers of stability. ' The second, which is a
consequence of the former, is the existence of intrinsic de-
formations of the jellium background for clusters with
open electronic shells. '

FIG. 3. Position of the maximum of the barrier for sym-
metric fusion of two X20 clusters versus jellium density ob-
tained from Eq. (12) with the boundary condition corresponding
to sodium (R =28.71 a.u. p+=0.00373 a.u.). The predicted
value for potassium is compared to the value calculated from
density-functional theory (star).
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APPENDIX: ELEMENTARY JELLIUM MODEL FOR
PREDICTING THE POSITION OF THE MAXIMUM

OF THE BARRIER FOR SYMMETRIC FUSION

A simple model emerging from an earlier study by
Alonso et al. ' is that the approximate position R, of the
maximum of the fission barrier height of doubly charged
alkali-metal clusters is reached when the jellium spheres
of the two fragments, of radii R& and Rz respectively,
just touch each other, that is, R, =R, +R2. This con-
clusion, nevertheless, referred to fission (and fusion)
through the most asymmetric channel, namely

Xz +—Xz &++X+, which was the only channel stud-
ied in Ref. 18. We assume here that the same conclusion
applies to the symmetric fusion channel, that is,
R, =2R &. To relate to Eq. (12), one wishes therefore to
write R, in terms of the jellium density p+. For a sphere
of radius R &, with (N/2)—:n atoms, one has

—~R&=n —~r =—4 m3 4 3
3 3

p+

Hence
' 1/3

(Al)

and

Re =2R ] =2 3n
4m.

BR, 1 R,
t)p+ 3 p+

—1/3
p+ (A2)

(A3)

gtu(e2/R (A4)

leading back precisely to Eq. (12). In summary, Eq. (12)
is exact for the simplified model in which R, =2R &. Of
course, our objective in Sec. III C is to test the validity of
Eq. (12) for the extended Thomas-Fermi calculation of
the barrier.

In this same model, that is for R —R&+R] one can
write for the maximum height of the fusion barrier'

though this inequality is less useful than the result (12) or
equivalently (A3). If, however, we again press the ques-
tion of the movement of B,"+ as p+ is decreased from

Na4o
+ to K4c +, one can write, using Eq. (A4),

,2 aR,

Bp R2 Bp
(A5)

and using now (A3) one arrives at

e2

~p+ 3Rep+ 3 p+
(A6)

dD, 2D, Z
dZ Z R Z

(A7)

where 4 is defined in Eq. (9). Again, therefore, it is
tempting to suppose, as with the corresponding result (7)
for the equilibrium bond length, that there is a significant
cancellation between the individual terms in the rhs of
Eq. (A7), leading to a final result =(—,

' )D, /Z. However,
to our knowledge, this last approximation has not been
verified as a useful approximation in conventional
quantum-chemical systems. As stressed already, 4 is a
genuine many-electron quantity and will no doubt have
to be approximated for a long time to come.

showing again the qualitative behavior to be expected,
namely for B," to decrease as p+ decreases from Na
through Cs.

Because the argument above is based on what is essen-
tially the inequality (A4), we stress that Eq. (A6) is not as
reliable as Eq. (12). However, it is still worth noting the
parallel with conventional quantum chemistry. Here, if
we think of the dissociation energy of the strongly bound
molecule N2 referred to already, and consider isoelectron-
ic sequences in which the atomic number Z(=7 in the
example) is changed by dZ, then the dissociation energy
D, varies according to:
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