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Coulomb barriers in the dissociation of doubly charged clusters
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The barrier height for the most asymmetric fission decay of doubly charged sodium clusters
(Na&'+) into singly ionized fragments has been computed with use of density-functional theory and
the jellium model. We have found that the barrier is sizable for large or intermediate-size clusters,
but vanishes for N~9. We have also computed the energy AH, needed to evaporate a neutral
monomer from Na& +. For N +40, the barrier height is smaller than EH„and emission of a Na+
ion is the preferred decay channel of hot Naz + clusters. On the other hand, the barrier height is
larger than AH, for N )40 and, in this case, monomer evaporation becomes competitive. The criti-
cal cluster size, N, =40, for the transition from one decay mode to the other is in reasonable agree-
ment with the experimental result. Our calculations suggest that the mechanism for neutral-
monomer evaporation is diA'erent from the one currently assumed.

I. INTRODUCTION

Multiply charged clusters X&q+ are usually observable
only beyond a certain critical size N, (q) which depends
on the charge q. ' It is commonly admitted that the criti-
cal size can be interpreted as the size below which the
Coulomb repulsion between the positive holes makes the
cluster unstable against fragmentation into clusters with
smaller charges. A purely energetic criterion has been
proposed by several authors. According to this cri-
terion, N, (q) is the size below which the sum of the
ground-state energies of the fragments is lower than the
ground-state energy of the parent cluster. The measured
critical size is, however, often different for different ex-
periments on clusters of a common element. This fact
casts some doubts on a purely energetic criterion. Fur-
thermore, unexpectedly small multiply charged clusters
have sometimes been observed, ' suggesting that some
of these clusters may be metastable, stabilized against
fission by large barriers. Explicit calculations for doubly
charged transition-metal dimers support this interpreta-
tion. Several dimers, such as Vz +, Crz +, Fe2 +, Nb2 +,

metastable, although stabilized by large barriers. Some
others, such as Ni2 +, Co2 +, Pdz +, and Pt2 +, are sim-

ply unstable.
Recent experimental work by Brechignac et al. ' '" on

the induced dissociation of mass-selected doubly charged
alkali clusters has clarified substantially some points re-
lated to the observability of multiply charged clusters.
These authors have noticed that the critical size below

which multiply charged clusters are not observable in
mass spectra depends on the cluster-formation mecha-
nism. First of all, one of their key results is that an "ex-
cited" Na& + (or K& +) cluster with large N preferen-
tially evaporates a neutral atom and not a charged frag-
ment Na + (p (N). The explanation that they propose
is that in this size range the fission barrier is larger than
the binding energy of the neutral monomer. This means
that when Na& + clusters are formed by atom evapora-
tion from hot clusters of higher masses, the critical size
X, is the size below which the fission barrier becomes
lower than the binding energy of the neutral monomer.
However, the same authors also point out that doubly
charged clusters can also be formed from cold neutral
clusters by a two-step ionization. If the ionization pro-
cess is such that the cluster is maintained cold, with an
internal excitation energy below the top of the Coulomb
barrier, metastable doubly charged clusters can exist
below the critical size defined above. Stressing the impor-
tance of the Coulomb barrier is then a key point of the
work of Brechignac et al. Density-functional calcula-
tions for small (N =2—7) charged Mg clusters performed
by Reuse et al. ' verify the expectations of Brechignac
and collaborators. Small Mg&

+ clusters are predicted to
be metastable, protected against Coulomb dissociation by
barriers of a height of 0.5 —1 eV. Reuse et al. thus con-
clude that these clusters should be observable.

Recently, Saunders' has studied the fission behavior of
doubly charge Au clusters. The clusters were produced
by the liquid-metal ion-source (LMIS) technique, and
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Au& + was observed for X ~9 (in addition to Au3 + ).
The clusters were then fragmented by collisions with Kr
atoms. The analysis of the fragmentation products re-
vealed, in agreement with the results of Brechignac et al. ,
the competition between neutral-atom evaporation and
fission (i.e., decay into two charged fragments). Atom
evaporation is dominant for large clusters but fission
competes for N~18 and increases strongly as N de-
creases. For instance, the fissionability, given by the ratio
of the fission and evaporation rates I &/I „increases by
four orders of magnitude for ¹ ven clusters between
N=18 and N=12, having a value of 20—30 for N=12
(I &/I', is lower for ¹dd than for X-even clusters be-
cause of a reduced stability of clusters with an odd num-
ber of electrons' ). Saunders finds that the experimental
data on the fissionability are consistent with a liquid-drop
model similar to the nuclear liquid-drop model. ' Ac-
cording to this model, the fission barrier becomes zero for
N (6. This means that Au& + clusters with N &6 are
predicted to be unstable against spontaneous fission. This
critical number is in semiquantitative agreement with the
N, =9 observed in the LMIS experiments.

It is clear from the work of Brechignac et al. and of
Saunders that a better knowledge of the fission barrier in
multiply charged clusters of monovalent (alkali and no-
ble) metals should provide a useful piece of information
in the analysis of experiments concerning these clusters.
With this motivation in mind, we have undertaken a
semiclassical calculation of the fission barrier of doubly
charged sodium clusters. This calculation is presented in
Sec. II. For this purpose we have used density-functional
theory' and the jellium model of simple metal clusters. '

The calculated barrier is then compared to classical esti-
mates. In Sec. III we discuss our results in relation to ex-
periment. Finally, Sec. IV contains a summary.

that is, the heat AH, of the reaction is positive:

bH, =E(Na~ i +)+E(Na) —E(Na~ +))0 . (4)

AH, &F

holds. bH„AH&, and F(d) will now be calculated using
an extended Thomas-Fermi approximation.

This means that neutral-monomer evaporation cannot
occur spontaneously if Naz + is in its ground state, but it
is possible for a highly excited parent cluster. Which of
the two reactions (evaporation or fission) occurs depends,
as proposed by Brechignac et al. ,

" on the relative mag-
nitudes of AH, and the fission barrier. A schematic rep-
resentation of this competition is shown in Fig. 1, where
the fission barrier is shown along the dissociation coordi-
nate d (to be defined precisely below). The energy of the
system formed by the two ionized fragments (Na&
and Na+) at infinite separation is taken as zero of ener-
gies. B (d) is the barrier for the opposite process of form-
ing Naz + from Na~, + and Na+, and B is the max-
imum of B (d). We can call B (d) the capture barrier and,
although the present paper is concerned with fission, we
often find it convenient to think in terms of B (d). The
fission barrier —that is, the barrier for the emission of
Na+ from Naz +—is given by

F(d) =B(d)+bH~,

and the height of the fission barrier is F =B +AH&.
The quantity B is positive. F is larger than B when

AHI is positive, and smaller than B when AH& is nega-
tive. According to Brechignac et ah. ,

" evaporation be-
comes preferred over fission when the condition

II. MODEL FOR CLUSTER DISSOCIATION

In this section we want, first of all, to set up a model
for the calculation of the Coulomb barrier and the heat of
reaction of the completely asymmetric fission of a doubly
charged sodium cluster,

Na~ ~Na~ ) +Na2+ + +

The heat of the reaction is defined in terms of the total
ground-state energies of parent and fragments (at infinite
separation):

AHg=E(Na~ i+)+E(Na+) (E N~a2)+. —

AH& is negative for small N and positive for large N. A
negative value of AH& means that the reaction is exo-
thermic. On the other hand, the calculation of the fission
barrier requires modeling the process by which the ion
Na+ leaves the remaining fragment.

In a second step we want to compare the probability
for reaction (l) with that for the evaporation of a neutral
monomer:

Na~ ~Na~ i ++Na .

The evaporation of a neutral monomer is endothermic—

A. Jellium model for spherical clusters and heats of reaction

Let us begin with the calculation of AH& and AH, .
These two quantities are defined in Eqs. (2) and (4), re-
spectively. The energies of the clusters involved in these
equations are obtained using the spherical-jellium model.
This model ' assumes a background of positive charge
(representing the ions) with spherical shape and constant
density and a distribution of interacting valence electrons
(one per atom in the case of Na clusters) with a density
n (r) which is self-consistently calculated in the external
potential provided by the positive background. The jelli-
um radius R is related to the number N of atoms by
R =N' r„where r, =4.0 is the Wigner-Seitz radius of
metallic sodium. Notice that R remains unchanged when
the cluster is ionized.

The ground-state electron density is obtained by
minimization of the following extended-Thomas-Fermi
(ETF) functional '' (we shall use Hartree atomic units
throughout):

E [n]= J E[n]d r =T+ U„+Uz, + UzJ+E„, .

T is the electron kinetic energy, ' given as a sum of the
local Thomas-Fermi term and the von Weizsacker
correction (A, = l):
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FIG. 1. Schematic representation of the competition between the fission and evaporation reactions. The heats of fission and eva-
poration are AHf and AH„respectively. The capture barrier for the reaction Na»++ Na+ —+Naz + is B (d), and the fission bar-
rier is F(d) =B(d)+AHf. The maximum values of these two barriers are indicated as B and F, respectively. The fission barrier is
lower than the heat of the evaporation in the left panel and larger in the right panel.

T[n]= f d r —,', (3' ) [n(r)] +- [Vn(r)]

U„ is the classical Coulomb energy of the electrons,

3 / 3, n (r)n(r')

UJ, gives the electron-jellium electrostatic interaction,

UJ, = d rVlrn r (10)

V~(r) being the jellium potential; and UJJ is the jellium
Coulombic self-interaction. Finally, E„, is the sum of the
electronic exchange and correlation energies. In the
local-density approximation (LDA),

1/3

ELDA[n] — 3 f [n(r)]4/33

0 44n (r).
1/3

7.8+ 3
4vrn r

6E[n]
5n (r)

—p (12)

where p is the electron chemical potential. In the case of
the spherical-jellium cluster model, Eq. (12) reduces to a
one-dimensional radial equation. This case has been dis-
cussed in detail previously ' (see also Sec. II B below).
b,Hf and b,H„which are the heats of the reactions (1)
and (3), respectively, are easily obtained since in their cal-
culation one only deals with spherical clusters.

where the first term is the exchange part and the second
term uses Wigner's interpolation formula for the correla-
tion energy. '

The variational electron density is obtained by solving
the Euler-Lagrange equation associated with the func-
tional (7):

B. Fission barrier

The simplest model for the barrier F(d) opposing the
dissociation of Naz + into Naz, + plus Na+ is to take a
purely Coulombic approximation for the capture barrier
&(d):

2

g Coulomb( d )—
d

(13)

where d is the distance between the centers of the two
fragments. When d =R (Na~, + )+R (Na+ ), that is,
close to the sum of the radii of the two fragments, Eq.
(13) may not be a good approximation because of the
penetration of the spilled-out electron density of the large
fragment into the small one.

To obtain a better description of the fission barrier, we
have used a deformed, self-consistent extended Thomas-
Fermi model. We have considered as initial configuration
(see top left panel of Fig. 2) that of a deformed cluster
formed by two tangent jellium spheres, corresponding to
clusters sizes N —1 and 1, respectively. For this
configuration d is the sum of the radii of these two
spheres. The other configurations along the dissociation
coordinate have been obtained by increasing the separa-
tion between the two jellium spheres.

For any given separation, including the initial one, the
ground-state electron density and the ground-state energy
of the system are obtained by minimizing the energy
functional of Eq. (7). In this case, the Euler-Lagrange
equation (12) is a partial dilferential equation that, due to
the axial symmetry of the problem, can be solved in cylin-
drical coordinates (r, z) To do so,. we have employed the
so-called imaginary-time-step method. We have
used a Ar =hz=2 a.u. mesh size, i.e., four times greater
than the Ar that we have used in the spherical calcula-
tions. ' To make sure that the electron density is negligi-
ble at the mesh edge, we have carried out the calculation
in a 30 X 60 a.u. (r, z) box. Technical details concerning
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FIG. 2. Electron-density contour plots at four separations
(D=O, 1, 2, and 3 a.u. ) for the totally asymmetric fission chan-
nel of Na»'+. D is the separation between the jellium edges.
The electron constant-density contour lines correspond, from
outside to inside, to n =0.5 X 10, 1 X 10, 2 X 10, 3 X 10
3.5 X 10, 4 X 10 and again 3.5 X 10 a.u. The jellium edges
are represented by dashed lines.

the spatial discretization of Eq. (12) and the obtainment
of the direct Coulomb potential can be found in Refs. 23
and 24.

We have tested the two-dimensional ETF code by per-
forming some spherical calculations with it. We have
checked that the deformed code is able to reproduce the
total energy of the Na& + clusters obtained with the
essentially exact spherical code to better than 0.5 —1%.
It takes less than 100 iterations of the two-dimensional
code to stabilize the total energy of a given cluster within
10 'a.u.

Figure 2 shows electron-density contour plots at four
separations along the reaction path for the totally asym-
metric fission of Na27

Na27 ~Na~6 +Na2+ + + (14)

In this figure the separations, measured by the distance D
between the sharp surfaces of the jellium spheres, are
D=O, 1, 2, and 3 a.u. The edges of the jellium spheres
are represented by dashed lines and the electron density
by the solid line contours. The electron density plotted in
each case is the one that minimizes the total energy for
the corresponding cluster configuration. The electron
constant-density contour lines correspond, from outside
to inside, to n =0.5 X 10, 1 X 10, 2 X 10, 3 X 10
3.5X10, 4X10 and again 3.5X10 a.u. Notice
that the density at the center of Na26+ does not corre-
spond to the maximum value due to the density oscilla-
tions at the jellium surface, clearly visible in all spherical
ETF calculations (see, for instance, Ref. 19). The figure
shows the appreciable polarization of the electron density
of Na» + due to the presence of the Na+ ion. The po-
larization has a sizable effect on the height and shape of
the fission barrier. The calculation correctly yields that,
as the separation increases, the excess positive charge is
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FIG. 3. Calculated capture barrier B (d) for the reaction
Nal9 +Na+~Na, o +. Dashed line, pure Coulomb approxi-
mation; thick solid line, extended Thomas-Fermi barrier; thin
solid line, classical conducting-sphere model ~ Notice that the
fission barrier F(d) is obtained by measuring B(d) from the
ground-state energy of Na2O

+ [see Eq. (5)] which is indicated by
a horizontal line on the left.

shared between the two clusters, i.e., the final products
are singly charged.

Figures 3 —5 show the shape of the capture barrier for
the three cases Na2O +, Na» +, and Na4o . The pure
Coulomb barrier of Eq. (13) (dashed line) and the self-
consistent ETF barrier (thick solid line) are shown as a
function of the distance d between the centers of the two
fragments, starting from an initial configuration in which
the two positive jellium spheres are tangent. As is cus-
tomary in similar problems, like that of nuclear e disin-
tegration, the energies are referred to the value of the
Na~, ++Na+ system at infinite separation —that is,
B(d) goes to zero when the distance d goes to infinity.
The ground-state energy of Na& + is indicated in each
case by a horizontal line on the left part of each figure.
The height of the fission barrier is then the difference be-
tween the top of the capture barrier and the horizontal
line representing the ground-state energy of Na& +.

The results of Figs. 3—5 show that, for large separation
between the fragments, the barrier is purely Coulombic.
However, the differences between the ETF and pure
Coulombic barriers, due to spilled-out electron density in
the ETF model, become evident for the relevant separa-
tions around the maximum of the ETF barrier. This
difference, nevertheless, becomes rather small as the size
N increases.



COULOMB BARRIERS IN THE DISSOCIATION OF DOUBLY. . .

0.07

a.oe

C. Conducting-sphere model for the 6ssion barrier

In this section we wish to consider the classical prob-
lem of an isolated conducting sphere (representing a clus-
ter Na~, +) with net charge Q in the presence of a
point charge q. The force acting on the charge q can be
written from Coulomb's law:
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FIG. 4. Calculated capture barrier for the reaction
Na26++Na+~Na» . The meaning of the different lines and

symbols is as in Fig. 3.

where R is the radius of the conducting sphere and d is
the vector position of the charge q with respect to the
center of the sphere. In the limit d ))R, the force
reduces to the usual Coulomb's law for two small bodies.
But close to the sphere the force is modifIed because of
the induced-charge distribution on the surface of the
sphere.

From (15) we can compute the work made against the
Coulomb forces when moving the charge q from infinite
distance to a distance d from the center of the sphere:

2R 3

8 classical( d )
—qQ

2d(d —R )

From this equation we have computed the classical bar-
rier, represented in Figs. 3 —5 with a thin solid line. To
be consistent with the other calculations, 8"""'"(d)has
been plotted only for d ~ d„where d, is the distance at
which the two jellium spheres considered in Sec. IIB
above are tangent. The second term on the right-hand
side (r.h.s.) of Eq. (16) accounts for the polarization of
Naz &

as Na+ approaches it coming from infinity.
This polarization effect cancels part of the Coulomb
repulsion and, consequently, 8"""'(d) is below
8 '"" (d) in the figures. Also, as a consequence of the
polarization of the large cluster, g""""has a maximum.
This maximum occurs at a value of d very close to the
corresponding maximum in 8 ". Actually, the polariza-
tion of Na~, is also the reason for the maximum in

8 "(d). The maximum of 8'"""is, however, smaller.
This indicates that the classical model exaggerates the
polarization effect. In the classical model an accumula-
tion of negative charge is built on the surface region fac-
ing the approaching Na+ ion, and a deficit of charge ap-
pears on the opposite side of the cluster surface. Howev-

er, the more realistic ETF calculations indicate that the
charge deficit occurs in the interior of' the cluster. The
inAuence on the barrier height of this unrealistic feature
of the conducting-sphere model increases with the radius
R, as Figs. 3 —5 show.

0.00 III. DISCUSSION

-0.01
20 40

DlSTANCE fo. u. )

60

FIG. 5. Calculated capture barrier for the reaction

Na39 +Na ~Na40 +. The meaning of the different lines and

symbols is as in Fig. 3.

Table I gives the ETP values of 8, EHf, and their
sum F for four clusters investigated (1V= 10, 20, 27, and

40). In this range, 8 is remarkably constant, with a
value close to 0.051 a.u. The value of AHf decreases fast
for decreasing size of Naz + and it changes sign (it be-

comes negative) at %=31 (see also Ref. 4). As a conse-
quence, the height of the fission barrier, I', also de-

creases fast for decreasing X. Our calculated F at
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TABLE I. Calculated fission-barrier height (F ) and separat-
ed components (B and heat of reaction EHf) for several
Naz + clusters. The heat of evaporation of a neutral monomer,
AH, is also given. All quantities are in atomic units (1
a.u. =27.21 eV).

10
20
27
31
40

100

B

0.0515
O.O506
0.0510

0.0516

—0.0460
—0.0155
—0.0044
—0.0004

0.0082
0.0324

F

0.0055
0.0351
0.0466

0.0598

AH,

0.0584
0.0596
0.0602
0.0609
0.0639

0.06—
evaporation

0.04—

20 eo $0

FIG. 6. Fission-barrier height (F ) vs cluster size X. Only
the points for N=10, 20, 27, and 40 correspond to actual calcu-
lations and the line through them is only intended to guide the
eye. The heat AH, for neutral-monomer evaporation is also
plotted.

N=27 is 1.27 eV, in reasonable agreement with the value
of 0.8 eV estimated by Brechignac et al. " A plot of F
versus N indicates that the fission barrier vanishes for
N=9. For this size and below, the doubly charged clus-
ter spontaneously decays according to reaction (1). The
heat of the evaporation reaction AH, is also given in
Table I and plotted in Fig. 6. AH, is almost constant.
Comparing the magnitudes of the fission barrier and AH,
in Fig. 6, we observe that AH, is smaller than the fission
barrier at large N and larger than it at low N. This is in
agreement with the analysis of the experimental results of
Brechignac et al. " and Saunders. ' The crossing be-
tween the two curves occurs at N=41. This number is to
be compared with the critical number N, =27 measured
by Brechignac:" Our calculations overestimate N, . This
is not surprising considering the approximations made
(jellium model, approximate kinetic-energy functional;
see also further comments below). We stress, neverthe-
less, that the physics behind the existence of N, is well
reproduced by our calculations.

Our results then suggest the following interpretation of
the so-called critical numbers for Coulomb explosion of

doubly charged clusters: We can define a critical number
N, (in our case, N, =41) such that fission is the preferred
decay mode of excited clusters for N &N, because the
fission barrier is smaller than AH, . On the other hand,
evaporation of a neutral atom competes with fission
above N, . This critical number, as indicated by
Brechignac et al. ,

" should be observable when doubly
charged clusters are formed by neutral monomer eva-
poration from hot clusters of higher masses. The results
of our calculations suggest, however, a picture different
from the one used until now" for the process of mono-
mer evaporation.

When the distance d between the two fragments is still
small, we can consider the system as a supermolecule. As
such, what we have calculated and plotted in Figs. 3 —5 is
the minimum-energy curve of the supermolecule as a
function of d. This implies that the barrier exists always
(for a doubly charged cluster, we stress) and it must be
overcome during the dissociation process, irrespective of
the charge state of the small fragment after dissociation
(Na+ or Na). In other words, there is no way to avoid
surpassing the fission barrier even for neutral-monomer
evaporation. We then suggest that, after passing the bar-
rier and when the system is undergoing dissociation, im-
pelled by the Coulomb repulsion between the singly-
charged fragments, the state Na& i +Na appears sud-
denly as an available channel [see Fig. 1(right panel)].
This state can be realized when one electron of the super-
molecule suddenly becomes localized around Na+. For
this to occur, d must still be small enough for the electron
distribution of Na~

&
to overlap with that of Na+.

Since at the same time the two fragments are moving
away from each other, a neutral Na atom can then es-
cape. The probability for the dissociating supermolecule
to choose the evaporation channel should increase as the
energy difference 5V,p between the two dissociated states
(Na~, + +Na+ and Na~, +Na) decreases —that is,
as N increases. This is supported by Saunders's experi-
ments' on the dissociation of Au& +. Notice that 6 Vip
is just the difference between the second ionization poten-
tial of Na&

&
and the first ionization potential of neutral

Na. Elucidating the details of the evaporation mecha-
nism proposed here is beyond the capabilities of the
present static-barrier calculations.

There is, on the other hand, a size range —in our case
between 10 N 40—where metastable doubly charged
Na clusters may be observable if prepared by successive
ionization of cold neutral clusters, under the condition
that the doubly ionized cluster is left with an internal ex-
citation energy below the top of the fission barrier.
Then we could define a second critical number N, (in our
case, N,*=9), such that Na& + is unstable for N ~N,*
because there is no fission barrier. It is likely that this
picture also holds for other alkali-metal clusters but one
should be careful in extrapolating it to other groups. For
instance, according to the calculations by Reuse et al. ,

'

the fission barrier does not vanish for low N in Mg& +.
To put our results in a proper perspective, we stress

that our model calculations have concentrated on the
most asymmetric fission reaction —that is, the emission of



43 COULOMB BARRIERS IN THE DISSOCIATION OF DOUBLY. . . 9465

a charged monomer. But, in principle, the whole range
of possibilities, represented by the different values of p in
the reaction

Na~ ~Nap+ +Na (17)

should be investigated. If we focus on the heat of reac-
tion b,Hf(p), our ETF model predicts that p= 1 is the
most favorable channel. However, other fission channels
may lead to a more negative AHf if electronic shell-
closing effects are taken into account; these are absent
in our simple ETF calculations. Additionally, as stressed
in the discussion of our results above, the preferred
fission channel is controlled by the height of the fission
barrier and not by the size of AHf. In fact, channels with
p&1 are sometimes dominant: for example, emission of
Au3+ in Saunders's experiments on Au& + clusters. '

So, a complete study of the fission barrier as a function of
p should be performed for a complete understanding of
the fission process. We plan to undertake this study in
the near future. A preliminary investigation based on the
purely Coulombic barrier of Eq. (13) leads to the follow-
ing results: B '"" "is smaller for the emission of Na2+
compared with the emission of Na+; on the other hand,
the heat of the reaction (17) is more positive (less nega-
tive) for the emission of Na~ . Adding these two quanti-
ties, we find that the fission-barrier height is smaller for
p= 1, that is, for Na+. These results should, however, be
checked by a full ETF calculation of I' (d).

A further ingredient of the calculation that should be
discussed is the value of the coefficient A, in the gradient
term of Eq. (8). We have argued elsewhere that the
original von Weizsacker value (X= 1) is the correct one
for a good description of the electron density in the tail
region of a finite system (atom, molecule, or cluster).
However, from an empirical point of view, a value of
X=0.5 has sometimes been found appropriate. ' ' ' We
have performed only a few exploratory calculations using
X=0.5. In the case of emission of Na+ from Na2O +, B
is almost identical to that given in Table I, which was cal-
culated with A, =1. We then expect to find the same situ-
ation for other values of N. With respect to the heats of
reaction, however, we have found some differences. As a
general trend, EHf (A, =0.5) is a little more positive than
AHf (A, = 1), and it changes from negative to positive at
N=23 as X increases. This number is smaller than the

corresponding one (N=31) for A, = l. But we expect the
changes of the heat of evaporation to be similar to those
in AHf and, consequntly, a very small net effect when
comparing the fission and evaporation channels.

IV. SUMMARY

In this paper we have used an extended Thomas-Fermi
method and the jellium model to calculate the fission bar-
rier for the emission of a Na+ ion from a doubly charged
sodium cluster. The height of this barrier decreases as
the size N of the parent cluster decreases and it vanishes
in our model for N=9. Simple descriptions of the fission
barrier which neglect the spill-out of the electron density
give correctly the order of magnitude, although these are
not accurate enough (as compared with the ETF barrier)
in the region of the maximum of the barrier. In making
this statement, one should keep in mind that the theory
used to calculate the ETF barrier contains itself some ap-
proximate ingredients. We have also compared the bar-
rier height to the energy needed to evaporate a neutral
monomer. Neutral-monomer evaporation is the predict-
ed preferred decay channel for hot clusters with large N
whereas fission takes over for small N. This agrees with
the experimental results of Brechignac et al. " and
Saunders. ' The transition between these two decay
modes occurs at N, =41. This number is not far from
that deduced from the experiments of Brechignac and
collaborators considering the approximations introduced
in our model. Between %=10 and N=40, metastable
doubly charged clusters may be observable if careful ion-
ization from cold neutral clusters leaves the charged clus-
ter with an energy below the barrier maximum.
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