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Abstract. We determine sufficient conditions for uniform and strict persis-
tence in the case of skew-product semiflows generated by solutions of non-

autonomous families of cooperative systems of ODEs or delay FDEs in terms
of the principal spectrums of some associated linear skew-product semiflows
which admit a continuous separation. Our conditions are also necessary in
the linear case. We apply our results to a noncooperative almost periodic

Nicholson system with a patch structure, whose persistence turns out to be
equivalent to the persistence of the linearized system along the null solution.

1. Introduction

Different notions of persistence have been introduced and investigated in the
mathematical theory of dynamical systems. Basically all of them mean that in the
long run the trajectories of the system place themselves above a prescribed region
of the phase space. In many practical applications this region is determined by a
constant or null value of the state variables. In this last case persistence means
that the solutions eventually become uniformly strongly positive. The dynamical
theory of persistence has been extensively used in biological population dynamics,
ecology, epidemiology, chemical reactions, game theory, neural networks and other
important areas of applied sciences and engineering. The references Anderson [2],
Bonneuil [3], Butler and Wolkowicz [4], Calzada et al. [5], Cantrell and Cosner [6],
Craciun et al. [7], Hale and Waltman [19], Hofbauer and Sigmund [22], Johnston
et al. [25], Smith and Thieme [49] and Takeuchi [50] illustrate some of the classical
and also more recent applications of the mentioned theory in these fields.

The presence and consequences of persistence in dynamical systems have been
broadly investigated in the literature using topological methods, Lypunov func-
tions, comparison methods, Morse decompositions, invariant splitting, Lyapunov
exponents and computational methods, among other techniques. The papers by
Faria and Röst [12], Freedman and Ruan [15], Garay and Hofbauer [16], Hetzer and
Shen [20], Hirsch et al. [21], Langa et al. [26], Magal and Zhao [28], Mierczyński
and Shen [30], Mierczyński et al. [31], Novo et al. [36], Salceanu and Smith [43],
Schreiber [44, 45], Thieme [51, 52], Wang and Zhao [54], and references therein,
provide a long but not complete list of works on this topic.
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The objective of this paper is to continue the study of the dynamical theory
of persistence in monotone skew-product semiflows generated by non-autonomous
differential equations, initiated in Novo et al. [36], as well as to show the applicability
of this theory in the description of some mathematical models widely investigated
in the literature, which are locally cooperative in small regions of the phase space.
In particular we give a complete characterization of persistence for non-autonomous
n-dimensional Nicholson systems with a patchy structure, which are able to model
the temporal changes of the environment.

We investigate relevant properties of non-autonomous dynamical systems by
using the skew-product formalism. The phase space is a product space Ω × X,
where the base Ω is a compact metric space under the action of a continuous flow
σ : R × Ω → Ω, (t, ω) 7→ ω·t, and the state space X is a strongly ordered Ba-
nach space with a normal positive cone. The skew-product semiflow is defined by
τ : R+ ×Ω×X → Ω×X, (t, ω, x) 7→ (ω·t, u(t, ω, x)), where the map u satisfies the
usual semicocycle identity, it is monotone on some region of the phase space and
smooth with respect to the state component x. We frequently assume that the base
flow is minimal, i.e., that all the trajectories on Ω are dense. In particular, this
formalism permits to carry out a dynamical study of solutions of non-autonomous
differential equations in which the temporal variation of the vector field is almost
periodic, almost automorphic, or more in general, recurrent. The papers by Chow
and Leiva [8, 9], Johnson et al. [23], Johnson et al. [24], Sacker and Sell [41, 42], Novo
and Obaya [34], Novo et al. [35], Poláčik and Tereščák [39], Shen and Yi [47] and
Yi [55] contain the main mathematical ingredients required to follow the contents
of this work.

We introduce natural definitions of uniform and strict persistence which become
relevant in applications. Both definitions agree with the concept of uniform (strong)
ρ-persistence in the terms of Smith and Thieme [49] for an adequate choice of the
map ρ : X → R+. We develop part of the methods mentioned above to investigate
the presence of persistence in non-autonomous and (globally or locally) cooperative
families of ordinary differential equations (ODEs for short) and delay functional
differential equations (FDEs for short) with finite delay. The study and applications
of this theory to non-autonomous families of parabolic partial differential equations
(PDEs for short) will be included in a forthcoming publication.

The concept of continuous separation plays a fundamental role in the main con-
clusions of this theory. The classical notion of continuous separation, which we also
call continuous separation of type I, was introduced by Poláčik and Tereščák [39]
and Shen and Yi [47] in a context valid for cooperative families of linear ODEs
and parabolic PDEs. Recently, Novo et al. in [35] came up with the more general
concept of a continuous separation of type II, which also applies in a context of
cooperative families of linear delay FDEs with finite delay. In this paper, whenever
we say that there is a continuous separation, we mean that there is a continuous
separation either of type I or of type II. In any of the cases, to the continuous
separation one associates the principal spectrum, which is the Sacker-Sell spectrum
or dynamical spectrum of the one-dimensional dominant subbundle.

In [36] Novo et al. investigate the presence of uniform persistence in the areas
situated strongly above (or below) a minimal set K of the phase space of a non-
autonomous family of cooperative differential equations. It is proved that after a
convenient permutation of the variables, the coefficient matrix (or matrices in the
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delay case) of the linearized semiflow over K has a block lower triangular struc-
ture such that the linear semiflows generated by the lower-dimensional diagonal
blocks admit a continuous separation. In this situation, a sufficient condition for
the property of uniform persistence is given in terms of the principal spectrums of
an adequate subset of such systems. In the present work we complete important
aspects of the theory of persistence in monotone skew-product semiflows. We show
that the given condition for uniform persistence is actually also a necessary con-
dition in the linear case, so that the property of uniform persistence is completely
characterized in this case. When we introduce the notion of strict persistence in the
region situated above (or below) a minimal set K, the same strategy as before leads
to an efficient characterization of the presence of this type of persistence in terms
of the principal spectrums of a second subset of the family of linear semiflows gen-
erated by the lower-dimensional diagonal blocks of the linearized equations over K.
It is important to mention that although the results obtained for uniform and strict
persistence share a common organization, the arguments required for the proofs of
the main results are quite different.

Let us finally explain the structure of the paper. After including some prelim-
inaries in Section 2, Section 3 is dedicated to the general abstract setting of a
monotone skew-product semiflow under the main assumption of the existence of a
continuous separation for the semiflow itself in the linear case, or for the linearized
semiflow over a minimal set K in the nonlinear case. Uniform persistence and strict
persistence are characterized in the linear case in terms of the principal spectrum.
Besides, these two properties are seen to be equivalent if the continuous separation
is of type I. In the nonlinear case we offer a first approximation result for uniform
and strict persistence above a minimal set K.

In Section 4 we consider monotone skew-product semiflows generated by coop-
erative families of ODEs. By rearranging the linearized systems over a minimal
set K so that the associated block diagonal lower-dimensional subsystems have a
continuous separation, we prove the afore-mentioned sufficient condition for strict
persistence above the minimal set K and we check that it is also a necessary con-
dition in the linear case. Again, a first approximation result is given, so that
persistence in the nonlinear case can be studied through linearization. The same
outline fits Section 5, which deals with finite delay FDEs. Nevertheless, there is an
important issue in this context, as continuous separations are of type II. Because
of that, the notion of strict persistence, still keeping its dynamical meaning, needs
to be technically modified into what we have called strict persistence at 0.

To finish, in Section 6 we want to emphasize the applicability of our theory
to systems modelling real processes. We have focused on Nicholson systems for
a species on an heterogeneous environment giving rise to patches in the model.
In this case we prove that uniform or strict persistence at 0 for the nonlinear
noncooperative model turns out to be equivalent to uniform or strict persistence at
0, respectively, for the linearized system along the null solution. The good thing is
that the linear equations are cooperative, so that our methods can be applied, giving
a complete spectral characterization of the dynamical properties of persistence.
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2. Some preliminaries

In this section we include some preliminaries of topological dynamics. Let (Ω, d)
be a compact metric space. A real continuous flow (Ω, σ,R) is defined by a contin-
uous map σ : R× Ω → Ω, (t, ω) 7→ σ(t, ω) satisfying

(i) σ0 = Id,
(ii) σt+s = σt ◦ σs for each s, t ∈ R,

where σt(ω) = σ(t, ω) for all ω ∈ Ω and t ∈ R. The set {σt(ω) | t ∈ R} is called the
orbit of the point ω. We say that a subset Ω1 ⊂ Ω is σ-invariant if σt(Ω1) = Ω1 for
every t ∈ R. A subset Ω1 ⊂ Ω is called minimal if it is compact, σ-invariant and
it does not contain properly any other compact σ-invariant set. Based on Zorn’s
lemma, every compact and σ-invariant set contains a minimal subset. Furthermore,
a compact σ-invariant subset is minimal if and only if every orbit is dense. We say
that the continuous flow (Ω, σ,R) is recurrent or minimal if Ω is minimal.

Let R+ = {t ∈ R | t ≥ 0}. Given a continuous compact flow (Ω, σ,R) and a
complete metric space (X, d), a continuous skew-product semiflow (Ω ×X, τ, R+)
on the product space Ω×X is determined by a continuous map

τ : R+ × Ω×X −→ Ω×X
(t, ω, x) 7→ (ω·t, u(t, ω, x)) (2.1)

which preserves the flow on Ω, denoted by ω·t = σ(t, ω) and referred to as the base
flow . The semiflow property means that

(i) τ0 = Id,
(ii) τt+s = τt ◦ τs for all t, s ≥ 0 ,

where again τt(ω, x) = τ(t, ω, x) for each (ω, x) ∈ Ω×X and t ∈ R+. This leads to
the so-called semicocycle property,

u(t+ s, ω, x) = u(t, ω·s, u(s, ω, x)) for s, t ≥ 0 and (ω, x) ∈ Ω×X . (2.2)

The set {τ(t, ω, x) | t ≥ 0} is the semiorbit of the point (ω, x). A subset K
of Ω × X is positively invariant , or τ -invariant , if τt(K) ⊆ K for all t ≥ 0. A
compact τ -invariant set K for the semiflow is minimal if it does not contain any
nonempty compact τ -invariant set other than itself. The restricted semiflow over a
compact and τ -invariant set K admits a flow extension if there exists a continuous
flow (K, τ̃ ,R) such that τ̃(t, ω, x) = τ(t, ω, x) for all (ω, x) ∈ K and t ∈ R+.

The reader can find in Ellis [10], Sacker and Sell [41], Shen and Yi [47] and
references therein, a more in-depth survey on topological dynamics.

In this work we will work under some differentiability assumptions. More pre-
cisely, when X is a Banach space, the semiflow (2.1) is said to be of class C1 when
u is assumed to be of class C1 in x, meaning that ux(t, ω, x) exists for any t > 0 and
any (ω, x) ∈ Ω ×X and for each fixed t > 0, the map (ω, x) 7→ ux(t, ω, x) ∈ L(X)
is continuous in a neighborhood of any compact set K ⊂ Ω×X; moreover, for any
z ∈ X, lim t→0+ ux(t, ω, x) z = z uniformly for (ω, x) in compact sets of Ω×X.

In that case, whenever K ⊂ Ω×X is a compact positively invariant set, we can
define a continuous linear skew-product semiflow called the linearized skew-product
semiflow of (2.1) over K,

L : R+ ×K ×X −→ K ×X
(t, (ω, x), z) 7→ (τ(t, ω, x), ux(t, ω, x) z) .

(2.3)
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We note that ux satisfies the linear semicocycle property

ux(t+ s, ω, x) = ux(t, τ(s, ω, x))ux(s, ω, x) , s, t ∈ R+ , (ω, x) ∈ K.

Finally, we introduce Lyapunov exponents. For (ω, x) ∈ K we denote by λ(ω, x)
the Lyapunov exponent defined as

λ(ω, x) = lim sup
t→∞

log ∥ux(t, ω, x)∥
t

.

The number λK = sup (ω,x)∈K λ(ω, x) is called the upper Lyapunov exponent of K.

3. Uniform and strict persistence in abstract monotone
skew-product semiflows with a continuous separation

In this section, we analyze the notions of uniform and strict persistence in a
very general context of monotone skew-product semiflows, but under the main as-
sumption that there is a continuous separation. Although this may seem rather
restrictive at first sight, it turns out to be really enough when aiming at charac-
terizing persistence in the broad context of skew-product semiflows generated by
non-autonomous differential equations with a recurrent behavior in time, as we will
see in the next sections.

So, let us consider a continuous skew-product semiflow τ (2.1) which is defined
over a minimal base flow (Ω, σ,R) and a Banach space X, and it is of class C1

in x. We also assume that X is a strongly ordered Banach space, that is, there
is a closed convex solid cone (i.e., a nonempty closed subset X+ ⊂ X satisfying
X++ X+ ⊂ X+, R+X+ ⊂ X+ and X+ ∩ (−X+) = {0}) with nonempty interior.
Then, a (partial) strong order relation on X is defined by

x ≤ y ⇐⇒ y − x ∈ X+ ;

x < y ⇐⇒ y − x ∈ X+ and x ̸= y ;

x ≪ y ⇐⇒ y − x ∈ IntX+ .

Besides, the positive cone is assumed to be normal or, equivalently, the norm of
the Banach space X is semimonotone, i.e., there is a positive constant l > 0 such
that ∥x∥ ≤ l ∥y∥ whenever 0 ≤ x ≤ y. A norm on X is monotone if l = 1. One
can assume without loss of generality that the norm is monotone, as with a normal
cone there is always an equivalent norm which is monotone (see Amann [1] for more
details).

The order structure in the state space X permits to introduce the concept of
monotone semiflow: the skew-product semiflow (2.1) is monotone if

u(t, ω, x) ≤ u(t, ω, y) for t ≥ 0, ω ∈ Ω and x, y ∈ X with x ≤ y .

Note that, if the semiflow τ is monotone and it is also C1 in x, then the differential
operators ux(t, ω, x) turn out to be positive, in the sense that given t ≥ 0 and
(ω, x) ∈ Ω×X, ux(t, ω, x) z ≥ 0 whenever z ≥ 0. Besides, strongly ordered initial
states give rise to strongly ordered semiorbits, that is, if ω ∈ Ω and x ≪ y, then
u(t, ω, x) ≪ u(t, ω, y) for any t ≥ 0 (see Proposition 3.4 in Núñez et al. [38]). The
operator ux(t, ω, x) is said to be strongly positive if ux(t, ω, x) z ≫ 0 whenever
z > 0.

We now recall the notion of uniform persistence for a monotone skew-product
semiflow based on the properties of the order, in the region situated strongly above a
compact τ -invariant setK, as already defined in Novo et al. [36], and then introduce
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the concept of strict persistence. When K = Ω × {0} our definition of uniform
persistence agrees with Definition 3.1 of uniform persistence given in Mierczyński
et al. [31] or with Definition 3.1 of uniform (strong) ρ-persistence in Smith and
Thieme [49] for an adequate ρ depending on the space X. Also our notion of strict
persistence can be seen as uniform (strong) ρ-persistence for a precise ρ on each
case. Although here we give the definitions and results for the region situated above
a compact τ -invariant set, the parallel definitions and results can be easily stated
for the region situated below that set.

Definition 3.1. Let τ be a continuous monotone skew-product semiflow defined
on Ω×X, and let K ⊂ Ω×X be a compact τ -invariant set. The semiflow τ is said
to be uniformly persistent (u-persistent for short) in the region situated strongly
above K if there exists a z0 ≫ 0 such that for any (ω, x) ∈ K and any y ≫ x there
exists a time t0 = t0(ω, x, y) such that u(t, ω, y) ≥ u(t, ω, x) + z0 for any t ≥ t0.

Again for monotone skew-product semiflows, here we have the definition of strict
persistence in the area situated above K.

Definition 3.2. Let τ be a continuous monotone skew-product semiflow defined
on Ω×X, and let K ⊂ Ω×X be a compact τ -invariant set. The semiflow τ is said
to be strictly persistent (s-persistent for short) in the region situated above K if
there exists a collection of strictly positive vectors e1, . . . , em ∈ X, ei > 0 for every
i, such that for any (ω, x) ∈ K and any y > x there exists a time t0 = t0(ω, x, y)
such that u(t, ω, y) ≥ u(t, ω, x) + ei for any t ≥ t0 for one of the vectors e1, . . . , em.

Note that the two concepts of uniform and strict persistence are not directly
related to one another: on the one hand the set of starting vectors for which a
determined forward behavior is to be expected is different, as we look at vectors
situated strongly above K in the uniform case, whereas we consider the whole area
above K in the strict case; on the other hand the expected forward behavior is also
different in each case.

The first result we give is stated for a general continuous linear monotone skew-
product semiflow over a minimal base flow (K, ·,R) and a strongly ordered Banach
space X,

L : R+ ×K ×X −→ K ×X
(t, θ, v) 7→ (θ·t,Φ(t, θ) v) , (3.1)

which satisfies that for each t > 0 the map K → L(X), θ 7→ Φ(t, θ) is continuous.
In this situation Φ(t, θ) is a linear semicocycle, that is,

Φ(t+ s, θ) = Φ(t, θ·s) Φ(s, θ) , s, t ∈ R+ , θ ∈ K .

We need to recall the definitions of a continuous separation in the classical terms
of Poláčik and Tereščák [39] in the discrete case, generalized by Shen and Yi [47]
to the continuous case, and of a continuous separation of type II in the terms
introduced by Novo et al. [35]. In the literature one can sometimes find names such
as dominant splitting or exponential separation referring to this concept too.

Definition 3.3. (i) The linear monotone skew-product semiflow (3.1) is said to
admit a continuous separation if there are families of subspaces {X1(θ)}θ∈K and
{X2(θ)}θ∈K ⊂ X satisfying the following properties:

(S1) X = X1(θ)⊕X2(θ) and X1(θ), X2(θ) vary continuously in K;
(S2) X1(θ) = span{v(θ)}, with v(θ) ≫ 0 and ∥v(θ)∥ = 1 for any θ ∈ K;
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(S3) X2(θ) ∩X+ = {0} for any θ ∈ K;
(S4) for any t > 0, θ ∈ K,

Φ(t, θ)X1(θ) = X1(θ·t) ,
Φ(t, θ)X2(θ) ⊂ X2(θ·t) ;

(S5) there are M > 0, δ > 0 such that for any θ ∈ K, z ∈ X2(θ) with ∥z∥ = 1
and t > 0,

∥Φ(t, θ) z∥ ≤ M e−δt∥Φ(t, θ) v(θ)∥ .
(ii) When property (S3) does not hold, but still it is replaced by (S3)’ below, then
the continuous separation is said to be of type II.

(S3)’ there exists a T > 0 such that if for some θ ∈ K there is a z ∈ X2(θ) with
z > 0, then Φ(t, θ) z = 0 for any t ≥ T .

(iii) Given a monotone semiflow (2.1) of class C1 for which there exists a compact
positively invariant set K, we say that K admits a continuous separation if L, the
linearized skew-product semiflow over K (2.3), does.

In this paper, whenever we say that there is a continuous separation, we mean
that there is a continuous separation either of the classical type or of type II. The
continuous variation of the subspaces X1(θ) and X2(θ) for θ ∈ K stated in (S1)
means precisely the following: the continuity of the map K → X+, θ 7→ v(θ), for
the vectors v(θ) given in (S2); and the fact that for each θ ∈ K, X2(θ) = ker(lθ)
for certain lθ ∈ X∗

+, the cone of positive functionals in the dual space of X, with
∥lθ∥ = 1 and such that the map K → X∗

+, θ 7→ lθ is continuous (see [39], [47] for
the case of a classical continuous separation, and [35] for the case of a continuous
separation of type II). Besides, in any of the cases, because of properties (S2) and
(S4) we can write

Φ(t, θ) v(θ) = c(t, θ) v(θ·t) (3.2)

for a certain real coefficient c(t, θ) for each t > 0 and θ ∈ K, which is well-known
to be positive. Note also that, by taking c(0, θ) = 1 and c(−t, θ) = 1/c(t, θ·(−t))
for any t > 0 and θ ∈ K, we actually have a linear skew-product flow over the
one-dimensional invariant subbundle∪

θ∈K

{θ} ×X1(θ) , (3.3)

that is, c satisfies the linear cocycle relation c(t + s, θ) = c(t, θ·s) c(s, θ) for any
t, s ∈ R and any θ ∈ K, and this linear skew-product flow can be seen as a flow
extension of the restriction of the linear semiflow L to the previous one-dimensional
subbundle. Besides, the Lyapunov exponents λ(θ) of the points θ ∈ K are just given
by

λ(θ) = lim sup
t→∞

log c(t, θ)

t
.

Following Mierczyński and Shen [29], whenever a linear semiflow admits a con-
tinuous separation, its principal spectrum Σp is defined as the dynamical spectrum
(Sacker-Sell spectrum or dichotomy spectrum, see [41, 42]) of the restriction of L
to the one-dimensional invariant subbundle (3.3), and is thus a compact interval of
the real line which might well reduce to a point. The reader is referred to [36] for
further details. We are now in a position to state the main result in this section.
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Theorem 3.4. Let us consider a continuous linear monotone skew-product semi-
flow L (3.1) over a minimal flow (K, ·) which admits a continuous separation. Then:

(i) The linear semiflow is uniformly persistent in the region situated strongly
above K × {0} if and only if the principal spectrum is contained in the
positive real semi-axes, that is, Σp ⊂ (0,∞).

(ii) If the linear semiflow is strictly persistent in the region above K×{0}, then
Σp ⊂ (0,∞). In this case, the converse implication is true provided that
the continuous separation is of classical type.

Proof. First of all, let us consider the scalar linear flow given by the restriction
of L to the one-dimensional invariant subbundle (3.3) given by the continuous
separation, π : R × K × R → K × R, (t, θ, r) 7→ (θ·t, c(t, θ) r) where c is the map
in (3.2) determined by the continuous separation. In any of the two cases, the
property of persistence of L is inherited by π as u-persistence in the region situated
strongly above K × {0} ⊂ K × R. To see it, assume that we are in the case of
u-persistence and just take the vector z0 ≫ 0 given in Definition 3.1 and consider
ε0 = ∥z0∥ > 0. Then, given any θ ∈ K and any r > 0, associated to the vector
r v(θ) ≫ 0 there is a t0 such that Φ(t, θ) r v(θ) = r c(t, θ) v(θ·t) ≥ z0 for any t ≥ t0.
By the monotonicity of the norm, then c(t, θ) r ≥ ε0 for any t ≥ t0 and there is
u-persistence. In the case of s-persistence of L just argue in a similar way and take
ε0 = min{∥e1∥, . . . , ∥em∥} > 0 for the vectors given in Definition 3.2.

Now, note that this precludes the existence of a bounded nontrivial trajectory
for the scalar flow π: it there was one, let it be the orbit of (θ0, r0) for certain
θ0 ∈ K and r0 > 0, and take m = supt≥0 c(t, θ0) r0. In this situation the second
component of the semiorbit of (θ0, ε0 r0/2m) would never overpass ε0 as t goes
to ∞, in contradiction with the u-persistence proved in the previous paragraph.
According to a result by Selgrade [46] (see also [40]), then the linear flow π admits
an exponential dichotomy and then, by the definition of the Sacker-Sell spectrum,
0 /∈ Σp.

Finally, since Σp is a compact interval of the real line, it can only be contained in
(0,∞), as negative Lyapunov exponents lead to contradiction with the u-persistence
of π, as before. With this we have proved the first implication in both items.

To conclude the proof of (i), note that the fact that Σp ⊂ (0,∞) implies that
the linear semiflow is u-persistent in the region situated strongly above K × {0} is
a consequence of Theorem 4.5 in [36] applied to the linear semiflow itself.

As for (ii), if Σp ⊂ (0,∞), by (i) there is u-persistence in the area strongly above
K×{0}. Let us see that the vector z0 ≫ 0 given in Definition 3.1 gives the property
of s-persistence too. So, take θ ∈ K and x > 0. According to Remark 3.6 in [35],
when the continuous separation is of classical type, there exists a T = T (θ, x) > 0
such that Φ(T, θ)x ≫ 0. Then, by the u-persistence there exists a time t0 > 0 such
that Φ(t, θ·T ) Φ(T, θ)x = Φ(t + T, θ)x ≥ z0 for any t ≥ t0, that is, Φ(t, θ)x ≥ z0
for any t ≥ T + t0, and s-persistence holds. The proof is finished. �

After this first result, we want to emphasize two facts. First, that when the linear
semiflow has a classical continuous separation, the notions of uniform persistence
in the area strongly above K×{0} and strict persistence in the area above K×{0}
turn out to be equivalent. Second, that when there is a continuous separation of
type II, property (S3)’ precludes the strict persistence of the semiflow in the region
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above K × {0}, as for some θ ∈ K and some z > 0, Φ(t, θ) z = 0 from some time
on.

Now, for a general monotone C1 skew-product semiflow for which there is a
minimal set with a continuous separation, we have the following result.

Theorem 3.5. Let us assume that K ⊂ Ω×X is a minimal set with a flow extension
for the monotone C1 skew-product semiflow τ on Ω×X and assume further that K
admits a continuous separation.

Then, if the linearized semiflow over K is uniformly persistent in the area situ-
ated strongly above K × {0}:

(i) τ is uniformly persistent in the area situated strongly above K.
(ii) Provided that the continuous separation is of classical type, τ is strictly

persistent in the area situated above K.

Proof. Let Σp be the principal spectrum ofK. To see (i), first apply Theorem 3.4 (i)
to obtain that Σp ⊂ (0,∞) and then apply Theorem 4.5 in [36].

As for (ii), the key is to see that, if (ω, x) ∈ K and y > x, then for some T > 0,
u(T, ω, y) ≫ u(T, ω, x), as then the u-persistence and the cocycle property (2.2)
solve the problem, in such a way that the vector z0 ≫ 0 given in Definition 3.1
gives the property of s-persistence too. So, take (ω, x) ∈ K and y > x. Recall that
because of monotonicity the differential operators are all positive. If the continuous
separation is classical, Remark 3.6 in [35] says that there exists a T > 0 such
that ux(T, ω, x) (y − x) ≫ 0. Now, by continuity, for some ε > 0 we have that
ux(T, ω, s y + (1− s)x) (y − x) ≫ 0 for any s ∈ [0, ε], and as a consequence,

u(T, ω, y)− u(T, ω, x) =

∫ 1

0

ux(T, ω, s y + (1− s)x) (y − x) ds ≫ 0 ,

as we wanted to see. The proof is finished. �

4. Uniform and strict persistence in cooperative recurrent
non-autonomous ODEs

Even if the results in the previous section are not applicable when there is not
a continuous separation, yet they turn out to be really useful in any case provided
that the semiflow is induced by solutions of non-autonomous cooperative systems
of differential equations with a recurrent variation in time. In this context, the key
point lies on the fact that one can restructure the linearized semiflow by means of
a block lower triangular form where there is a continuous separation for the lower-
dimensional systems given by the diagonal blocks. It is for this reason, together with
the applications to real problems, that the study of the properties of persistence
for skew-product semiflows induced by solutions of non-autonomous differential
equations is specially rich and important.

In this section we concentrate on non-autonomous ODEs, whereas Section 5 will
deal with delay FDEs. In the ODEs context we give a spectral characterization
of strict persistence in the linear case, which results in sufficient conditions for
the nonlinear case. In the delay context, the same will be done but with a slight
technical modification: the definition of strict persistence at 0 and the necessity of
this will be explained in detail in the next section.

Though the general systems we study are already stated in [36], we include them
here for the sake of completeness. The concept of admissibility plays a fundamental
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role in the description of the systems of equations we work with. A function f ∈
C(R×Rm,Rn) is said to be admissible if for any compact set K ⊂ Rm, f is bounded
and uniformly continuous on R×K.

We consider n-dimensional systems of ODEs given by a function f : R×Rn → Rn

of class C1 with respect to y, such that f and its first order derivatives ∂f/∂yi,
i = 1, . . . , n are admissible,

y′(t) = f(t, y(t)) , t ∈ R . (4.1)

To fall into the field of non-autonomous dynamical systems, we build Ω, the hull
of f , that is, the closure in the compact-open topology of the set of mappings
{ft | t ∈ R} with ft(s, y) = f(t + s, y) for s ∈ R and y ∈ Rn. The translation
map R× Ω → Ω, (t, ω) 7→ ω·t given by ω·t(s, y) = ω(s + t, y) defines a continuous
flow σ on the compact metric space Ω. We assume f to be recurrent , meaning
that the flow on Ω is minimal. This happens for instance whenever f is periodic or
almost periodic in t. Each function ω ∈ Ω has the same regularity and admissibility
properties as those of f , and F : Ω×Rn → Rn, (ω, y) 7→ ω(0, y) can be looked at as
the unique continuous extension of f to its hull. Thus, we can consider the family
of n-dimensional systems over the hull, which we write for short as:

y′(t) = F (ω·t, y(t)) , ω ∈ Ω . (4.2)

This family includes the initial system for ω = f . Note that if we are given a family
of equations such as (4.2) for a continuous function F : Ω× Rn → Rn, F is said to
be admissible if for each fixed ω ∈ Ω the map F evaluated along the orbit of ω is
admissible.

The solutions of the former family induce a dynamical system of skew-product
type (2.1) (in principle only locally-defined) on the product Ω×X where X is taken
to be Rn endowed with the norm ∥x∥ = |x1| + · · · + |xn| for x ∈ Rn. The strong
partial order in Rn is defined componentwise:

x ≤ y ⇐⇒ xi ≤ yi for i = 1, . . . , n ,

x < y ⇐⇒ x ≤ y and xj < yj for some j ∈ {1, . . . , n} ,
x ≪ y ⇐⇒ xi < yi for i = 1, . . . , n .

The positive cone X+ is given by those x ≥ 0, it is normal and its (nonempty)
interior is the set of strongly positive vectors x ≫ 0.

To get into the framework of monotone dynamical systems, we impose a co-
operative condition on the initial systems, which, under the imposed regularity
assumptions, is the following.

Definition 4.1. System (4.1) is cooperative if at any (t, y) ∈ R× Rn,

∂fi
∂yj

(t, y) ≥ 0 for i ̸= j .

From now on we will work with non-autonomous cooperative families of ODEs
which generate a monotone skew-product flow and for which there exists a minimal
set K. This happens, for instance, when there exists a bounded solution of the ini-
tial system, for then one can build the corresponding ω-limit set, which necessarily
contains a minimal set. Although we will assume, without any further mention,
that the semiflow is globally defined in the area situated above K, keep in mind
that this detail is to be checked whenever a concrete model is considered.
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In the next results we will need to restructure the linearized systems over a
minimal set by means of a block lower triangular form with associated irreducible
diagonal blocks, as already done in [36]. For that, let us recall that it is well-known
(for instance, see Fiedler [13]) that after an adequate simultaneous permutation of
rows and columns any square n×n-matrix A can be transformed into a block lower
triangular matrix whose diagonal blocks, Ā11, . . . , Ākk of size n1, . . . , nk respectively
(n1 + · · ·+ nk = n), are irreducible:

PAPT =


Ā11 0 0 . . . 0
Ā21 Ā22 0 . . . 0
Ā31 Ā32 Ā33 . . . 0
...

...
...

. . .
...

Āk1 Āk2 Āk3 . . . Ākk

 , (4.3)

where P is the row-permutation matrix. The case in which the matrix is irreducible
is included when k = 1. Recall that a real n×n-matrix A = [aij ] is irreducible if for
any nonempty proper subset I ⊂ {1, . . . , n} there are i ∈ I and j ∈ {1, . . . , n} \ I
such that aij ̸= 0.

In Theorem 5.4 in [36] conditions for the property of uniform persistence in the
ODEs case are given. In this paper we now study the case of strict persistence,
which requires a new criterion to be determined and new techniques to write the
proof. We now state and prove the result giving a condition for strict persistence
in terms of the principal spectrums of some associated linear systems of lower
dimension which have a continuous separation. We include the result on uniform
persistence proved in Theorem 5.4 in [36] for the sake of completeness.

Theorem 4.2. Consider a cooperative system (4.1) of ODEs with f(t, y) recurrent,
of class C1 in y and such that f and ∂f/∂yi, i = 1, . . . , n are all admissible, and
assume that K ⊂ Ω×Rn is a minimal set for the flow τ defined on Ω×Rn generated
by the solutions of the associated family (4.2). For each (ω, x) ∈ K consider the
linearized system of (4.2) along the orbit of (ω, x),

z′(t) = DyF (ω·t, u(t, ω, x)) z(t) = [aij(τ(t, ω, x))] z(t) , (4.4)

and assume, without loss of generality, that the matrix Ā = [āij ] defined as

āij = sup
(ω,x)∈K

aij(ω, x) , for i ̸= j , (4.5)

and āii = 0, has the block lower triangular form (4.3). For each j = 1, . . . , k, let Lj

be the linear skew-product flow on K × Rnj induced by the solutions of the linear
systems given by the corresponding diagonal block of (4.4),

z′(t) = Ajj(τ(t, ω, x)) z(t) , (ω, x) ∈ K, (4.6)

which admits a continuous separation (of classical type), and let Σj
p be its principal

spectrum.
If k = 1, i.e., if the matrix Ā is irreducible, let I = J = {1}. Else, let

I = {j ∈ {1, . . . , k} | Āji = 0 for any i ̸= j},
J = {j ∈ {1, . . . , k} | Āij = 0 for any i ̸= j},

that is, I is composed by the indexes j such that any other block in the row of Ājj

is null, whereas J contains those indexes j such that any other block in the column
of Ājj is null. The conditions for uniform and strict persistence are the following:
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(i) If Σj
p ⊂ (0,∞) for any j ∈ I, then τ is uniformly persistent in the area

situated strongly above K.
(ii) If Σj

p ⊂ (0,∞) for any j ∈ J , then τ is strictly persistent in the area situated
above K.

Proof. First of all, note that if the matrix Ā was not in the form given in (4.3),
a change of variables in the system z̃ = Pz, which just permutes the variables,
would take it to the required structure. Note also that āij ≥ 0 by the cooperative
condition.

As already commented before, (i) is part of Theorem 5.4 in [36].
To make the proof of (ii) simpler, let us distinguish some cases.

(C1): k = 1, that is, Ā is an irreducible matrix. In this case, Theorem 4.4 in [35]
says that K admits a continuous separation of classical type. Then, a combination
of Theorem 3.4 and Theorem 3.5 implies that there hold both u-persistence and
s-persistence. Besides, as commented in the proof of the second result, the vector
z0 ≫ 0 given in Definition 3.1 gives the property of s-persistence too.

Before we distinguish any further cases, let us carry out some general preliminary
arguments which we will use when k > 1. Then, we have a general decompo-
sition (4.3) for the matrix Ā with k irreducible diagonal blocks of size n1, . . . , nk,
respectively. As in case (C1), it is precisely the irreducible character of the diagonal
blocks which implies that each linear semiflow Lj admits a continuous separation
of classical type. For any vector or map v, let us denote vj = (vi)i∈Ij , where Ij is

the set formed by the nj indexes corresponding to the rows of the block Ājj , that
is, Ij = {n1 + · · ·+ nj−1 + 1, . . . , n1 + · · ·+ nj}.

Now, let us fix j ∈ J . As the following first argument is exactly the same in all
the cases, let us assume for the sake of simplicity of writing that 1 < j < k and let
us consider the family of nj-dimensional systems of ODEs over the base flow K,
given for each (ω, x) ∈ K by

(yj)′(t) = F j(ω·t, u1(t, ω, x), . . . , yj(t), . . . , uk(t, ω, x)) ,

whose solutions generate a skew-product flow on K × Rnj , which we write as
τ̃(t, ω, x, v) = (τ(t, ω, x), ũ(t, ω, x, v)). There exists a trivial minimal set for this
flow, which is

K1 = cls{(ω0·t, u(t, ω0, x0), u
j(t, ω0, x0)) | t ≥ 0} ,

for a certain fixed (ω0, x0) ∈ K. Besides, when we calculate the linearized equations
along the orbit of (ω, x, xj), for (ω, x) ∈ K, the system we obtain is exactly (4.6),
which has irreducible associated matrix Ājj , so that the induced linear semiflow Lj

has a continuous separation, and by hypothesis the principal spectrum Σj
p ⊂ (0,∞).

In this situation we can apply to τ̃ the result proved in case (C1), so that there

exists a zj0 ∈ Rnj with zj0 ≫ 0 such that in particular for any (ω, x) ∈ K and
any v ∈ Rnj with v > xj there exists a t0 = t0(ω, x, v) such that ũ(t, ω, x, v) ≥
ũ(t, ω, x, xj) + zj0 = uj(t, ω, x) + zj0 for any t ≥ t0.

Finally, a second preliminary argument. As done in the proof of Theorem 4.4
in [35], associated to the minimal set K there exists a T0 > 0 such that for any
(ω, x) ∈ K and any i, j with āij > 0 there is a t0 ∈ (0, T0) such that aij(τ(t0, ω, x)) >
0.

Now, for k > 1 we distinguish two situations that may occur when we want to
check s-persistence and we take (ω, x) ∈ K and x̃ ∈ Rn with x̃ > x.
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(C2): k > 1 and there is a component i with x̃i > xi such that i ∈ Ij for some
j ∈ J . In this case, applying the first preliminary argument above, there exists a
t0 such that ũ(t, ω, x, x̃j) ≥ ũ(t, ω, x, xj)+ zj0 = uj(t, ω, x)+ zj0 for any t ≥ t0. Now,
by the cooperative condition on F and the fact that u(t, ω, x̃) ≥ u(t, ω, x) for any
t ≥ 0, we can write

d

dt
uj(t, ω, x̃) = F j(ω·t, u(t, ω, x̃))

≥ F j(ω·t, u1(t, ω, x), . . . , uj(t, ω, x̃), . . . , uk(t, ω, x)) ,

and then a standard argument of comparison of solutions says that uj(t, ω, x̃) ≥
ũ(t, ω, x, x̃j) for any t ≥ 0. Combining this with the previous inequality, uj(t, ω, x̃) ≥
uj(t, ω, x)+zj0 for any t ≥ t0, and therefore, u(t, ω, x̃) ≥ u(t, ω, x)+ej for any t ≥ t0,

for the vector ej ∈ Rn defined by ejj = zj0 and 0 otherwise, which satisfies ej > 0.
In this case, we are done.

(C3): k > 1 and whenever x̃i > xi for some component, i ∈ Ij and j /∈ J (in other
words, x̃j = xj for any j ∈ J). In this situation, look at a precise component i
such that x̃i > xi with i ∈ Ij . As j /∈ J , by the block lower triangular structure
of Ā, necessarily for some integer m ≥ 1, Āj+m,j ̸= 0, and it might happen that
j +m ∈ J or not. So, again let us distinguish two different situations:

(C3.i) Assume that there exists an m ≥ 1 such that Āj+m,j ̸= 0 and j + m ∈ J .

Then, we just need to find a time t̃ > 0 such that uj+m(t̃, ω, x̃) > uj+m(t̃, ω, x), for

then we can apply case (C2) to (ω·t̃, u(t̃, ω, x)) ∈ K and u(t̃, ω, x̃) > u(t̃, ω, x), and
the s-persistence follows straightforward thanks to the cocycle property (2.2).

For this purpose, let us consider the map h(t) = u(t, ω, x̃)− u(t, ω, x), for t ≥ 0.
Because of the monotonicity of the flow, h(t) ≥ 0 for any t ≥ 0. Besides, h satisfies
a linear system h′(t) = B(t)h(t) for the cooperative matrix B(t) = [bij(t)] given by

B(t) =

∫ 1

0

DyF (ω·t, s u(t, ω, x̃) + (1− s)u(t, ω, x)) ds , t ∈ R .

Now, we proceed in two steps.
Step 1: For j such that i ∈ Ij and x̃i > xi, we find a time tj ≥ 0 such that

hj(tj) ≫ 0, that is, such that uj(tj , ω, x̃) ≫ uj(tj , ω, x). To do that, first of all
recall that in a cooperative linear system of ODEs, whenever a component of a
solution is positive at one time, it stays on positive. In other words, if a component
is null at one time, it has always been null before. Therefore, as x̃i > xi, we
already know that hi(t) > 0 for any t ≥ 0. If Ājj is just the 1 × 1 null matrix,
we are done with this step, as we already have hj(0) ≫ 0. If that is not the case,
since Ājj is irreducible, there is a j1 ∈ Ij \ {i} such that āj1i > 0. As stated just
before case (C2), we can take a t1 ∈ (0, T0) such that aj1i(τ(t1, ω, x)) > 0. Then,
in a neighborhood of τ(t1, ω, x) the map aj1i is still positive, that is, there is an
ε > 0 such that for any s ∈ [0, ε], aj1i(ω·t1, s u(t1, ω, x̃) + (1 − s)u(t1, ω, x)) > 0
and consequently also bj1i(t1) > 0. It cannot be hj1(t1) = 0, as in that case we
would have h′

j1
(t1) ≥ bj1i(t1)hi(t1) > 0, a contradiction. Therefore hj1(t1) > 0 and

consequently hj1(t) > 0 for any t ≥ t1 and in particular for any t ≥ T0.
If nj > 2, once more since Ājj is irreducible, we find l ∈ {i, j1} and j2 ∈

Ij \ {i, j1} such that āj2l > 0. For τ(T0, ω, x) ∈ K we find t2 ∈ (0, T0) such that
aj2l(τ(t2, τ(T0, ω, x))) = aj2l(τ(T0 + t2, ω, x)) > 0, and just as done before, then
also bj2l(T0 + t2) > 0. Now, arguing with hj2(T0 + t2) as before, we deduce that
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hj2(t) > 0 for any t ≥ 2T0. Iterating the process we conclude that hj(t) ≫ 0 for
any t ≥ (nj − 1)T0, and in particular uj(tj , ω, x̃) ≫ uj(tj , ω, x) for tj = (nj − 1)T0.

Step 2: Roughly speaking, we establish a link between the set of indexes Ij
and Ij+m, by means of the block Āj+m,j ̸= 0, in order to get separation of the
trajectories for one component in Ij+m in a future time. More precisely, since
Āj+m,j ̸= 0, there exist indexes j1 ∈ Ij+m, j2 ∈ Ij such that āj1j2 > 0. Then,
arguing as in Step 1, associated with τ(tj , ω, x) ∈ K there is a tm ∈ (0, T0) such
that bj1j2(tj + tm) > 0. As j2 ∈ Ij and tj + tm > tj , hj2(tj + tm) > 0 as seen
in Step 1. Now, looking at the equation for hj1(t), if it were hj1(tj + tm) = 0,
we could write h′

j1
(tj + tm) ≥ bj1j2(tj + tm)hj2(tj + tm) > 0 by the cooperative

character, but that cannot happen. Therefore, necessarily hj1(tj + t1) > 0, that is,

uj1(tj + tm, ω, x̃) > uj1(tj + tm, ω, x). In all, we have found a time t̃ = tj + tm > 0

such that uj+m(t̃, ω, x̃) > uj+m(t̃, ω, x), as we wanted.

(C3.ii) Assume that for any m ≥ 1 such that Āj+m,j ̸= 0, it happens that j+m /∈ J .
In this situation we take the greatest m ≥ 1 such that Āj+m,j ̸= 0 and, as before,
we first apply Step 1 to obtain a time tj such that hj(tj) ≫ 0 and then apply Step
2 to find another tm > 0 such that hj+m(tj + tm) > 0. At this point, as j +m /∈ J
again there exists an l ≥ 1 such that Āj+m+l,j+m ̸= 0. If for some such l ≥ 1,
j +m+ l ∈ J then we fall again in case (C3.i) and we are done. If not, we repeat
the previous steps 1 and 2 once more. Clearly, since k ∈ J , in a finite number of
steps we get at the situation in (C3.i).

Summing up, for each j ∈ J we have found a vector ej ∈ Rn such that ejj ≫ 0

and elj = 0 for l ̸= j. This collection of vectors is the one giving the property of
s-persistence of τ above K. The proof is finished. �

The condition of the previous result is often a condition on Lyapunov exponents.
For instance, recall that in the almost periodic case, unique ergodicity makes the
principal spectrum reduce to a singleton, given precisely by the upper Lyapunov
exponent (for instance, see [41]).

Besides, as it turns out, the sufficient conditions for both uniform and strict
persistence stated in the previous theorem are actually necessary conditions in the
linear case. Although we prove this result for the linearized semiflow over K, it
is clearly applicable to any non-autonomous recurrent cooperative linear system
of ODEs. The conclusion is that, in our context of work, uniform persistence and
strict persistence of the linearized systems imply the same property in the nonlinear
systems.

Theorem 4.3. Consider a non-autonomous cooperative and recurrent system of
ODEs (4.1) under the same assumptions as in Theorem 4.2 and let us keep to
the notation there used. Assuming the existence of a minimal set K, let L be the
linearized semiflow over K (2.3). Then:

(i) If L is uniformly persistent in the interior of the positive cone, then Σj
p ⊂

(0,∞) for any j ∈ I, and τ is uniformly persistent in the area situated
strongly above K.

(ii) If L is strictly persistent in the positive cone, then Σj
p ⊂ (0,∞) for any

j ∈ J , and τ is strictly persistent in the area situated above K.
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Proof. Keeping to the notation used in Theorem 4.2, again permute the variables
in the system if necessary so as to have that the matrix Ā = [āij ] defined in (4.5)
has the block lower triangular form (4.3).

(i) For each j ∈ I, the linear skew-product semiflow Lj generated by the solutions
of the family of linear systems (4.6) inherits the property of u-persistence in the
area situated strongly above the minimal set Kj = K × {0} ⊂ K × Rnj . The
reason is that, as j ∈ I, system (4.6) is in this case an independent subsystem of
the linearized system (4.4), whose solutions are u-persistent by hypothesis. In this
situation Theorem 3.4 applies and says that the principal spectrum Σj

p ⊂ (0,∞).
Then, Theorem 4.2 (i) permits to conclude the proof.

(ii) This time, let us check that for each j ∈ J , Lj is s-persistent in the area
situated above the minimal set Kj = K × {0} ⊂ K × Rnj . Fixed any zj ∈ Rnj

with zj > 0, consider z ∈ Rn such that zi = zji for i ∈ Ij and else zi = 0.
To this z > 0, we apply the s-persistence of L, and so there is a time t0 such
that for any t ≥ t0, ux(t, ω, x) z ≥ e for e one of the vectors e1, . . . , em given in
Definition 3.2. Now, it is not difficult to realize that, when we solve system (4.4),
because j ∈ J , what happens to the components of the solution in Ij does not
interfere with the other components. This, together with the structure of z, means
that the components of ux(t, ω, x) z, other than the ones in Ij , are null, whereas
(τ(t, ω, x), (ux(t, ω, x) z)

j) = Lj(t, ω, x, z
j). Therefore, in ux(t, ω, x) z ≥ e > 0 it is

necessarily ej > 0 and the property of s-persistence holds for Lj . Once more, in this
situation Theorem 3.4 applies and says that the principal spectrum Σj

p ⊂ (0,∞).
Finally, by Theorem 4.2 (ii) the proof is complete. �

5. Uniform persistence and strict persistence at 0 in cooperative
recurrent non-autonomous delay FDEs

Here we consider n-dimensional systems of finite-delay differential equations with
a fixed delay, which we take to be 1, given by a function f : R × Rn × Rn → Rn,
such that f(t, y, w) is of class C1 with respect to (y, w) and f as well as all its first
order derivatives ∂f/∂yi, ∂f/∂wi, i = 1, . . . , n are admissible,

y′(t) = f(t, y(t), y(t− 1)) , t > 0 . (5.1)

Besides, we assume f to be recurrent in time, so that the translation flow on the
hull Ω is minimal. Now we look at the family of systems over the hull,

y′(t) = F (ω·t, y(t), y(t− 1)) , ω ∈ Ω , (5.2)

whose solutions induce a forward dynamical system of skew-product type (2.1)
(in principle only locally-defined) on the product Ω × X, where we take X =
C([−1, 0],Rn), the space of vector-valued continuous functions on [−1, 0] with the
norm ∥x∥ = ∥x1∥∞ + · · ·+ ∥xn∥∞ for x ∈ X (see Hale and Verduyn Lunel [18] for
more details). The space X is strongly ordered when we consider the positive cone
X+ = {x ∈ X | x(s) ≥ 0 for all s ∈ [−1, 0]} which is normal and has a nonempty
interior IntX+ = {x ∈ X | x(s) ≫ 0 for all s ∈ [−1, 0]}.

To get into the framework of monotone skew-product semiflows, we need to
impose the so-called quasimonotone condition on the initial system, which, under
the imposed regularity assumptions, can be written as follows. To keep terms
simple, we will call these systems cooperative, just as in the ODEs case.
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Definition 5.1. System (5.1) is cooperative if at any (t, y, w) ∈ R× Rn × Rn,

∂fi
∂yj

(t, y, w) ≥ 0 for i ̸= j and
∂fi
∂wj

(t, y, w) ≥ 0 for any i, j .

As in the previous section, if the initial system has a bounded solution, one can
prove that there exists a minimal set for the induced skew-product semiflow. The
reader is referred to [36] for any further details. Finally keep in mind that although
we will be assuming that the semiflow is globally defined in the area situated above
a minimal set, this cannot be taken for granted in the general case.

Theorem 5.8 in [36] gives conditions for the property of uniform persistence in
the delay case. When we look at the property of strict persistence, one realizes that
we cannot give the parallel result of Theorem 4.2 (ii) in the case of delay equations,
as in the general case the irreducibility of the associated constant matrices does not
imply the eventual strong positivity of the linearized solution operators, but only a
dichotomy-type result which says that there might be positive initial vectors z0 > 0
such that the corresponding solutions go to 0 after some time, and the continuous
separation is of type II (see Theorem 4.6 and Proposition 5.7 in [35] for the precise
results). This completely precludes the property of strict persistence. For this
reason, when dealing with delay equations we need to introduce a slight modification
in the property of strict persistence, still maintaining the same meaning about the
behaviour of solutions. We will call this property strict persistence at 0 or just
s0-persistence, and the definition is the following.

Definition 5.2. Consider a cooperative and recurrent system of delay FDEs (5.1)
with the regularity conditions stated before and let τ be the induced skew-product
semiflow (2.1). Let K ⊂ Ω × C([−1, 0],Rn) be a compact τ -invariant set. The
semiflow τ is said to be strictly persistent at 0 (s0-persistent for short) in the region
situated above K if there exists a collection of strictly positive maps e1, . . . , em ∈
C([−1, 0],Rn), ei > 0 for every i, such that for any (ω, x) ∈ K and any y ≥ x with
y(0) > x(0) there exists a time t0 = t0(ω, x, y) such that u(t, ω, y) ≥ u(t, ω, x) + ei
for any t ≥ t0 for one of the maps e1, . . . , em.

Here we have the main result for delay FDEs, which includes the already known
result on uniform persistence for the sake of completeness.

Theorem 5.3. Consider a cooperative system (5.1) of finite-delay equations with
f(t, y, w) recurrent, of class C1 in y and w and such that f , ∂f/∂yi and ∂f/∂wi

are all admissible for i = 1, . . . , n. Assume that there exists a minimal set K ⊂
Ω × C([−1, 0],Rn) for the semiflow τ generated by the solutions of the associated
family (5.2) which admits a flow extension. For each (ω, x) ∈ K consider the
linearized system of (5.2) along the semitrajectory of (ω, x),

z′(t) = Ã(τ(t, ω, x)) z(t) + B̃(τ(t, ω, x)) z(t− 1) , t > 0 , (5.3)

where we have denoted, for the matrices A(ω, y, w) = DyF (ω, y, w) and B(ω, y, w) =
DwF (ω, y, w),

Ã(τ(t, ω, x)) = A(ω·t, y(t, ω, x), y(t− 1, ω, x)) ,

B̃(τ(t, ω, x)) = B(ω·t, y(t, ω, x), y(t− 1, ω, x)) ,
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where, as usual, y(t, ω, x) is the solution of system (5.2) with initial map x. Without
loss of generality, assume that the matrix Ā+ B̄ = [āij + b̄ij ] defined as

āij = sup
(ω,x)∈K

aij(ω, x(0), x(−1)) for i ̸= j , and āii = 0 ,

b̄ij = sup
(ω,x)∈K

bij(ω, x(0), x(−1)) for i ̸= j , and b̄ii = 0 ,

has the form 
Ā11 + B̄11 0 . . . 0
Ā21 + B̄21 Ā22 + B̄22 . . . 0

...
...

. . .
...

Āk1 + B̄k1 Āk2 + B̄k2 . . . Ākk + B̄kk

 (5.4)

whose diagonal blocks, denoted by Ā11 + B̄11, . . . , Ākk + B̄kk, of size n1, . . . , nk

respectively (n1+ · · ·+nk = n), are irreducible. For each j = 1, . . . , k, let Lj be the
linear skew-product semiflow induced on K×C([−1, 0],Rnj ) by the solutions of the
linear systems for (ω, x) ∈ K given by the corresponding diagonal block of (5.3),

z′(t) = Ãjj(τ(t, ω, x)) z(t) + B̃jj(τ(t, ω, x)) z(t− 1) , t > 0 . (5.5)

Then, Kj = K × {0} ⊂ K × C([−1, 0],Rnj ) is a minimal set for Lj which admits
a continuous separation (of type II). Let Σj

p be its principal spectrum.

If k = 1, i.e., if the matrix Ā+ B̄ is irreducible, let I = J = {1}. Else, let

I = {j ∈ {1, . . . , k} | Āji + B̄ji = 0 for any i ̸= j},
J = {j ∈ {1, . . . , k} | Āij + B̄ij = 0 for any i ̸= j},

that is, I is composed by the indexes j such that any other block in the row of
Ājj + B̄jj is null, whereas J contains those indexes j such that any other block in
the column of Ājj + B̄jj is null. The conditions for uniform and strict persistence
at 0 are the following:

(i) If Σj
p ⊂ (0,∞) for any j ∈ I, then τ is uniformly persistent in the area

situated strongly above K.
(ii) If Σj

p ⊂ (0,∞) for any j ∈ J , then τ is strictly persistent at 0 in the area
situated above K.

Proof. As usual, a permutation of the variables, if needed, takes the matrix Ā+ B̄
into the form (5.4). Note that āij , b̄ij ≥ 0 by the cooperative condition.

This time (i) is part of Theorem 5.8 in [36].
As for (ii), we distinguish the parallel cases to those in the proof of Theorem 4.2.

Although the arguments follow the line of the ones there used, due to the delay
some technical changes are needed.

(C1): k = 1, that is, Ā+ B̄ is an irreducible matrix. In this case, Proposition 5.7
in [35] says that K admits a continuous separation of type II. More precisely, the
following dichotomy property holds for the linearized operators: there exists a T > 0
such that, for any (ω, x) ∈ K and any initial map v > 0, either ux(T, ω, x) v = 0 or
ux(T, ω, x) v ≫ 0. Now, by (i) we already know that τ is u-persistent in the area
situated strongly above K; so let z0 ≫ 0 be the vector given in Definition 3.1 and
let us see that it is the appropriate vector to check s0-persistence.

So, take (ω, x) ∈ K and y ∈ C([−1, 0],Rn) with y ≥ x and y(0) > x(0), and
look at the map z(t) = (ux(t, ω, x) (y − x))(0), t ≥ 0, which is the solution of the
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linearized system (5.3) of delay equations with initial condition map y − x. Take
i ∈ {1, . . . , n} such that yi(0) > xi(0), that is, zi(0) > 0. Then Lemma 5.1.3 in [48]
says that zi(t) > 0 for any t ≥ 0. In particular for y − x > 0 this precludes the
case ux(T, ω, x) (y − x) = 0, so that it must be ux(T, ω, x) (y − x) ≫ 0. At this
point, argue as in the proof of Theorem 3.5 to see that then u(T, ω, y) ≫ u(T, ω, x).
To finish, just apply u-persistence in the area situated strongly above K and the
cocycle property (2.2).

Before we distinguish any further cases, once more we carry out some general
preliminary arguments for the case k > 1. In this case we have a general decomposi-
tion (5.4) for the matrix Ā+ B̄ with k irreducible diagonal blocks of size n1, . . . , nk,
respectively. As in case (C1), it is precisely the irreducible character of the diagonal
blocks which implies that each linear semiflow Lj admits a continuous separation
of type II. Also here for any vector or map v, let us denote vj = (vi)i∈Ij , where Ij is

the set formed by the nj indexes corresponding to the rows of the block Ājj + B̄jj .
Now, let us fix j ∈ J . As the following first argument is exactly the same in all

the cases, let us assume for the sake of simplicity of writing that 1 < j < k. Let us
consider the family of nj-dimensional systems of delay FDEs over the base flow K,
given for each (ω, x) ∈ K by

(yj)′(t) = F j(ω·t, ȳ1(t), ... , yj(t), ... , ȳk(t), ȳ1(t− 1), ... , yj(t− 1), ... , ȳk(t− 1)) ,

where we have denoted by ȳ(t) = y(t, ω, x) the solution of system (5.2) with initial
map x. Their solutions generate a skew-product semiflow on K × C([−1, 0],Rnj )
which we write as τ̃(t, ω, x, v) = (τ(t, ω, x), ũ(t, ω, x, v)) and there exists a trivial
minimal set for this semiflow, which is

K1 = cls{(ω0·t, u(t, ω0, x0), u
j(t, ω0, x0)) | t ≥ 0} ,

for a certain fixed (ω0, x0) ∈ K. Besides, when we calculate the linearized equations
along the orbit of (ω, x, xj), for (ω, x) ∈ K, the system we obtain is exactly (5.5),
the induced linear semiflow Lj has a continuous separation of type II, and by
hypothesis the principal spectrum Σj

p ⊂ (0,∞). In this situation we can apply to

τ̃ the result proved in case (C1), so that there exists a zj0 ∈ C([−1, 0],Rnj ) with

zj0 ≫ 0 such that in particular for any (ω, x) ∈ K and any v ∈ C([−1, 0],Rnj ) with
v ≥ xj and v(0) > xj(0) there exists a t0 = t0(ω, x, v) such that ũ(t, ω, x, v) ≥
ũ(t, ω, x, xj) + zj0 = uj(t, ω, x) + zj0 for any t ≥ t0.

Finally, a second preliminary result. Arguing as in the proof of Theorem 4.6
in [35], associated to the minimal set K there exists a T0 > 2 such that for any
(ω, x) ∈ K and any i, j with āij + b̄ij > 0,

if āij > 0, ∃ t0 ∈ (2, T0) such that aij(ω·t0, y(t0, ω, x), y(t0 − 1, ω, x)) > 0 ,

if b̄ij > 0, ∃ t0 ∈ (2, T0) such that bij(ω·t0, y(t0, ω, x), y(t0 − 1, ω, x)) > 0 .

Now, for k > 1 we distinguish two situations that may occur when we want to
check s0-persistence and we take (ω, x) ∈ K and x̃ ∈ C([−1, 0],Rn) such that x̃ ≥ x
and x̃(0) > x(0).

(C2): k > 1 and there is a component i with x̃i(0) > xi(0) such that i ∈ Ij for some
j ∈ J . In this case, applying the first preliminary argument above, there exists a
t0 such that ũ(t, ω, x, x̃j) ≥ ũ(t, ω, x, xj)+ zj0 = uj(t, ω, x)+ zj0 for any t ≥ t0. Now,
by the cooperative condition on F and the fact that u(t, ω, x̃) ≥ u(t, ω, x) for any
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t ≥ 0, we can write

d

dt
yj(t, ω, x̃) = F j(ω·t, y(t, ω, x̃), y(t− 1, ω, x̃))

≥ F j(ω·t, ȳ1(t), ... , yj(t, ω, x̃), ... , ȳk(t), ȳ1(t− 1), ... , yj(t− 1, ω, x̃), ... , ȳk(t− 1)) ,

and then a standard argument of comparison of solutions says that uj(t, ω, x̃) ≥
ũ(t, ω, x, x̃j) for any t ≥ 0 (for instance, see [48]). Combining this with the previous

inequality, uj(t, ω, x̃) ≥ uj(t, ω, x) + zj0 for any t ≥ t0, and therefore, u(t, ω, x̃) ≥
u(t, ω, x) + ej for any t ≥ t0, for the map ej ∈ C([−1, 0],Rn) defined by ejj = zj0
and 0 otherwise, which satisfies ej > 0. In this case, we are done.

(C3): k > 1 and whenever x̃i(0) > xi(0) for some component, i ∈ Ij and j /∈ J
(in other words, x̃j(0) = xj(0) for any j ∈ J). In this situation, look at a precise
component i such that x̃i(0) > xi(0) with i ∈ Ij . As j /∈ J , by the block lower
triangular structure of Ā + B̄, necessarily Āj+m,j + B̄j+m,j ̸= 0 for some integer
m ≥ 1, and it might happen that j + m ∈ J or not. So, again let us distinguish
two different situations:

(C3.i) Assume that there exists anm ≥ 1 such that Āj+m,j+B̄j+m,j ̸= 0 and j+m ∈
J . Then, we just need to find a time t̃ > 0 such that yj+m(t̃, ω, x̃) > yj+m(t̃, ω, x),

for then we can apply case (C2) to (ω·t̃, u(t̃, ω, x)) ∈ K with u(t̃, ω, x̃) ≥ u(t̃, ω, x)

and u(t̃, ω, x̃)(0) > u(t̃, ω, x)(0), and the s0-persistence follows straightforward
thanks to the cocycle property (2.2).

For this purpose, let us consider the map h(t) = y(t, ω, x̃)− y(t, ω, x), for t ≥ 0.
Because of the monotonicity of the semiflow, h(t) ≥ 0 for any t ≥ 0. Due to the
delay, the treatment of h(t) is more delicate this time, and we need to look at it as
the solution of two different delay linear systems. More precisely, on the one hand
h satisfies the linear cooperative delay system

h′(t) = C(t)h(t) +D(t)h(t− 1) , t ≥ 0 , (5.6)

for the matrices C(t) = [cij(t)], D(t) = [dij(t)] given by

C(t) =

∫ 1

0

DyF (ω·t, s y(t, ω, x̃) + (1− s) y(t, ω, x), y(t− 1, ω, x̃)) ds , t ≥ 0 ,

D(t) =

∫ 1

0

DwF (ω·t, y(t, ω, x), s y(t− 1, ω, x̃) + (1− s) y(t− 1, ω, x)) ds , t ≥ 0 ,

and on the other hand, it is a solution of the second linear cooperative delay system

h′(t) = E(t)h(t) +G(t)h(t− 1) , t ≥ 0 , (5.7)

for the matrices E(t) = [eij(t)], G(t) = [gij(t)] given by

E(t) =

∫ 1

0

DyF (ω·t, s y(t, ω, x̃) + (1− s) y(t, ω, x), y(t− 1, ω, x)) ds , t ≥ 0 ,

G(t) =

∫ 1

0

DwF (ω·t, y(t, ω, x̃), s y(t− 1, ω, x̃) + (1− s) y(t− 1, ω, x)) ds , t ≥ 0 .

Now, we proceed in two steps.
Step 1: For j such that i ∈ Ij and x̃i(0) > xi(0), we find a time tj ≥ 0 such

that hj(tj) ≫ 0, that is, such that yj(tj , ω, x̃) ≫ yj(tj , ω, x). To do that, first, as
x̃i(0) > xi(0), in a cooperative linear system of delay FDEs we already know that
hi(t) > 0 for any t ≥ 0 (once more, see Lemma 5.1.3 in [48]). If Ājj + B̄jj is just
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the 1× 1 null matrix, we are done with this step, as we already have hj(0) ≫ 0. If
that is not the case, since Ājj + B̄jj is irreducible, there is a j1 ∈ Ij \ {i} such that
āj1i + b̄j1i > 0. As stated just before case (C2), either āj1i > 0 and we can take a
t1 ∈ (2, T0) such that aj1i(ω·t1, y(t1, ω, x), y(t1 − 1, ω, x)) > 0, or b̄j1i > 0 and then
we can take a t1 ∈ (2, T0) (call it the same just to keep the notation easy) such
that bj1i(ω·t1, y(t1, ω, x), y(t1 − 1, ω, x)) > 0. In the first case, in a neighborhood
of (ω·t1, y(t1, ω, x), y(t1 − 1, ω, x)) the map aj1i is still positive, whereas in the
second case the same happens for the map bj1i. This implies in the first case that
ej1i(t1) > 0, whereas in the second case it is dj1i(t1) > 0.

Then, let us see why in any of the two cases it cannot be hj1(t1) = 0. In the
case āj1i > 0, if it were hj1(t1) = 0, then looking at the cooperative system (5.7) we
would have h′

j1
(t1) ≥ ej1i(t1)hi(t1) > 0, leading to a contradiction. As for the case

b̄j1i > 0, if it were hj1(t1) = 0, then we would look at the cooperative system (5.6)
to get h′

j1
(t1) ≥ dj1i(t1)hi(t1−1) > 0, again a contradiction. Therefore hj1(t1) > 0

and consequently hj1(t) > 0 for any t ≥ t1.
As in the ODEs case, also here we iterate this procedure using that Ājj + B̄jj

is irreducible until we finally get that hj(t) ≫ 0 for any t ≥ (nj − 1)T0, and in
particular yj(tj , ω, x̃) ≫ yj(tj , ω, x) for tj = (nj − 1)T0.

Step 2: Roughly speaking, we establish a link between the set of indexes Ij
and Ij+m, by means of the block Āj+m,j + B̄j+m,j ̸= 0, in order to get separation
of the solutions for one component in Ij+m in a future time. More precisely, since
Āj+m,j+B̄j+m,j ̸= 0, there exist indexes j1 ∈ Ij+m, j2 ∈ Ij such that āj1j2+ b̄j1j2 >
0. Then, arguing as in Step 1, associated with τ(tj , ω, x) ∈ K, either there is a
tm ∈ (2, T0) such that ej1j2(tj + tm) > 0 if it is āj1j2 > 0, or there is a tm ∈ (2, T0)
such that dj1j2(tj + tm) > 0 if it is b̄j1j2 > 0. In the first situation, as j2 ∈ Ij
and tj + tm > tj , hj2(tj + tm) > 0 by Step 1, and looking at the equation for
hj1(t) in system (5.7), if it were hj1(tj + tm) = 0, we would have h′

j1
(tj + tm) ≥

ej1j2(tj + tm)hj2(tj + tm) > 0, a contradiction. In the second situation, as j2 ∈ Ij
and tj + tm − 1 > tj , hj2(tj + tm − 1) > 0 again by Step 1, and this time looking
at the equation for hj1(t) in system (5.6), if it were hj1(tj + tm) = 0, we would
have h′

j1
(tj + tm) ≥ dj1j2(tj + tm)hj2(tj + tm − 1) > 0, a contradiction. Therefore,

necessarily hj1(tj + tm) > 0, that is, yj1(tj + tm, ω, x̃) > yj1(tj + tm, ω, x). In all,

we have found a time t̃ = tj + tm > 0 such that yj+m(t̃, ω, x̃) > yj+m(t̃, ω, x), as
we wanted.

(C3.ii) Assume that for any m ≥ 1 such that Āj+m,j + B̄j+m,j ̸= 0, it happens that
j+m /∈ J . In this situation we take the greatestm ≥ 1 such that Āj+m,j+B̄j+m,j ̸=
0 and, as before, we first apply Step 1 to obtain a time tj such that hj(tj) ≫ 0 and
then apply Step 2 to find another tm > 0 such that hj+m(tj+tm) > 0. At this point,
as j +m /∈ J again there exists an l ≥ 1 such that Āj+m+l,j+m + B̄j+m+l,j+m ̸= 0.
If for some such l ≥ 1, j +m + l ∈ J then we fall again in case (C3.i) and we are
done. If not, we repeat the previous steps 1 and 2 once more. Clearly, since k ∈ J ,
in a finite number of steps we get at the situation in (C3.i).

Summing up, for each j ∈ J we have found a map ej ∈ C([−1, 0],Rn) such that

ejj ≫ 0 and elj = 0 for l ̸= j. This collection of maps is the one giving the property
of s0-persistence of τ above K. The proof is finished. �

We finish this section with the following result, which essentially says that in
the linear case the spectral conditions given for persistence are not only sufficient
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but also necessary, and besides, persistence in the nonlinear case can be studied
through persistence in the linearized systems.

Theorem 5.4. Consider a non-autonomous cooperative and recurrent system of
delay FDEs (5.1) with the regularity conditions stated in Theorem 5.3, and keep to
the notation there used. Assuming the existence of a minimal set K with a flow
extension, consider L the linearized skew-product semiflow over K (2.3). Then:

(i) If L is uniformly persistent in the interior of the positive cone, then Σj
p ⊂

(0,∞) for any j ∈ I, and τ is uniformly persistent in the area situated
strongly above K.

(ii) If L is strictly persistent at 0 in the positive cone, then Σj
p ⊂ (0,∞) for any

j ∈ J , and τ is strictly persistent at 0 in the area situated above K.

Proof. Once more, by doing a permutation in the variables if needed, we can assume
that the matrix Ā+ B̄ defined in Theorem 5.3 has the structure (5.4).

The proof of (i) just follows the lines of the proof of the corresponding result in
the ODEs case, Theorem 4.3 (i), so that we omit it.

As for (ii), first of all, it is easy to check that if a delay linear skew-product
semiflow with a continuous separation (of type II) is s0-persistent in the positive
cone, then its principal spectrum Σp ⊂ (0,∞): just follow the arguments in the
proof of Theorem 3.4. Secondly, to check that the property of s0-persistence of L
is inherited by the linear semiflows Lj for j ∈ J , once more we just adapt the proof
of Theorem 4.3 (ii) to the delay context, with no difficulty. Therefore, we obtain
that Σj

p ⊂ (0,∞) for any j ∈ J , and by Theorem 5.3 (ii), τ is s0-persistent in the
area situated above K. The proof is finished. �

6. Nonlinear Nicholson systems

In this section we consider a non-autonomous noncooperative system with delay
which is among the family of so-called Nicholson systems. In 1954 Nicholson [32]
published experimental data on the behaviour of the population of the Australian
sheep-blowfly. Then, Gurney et al. [17] studied the scalar delay equation

x′(t) = −µx(t) + p x(t− τ) e−γ x(t−τ) ,

which was called the Nicholson’s blowflies equation, as it suited the experimental
data reasonably well. In this equation, µ, p, γ and τ are positive constants with a
biological interpretation. In particular the delay τ stands for the maturation time
of the species. Many authors have studied generalizations and modifications of the
Nicholson equation, concerned with stability, persistence or existence of certain kind
of solutions, among other dynamical issues. More recently Nicholson systems have
also been considered, as they fit models for one single species in an environment
with a patchy structure or for multiple biological species. To keep the list short,
we just cite some recent related works such as Faria [11], Faria and Röst [12], Liu
and Meng [27], Wang [53] and Wang and Zhao [54].

Here we consider a generalization of this model by taking time-dependent coef-
ficients and adding a patch structure. This helps to model the temporal variation
of the environment as well as the presence of a heterogeneous environment, so that
the distribution of the population is influenced by migrations among patches and
the growth of the populations on each patch, which depends on the local resources
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among other conditions. Also the maturation time is assumed to be possibly dif-
ferent on each patch. One important remark is that, to apply our methods, the
temporal variation of the coefficients has to be at least recurrent. To keep things
easy, in this section we assume the temporal variation to be almost periodic.

More precisely, we consider an n-dimensional system of delay FDEs with patch
structure (n patches) and a nonlinear term of Nicholson type, which is able to
reflect an almost periodic temporal variation in the environment,

y′i(t) = −d̃i(t) yi(t) +
n∑

j=1

ãij(t) yj(t) + β̃i(t) yi(t− τi) e
−yi(t−τi) , t ≥ 0 , (6.1)

for i = 1, . . . , n. Here yi(t) denotes the density of the population on patch i at time
t ≥ 0 and τi > 0 is the maturation time on that patch. We make the following
assumptions on the coefficient functions:

(a1) d̃i(t), ãij(t), and β̃i(t) are almost periodic maps on R;
(a2) d̃i(t) ≥ d0 > 0 for every t ∈ R and i ∈ {1, . . . , n};
(a3) ãij(t) are all nonnegative maps and ãii is taken to be identically null;

(a4) β̃i(t) > 0 for any t ≥ 0, for any i;

(a5) d̃i(t)−
∑n

j=1 ãji(t) > 0 for any t ≥ 0, for any i.

To get a meaning of the imposed conditions, note that we need coefficients defined
on R to easily build the hull of the system. The coefficient ãij(t) stands for the
migration rate of the population moving from patch j to patch i at time t ≥ 0.
As for the birth function, it is given by the delay Nicholson term. Finally, the

decreasing rate on patch i, given by d̃i(t), includes the mortality rate as well as the
migrations coming out of patch i, so that condition (a5) makes sense, saying that
the mortality rate is positive at any time. Note that this system does not satisfy
the cooperative condition given in Definition 5.1.

By the construction of the hull Ω, the previous system is included in a family of
systems over the hull. For each ω ∈ Ω the corresponding system can be written as

y′i(t) = −di(ω·t) yi(t) +
n∑

j=1

aij(ω·t) yj(t) + βi(ω·t) yi(t− τi) e
−yi(t−τi) , (6.2)

for i = 1, . . . , n, for certain continuous nonnegative maps di, aij , βi defined on Ω.
We take X = C([−τ1, 0])×. . .×C([−τn, 0]) with the usual cone of positive elements,
denoted by X+, and the sup-norm. Then, solutions of (6.2) induce a skew-product
semiflow (2.1) defined on R+ ×Ω×X (in principle only locally-defined) which has
a trivial minimal set K = Ω × {0}, as the null map is a solution of any of the
equations over the hull. Furthermore, the set Ω×X+ is invariant for the dynamics,
that is, solutions of (6.2) starting inside the positive cone remain inside the positive
cone while defined: just apply the criterion given in Theorem 5.2.1 in [48].

Now, first of all let us check that all solutions of (6.2) are bounded, so that the
induced semiflow is globally defined on Ω×X+.

Theorem 6.1. Let us consider the nonlinear system with delay (6.1) under as-
sumptions (a1)-(a5). Then, all solutions of (6.2) with initial condition in X+ are
bounded, and therefore the induced semiflow is globally defined on Ω×X+. Actually,
the solutions are ultimately bounded, in the sense that there exists a constant r > 0
such that for any ω ∈ Ω and any initial condition x ∈ X+, any component of the
vectorial solution satisfies 0 ≤ yi(t, ω, x) ≤ r from some time on.
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Proof. By the fact that supy≥0 y e
−y = e−1 < 1 and the continuity of the maps βi

on Ω, for each i = 1, . . . , n we can take Mi = supω∈Ω βi(ω) and then consider the
family of nonhomogeneous linear systems

y′i(t) = −di(ω·t) yi(t) +
n∑

j=1

aij(ω·t) yj(t) +Mi , ω ∈ Ω , (6.3)

for i = 1, . . . , n, which is cooperative and besides it is a majorant of the family of
systems (6.2) on the positive cone. Therefore, if we prove the result for this last
family of systems, by a standard argument of comparison of solutions (once more,
see Theorem 5.1.1. in [48]) we are done.

More precisely, for the family of nonhomogeneous almost periodic linear sys-
tems (6.3) we are going to prove that the homogeneous part, y′(t) = A(ω·t) y(t)
for short, admits an exponential dichotomy with full stable subspace. In that case,
for the nonhomogeneous term (M1, . . . ,Mn) there exists a unique solution yb(t, ω)
of (6.3) which is bounded (actually almost periodic, for instance, see Theorem 7.7
in Fink [14]), and yb(t, ω) are uniformly bounded for ω ∈ Ω. Therefore, any solution
can be written as y(t, ω) = yb(t, ω)+y0(t, ω) for the appropriate solution y0(t, ω) of
the linear homogeneous part, which tends to 0 as t → ∞. From this, the property
of ultimately bounded solutions for (6.3) easily follows.

Now, note that if we had a positive inferior bound for the mortality rate on each

patch for the initial system, that is, if d̃i(t) −
∑n

j=1 ãji(t) ≥ δ for any t ∈ R and

i = 1, . . . , n for a certain δ > 0, then we could directly apply Lemma 7.17 in [14]
which affirms that in a column dominant family of linear almost periodic systems,
the null solution is exponentially stable as t → ∞. However, our requirement in
hypothesis (a5) is not so restrictive, and we have to follow another argument, based
on the existence of a so-called strong super-equilibrium (see Novo et al. [33] for the
introduction of this concept in the field of non-autonomous FDEs).

Since condition (a5) makes reference to columns of y′(t) = A(ω·t) y(t), we con-
sider the adjoint system, given by y′(t) = −A(ω·t)T y(t), where AT denotes the
transpose matrix. Let us reverse time, i.e., let us make the change of variables
s = −t which takes the adjoint system into z′(s) = A(ω·s)T z(s), and let us first
prove that the null solution is uniformly asymptotically stable as s → ∞. Let us
denote by 1̄ the vector in Rn with all components equal to 1. From condition (a5)
we know that A(ω)T 1̄ ≤ 0 and there exists an ω0 ∈ Ω such that A(ω0)

T 1̄ ≪ 0: just
consider ω0 determining the initial system. In this situation, the map a : Ω → Rn

defined by a ≡ 1̄ is a strong super-equilibrium for the family z′(s) = A(ω·s)T z(s),
ω ∈ Ω (see Lemma 2.11 in [37], which is valid for n-dimensional ODEs). And the
same happens, by linearity, with any of the constant maps given by λ 1̄ for any
λ > 0, so that we have a family of strong super-equilibria approaching 0. In this
situation, we can apply Theorem 5.3 in [33] also in this linear context of coopera-
tive ODEs to conclude that the null solution of z′(s) = A(ω·s)T z(s) determines a
unique attractor as s → ∞, which is uniformly asymptotically stable.

Secondly, according to [46] (once more, see also [40]), if the systems z′(s) =
A(ω·s)T z(s) have no nontrivial bounded solutions, then there is an exponential
dichotomy, in this case with full stable subspace. So, assume that there is a bounded
solution z(s, ω0, z0) and let us see that it is necessarily identically null. The trick is
to build the α-limit set of the pair (ω0, z0), which must contain a minimal set, which
as seen before must be the trivial one Ω × {0}. Then, by the uniform asymptotic
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stability, given any ε > 0 there exists a δ > 0 such that whenever ∥z1∥ ≤ δ,
∥z(t, ω, z1)∥ ≤ ε for any t ≥ 0 and any ω ∈ Ω. For this δ > 0, by the definition of
the α-limit set, there exists a sufficiently large s0 such that ∥z(−s0, ω0, z0)∥ ≤ δ,
and therefore ∥z(s0, ω0·(−s0), z(−s0, ω0, z0))∥ = ∥z0∥ ≤ ε. As this happens for any
ε > 0, it must be z0 = 0 and the bounded solution is the trivial one.

Finally, reversing time back, the adjoint systems y′(t) = −A(ω·t)T y(t) have an
exponential dichotomy with null stable subspace. By Proposition 1.71 in [23] this
implies that the initial systems y′(t) = A(ω·t) y(t) have an exponential dichotomy
with full stable subspace, as we wanted to see. �

In the next result we prove that, even if the initial nonlinear system is not
cooperative, persistence for the nonlinear systems (6.2) is equivalent to persistence
of the linearized systems along the null solution,

z′i(t) = −di(ω·t) zi(t) +
n∑

j=1

aij(ω·t) zj(t) + βi(ω·t) zi(t− τi) , t ≥ 0 , (6.4)

for i = 1, . . . , n, for each ω ∈ Ω. Note that these linearized systems are cooperative
thanks to conditions (a3) and (a4). Although the Banach space X here is the
product space C([−τ1, 0])× . . .×C([−τn, 0]), after going through the proofs we can
affirm that the results on uniform persistence and strict persistence at 0 stated in
the last section for cooperative systems are still valid. The reader is referred once
more to [48] for the results of comparison of solutions used in this delay equations
setting.

Theorem 6.2. Let us consider a nonlinear Nicholson system with delay (6.1) with
assumptions (a1)-(a5). The following statements are equivalent:

(i) The induced nonlinear semiflow is uniformly persistent in the interior of
the positive cone (resp. strictly persistent at 0 in the positive cone).

(ii) The linearized semiflow along 0 is uniformly persistent in the interior of
the positive cone (resp. strictly persistent at 0 in the positive cone).

Proof. To see (i)⇒(ii) just note that in the positive cone, the nonlinear term in
system (6.2) is bounded above by the corresponding linearized term at 0, and sys-
tems (6.4), for ω ∈ Ω, are cooperative. Then, by a standard comparison argument,
a persistence property in the nonlinear case forces the same kind of persistence
behaviour in the linear case.

For the converse (ii)⇒(i), let us assume that the linearized semiflow along 0 has
a persistence property. In this case the idea is to build a new family of nonlin-
ear systems which are cooperative, for which the null map is a solution and the
linearized systems along the null map are just given by (6.4), and besides, the so-
lutions of the new family keep below the solutions of (6.2) from some time on, so
that a comparison can be made.

More precisely, take the constant r > 0 given in Theorem 6.1 and assume without
loss of generality that r > 1. It is easy to check that there exists a unique 0 < ρ < 1
such that ρ e−ρ = r e−r. Then, take ε > 0 such that ρ − ε > 0 and build a map
φ : [0,∞) → [0,∞) of class C1, nondecreasing and such that:

φ(y) =

{
y e−y if y ∈ [0, ρ− ε] ,
r e−r if y ∈ [ρ+ ε,∞) ,
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and besides, φ(y) ≤ y e−y for y ∈ [ρ − ε, ρ + ε]. At this point, consider the family
of cooperative systems given for each ω ∈ Ω by

y′i(t) = −di(ω·t) yi(t) +
n∑

j=1

aij(ω·t) yj(t) + βi(ω·t)φ(yi(t− τi)) , (6.5)

for i = 1, . . . , n, where the coefficients are just those of (6.2). The solutions of
this family generate a monotone skew-product semiflow on Ω ×X and once more
K = Ω × {0} is a trivial minimal set. Besides, the linearized equations along the
null solution are still (6.4). Therefore, Theorem 5.4 says that this semiflow inherits
the same persistence property as the one assumed in (ii) for the linearized semiflow.

To finish, for each ω ∈ Ω and each initial map x ≥ 0, by Theorem 6.1 there
exists a time t1 = t1(ω, x) > 0 such that the vectorial solution y(t, ω, x) of (6.2)
satisfies 0 ≤ yi(t, ω, x) ≤ r for any t ≥ t1 and any i = 1, . . . , n. Consequently,
taking τ0 = max{τ1, . . . , τn}, we can solve systems (6.2) and (6.5) for ω·(t1 + τ0)
with initial map u(t1 + τ0, ω, x) and once more a standard argument of comparison
of solutions says that the solution of the cooperative system (6.5) lies below the
solution y(t, ω·(t1 + τ0), u(t1 + τ0, ω, x)) = y(t+ t1 + τ0, ω, x) of (6.2) for any t ≥ 0.
Therefore, the persistent behaviour of the solution of system (6.5) forces the same
persistent behaviour in the solution of the Nicholson nonlinear and noncooperative
system. The proof is finished. �

A combination of Theorems 5.3 and 5.4 and the previous result leads to the
following theorem, which can be stated without proof. We just remark three facts.
First, recall that in the almost periodic case the principal spectrum of a precise
linear system with a continuous separation is just given by the corresponding up-
per Lyapunov exponent. Second, that in this case the matrix Ā + B̄ defined in
Theorem 5.3 reduces to Ā, as the delays only appear in the diagonal terms of
the linearized systems (6.4). Finally, note that the upper Lyapunov exponents do
depend on the delays.

Theorem 6.3. Let us consider the Nicholson system with delay (6.1) under as-
sumptions (a1)-(a5), and consider the semiflow τ induced on Ω × C+([−τ1, 0]) ×
. . .×C+([−τn, 0]) by the solutions of the family of equations over the hull (6.2) for
which K = Ω× {0} is a minimal set with a trivial flow extension. For each ω ∈ Ω
consider the linearized system along the null solution (6.4) and assume without loss
of generality that the matrix Ā = [āij ] defined as

āij = sup
ω∈Ω

aij(ω) , for i ̸= j , and āii = 0 ,

has the block lower triangular structure (4.3) with irreducible diagonal blocks Ājj of
dimension nj for j = 1, . . . , k (n1+ · · ·+nk = n). To simplify the notation, arrange
the set of delays by blocks by denoting {τ1, . . . , τn} = {τ11 , . . . , τ1n1

, . . . , τk1 , . . . , τ
k
nk
}.

For each j = 1, . . . , k let Lj be the linear skew-product semiflow induced on the prod-

uct space Ω×C([−τ j1 , 0])× . . .×C([−τ jnj
, 0]) by the solutions of the nj-dimensional

systems corresponding to the j th diagonal block of (6.4),

z′i(t) = −di(ω·t) zi(t) +
∑
l∈Ij

ail(ω·t) zl(t) + βi(ω·t) zi(t− τi) , t ≥ 0 ,

for i ∈ Ij, for each ω ∈ Ω, where Ij is the set formed by the nj indexes corresponding
to the rows of the block Ājj. Then, Lj admits a continuous separation (of type II)
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and its principal spectrum is just given by the upper Lyapunov exponent λj of the

minimal set Kj = Ω× {0} ⊂ Ω× C([−τ j1 , 0])× . . .× C([−τ jnj
, 0]).

If k = 1, i.e., if the matrix Ā is irreducible, let I = J = {1}. Else, let

I = {j ∈ {1, . . . , k} | Āji = 0 for any i ̸= j},
J = {j ∈ {1, . . . , k} | Āij = 0 for any i ̸= j},

that is, I is composed by the indexes j such that any other block in the row of Ājj

is null, whereas J contains those indexes j such that any other block in the column
of Ājj is null. Then:

(i) τ is uniformly persistent in the interior of the positive cone if and only if
λj > 0 for any j ∈ I.

(ii) τ is strictly persistent at 0 in the positive cone if and only if λj > 0 for any
j ∈ J .

Under some additional conditions on the coefficients of the initial system (6.1),
one can talk of strict persistence instead of strict persistence at 0, in this delay
setting. We just need to strengthen condition (a4) into (a4)’ as follows:

(a4)’ β̃i(t) ≥ β0 > 0 for any t ∈ R and any i.

The result is the following.

Proposition 6.4. Let us consider the nonlinear system with delay (6.1) under
assumptions (a1)-(a3), (a4)’ and (a5). Then, the properties of strict persistence at
0 and strict persistence in the positive cone are equivalent.

Proof. Obviously, s-persistence always implies s0-persistence. Conversely, assume
that s0-persistence holds, and let us take ω0 ∈ Ω and x > 0 with x(0) = 0. This
means that there is a component i such that xi > 0 and, in turn, this means
that necessarily for some s1 ∈ (−τi, 0), xi(s1) > 0. At this point, it suffices to
find a positive t1 > 0 such that the solution y(t, ω0, x) of (6.2) for ω0 satisfies
yi(t1, ω0, x) > 0, as then we can apply s0-persistence to (ω0·t1, u(t1, ω0, x)) with
u(t1, ω0, x)(0) = y(t1, ω0, x) > 0, and combine it with the cocycle property (2.2) to
obtain s-persistence in the trajectory of (ω0, x).

Recall that by (a4)’, βi(ω) ≥ β0 > 0 for any ω ∈ Ω. If yi(t1, ω0, x) > 0 for
some t1 ∈ (0, s1 + τi], we are done. If not, that is, if yi(t, ω0, x) = 0 for every
t ∈ (0, s1 + τi], then y′i(s1 + τi, ω0, x) ≥ βi1(ω0·(s1 + τi))xi(s1) e

−xi(s1) > 0, and
therefore there exists a t1 > s1 + τi such that yi(t1, ω0, x) > 0, as wanted. The
proof is finished. �
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[33] S. Novo, C. Núñez, R. Obaya, Almost automorphic and almost periodic dynamics for

quasimonotone non-autonomous functional differential equations, J. Dynamics Differential
Equations 17 (3) (2005), 589–619.



28 R. OBAYA AND A.M. SANZ

[34] S. Novo, R. Obaya, Non-autonomous functional differential equations and applications.

Stability and Bifurcation for non-autonomous differential equations, 185–264, Lecture Notes
in Math. 2065, Springer-Verlag, Berlin, Heidelberg, 2013.

[35] S. Novo, R. Obaya, A.M. Sanz, Topological dynamics for monotone skew-product semiflows
with applications, J. Dynamics Differential Equations 25 (4) (2013), 1201–1231.

[36] S. Novo, R. Obaya, A.M. Sanz, Uniform persistence and upper Lyapunov exponents for
monotone skew-product semiflows, Nonlinearity 26 (2013), 1–32.
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