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Abstract. We prove that a Fredholm–type Alternative holds for recurrent
equations with sign, extending a previous result by Cieutat and Haraux in

[3]. Moreover, we show that this can be seen a particular case of [1] and we

provide a solutions to an interesting problem posed by Hale in [6]. Finally we
characterize the existence of exponential dichotomies also in the nonrecurrent

case.

1. Introduction

Consider a linear differential equation in RN :

(1.1) ẋ = A(t)x+ f(t)

where the vector f is bounded continuous on time and the matrix A is recurrent.
That is, A is bounded and uniformly continuous and its hull:

H(A, f) = cls
{

(Aτ, fτ) : τ ∈ R
}

is compact minimal with respect to the compact–open topology and the flow in-
duced by translations (Aτ)(t) = A(t + τ). A necessary condition in order (1.1) to
admit bounded solutions can be easily obtained integrating by parts, namely:

(1.2)
〈
f, v
〉
∈ BP (R)

for every bounded solution v of the adjoint equation:

(1.3) v̇ = −A(t)T v .

Here BP stands for having bounded primitive. In [1] we discussed whether or not
this condition gives rise to a Fredholm Alternative in the recurrent framework, as
implicitly suggested in [14]. To be more precise the question in [1] is to decide
if, under the assumption that f is jointly recurrent with A, condition (1.2) is also
sufficient for equation (1.1) to admit a solution x which is not only bounded, but
even recurrent and with the same recurrence properties of A and f . This can be
expressed by saying that a continuous flow epimorphism exits:

(1.4) H(A, f)→ H(x) (A, f) 7→ x .
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It is worth to stress that recurrent solutions to (1.1) always exist when bounded
solutions do, but having solutions satisfying (1.4) is much more restrictive and,
in general, is not for free. If for instance A and f are almost periodic, then this
restriction implies that x is almost periodic too.
The main result of [1] is that (1.2) is sufficient to get such x satisfying (1.4), as
soon as A and f are jointly recurrent and A fulfills the additional condition:

(1.5) dF (A) = dS(A) .

The above quantities are respectively called the Favard dimension and the Sacker–
Sell dimension of A. To introduce them one has to look at the hull of the homoge-
neous equations:

(1.6) u̇ = A(t)u

that is the class of equations:

(1.7) u̇ = B(t)u B ∈ H(A) .

The number dB of independent bounded solutions may vary with B, and the Favard
dimension of A is the smallest possible value:

dF (A) = min
B∈H(A)

dB .

The Sacker–Sell spectrum σ(A) of A is defined as the set of real λ’s such that the
equation:

u̇ =
[
A(t)− λ

]
u

does not admit an exponential dichotomy. The spectrum is the union of a finite
number of closed intervals and, roughly speaking, the Sacker–Sell dimension dS(A)
is the number of independent solutions of (1.6) having Lyapunov exponents in
the spectral interval containing zero. See Section 2 for a precise definition and a
description of the consequences of (1.5). Here we just recall that the same condition
has been already used by Sacker and Sell in [12], to obtain a special case of their
successive Spectral Theorem [13].
The aim of the present paper is to test the result of [1] in some concrete situations,
showing that it gives new insights even in cases already studied in the literature.
The first concrete result concerns a matrix A which has a sign, say for instance it
is nonnegative:

(1.8) A(t) ≥ 0 ∀t .

Here A is possibly asymmetric and the sign is that of its symmetric part:

SA(t) =
A(t) +A(t)T

2
.

This situation has been already considered by Cieutat and Haraux in [3], when A(t)
and f(t) are both almost periodic and the antisymmetric part of A(t), that is:

KA(t) =
A(t)−A(t)T

2
is purely periodic. Under these assumptions, the authors obtain a Fredholm–type
Alternative which looks quite different from that of [1]. Precisely, they prove that
(1.1) has an almost periodic solution if and only if:〈

f, v
〉
∈ AP (R; R)
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for every solution v of (1.3) which is almost periodic and satisfies the following pair
of conditions:

v̇ = KA(t)v SA(t) v(t) = 0
the second of which is not even differential. The point is that, contrarily to the
appearance, the result of [3] can be seen as a particular case of that proved in
[1]. In Section 3 we show indeed that condition (1.5) is satisfied regardless of KA,
obtaining the following improvement.

Theorem 1.1. Let A be recurrent and f bounded continuous, and assume the sign
condition (1.8) is satisfied. Then condition (1.5) is satisfied too and equation (1.1)
has bounded solutions if and only if condition (1.2) holds for every bounded solution
to (1.3).

In Section 4 we present a scalar example showing that the recurrence of A is optimal
for the result, in spite of the fact that the conclusion refers to bounded solutions
with any prescribed recurrence property. To grant such properties, we need to
strengthen a little bit the assumptions.

Corollary 1.2. Assume that A and f are jointly recurrent and (1.8) is satisfied.
Then equation (1.1) admits solutions satisfying (1.4) if and only if condition (1.2)
holds for every bounded solution to (1.3).

Because condition (1.5) is satisfied, the Corollary follows from the mentioned result
of [1]. In Section 3 we give however and independent proof of Theorem 1.1 and
Corollary 1.2 for the following reasons: the paper [1] is not yet published and,
moreover, the way to prove (1.5) gives the full result in few additional steps.
The comparison of Corollary 1.2 with the aforementioned result of [3] open the
doors to a natural question. Imagine indeed that A and f are both almost periodic
with A satisfying the sign condition (1.8), and we are interested in almost periodic
solutions to equation (1.1): is it enough testing condition (1.2) on those v which are
almost periodic too? In Section 4 we show that the answer is negative, by using a
well know example by Lillo [7] and a special case of Fredholm Alternative already
published in [14].
The last contribution of the present work concerns the real extent of condition (1.5).
Beside showing that it is optimal for the validity of the Fredholm Alternative in the
recurrent framework, in [1] we proved that is is also necessary for small Sacker–Sell
dimensions:

dS(A) ≤ 2 .
In Section 4 we show that such restriction can be dropped in the periodic case, does
not matter A has a sign or not.

Proposition 1.3. Let A be continuous and periodic. Assume moreover that, for
every recurrent f , equation (1.1) has a solution satisfying (1.4) if and only if con-
dition (1.2) holds for every bounded solution to (1.3). Then condition (1.5) is
satisfied.

We believe that this fact and the results of [1] provide a complete answer to an
exercise proposed by Hale in his textbook [6], asking for the appropriate Fredholm
Alternative when A is purely periodic and f is almost periodic: see Exercise 1.1 at
page 147.
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Notations.
The symbols |x| and

〈
x, y
〉

stand for Euclidean norm and inner product in RN .
With L(N) we denote the N×N matrices with real entries, while GL(N) and O(N)
stand for the subsets of the invertible and the orthogonal matrices respectively.
The symbol BP (R), AP (R) and AP 1(R) stand respectively for the space of the con-
tinuous functions having bounded primitive, that of the almost periodic function
and that the almost periodic functions having almost periodic derivative. When
f ∈ AP (R) we denote by f its mean value.

2. Preliminaries

We start assuming that the function A and f are just continuous and we denote
by φA and φ∗A the Cauchy operators of the homogeneous equations (1.6) and (1.3)
respectively. Moreover we set:

B(A) =
{
ξ ∈ RN : sup

t
|φA(t)ξ| < +∞

}
for the initial data giving rise to bounded solutions of (1.6). We use B∗(A) for the
same set when referred to the adjoint equation (1.3).
A straightforward integration by parts gives:

(2.1)

∫ t

0

〈
f(s), v(s)

〉
ds =

[〈
x(s), v(s)

〉]t
0
−
∫ t

0

〈
v̇(s) +A(s)T v(s), x(s)

〉
ds

=
〈
x(t), v(t)

〉
−
〈
x(0), v(0)

〉
for every x solving (1.1) and every v solving the adjoint homogeneous equation
(1.3). Thus the following condition must be satisfied:

(2.2)
〈
f, φ∗A(·)ζ

〉
∈ BP (R) ∀ζ ∈ B∗(A)

in order (1.1) may admit a bounded solution.
This necessary condition becomes trivially sufficient when the equation (1.6) admits
an exponential dichotomy. This means that there exist a time independent projector
P in RN and constants K,α > 0 such that:

(2.3)

∥∥φA(t)P φA(s)−1
∥∥ ≤ Ke−α(t−s) ∀t ≥ s∥∥φA(t)(I − P )φA(s)−1
∥∥ ≤ Ke−α(s−t) ∀s ≥ t

Sometimes we say that A has an exponential dichotomy too. When this is true,
also the adjoint equation admits an exponential dichotomy and hence B∗(A) = {0}
and condition (2.2) is empty. On the other hand it is easy to check that, for every
bounded and continuous f , the function:

x(t) =
∫ t

−∞
φA(t)PφA(s)−1f(s) ds −

∫ +∞

t

φA(t)(I − P )φA(s)−1f(s) ds .

is a bounded solution to (1.6), actually the only one.
A kind of opposite situation has been considered in [14]. There the author assumes
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that all the solutions to (1.6) are not only bounded but also separated from zero,
namely:

(2.4) 0 < inf
t
|φA(t)ξ| ≤ sup

t
|φA(t)ξ| < +∞ ∀ξ 6= 0

and proves the following result.

Proposition 2.1. Assume A and f are continuous and condition (2.4) is satis-
fied. Then equation (1.1) admits bounded solutions if and only if condition (2.2) is
satisfied.

Actually, the boundedness of A and f is explicitly requested in [14] but not used in
the proof. The proof depends on the classical variation of constants formula, once
one has checked that φ∗A also satisfies condition (2.4).
The above proposition is at the core of the result of [1] for the recurrent framework,
which we now introduce. We assume from now on that A is bounded and uniformly
continuous: the hull H(A) is then compact metrizable and connected, and both
spectral theory and Favard theory behave well. The Sacker–Sell spectrum σ(A) has
been introduced in [13] as the set of the real λ’s such that:

u̇ =
[
A(t)− λ

]
u

does not admit an exponential dichotomy. Since having an exponential dichotomy
transfers from a matrix to its hull, when A is recurrent the previous condition
is independent of B ∈ H(A) in the sense that σ(B) = σ(A) for every B ∈ H(A).
When on the contrary A is not recurrent, it survives only the inclusion σ(B) ⊂ σ(A)
for every B ∈ H(A). The spectrum is always nonempty and is the union of at most
N compact intervals. Each spectral interval s canonically associated to a spectral
vector subbundle of H(A) × RN . Taken any interval (λ, µ) which contains the
desired spectral interval and whose closure avoids all the others, the fiber over
B ∈ H(A) is given by the initial data ξ such that:

lim
t→−∞

e−µtφB(t)ξ = 0 = lim
t→+∞

e−λtφB(t)ξ .

In [13] it is also proved that the all these subbundles are linearly independent and
their sum is the whole H(A)×RN . We are mainly interested in the spectral boundle
associated to the interval containing 0. We denote its fibres by V(B) and we agree
that V(B) = {0} when 0 6∈ σ(A). The dimension being independent of B ∈ H(A)
due to the connectedness of H(A), we set:

dS(A) = dimV(B) ∀B ∈ H(A)

and we call it the Sacker–Sell dimension of A.
From the definition is clear that V(B) ⊃ B(B) for every B ∈ H(A). Contrarily to
V(B) however, the dimension of B(B) may vary with B. We set:

dF (A) = min
B∈H(A)

dimB(B) ∀B ∈ H(A)

and we call it the Favard dimension of A. Automatically the following inequality:

(2.5) dF (A) ≤ dimB(B) ≤ dimV(B) = dS(A)

holds for all B ∈ H(A). The event that this inequality becomes an equality is
particularly relevant for Fredholm Alternative: indeed in [1] the following statement
is proved for the recurrent framework.



6 JUAN CAMPOS, RAFAEL OBAYA AND MASSIMO TARALLO

Theorem 2.2. Let A be recurrent and f bounded and continuous, and assume
moreover that:

(2.6) dF (A) = dS(A) .

Then equation (1.1) admits bounded solutions if and only if condition (2.2) is satis-
fied. If in addition f is jointly recurrent with A, then one of these solutions satisfies
condition (1.4).

Actually, only the second claim is stated in[1] but the first one can be easily deduced
from the proof. The bridge between the two claims in the statement is of course
Favard theory, introduced by Favard in [5] for the almost periodic framework and
extended to the recurrent framework by Palmer in [9]. The central assumption
in this theory is a separation condition on the bounded solutions of the equations
(1.7), namely:

(2.7) inf
t
|φB(t)ξ| > 0 ∀ξ ∈ B(B) \ {0} .

When this is true for every B ∈ H(A), one says that the Favard condition (FA)
is satisfied. If in addition H(A, f) is minimal, then the following result is proved:
equation (1.1) admits a recurrent solution satisfying (1.4) if and only if it admits a
bounded solution.
The relationship between Favard dimension and Favard condition has been inves-
tigated in [15] and [2]. In the latter the authors prove that a given B ∈ H(A)
satisfies the separation condition (2.7) if and only if:

dimB(B) = dF (A)

which moreover defines a residual subset of H(A) itself. Thus Favard condition
(FA) holds if and only if the previous dimensional equality is satisfied in the whole
H(A). This conclusion was already proved in [15]. By taking into account the
inequality (2.5), it is now manifest that (2.6) implies the validity of (FA) and hence
that the second part of Theorem 2.2 is a consequence of the first one. It is also
worth noticing that condition (2.6) actually implies a much stronger equality, that
is:

(2.8) dF (A) = dS(A) = d∗S(A) = d∗F (A)

and that moreover the Favard condition (F ∗A) for the adjoint equation is satisfied
too. This is proved in [1], where it is also shown that the same conclusions are false
in general: the two Favard conditions (FA) and (F ∗A) may indeed be not equivalent,
and both can be true with different Favard dimensions. The symmetric role of
the direct and the adjoint equations is at the basis of a partial inverse of Theorem
2.2, showing that condition (2.5) is much more than optimal for the Fredholm
Alternative. Indeed in [1] the following result is proved.

Theorem 2.3. Let A be recurrent such that dS(A) ≤ 2 and (FA) and (F ∗A) are
satisfied. Assume moreover that, for every f jointly recurrent with A, condition
(2.2) is sufficient to get a solution of (1.1) satisfying (1.4). Then dF (A) = dS(A).

We will show in Section 4 that, as already anticipated in the Introduction, the
restriction dS(A) ≤ 2 can be removed in the class of purely periodic A’s.

In the next section we will show that all the results stated in the Introduction
can be seen as particular instances of the above theorem. The proof makes use of
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some specialized normal forms for the equation, obtained via some suitable change
of variables. Actually, these normal forms allow to give an independent and short
proof of these results. We end the present section by commenting what happens
when we do a change of variables. By that we precisely mean a differentiable
function Q : R → GL(N) such that Q, Q−1 and Q̇ are bounded and uniformly
continuous on time. It is not difficult to check that, in this case, all functions in
H(Q) preserve all these properties. Setting x = Q(t)x transforms the equation (1.1)
into:

(2.9) ẋ = A(t)x + f(t)

where:

A = Q−1
{
AQ− Q̇

}
f = Q−1f .

This defines an equivalence relation A ∼ A which is usually called kinematic sim-
ilarity. Since φA(t) = Q(t)φA(t)Q(0)−1 for every t, it is clear that (1.6) has an
exponential dichotomy if and only if equation:

(2.10) ẋ = A(t)x

has. This implies σ(A) = σ(A) and also dS(A) = dS(A). Concerning hulls, an
obvious flow epimorphism exists H(A,Q)→ H(A), showing that for every element
of B ∈ H(A) there exists a B ∈ H(A) such that B ∼ B. The same result also holds
when the roles of A and A are swapped, due to the symmetry of kinematic similarity.
Since kinematic similarity does not affect neither boundedness of solutions nor their
separation from zero, we can conclude that the Favard conditions (FA) and (FA)
are equivalent and dF (A) = dF (A).
Passing to the adjoint equations, it is easy to check (Q−1)T is again a change of
variables, transforming the equation (1.3) into:

(2.11) v̇ = −AT (t)v

so that the conclusions we obtained for the direct equations extend to their adjoint
equations. Finally, notice that:〈

f, v
〉

=
〈
Q−1f, v

〉
=
〈
f, v
〉

where v = (Q−1)T v is a bounded solution of equation (2.11) if and only if v is
for (1.3). Thus condition (2.2) is satisfied for the equation (1.1) if and only if the
analogous condition is satisfied for equation (2.9).
Summing up, the whole problem of Fredholm Alternative is totally unaffected by
changes of variables. Nevertheless, there is a point that deserves some more atten-
tion, which concerns recurrence properties. Indeed, in general the recurrence of A
does not implies that of A, not even if Q is recurrent: it can be easily checked that
this is however true when A and Q are jointly recurrent, in which case A is jointly
recurrent with them too.
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3. Sign and normal forms

In this section we enter the sign condition (1.8) and discuss his consequences: the
devices we use are essentially the same of [3] but we are able to strengthen the
conclusions there. Start supposing that u is a solution of the equation:

u̇ = [A(t)− λ]u

and notice that:

(3.1)
d

dt

(
|u(t)|2

)
= 2

{〈
A(t)u(t), u(t)

〉
− λ|u(t)|2

}
≥ −2λ |u(t)|2 .

By integrating we get the following inequality:

|u(s)| ≤ |u(t)| eλ(s−t) ∀t ≥ s .

As a consequence, if λ = 0 then |u(t)| is not decreasing in time. When on the
contrary λ < 0 we have u(−∞) = 0 and the above equation admits an exponential
dichotomy, which yields:

σ(A) ⊂ [0, +∞) .

If now 0 /∈ σ(A) then equation (1.6) has an exponential dichotomy with P ≡ 0
as projector, namely it has the whole RN as unstable subspace and trivial sta-
ble subspace. Next proposition uses this fact to characterize the existence of an
exponential dichotomy.

Theorem 3.1. Assume A is bounded uniformly continuous, symmetric and sat-
isfying (1.8). Then 0 6∈ σ(A) if and only if for every recurrent B0 ∈ H(A) one
has:

(3.2)
⋂
t

kerB0(t) = {0} .

Notice that a recurrent B0 exists in any closed invariant subset of H(A) due to the
compactness of H(A) itself.

Proof. Since exponential dichotomy passes from A to H(A), the only if part is
trivial. To prove the if part we use Theorem 2 in [11], saying that 0 6∈ σ(A) if we
have two ingredients. The first one is that, for every B ∈ H(A), the equation:

(3.3) u̇ = B(t)u

does not admit nontrivial bounded solutions. To show that this is true, suppose
by contradiction that for some B we have a nontrivial bounded solution u(t) and
define:

lim
t→+∞

|u(t)| = β > 0 .

Let now B0 be a recurrent element in the ω–limit of B and choose a sequence
τn → +∞ such that Bτn → B0. Standard compactness arguments show that
uτn → u0 up to subsequences, where u̇0 = B0(t)u0. Finally:

|u0(t)| = β ∀t

holds by the very construction and hence:

0 =
d

dt

(
|u0(t)|2

)
= 2

〈
B0(t)u0(t), u0(t)

〉
.
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Since B0 ≥ 0 and is symmetric, this implies:

u̇0(t) = B0(t)u0(t) = 0 .

In other words u0(t) = ξ for some suitable ξ ∈ RN in the kernel of each B0(t).
Since |ξ| = β > 0, we conclude that the intersection of these kernels is nontrivial,
contradicting (3.2).
The second ingredient for Theorem 2 in [11] is that the stable and unstable sub-
spaces of (3.3) have complementary dimensions, which moreover are independent
of B ∈ H(A). We claim that the stable subspace of (3.3) is always trivial while the
unstable subspace is the whole RN . Due indeed to B ≥ 0 we know that |u(t)| in
nondecreasing in time for every solution to (3.3). The triviality of the stable sub-
space is then manifest. Concerning the unstable subspace, suppose by contradiction
that, for some B ∈ H(A), the equation (3.3 has a solution u with:

lim
t→+∞

|u(t)| = α > 0 .

Then the failure of (3.2) follows again from the very same arguments already used
in the first part of the proof. �

Condition (3.2) means that the corresponding equation (1.7) has no nontrivial con-
stant solutions, an occurrence which is very easy to check and then gives rise to an
useful test for exponential dichotomy. Notice also that, due to the symmetry of A
and hence of every B ∈ H(A), these solutions coincide with the constant solutions
of the adjoint equation:

v̇ = −B(t)T v = −B(t)v .
Later on we will see that a related property holds even in the asymmetric case: see
Corollary 3.7.
Next results say what happens when recurrence is added.

Corollary 3.2. Let A be recurrent, symmetric and satisfying (1.8). Then 0 6∈σ(A)
if and only if:

(3.4)
⋂
t

kerA(t) = {0} .

Proof. Just use recurrence to prove that actually
⋂
t kerB(t) =

⋂
t kerA(t) holds

for every B ∈ H(A). �

Remark 3.3. The corollary extends to the recurrent case an analogous result by
[3] for the case of an almost periodic A. In fact, there the authors state that
exponential dichotomy is equivalent to:

A := lim
T→+∞

1
T

∫ T

0

A(t) dt > 0

This result can be also extended to the recurrent case: we don’t provide here such
extension since it is not relevant for our aims.

We already know that Fredholm Alternative holds, though trivially, when 0 6∈σ(A).
To understand what happens in the opposite case, we change the variables and put
the equation in a convenient normal form. Set:

V =
⋂
t

kerA(t)



10 JUAN CAMPOS, RAFAEL OBAYA AND MASSIMO TARALLO

and choose a P ∈O(N) straightening the orthogonal decomposition:

RN = V ⊥ ⊕ V

namely realizing an isomorphism of the first m coordinates of RN onto the first
factor in the decomposition, and the second N−m coordinates onto the second
factor. Here m is the codimension of V . The time–independent change of variables
u = Pu transforms equation (1.6) into:

(3.5) u̇ = PTA(t)P u

and next proposition shows why the new equation is more convenient to deal with.

Proposition 3.4. Assume A is recurrent and symmetric and (1.8) holds. Then:

(3.6) PTA(t)P = diag
{
A∗(t), 0

}
∀t

with blocks of dimension m and N −m respectively. Moreover A∗ is recurrent,
symmetric and satisfies (1.8) together with 0 6∈ σ(A∗).

Proof. Since P is orthogonal, the matrix funtion PTAP is again symmetric and
satisfying (1.8), while recurrence follows trivially from the fact that P is time–
independent. Consider now the the block–decomposition driven by P that is:

PTA(t)P =
(
A∗(t) B∗(t)
C∗(t) D∗(t)

)
The definition of V and the construction of P say that B∗(t) and D∗(t) are identi-
cally zero. The same is actually true also for C∗(t), since the symmetry of PTA(t)P
implies C∗(t) = B∗(t)T . The remaining block A∗(t) is then the only nontrivial one,
and hence is recurrent, symmetric and fulfills (1.8).
It remain to prove that 0 6∈ σ(A∗). To this aim, suppose ξ ∈ Rm is such that:

A∗(t)ξ = 0 ∀t .

This means P (ξ, 0) ∈ V which, taking into account that P (ξ, 0) ∈ V ⊥ by con-
struction of P , implies ξ = 0. Corollary 3.2 then implies 0 6∈ σ(A∗). �

As a trivial consequence of Proposition 3.4 we have a first partial result about
Fredholm Alternative.

Corollary 3.5. Assume A is recurrent and symmetric and (1.8) holds. Then the
equality:

dF (A) = dS(A)

is satisfied and (1.6) and (1.3) have exactly the same bounded solutions, which more-
over are the constants belonging to V . If in addition f is bounded and continuous,
then equation (1.1) admits bounded solutions if and only if:

(3.7)
〈
f, ξ
〉
∈ BP (R) ∀ξ ∈ V .

Notice that (3.7) is just a specialized form of the more general condition (2.2). That
is, Fredholm Alternative has not changed.

Proof. Because of the normal form (3.6) the new equation (3.5) splits into the two
independent equations:

u̇1 = A∗(t)u1 u̇2 = 0
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where u1 ∈ Rm and u2 ∈ RN−m. From Proposition 3.4 we know that 0 6∈ σ(A∗).
This implies that:

B(PTAP ) = V(PTAP ) = {0} × Rk = PTV

and that these constant are indeed the only bounded solutions of (3.5). Exactly the
same conclusions hold for the adjoint equation, which in the new variables writes:

v̇1 = −A∗(t)v1 v̇2 = 0

where by symmetry σ(−A∗) = σ(−AT∗ ) = −σ(A∗). The first part of the Corollary
the follows from the final part of Section 2.
To prove the second part, define f = PT f and write f = (f1, f2). Then consider the
equations:

ẋ1 = A∗(t)x1 + f1 ẋ2 = f2 .

Again due to 0 6∈ σ(A∗), the first equation has one and only one bounded solution,
whatever the bounded and continuous f is. On the other hand, the second equation
has bounded solutions if and only if f2 ∈ BP (R). But for every ζ2 ∈ RN−m we
have: 〈

f2, ζ2
〉

=
〈
(f1, f2), (0, ζ2)

〉
=
〈
f, P (0, ζ2)

〉
so that condition (3.7) is obtained by construction of P . �

We now see what happens when symmetry is removed from the assumptions. Next
result shows that symmetry can can be recovered by means of a suitable change of
variables. In the proof, we use the decomposition:

A(t) = SA(t) +KA(t)

into the symmetric and the antisymmetric parts of A(t).

Proposition 3.6. Assume A is recurrent and satisfying (1.8). Then there exists a
change of variables Q : R→ O(N) which is jointly recurrent with A and such that:

(3.8) A = Q−1
{
AQ− Q̇

}
is again recurrent and satisfying (1.8) but in addition is symmetric.

Proof. The rule:
(B,R)τ =

(
Bτ, φKB

(τ)R
)
.

defines a continuous flow on the compact space H(A)×O(N). Let M be a minimal
subset. The canonical projection p : M → H(A). is a continuous flow morphism
which, due to the minimality of H(A), is automatically surjective. Thus there exists
a matrix RA ∈ O(N) such that (A,RA) ∈M .
Consider now the other canonical projection q : M → O(N). It is a continuous
map whose multiplicative inverse:

q(B,R)−1 = R−1 = RT

is also continuous. Moreover it admits a derivative along the flow:
d

dτ
q
(
(B,R)τ

)∣∣
τ=0

= φ̇KB
(0)R = KB(0)φKB

(0)R = KB(0)R

which is also continuous on the whole M .
By taking into account the compactness of M , all the mentioned continuities are
indeed uniform continuities. Thus it can be easily checked that the map:

Q(t) = q
(
(A,RA)t

)
= φKA

(t)RA
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is a change of variables in the sense of Section 2. Since KA is antisymmetric we
know that φKA

(t) ∈ O(N) and hence the same is true for Q(t) for every t. Due
to the minimality of M , such Q is moreover jointly recurrent with the flow line
t 7→ p

(
(A,RA)t

)
= At in H(A) and hence with A itself.

It remains to show that the matrix A defined by (3.8) has the properties claimed
in the statement. This is standard fact, also proved in [3]. Indeed Q̇ = KAQ and
hence:

A = Q−1
{
AQ− Q̇

}
= QT

{
AQ−KAQ} = QTSAQ

so that symmetry and sign of A are the same of A, due to the orthogonality of Q.
That A is recurrent follows trivially from the joint recurrence of Q and A. �

We are finally ready to describe Fredholm Alternative in the general, possibly asym-
metric case.

Corollary 3.7. Assume A is recurrent and (1.8) holds. Then the equality:

dF (A) = dS(A)

is satisfied and (1.6) and (1.3) have exactly the same bounded solutions, which
moreover have constant norm. If in addition f is bounded and continuous, then
equation (1.1) admits bounded solutions if and only if condition (2.2) is satisfied.

Since Favard separation condition (FA) is also satisfied, when f is jointly recurrent
with A Favard theory applies to show that equation (1.1) has a solution satisfying
(1.4). This proves Corollary 1.2 in the Introduction.

Proof. Do the change of variables u = Q(t)u with Q as in Proposition 3.6 obtaining:

(3.9) u̇ = A(t)u

as new equation, where A is given by (3.8). Then apply Corollary 3.5 to equation
(3.9), so proving for it that Favard dimension is equal to Sacker–Sell dimension and
that Fredholm Alternative works fine. Since these conclusions are not affected by
change of variables (see the final part of Section 2) and then holds for the original
equation.
It remain to prove the claim about the bounded solutions. Again due to Corollary
3.5, we know that the bounded solutions of (3.9) and its adjoint equation coincide,
and are exactly the constants belonging to:

V =
⋂
t

ker A(t) .

Thus the bounded solutions to (1.6) are:

u = Q(t)ξ ξ ∈ V .

On the other hand, we explained in Section 2 that the adjoint equations to (1.6)
and to (3.9) are connceted by the change of variables (QT )−1. Thus, by using
the orthogonality of Q, we can conclude that the bounded solutions to the adjoint
equation to (3.9) are:

v =
(
Q(t)T

)−1
ξ = Q(t)ξ ξ ∈ V

that is, they are exactly the same of (3.9). That these solutions have constant
norm, it follows once again from the orthogonality of Q. �
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The rest of the section is devoted to compare the previous results with the existing
literature. Comparison with [1] is rather trivial: Corollaries 3.5 and 3.7 are partic-
ular cases of Theorem 2.2, since condition (2.6) is obtained in both cases.
To do the comparison with [3], we need to strengthen recurrence by requiring that
A and f are both almost periodic. Notice that joint almost periodicity is never
a problem. The analogous of our Corollary 3.5 and Corollary 3.7 in the paper [3]
are Proposition 3.3 and Theorem 3.6 respectively. We start comparing conclusions
which, apparently, are stronger in [3] than here: the authors in [3] grant indeed the
existence of almost periodic solutions of (1.1) instead of bounded ones only. How-
ever, Favard theory applies to pass from bounded solutions to solutions satisfying
(1.4), which are almost periodic since A and f are.
Concerning now the assumptions of the symmetric case, Proposition 3.3 in [3] dif-
fers from our Corollary 3.5 for the class of functions involved in condition (3.7).
In fact, since

〈
f, ξ
〉

is almost periodic, its primitive is almost if and only if it is
bounded.
In the possibly asymmetric case, the comparison between the assumptions of The-
orem 3.6 in [3] and our Corollary 3.7 is more delicate. Indeed the assumptions in
[3] are expressed in a completely different form, which does not involve the adjoint
equation. More precisely, in [3] the authors assume that:

(3.10) KA is purely periodic

and the test condition for the Fredholm Alternative is that:

(3.11)
∫ t

0

〈
f(s), v(s)

〉
ds ∈ AP (R)

for every v solving the following system of conditions:

(3.12)
{
v̇ = KA(t)v
SA(t)v(t) = 0

the second one not even being differential. Notice however that such v is bounded
from the first equation, since KA is antisymmetric, and hence also almost periodic
due to (3.10) and classical Floquet theory: see also the final part of Section 4. Thus
again the primitive of

〈
f, v
〉

in (3.11) is almost periodic if and only if it is bounded.
The following lemma then close the comparison.

Lemma 3.8. Assume A is recurrent and (1.8) holds. Then the solutions of (3.12)
are exactly the bounded solutions of the adjoint equation (1.3).

Proof. It is trivial to check that (3.12) is equivalent to the system of differential
equations:

(3.13)
{
v̇ = A(t)v
v̇ = −A(t)T v

where the adjoint equation plays now a role. The first part of Corollary 3.7 says
that the bounded solutions of the two equations in the system (3.13) are exactly
the same. �
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4. Counterexamples and other results

We start showing that the recurrence of A is optimal for the validity of Theorem 1.1
in the Introduction or, which is equivalent, Corollary 3.7 in the previous section.
Let indeed a > 0 be a bounded and uniformly continuous function satisfying:

a(±∞) = 0 â(−∞) = −∞ â(+∞) < +∞

where we set:

â(t) =
∫ t

0

a(s) ds .

Since 0 is a minimal subset of H(a), the function a is not recurrent. Moreover it is
clear that 0 ∈ σ(a). Consider now the scalar equation:

(4.1) ẋ = a(t)x+ f(t) .

The adjoint equation v̇=−a(t)v has no nontrivial bounded solutions, so that each
continuous function f passes the test (1.2). We claim that, on the contrary, equation
(4.1) does not admit bounded solutions as soon as f is such that:

f(−∞) = c 6= 0 .

Indeed the general solution of (4.1) is:

x(t) = eâ(t)
{
x0 +

∫ t

0

e−â(s)f(s) ds
}
.

Thus applying Hôpital’s rule we have:

lim
t→−∞

x(t) = lim
t→−∞

x0 +
∫ t

0

e−â(s)f(s) ds

e−â(t)
= − lim

t→−∞

f(t)
a(t)

which explodes, showing that x is always unbounded. As a final comment, notice
that:

B(b) = R = V(b) ∀b ∈ H(a)

so that the example works also for the same type of optimality in Theorem 2.2 and
Proposition 2.1.

Next we focus on condition (1.2), discussing whether or not the class of the test
function v is appropriate to obtain for the Fredholm Alternative in some special
recurrent frameworks. When for instance A is purely periodic, Floquet theory says
that the bounded solutions of the adjoint equation (1.3) are almost periodic, ac-
tually even quasi periodic: testing condition (1.2) only on the almost periodic v’s
is then enough, in this case. The results of [3] seem to suggest that the same re-
striction may work when A and f are both almost periodic and the sign condition
(1.8) is satisfied. Indeed, we already proved that this is true when, in addition, A
is symmetric: see the final part of the previous section. To show that, on the con-
trary, the conclusion may be false in the asymmetric case, consider a scalar almost
periodic function a and introduce the antisymmetric matrix:

(4.2) A =
(

0 −a
a 0

)
.
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The sign condition (1.8) holds trivially, even if the sign is reversed. Moreover the
direct equation (1.6) and the adjoint equation (1.3) coincide, and their solutions
all have constant norm. In particular, all of them satisfy condition (2.4) and then
Proposition 2.1 provides a working Fredholm–type Alternative, does not matter
the almost periodic a we take. Assume now a satisfies the following additional
conditions:

(4.3) ā = 0 a 6∈ BP (R; R) .

Lillo proved in [7] that, in this case, none of the solutions to (1.6) or, which is
equivalent, to (1.3) is almost periodic. Thus the weak form of condition (1.2) is
trivially satisfied whatever f is. Next result closes the question, showing that there
exists almost periodic f ’s for which things go wrong.

Proposition 4.1. Asssume a ∈ AP (R) satisfies (4.3) and define A as in (4.2).
Then there exists an almost periodic f such that equation (1.1) does not admit
bounded solutions.

Proof. Arguing by contradiction suppose that, for every f ∈ AP (R), equation (1.1)
admits bounded solutions. Classical Favard theory applies to show it admits also
an almost periodic solution: see for instance [14]. Such almost periodic solution is
unique, since (1.1) has no almost periodic solutions. Summing up, the map:

Lax = ẋ−A(t)x

is a bijection and then a Banach space isomorphism AP 1(R) ∼= AP (R). Consider
now a sequence an of trigonometric polynomials such that:

ān = 0 ‖an − a‖∞ → 0 .

Since the class of isomorphisms is open, eventually the map Lan
must be also an

isomorphism. On the other hand, the solutions of the equation:(
u̇1

u̇2

)
=
(

0 −an
an 0

)(
u1

u2

)
are all almost periodic, inasmuch they write:(

cos ân − sin ân
sin ân cos ân

)(
u10

u20

)
where u10, u20 are the initial data and:

ân(t) =
∫ t

0

an(s) ds

is almost periodic. Thus the kernel of Lan is nontrivial, contradicting the previous
conclusion. �

The last part of the section is devoted to the case where A is purely periodic,
does not matter it has a sign or not, but once more with the aim of discussing the
solvability of equation (1.1) in some suitable class of recurrent functions. We stress
that here we are not interested in the most classical case, namely that where the
nonhomogeneous term f and the solution x are also periodic of the same period
of A: this is well known (see for instance Hale’s textbook [6]) and our condition
(1.5) is not relevant to it. Our concern is instead the solvability when f and x are
required to be almost periodic, or even bounded. The former case has been also
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considered in [6] but left to the reader, see Exercise 1.1 at page 147: out aim here
is to give a complete solution to the exercise.
Theorem 2.2 says that condition (1.5) is relevant to our aim: if it is satisfied, then
the Fredholm–type Alternative we proposed works fine. The point is then to decide
wether or not, beside being sufficient, condition (1.5) is also necessary to our aim.
To prove necessity, we start construction a suitable normal form: we suspect that
the result is known, but we sketch the proof since we are unable to provide an
explicit reference.

Proposition 4.2. Let A be continuous and periodic. Then there exists a quasi–
periodic change of variables Q such that:

D = Q−1
{
AQ− Q̇

}
= diag {D1, . . . , Dn}

in independent of time and each diagonal block Dk is a real Jordan cell:

Dk =


λk 1 0 . . . 0
0 λk 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . λk


for some suitable real eigenvalue λk.

It is not difficult to check that the λk are exactly the Lyapunov exponents of the
solutions of the homogeneous equation (1.6). Notice however that to each exponent
can correspond many different blocks.

Proof. Real Floquet theory applies to show that A is kinematically similar to a
constant matrix C, by means of a periodic change of variables whose period is
twice that of A. We can now such C into its real Jordan canonical form, by means
of a time independent change of variable: see for instance [4]. To complete the
proof, we must ave the better of the real Jordan cells corresponding to complex
eigenvalues of C. Since different cells give rise to uncoupled equations, this can be
done cell by cell. Consider then the equation associated to the real Jordan cell,
corresponding to a complex eigenvalue a+ ib repeated m times. That is:

u̇1

u̇2

u̇3

u̇4

...
u̇2m−3

u̇2m−2

u̇2m−1

u̇2m


=



a −b 1 0 . . . 0 0 0 0
b a 0 1 . . . 0 0 0 0
0 0 a −b . . . 0 0 0 0
0 0 b a . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . a −b 1 0
0 0 0 0 . . . b a 0 1
0 0 0 0 . . . 0 0 a −b
0 0 0 0 . . . 0 0 b a





u1

u2

u3

u4

...
u2m−3

u2m−2

u2m−1

u2m


Let us now consider the rotation:

R(t) =
(

cos(bt) − sin(bt)
sin(bt) cos(bt)

)
and the periodic change of variables u = P (t)v where:

P (t) = diag
{
R(t), . . . , R(t)

}
.
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With some lengthy but straightforward computations one proves that the new equa-
tion is: 

v̇1
v̇2
v̇3
v̇4
...

v̇2m−3

v̇2m−2

v̇2m−1

v̇2m


=



a 0 1 0 . . . 0 0 0 0
0 a 0 1 . . . 0 0 0 0
0 0 a 0 . . . 0 0 0 0
0 0 0 a . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
0 0 0 0 . . . a 0 1 0
0 0 0 0 . . . 0 a 0 1
0 0 0 0 . . . 0 0 a 0
0 0 0 0 . . . 0 0 0 a





v1
v2
v3
v4
...

v2m−3

v2m−2

v2m−1

v2m


To conclude is now sufficient to reorder the components of v, separating those with
odd index from those with even index:

z1 = v1 z2 = v3 . . . zm = v2m−1 zm+1 = v2 zm+2 = v4 . . . zm = v2m

obtaining:

ż =
(
D∗ 0
0 D∗

)
z

where of course z = (z1, . . . , z2m) and D∗ is the m×m Jordan cell:

D∗ =


a 1 0 . . . 0
0 a 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . a


Summing up, we replaced the initial 2m × 2m complex block, with two m × m
real blocks. To obtain such result we have composed four changes of variables: two
which are time independent and two which are periodic, but with possibly unrelated
periods. The composition is then quasi–periodic. �

Next step is to discuss condition (1.5). Since A is kinematically similar to D as in
Proposition 4.2, the arguments of the final part of Section 2 apply to say that this
codition can be equivalently discussed for D itself.

Lemma 4.3. Let D be as in Proposition Proposition 4.2 and assume it has the
zero eigenvalue. Then dF (D) = dS(D) if and only if all the cells corresponding to
the zero eigenvalue are one–dimensional.

From the proof it will be clear that dF (D) is the geometric multiplicity of zero and
dS(D) the algebraic multiplicity.

Proof. It is clear that nonzero eigenvalue of D gives rise to solutions of:

u̇ = Du

which behave exponentially at infinity, and then do not contribute to the Sacker–Sell
dimension of D. Consider then only the cells corresponding to the zero eigenvalue.
Different cells gives rise to uncoupled equations, so that the Favard and the Sacker–
Sell dimensions of D can be obtained by summing the contributions of the single
cells. In other words dF (D) = dS(D) if and only if this is true for every Jordan cell
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corresponding to the zero eigenvalue.
Fix then the attention on the equation corresponding to a single cell:

u̇1

u̇2

...
u̇m−1

u̇m

 =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
0 0 0 . . . 0




u1

u2

...
um−1

um


It is not difficult to check that its Favard dimension is 1 while the Scaker–Sell
dimension is m. Thus the two coincide if and only if m = 1. �

We are finally ready for the main result, which close our solution to the above
mentioned exercise of [6].

Proposition 4.4. Let A be continuous and periodic. If:

(4.4) dF (A) < dS(A)

the there exists a quasi–periodic f such that condition (1.2) is satisfied for ev-
ery bounded solution to (1.3), but nevertheless equation (1.1) does not admit any
bounded solution.

Since it is well known that the Favard separation conditions (FA) and (F ∗A) are
automatically satisfied in view of the periodicity of A, we obtain that the conclusions
of Theorem 2.3 in Section 2 hold, independently of the assumption dS(A) ≤ 2.

Proof. Let D be the matrix considered in Proposition 4.2. Since condition (4.4) is
equivalent to dF (D) < dS(D), in particular we have 0 ∈ σ(D) and hence 0 is an
eigenvalue of D. Moreover we can use Lemma 4.3 to find a Jordan cell for D with
zero eigenvalue and dimension m > 1. We fix now the attention on such cell and
consider the equation:

(4.5)


ż1 = z2 + g1(t)

...
żm−1 = zm + gm−1(t)
żm = gm(t)

where g1, . . . , gm are quasi–periodic functions. The bounded solutions of the cor-
responding adjoint equation: 

ẇ1 = 0
...
ẇ2 = −w1

ẇm = −wm−1

are the one–dimensional space w1 = 0, . . . , wm−1 = 0, wm = wm0. Thus the test
condition (1.2) for equation (4.5) only involves the component gm and writes:

(4.6) gm ∈ BP (R) .

Assume that this condition is satisfied. This implies that the primitives of gm are
quasi–periodic: we denote by Gm the primitive satisfying Gm = 0.
The point is that the existence of bounded solutions for equation (4.5) requires
much stronger conditions, inasmuch it involves other m − 1 conditions which can
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be described recursively. The first one is that determining the boundedness of zm−1

and writes:

(4.7) Gm + gm−1 − gm−1 ∈ BP (R) .

If we now take for gm−1 any quasi–periodic function with mean value zero but
unbounded primitive, the previous condition fails and hence equation (4.5) does
not admit any bounded solutions.
Define now f to be the quasi–periodic function obtained by completing to zero
outside the block (g1, . . . , gm). It is clear that:

ẋ = Dx + f(t)

does not admit bounded solutions but fulfills the test condition (1.2). To conclude
it enough to transfer the counterexample to the original equation (1.1) by setting:

x = Q(t)x f(t) = Q(t) f(t)

where Q is the change of variables involved in Proposition 4.2. Since such Q is
quasi–periodic, the same is true for f . �
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