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Abstract. Fredholm Alternative is a classical tool of periodic linear equa-

tions, allowing to describe the existence of periodic solutions of an inhomoge-
neous equation in terms of the adjoint equation. A few partial extensions have

been proposed in the literature for recurrent equations: our aim is to point

out they have a common root and discuss whether such root gives rise to a
general Fredholm–type Alternative. Sacker–Sell spectral theory and Favard

theory are main ingredients in this discussion: a considerable effort is devoted

to understand how Favard theory is affected by adjunction, at least for planar
equations.

1. Introduction

Consider the inhomogeneous linear differential equation in RN :

(1.1) ẋ = A(t)x+ f(t)

where the matrix A and the vector f are bounded and uniformly continuous func-
tions, typically enjoying some recurrence property. Our concern is solving the
related boundary value problem, that is discussing the existence of a solution x
having the same recurrence properties as A and f . To give a concrete meaning to
the notion, one has to consider the joint hull of A and f namely:

H(A, f) = cls
{

(Aτ, fτ) : τ ∈ R
}

where τ stands for translating by τ and closure is taken in the compact–open topol-
ogy. The hull is a compact metrizable space and translations define a continuous
flow on it, whose recurrence properties reflect those of A and f . We are look-
ing for a solution x which is representable on H(A, f), in the sense that a flow
homomorphism exists:

(1.2) H(A, f)→ H(x) (A, f) 7→ x .

The most classical case of recurrence is clearly when A and f are periodic functions
with the same period T . The hull H(A, f) is a one–dimensional torus and repre-
sentability means being T–periodic too. In this case, classical Fredholm Alternative
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decides which are the inhomogeneous terms f for which (1.1) has representable so-
lutions: see for instance Hale’s book [12]. They are precisely those f which satisfy
the orthogonality condition:

(1.3)
∫ T

0

〈
f(t), y(t)

〉
dt = 0

for every T–periodic solution y of the adjoint equation:

(1.4) ẏ = −A(t)T y .

The main question we face here is whether or not a similar tool is still available when
the exact periodicity is relaxed. Next to periodicity stands almost periodicity while,
as far as possible, but nevertheless with a full dynamical sense, one finds recurrence.
A bounded and uniformly continuous function is called recurrent when its hull is
minimal with respect to the translation flow. Birkhoff Recurrence Theorem grants
that recurrent solutions exist as soon as bounded solutions do but representability
on H(A, f) does not come for free, even if such hull is minimal, expressing the fact
that A and f are jointly recurrent.
As usual in the aperiodic world, the answer to our question depends on the specific
properties of A, among which there are the spectral properties. By σ(A) we mean
the Sacker–Sell spectrum of A, introduced in [25] as the set of real λ’s for which
the homogeneous equation:

ẋ = [A(t)− λI]x
does not admit an exponential dichotomy on the whole R. This is always a
nonempty compact set, made by at most N disjoint closed intervals:

σ(A) = [a1, b1] ∪ · · · ∪ [an, bn] n ≤ N
each spectral interval corresponding, roughly speaking, to the vector space of the
solutions to:

(1.5) ẋ = A(t)x

having Lyapunov exponents in that interval. The bounded solutions are contained
in the vector space corresponding to the spectral interval which zero belongs to.
Both these spaces will play a relevant role here: the former and smaller will be
considered later on, while we denote by:

0 ≤ dS(A) ≤ N

the dimension of the latter and larger and we call it the Sacker–Sell dimension of
A. Using a ∗ to say that we are concerned with the adjoint equation (1.4) instead
of (1.5), it turns out that σ∗(A) = −σ(A) and d∗S(A) = dA(A). The easiest and
most frequently used spectral assumption on A is:

0 6∈ σ(A)

in which case we agree that dS(A) = 0. No need for a Fredholm Alternative to
decide the solvability of the boundary value problem (1.1) in this case: whatever
bounded f we take, the equation (1.1) admits a unique bounded solution, which is
automatically recurrent and representable on H(A, f). This follows directly from
the integral representation of the unique bounded solutions: see for instance Cop-
pel’s book [5]. By the way, notice that 0 6∈ σ∗(A) is also true. In particular, there
are no bounded solutions to the adjoint equation (1.4) but the trivial one: any
reasonable adapted version of the orthogonality condition (1.3) for the recurrent
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framework should be then automatically verified for every f .
The opposite spectral situation, namely:

0 ∈ σ(A)

is considerably more delicate and only few papers investigate Fredholm Alternative
in this case: as far as we know, they reduce to [20], [2], [17] and [32]. Actually [20]
does not apply to recurrent equations: we will discuss it in the final part of the
Introduction. A reasonable candidate for a recurrent Fredhom–type Alternative is
suggested in [32]. The starting point is the same integration by parts which gives
(1.3) in the periodic case, that is:∫ t

0

〈
f(s), y(s)

〉
ds =

[〈
x(s), y(s)

〉]t
0

where x, y are arbitrary solutions to (1.1) and (1.4) respectively. Because of that,
to have a bounded x it is necessary that:

(1.6)
〈
f, y
〉
∈ BP (R; R)

for every bounded y, where BP stands for having bounded primitive. Notice that
such y are much more then those which are representable on H(A) or H(A, f).
As a consequence, when for instance A and f are both T–periodic, condition (1.6)
looks stronger than the classical condition (1.3): in fact, the two conditions are
equivalent, since the latter implies the existence of T–periodic solutions for (1.1)
and hence the validity of the former. The leading idea in [32] is solving the general
recurrent boundary value problem in two moves: first proving that sometimes con-
dition (1.6) is also sufficient for (1.1) to admit bounded solutions, and then invoking
Favard theory to solve the boundary value problem determined by (1.2).
Favard theory dates 1927 with [7] but is still the most general device to solve the
boundary value problem (1.1)–(1.2). The crucial assumption is a quite involved
restriction on A, namely that every nontrivial bounded solution to every homoge-
neous equation in the class:

(1.7) ẋ = B(t)x B ∈ H(A)

must be separated from zero, in the sense that:

inf
t
|x(t)| > 0 .

This is usually called Favard separation condition and we denote it by (FA). In [7]
Favard proved that: under the assumption that (FA) holds and H(A, f) is minimal,
if equation (1.1) has bounded solutions then one of them satisfies (1.2). The actual
need for (FA) is an open question but optimality is well known: see [34], [10] and
[18]. In Section 2 we show that the minimality of H(A, f) is also optimal for the
result. An handier definition of (FA) can be obtained looking at the number d(B)
of independent bounded solutions to the equation (1.7) and to its minimum value
over the hull:

0 ≤ dF (A) = min
B∈H(A)

d(B) ≤ N

which we call Favard dimension of A. In [1] it has been proved that, when H(A) is
minimal, the values dF (A) is always attained at a residual subset of H(A), whose
elements are exactly the B’s for which the nontrivial bounded solutions to the
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corresponding equation (1.7) are separated from zero. As a consequence (see also
[33]) condition (FA) holds if and only if:

dB = dF (A) ∀B ∈ H(A) .

The already commented spectral situation 0 6∈ σ(A) can be revisited in term of
Favard theory. Indeed 0 6∈ σ(A) implies that (FA) holds with the smallest Favard
dimension dF (A) = 0, the same being automatically true for the adjoint equation.
The converse implication is also true, as soon as H(A) is minimal: see [28] and [23].
Coming back to [32], the focus is on the opposite extremal situation: dF (A) = N
that is the Favard dimension is as large as possible. In this case one has σ(A) = {0}
and (FA) holds, if H(A) is minimal: the same is also true for the adjoint equation
since it turns out that d∗F (A) = N . The last fact is finally used to show that
condition (1.6) is sufficient to get bounded solutions to (1.1) and hence to solve the
associated boundary value problem (1.2).
The papers [2] and [17] support the unexpressed conjecture of [32] that the same
conclusions hold for Favard dimensions which are intermediate between 0 and N .
The former deals with almost periodic A and f only, where:

AT (t) = A(t) ≤ 0 ∀t
though the nonsymmetric case is also partially covered. The second applies to a
recurrent damped Hill’s equation:

ẍ+ cẋ+ a(t)x = g(t) c 6= 0

whose homogeneous part is disconjugate in a strong sense. In both cases, it is
possible to show that the direct and the adjoint Favard conditions hold with the
same Favard dimensions and moreover (1.6) is again sufficient to solve the boundary
value problem (1.1)–(1.2). Actually, the two papers use some specialized conditions
whose equivalence with (1.6) is not so manifest: this and other related facts will be
the subject of a forthcoming paper.
Summing up, the current literature seem to suggest that the following conclusions
are generally true for recurrent equations:

1) if (FA) holds then also (F ∗A) does;
2) if (FA) and (F ∗A) hold then dF (A) = d∗F (A);
3) if (FA) and (F ∗A) hold and dF (A) = d∗F (A) then condition (1.6) is sufficient

to solve the boundary value problem (1.1)–(1.2).
We will see that, on the contrary, all these claims may be false. Some general
results nevertheless survive to counter–examples and, we believe, define the scope
of a recurrent Fredholm–type Alternative. The first result we prove is a kind of
common root of all the positive results in the literature.

Theorem 1.1. Assume H(A, f) is minimal and:

(1.8) dF (A) = dS(A) .

Then (FA) and (F ∗A) hold with dF (A) = d∗F (A) and condition (1.6) is sufficient for
(1.1)–(1.2) to admit a solution.

We also show that the minimality of H(A, f) is optimal for the result. More pre-
cisely, though we can prove the existence of bounded uniformly continuous solutions
to (1.1) even when A and f are just bounded and uniformly continuous, in general
none of these solutions satisfy condition (1.2): the ultimate reason is the failure of
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Favard theory, which is commented in Example 3.2 on the basis of the arguments
of Section 2. Notice moreover that:

dF (A) ≤ d(B) ≤ dS(A) ∀B ∈ H(A) .

While the first inequality cannot be sharp in the whole H(A), by the very defini-
tion of Favard dimension, the second is sharp when for instance the homogeneous
equation (1.5) admits solutions with polynomial growth in time.
Condition (1.8) is not new in the literature: with a different formulation, it appears
indeed in the Sacker and Sell paper [24], to prove a decomposition of the solution
space of (1.5) into the direct sum of the stable, unstable and center manifolds,
which is indeed a special special instance of their future Spectral Theorem in [25].
A warning is however due about condition (1.8). On the one hand, it seems un-
necessarily restrictive: when A and f are both T–periodic, all the conclusions of
Theorem 1.1 are actually true even if (1.8) is not satisfied. On the other hand, it
must be pointed out that we are dealing here with a different and harder problem:
even admitted that A is periodic, we are indeed trying to have the better of every
recurrent term f . Next result confirms that such difference is crucial: it shows that,
at least for equations with a low dimensional bounded dynamics, condition (1.8) is
not only sufficient but even necessary for solving the problem.

Theorem 1.2. Assume that dS(A) ≤ 2 and (FA) and (F ∗A) hold. If condition (1.6)
is sufficient to solve the boundary value problem (1.1)–(1.2) for every f such that
H(A, f) is minimal, then dF (A) = dS(A).

The equality dF (A) = d∗F (A) is not mentioned, because is automatic under the
assumptions of the theorem. Moreover, it is not difficult to guess that the critical
situation is when the Favard dimensions are 1 and the Sacker–Sell dimension is 2:
in this case, the inhomogeneous term f breaking down the Fredholm Alternative is
such that H(A, f) is minimal aperiodic.
A key device for proving Theorems 1.1 and 1.2 is changing variables, which per-
mits to deal with simpler recurrent equations. For instance, it is always possible
to transform (1.5) into a triangular equation or a block–diagonal one, although the
price to pay is having a weaker form of recurrence than A(t) and f(t): see [11],
[4], [19] and [6]. The general notion of change of variables is provided in Section 6,
where Theorems 1.1 is also proved by distilling the arguments of [32]. The proof
Theorem 1.2 is done in Section 9 and is based on the analysis of triangular planar
recurrent equations, conducted in Section 7 and Section 8: roughly speaking, we
find a restricted number of normal forms which account for all the relevant prop-
erties of these equations and are also essential to find the counter–examples to the
aforementioned claims 1), 2) and 3).
The Sections from 2 to 5 are essentially devoted to prerequisites, but all contain
something new or at least quite overlooked by the current literature. Section 2 intro-
duces some properties of minimal sets but also enters into the details of the notion
of representability: they are common knowledge in the almost periodic framework
only, while we need to understand better the general minimal case. This better
understanding is used in Section 3 to show why and how Favard theory fails for
nonrecurrent equations, after having introduced such theory and spectral theory
too. In Section 4 the key condition (1.6) is introduced and its properties investi-
gated: they allow to obtain Theorem 1.1 from our general theory. Finally, Section 5
is devoted to scalar recurrent equations and to a couple of overlooked results which
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are also crucial for the construction of counterexamples. Both of them refer to
functions that have zero in their spectrum but unbounded primitive: the former is
a general existence theorem for such functions, which is widely known in the almost
periodic case but apparently not in the recurrent one, while the latter is due to Ko-
zlov [13] and concerns some fine properties of the primitives in the quasi–periodic
case.
We conclude the Introduction by commenting a result in [20], which seems to sug-
gest that (1.6) may be not the appropriate condition to give a Fredholm–type
Alternative. In a part of that paper, Palmer study equation (1.1) when A(t) and
f(t) are just bounded and continuous, under the assumption that (1.5) has an
exponential dichotomy on both R+ and R−. The conclusion is that (1.1) admits
bounded solutions if and only if:

(1.9)
∫ +∞

−∞

〈
f(t), y(t)

〉
dt = 0

is satisfied for every bounded solution y(t) of the adjoint equation (1.4). This fact
prevents (1.6) to be sufficient for the same conclusion: under Palmer assumption
indeed, equation (1.5) and (1.4) may have nontrivial bounded solutions, but all of
them must decay exponentially as |t| → ∞ and hence condition (1.6) is empty. The
point is that this cannot occur when A(t) is recurrent, since having an exponential
dichotomy on a half–line is equivalent to 0 ∈ σ(A), implying that condition (1.9) is
also empty: see Coppel’s book [5] for a proof.

Notations.
The symbols |x| and

〈
x, y
〉

stand for Euclidean norm and inner product in RN ,
while L(N) and GL(N) denote the N×N matrices and invertible matrices with
real entries respectively.
The Greek capital letters Θ,Ω,Σ denote compact metrizable spaces endowed with
continuous real flows θt, ωt, σt, which we simply call compact flows. To the flow
we associate a derivative D along the flow: by f ∈ BP (Θ; RN ) we mean that there
exists f̂ ∈ C(Θ; RN ) such that Df̂ = f . We also set:

fθ(t) = f(θt) fθ(t) =
∫ t

0

f(θs) ds

for every θ ∈ Θ. Finally, most of the equations we consider are parameterized over
compact flows: is (∗) is one of these equations, we denote by (∗)θ the equation
corresponding to the value θ of the parameter.

2. Minimal hulls and representability

The aim of the section is twofold: to recall some basic properties of minimal flows
and to introduce and comment the appropriate notion of representability of func-
tions on these flows.



7

Standing assumption. In all the paper Θ,Ω ... stand for metrizable topological
spaces which which are at least compact, endowed with real flows θt, ωt ... which
are continuous. We call them compact flows.
A compact flow Θ is pointed when θ0R = Θ for some θ0 ∈ Θ; in this case, we also
say that Θ is pointed at θ0. In concrete applications pointed flows appear as hulls
of some suitable functions. Consider indeed the class C(R;X) of the continuous
functions on a finite dimensional Banach space X, endowed with the compact–open
topology. This is a metrizable topology. Setting:

(uτ)(t) = u(t+ τ) ∀u ∈C(R;X) ∀τ, t ∈ R

defines a continuous flow on C(R;X), which is usually called Bebutov flow. Given
u ∈ C(R;X) we define the hull of u as the closed subset:

H(u) = uR .

The space H(u) is connected and naturally pointed at u. If moreover it is compact,
then we can give it the name of pointed flow: this happens if and only if u is
bounded and uniformly continuous, see [29] for a proof.
Here we are mostly interested in functions u which are recurrent, in the sense that
when their hull H(u) is not only compact but also minimal for the Bebutov flow. By
minimal subset of a compact flow Θ we mean a nonempty closed invariant M ⊂ Θ
which does not admit any proper subset of the same type: such M ’s always exist
due to the Birkhoff Recurrence Theorem. When the only possible M is Θ itself, we
say that Θ is minimal. This is equivalent to say that θR = Θ for every θ: in other
words, Θ is pointed with respect to every point θ.
Periodicity and almost periodic are the most important cases of recurrence. In the
literature, almost periodicity has different and often nonequivalent meanings. Here
we choose the stronger one: according to [31], we say that Θ is almost periodic
when there exists a θ ∈ Θ such that the flow line t 7→ θt is an almost periodic
function in the classical sense of Bohr and moreover its orbit is dense in Θ. All the
flow lines can be easily proved to share the same properties, so that Θ is actually
minimal. By further specializing almost periodicity we finally get a periodic Θ:
now all the flow lines are obtained by translating a single periodic one, and then
all of them have the same period and the same orbit, that is the whole Θ.
Coming back to the general case, it is well known that Θ is minimal if and only
if all its points are recurrent. Given a compatible metric d, the recurrence of the
point θ means that for every ε > 0 the set of τ for which:

d(θτ, θ) < ε

is relatively dense in R, that is there is a (inclusion) length L > 0 such that the
set intersects every interval of length L. See [30] for a proof. Next lemma states a
minor variation of the recurrence property, which we state without proof: we will
need this technical fact in Section 7 only.

Lemma 2.1. Let Θ be minimal and θ0, θ1 ∈ Θ two arbitrary points. Then for every
δ > 0 there exist a relatively dense T ⊂ R and ρ > 0 such that:

d
(
θ0(τ + s), θ1

)
< δ

for every τ ∈ T and |s| < ρ.
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Compact flows have a natural order, which will be crucial to define the recurrent
Fredholm Alternative in Section 6. To introduce such order, let us first define an
homomorphism ϕ : Ω→ Θ between compact flows as a continuous map preserving
the flows:

ϕ(ωt) = ϕ(ω)t ∀ω ∈ Ω ∀t ∈ R .

Notice that, by combining the compactness of Ω and continuity of ϕ one gets the
following useful technical fact:

(2.1) ϕ
(
ωR
)

= ϕ(ω)R ∀ω ∈ Ω

This implies that homomorphisms send minimal sets into minimal sets, and hence
are epimorphisms when the target space is minimal. Similarly, if Θ is pointed with
respect to θ0 and ϕ(ω0) = θ0, then ϕ is again an epimorphism:

ϕ(Ω) ⊃ ϕ
(
ω0R

)
= θ0R = Θ

When there exists an epimorphism Ω→ Θ we say that Ω extends Θ and we write:

Ω � Θ .

This order structure is directed in the category of compact flows. Given indeed any
two compact flows Θ and Θ̂, we can construct the product flow:

(2.2) Ω = Θ× Θ̂
(
θ, θ̂
)
t =

(
θt, θ̂t

)
ed observe that Ω � Θ and Ω � Θ̂ with projections in the role of epimorphisms.
By slightly modifying the arguments, we can also direct the order in the smaller
category of minimal flows: for it is enough to replace Ω in (2.2) with any minimal
subset of itself: the restricted projections are again surjective, since the target
spaces Θ and Θ̂ are minimal.
After these premises, we start now with the main concern of the section: the
representability of functions on compact flows and its properties. We say that
u ∈ C(R;X) is representable on Θ at a given θ0 ∈ Θ when there exists a function
U ∈ C

(
θ0R ;X

)
such that:

(2.3) u(t) = U(θ0t) ∀t .

The represented function u is automatically uniformly continuous. Since the repre-
senting function U is clearly unique, with a little abuse we say that C

(
θ0R ;X

)
is

the class of representable functions at θ0. Notice that Tietze’s Theorem would allow
to extend U to the whole Θ but uniqueness is lost and characterization becomes
more problematic.
Two other features of representability deserve some attention. The first one is that
representability is preserved under extensions. Assume indeed that (2.3) holds and
denote by ϕ the epimorphism responsible for Ω � Θ. After choosing any ω0 ∈ Ω
such that ϕ(ω0) = θ0 we have:

U(ϕ(ω0t)) = U(θ0t) = u(t) ∀t

and hence U ◦ ϕ represents u on Ω at ω0 and is well defined on ω0R because of
(2.1). The second feature is that H(u) is the most obvious compact flow where to
represent a bounded and uniformly continuous function u. Indeed U(v) = v(0) is a
continuous function on the whole H(u) satisfying:

U(ut) = (ut)(0) = u(t) ∀t
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and hence is the unique function representing u on H(u) at the point u itself. This
is a kind of minimal representation, as the next proposition suggests. Statement
and proof are variations of some results by S̆c̆erbakov in [26].

Proposition 2.2. A bounded and uniformly continuous u is representable on Θ at
θ0 if and only if one of the following equivalent conditions is satisfied:

(1) for every choice of the involved time sequences, if d(θ0τn, θ0sn) → 0 then
also |uτn − usn| → 0

(2) an homomorphism ϕ : θ0R→ H(u) exists with ϕ(θ0) = u

Because of (1) the returning sequences for θ0 also are returning sequences for u,
explaining why representability is related to boundary value problems: see [26]
for more comments. Moreover, as a consequence of (2) we have θ0R � H(u),
accounting for the minimality we claimed before the statement. Property (2) is
also the reason for which it is not convenient thinking of a representing function
as defined on the whole Θ: a similar extension for the homomorphism ϕ involved
in (2) would be indeed rather problematic. Notice finally that, if θ0R is minimal,
then u is automatically recurrent: the hull H(u) is indeed the image of a minimal
set under an homomorphism, and hence is minimal itself.

Proof. That representability implies (1) follows from the uniform continuity of the
representing function, while (2) implies representability since the latter is preserved
by extensions. To close the circle, it enough to prove that (1) implies (2). For notice
that the map:

θ0τ ∈ θ0R 7→ uτ ∈ H(u)
is well defined and uniformly continuous because of (1), and hence extends to a
unique continuous map ϕ : θ0R → H(u). By definition ϕ(θ0) = u and, to prove
that it is an homomorphism, suppose θ0τn → θ and observe that θ0(τ + τn) → θτ
for every τ . Thus:

ϕ(θτ) ← (uτn)τ → ϕ(θ)τ
follows from the continuity of the extension. �

Next we tune representability on the application to differential equations. Given
a compact flow Θ and two maps A ∈ C(Θ;L(N)) and f ∈ C(Θ; RN ), we consider
the family of differential equations:

(2.4) ẋ = A(θt)x+ f(θt)

where the parameter θ ranges in the whole Θ. Imagine we know a solution x0(t)
of the equation (2.4)θ0 which is representable on Θ at the point θ0, and denote by
x ∈ C

(
θ0R ; RN

)
the representing function. For every θ ∈ θ0R the slice:

xθ(t) = x(θt)

is again a representable function on Θ, but now at the point θ. Moreover, standard
arguments apply to show it is a solution to the corresponding equation (2.4)θ.
An equivalent but more intrinsic way to express this fact, is by introducing the
derivative along the flow :

Dx(θ) = lim
t→0

x(θt)− x(θ)
t

and asking that x is a continous solution of the abstract differential equation:

(2.5) Dx = A(θ)x+ f(θ)
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though not in the whole Θ but in the compact subset θ0R only. The desirable
notion of representable solution is that, on the contrary, this happens for every θ:
this is automatic when Θ is minimal or at least pointed at θ0, which are the cases
we are really interested in, but not in all the other cases. In Section 3 we will
present a concrete example where the gap cannot be filled, using it to show that
minimality is optimal for Favard theory: see Example 3.2 there. These comments
justify the following definition, whose role is just expressing a very classical notion
in a different and more compact guise.

Definition 2.3. By representable solution of (2.4) we mean a function x ∈ C(Θ; RN )
such that Dx exists on the whole Θ and satisfies equation (2.5).

Notice that Dx is also continuous from the equation: we denote this fact by say-
ing that x ∈ C1(Θ; RN ). Similarly to representable functions, also representable
solutions are preserved by extensions. To be more precise, assume that:

Ω � Θ

and use the involved epimorphism ϕ to extend equation (2.4) into:

(2.6) ż = (A ◦ ϕ)(ωt)z + (f ◦ ϕ)(ωt) ω ∈ Ω .

Equation (2.6)ω coincides with equation (2.4)ϕ(ω) for every ω ∈ Ω, so that solutions
are exactly the same. However, Ω has in general weaker recurrence properties than
Θ and this may affect the representability of solutions. Of course all continuous
solutions x of the equation (2.5) give rise to continuous solutions z = x ◦ ϕ of the
equation:

Dz = A(ϕ(ω))z + f(ϕ(ω))

but the latter may have other continuous solutions.
We end the section by coming back to the framework of the Introduction, where a
single equation:

(2.7) ẋ = A(t)x+ f(t)

is considered, with A and f bounded and uniformly continuous. The smallest com-
pact flows where we can represent both these functions is their joint hull H(A, f).
Notice also that H(A, f) may be not minimal, also when H(A) and H(f) separately
are. The representing functions at the point (A, f) are:

A(B, g) = B(0) f(B, g) = g(0)

and give the way to merge (2.7) into the continuous family of equation:

ẋ = A((B, g)t)x+ f((B, g)t)
= B(t)x+ g(t)

(B, g) ∈ H(A, f) .

Because of Proposition 2.2, the representable solutions we considered in the Intro-
duction are the solutions of (2.7) which are representable functions on H(A, f) at the
point (A, f): since H(A, f) is pointed at (A, f) they coincide with the representable
solution we defined above. Finally notice that the homogeneous equation:

ẋ = A(t)x

can be represented either in H(A, f) and in H(A). Since H(A, f) � H(A) by means
of the obvious projection, to some extent the choice is immaterial.
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3. Spectral theory and Favard theory

In this section we fix a compact flow Θ and a continuous map A : Θ→ L(N) into
the space of the N ×N real matrices, with the aim of studying the class of linear
homogeneous equations:

(3.1) ẋ = A(θt)x

for θ varying in Θ. We say that Θ is the hull of the equation (3.1) and, to refer to
single equation in the class, we use the symbol (3.1)θ.
We denote by φA(t, θ) the Cauchy operator associated to the equation (3.1), that
is the unique matrix solution satisfying:

φA(0, θ) = I ∀θ ∈ Θ .

With it, one can introduce a so called linear skew–product flow:

(θ, ξ)t = (θt, φA(t, θ)ξ)

namely an autonomous flow on Θ×RN , which retains all the features of the non au-
tonomous equation (3.1) and has been extensively studied in the literature. Before
summarizing some results we need later on, let us introduce the following notation:

Bθ(A) =
{
ξ ∈ RN : sup

t
|φA(t, θ)ξ| < +∞

}
to denote the initial data producing bounded solutions to (3.1)θ for a given θ ∈ Θ.
As we will see, the consistency of these vector spaces determines most of the features
we are interested in.
This is for instance the case of the classical notion of exponential dichotomy. The
equation (3.1) or the matrix A are said to have this property over R when constants
K,α > 0 exist such that the following exponential estimates hold:

(3.2)

∥∥φA(t, θ))Pθ φA(s, θ)−1
∥∥ ≤ Ke−α(t−s) ∀t ≥ s∥∥φA(t, θ))(I − Pθ)φA(s, θ)−1
∥∥ ≤ Ke−α(s−t) ∀s ≥ t

for every θ ∈ Θ and for a suitable choice of the projections Pθ ∈ L(N). Each Pθ
is easily seen to be uniquely defined and to depend continuously on θ: see [5] and
[23] for more details on the subject. When A has an exponential dichotomy, it is
clear that:

Bθ(A) = {0} ∀θ ∈ Θ
while the converse is true for minimal Θ’s, giving rise to a very convenient charac-
terization of exponential dichotomy. The proof of this fact has been independently
obtained in [23] and [28].
The Sacker–Sell spectrum σ(A) has been introduced in [25] as the set of real λ’s
such that the equation:

ẋ =
[
A(θt)− λI

]
x

does not admit an exponential dichotomy. In view of the previous characterization,
when Θ is minimal:

(3.3) σ(A) =
{
λ ∈ R : Bθ(A− λI) 6= {0} for some θ ∈ Θ

}
.

For a general but connected compact flow Θ, the spectrum is a nonempty compact
subset of R, made by at most N closed intervals:

σ(A) = [a1, b1] ∪ · · · ∪ [an, bn] n ≤ N
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which are possibly degenerate. To each interval [ak, bk] corresponds an invariant
vector subbundle of Θ × RN which, roughly speaking, consists of the initial data
of solutions having Lyapunov exponents in this interval. The Spectral Theorem in
[25] asserts that these vector subbundles are independent and decompose the whole
Θ×RN . For our purposes, the most relevant of these subbundle is that associated
to 0 ∈ σ(A). We denote it by V(A) and recall that its fibers are given by:

(3.4) Vθ(A) =
{
ξ ∈ RN : lim

t→−∞
e−µtφA(t, θ)ξ = 0 = lim

t→+∞
e−λtφA(t, θ)ξ

}
where µ < ak ≤ bk < λ defines any open neighborhood of the spectral interval
[ak, bk] 3 0 which avoid any other spectral interval. Its dimension is independent
of θ since Θ is connected. We call it Sacker–Sell dimension of A and denote it by:

dS(A) = dim (Vθ(A)) .

Of course we agree that Vθ(A) = {0} and dS(A) = 0 when 0 6∈ σ(A). With this
agreement, the following inclusion becomes always true:

Bθ(A) ⊂ Vθ(A) ∀θ .

The second ingredient we need is Favard theory, which is also concerned with the
behavior of the bounded solutions to (3.1). The so–called Favard condition writes
as:

(FA) inft |φA(t, θ)ξ| > 0 ∀θ ∈ Θ, ∀ξ ∈ Bθ(A) \ {0}

and then it is automatically satisfied for those θ where Bθ(A) = {0}. Given a
term f ∈ C(Θ; RN ), Favard condition is crucial to guarantee the existence of rep-
resentable solutions of the inhomogeneous equation:

(3.5) ẋ = A(θt)x+ f(θt)

in the sense we already introduced in Section 2. Next result has been stated and
proved in [7] for almost periodic flows, but the same proof actually works for min-
imal flows: see [21].

Theorem 3.1. Assume Θ is minimal and (3.5) admits bounded solutions. If more-
over (FA) is satisfied then:

Dx = A(θ)x+ f(θ)

admits a solution x ∈ C(Θ; RN ).

Notice that, due to minimality of Θ, either all the equations (3.5)θ admit bounded
solutions or no one does: this follows from standard compactness arguments and
clarifies the previous statement. Next example shows that Favard Theorem may
fail when Θ is not minimal, even if each equation (3.5)θ admits bounded solutions
and some of them are representable on Θ at some suitable point. This is rather
in contrast with spectral theory that, to a large extent, applies to every connected
compact flow.

Example 3.2. Let f > 0 be an even bounded and uniformly continuous function,
which vanishes and is integrable at infinity, and set:

F (t) =
∫ t

0

f(s) ds c = F (+∞) = −F (−∞) > 0 .
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We claim that the inhomogeneous equation:

(3.6) ẋ = g(t) g ∈ H(f)

satisfies all the assumptions of Theorem 3.1 but for the non minimality of the
pointed flow:

Θ = H(f) = {fτ : τ ∈ R} ∪ {0}
while conclusion fails. Favard separation condition clearly holds, since ż = 0 is the
unique homogeneous equation involved. Moreover, the general solution of (3.6) is:

(3.7) x(t) = x0 +
{
F (t+ τ)− F (τ) g = fτ
0 g = 0

where x0 stands for the initial value. All these solutions are bounded. Those
corresponding to g = 0 are constant and then representable on H(f) at any point
g ∈ H(f) we like and in particular at g = 0, which is the only point we are
interested in. However, since 0 is a fixed point in H(f), they possibly do not
extend to representable solutions of (3.6), in the sense of Definition 2.3. After an
integration, representable solutions are easily seen to be the u ∈ C(H(f)) satisfying:

u(gt)− u(g) =
{
F (t+ τ)− F (τ) g = fτ
0 g = 0

Next we show that actually such solutions cannot exist. Suppose by contradiction
we have one and consider the slice x(t) = u(ft). Since ft → 0 as t → ±∞ by
continuity we should have:

x(+∞) = u(0) = x(−∞) .

On the other hand ẋ = f(t) so that from (3.7) we have:

x(+∞)− x(−∞) = {x0 + F (+∞)} − {x0 + F (−∞)} = 2c > 0

which contradicts the previous conclusion, proving the claim.

Although necessity is an open problem, it is well known since longtime that (FA)
is optimal for the validity of Theorem 3.1, even if we restrict ourselves to the Θ’s
which are almost periodic: see [34], [10] and [18]. However, testing (FA) in concrete
situations is not always an easy task. A quite helpful tool for that has been provided
in [33] and [1]. To introduce it, let us give the name:

dθ(A) = dim
(
Bθ(A)

)
to the number of independent bounded solutions to (3.1)θ and consider their mini-
mal value, together with the subset of Θ where it is attained:

dF (A) = min
θ∈Θ

dθ(A) ΘF (A) =
{
θ ∈ Θ : dθ(A) = dF (A)

}
.

The number dF (A) will be called the Favard dimension of A or the equation (3.1).
The corresponding set ΘF (A) is clearly an invariant subset of Θ. In [1] the following
result is proved.

Theorem 3.3. Assume Θ is minimal. Then the set ΘF (A) is residual in Θ and
θ ∈ ΘF (A) if and only if:

inf
t
|φA(t, θ)ξ| > 0 ∀ξ ∈ Bθ(A) \ {0} .
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Here residual must be intended as large in the classical Baire sense, that is a
countable intersection of open and dense subsets of Θ. Because of this theorem, in
minimal Θ’s Favard condition (FA) writes equivalently as ΘF (A) = Θ or, more
explicitly as the following purely dimensional fact:

(3.8) dθ(A) = dF (A) ∀θ ∈ Θ .

This is also equivalent to say that the bounded fiber space:

B(A) =
⋃
θ

{θ} × Bθ(A)

is actually a subbundle of Θ × RN . Characterization (3.8) was already obtained
in [33] and allows to quickly reobtain all the known cases were (FA) is satisfied,
like for instance a periodic Θ or a minimal Θ but dF (A) = N : it will be crucial
in many parts of the present paper, like for instance the proof of Theorem 7.5 and
its consequences. It is worth to stress that the validity of this characterization and
Theorem 3.3 depends on the minimality of Θ: see [1]. We conclude by pointing out
a frequent case in the applications.

Lemma 3.4. Assume Θ is minimal. If 0 ∈ σ(A) and dF (A) = 0 then (FA) fails.

Proof. The spectral characterization (3.3) says that dθ0(A) ≥ 1 for some suitable
θ0 ∈ Ω. On the other hand, we know dθ(A) = 0 for a residual set of θ’s. Then the
conclusion follows from Theorem 3.3. �

4. Adjoint equation and extremal Favard dimensions

The adjoint equation to (3.1) is the equation:

(4.1) ẏ = −A(θt)T y

whose Cauchy operator is:

(4.2) φ∗A(t, θ) := φ−AT (t, θ) =
{
φA(t, θ)T

}−1
.

We agree to label with ∗ all the quantities when they are referred to the adjoint
equation, instead of the direct one. For instance, we will write:

σ∗(A) = σ(−AT ) d∗F/S(A) = dF/S(−AT ) (F ∗A) = (F−AT )

to denote the spectrum, the Sacker–Sell/Favard dimensions and the Favard sepa-
ration condition for the adjoint equation (4.1), respectively. A well known point is
that spectral theory behaves quite smoothly with respect to adjunction, since for
instance:

σ∗(A) = −σ(A) d∗S(A) = dS(A)
where connectedness of Θ is required for the second statement.
Whether or not similar conclusions hold for Favard theory, is one of the main
questions we face in the present paper. For instance, this is certainly the case when
Θ is periodic. We know indeed that (F ∗A) and (FA) hold simultaneously and, using
Floquet theory, it is not difficult to check that:

d∗F (A) = dF (A) .
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The equality is true and (FA) and (F ∗A) are equivalent also for scalar equations
on a minimal Θ (see Section 5) while things are much more complicate in higher
dimensions: see the discussion at the end of the section. On the contrary, it is
not difficult to check that things may go wrong even in the scalar case, if Θ is not
minimal: see for instance the subsequent Example 4.2.
Let us now consider the inhomogeneous equation:

(4.3) ẋ = A(θt)x+ f(θt) .

Our aim is to use Favard theory to construct representable solutions on Θ, but for
that we need first to guarantee that bounded solutions for (4.3) do exist. By means
of a straightforward integration by parts one see that, if for some θ the equation
(4.3)θ admits a bounded solution, then the following condition:

(4.4)
〈
fθ , φ

∗
A(·, θ)ζ

〉
∈ BP (R; R) ∀ζ ∈ B∗θ(A)

must be satisfied for the same θ. A large part of our investigation is deciding wether
this condition is also sufficient to get a bounded solution for (4.3)θ.
Before facing the question however, an obstruction must be removed. Notice indeed
that, at least when Θ is minimal, having bounded solutions to (4.3) is independent
of θ. If we pretend that (4.3)θ has bounded solutions if and only if condition (4.4)θ
is satisfied, then also the latter must be independent of θ. Next lemma says this is
actually the case when the appropriate Favard condition is satisfied.

Lemma 4.1. Assume Θ is minimal and (F ∗A) holds. If condition (4.4) is satisfied
for some θ0 ∈ Θ then it is for all θ ∈ Θ.

Proof. Use the minimality of Θ to find a sequence τn such that θ0τn → θ. Since
B∗θ0(A) is finite dimensional, possibly passing to a subsequence the following limit:

Lζ0 := lim
n→+∞

φ∗A(τn, θ0)ζ0

exists for every ζ0 ∈ B∗θ0(A). Standard a priori estimates show that L is a linear
map B∗θ0(A) → B∗θ(A). In fact, we can say more: due to the validity of (F ∗A), the
map L is an isomorphism. Consider indeed an arbitrary ζ0 6= 0 and notice that:

δ0 := inf
t
|φ∗A(t, θ0)ζ0| > 0

due to (F ∗A). By the very definition of L we deduce |Lζ0| ≥ δ0 > 0 and hence that
Lζ0 6= 0. Summing up, L is injective and to conclude it’s enough to remember that
B∗θ0(A) and B∗θ(A) have the same dimension, again due to (F ∗A): see Theorem 3.3
and the comments thereafter.
Consider now an arbitrary ζ∈B∗θ (A) and define ζ0 =L−1(ζ)∈B∗θ0(A). By hypoth-
esis we known there exists M ≥ 0 such that:∣∣∣∣∫ t

0

〈
f(θ0s), φ∗A(s, θ0)ζ0

〉∣∣∣∣ ≤M ∀t .

Thus, as a consequence of the classical cocycle identity we get:∣∣∣∣∫ t

0

〈
f((θ0τn)s), φ∗A(s, θ0τn)φ∗A(τn, θ0)ζ0

〉∣∣∣∣ =
∣∣∣∣∫ t

0

〈
f(θ0(s+ τn), φ∗A(s+ τn, θ0)ζ0

〉∣∣∣∣
=
∣∣∣∣∫ t+τn

0

〈
f(θ0s), φ∗A(s, θ0)ζ0

〉
−
∫ t

0

〈
f(θ0s), φ∗A(s, θ0)ζ0

〉∣∣∣∣ ≤ 2M
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independently of n. Passing to the limit as n→ +∞ we finally obtain:∣∣∣∣∫ t

0

〈
f(θs), φ∗A(s, θ)ζ

〉∣∣∣∣ ≤ 2M

for every t ∈ R, showing that (4.4)θ is satisfied. �

The assumptions of Lemma 4.1 are optimal, even for scalar equations. The coun-
terexample showing the optimality of (F ∗A) needs Koszlov functions, so that we
postpone it till the end of Section 5. Next we show that thing may go wrong, when
minimality of Θ is weakened into being pointed at θ0.

Example 4.2. Let a be a bounded and uniformly continuous function such that:

a(−∞) = 0 = a(+∞) A(±∞) = −∞ .

where we set A(t) =
∫ t

0
a(s) ds. On the nonminimal pointed flow:

H(a) = {aτ : τ ∈ R} ∪ {0}

we consider the inhomogeneous equation:

ẋ = b(t)x+ 1 b ∈ H(a) .

The involved adjoint equation is ẏ = −b(t)y and the general solution solution is:

y(t) = y0

{
eA(τ)−A(t+τ) b = aτ
1 b = 0

where y0 stands for the initial value. All these equations satisfy the Favard separa-
tion condition, those corresponding to b = aτ since they have no bounded solutions
but the trivial one. Consider now f ≡ 1: then condition (4.4) is satisfied at the
point a ∈ H(a) while clearly is not at 0 ∈ H(a).

Summing up, when Θ is minimal and (F ∗A) is satisfied, we can hope that the nec-
essary condition (4.4) is also sufficient for (4.3) having bounded solutions. If this
is the case and (FA) is moreover satisfied, then Theorem 3.1 applies to guarantee
that:

(4.5) Dx = A(θ)x+ f(θ)

admits continuous solutions. Whether or not such approach really succeeds, turns
out to depend on the matrix A ∈ C(Θ;L(N)): next we present a couple of known
cases where this happens. The first one is:

0 6∈ σ(A) .

In this case, everything works fine for a general compact flow Θ, possible not min-
imal. Conditions (FA) and (F ∗A) hold indeed with Favard dimensions zero. More-
over, for every θ ∈ Θ condition (4.4)θ is empty and equation (4.3)θ it is well known
to admit a unique bounded solution xθ. From the integral representation of such
solutions (namely without using Favard Theorem) one gets that (4.5) admits a
unique continuous solution:

x(θ) =
∫ 0

−∞
Pθ φA(s, θ)−1f(θs) ds −

∫ +∞

0

(I − Pθ)φA(s, θ)−1f(θs) ds
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where the Pθ’s are the projectors involved on the definition of exponential di-
chotomy, see formula (3.2).
The second case where things work fine, though not for the general Θ, is:

dF (A) = N .

In [32] the following result is proved, for a general Θ: we sketch the proof since it
is the only way to make clear the role of the key condition (4.4) in our approach.

Proposition 4.3. Assume dF (A) = N and (FA) holds. Then σ(A) = {0} and
(F ∗A) also holds with d∗F (A) = N . If moreover (4.4)θ is satisfied for a given θ, then
all the solutions of (4.3)θ are bounded.

Proof. Fix an arbitrary θ ∈ Θ. There exists constants 0 < m ≤ M < +∞ such
that:

m|ξ| ≤ |φA(t, θ)ξ| ≤ M |ξ|
for every ξ ∈ RN and every t ∈ R. The right inequality follows from dF (A) = N and
the finite dimensionality of RN . The left inequality is obtained by contradiction,
using the right one and the validity of (FA). In particular, from the right inequality:

lim
t→−∞

e−µt φA(tθ) = 0 = lim
t→+∞

e−λt φA(tθ)

for every µ < 0 < λ, which in turn implies σ(A) = {0}. Using now (4.2) we deduce:
1
M
|ξ| ≤ |φ∗A(t, θ)ξ| ≤ 1

m
|ξ|

for every ξ ∈ RN and every t ∈ R. In particular (F ∗A) holds with d∗F (A) = N . To
conclude, assume now that (4.4)θ is satisfied and observe that:〈 ∫ t

0

φ−1
A (s, θ)f(θs) ds, ζ

〉
=
∫ t

0

〈
f(θs), φ∗A(s, θ)ζ

〉
ds

for every ζ ∈ RN , showing that the integral on the left hand side is uniformly
bounded in t. �

The optimality of (FA) for the proposition is also proved in [32]. Due to Theorem
3.3, when Θ is minimal, the validity of (FA) actually follows from dF (A) = N . In
this case, Theorem 3.1 applies to get the desired conclusion.

Corollary 4.4. Assume Θ is minimal and dF (A) = N . Then (FA) and (F ∗A) hold
with d∗F (A) = N and, if moreover (4.4) is satisfied, then (4.5) admits continuous
solutions.

In the statement, no more reference to any particular θ is done: this is possible due
to Lemma 4.1. As for Favard Theorem, next example shows the minimality of Θ is
optimal for the validity of Corollary 4.4.

Example 4.5. It is sufficient to look a bit closer at Example 3.2. The homogeneous
equation ż = 0 is self–adjoint and fulfills the Favard separation condition with
maximal Favard dimension N = 1. Condition (4.4) writes as:

g ∈ BP (R; R)

and then is satisfied for every g ∈ H(f), in view of the integrability of f . All the
solutions to (3.6) are bounded, according to Proposition 4.3, but we know from
Example 3.2 that there are no representable solutions.
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The pending question is whether of not similar conclusions hold when Θ is minimal
and:

0 ∈ σ(A) 0 < dF (A) < N .

On the one hand, we will show that anything that can go wrong, will go wrong
sometimes. For instance, there are cases where (FA) and (F ∗A) are not equivalent.
Moreover, when they are both satisfied, it may happen that dF (A) 6= d∗F (A). The
lowest dimensions are however exceptional, from this point of view.

Lemma 4.6. Assume that Θ is minimal and N ≤ 2. If (FA) and (F ∗A) are both
satisfied, then dF (A) = d∗F (A).

Proof. The thesis is trivially true when 0 6∈ σ(A). The case N = 1 then follows
from Corollary 4.4. The same corollary covers also the case N = 2 with dF (A) = 2.
It remains only the case N = 2 with dF (A) = 1. We cannot have d∗F (A) = 0 since
otherwise 0 6∈ σ(A), and we cannot have d∗F (A) = 2 since otherwise Corollary 4.4
applies to the adjoint equation: thus necessarily d∗F (A) = 1. �

The construction of the counter–examples rests on a classification of planar recur-
rent equations, which allows to localize all the possible troubles into a restricted
number of normal forms: this is essentially done in Sections 7 and 8. As a con-
sequence of this classification, it will be clear that there are no troubles for most
planar equations.
Before all the counter–examples, we will distill Corollary 4.4 into the main positive
result of the paper: this is done in Section 6 by means of some suitable change of
variables. By using the above mentioned classification, in Section 9 we will also
show that our positive result is the best one for planar equations. Next section is
devoted to scalar equation, where clearly change of variables play no role.

5. Scalar equations

In all the section Θ stands for a given minimal flow and a ∈ C(Θ; R). We summarize
some well known results about the scalar equation:

(5.1) ẋ = a(θt)x

and present a couple of less known or new results. It is well known [25] that σ(a) is
a single closed interval, which can be also described as the set of the mean values:∫

Θ

a dµ

where µ ranges over the invariant probability measures on Θ. The spectrum can
degenerate to a single point, when for instance Θ is uniquely ergodic: in this case,
the unique mean value is denoted by a.
Coming back to the general minimal case, from the point of view of Favard theory
we have to distinguish three different situations. The first one is:

(5.2) 0 6∈ σ(a) .

The scalar equation (5.1) admits an exponential dichotomy, so that the Favard
condition (Fa) holds in the minimal sense dF (a) = 0.
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A more interesting situation is obtained when we assume 0∈ σ(a) but for some θ
the primitive:

aθ(t) =
∫ t

0

a(θs) ds

is bounded in t. In this case, due to the minimality of Θ, the same is true for
every θ ∈ Θ. In particular, Favard condition (Fa) is again satisfied but now in
the maximal sense dF (a) = 1. Moreover, a straightforward application of Favard
Theorem 3.1 shows that a function â ∈ C(Θ; R) exists such that:

Dâ = a

in the whole Θ, see also [8] or [9]. We will use many times such function in the next
sections and, to define the situations where it does exist, we simply write:

(5.3) a ∈ BP (Θ; R)

with no reference to the initial assumption 0 ∈ σ(a). The reason is that, as ex-
plained at the end of the previous section, the maximality of the Favard dimension
automatically yields the stronger conclusion σ(a) = {0}. Next result says that, in
general, only a s small portion of:

C0(Θ; R) =
{
a ∈ C(Θ; R) : σ(a) = {0}

}
is really covered by these functions. Actually, the main point is to show BP (Θ; R)
does not exhaust the whole C0(Θ; R). The conclusion is common knowledge when
Θ is almost periodic, but seems to be overlooked in the general minimal case.

Theorem 5.1. Let Θ be minimal aperiodic. Then BP (Θ; R) is a dense subset of
C0(Θ; R) of first Baire category in C0(Θ; R).

Since C0(Θ; R) is a closed meager subset of C(Θ; R), the category information
transfers from the former to the latter. Moreover, clearly BP (Θ; R) = C0(Θ; R)
when Θ is periodic.

Proof. In [27] Schwartzman proved that the closure of BP (Θ; R) is the intersection
of all the spaces:

Cµ0 (Θ; R) =
{
a ∈ C(Θ; R) :

∫
Θ

a dµ = 0
}

where µ ranges over the invariant probability measure on Θ, independently of the
minimality of the latter. But, in the minimal case, this intersection is C0(Θ; R) due
to the spectral characterization given at the beginning of the section: the proof of
density claim is then complete.
To prove the second part of the theorem, we exploit the minimality of Θ to measure
the boundedness or primitives at a given θ0 ∈ Θ only. For every M ≥ 0 let SM be
the subset of C(Θ; R) defined by:

sup
t

∣∣∣∣∫ t

0

f(θ0s) ds
∣∣∣∣ ≤ M .

The SM are closed in C(Θ; R) and their union along any diverging sequence of M ’s
is exactly BP (Θ; R). Due to classical Baire’s Theorem, to conclude it is enough to
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show that each SM has empty interior in C0(Θ; R). We claim that, for every τ > 0
there exists ϕ ∈ C0(Θ; R) such that:

(5.4) ‖ϕ‖∞ = 1
∫ τ

0

ϕ(θ0t) dt = τ .

To construct this function, use the aperiodicity of Θ to guarantee that θ0[0, τ ] does
not intersect θ0[2τ, 3τ ]. Then choose an open neighborhood U of θ0[0, τ ] such that
U ∩ U(2τ) = ∅. Finally consider an Urysohn function satisfying:

ψ(θ) =
{

1 θ ∈ θ0[0, τ ]
0 θ 6∈ U

and use it to define:
ϕ(θ) = ψ(θ)− ψ(θ(2τ)) .

Conditions (5.4) are trivial to check. Moreover:∫
Θ

ϕdµ = 0

for every invariant probability measure µ on Θ. Hence σ(ϕ) = {0} follows from the
characterization of the spectrum given at the beginning of the section, so proving
the claim.
To conclude the proof, assume by contradiction that some SM has nonempty interior
in C(Θ; R). Choose f ∈ SM and ε > 0 such that ‖f − g‖∞ ≤ ε implies g ∈ SM .
Then take any τ > 2M/ε and consider the corresponding function ϕ. Finally set
g = f + εϕ and notice that:

M ≥
∫ τ

0

g(θ0s) ds ≥ −M + ετ > M

giving the desired contradiction. �

The two situations considered until now cover all the cases where (Fa) is satisfied,
since no other Favard dimensions than 0 and 1 are available in the scalar case.
Thus, in the third and last situation to be considered:

(5.5)
{

0 ∈ σ(a)
a 6∈ BP (Θ; R)

the Favard separation condition (Fa) must fail. This situation cannot occur when
Θ is periodic. When on the contrary Θ is aperiodic, Theorem 5.1 says this is the
most common situation. In this case, the dimension dθ(a) must vary in Θ, taking
both the value 0 and 1. In particular the Favard dimension is dF (a) = 0 and is
attained at the residual invariant subset of Θ which we already denoted by ΘA(a)
in Section 3. Its complement, which is again invariant and dense though of first
Baire category, is where the dimension is 1. In other words, θ0 6∈ ΘF (a) means:

(5.6) sup
t

aθ0(t) < +∞ .

Since a 6∈ BP (Θ; R), the primitive aθ0(t) must be unbounded from below; in fact,
it is not difficult to prove that this must happens bilaterally, in the sense that:

lim inf
t→±∞

aθ0(t) = −∞ .

A special but relevant case is given by:

(5.7) lim
|t|→+∞

aθ0(t) = −∞ .
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From a dynamical point of view, this means that the equation (5.1)θ0 has a non-
trivial homoclinic solution to zero. Many concrete examples of such strong failure
of the Favard separation condition can be found in the literature, typically aimed
to show that the almost periodic world behaves very differently from the periodic
one: see for instance [3], [34], [10] and [18].
There is another way for (Fa) to fail that is relevant to the present paper and, in
some sense, is transversal to condition (5.7). Under the assumption (5.5), Johnson
proved in [9] that:

(5.8) lim inf
t→±∞

aθ(t) = −∞ lim sup
t→±∞

aθ(t) = +∞

holds for all the θ in a residual subset of Θ. As a consequence of this fact, condition
(5.7) can be only rarely satisfied in Θ: hereafter, we are interested in those cases
where it is never satisfied. More precisely, to construct some crucial counterexam-
ples in Section 7 and Section 9, we have to consider functions a ∈ C(Θ; R) satisfying
(5.5) and such that moreover:

(5.9) ∀θ ∈ Θ lim
|t|→+∞

aθ(t) does not exist .

For reasons which will be clear in a while, we call them Kozlov functions. To
be more clear, saying that the limit in (5.9) exists means that both the limits as
t→ ±∞ exist and, in addition, they are equal: in view of (5.5), such common value
must be infinite. In other words, for a function to be Kozlov, either one the two
aforementioned limits does not exist, or both do exist but their values are different:
moreover, this must happen for every θ ∈ Θ.
Starting from the seminal paper [13] by Kozlov, the Russian literature has provided
a very interesting class of functions which satisfy simultaneously condition (5.5) and
condition (5.9). The context there is the quasi–periodic one:

Θ = TN = RN/ZN θt = θ + νt

where ν ∈ RN is a nonresonant vector, namely its components are independent
over Z. Suppose now that a ∈ C(TN ) and a = 0, so that the first part of condition
(5.5) is satisfied. The question to be discussed is whether the primitive:

a(t) =
∫ t

0

a(νs) ds

is Poisson stable, in the sense that is returns near to the initial position a(0) = 0 for
arbitrarily large times. More explicitly, the question is the existence of sequences
of times such that:

t±n → ±∞ a(t±n )→ 0 .

This is certainly true if a ∈ BP (TN ; R), since in this case a(t) is a quasi–periodic
function with zero mean value. The problem becomes challenging when on the
contrary a 6∈ BP (TN ; R): the general answer is well known to be negative (see for
instance [34]) but Kozlov proved that it becomes positive, as soon as sufficiently
smooth functions are considered.

Theorem 5.2. Assume that a ∈ Cd(TN ; R) with d large enough (depending on N
only) and that moreover a = 0. Then the primitive a(t) is Poisson stable.
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This theorem has been proved by Kozlov in [13] for the case N = d = 2, with an
elementary and very attractive approach. The general form is due to Moshchevitin
in [16], where the history of the intermediate steps can be also traced. Two crucial
facts have to be stressed, about the statement. The first one is that, since smooth-
ness is not affected by translations in TN , the same conclusion clearly holds for
every primitive:

aθ(t) =
∫ t

0

a(θ + νs) ds

whichever θ ∈ TN we take. The second fact is, that no assumptions are made
on the frequency vector ν but its nonresonance. For instance, highly nonresonant
vectors ν are covered by the Kozlov result, in which case the smoothness of a(θ)
implies the boundedness of the primitive: this is a classical result in the so–called
K.A.M. theory. However, when ν is less nonresonant, it is possible to find analytic
functions a(θ) with zero mean value and unbounded primitive: see [8] for a concrete
example. Also these functions are in the scope of Theorem 5.2 and they are exactly
those we are looking for: indeed, they satisfy condition (5.5) and condition(5.9) at
the same time.
Passing to the adjoint equation, in view of the scalar character of (5.1) is simply:

(5.10) ẏ = −a(θt)y .

It is manifest that none of the conditions (5.2), (5.3) and (5.5) is affected by the
change in the sign of a. The Favard conditions (Fa) and (F ∗a ) are then equivalent
and, independently of their validity, the equality dF (a) = d∗F (a) holds true. This
equivalence restore the expected symmetry in the class of primitives of a ∈ C(Ω; R).
Just to make a trivial example notice that, when Favard condition fails, there exists
not only a θ0 satisfying (5.6), but also a θ1 such that:

inf
t

aθ1(t) > −∞ .

The oscillation properties (5.8), are also unaffected by changing the sign of a, as
far a the notion of Kozlov function and Theorem 5.2.
Given an f ∈ C(Θ; R), consider finally the inhomogeneous equation:

(5.11) ẋ = a(θt)x+ f(θt) .

When Favard condition is satisfied, either 0 6∈ σ(a) or Corollary 4.4 applies: thus
condition (4.4) is sufficient for the existence of representable solutions. The same
conclusion is also manifest from the explicit expression of the solutions to (5.11),
that is:

(5.12) x(t) = eaθ(t)

{
x(0) +

∫ t

0

e−aθ(t)f(θs) ds
}
.

We end the section by proving that Favard separation condition is optimal for the
validity of Lemma 4.1, as already anticipated in Section 4. Start noticing that, if the
Favard condition fails, then condition (4.4) is trivially satisfied for every θ ∈ Θ∗F (a)
while writes:

(5.13) e−aθfθ ∈ BP (R; R)

for every θ 6∈ Θ∗F (a). Suppose now a is Kozlov function and f ≡ 1: clearly (F ∗a )
fails and we claim that condition (5.13) also fails outside Θ∗F (a), showing that the
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validity of (4.4) depends on θ. To prove the claim observe that for every θ 6∈ Θ∗F (a)
we have:

sup
t
{−aθ(t)} < +∞ lim inf

t→±∞
{−aθ(t)} = −∞

and hence, by definition of Kozlov function, at least one of the two following con-
ditions must be satisfied:

lim sup
t→−∞

{−aθ(t)} > −∞ lim sup
t→+∞

{−aθ(t)} > −∞ .

Since aθ is Lipschitz by construction, it is not difficult to see that the primitive of
e−aθ must explode in both cases.
We suspect that the Favard condition it is also optimal for the validity of Corollary
4.4: finding an f such that (5.13) is satisfied but none of the (5.12) is representable
on Θ, seems however a difficult task.

6. Change of variables and Fredholm Alternative

Given a matrix A ∈ C(Θ;L(N)) with N > 1, the standard way to study the
dynamical properties of:

(6.1) ẋ = A(θt)x

is by making use of change of variables. We will see that actually they are also
relevant to defines an appropriate notion of Fredholm Alternative. Here by change
of variable, we mean the result of the consecutive steps. The first step is taking an
epimorphism ϕ : Ω→ Θ and considering the new equation:

(6.2) ż = (A ◦ ϕ)(ωt)z

where now ω ∈ Ω. We say that A = A ◦ ϕ extends A, using the same terminology
for the corresponding equations, and we write:

A � A .

By minimal extension we mean of course that Ω is minimal, which is only possible
when Θ is minimal too. Notice that, since ϕ respect the flows, the extended equation
(6.2)ω is nothing else than the old equation (6.1)ϕ(ω) for every ω ∈ Ω. Their
solutions are then exactly the same, giving to extensions the look of a rather useless
operation: the point is that, the larger is Ω the easier is finding a Lypapunov–
Perron transformation giving equation (6.2) some convenient form. As usual, by
Lypapunov–Perron transformation on Ω we mean a map Q ∈ C(Ω;GL(N)) such
that DQ exists and is also continuous. The time–dependent change of variable
z = Q(ωt)u then transforms the extended equation (6.2) into:

(6.3) u̇ = B(ωt)u

where the continuous matrix B is given by:

(6.4) B(ω) = Q(ω)−1
{
A(ϕ(ω))Q(ω)−DQ(ω)

}
Such B is called kinematic extension of A and we write:

B > A
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adding the adjective minimal to denote that the underling extension is. Clearly
extensions are just particular cases of kinematic extensions, but two different sym-
bols turns out to be convenient. It is trivial to check that the above relations are
reflexive and transitive. They become symmetric when ϕ is an isomorphism: in
this case, we talk about similarity and kinematic similarity, writing B ∼ A for the
latter. With this language, we can decompose B > A into the chain:

B ∼ A = A ◦ ϕ � A

where the first is a kinematic similarity of special type, the involved epimorphism
being the identity on Ω.
A crucial point is that kinematic extensions do not affect neither spectral theory,
nor Favard theory. Start indeed noticing that the Cauchy operator associated to
equation (6.3) writes:

φB(ω, t) = Q(ωt)−1 φA
(
t, ϕ(ω)

)
Q(ω) .

Since Q and Q−1 are bounded on Ω, it is for instance clear that:

σ(B) = σ(A) dS(B) = dS(A)

where dS stands for the Sacker–Sell dimension we introduced in Section 3. The
same argument shows that (FB) and (FA) are equivalent and:

dF (B) = dF (A)

while to preserve the full force of Favard theory, namely Theorem 3.1 and Theorem
3.3, we need that Ω is a minimal extension of Θ. Observe moreover that similar
conclusions hold for starred quantities, since:

(6.5) Q∗(ω) =
(
Q(ω)−1

)T
is again a Lyapunov–Perron transformation, taking now the first adjoint equation
into the second one:

ẏ = −A(θt)T y v̇ = −B(ωt)T v .

We are now ready to introduce a Fredholm–type Alternative for the recurrent set-
ting. As already pointed out in the Introduction, admitting or not such alternative
is a property of the matrix A: based on the arguments of Section 4, the following
definition is expected to identify such good A’s.

Definition 6.1. We say that A∈C(Θ;L(N)) has the property (CA) when, whatever
f ∈ C(Θ; RN ) we take, if condition:

(6.6)
〈
fθ , φ

∗
A(·, θ)ζ

〉
∈ BP (R; R) ∀ζ ∈ B∗θ(A)

is satisfied for every θ ∈ Θ, then equation:

(6.7) ẋ = A(θt)x+ f(θt)

admits bounded solutions for every θ ∈ Θ.

Indeed, if moreover Θ is minimal and (FA) holds, then Favard Theorem 3.1 guar-
antees that the abstract equation:

Dx = A(θ)x+ f(θ)
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admits continuous solutions, which is actually the final goal of all our efforts. How-
ever, condition (CA) is not enough to solve the boundary value problem we formu-
lated in the Introduction: next remark explains why and suggests how to overcome
the problem.

Remark 6.2. Consider an equation of the type:

(6.8) ẋ = A(t)x+ f(t)

where the matrix A and the vector f are recurrent and we suppose that the integral
condition:

(6.9)
〈
f, y
〉
∈ BP (R; R)

is satisfied for every bounded solution y of the adjoint equation ẏ = −A(t)T y. The
problem in the Introduction was deciding which matrices A’s have the following
property: for every f satisfying (6.9) and such that H(A, f) is minimal, equation
(6.8) has a representable solution on H(A, f). Denoted by:

A(B) = B(0) A(B, g) = B(0)

the representations of A on H(A) and H(A, f) � H(A) respectively, the relevant
condition to take such decision is not (CA) but instead (CA).
Notice however that, in general, condition (CA) involves a more restrictive integral
condition than we have. It requires indeed that, whatever (B, g) ∈ H(A, f) we take,
the integral condition

〈
g, y
〉
∈ BP (R; R) is satisfied for every bounded y solving the

adjoint equation ẏ = −B(t)T y. This is not equivalent to (6.9) unless the adjoint
equation satisfies Favard condition: see Lemma 4.1 and the comments thereafter.

Summing up, the matrix A being good or not depends on the whole class of its
extensions: by adding the requirements for Favard theory, we are then led to the
following definition.

Definition 6.3. Let Θ be minimal and A ∈C(Θ;L(N)). We say that A has the
recurrent Fredholm Alternative property when:

(a) conditions (FA) and (F ∗A) are satisfied;
(b) every minimal extension A � A has the property (CA).

Though the equality dF (A) = d∗F (A) is satisfied in all the cases where things work
fine, we are not sure about its role in the theory we are trying to develop: because
of that, we decided not to insert the equality into the definition, discussing it in all
the results we prove.
A class of A’s satisfying the recurrent Fredholm Alternative have been already
considered in Section 4. To be precise, there it was proved that, when A verifies
one of the following two conditions:

0 6∈ σ(A) dF (A) = N

then A has the property (CA). But these conditions are preserved under extensions,
so that (CA) is also satisfied for every A � A. To go further, we have to understand
what happens to property (CA) during extensions. This is done by next two lemmas.

Lemma 6.4. Assume that A � A. If (CA) holds, then (CA) holds too.
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Proof. Write A = A ◦ ϕ where ϕ : Ω → Θ is an epimorphism. Take an arbitrary
f ∈ C(Θ; RN ) and suppose that (6.6)θ is satisfied. Since f ◦ ϕ ∈ C(Ω; RN ) we are
in the scope of condition (CA). To conclude, set ϕ(ω) = θ and observe that:

(f ◦ ϕ)ω = fθ φ∗A◦ϕ(t, ω) = φ∗A(t, θ)

while equation:
ż = (A ◦ ϕ)(ωt)z + (f ◦ ϕ)(ωt)

is just another way to write equation (6.6)θ . �

Remark 6.5. It is worth to stress that the same lemma could have been false if
property (CA) were referred to representable solutions of (6.7), instead of bounded
solutions. The reason is that, in principle, a bounded solution to (6.6)θ may be
representable on Ω but not on Θ. We need that Θ is minimal and (FA) holds
to deduce, via Favard theory, the existence of another bounded solution which is
representable on Θ.

Lemma 6.6. Assume that B ∼ A. Then (CB) is equivalent to (CA).

Proof. Let ϕ : Ω ∼= Θ and be the underlying isomorphism and Q : Ω → GL(N)
the Lypapunov–Perron transformation. Condition (CB) refers to the existence of
bounded solutions of the equation:

(6.10) u̇ = B(ωt)u+ g(ωt)

where B is given by (6.4) and g is an arbitrary element of C(Ω; RN ). Since ϕ is
invertible, it is easy to check that f 7→ g where:

g(ω) = Q(ω)−1f(ϕ(ω))

defines a bijection C(Θ; RN ) ∼= C(Ω; RN ). Assume from now on that g has this
form and that θ is chosen according to ϕ(ω) = θ. The change of variables x =
Q(ωt)u transforms equation (6.6)θ into (6.10)ω and defines a bijection between
their bounded solutions. Moreover, the change of variables y = Q∗(ωt)v with Q∗

as in (6.5) does exactly the same job for the adjoint equations. To conclude it is
then enough to observe that:〈

g(ωt), v(t)
〉

=
〈
Q(ωt)−1f(ϕ(ωt)), v(t)

〉
=
〈
f(θt), Q∗(ωt)v(t)

〉
=
〈
f(θt), y(t)

〉
for every t. �

On the basis of the previous lemmas, the arbitrariness of the extensions in Definition
6.3 can be relaxed to some extent: this is done in next proposition, which is the
technical key for the subsequent characterization of recurrent Fredholm Alternative.
We state the result for minimal flows but it holds also in other categories, like that
of compact or almost periodic flows.

Proposition 6.7. Let B > A be a given minimal kinematic extension. The two
following facts are equivalent:

(1) every minimal extension A � A has the property (CA);
(2) every minimal extension B � B has the property (CB).

As a consequence, the matrix A has the recurrent Fredholm Alternative property
if and only if B has.
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Proof. Let ϕ : Ω→ Θ be the epimorphism underlying B > A, and Q : Ω→ GL(N)
the Lypapunov–Perron transformation allowing to write B as in (6.4).
Assume first (1) is satisfied and consider an arbitrary minimal extension B � B.
Write B = B ◦ ψ where ψ : Σ → Ω is the involved epimorphism. From B ∼ A ◦ ϕ
we deduce:

B = B ◦ ψ ∼ (A ◦ ϕ) ◦ ψ = A ◦ (ϕ ◦ ψ) =: A � A .

Since (CA) holds by assumption, the same is true for (CB) because of Lemma 6.6.
Assume now (2) is satisfied and consider an arbitrary minimal extension A � A.
Write A = A ◦ ψ where ψ : Σ → Θ is the involved epimorphism. To prove that
property (CA) is satisfied, we construct a special common extension of Ω and Σ.
Consider the product flow in Ω × Σ and denote by p and q the projections on Ω
and Σ respectively, which are clearly epimorphisms. The subset:

{(ω, σ) ∈ Ω× Σ : φ(ω) = ψ(σ)}

is closed invariant and nonempty, so that it admits a minimal subset M . Redefine
p and q to be their restrictions to M : they are again surjective, since the target
spaces Ω and Σ are minimal. Moreover, by construction the following identity:

(6.11) ϕ ◦ p ≡ ψ ◦ q .

holds in M . From B ∼ A ◦ ψ we then deduce:

B := B ◦ p ∼ (A ◦ ϕ) ◦ p = (A ◦ ψ) ◦ q = A ◦ q � A

where the central equality depends on (6.11). Property (CB) holds by assumption.
Lemma 6.6 and Lemma 6.4 then apply to show that (CA◦q) and (CA) hold too. �

Remark 6.8. Let us come back to the setting of Remark 6.2. Because of Proposition
6.7, having the recurrent Fredholm Alternative is an intrinsic property of the matrix
A, totally independent of the particular representation we choose for it.

We are finally ready for the main result of the section.

Theorem 6.9. Assume Θ is minimal and A ∈ C(Θ;L(N)). If:

(6.12) dF (A) = dS(A)

then A has recurrent Fredholm Alternative property and moreover dF (A) = d∗F (A).

In view of Remark 6.2, as a corollary we obtain Theorem 1.1 in the Introduction.
The minimality of Θ is optimal for the result: notice indeed that Corollary 4.4 is
a particular case of Theorem 6.9, and hence Example 4.5 can be used to conclude.
Finally, a partial inverse of Theorem 6.9 will be given in Section 9, based on the
results of Sections 7 and 8.

Proof. Since we already know that conclusions are otherwise true, we suppose from
now on that 0 ∈ σ(A) and 0 < dS(A) < N and we set:

n = dS(A) m = N − n

Let V(A) be the spectral subbundle corresponding to spectral interval containing
zero: see Section 3 and in particular formula (3.4). Assumption (6.12) says that:

Bθ(A) = Vθ(A) ∀θ ∈ Θ .
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As a consequence, the involved spectral interval reduce to {0} and (FA) holds with
dF (A) = n. Consider now the spectral decomposition:

(6.13) Θ× RN = V(A)⊕W(A)

where W(A) is the direct sum of the invariant subbundles corresponding to the
spectral intervals in σ(A) \ {0}. Palmer proved in [19] that V(A) and W(A) can be
untwisted by means of a kinematic extension B > A on a minimal Ω � Θ, see also
[6]. That is, the resulting B is block–diagonal:

B =
(
BV 0
0 BW

)
with blocks BV and BV having dimensions n and m respectively, and the solutions
of the two uncoupled equations:

(6.14)
{
v̇ = BV(ωt) v
ẇ = BW(ωt)w

are, modulo the change of variables underlying B, the solutions of (6.1) that lie in
V(A) and W(A) respectively. Because of that, we have:

(6.15) dF (BV) = n 0 6∈ σ(BW) .

Proposition 6.7 says that A has the recurrent Fredholm Alternative property if
and only if B has. To prove that the property is possessed by B, we have to
consider an arbitrary epimorphism ψ : Σ→ Ω and the associated minimal extension
B = B◦ψ � B. The decomposition (6.13) transfers to Σ×RN and the corresponding
BV and BW satisfy again condition (6.15): since this is actually all we need to
conclude, we can forget B and work directly with B.
The adjoint equation to (6.14) is of course:{

ẏ = −BV(ωt)T y
ż = −BW(ωt)T z

and a solution is bounded if and only if y is bounded and z ≡ 0. Corollary 4.4
applies to the first equation in (6.14) and says that (FBV ) and (F ∗BV ) are satisfied
with the same Favard dimensions:

dF (BV) = n = d∗F (BV) .

Thus (F ∗B) holds with dimension d∗F (B) = d∗F (BV) = n. Since these conclusion are
invariant by kinematic extensions, also (FA) holds with d∗F (A) = n.
Consider moreover an arbitrary f ∈ C(Ω; RN ) and decompose it as f = (g, h)
according to RN = Rn × Rm. The integral condition involved in property (CB)
write as: 〈

gω , φ
∗
BV (·, ω)ζ

〉
∈ BP (R; R) ∀ζ ∈ B∗ω(BV)

and, because of Proposition 4.3, is equivalent to the existence of bounded solutions
for the equation v̇ = BV(ωt)v + g(ωt). Let now w be the unique bounded solution
of ẇ = BW(ωt)v + h(ωt), which exists due to the second part of (6.15). Then
x = (v, w) is a bounded solution of:

ẋ = B(ωt)x+ f(ωt)

concluding the proof that B has the property (CB). �
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Remark 6.10. A notion of almost periodic Fredholm Alternative can be introduced
by specializing Definition 6.3, by taking Θ almost periodic and restricting to almost
periodic extensions of Θ. Proposition 6.7 holds also in the category of almost
periodic flows and then Theorem 6.9 states a sufficient condition for the validity
of the almost periodic Fredholm Alternative. It is worth stress that, however, the
proof is anyway outside the almost periodic framework. The reason is that the
extension Ω � Θ where A diagonalizes by blocks may fail to be almost periodic,
even when Θ is: see the already mentioned Palmer paper [19]. A similar comment
applies to the triangularization procedure we will use in the Section 9.

As we already anticipated in the Introduction, an equivalent condition to (6.12)
has been already used in [24]. Two assumptions are actually made by Sacker and
Sell in this paper. The first one is that (FA) holds, saying that the invariant fiber
space B(A) is indeed a subbundle of Θ×RN . In general B(A)⊥ is not invariant but
an induced flow can be defined on it, by projecting the Cauchy operator φA. The
second assumption in [24] is that this induced flow has no bounded solutions but
the trivial one. Sacker and Sell prove that these assumptions are equivalent to the
existence of a trichotomy. That is, the stable and unstable fibers spaces U(A) and
S(A) defined in [24] are also subbundles and moreover:

Θ× RN = U(A)⊕ B(A)⊕ S(A) .

Since by construction U(A) and S(A) have spectra strictly to the left and to the
right of 0, the decomposition implies dF (A) = dS(A). The Spectral Theorem in
[25] allows finally to reverse the conclusion.
In a forthcoming paper, we will show that those parts of [2] and [17], which are
concerned with Fredholm Alternative, are covered by Theorem 6.9: actually, we
will also provide some extensions of these results. We end the present section by
noticing that (6.12) implies:

d∗F (A) = d∗S(A) .
Thus the conclusion of Theorem 6.9 can be strengthened by saying that also the
adjoint equation satisfies the recurrent Fredholm Alternative: this is another good
reason, besides that considered in Remark 6.2, to require that both the direct
and the adjoint Favard conditions enter in the definition of recurrent Fredholm
Alternative.

7. Favard condition for planar triangular equations

In this and the next section we consider a minimal flow Ω and an upper triangular
matrix:

(7.1) B =
(
a b
0 c

)
where a, b, c ∈ C(Ω; R). The aim hereafter is to investigate the validity of the
Favard separation condition for the corresponding planar equation:

(7.2)
(
ẋ1

ẋ2

)
=
(
a(ωt) b(ωt)

0 c(ωt)

)(
x1

x2

)
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The two scalar diagonal equations:

(7.3) ẋ1 = a(ωt)x1 ẋ2 = c(ωt)x2

are expected to drive, to some extent, the behavior of the whole equation (7.2). For
instance, if x1 solves the first equation in (7.3) then x = (x1, 0) solves (7.2), while
if x = (x1, x2) solves (7.2) then x2 solves the second equation. The first fact proves
the following lemma.

Lemma 7.1. The inequality dF (B) ≥ dF (a) holds and moreover condition (FB)
implies condition (Fa).

The inequality in the above statement may be strict. A partial converse of the
lemma can be also easily proved.

Lemma 7.2. If conditions (Fa) and (Fc) hold simultaneously, then condition (FB)
holds too.

Concerning Favard dimensions, the estimate dF (B) ≤ dF (a)+dF (c) is the expected
result: the claim will be proved for higher dimensional equations in Section 9, where
an example where the strict inequality will be also provided.

Proof. Let x = (x1, x2) a nontrivial bounded solution to (7.2). Then x2 is a bounded
solution to the second equation in (7.3) and, since (Fc) holds, either x2 is nontrivial
and separated from zero or x2 ≡ 0. In the first case x is separated from zero too. In
the second case x = (x1, 0) and the conclusion follows from the validity of (Fa). �

A crucial benefit of the triangular form is that (7.2) admits an exponential di-
chotomy if and only if the two scalar equations in (7.3) do. This is well known in
the literature (see for instance [11]) and generalizes to:

σ(B) = σ(a) ∪ σ(c) .

Next two lemmas make use of exponential dichotomy to strengthen the conclusions
of Lemma 7.2.

Lemma 7.3. Assume that 0 6∈ σ(c). Then dF (B) = dF (a) and moreover (FB) is
equivalent to (Fa).

Proof. Let x = (x1, x2) be a bounded solution of (7.2)ω. Since x2 is a bounded
solution to the second equation in (7.3)ω and 0 6∈ σ(c), we must have x2 ≡ 0. That
is x = (x1, 0) where x1 is a bounded solution to the first equation in (7.3)ω. �

Lemma 7.4. Assume that 0 6∈ σ(a). Then dF (B) = dF (c) and moreover (FB) is
equivalent to (Fc).

Proof. Let x = (x1, x2) be a bounded solution of equation (7.2)ω. Since 0 6∈ σ(a)
and:

ẋ1 = a(ωt)x1 + b(ωt)x2

the component x1 is uniquely determined by components x2. As a consequence,
x2 7→ x is an isomorphism between the bounded solutions of the second equation in
(7.3)ω and the bounded solutions of (7.2)ω: this implies that dω(B) = dω(c). Since
ω is arbitrary, thesis follows. �
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It remains a pending question: does the condition (FB) imply (Fc)?
The answer is negative, but to construct an explicit counterexample is not a triv-
ial task. To start with, notice that Lemma 7.1 and Lemma 7.4 give a couple of
prescriptions: that is, condition (Fa) must be satisfied and moreover 0 ∈ σ(a). In
other words, according to Section 5 we must choose:

(7.4) a ∈ BP (Ω; R) .

According again to Section 5, the failure of (Fc) means:

(7.5) 0 ∈ σ(c) c 6∈ BP (Ω; R) .

To construct the desired counterexample, we add the further restriction that c is a
Kozlov function, that is:

(7.6) ∀ω ∈ Ω lim
|t|→+∞

∫ t

0

c(ωs) ds does not exist .

See the final part of Section 2 for comments about this type of functions. Finally,
we will choose a nontrivial b with sign:

(7.7) b ≥ 0 b 6≡ 0 .

Theorem 7.5. Under the assumptions (7.4)–(7.5) we have dF (B) = 1. If moreover
we assume (7.6)–(7.7) then condition (FB) is satisfied.

Proof. Use assumption (7.4) to construct â ∈ C(Ω; R) with Dâ = a, and then
change the variables as follows:

x1 = eâ(ωt)u1 x2 = u2

obtaining the new equation:

(7.8)
(
u̇1

u̇2

)
=
(

0 b∗(ωt)
0 c(ωt)

)(
u1

u2

)
where b∗ = be−â .

Denote by C the coefficients’ matrix of this equation. Since C ∼ B and b∗ satisfies
again the sign condition (7.7), it is enough to prove the proposition for the equation
(7.8). The general solution is:

u1 = u10 + u20

∫ t

0

ecω(s)b∗(ωs) ds u2 = u20 e
cω(t)

where u10, u20 are the initial data and we set:

cω(t) =
∫ t

0

c(ωs) ds .

By taking u20 = 0, we get the constant solution u = (u10, 0). Thus:

R× {0} ⊂ Bω(C)

for every ω ∈ Ω and in particular dF (C) ≥ 1. We know from Section 5 that cω
is unbounded from above for a residual set of ω’s. The same is then true for u2,
as long as u20 6= 0. This implies that dω(C) < 2 for the same ω’s so that we may
conclude that dF (C) = 1. Because of Theorem 3.3, condition (FC) is then satisfied
if and only if:

dω(C) = 1 ∀ω ∈ Ω .
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Assume now by contradiction that dω0(C) = 2 for some ω0. This is equivalent to
require that conditions:

(7.9) sup
t

cω0(t) < ∞

and:

(7.10) sup
t

∣∣∣∣∫ t

0

ecω0 (s)b∗(ω0s) ds
∣∣∣∣ < +∞ .

are simultaneously satisfied. We claim that, due to the sign condition (7.7), condi-
tion (7.10) implies a much more restrictive condition than (7.9) that is:

(7.11) cω0

(
±∞

)
= −∞ .

To prove the claim, start observing that (7.7) guarantees the existence of ω1 ∈ Ω
where b∗(ω1) > 0. By continuity, we can always chose ε > 0 and δ > 0 such that:

d(ω, ω1) < δ implies b∗(ω) ≥ ε .

We can now use Lemma 2.1 to find a relatively dense T ⊂ and ρ > 0 such that:

(7.12) b∗
(
ω0(τ + s)

)
≥ ε

for every τ ∈ T and every |s| < ρ. Denote by L > 0 an inclusion length for T and
assume that ρ is chosen in such a way that ρ < L.
Assume now by contradiction that cω0

(
+∞

)
= −∞ is false, the other case being

similar. Then we can find a constant M and a sequence of times 0 < tn → +∞
such that:

cω0

(
tn
)
≥M tn+1 ≥ tn + 2L .

Use the relative density of T to find for every n a time:

τn ∈ T ∩
[
tn −

L

2
, tn +

L

2

]
and then use ρ < L to see that all the intervals:

(τn − ρ, τn + ρ) ⊂ [tn − L , tn + L]

are pairwise disjoint. Moreover notice that, by Lipschitz–type estimates:

cω0(τn + s) ≥ M − L‖c‖∞
for every |s| < ρ and hence:

ecω0 (τn+s)b∗(ω0(τn + s)) ds ≥ εeM−L‖c‖∞

due to (7.12). Thus: ∫ τn+L

0

ecω0 (t)b∗(ω0t) ds ≥ nεeM−L‖c‖∞

which explodes as n → +∞. This contradicts the assumption (7.10), so proving
that cω0(+∞) = −∞ is true.
Summing up, we have that (7.11) is true: however, this fact contradicts the initial
assumption (7.6) and hence concludes the proof. �
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8. Fredholm Alternative and normal forms for planar
triangular equations

As in the previous section, Ω is a minimal flow and B is given by (7.1). Hereafter
we continue the analysis of the triangular planar equation (7.2) by studying how
its properties are related to those of the adjoint equation:

(8.1)
(
ẏ1

ẏ2

)
=
(
−a(ωt) 0
−b(ωt) −c(ωt)

)(
y1

y2

)
The aim is to answer, in this particular case, all the questions raised in the In-
troduction for general recurrent equations. The strategy is finding a restricted set
of normal forms, which capture the core of the problem: a number of change of
variables are necessary for that, but we stress that no extensions of the hull Ω are
required.
The coefficients matrix in (8.1) is again triangular, though of lower type: the re-
sults of the previous section must be translated accordingly to this difference. To
this aim, start remembering from Section 5 that Favard condition and dimension
of scalar equations are preserved under adjunction. Thus by adapting Lemma 7.1
one finds that:

d∗F (B) ≥ d∗F (c) = dF (c)

and moreover (F ∗B) implies (F ∗c ), which in turn is equivalent to (Fc). On the
other hand, the same assumptions of Lemma 7.2 imply that (F ∗B) is also satisfied.
Together with Lemma 4.6, this proves the following result.

Lemma 8.1. Conditions (FB) and (F ∗B) hold simultaneously if and only if (Fa)
and (Fc) do the same. In this case moreover d∗F (B) = dF (B).

It remains to introduce the adjoint version of Lemma 7.3 and Lemma 7.4: it is not
difficult to check that the same statements hold but for replacing (FB) and dF (B)
with the corresponding (F ∗B) and d∗F (B), while the proofs are swapped. Using these
facts, we are now ready to introduce the first couple of normal forms.

Theorem 8.2. Assume that 0 ∈ σ(B). Then conditions (FB) and (F ∗B) are jointly
satisfied if and only if B is kinetically similar on Ω to either:

(8.2) A∗ =
(
a∗ 0
0 0

)
with 0 6∈ σ(a∗)

or to:

(8.3) B∗ =
(

0 b∗
0 0

)
where a∗, b∗ ∈ C(Ω; R).

Proof. That the normal forms A∗ and B∗ satisfy the direct and adjoint Favard
conditions, follows from Lemma 8.1. Assume now that (FB) and (F ∗B) are satisfied
and use Lemma 8.1 to guarantee that (Fa) and (Fb) are too. Since 0 ∈ σ(B) =
σ(a) ∪ σ(c) we can distinguish, according to Section 5, three different cases which
we trait separately. In the first case:

0 6∈ σ(a) c ∈ BP (Ω; R)
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it is possible to construct two functions ĉ, p ∈ C(Ω; R) satisfying:

Dĉ = c Dp = ap+ beĉ .

A direct computation shows that the change of variables:

x1 = u1 + p(ωt)u2 x2 = eĉ(ωt)u2

transforms the equation (7.2) into:(
u̇1

u̇2

)
=
(
a(ωt) 0

0 0

)(
u1

u2

)
Thus B is kinematically similar to A∗ in (8.2) with a∗ = a.
The second case:

a ∈ BP (Ω; R) 0 6∈ σ(c) .

is specular to the first one. The idea is to act exactly as in the first case but on the
adjoint equation (8.1) instead of (7.2). The needed change of variables is now:

y1 = e−â(ωt)v1 y2 = q(ωt)v1 + v2

where â, q ∈ C(Ω; R) solves:

Dâ = a Dq = −cq − be−â .

The final effect is transforming the adjoint equation (8.1) into:(
v̇1

v̇2

)
=
(

0 0
0 −c(ωt)

)(
v1

v2

)
After swapping the two components and taking the adjoint, we deduce that B is
again kinematically similar to A∗ in (8.2) but now with a∗ = c.
The third and last case is:

a ∈ BP (Ω; R) c ∈ BP (Ω; R) .

The diagonal change of variables:

x1 = eâ(ωt)u1 x2 = eĉ(ωt)u2

transforms the equation (7.2) into:(
u̇1

u̇2

)
=
(

0 b eĉ(ωt)−â(ωt)

0 0

)(
u1

u2

)
Thus B is kinematically similar to B∗ in (8.3) where b∗ = b eĉ−â. �

We are now ready to discuss which B have the recurrent Fredholm Alternative
property. We already know from Section 4 that this is true whenever:

0 6∈ σ(B)

independently of any triangularity. In the more interesting case 0 ∈ σ(B), Propo-
sition 6.7 says that it’s enough to discuss the normal forms of which in Theorem
8.2: this is done in next two propositions.

Proposition 8.3. Let Ω be minimal and A∗ as in (8.2). Then:

σ(A∗) = {0} ∪ σ(a∗) dF (A∗) = 1 = dS(A∗)

and A∗ has the recurrent Fredholm Alternative property.
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The proof is straightforward and then omitted: it follows from the spectral char-
acterization (3.4) and Theorem 6.9. The other normal form is where Fredholm
Alternative may fail.

Proposition 8.4. Let Ω be minimal and B∗ as in (8.3). Then:

σ(B∗) = {0} dS(B∗) = 2 dF (B∗) =
{

1 if b∗ 6∈BP (Ω; R)
2 if b∗∈BP (Ω; R)

and B∗ has the recurrent Fredholm Alternative property if and only if b∗∈BP (Ω; R).

Proof. That dS(B∗) = 2 follows from σ(B∗) = {0}, which is turn is trivially true.
Since the general solution of ẋ = B∗(ωt)x is:

x1 = x10 + x20

∫ t

0

b∗(ωs) ds x2 = x20

the computation of dF (B∗) also follows. Thus Theorem 6.9 applies to conclude
when b∗∈BP (Ω; R).
Assume now that b∗ 6∈BP (Ω; R). We claim that (CB∗) fails as soon as Ω is aperiodic:
since any periodic Ω admits many aperiodic but nevertheless almost periodic exten-
sions, it follows that B∗ cannot have the recurrent Fredholm Alternative property.
To prove the claim, start noticing that the general solution of the adjoint equation
ẏ = −B∗(ωt)T y is:

y1 = y10 y2 = y20 − y10

∫ t

0

b(ωs) ds

and then is bounded if and only if y10 = 0. As a consequence, considered any two
function f, g ∈ C(Ω; R) and the corresponding equation:

(8.4)
{
ẋ1 = b∗(ωt)x2 + f(ωt)
ẋ2 = g(ωt)

the necessary integral condition for the existence of bounded solutions writes as:

g ∈ BP (Ω; R) .

This is exactly condition (6.6) in Definition 6.3. Suppose now this condition is
satisfied and take ĝ ∈ C(Ω; R) satisfying Dĝ = g. The general solution of the
second equation in (8.4) is x2 = x20 + ĝ(ωt) and then bounded for every initial data
x20. Inserting this information into the first equation, we get:

ẋ1 = b(ωt)
{
x20 + ĝ(ωt)

}
+ f(ωt)

and the existence of bounded solutions writes as:

(8.5) b∗
(
x20 + ĝ

)
+ f ∈ BP (Ω; R)

for some suitable choice of the initial data x20. When Ω is periodic, belonging
to BP (Ω; R) is the same as having mean value zero: since the mean value of b∗
is different from zero, we may always choose x20 such that the left hand side of
(8.5) has zero mean value, and we have no problem. When on the contrary Ω is
aperiodic, we can take g ≡ 0 and choose f ∈ C(Ω; R) such that:

λb∗ + f 6∈ BP (Ω; R)

for every λ ∈ R. The concrete choice of f depends on why b∗ 6∈ BP (Ω; R). If the
reason is that 0 6∈ σ(b∗) then we take any f satisfying:

0 ∈ σ(f) f 6∈ BP (Ω; R)
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while the other case is obtained by swapping the conditions of b∗ and f . That these
choices are always possible is granted by Theorem 5.1. �

Summing up, when B is such that both the Favard separation conditions (FB) and
(F ∗B) are satisfied, three different normal forms are possible: one of the type (8.2)
and two of the type (8.3), with the recurrent Fredholm Alternative failing in one
case only. Notice however that, in order this statement makes full sense, associat-
ing a given B with its normal form must be a unambiguous process. This is also
granted by the two last propositions: they show indeed that the three normal forms
differ either for spectral type features or for Favard type features, which are both
invariant by kinematic extensions.

With the Theorem 8.2, we exhausted all the cases where (FB) and (F ∗B) hold jointly.
Next we explore the complementary situation, with the aim of understanding if (FB)
and (F ∗B) are jointly false or may have different truth values, and moreover how
are related the corresponding Favard dimensions. We already know from Lemma
8.1 that (Fa) and (Fc) cannot be jointly true: we start considering the case where
they are jointly false.

Proposition 8.5. Assume that:

(8.6)
{

0 ∈ σ(a)
a 6∈ BP (Ω; R)

{
0 ∈ σ(c)
c 6∈ BP (Ω; R)

Then (FB) and (F ∗B) are simultaneously false and dF (B) = 0 = d∗F (B).

From (8.6) it is clear that σ(B) is a single interval and hence dS(B) = 2.

Proof. The first conclusion follows from Lemma 7.1; or even from the second con-
clusion, due to Lemma 3.4. Concerning the Favard dimension, fix an ω ∈ Ω such
that both the primitives of the slices aω and cω are both unbounded, either from
below and from above. From Section 5 we know that such ω exists: indeed, it can
be chosen in the intersection of two residual sets, which is itself residual. Consider
now a bounded solution x = (x1, x2) of the corresponding equation (7.2)ω. Since
ẋ2 = c(ωt)x2 we must have x2 ≡ 0. Inserting this information into the first equa-
tion we get ẋ1 = a(ωt)x1 showing that also x1 ≡ 0. Hence dF (B) ≤ dω(B) = 0.
The proof that d∗F (B) = 0 proceeds in a similar way. �

The next step is looking at the case where the truth values of (Fa) and (Fc) are
different. We start considering the case where one of them fails, while the other is
satisfied but in a trivial way, that is because of an exponential dichotomy.

Proposition 8.6. Assume that either:

(8.7) 0 6∈ σ(a)
{

0 ∈ σ(c)
c 6∈ BP (Ω; R)

or:

(8.8)
{

0 ∈ σ(a)
a 6∈ BP (Ω; R) 0 6∈ σ(c)

Then (FB) and (F ∗B) are simultaneously false and dF (B) = 0 = d∗F (B).

Nothing special can be said about σ(B) and dS(B), since in general the two intervals
σ(a) and σ(c) may overlap or not.
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Proof. When the case (8.7) is considered, apply the direct and the adjoint versions
of Lemma 7.4, by taking into the account dF (c) = 0, as explained in Section 5. For
the case (8.8) do the same but with Lemma 7.3. �

Summing up, in all the cases considered until now we found that (FB) is equivalent
to (F ∗B) and moreover the corresponding Favard dimensions satisfy dF (B) = d∗F (B).
Notice that there are only two cases remaining, one being the case where (Fc) fails
while (Fa) holds nontrivially:

(8.9) a ∈ BP (Ω; R)
{

0 ∈ σ(c)
c 6∈ BP (Ω; R))

and the other being the specular case:

(8.10)
{

0 ∈ σ(a)
a 6∈ BP (Ω; R) c ∈ BP (Ω; R)

In both cases σ(B) is a single interval and hence dS(B) = 2. Reversing the perspec-
tive, we know that: if either the Favard separation conditions are not equivalent,
or the Favard dimensions are different, then we are either in the case (8.9) or in
(8.10). That these pathologies can really occur, is a consequence of the arguments
developed in Section 7.

Proposition 8.7. Under the assumption (8.9) one has dF (B) = 1 and condition
(F ∗B) fails. If in addition b ≥ 0 is nontrivial then:

d∗F (B) = 0

and, when moreover c is a Kozlov function, condition (FB) holds.

By removing the assumption that c is a Kozlov function, it may happen that (FB)
fails too: see Example 8.9.

Proof. All the conclusion follow directly from the adjoint version of Lemma 7.1 and
Theorem 7.5, but for d∗F (B) = 0. To prove this last claim, recall from the proof of
Theorem 7.5 that B is kinematically similar on Ω to the matrix:

(8.11) C =
(

0 be−â

0 c

)
so that we can equivalently show that d∗F (C) = 0. The general solution of the
adjoint equation ẏ = −C(ωt)T y is:

(8.12)


y1(t) = y10

y2(t) = e−cω(t)

{
y20 − y10

∫ t

0

ecω(s)b∗(ωs) ds
}

where y10, y20 are the initial data, cω(t) =
∫ t

0
c(ωs) ds and b∗ = b e−â is again a

nonnegative and nontrivial function. Now it is clear that d∗F (C) ≤ 1 since otherwise
d∗F (B) = d∗F (C) = 2 and hence (F ∗B) would be satisfied, while is not. Assume now
by contradiction that d∗F (C) = 1. Then for every ω ∈ Ω there must exist initial
data y10, y20 which are not both zero and such that y2 is bounded. Let ω be such
that:

(8.13) lim inf
t→±∞

cω(t) = −∞ lim sup
t→±∞

cω(t) = +∞
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As explained in Section 5, there is a residual subset of such ω’s due to the second
part of condition (8.9). By taking a sequence tn → +∞ where cω(tn)→ −∞, from
the boundedness of y2 follows that:

y10

∫ tn

0

ecω(s)b∗(ωs) ds → y20 .

This implies that y10 6= 0, since otherwise also y20 = 0, so that we get:∫ tn

0

ecω(s)b∗(ωs) ds → y20/y10 .

Since the integrand is nonnegative, we deduce integrability at +∞. Doing the same
argument at −∞ we finally get:

sup
t

∣∣∣∣∫ t

0

ecω(s)b∗(ωs) ds
∣∣∣∣ < +∞ .

This is exactly condition (7.10) in the proof of 7.5. From that proof we know that
cω(±∞)=−∞ follows, contradicting (8.13) and hence proving our initial claim. �

With the previous proposition, we provided a class of examples where direct and
adjoint Favard conditions are not equivalent and Favard dimensions are different:
actually, the two facts are not independent.

Proposition 8.8. If (FB) holds and (F ∗B) fails then (8.9) must be true and:

dF (B) = 1 d∗F (B) = 0

The example after the proof shows that the implication cannot be reversed: both
the Favard conditions may fail with different Favard dimensions.

Proof. Condition (8.10) must be excluded, since otherwise (FB) fails: thus (8.9)
must be true. Due to Proposition 8.7, it only remains to show that the validity of
(FB) implies d∗F (B) = 0. We prove this implication for the matrix C defined by
(8.11), by using the arguments and the notations in the proofs of Proposition 8.7
and Theorem 7.5.
If we assume that d∗F (C) = 1 then, for every ω ∈ Ω, there must exist initial data
y10, y20 which are not both zero and such that the solution y2 given in (8.12) is
bounded. Specializing this fact to any ω = ω0 where:

(8.14) sup
t

cω0(t) < +∞

we get that:

sup
t

∣∣∣∣y20 − y10

∫ t

0

ecω0 (s)b∗(ω0s) ds
∣∣∣∣ < +∞

and moreover y10 6= 0. For the last conclusion notice that, if y10 = 0 then y2(t) =
y20e

−cω0 (t) which must be unbounded for every y20 6= 0. Summing up, we must
have:

(8.15) sup
t

∣∣∣∣∫ t

0

ecω0 (s)b∗(ω0s) ds
∣∣∣∣ < +∞ .

Conditions (8.14)–(8.15) are exactly conditions (7.9) and (7.10) in the proof of
Theorem 7.5 are verified: from that proof, it follows that dω0(C) = 2 and (FC)
fails. �
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Example 8.9. Consider the same assumptions of Proposition 8.7 but for c being
Kozlov, so that again (F ∗B) fails with d∗F (B) = 0 and dF (B) = 1. Suppose moreover
that an ω0 ∈ Ω exists such that:

lim sup
|t|→+∞

|t|−α cω0(t) < 0

for some suitable 0 < α < 1. Many example of this type are known in the literature,
when Ω is almost periodic: see for instance [22] or [34]. Conditions (8.14)–(8.15)
are clearly satisfied and, as in the proof of Proposition 8.7, we may conclude that
(FC) fails: thus (FB) fails too.

Similar results to Proposition 8.7 and Proposition 8.8 hold when (8.9) is replaced by
the specular assumption (8.10): now is (FB) that fails and (F ∗B) that holds under
some suitable conditions. In this case, the correct normal form for B is:

(8.16)
(
a b eĉ

0 0

)
while formula (8.11) gives the normal form of the matrix associated to the adjoint
equation. Notice that the two normal forms (8.11) and (8.16) may be kinematically
similar: for instance, this is certainly the case when b ≡ 0, since we obtain the
normal forms one from the other by swapping the variables. However, it is clear
that this cannot happen for the counterexamples we are really interested in: though
their spectrum may be equal, no change of variables can invert the truth values of
the Favard conditions. A similar conclusion holds for the Favard dimensions.

9. Conclusions and complementary results

The aim of this final section is twofold. The first one is to conclude the discussion
about the recurrent Fredholm Alternative for the equation:

ẋ = A(θt)x

where Θ is a minimal flow and A ∈ C(Θ;L(N). A sufficient condition for A having
such property has been stated in Theorem 6.9: here, on the basis of the results of
Section 8, we show that such condition is also necessary at least for low values of
the Saker–Sell dimension.

Theorem 9.1. Assume that Θ is minimal and dS(A) ≤ 2. If A has the recurrent
Fredholm Alternative property then dF (A) = dS(A).

Notice that, due to Theorem 6.9, the equality d∗F (A) = dF (A) is automatically
satisfied.

Proof. Suppose that 0 ∈ σ(A) and 0 < n = dS(A) < N , since otherwise we already
know that thesis is true. Let now B > A be the same kinematic extension on Ω � Θ
we considered in the proof of Theorem 6.9. We recall that B is block–diagonal:

B =
(
BV 0
0 BW

)
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where block BV has dimension n = dS(A) and:

0 ∈ σ(BV) 0 6∈ σ(BW) .

Since nontrivial bounded solutions are confined to the first block, it is clear that:

dF (A) = dF (B) = dF (BV) dS(A) = dS(B) = dS(BV) .

Concerning the recurrent Fredholm Alternative property, Proposition 6.7 grants it
is possessed by B and we claim that the same is true for the block BV . On the one
hand, the validity of (FA) and (F ∗A) implies that of (FBV ) and (F ∗BV ). Suppose now
by contradiction that, given a minimal extension ψ : Σ→ Ω and defined B = B ◦ψ,
the corresponding block BV does not satisfy property (CBV ). That is, for some
g ∈ C(Σ; RN ) condition:

(9.1)
〈
gσ , φ

∗
BV (·, σ)ζ

〉
∈ BP (R; R) ∀ζ ∈ B∗σ(BV)

is satisfied but equation:
v̇ = BV(σt)v + g(σt)

does not admit any bounded solution. If we set f = (g, 0) ∈ C(Σ; RN ), then it is
clear that also the equation:

ẋ = B(σt)x+ f(σt)

does not admit any bounded solution. On the other hand, for such f , the necessary
condition involved in (CB) is exactly (9.1) and hence is satisfied: this contradicts
the validity of (CB), proving the claim.
Let us finally use the assumption 1 ≤ n ≤ 2 in connection with the fact that BV
has the recurrent Fredholm Alternative property. Notice that, since 0 ∈ σ(BV) and
(FBV ) is satisfied, we must have dF (BV) > 0. When n = 1 this automatically gives
the desired equality 1 = dF (BV) = dF (A).
Assume now that n = 2. Since also (F ∗BV ) is satisfied, Theorem 8.2 says that BV is
kinematically similar to either A∗ or B∗ as defined by (8.2) and (8.3) respectively.
But A∗ has be excluded, since dS(A∗) = 1 from Proposition 8.3, while we know
that dS(BV) = dS(A) = n = 2. Thus BV must be kinematically similar B∗. Since
such B∗ inherits the recurrent Fredholm Alternative property from BV , Proposition
8.4 guarantees that we are in the case dF (B∗) = 2: thus the desired equality
2 = dF (B∗) = dF (BV) = dF (A) is again satisfied. �

The second aim of the present section is trying to extend to higher dimensions some
results we proved for planar triangular equations, understanding to which extent
this is possible. We assume to deal with:

(9.2) ẋ = B(ωt)x

where B is an upper triangular N ×N matrix with entries bhk ∈ C(Ω; R). Here Ω
stands for a minimal flow, as usual, and we remember that:

(9.3) σ(B) = σ(b11) ∪ · · · ∪ σ(bNN ) .

Next proposition provides a general estimate from above of the Favard dimension
of B, which extends those given in Section 7 and is independent of the validity of
(FB).

Proposition 9.2. The following estimate holds:

(9.4) dF (B) ≤ #
{
h : bhh ∈ BP (Ω; R)

}
.
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Proof. The proof is by induction on the dimension N of the matrix B. The case
N = 1 is trivial. Assume that the conclusion is true for N − 1 and let B be an
N ×N matrix. In particular, we know that:

dF (C) ≤ d = #
{
h ≤ N − 1 : bhh ∈ BP (Ω; R)

}
where C is the square matrix obtained by taking the first N − 1 rows and columns
of B. To count the bounded solutions to (9.2), begin by noticing that their last
component is a bounded solutions to:

(9.5) ẋN = bNN (ωt)xN .

We may then distinguish two different situations. The first one is when:

0 6∈ σ(bNN ) or
{

0 ∈ σ(bNN )
bNN 6∈ BP (Ω; R)

In this case, there exists a set Ω0 which is (at least) residual in Ω such that, if xN is
a bounded solution to (9.5)ω and ω ∈ Ω0, then xN ≡ 0. Thus for every ω ∈ Ω0 the
bounded solutions to (9.2)ω are indeed in the form x = (u, 0) where u is a bounded
solutions to:

(9.6) u̇ = C(ωt)u .

Consider now just the ω ∈ Ω0∩ΩF (C), which is again residual and then nonempty.
We have:

dF (B) ≤ dω(B) = dω(C) = dF (C) ≤ d

and the conclusion follows from the fact that, by construction, the right hand side
of (9.4) is exactly d.
The second case is when instead bNN ∈ BP (Ω; R). It is not difficult to guess and
prove that, in this case:

dω(B) = dω(C) + 1
for every ω ∈ Ω. Then the conclusion follows by taking the minimum over Ω. �

The inequality in (9.4) becomes an equality for diagonal matrices but it may be
strict otherwise, even when (FB) and (F ∗B) are both satisfied and we are in the
planar case. The easiest example is:

B =
(

0 1
0 0

)
where the right hand side of (9.4) is 2 but dF (B) = 1. A similar result with lower
Favard dimensions can be obtained, when we admit failing Favard conditions. For
instance we may take:

B =
(
a b
0 0

)
where a ∈ C(Ω; R) satisfies 0 ∈ σ(a) and a 6∈ BP (Ω; R), while b ∈ C(Ω; R) is such
that the equation:

ẋ = a(ωt)x+ b(ωt)
does not admit bounded solutions for any ω ∈ Ω. Such term b(ω) always exists
since otherwise 0 6∈ σ(a), due to the functional characterization of exponential
dichotomies given in [15]: see also [5] for a more direct approach. By taking into
account that a 6∈ BP (Ω; R), it is not difficult to check that dF (B) = 0 while the
right hand side of (9.4) is 1.
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The same ingredients of Proposition 9.2 may be used for a test, which extends
Lemma 7.2 to higher dimensions.

Proposition 9.3. Assume that bhh ∈BP (Ω; R) whenever 0 ∈ σ(bhh). Then (FB)
and (F ∗B) hold jointly.

An equivalent way to formulate the assumption is saying that, for each diagonal
element bhh, the scalar Favard condition (Fbhh) is satisfied. As a consequence of
(9.3), either 0 does not belong to σ(B) or is an isolated point of it.

Proof. The proof is again by induction on the dimension N of the matrix B, and
is trivial when N = 1. Suppose now that the conclusion is true for matrices of
dimension N − 1 and take B of dimension N . To prove that (FB) holds, start
considering the same matrix C as in the proof of Proposition 9.2: by the inductive
hypothesis (FC) is true. Assume now that x is a nontrivial bounded solution to
(9.2) and distinguish two cases. If xN ≡ 0 then x = (u, 0) where u is a nontrivial
bounded solution to (9.6): since (FC) holds, u and hence x are separated from zero.
On the other hand, if xN 6≡ 0 then bNN ∈ BP (Ω; R) must occur and then (FbNN )
is satisfied: thus xN and hence x are separated from zero.
A specular approach, working for lower triangular matrices, allows to prove that
(F ∗B) is also true. �

We now consider the problem of reversing Proposition 9.3, proving that the simul-
taneous validity of (FB) and (F ∗B) implies that of (Fbhh) for every h. Lemma 8.1
says that this is true when N = 2 and an extension to the higher dimensions would
be desirable. Unfortunately, a class of counterexamples may be obtained by taking:

B =

 b11 b12 b13

0 b22 b23

0 0 b33


where the entries are continuous functions on Ω which satisfies the following con-
ditions. First of all, we chose the central entry to be a Kozlov function, that is
satisfying:

(9.7) 0 ∈ σ(b22) b22 6∈ BP (Ω; R)

and moreover:

∀ω ∈ Ω lim
|t|→+∞

∫ t

0

b22(ωs) ds does not exist .

See the final part of Section 2 for comments about this type of functions. Secondly,
we assume that the remaining diagonal entries satisfy:

(9.8) b11, b33 ∈ BP (Ω; R)

while the entries above the diagonal are nontrivial and have a constant sign on Ω,
say for instance:

(9.9)
{
b12 ≥ 0
b12 6≡ 0

{
b23 ≥ 0
b23 6≡ 0

though any choice of the signs is admitted. Finally, no conditions are made on the
term b13, which is then arbitrary.

Proposition 9.4. If the assumptions (9.7)–(9.9) are satisfied, then (FB) and (F ∗B)
hold simultaneously.
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Since (Fb22) is false by construction, we have the announced counterexample.

Proof. Use condition (9.8) to construct functions b̂11, b̂33 ∈ C(Ω) such that:

b̂11(ωt)− b̂11(ω) =
∫ t

0

b11(ωs) ds

b̂33(ωt)− b̂33(ω) =
∫ t

0

b33(ωs) ds

for every ω ∈ Ω and every t ∈ R. Then make the diagonal change of variables:

x1 = eb̂11(ωt)u1 x2 = u2 x3 = eb̂33(ωt)u3

to transform (9.2) into the new equation:

(9.10)

 u̇1

u̇2

u̇3

 =

 0 c12(ωt) c13(ωt)
0 b22(ωt) c23(ωt)
0 0 0

 u1

u2

u3


where the entries c12 and c23 satisfy again (9.9). To show that this equation satisfies
the Favard condition, consider an arbitrary ω ∈ Ω and a corresponding bounded
solution u(t) = (u1(t), u2(t), u3(t)). Since u̇3 = 0 then u3(t) = c for every t. If
c 6= 0 then u(t) is trivially separated from zero. When c = 0 the solution is
u(t) = (u1(t), u2(t), 0) where the nontrivial components satisfy:(

u̇1

u̇2

)
=
(

0 c12(ωt)
0 b22(ωt)

)(
u1

u2

)
This equation satisfies the Favard condition due to Theorem 7.5 and hence either
u1 ≡ u2 ≡ 0 or (u1, u2) is separated from zero. This implies that (9.10) satisfies
the Favard condition.
Let us now consider the adjoint equation of (9.10) namely:

(9.11)

 ẇ1

ẇ2

ẇ3

 =

 0 0 0
−c12(ωt) −b22(ωt) 0
−c13(ωt) −c23(ωt) 0

 w1

w2

w3


To show that it satisfies the Favard condition, consider again an arbitrary ω ∈ Ω and
a corresponding bounded solution w(t) = (w1(t), w2(t), w3(t)). This time ẇ1 = 0
so that w1(t) = c for every t. If c 6= 0 then w(t) is trivially separated from zero,
so that we will assume w(t) = (0, w2(t), w3(t)) from now on, where the nontrivial
components satisfy: (

ẇ2

ẇ3

)
=
(
−b22(ωt) 0
−c23(ωt) 0

)(
w2

w3

)
Swapping the order of variables we get the equation:(

ẇ3

ẇ2

)
=
(

0 −c23(ωt)
0 −b22(ωt)

)(
w3

w2

)
which satisfies the Favard condition again due to Theorem 7.5. This also (9.11)
satisfies the Favard condition. �

The final question concerns the equality of the Favard dimensions:

dF (B) = d∗F (B)
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which is expected when both the Favard conditions (FB) and (F ∗B) hold. By using
Floquet theory, it is indeed possible to prove that equality holds when Ω is peri-
odic. On the other hand, the arguments of Section 5 show that the same is true for
minimal Ω’s when N = 1, while Lemma 4.6 covers the case N = 2 independently
of the possible triangularity. Increasing the value of N , Proposition 9.3 provides a
sufficient condition in order (FB) and (F ∗B) to hold jointly, but unfortunately the
statement does not give any information about the corresponding Favard dimen-
sions: next example make clear the reason of such omission. Consider indeed the
equation (9.2) where:

B =

 0 0 b
0 0 1
0 0 0


and b ∈ C(Ω; R) is such that:

0 ∈ σ(b) b 6∈ BP (Ω; R).

Because of Proposition 9.3, both the Favard conditions (FB) and (F ∗B) hold. We
claim that however:

dF (B) = 2 d∗F (B) = 1 .
Start observing that the flow of the direct equation is:

x1 = x10 + x30 bω(t) x2 = x20 + x30t x3 = x30 .

Since each bω(t) is unbounded, the only bounded solution are constants with x30 = 0
and hence (FB) holds with dF (B) = 2. On the other hand, the adjoint equation
corresponds to the matrix:  0 0 0

0 0 0
−b −1 0


and hence the associated flow is now:

y1 = y10 y2 = y20 y3 = −y10 bω(t)− y20t+ y30 .

Again the only bounded solutions are constants, but now they correspond to the
choice y10 = y20 = 0: thus (F ∗B) holds with d∗F (B) = 1, proving the claim.
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[13] V.V. Kozlov, On a problem by Poincaré, J. Appl. Math. Mech., 40 (1976), 326-329.

[14] J.L. Massera, The existence of periodic solutions of systems of differential equations, Duke
Math. J., 17 (1950), 457-475.

[15] J.K. Massera and J.J. Scäffer, “Linear differential equations and function spaces”, Pure and
Applied Mathematics, Vol. XXI, Academic Press, New York, 1966.

[16] N.G. Moshchevitin, recurrence of an integral of a smooth conditionally periodic function,

Math. Notes, 63 (1998), 648-657.
[17] R. Ortega and M. Tarallo, Almost periodic equations and conditions of Ambrosetti–Prodi

type, Math. Proc. Camb. Phil. Soc., 135 (2003), 239-254.

[18] R. Ortega and M. Tarallo, Almost periodic linear differential equations with non–separated
solutions, J. Funct. Analysis, 237 (2006), 402-426.

[19] K.J. Palmer, On the reducibility of almost periodic systems of linear differential equations,

J. Differential Equations, 36 (1980), 374–390.
[20] K.J. Palmer, Exponential dichotomies and transversal homoclinic points, J. Differential Equa-

tions, 55 (1984), 225–256.

[21] K.J. Palmer, On bounded solutions of almost periodic linear differential systems, J. Math.
Anal. Appl., 103 (1984), 16–25.
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