
DYNAMICAL PROPERTIES OF NONAUTONOMOUS

FUNCTIONAL DIFFERENTIAL EQUATIONS WITH

STATE-DEPENDENT DELAY

ISMAEL MAROTO, CARMEN NÚÑEZ, AND RAFAEL OBAYA

Abstract. A type of nonautonomous n-dimensional state-dependent delay
differential equation (SDDE) is studied. The evolution law is supposed to

satisfy standard conditions ensuring that it can be imbedded, via the Bebutov

hull construction, in a new map which determines a family of SDDEs when it
is evaluated along the orbits of a flow on a compact metric space. Additional

conditions on the initial equation, inherited by those of the family, ensure

the existence and uniqueness of the maximal solution of each initial value
problem. The solutions give rise to a skew-product semiflow which may be

noncontinuous, but which satisfies strong continuity properties. In addition,

the solutions of the variational equation associated to the SDDE determine
the Fréchet differential with respect to the initial state of the orbits of the

semiflow at the compatibility points. These results are key points to start
using topological tools in the analysis of the long-term behavior of the solution

of this type of nonautonomous SDDEs.

1. Introduction

Functional differential equations of state-dependent delay type (SDDEs for short)
have been object of active analysis during the last years, due in part to the high
theoretical interest of this study, but mainly to the increasing number of models
of applied sciences which respond to this pattern: see e.g. Hartung [6], Wu [19],
Hartung et al. [7], Mallet-Paret and Nussbaum [13], Barbarossa and Walther [1],
He and de la Llave [8], and Krisztin and Rezounenko [12], as well as the many
references therein.

In this setting, the regularity properties required on the vector field to guarantee
existence, uniqueness, and continuous variation of solutions of initial value problems
are much more exigent than in the case of fixed delay or even time-dependent delay
differential equations. Especially complex is the nonautonomous case: due to the
time-dependence, the solutions do not generate a semiflow on the state space, and
more sophisticated tools must be designed in order to use the methods of the
topological dynamics in the analysis of the dynamical properties of the solutions.
A detailed description of some of these methods can be found in Hale [3] and Sell
and You [16]. To establish the bases for the use of these tools in the analysis of
nonautonomous SDDEs is the global purpose of this paper.

Let C and W 1,∞ respectively represent the spaces of continuous and Lipschitz-
continuous n-dimensional real functions on [−r, 0]. Hartung analyzes in [5, 6] the
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nonautonomous n-dimensional SDDE

ẏ(t) = f(t, y(t), y(t−τ̃(t, yt))) , t ≥ 0 (1.1)

(where yt(s) := y(t + s) for s ∈ [−r, 0]), and the associated initial value problems,
given by y0 = x for x ∈ W 1,∞. He establishes regularity conditions on the vector
field f : R × Rn × Rn → Rn and on the delay τ̃ : R × C → [0, r] guaranteeing the
local existence and uniqueness of the solutions y(t, x) of the initial value problem,
as well as the fact that the map [−r, 0]→ Rn, s 7→ y(t+ s, x) belongs to W 1,∞ for
those values of (t, x) for which it is defined.

We have already mentioned that our global purpose is to describe a scenario on
which the methods coming from the topological dynamics can be applied in the
analysis of the long-term behavior of the solutions of (1.1). Let us describe our
approach. Standard conditions on the temporal variation of the map

(f, τ̃) : R× Rn × Rn × C → Rn × [0, r] , (t, y1, y2, v) 7→ (f(t, y1, y2), τ̃(t, v))

(which are satisfied in the uniformly almost-periodic case, but also in much more
general situations), ensure that its hull Ω (which is defined as the closure in the
compact open topology of the set of time-translated functions (f, τ̃)t(s, y1, y2, v) :=
(f, τ̃)(t+ s, y1, y2, v) for t varying in R) is a compact metric space. Its elements are
functions

ω = (ω1, ω2) : R×Rn×Rn×C → Rn× [0, r], (t, y1, y2, v) 7→ (ω1(t, y1, y2), ω2(t, v)) .

In addition, the map R×Ω→ Ω , (t, (ω1, ω2)) 7→ (ω1, ω2)·t given by time-translation
(i.e., ((ω1, ω2)·t)(s, y1, y2, v) = (ω1(t + s, y1, y2), ω2(t + s, v))) defines a continuous
flow on Ω. These conditions also ensure that the maps F (ω, y1, y2) = ω1(0, y1, y2)
and τ(ω, x) = ω2(0, x) for ω = (ω1, ω2) are continuous operators: see Hino et al. [9].
This procedure (designed by Bebutov around 1940) takes us to consider the family
of nonautonomous SDDEs

ẏ(t) = F (ω·t, y(t), y(t−τ(ω·t, yt))) , t ≥ 0 , (1.2)

for ω ∈ Ω. Note that the initial equation is included in this one: just take ω = (f, τ̃)
(which in particular has a dense orbit in Ω). In addition, it turns out that any of
the equations of the family satisfies the hypotheses assumed on the initial one. The
great advantage of having this family of equations is that its solutions will allow us
to define a semiflow of skew-product type on a suitable product space with base Ω.

As a matter of fact, we will take a family of the type (1.2) as starting point,
without assuming that it comes from the single equation (1.1): Ω will simply be
a compact metric space supporting a continuous flow, without further recurrence
property (as the existence of a dense orbit on it). In this way, our framework is
more general. The conditions that we will impose on F and τ are intended to ensure
that each one of the equations of the family satisfied those of [5].

Our first purpose, carried out in Section 3, is to establish a global version of
the fundamental Hartung’s result: we will show the existence and uniqueness of a
maximal solution y(t, ω, x) of the equation (1.2) corresponding to ω with y0 = x ∈
W 1,∞, which is defined on a right-open interval [−r, βω,x) with 0 < βω,x ≤ ∞. We
will also prove that βω,x = ∞ if y(t, ω, x) is norm-bounded. As before, it turns
out that the map u(t, ω, x) defined by u(t, ω, x)(s) := y(t + s, ω, x) for s ∈ [−r, 0]
belongs to W 1,∞ whenever it is defined. We will show that Π: R+× Ω×W 1,∞ 7→
Ω ×W 1,∞, (t, ω, x) 7→ (ω·t, u(t, ω, x)), which is locally defined, determines what
we call a pseudo-continuous semiflow: a possibly noncontinuous semiflow but with
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strong continuity properties, as the continuity of Π: R+× Ω ×W 1,∞→ Ω × C; of

the restriction Π̃ : [r,∞)×Ω×W 1,∞ 7→ Ω×W 1,∞; of the section Πt : Ω×W 1,∞→
Ω × W 1,∞ for any fixed time t; and of the section Πω,x : R+ → Ω × W 1,∞ for
any (ω, x) satisfying the compatibility condition “x ∈ C1([−r, 0],Rn) and ẋ(0−) =
F (ω, x(0), x(−τ(ω, x)))”. For further purposes we represent by C0 the set of points
(ω, x) satisfying this compatibility property. These results can be easily extended
to the continuous dependence with respect to parameters. A consequence of the
previous properties is that the restriction of Π to any compact Π-invariant set
K ⊂ Ω ×W 1,∞ defines a global continuous semiflow. Section 3 also describes the
Lipschitz variation of the solutions of a particular equation with respect to the
initial data.

Our second purpose, carried out in Section 4, concerns the existence and reg-
ularity properties of the Fréchet differential of the solutions with respect to the
state variable x. We begin by analyzing the properties of the family of (linear)
variational equations

ż(t) = L(Π(t, ω, x))zt , t ∈ [0, βω,x) (1.3)

for (ω, x) ∈ C0, where

L(ω, x)v := D2F (ω, x(0), x(−τ(ω, x)))v(0) +D3F (ω, x(0), x(−τ(ω, x)))v(−τ(ω, x))

−D3F (ω, x(0), x(−τ(ω, x)))ẋ(−τ(ω, x))·D2τ(ω, x)v

for (ω, x) ∈ C0 and v ∈ C. Note that the equation is nonautonomous, linear,
and just time-dependent. We begin by analyzing the continuity properties of the
maps C0 → Lin(W 1,∞,Rn), (ω, x) 7→ L(ω, x) and C0 × C → Rn, (ω, x, v) 7→
L(ω, x)v. These properties are one of the key points required to prove that, if
z(t, ω, x, v) represents the solution of (1.3) agreeing with v ∈ W 1,∞ in [−r, 0],
and w(t, ω, x, v)(s) := z(t + s, ω, x, v) for s ∈ [−r, 0], then the map (t, ω, x, v) 7→
(Π(t, ω, x), w(t, ω, x, v)) defines a new pseudo-continuous semiflow on K × W 1,∞

(linear in this case), where K is any compact Π-invariant subset of Ω×W 1,∞. The
importance of this result relies on the fact that w(t, ω, x, v) = ux(t, ω, x)v; that
is, that w(t, ω, x, ·) represents the differential (in the Fréchet sense, as a matter
of fact) with respect to the state variable of the Π-semiorbit corresponding to a
compatibility point. This last equality concerning the map ux(t, ω, x) : W 1,∞ →
W 1,∞ is proved for the local solution by Hartung in [5]. For the sake of completeness
we include in Section 4 some steps of the proof adapted to our setting, since they are
relevant to understand the regularity properties of the pseudo-continuous semiflow
generated by ux. These properties mean that ux(t, ω, x) has full dynamical sense,
as we will explain in the next paragraph. An in-deep analysis of some additional
regularity properties of ux(t, ω, x) completes the section, and the paper.

In order to see that these results give indeed form to a scenario in which the
topological dynamical methods can be applied in the analysis of nonautonomous
SDDEs, we mention some of their consequences. The restriction of the pseudo-
continuous semiflow Π to any positively invariant compact set K ⊂ Ω × W 1,∞

determines a continuous semiflow on K. If, in addition, the points of K satisfy
the compatibility condition previously mentioned, the solutions of the family of
linearized equations determines the usually so-called linearized semiflow of Π along

the semiorbits of K, namely Π̃L : R+× K × W 1,∞ → K × W 1,∞, (t, ω, x, v) 7→
(Π(t, ω, x), ux(t, ω, x)v). These results, also included on Sections 3 and 4, will be
the starting point for the analysis of long-term dynamics of the orbits of K, for
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which we can make use of: the properties of the linear pseudo-continuous semiflow

Π̃L; and the properties of the continuous discrete semiflows given by the iteration of

the continuous map Π̃L
t for any t > 0. These and other questions are developed in

[14]. In turn, all these results, combined with techniques of monotone systems (also
new in the case of SDDEs) can be applied in the description of applied models, as
that of a biological neural network: see [15].

We close this introduction by remarking that some authors consider different
formulations providing different properties of regularity. Let us mention some of
them. Walther studies in [18, 17] autonomous SDDEs defined by a continuously
differentiable vector field F : U ⊂ C1([−r, 0],Rn)→ Rn satisfying mild smoothness
conditions; his phase space is {x ∈ C1([−r, 0],Rn) | ẋ(0−) = F (xt) } endowed with
the structure of C1-manifold. Hartung proves in [6] the existence of the linearized
map ux(t, x) : W 1,∞ → C for every x ∈ Ω × W 1,∞ and every v ∈ W 1,∞ when
(d/dt)(t − τ(t, u(t, x))) > ρ > 0 for every t. If this inequality is globally satisfied,
then the map U → C, (t, x) 7→ u(t, x) is differentiable with respect to the initial
data in the complete domain U of F . A similar approach is used by Chen et al. in
[2], where the state-dependent delay is supposed to satisfy an ordinary differential
equation given by a vector field which is bounded above by a constant ρ∗ < 1.
Properties of regularity of the semiflow are used by Hu and Wu in [10] and by Hu
et al. in [11] in order to investigate the Hopf-bifurcation of one-parametric families
of SDDEs as well as the global continuation of the periodic solutions. And He
and de la Llave use in [8] the parameterization method in order to construct quasi-
periodic solutions of quasi-periodic SDDEs, which are defined as the ε-perturbation
of an hyperbolic family of ordinary differential equations.

2. Basic notions on topological dynamics

Let Ω be a complete metric space. A continuous map σ : R × Ω → Ω, (t, ω) 7→
σ(t, ω) =: σt(ω) satisfying

(f1) σ0 = Id
(f2) σt+l = σt ◦ σl,

for t, l ∈ R in the case of (f2), defines a real continuous flow (Ω, σ,R). The orbit
of the point ω ∈ Ω is the set {σt(ω) | t ∈ R}. A subset M ⊆ Ω is σ-invariant if
σt(M) =M for every t ∈ R. The flow is local if the map σ is defined, continuous,
and satisfies (f1) and (f2) (whenever it makes sense) on an open set O ⊃ {0} × Ω.

Let us represent R+ := {t ∈ R | t ≥ 0}. If σ : R+× Ω → Ω, (t, ω) 7→ σ(t, ω) is a
continuous map which satisfies the properties (f1) and (f2) for all t, l ∈ R+, then
(Ω, σ,R+) is a real continuous semiflow . The set {σt(ω) | t ≥ 0} is the (positive)
semiorbit of the point ω ∈ Ω. A subsetM⊆ Ω is positively σ-invariant if σt(M) ⊆
M for all t ≥ 0. The semiflow is local if the map σ is defined, continuous, and
satisfies (f1) and (f2) (whenever it makes sense) on an open subset O ⊆ R+× Ω
containing {0} × Ω.

Let (Ω, σ,R+) be a global semiflow on a compact metric space Ω, and let X be a
Banach space. We denote ω·t := σt(ω) = σ(t, ω). A local semiflow (Ω×X,Π,R+)
is a skew-product semiflow with base (Ω, σ,R+) and fiber X if it takes the form

Π: U ⊆ R+× Ω×X → Ω×X , (t, ω, x) 7→ (ω·t, u(t, ω, x)) .

Property (f2) above (with Ω × X instead of Ω) means that u satisfies the cocycle
property u(t + l, ω, x) = u(t, ω·l, u(l, ω, x)) whenever the right-hand function is
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defined. A global skew-product semiflow Π is linear if it takes the form Π: R+×
Ω × X → Ω × X , (t, ω, x) 7→ (ω·t, φ(t, ω)x), where φ(t, ω) is a bounded linear
operator on X; in particular, u(t, ω, x) is linear in x for each (t, ω) ∈ R+× Ω.

We end this short section by fixing some notation. Given two Banach spaces
(X, ‖·‖X) and (Y, ‖·‖Y ), we represent by Lin(X,Y ) the set of bounded linear maps
φ : X → Y equipped with the operator norm ‖φ‖Lin(X,Y ) = sup‖x‖X=1 ‖φ(x)‖Y .
Let us fix r > 0. The set C represents the Banach space of continuous functions
C([−r, 0],Rn) equipped with ‖ψ‖C := sups∈[−r,0] |ψ(s)|, where | · | is the Euclidean

norm in Rn. The subset C1 ⊂ C is given by the functions which have continuous
derivative on [−r, 0] (one-sided derivatives at the edges). The set L∞ is the space of
Lebesgue-measurable functions ψ : [−r, 0]→ Rn which are essentially bounded ; i.e.,
for which there exists k ≥ 0 such that the set {x ∈ [−r, 0] | |ψ(x)| > k } has zero
measure. The norm on L∞, which is denoted by ‖·‖L∞ , is defined as the inferior
of the set of real numbers k ≥ 0 with the previous property. The set W 1,∞ is
the Banach space of Lipschitz-continuous functions ψ : [−r, 0]→ Rn equipped with

the Lipschitz norm ‖ψ‖W 1,∞ := max{ ‖ψ‖C , ‖ψ̇‖L∞ }. Finally, given a continuous
function x : [−r, γ] → Rn for γ > 0 and a time t ∈ [0, γ], we denote by xt ∈ C the
function defined by xt(s) = x(t+ s) for s ∈ [−r, 0].

3. State-dependent delay differential equations

Let (Ω, σ,R) be a continuous flow on a compact metric space, and let us represent
ω·t = σ(t, ω). Given two maps F : Ω × Rn × Rn → Rn and τ : Ω × C → [0, r], we
consider the family of nonautonomous SDDEs

ẏ(t) = F (ω·t, y(t), y(t−τ(ω·t, yt))) , t ≥ 0 , (3.1)

for ω ∈ Ω. The derivative at t = 0 is the right-hand derivative. It has been
explained in the Introduction the way in which one of this families may arise from
one of its equations, via the hull procedure. We have also mentioned that if this is
the case, at least one of the elements ω ∈ Ω has a dense orbit. But recall that we
are not assuming this fact here: we work in the most general case.

The conditions on F and τ which we will assume are

H1 F : Ω × Rn × Rn → Rn is continuous, and its partial derivatives w.r.t. its
second and third arguments exist and are continuous on Ω×Rn ×Rn; and

H2 τ : Ω×C → [0, r] is continuous and differentiable w.r.t. its second argument,
and the map D2τ : Ω× C → Lin(C,R) is continuous.

Remarks 3.1. 1. Note that H2 ensures the next property: τ is locally Lipschitz-
continuous in the sense that, for every compact subset K ⊂ Ω × C, there exists a
constant L1 = L1(K) > 0 such that

|τ(ω, x1)− τ(ω, x2)| ≤ L1‖x1 − x2‖C for all (ω, x1) and (ω, x2) in K .
In order to check this assertion, we take a compact subset K ⊂ Ω × C and note
that the set K̄ := {(ω, s x1 + (1− s)x2) | (ω, x1), (ω, x2) ∈ K and s ∈ [0, 1]} is also
compact in Ω×C. We define L1 = L1(K) := sup{‖D2τ(ω, x̄)‖Lin(C,R) | (ω, x̄) ∈ K̄ }:
condition H2 ensures that L1 is finite. Then,

|τ(ω, x1)− τ(ω, x2)| ≤
∣∣∣∣∫ 1

0

D2τ(ω, s x1 + (1− s)x2)(x1 − x2) ds

∣∣∣∣ ≤ L1‖x1 − x2‖C

whenever (ω, x1) and (ω, x2) belong to K, as asserted.



6 I. MAROTO, C. NÚÑEZ, AND R. OBAYA

2. Having in mind the previous remark, it is easy to check that each one of the
equations of the family satisfies the conditions A1 and A2 (adapted to our setting)
assumed by Hartung in [5]. Therefore, all his local results may be applied.

Theorem 3.3 summarizes the dynamical properties of the solutions of the fam-
ily (3.1). A key role is played by the set of pairs “(equation, initial datum)” which
satisfy the compatibility condition,

C0 = {(ω, x) ∈ Ω× C1 | ẋ(0−) = F (ω, x(0), x(−τ(ω, x)))} . (3.2)

Remark 3.2. As a matter of fact, the continuous differentiability properties of F
and τ required in conditions H1 and H2 can be weakened for Theorem 3.3, in the
line of conditions A1(i)&(ii) and A2(i)&(ii) of [5].

Theorem 3.3. Suppose that conditions H1 and H2 hold. Then,

(i) for ω ∈ Ω and x ∈ W 1,∞, there exists a unique maximal solution y(t, ω, x)
of the equation (3.1) corresponding to ω satisfying y(s, ω, x) = x(s) for s ∈
[−r, 0], which is defined for t ∈ [−r, βω,x) with 0 < βω,x ≤ ∞. In particular,
y(t, ω, x) is continuous on [−r, βω,x) and satisfies (3.1) on (0, βω,x), and
there exists the lateral derivative ẏ(0+, ω, x) = F (ω, x(0), x(−τ(ω, x))).

Let us define u(t, ω, x)(s) := y(t+ s, ω, x) for (ω, x) ∈ Ω×W 1,∞, t ∈ [0, βω,x), and
s ∈ [−r, 0]. Then,

(ii) u(t, ω, x) ∈W 1,∞ for all t ∈ [0, βω,x).
(iii) If supt∈[0,βω,x) ‖u(t, ω, x)‖C <∞ then βω,x =∞.

Let us further define C0 ⊂ Ω×W 1,∞ by (3.2) and

U := {(t, ω, x) | (ω, x) ∈ Ω×W 1,∞, t ∈ [0, βω,x)} ⊂ R+× Ω×W 1,∞,

Π: U → Ω×W 1,∞ , (t, ω, x) 7→ (ω·t, u(t, ω, x)) , (3.3)

Ũ := {(t, ω, x) ∈ U | t ≥ r} ⊂ R+× Ω×W 1,∞,

U 0 := {(t, ω, x) | (ω, x) ∈ C0, t ∈ [0, βω,x)} ⊂ R+× Ω×W 1,∞,

and provide U , Ũ , C0 and U 0 with the respective subspace topologies. Then,

(iv) the set U is open in R+×Ω×W 1,∞ and Π satisfies conditions (f1) and (f2)
of Section 2 (wherever it makes sense, and with Ω replaced by Ω×W 1,∞).

(v) The map U → Ω× C , (t, ω, x) 7→ (ω·t, u(t, ω, x)) is continuous.

(vi) The map Ũ → Ω×W 1,∞, (t, ω, x) 7→ (ω·t, u(t, ω, x)) is continuous.

(vii) Let us fix t̃ ≥ 0 with U t̃ := {(ω, x) | (t̃, ω, x) ∈ U} nonempty. Then the map

U t̃ → Ω×W 1,∞, (ω, x) 7→ (ω·t̃, u(t̃, ω, x)) is continuous.
(viii) The map U 0 → C0 ⊂ Ω×W 1,∞, (t, ω, x) 7→ (ω·t, u(t, ω, x)) is continuous.

(ix) If supt∈[0,∞) ‖u(t, ω, x)‖C <∞, then the set {(ω·t, u(t, ω, x)) | t ∈ [r,∞)} ⊂
Ω×W 1,∞ is relatively compact.

Proof. (i)&(ii) Let us fix (ω, x) ∈ Ω×W 1,∞. Theorem 1 of [5] proves the existence of
a constant δ > 0 and a map [−r, δ]→ Rn, t 7→ y(t, ω, x) satisfying: y(s, ω, x) = x(s)
for s ∈ [−r, 0]; and equation (3.1) on [0, δ] with ẏ(0, ω, x) and ẏ(δ, ω, x) replaced
by ẏ(0+, ω, x) and ẏ(δ−, ω, x). It also proves that u(t, ω, x) ∈ W 1,∞. The classical
method of prolongability of solutions outside any right-closed interval shows the
existence of maximal solution defined on a right-open interval. The details are left
to the reader.
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(iii) Assume that supt∈[0,β) ‖u(t, ω, x)‖C =: c0 <∞ for a point (ω, x) ∈ Ω×W 1,∞

and, for contradiction, that β := βω,x <∞. We will prove that y(t, ω, x) exists on
[−r, β] and satisfies (3.1) on [0, β]: as indicated in (i), this contradicts the definition
of β. Recall that the derivatives at the edge points are one-sided.

It follows from x ∈ W 1,∞ and from H1 that |ẏ(t, ω, x)| ≤ c1 for Lebesgue-
a.a. t ∈ [−r, 0] and all t ∈ [0, β), which means that supt∈[0,β) ‖u(t, ω, x)‖W 1,∞ =:

c2 < ∞. We take (tm) ↑ β and note that the previous properties allow us to
use Arzelá–Ascoli theorem in order to find a subsequence (tk) and an element
v ∈ C with v = limk→∞ u(tk, ω, x) in the ‖·‖C-topology. It is easy to check that
v(s) = y(β + s, ω, x) for s ∈ [−r, 0). In particular, |v̇(s)| ≤ c2 for Lebesgue-
a.a. s ∈ [−r, 0], so that v ∈ W 1,∞. In addition, v(0) = lims→0− y(β + s, ω, x). We
define y(β, ω, x) := v(0), so that we get a function y(t, ω, x) defined and continuous
on [−r, β] and satisfying (3.1) on [0, β). We also define u(β, ω, x) := v ∈ W 1,∞.
If s ∈ (−r, 0) ∩ (−β, 0), then there exists v̇(s) = ẏ(s + β, ω, x). By H1 and H2,
lims→0− ẏ(s + β, ω, x) = F (ω·β, y(β, ω, x), y(β − τ(ω·β, u(β, ω, x)), ω, x)). Finally,
the existence of the limit yields the existence of the left-side derivative ẏ(β−), with
ẏ(β−) = lims→0− ẏ(s + β, ω, x). The last two equalities complete the proof of the
first assertion, and hence that of (iii).

(iv)&(v) We will first prove these properties under the assumption that F is
bounded, which we will remove later.

An easy contradiction argument using property (iii) shows that βω,x = ∞ for
all (ω, x) ∈ Ω ×W 1,∞. Therefore, U = R+× Ω ×W 1,∞, and hence is open. It
is obvious that Π satisfies (f1). The uniqueness of solutions ensured by (i) implies
y(t+ l, ω, x) = y(t, ω·l, u(l, ω, x)), so that also (f2) holds for t ≥ 0 and l ≥ 0: (iv) is
proved.

Now let us check that, if (ω̃, x̃) = limm→∞(ωm, xm) in Ω×W 1,∞ and T > 0, then
y(t, ω̃, x̃) = limm→∞ y(t, ωm, xm) uniformly in t ∈ [−r, T ]. Since F is bounded, so
is {ẏ(t, ωm, xm) | t ∈ [0, T ] and m ∈ N}. An application of Arzelá–Ascoli theorem
shows that any subsequence of (ym), where ym(t) := y(t, ωm, xm), has in turn a
subsequence (yk) which converges to a limit ỹ uniformly on [−r, T ]. Our goal is to
prove that ỹ(t) = y(t, ω̃, x̃) for t ∈ [−r, T ]: if t ∈ [−r, 0], ỹ(t) = limxk(t) = x̃(t) =
y(t, ω̃, x̃); and if t ∈ (0, T ], then

ỹ(t) = lim
k→∞

yk(t) = lim
k→∞

(
xk(0) +

∫ t

0

F (ωk·l, yk(l), yk(l − τ(ωk·l, (yk)l))) dl

)
= x̃(0) +

∫ t

0

F (ω̃·l, ỹ(l), ỹ(l − τ(ω̃·l, ỹl))) dl .

(Here we have used H1 and H2.) So, ỹ(·) and y(·, ω̃, x̃) agree on [−r, T ], as asserted.

Now we assume that (t̃, ω̃, x̃) = limm→∞(tm, ωm, xm) in U , take T ≥ supm∈N tm,
fix ε > 0, and write

‖u(t̃, ω̃, x̃)− u(tm, ωm, xm)‖C
≤ ‖u(t̃, ω̃, x̃)− u(tm, ω̃, x̃)‖C + ‖u(tm, ω̃, x̃)− u(tm, ωm, xm)‖C .

Since y(·, ω̃, x̃) is uniformly continuous on [−r, T ], ‖u(t, ω̃, x̃)− u(tm, ω̃, x̃)‖C ≤ ε/2
if m is larger than an m0. And the property shown in the preceding paragraph
ensures that ‖u(t, ω̃, x̃)− u(t, ωm, xm)‖C ≤ ε/2 for all t ∈ [0, T ] if m is larger than

an m1 ≥ m0. Altogether, ‖u(t̃, ω̃, x̃)− u(tm, ωm, xm)‖C ≤ ε if m ≥ m1, so that (v)
is proved.
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The boundedness of F is not assumed from now on. Let us fix (t̃, ω̃, x̃) ∈ U ; take

T ∈ (t̃, βω̃,x̃); define c := maxt∈[−r,T ] |y(t, ω̃, x̃)|; take a C1 function h : Rn → [0, 1]
such that h(x) = 1 if |x| ≤ 2c and h(x) = 0 if |x| ≥ 3c; and define G(ω, y1, y2) =
F (ω, y1, y2)h(y1)h(y2), which is bounded and satisfies H1. We denote by yG(t, ω, x)
the solution of the problem given by the equation (3.1) corresponding to G and
the initial data x, which is defined on [−r,∞); and we denote uG(t, ω, x)(s) =
yG(t + s, ω, x) for t ∈ [0,∞) and s ∈ [−r, 0]. Applying (v) to G we find δ > 0
such that ‖uG(t, ω, x) − uG(t, ω̃, x̃)‖C ≤ c for all t ∈ [0, T ] whenever dΩ(ω, ω̃) ≤ δ
(where dΩ is the distance in Ω) and ‖x− x̃‖W 1,∞ ≤ δ. In particular, for these values
of (t, ω, x), ‖uG(t, ω, x)‖C ≤ 2c, which ensures that yG(t, ω, x) satisfies (3.1) (i.e.,
yG(t, ω, x) = y(t, ω, x)). Using this property, it is easy to complete the proofs of
(iv) and (v).

(vi) We assume that the sequence ((tm, ωm, xm)) of elements of Ũ converges to

(t̃, ω̃, x̃) ∈ Ũ , and fix ε > 0. Since U is open, there is no restriction in assuming the

existence of t0 ∈ (t̃, βω̃,x̃) such that tm ≤ t0 < βωm,xm for all m ∈ N. We define
ym(t) := y(t, ωm, xn) and ỹ(t) := y(t, ω̃, x̃) for t ∈ [−r, t0], and um(t) := u(t, ωm, xn)
and ũ(t) := u(t, ω̃, x̃) for t ∈ [0, t0]. Note also that the set

S := {(ωm, xm) | m ∈ N} ∪ {(ω̃, x̃)} (3.4)

is compact in Ω×W 1,∞.
Let us fix ε > 0. According to (v), the map u : [0, t0] × S → Ω × C is uni-

formly continuous. This uniform continuity guarantees that the families F1 :=
{um | m ∈ N} ∪ {ũ} ⊂ C([0, t0], C) and F2 : {ym | m ∈ N} ∪ {ỹ} ⊂ C([−r, t0],Rn)
are equicontinuous. Let us take s1, s2 ∈ [0, t0]. Then

˙̃y(s1)− ẏm(s2) = F (ω̃·s1, ỹ(s1), ỹ(s1 − τ(ω̃·s1, ũ(s1))))

− F (ωm·s2, ym(s2), ym(s2 − τ(ωm·s2, um(s2)))) .

The set K := {u(t, ω, x) | t ∈ [0, t0] and (ω, x) ∈ S} is compact in C, so that
k := sup{‖u(t, ω, x)‖C | t ∈ [0, t0] and (ω, x) ∈ S} is finite. We define B := {y ∈
Rn | ‖y‖ ≤ k}. Then the map

[0, t0]× Ω× B × B → Rn , (s, ω, y1, y2) 7→ F (ω·s, y1, y2)

is uniformly continuous: that is, there exists δ1 > 0 such that, if |s1 − s2| ≤ δ1,
|y1

1 − y2
1 | ≤ δ1, and |y1

2 − y2
2 | ≤ δ1, then |F (ω·s1, y

1
1 , y

1
2) − F (ω·s2, y

2
1 , y

2
2)| < ε for

all ω ∈ Ω. Since the family F1 is equicontinuous on [−r, t0], there exists δ2 such
that if |s1 − s2| ≤ δ2, then |ỹ(s1) − ym(s2)| ≤ δ1 for all m ∈ N. And, since the
family F2 is equicontinuous on [0, t0] and [0, t0]×Ω×K → R, (t, ω, x) 7→ τ(ω·t, x)
is uniformly continuous, there is δ3 and m0 ∈ N such that if |s1 − s2| ≤ δ3 and
m ≥ m0 then |τ(ω̃·s1, ũ(s1))− τ(ωm·s2, um(s2))| ≤ δ2 for all ω ∈ Ω. Altogether, we
take δ = min(δ1, δ2, δ3) and conclude that

if |s1 − s2| ≤ δ and m ≥ m0, then | ˙̃y(s1)− ẏm(s2)| ≤ ε for m ≥ m0 . (3.5)

Now we take m1 ≥ m0 such that |t̃− tm| ≤ δ for all m ≥ m1, and recall that tm ≥ r
and t̃ ≥ r to deduce from (3.5) that

‖ ˙̃u(t̃)− u̇m(tm)‖L∞ = sup
s∈[−r,0]

| ˙̃y(t̃+ s)− ẏm(tm + s)| ≤ ε

whenever m ≥ m1. Since, by (v), ‖ũ(t̃) − um(tm)‖C ≤ ε for large enough m, we

conclude that the same happens with ‖ũ(t̃)− um(tm)‖W 1,∞ , which proves (vi).
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(vii) In the case that t̃ ≥ r, property (vii) follows from (vi), and if t̃ = 0 the

assertion is trivial. So that assume that t̃ ∈ (0, r). Let us take a sequence ((ωm, xm))
in U t̃ with limit (ω̃, x̃) ∈ U t̃. Let us fix ε > 0 and δ ∈ (0, ε]. We call ym(t) :=

y(t, ωm, xm) and ỹ(t) := y(t, ω̃, x̃) for t ∈ [−r, t̃ ], and , um(t) := u(t, ωm, xm) and

ũ(t) := u(t, ω̃, x̃) for t ∈ [0, t̃ ]. According to (v), ‖ũ(t̃ ) − um(t̃ )‖C is as small as
desired if m is large enough. Therefore, there exists m0 such that, if m ≥ m0, then

‖ũ(t)− um(t)‖C ≤ ‖ũ(t̃ )− um(t̃ )‖C + ‖x̃− xm‖C ≤ δ ≤ ε for t ∈ [0, t̃] . (3.6)

On the other hand,

‖ ˙̃u(t̃)− u̇m(t̃)‖L∞ ≤ ‖ ˙̃x− ˙̃xm‖L∞ + sup
t∈[0,t̃]

|ẏ(t, ω̃, x̃)− ẏ(t, ωm, xm)| ,

and

| ˙̃y(t)− ẏm(t)| =
∣∣F (ω̃·t, ỹ(t), ỹ(t− τ(ω̃·t, ũ(t))))

− F (ωm·t, ym(t), ym(t− τ(ωm·t, um(t))))
∣∣

for t ∈ [0, t̃ ]. It follows easily from the continuity of F and τ guaranteed by H1 and
H2 and from (3.6) (which is valid for a δ which can be prefixed from the properties

of F and τ) that | ˙̃y(t) − ẏm(t)| ≤ ε/2 for all t ∈ [0, t̃ ] if m is large enough, and

clearly the same happens with ‖ ˙̃x− ˙̃xm‖L∞ . This ensures that ‖ ˙̃u(t̃)−u̇m(t̃)‖L∞ ≤ ε
for large enough m, which together with (3.6) proves the result.

(viii) Let us take a sequence ((tm, ωm, xm)) in U 0 with limit (t̃, ω̃, x̃) ∈ U 0 and
define t0, S, ym, ỹ, um and ũ as at the beginning of the proof of (vi). Note that

‖ũ(t̃)− um(tm)‖W 1,∞ ≤ ‖ũ(t̃)− um(t̃)‖W 1,∞ + ‖um(t̃)− um(tm)‖W 1,∞

and that we already know, by (vii) and (v), that limm→∞ ‖ũ(t̃)− um(t̃)‖W 1,∞ = 0

and limm→∞ ‖um(t̃)− um(tm)‖C = 0. Hence, our goal is to prove that

lim
m→∞

‖um(t̃)− um(tm)‖L∞ = 0 .

It is very easy to check that this property follows from the equicontinuity of the
family {ẏm | m ∈ N} on [−r, t0]. It is also easy to deduce from the fact that

limm→∞ ẋm = ˙̃x in C that the family {ẏm | m ∈ N} is equicontinuous on [−r, 0].
On the other hand, given ε > 0, we conclude by repeating step by step the argument
used in the proof of (vi) that there exists δ > 0 such that, if s1, s2 ∈ [0, t0] and
|s1 − s2| ≤ δ, then |ẏm(s1) − ẏm(s2)| ≤ ε all m ∈ N. This means that the family
{ẏm | m ∈ N} is equicontinuous on [0, t0], and hence on [−r, t0], which completes
the proof of (viii).

(ix) We fix (ω, x) with c0 := supt∈[0,βω,x) ‖u(t, ω, x)‖C < ∞, which according

to (iii) ensures that βω,x = ∞. Property (vi) ensures that {(ω·t, u(t, ω, x)) | t ∈
[r, 2r]} is compact, so that it suffices to prove that {(ω·t, u(t, ω, x)) | t ∈ [2r,∞)} is
relatively compact. In order to check it, given a sequence (tm) in [0,∞), we look for
a convergent subsequence of ((ω·(tm+2r), u(tm+2r, ω, x))) in Ω×W 1,∞. Since Ω is
compact, there is no restriction in assuming the existence of ω∗ := limm→∞ ω·tm,
and hence of ω∗·(2r) = limm→∞ ω·(tm+ 2r). We represent

ym : [0, 2r]→ Rn, t 7→ y(tm+ t, ω, x) for m ∈ N ,
so that we obtain a sequence (ym) in C([0, 2r],Rn) which is uniformly bounded
by c0. As in the proof of (iv)&(v), Arzelá–Ascoli theorem provides a subsequence
(yk) which converges uniformly on [0, 2r] to y∗ ∈ C([0, 2r],Rn). By condition H2,
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limk→∞ τ(ω·(tk+ t), (yk)t) = τ(ω∗·t, (y∗)t) uniformly on [r, 2r], which together with
H1 yields

lim
k→∞

F (ω·(tk+ t), yk(t), y(tk+ t− τ(ω·(tk+ t), (yk)t), ω, x))

= F (ω∗·t, y∗(t), y∗(t−τ(ω∗·t, (y∗)t)))
(3.7)

uniformly on [r, 2r]. Now, the sequence (yk) satisfies

yk(t) = yk(r)+

∫ t

r

F (ω·(tk+s), yk(s), y(tk+s−τ(ω·(tk+s), (yk)s), ω, x)) ds . (3.8)

So, on the one hand, y∗(t) = limk→∞ yk(t) for t ∈ [r, 2r]; and on the other hand,
by (3.7), the right hand term of (3.8) converges to

y∗(r) +

∫ t

r

F (ω∗·s, y∗(s), y∗(s− τ(ω∗·s, (y∗)s))) ds .

Therefore y∗ solves the equation (3.1) on [r, 2r]. Consequently, (ẏk) converges to
ẏ∗ uniformly on [r, 2r]. Altogether, we have checked the sequence (u(tk+ 2r, ω, x))
converges to y∗2r in W 1,∞, which completes the proof of (ix) and of the theorem. �

Corollary 3.4. Suppose that conditions H1 and H2 hold, and let Π be defined
by (3.3). Let K ⊂ Ω ×W 1,∞ be a positively Π-invariant compact set. Then the
restriction of Π to K defines a global continuous semiflow on K.

Proof. Note that R+×K ⊂ U and Π(t, ω, x) ∈ K for all (t, ω, x) ∈ R+×K, so that
the restriction Π: R+×K → K is well defined and globally defined. And it is easy
to check that the topologies induced by ‖·‖C and ‖·‖W 1,∞ on K are the same, so
that the continuity follows from Theorem 3.3(v). �

Remark 3.5. We can repeat the arguments of the proofs of points (v), (vi) and
(vii) of Theorem 3.3 in order to prove analogous results on the joint continu-
ity with respect to (t, ω, x, λ) for the solutions of the family of equations ẏ(t) =
F (ω·t, y(t), y(t − τ(ω·t, yt, λ), λ) when λ belongs to a Banach space and F and τ
satisfy the corresponding jointly continuity properties included in H1 and H2. The
details are left to the reader, whom is referred to [5] for a more exhaustive analysis
of the regularity properties with respect to parameters of the solution of SDDEs.

We complete this section by analyzing the Lipschitz behaviour of the map u
defined in the statement of Theorem 3.3 with respect to the initial condition x.
This result is a global version, adapted to our setting, of the local property given
by Theorem 1(iv) of [5]. Recall that dΩ represents the distance in Ω.

Theorem 3.6. Suppose that conditions H1 and H2 hold, and define U and u : U →
W 1,∞ as in the statement of Theorem 3.3. Let us fix t̃ > 0 such that the set
U t̃ := {(ω, x) | (t̃, ω, x) ∈ U} is nonempty. Let us also fix (ω̃, x̃) ∈ U t̃. Then,

(i) there exists ρ > 0 small enough to guarantee that

1. u(t, ω, x) is defined (i.e., (t, ω, x) ∈ U) whenever t ∈ [0, t̃ ] and (ω, x) ∈
B ρω̃,x̃ := {(ω, x) ∈ Ω×W 1,∞ | dΩ(ω, ω̃) < ρ and ‖x− x̃‖W 1,∞ < ρ};

2. sup{‖u(t, ω, x)‖C | t ∈ [0, t̃ ] and (ω, x) ∈ B ρω̃,x̃} =: c̃ <∞ .

(ii) Let us fix a value of ρ for which 1 and 2 hold. Then there exists L =

L(t̃, ω̃, x̃, ρ) such that, if (ω, x1) and (ω, x2) belong to B ρω̃,x̃, then

‖u(t, ω, x1)− u(t, ω, x2)‖W 1,∞ ≤ L ‖x1 − x2‖W 1,∞ for all t ∈ [0, t̃ ] .
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Proof. (i) Let us fix t̃, ω̃, and x̃ as in the statement. The existence of ρ̃ > 0 such
that 1 holds follows immediately from the open character of U ensured by Theorem
3.3(iv). In order to check the existence of ρ ∈ (0, ρ̃] such that also 2 holds, we

assume for contradiction that, for any m ∈ N, there exist tm ∈ [0, t̃ ] and (ωm, xm) ∈
Ω×W 1,∞ such that dΩ(ωm, ω̃) < 1/m, ‖xm−x̃‖W 1,∞ < 1/m, and |y(tm, ωm, xm)| ≥
m; take a subsequence (tk) with limit t∗; observe that ((tk, ωk, xk)) converges to

(t∗, ω̃, x̃) in [0, t̃ ]×Ω×W 1,∞; and conclude from Theorem 3.3(v) that |y(t∗, ω̃, x̃)| =
∞, which is impossible.

(ii) The points t̃, ω̃, and x̃ will be fixed in the whole proof, as well as a constant
ρ for which 1 and 2 hold. We begin by proving properties (3.9), (3.10) and (3.14),
which will be used below. Let c̃ be the constant appearing in condition 2. Then

| s y(t1, ω, x1) + (1− s) y(t2, ω, x2) | ≤ c̃ (3.9)

for all t1, t2 ∈ [−r, t̃], (ω, x1) and (ω, x2) in B ρω̃,x̃, and s ∈ [0, 1]. On the other hand,

the continuity of DiF : Ω × Rn × Rn → Lin(Rn,Rn) for i = 2, 3 ensured by H1
guarantees that these maps take compact set in compact sets, so that there exists
L1 <∞ such that

‖DiF (ω, y1, y2)‖Lin(Rn,Rn) ≤ L1 for all ω ∈ Ω if |y1| ≤ c̃ and |y2| ≤ c̃ (3.10)

for i = 2, 3. Note also that the continuity of F : Ω×Rn ×Rn → Rn ensured by H1
combined with condition 2 and equation (3.1) ensures that the set

{ ẏ(t, ω, x) | t ∈ [0, t̃ ] and (ω, x) ∈ B ρω̃,x̃ } ⊂ Rn

is bounded. In addition, |ẏ(s, ω, x)| ≤ ‖x‖W 1,∞ < ρ + ‖x̃‖W 1,∞ for Lebesgue-
a.a. s ∈ [−r, 0] whenever (ω, x) ∈ B ρω̃,x̃. These two properties and 2 yield

sup{‖u(t, ω, x)‖W 1,∞ | t ∈ [0, t̃ ] and (ω, x) ∈ B ρω̃,x̃} =: c∗ <∞ , (3.11)

which together with Arzelá-Ascoli theorem ensures that the set

K = Ω× closureC{u(t, ω, x) | t ∈ [0, t̃ ] and (ω, x) ∈ B ρω̃,x̃ } ⊂ Ω× C (3.12)

is compact. As seen in Remark 3.1.1, there exists L2 such that

|τ(ω, x1)− τ(ω, x2)| ≤ L2‖x1 − x2‖C for all (ω, x1) and (ω, x2) in K . (3.13)

Let us take (ω, x1) and (ω, x2) in B ρω̃,x̃, and denote y1(t) := y(t, ω, x1) and y2(t) :=

y(t, ω, x2) for t ∈ [−r, t̃], and u1(t) := u(t, ω, x1), and u2(t) := u(t, ω, x2) for t ∈
[0, t̃ ]. Note that u1(t) and u2(t) belong to the K given by (3.12) for all t ∈ [0, t̃ ].
Let c∗ and L2 be the constants appearing in (3.11) and (3.13). Then,

|y1(t− τ(ω·t, u1(t)))− y2(t− τ(ω·t, u2(t)))|
≤ |y1(t− τ(ω·t, u1(t)))− y2(t− τ(ω·t, u1(t)))|

+ |y2(t− τ(ω·t, u1(t)))− y2(t− τ(ω·t, u2(t)))|
≤ ‖u1(t)− u2(t)‖C + ‖u2(t)‖W 1,∞ |τ(ω·t, u1(t))− τ(ω·t, u2(t))|
≤ ‖u1(t)− u2(t)‖C + c∗ L2 ‖u1(t)− u2(t)‖C = L3 ‖u1(t)− u2(t)‖C

(3.14)

for all t ∈ [0, t̃ ], where L3 := 1 + c∗L2.
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Now we can proceed with the proof. With the previous notation, if t ∈ [0, t̃ ],

F (ω·t, y1(t), y1(t− τ(ω·t, u1(t))))− F (ω·t, y2(t), y2(t− τ(ω·t, u2(t))))

=

∫ 1

0

D2F
(
ω·t, s y1(t) + (1− s) y2(t), s y1(t− τ(ω·t, u1(t)))

+ (1− s) y2(t− τ(ω·t, u2(t)))
)(
y1(t)− y2(t)

)
ds

+

∫ 1

0

D3F
(
ω·t, s y1(t) + (1− s)y2(t), s y1(t− τ(ω·t, u1(t)))

+ (1− s) y2(t− τ(ω·t, u2(t)))
)

(
y1(t− τ(ω·t, u1(t)))− y2(t− τ(ω·t, u2(t)))

)
ds .

This equality together with (3.9), (3.10) and (3.14) ensures that∣∣F (ω·t, y1(t), y1(t− τ(ω·t, u1(t))))

− F (ω·t, y2(t), y2(t− τ(ω·t, u2(t))))
∣∣ ≤ L4 ‖u1(t)− u2(t)‖C

(3.15)

for all t ∈ [0, t̃ ], where L4 := L1(1 + L3). Now, it follows from the integral form of
equation (3.1) that y1(t)− y2(t) satisfies

y1(t)− y2(t) = x1(0)− x2(0) +

∫ t

0

(
F (ω·l, y1(l), y1(l − τ(ω·l, u1(l))))

− F (ω·l, y2(l), y2(l − τ(ω·l, u2(l))))
)
dl

for t ∈ [0, t̃ ], which together with (3.15) yields

|y1(t)− y2(t)| ≤ ‖x1 − x2‖C +

∫ t

0

L4 ‖u1(l)− u2(l)‖C dl

for all t ∈ [0, t̃ ]. And |y1(t)− y2(t)| ≤ ‖x1 − x2‖C for t ∈ [−r, 0], so that

‖u1(t)− u2(t)‖C ≤ ‖x1 − x2‖C +

∫ t

0

L4 ‖u1(l)− u2(l)‖C dl

for t ∈ [0, t̃ ]. Applying the Gronwall lemma we obtain

‖u1(t)− u2(t)‖C ≤ L5 ‖x1 − x2‖C (3.16)

for t ∈ [0, t̃ ], where L5 = exp(L4 t̃) ≥ 1. Combining now (3.1), (3.15) and (3.16),
we obtain

|ẏ1(t)− ẏ2(t)|
=
∣∣F (ω·t, y1(t), y1(t− τ(ω·t, u1(t))))− F (ω·t, y2(t), y2(t− τ(ω·t, u2(t))))

∣∣
≤ L4 ‖u1(t)− u2(t)‖C ≤ L4 L5 ‖x1 − x2‖C ≤ L4 L5 ‖x1 − x2‖W 1,∞

for t ∈ [0, t̃ ]. Since |ẏ1(t)− ẏ2(t)| ≤ ‖x1−x2‖W 1,∞ ≤ L5‖x1−x2‖W 1,∞ for Lebesgue
a.a. t ∈ [−r, 0], we obtain

‖u(t, ω, x1)− u(t, ω, x2)‖W 1,∞ ≤ L ‖x1 − x2‖W 1,∞ for all t ∈ [0, t̃ ] ,

where L := max(L5, L4L5). This completes the proof of (ii). �
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4. Differentiability with respect to the initial state

Throughout this section, we assume that H1 and H2 hold, and use the notation
established in the previous one. Recall that the compatibility set C0 and the closely
related set U 0 are defined by

C0 := {(ω, x) ∈ Ω× C1 | ẋ(0−) = F (ω, x(0), x(−τ(ω, x)))} , (4.1)

U 0 := {(t, ω, x) | (ω, x) ∈ C0, t ∈ [0, βω,x)} , (4.2)

and that we provide them with the topologies induced by those of Ω ×W 1,∞ and
R+×Ω×W 1,∞, respectively. It is very easy to deduce from the definition (3.3) of
the semiflow Π that Π(U 0) = C0, which is a fundamental property for what follows.

Let us consider the family of (linear) variational equations

ż(t) = L(Π(t, ω, x))zt , t ∈ [0, βω,x) (4.3)

for (ω, x) ∈ C0, where

L(ω, x)v := D2F (ω, x(0), x(−τ(ω, x)))v(0) +D3F (ω, x(0), x(−τ(ω, x)))v(−τ(ω, x))

−D3F (ω, x(0), x(−τ(ω, x)))ẋ(−τ(ω, x))·D2τ(ω, x)v

for (ω, x) ∈ C0 and v ∈ C. Note that each equation of the family (4.3) is evaluated
along one of the positive Π-semiorbits lying on C0, and that it is not state-dependent,
but just time-dependent. This section presents an analysis of the solutions of this
family of delay equations, in the line of that made in Section 3 for the family (3.1).
Its importance will be clarified by the properties stated in Corollary 4.3 and The-
orem 4.4.

All the results of this section depend on the continuity properties of the maps

C0 → Lin(W 1,∞,Rn) , (ω, x) 7→ L(ω, x) ,

and

C0 × C → Rn, (ω, x, v) 7→ L(ω, x)v ,

which we analyze in the next proposition.

Proposition 4.1. Suppose that conditions H1 and H2 hold. Then,

(i) the map C0 → Lin(W 1,∞,Rn), (ω, x) 7→ L(ω, x) is continuous.
(ii) The map U 0 → Lin(W 1,∞,Rn), (t, ω, x) 7→ L(Π(t, ω, x)) is continuous.

(iii) Let us fix (ω, x) ∈ C0. The map C → Rn , v 7→ L(ω, x)v is a bounded
linear operator. In addition, for each k > 0,

sup
{
‖L(ω, x)‖Lin(C,Rn)

∣∣ (ω, x) ∈ C0 and ‖x‖W 1,∞ ≤ k
}
<∞ .

(iv) The map C0 × C → Rn , (ω, x, v) 7→ L(ω, x)v is continuous.
(v) The map U 0 × C → Rn , (t, ω, x, v) 7→ L(Π(t, ω, x))v is continuous.

Proof. Recall that H1 and H2 ensure the continuity of τ : Ω × C → R and the
existence and continuity of DiF : Ω × Rn × Rn → Lin(Rn,Rn) for i = 2, 3 and of
D2τ : Ω× C → Lin(C,R).

(i) Let us take a sequence ((ωm, xm)) in C0 with limit (ω̃, x̃) ∈ C0. We will check
that L(ω̃, x̃)v = limm→∞ L(ωm, xm)v by proving this property for each one of the
terms appearing in the expression of L. So, we write L(ω, x) = L1(ω, x)+L2(ω, x)+
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L3(ω, x). We take ε > 0 and v ∈ W 1,∞ with ‖v‖W 1,∞ = 1, and call τ̃ := τ(ω̃, x̃)
and τm := τ(ωm, xm). For |L1(ω̃, x̃)− L1(ωm, xm)|, since |v(0)| ≤ 1, we have∣∣(D2F (ω̃, x̃(0), x̃(−τ̃))−D2F (ωm, xm(0), xm(−τm))

)
v(0)

∣∣
≤ ‖D2F (ω̃, x̃(0), x̃(−τ̃))−D2F (ωm, xm(0), xm(−τm))‖Lin(Rn,Rn)

so that the continuity of τ and D2F shows that it is smaller than ε if m is large
enough. Therefore, L1(ω̃, x̃) = limm→∞ L1(ωm, xm) in Lin(W 1,∞,Rn).

The norm |L2(ω̃, x̃)v − L2(ωm, xm)v| is bounded by the sum of two:∣∣(D3F (ω̃, x̃(0), x̃(−τ̃))−D3F (ωm, xm(0), xm(−τm))
)
v(−τm)

∣∣
≤ ‖D3F (ω̃, x̃(0), x̃(−τ̃))−D3F (ωm, xm(0), xm(−τm))‖Lin(Rn,Rn) ,

which is in the same situation as the previous term; and∣∣D3F (ω̃, x̃(0), x̃(−τ̃))
(
v(−τ̃)− v(−τm)

)∣∣
≤ ‖D3F (ω̃, x̃(0), x̃(−τ̃))‖Lin(Rn,Rn)‖v̇‖L∞ |τ̃ − τm|
≤ ‖D3F (ω̃, x̃(0), x̃(−τ̃))‖Lin(Rn,Rn)|τ̃ − τm| ,

(4.4)

which is smaller than ε for large enough m due to the continuity of τ on C0 ⊂ Ω×C.

Here we have used that v(−τ̃) − v(−τm) =
∫ 1

0
v̇(−sτ̃ + (s − 1)τm)(τm − τ̃) ds and

that ‖v̇‖L∞ ≤ ‖v‖W 1,∞ = 1. (Incidentally: note that the proof would fail at this
point if Lin(W 1,∞,Rn) were replaced by Lin(C,Rn) as codomain of L.) Altogether,
L2(ω̃, x̃) = limm→∞ L2(ωm, xm) in Lin(W 1,∞,Rn).

The term L3(ω, x) has in turn two factors. For the second one, we have∣∣(D2τ(ω̃, x̃))−D2τ(ωm, xm)
)
v| ≤ ‖D2τ(ω̃, x̃)−D2τ(ωm, xm)‖Lin(C,R) ,

and we can use the continuity of D2τ to bound it by ε for large enough m. Finally,∣∣(D3F (ω̃, x̃(0), x̃(−τ̃))−D3F (ωm, xm(0), xm(−τm))
)
ẋm(−τm)

∣∣
≤ ‖D3F (ω̃, x̃(0), x̃(−τ̃))−D3F (ωm, xm(0), xm(−τm))‖Lin(Rn,Rn)‖xm‖W 1,∞

and∣∣D3F (ω̃, ˙̃x(0), x̃(−τ̃))
(

˙̃x(−τ̃)− ẋm(−τm)
)∣∣

≤ ‖D3F (ω̃, x̃(0), x̃(−τ̃))‖Lin(Rn,Rn)

(
| ˙̃x(−τ̃)− ˙̃x(−τm)|+ ‖x̃− xm‖W 1,∞

)
,

and both terms can be easily bounded by ε ifm is large enough. It follows easily that
L3(ω̃, x̃) = limm→∞ L3(ωm, xm) in Lin(W 1,∞,Rn). Altogether, we have checked
that

lim
m→∞

‖L̃(ω̃, x̃)− L̃(ωm, xm)‖Lin(W 1,∞,Rn) = 0 ,

so that (i) is proved.

(ii) We have already pointed out that Π(t, ω, x) ∈ C0 whenever (t, ω, x) ∈ U 0, so
that L(Π(t, ω, x)) is a well-defined map. Property (ii) follows from (i) and Theorem
3.3(viii).

(iii) The first assertion of (iii) is an easy consequence of the continuity of D2F ,
D3F and D2τ . The second also follows easily from hypotheses H1 and H2.

(iv) We take a sequence ((ωm, xm, vm)) of points of C0 × C with limit (ω̃, x̃, ṽ)
in U 0 × C, and repeat step by step the proof of (i) (no matter the fact that vm
and ṽ belongs to C instead of W 1,∞): note that the sequence (‖vm‖C) is bounded,
and that no uniformity in vm is required. The only slightly different point is the
analogous of (4.4), which is simpler in the current situation.
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(v) As said in (ii), L(Π(t, ω, x)) is a well-defined map. Property (iv) follows from
(iv) and Theorem 3.3(viii). �

The next results (Theorem 4.2 and Corollary 4.3) constitute the analogues of
Theorems 3.3 and 3.6 for the family of variational equations (4.3). In particular,
we show that this family induces a pseudo-continuous semiflow on K×W 1,∞, where
K is any positively Π-invariant compact subset on C0. We will also prove that this
semiflow is the one usually so-called linearized semiflow of Π along the semiorbits
of K: see Theorem 4.4.

Recall that the Π-semiorbit Π(t, ω, x) starting at (ω, x) ∈ Ω ×W 1,∞ is defined
on a maximal interval represented by [−r, βω,x).

Theorem 4.2. Suppose that conditions H1 and H2 hold. Then,

(i) for (ω, x) ∈ C0 and v ∈ C, there exists a unique maximal solution z(t, ω, x, v)
of the equation (4.3) corresponding to (ω, x) satisfying z(s, ω, x, v) = v(s)
for s ∈ [−r, 0], which is defined for t ∈ [−r, βω,x). In addition, the map
C → Rn, v 7→ z(t, ω, x, v) is linear and continuous for all t ∈ [−r, βω,x).

Let us define

w(t, ω, x, v)(s) := z(t+ s, ω, x, v)

for (ω, x) ∈ C0 , t ∈ [0, βω,x), v ∈ C , and s ∈ [−r, 0] .
(4.5)

Then,

(ii) w(t+ l, ω, x, v) = w(t,Π(l, ω, x), w(l, ω, x, v)) whenever the right-hand term
exists.

(iii) The map U 0 × C → C , (t, ω, x, v) 7→ w(t, ω, x, v) is continuous.
(iv) If v ∈W 1,∞, then w(t, ω, x, v) ∈W 1,∞ for all t ∈ [0, βω,x).
(v) Let us define

Ũ 0 := {(t, ω, x) ∈ U 0 | t ≥ r} . (4.6)

The map Ũ 0 ×W 1,∞ →W 1,∞, (t, ω, x, v) 7→ w(t, ω, x, v) is continuous.

(vi) Let us fix t̃ ≥ 0 with

U 0
t̃

:= {(ω, x) | (t̃, ω, x) ∈ U 0} = {(ω, x) ∈ C0 | t̃ < βω,x} (4.7)

nonempty. Then the map U 0
t̃
×W 1,∞ → W 1,∞, (ω, x, v) 7→ w(t̃, ω, x, v) is

continuous.
(vii) Let us define V 0 := {(t, ω, x, v) | (t, ω, x) ∈ U 0 and v ∈ C1 with v̇(0−) =

L(ω, x)v}. Then the map V 0 →W 1,∞, (t, ω, x, v) 7→ w(t, ω, x, v) is contin-
uous.

(viii) Let U 0
t̃

be defined by (4.7). Let us fix t̃ > 0 with U 0
t̃

nonempty, and (ω̃, x̃) ∈
U 0
t̃

. Let us also fix ρ > 0 be small enough to guarantee that

1. u(t, ω, x) is defined (i.e., (t, ω, x) belongs to U 0) whenever t ∈ [0, t̃ ] and

(ω, x) ∈ B ρ,0ω̃,x̃ := {(ω, x) ∈ C0 | dΩ(ω, ω̃) < ρ and ‖x− x̃‖W 1,∞ < ρ};
2. sup{‖u(t, ω, x)‖C | t ∈ [0, t̃ ] and (ω, x) ∈ B ρ,0ω̃,x̃} =: c̃ <∞ .

Then there exists M = M(t̃, ω̃, x̃, ρ) such that, if (ω, x) ∈ B ρ,0ω̃,x̃, then

‖w(t, ω, x, v)‖W 1,∞ ≤M ‖v‖W 1,∞ for all t ∈ [0, t̃ ] .

Proof. (i) The properties proved in Proposition 4.1(iii)-(v) allow us to apply the
general theory for finite-delay differential equations of Hale and Verdyun Lunel [4],
Section 2.2, in order to ensure the existence and uniqueness of z(t, ω, x, v) and its
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continuity with respect to v ∈ C. The classical method of continuation of solutions
for linear differential equations allows us to prove that z(t, ω, x, v) is defined for all
t ∈ [−r, βω,x); and since the equation is linear, so is the map v 7→ z(t, ω, x, v).

(ii) This cocycle property follows from the uniqueness established in (i).

(iii) Let us take a sequence ((tm, ωm, xm, vm)) in U 0×C with limit (t̃, ω̃, x̃, ṽ) ∈
U 0 × C. The open character of U allows us to assume without restriction the
existence of t0 ∈ (t̃, βω̃,x̃) such that tm ≤ t0 < βωm,xm

for all m ∈ N. Let us
represent zm(t) := z(t, ωm, xm, vm) for t ∈ [−r, t0] and wm(t) := w(t, ωm, xm, vm)
for t ∈ [0, t0] and m ∈ N. The integral form of (4.3) shows that

zm(t) = vm(0) +

∫ t

0

L(Π(l, ωm, xm))wm(l) dl

for t ∈ [0, t0]. On the other hand, the set S defined by (3.4) is contained in C0 and
compact in Ω×W 1,∞; therefore, Proposition 4.1(ii) ensures that (L◦Π)([0, t0]×S) ⊂
Lin(W 1,∞,Rn) is compact; and hence k0 := sup{‖L(Π(t, ωm, xm))‖Lin(W 1,∞,Rn) |
t ∈ [0, t0] and m ∈ N} is finite. Let us call α := supm∈N ||vm||C . Then,

‖wm(t)‖C ≤ α+

∫ t0

0

k0 ‖wm(l)‖C dl

for all t ∈ [0, t0], and the Gronwall lemma shows that k := sup{‖wm(t)‖C | t ∈
[0, t0] and m ∈ N} is finite. In turn, this fact and (4.3) ensure that the set
{żm(t) | t ∈ [0, t0] and m ∈ N} is uniformly bounded.

Now we follow the scheme of the proof of Theorem 3.3(v). First, we deduce from
Arzelá-Ascoli theorem that limm→∞ z(t, ωm, xm, vm) = z(t, ω̃, x̃, ṽ) uniformly in
[−r, t0]. And second, we write ‖w(t, ω̃, x̃, ṽ)−w(tm, ωm, xm, vm)‖C ≤ ‖w(t, ω̃, x̃, ṽ)−
w(tm, ω̃, x̃, ṽ)‖C + ‖w(tm, ω̃, x̃, ṽ) − w(tm, ωm, xm, vm)‖C and note that: the term
‖w(t, ω̃, x̃, ṽ) − w(tm, ω̃, x̃, ṽ)‖C is as small as desired for large enough m due to
the uniform continuity of t 7→ z(t, ω̃, x̃, ṽ) in [−r, t0]; and the term ‖w(t, ω̃, x̃, ṽ) −
w(t, ωm, xm, vm)‖C is as small as desired for large enough m for all t ∈ [0, t0] due
to the previously proved uniform convergence. Thus, (iii) is proved.

(iv) Let us take v ∈W 1,∞. We know that ż(t, ω, x, v) = L(Π(t, ω, x))w(t, ω, x, v)
for t ≥ 0. This ensures that, if t ≥ r, ‖w(t, ω, x, v)‖L∞ is finite, so that w(t, ω, x, v) ∈
W 1,∞. If t ∈ [0, r], then ‖w(t, ω, x, v)‖W 1,∞ ≤ ‖v‖W 1,∞ + ‖w(r, ω, x, v)‖W 1,∞ .

(v)&(vi) These properties can be checked with the arguments used to prove
Theorem 3.3(vi)&(vii).

(vii) The proof of this point can be done following the ideas of Theorem 3.3(viii),

and is simpler: if limm→∞(tm, ωm, xm, vm) = (t̃, ω̃, x̃, ṽ) in V 0, if tm ≤ t0 < βωm,xm

for all m ∈ N, and if zm(t) := z(t, ωm, xm, vm) for t ∈ [−r, t0], then the equiconti-
nuity of the family {żm(t) | m ∈ N} on [0, t0] follows easily from (4.3), Proposition
(4.1)(i), and the uniform continuity of Π on [0, t0]× S, where S is given by (3.4).

(viii) The point (t̃, ω̃, x̃) will be fixed in this proof. The existence of ρ > 0 for
which conditions 1 and 2 hold is proved by Theorem 3.6(i), where we also checked
that (see (3.11))

sup{‖u(t, ω, x)‖W 1,∞ | t ∈ [0, t̃ ] and (ω, x) ∈ B ρ,0ω̃,x̃} =: c∗ <∞ .

Therefore, according to Proposition 4.1(iii),

sup{‖L(Π(t, ω, x))‖Lin(C,Rn) | t ∈ [0, t̃ ] and x ∈ B ρ,0ω̃,x̃} =: ĉ <∞ .
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In particular, conditions 1 and 2 hold. We take t ∈ [0, t̃], (ω, x) ∈ B ρ,0ω̃,x̃, and

v ∈W 1,∞, and make use of (4.3) in order to write

|z(t, ω, x, v)| ≤ |v(0|+
∫ t

0

‖L(Π(l, ω, x))‖Lin(C,Rn)‖w(l, ω, x, v)‖C dl

≤ ‖v‖W 1,∞ +

∫ t

0

ĉ ‖w(l, ω, x, v)‖C .

It follows easily that ‖w(t, ω, x, v)‖C ≤ ‖v‖W 1,∞ +
∫ t

0
ĉ ‖w(l, ω, x, v)‖C , so that the

Gronwall lemma ensures that ‖w(t, ω, x, v)‖C ≤ eĉt̃ ‖v‖W 1,∞ . To finish the proof of
(i) is now easy: see for instance the end of the proof of Theorem 3.6(ii). �

Corollary 4.3. Suppose that conditions H1 and H2 hold. Let K ⊂ C0 be a positively
Π-invariant compact set. We define by (4.5) the function w(t, ω, x, v) for t ∈ R+,
(ω, x) ∈ K, and v ∈ C . Then

(i) the map

ΠL : R+×K × C → K× C , (t, ω, x, v) 7→ (Π(t, ω, x), w(t, ω, x, v))

is a continuous linear skew-product semiflow with base (K,Π,R+).
(ii) The map

Π̃L : R+×K ×W 1,∞ → K×W 1,∞, (t, ω, x, v) 7→ (Π(t, ω, x), w(t, ω, x, v))

satisfies properties (f1) and (f2) with Ω replaced by K×W 1,∞ (for all t ≥ 0
and all l ≥ 0 in the case of (f2)). In addition,
- [r,∞) × K ×W 1,∞ → K ×W 1,∞, (t, ω, x, v) 7→ (Π(t, ω, x), w(t, ω, x, v))

is a continuous map.
- For each t̃ ≥ 0, the map ΠL

t̃
: K × W 1,∞ → K × W 1,∞, (ω, x, v) 7→

(Π(t̃, ω, x), w(t̃, ω, x, v)) is continuous.
- Let us define

V0
K := {(t, ω, x, v) ∈ V 0 |(ω, x) ∈ K}

= {(t, ω, x, v) ∈ R+×K × C1 | v(0−) = L(ω, x)v} .

The map V 0
K → K×W 1,∞, t 7→ (Π(t, ω, x), w(t, ω, x, v)) is continuous.

Proof. Corollary 3.4 shows that (K,Π,R+) is a global continuous semiflow. Having
this in mind, all the assertions are trivial consequences of Theorem 4.2. �

As we anticipated, our next result, Theorem 4.4, will show that, as a matter of

fact, Π̃L : R+×K×W 1,∞ → K×W 1,∞ is the linearized semiflow of Π, in the sense
that each one of its semiorbits determine the differential with respect to the state
variable of the semiorbits of Π. The first assertion in the theorem is proved (in a
slightly different setting) in [5], Theorem 4. For the sake of completeness we give
here part of the details of the proof, since they help the reader to understand the
dynamical meaning of the function ux(t, ω, x).

Note that the uniformity of the limit (4.8) with respect to the elements of the
unit ball means that ux(t, ω, x) is the classical Fréchet differential with respect to
the initial state of the function u(t, ω, x), which provides it with full dynamical
meaning.

The sets C0 and U 0 appearing in the next statement are given by (4.1) and (4.2).
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Theorem 4.4. Suppose that H1 and H2 hold. Let us fix (ω, x) ∈ C0. If t ∈ [0, βω,x),
then there exists

ux(t, ω, x)v = lim
ε→0

u(t, ω, x+ εv)− u(t, ω, x)

ε
in W 1,∞

uniformly in v ∈ B1 ,

(4.8)

where B1 := {v ∈W 1,∞ | ‖v‖W 1,∞ = 1}. In addition, the map

[−r, βω,x)→W 1,∞, t 7→ (ux(t, ω, x)v)(t)

is the unique solution of (4.3) agreeing with v on [−r, 0]. That is, ux(t, ω, x)v =
w(t, ω, x, v), this last map being defined by (4.5).

Consequently, the map (t, ω, x, v) 7→ ux(t, ω, x)v satisfies all the continuity prop-
erties described in Theorem 4.2.

Proof. In the whole proof, the point (ω, x) ∈ C0 will be fixed, and any v will belong
to B1. We also fix an arbitrary time T ∈ (0, βω,x). Theorem 3.3(v) provides δ > 0
such that, for ε ∈ [−δ, δ], there exists y εv (t) := y(t, ω, x + εv) for t ∈ [−r, T ],
and v ∈ B1. We also represent u εv (t) := u(t, ω, x + εv), τ εv (t) := τ(ω·t, u εv (t)),
zv(t) := z(t, ω, x, v), and wv(t) := w(t, ω, x, v) for |ε| ≤ δ, t ∈ [0, T ], and v ∈ B1.
(Recall that z(t, ω, x, v) is the solution of (4.3) agreeing with v on [−r, 0], and that
w(t, ω, x, v) is defined by (4.5).) Note that y0

v(t), u 0
v (t), and τ 0

v (t) are independent
of v ∈ B1. For this reason, we omit the subscript when ε = 0.

Theorem 2 and Corollary 1 of Hartung [5] prove that, if (ω, x) ∈ C0 and t ∈
[0, βω,x), then

ux(t, ω, x)v = lim
ε→0

u(t, ω, x+ εv)− u(t, ω, x)

ε
in C unif. in v ∈ B1 , (4.9)

where B1 := {v ∈W 1,∞ | ‖v‖W 1,∞ = 1}. They also prove that

(ux(t, ω, x)v) = w(t, ω, x, v) ,

where w(t, ω, x, v) is defined by (4.5). In particular, the map ux(t, ω, x) : W 1,∞ → C
is linear. And we have seen in Theorem 4.2(iv) that ux(t, ω, x)(v) = w(t, ω, x, v) ∈
W 1,∞ if v ∈W 1,∞, so that ux(t, ω, x) : W 1,∞ →W 1,∞ is well defined. So that the
goal is to prove that (4.9) is still true in the topology of W 1,∞ instead of that of
C. (See also Theorem 4 of [5].)

Since T is arbitrarily chosen, a standard compactness argument shows that (4.9)
can be rewritten as

lim
ε→0

∥∥∥∥u εv (t)− u 0(t)

ε
− wv(t)

∥∥∥∥
C

= 0 for all t ∈ [0, T ] unif. in v ∈ B1 . (4.10)

For the same reason, in order to prove (4.8), we must prove that

lim
ε→0

∥∥∥∥u εv (t)− u 0(t)

ε
− wv(t)

∥∥∥∥
W 1,∞

= 0 for all t ∈ [0, T ] unif. in v ∈ B1 .

Note that
(
ẏ εv (s) − ẏ0(s)

)
/ε = v̇(s) = żv(s) for Lebesgue-a.a. s ∈ [−r, 0]. This

property, (4.10), and the definition of ‖·‖W 1,∞ , show that our goal will be achieved
once we have proved that

lim
ε→0

ẏ εv (t)− ẏ0(t)

ε
= żv(t) uniformly in t ∈ [0, T ] and v ∈ B1 . (4.11)
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Equation (3.1) satisfied by y εv (t) combined with H1 and H2 yield

ẏ εv (t)− ẏ0(t)

ε
=
F (ω·t, y εv (t), y εv (t−τ εv (t)))− F (ω·t, y0(t), y0(t−τ 0(t)))

ε

=

∫ 1

0

(
D2F

(
ω·t, s y εv (t) + (1− s) y0(t), sy εv (t−τ εv (t)))

+ (1− s) y0(t−τ 0(t))
)(y εv (t)− y0(t)

ε

))
ds

+

∫ 1

0

(
D3F

(
ω·t, s y εv (t) + (1− s) y0(t), sy εv (t−τ εv (t)))

+ (1− s) y0(t−τ 0(t))
)(y εv (t−τ εv (t))− y0(t−τ 0(t))

ε

))
ds .

The proof of (i) will be a consequence of the following property: the limits of the
first and second integrands as ε→ 0 are, respectively,

l1 = D2F
(
ω·t, y0(t), y0(t−τ 0(t))

)
zv(t) , (4.12)

l2 = D3F
(
ω·t, y0(t), y0(t−τ 0(t))

)
zv(t−τ 0(t))

−D3F
(
ω·t, y0(t), y0(t−τ 0(t))

)
ẏ0(t−τ 0(t))·D2τ

0(t)wv(t)
(4.13)

uniformly in t ∈ [0, T ], s ∈ [0, 1], and v ∈ B1. In order to check that this uniform
limiting behavior yields indeed the result, we assume for the moment being that
(4.12) and (4.13) hold. Then we can combine the continuity of D2F and D3F
ensured by H1 in order to deduce that

lim
ε→0

ẏ εv (t)− ẏ0(t)

ε
= D2F

(
ω·t, y0(t), y0(t−τ 0(t))

)
zv(t)

+D3F
(
ω·t, y0(t), y0(t−τ 0(t))

)
zv(t−τ 0(t))

−D3F
(
ω·t, y0(t), y0(t−τ 0(t))

)
ẏ0(t−τ 0(t))·D2τ

0(t)wv(t)

= L(Π(t, ω, x))wv(t)

uniformly in t ∈ [0, T ] and v ∈ B1. Since, according to (4.3), the last expression
agrees with żv(t), the equality (4.11) (and hence assertion (i)) will be proved, as
asserted.

It is easy to deduce from the continuity Π: R+× Ω ×W 1,∞→ Ω × C ensured
by Theorem 3.3(v) that, given ρ > 0, there exists δ = δ(ρ) > 0 such that, if
|ε| ≤ δ, then ‖u εv (t)− u 0

v (t)‖C ≤ ρ for all t ∈ [0, T ] and all v ∈ B1. In other words,
limε→0 u

ε
v (t) = u 0(t) uniformly in t ∈ [0, T ] and v ∈ B1. This property guarantees

that the following limits exist and are uniform in t ∈ [0, T ] and v ∈ B1:

y0(t) = lim
ε→0

y εv (t) ,

τ 0(t) = lim
ε→0

τ εv (t) ,

y0(t−τ 0(t)) = lim
ε→0

y εv (t−τ εv (t)) .

(4.14)

The last limit follows from the previous ones and ‖y0(t−τ 0(t))− y εv (t−τ εv (t))‖ ≤
‖y0(t−τ 0(t))− y0(t−τ εv (t))‖+ ‖y0(t−τ εv (t))− y εv (t−τ εv (t))‖.
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On the other hand, (4.10) yields

lim
ε→0

y εv (t)− y0(t)

ε
= zv(t) uniformly in t ∈ [−r, T ] and v ∈ B1 . (4.15)

These facts and the continuity of D2F guaranteed by H1 allow us to check (4.12).
To deal with the second integrand, we will prove that

lim
ε→0

y εv (t−τ εv (t))− y0(t−τ 0(t))

ε
= zv(t−τ 0(t))− ẏ0(t−τ 0(t)) ·D2τ

0(t)wv(t) (4.16)

uniformly in t ∈ [0, T ] and v ∈ B1. Let us write

y εv (t−τ εv (t))− y0(t−τ 0(t))

ε

=
y εv (t−τ εv (t))− y0(t−τ εv (t))

ε
+
y0(t−τ εv (t))− y0(t−τ 0(t))

ε
,

and deal with each term to obtain (4.16).
We first check that

lim
ε→0

y εv (t−τ εv (t))− y0(t−τ εv (t))

ε
= zv(t−τ 0(t)) unif. in t ∈ [0, T ] and v ∈ B1 ,

which in turn requires

lim
ε→0

∣∣zv(t−τ εv (t))− zv(t−τ 0(t))
∣∣ = 0 unif. in t ∈ [0, T ] and v ∈ B1 . (4.17)

To prove this last property, we use the convergence of τ εv (t) to τ 0(t) as ε→ 0 (see
(4.14)), which is uniform in t ∈ [0, T ] and v ∈ B1, together with the equicontinuity
of {zv | v ∈ B1} on [−r, T ]: note first that the family is equicontinuous on [−r, 0]
(where |z(t1)− z(t2)| ≤ ‖v̇‖L∞ |t1 − t2| ≤ |t1 − t2|); and second, that

|żv(t)| ≤ ‖L(Π(t, ω, x))‖Lin(W 1,∞,Rn)‖wv(t)‖W 1,∞

for t > 0, so that the uniform continuity of the map [0, T ] → Lin(W 1,∞,Rn), t 7→
L(Π(t, ω, x)) (ensured by Proposition 4.1(ii)) and the Lipschitz behavior of wv(t)
(ensured by Theorem 4.2(viii)) provide a constant M such that |żv(t)| ≤M for all
t ∈ [0, T ] and v ∈ B1. So, (4.17) is proved, and we can write

lim
ε→0

∣∣∣∣y εv (t−τ εv (t))− y0(t−τ εv (t))

ε
− zv(t−τ 0(t))

∣∣∣∣
≤ lim
ε→0

∣∣∣∣y εv (t−τ εv (t))− y0(t−τ εv (t))

ε
− zv(t−τ εv (t))

∣∣∣∣
+ lim
ε→0

∣∣zv(t−τ εv (t))− zv(t−τ 0(t))
∣∣ = 0 + 0 ,

the last limits being uniform in t ∈ [0, T ] and v ∈ B1. (The assertion concerning
the first limit is 0 is an easy consequence of (4.15).)

The remaining limit to compute is

lim
ε→0

y0(t−τ εv (t))− y0(t−τ 0(t))

ε

= lim
ε→0

∫ 1

0

ẏ0(t−sτ εv (t)− (1− s)τ 0(t)) ds · lim
ε→0

τ 0(t)− τ εv (t)

ε
.
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Since (ω, x) ∈ C0, it follows from Theorem 3.3(vii) that ẏ0 is uniformly continuous
on [−r, T ], from where it follows easily that limε→0 ẏ

0(t−sτ εv (t)− (1− s)τ 0(t)) =
ẏ0(t−τ 0(t)) uniformly in t ∈ [0, T ], s ∈ [0, 1] and v ∈ B1. These properties yield

lim
ε→0

∫ 1

0

ẏ0(t−sτ εv (t)− (1− s)τ 0(t)) ds = ẏ0(t−τ 0(t))

uniformly in t ∈ [0, T ], s ∈ [0, 1] and v ∈ B1. On the other hand, we can write

lim
ε→0

τ 0(t)− τ εv (t)

ε
= lim
ε→0

∫ 1

0

D2τ
(
ω·t, s u 0(t) + (1− s)u εv (t)

)u 0(t)− u εv (t)

ε
ds .

We deduce from H2 and from the property limε→0 u
ε
v (t) = u 0(t) uniformly in

t ∈ [0, T ] and v ∈ B1 (see above) that limε→0D2τ
(
ω·t, s u εv (t) + (1 − s)u 0(t)

)
=

D2τ(ω·t, u 0(t)) in Lin(C,Rn) uniformly in t ∈ [0, T ], s ∈ [0, 1] and v ∈ B1. Finally,
according to (4.10), limε→0

(
u εv (t) − u 0(t)

)
/ε = wv(t) in C uniformly in t ∈ [0, T ]

and v ∈ B1. These facts ensure that

lim
ε→0

τ 0(t)− τε(t)
ε

= −D2τ(ω·t, u 0(t))wv(t) uniformly in t ∈ [0, T ] and v ∈ B1 .

Altogether, we see that (4.16) is proved. Now we can check the assertion concerning
the second integrand by combining equalities (4.14), the continuity of D3F ensured
by H1, and (4.16). The proof is complete. �

We complete the paper with a deeper analysis of the regularity properties of the
map ux(t, ω, x)v.

Theorem 4.5. Suppose that conditions H1 and H2 hold, and define the sets U 0
t̃

and Ũ 0 by (4.7) and (4.6).

(i) Let us fix t̃ ≥ 0 with U 0
t̃

nonempty. Then the map U 0
t̃
→ Lin(W 1,∞,W 1,∞) ,

(ω, x) 7→ ux(t̃, ω, x) is continuous.

(ii) The map Ũ 0 → Lin(W 1,∞,W 1,∞) , (t, ω, x) 7→ ux(t, ω, x) is continuous.

Proof. In the whole proof, we will use the notation ux(t, ω, x)v = w(t, ω, x, v), since
we will permanently use the fact that the function t 7→ w(t, ω, x, v)(0) = z(t, ω, x, v)
solves (4.3).

(i) Let us take a sequence ((ωm, xm)) in U 0
t̃

with limit (ω̃, x̃) ∈ U 0
t̃
. We also

take a constant ρ satisfying conditions 1 and 2 of Theorem 4.2(viii), and assume

without restriction that (ωm, xm) ∈ B ρ,0ω̃,x̃ for all m ∈ N. For any v ∈ W 1,∞, we

represent zm(t, v) := z(t, ωm, xm, v) and z̃(t, v) := z(t, ω̃, x̃, v) for t ∈ [−r, t̃ ], and

wm(t, v) := w(t, ωm, xm, v) and w̃(t, v) := w(t, ω̃, x̃, v) for t ∈ [0, t̃ ]. Equation (4.3)
yields

|z̃(t, v)− zm(t, v)| ≤
∣∣∣∣∫ t

0

(
L(Π(l, ωm, x̃m))− L(Π(l, ω̃, x̃))

)
wm(l, v) dl

∣∣∣∣
+

∣∣∣∣∫ t

0

L(Π(l, ω̃, x̃))(w̃(l, v)− wm(l, v)) dl

∣∣∣∣ (4.18)

for all t ∈ [0, t̃ ]. Let us fix ε > 0, define S by (3.4), note that S ⊂ C0, and

use Proposition 4.1(ii) and the compactness of [0, t̃ ] × S to find m0 such that

‖L(Π(t, ωm, x̃m))−L(Π(t, ω̃, x̃))‖Lin(Ω,Rn) ≤ ε for t ∈ [0, t̃ ] and m ≥ m0. According
to Theorem 4.2(viii), there exists M > 0 such that ‖wm(t, v)‖W 1,∞ ≤ M‖v‖W 1,∞
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for t ∈ [0, t̃ ]. And Proposition 4.1(iii) yields k := supt∈[0,t̃ ] ‖L(Π(l, ω̃, x̃))‖Lin(C,Rn)

is finite. Therefore, by (4.18),

|z̃(t, v)− zm(t, v)| ≤ ε t̃M ‖v‖W 1,∞ +

∫ t

0

k ‖w̃(l, v)− wm(l, v)‖C dl

for t ∈ [0, t̃ ] and m ≥ m0. Since |z̃(t, v)− z̃m(t, v)| = 0 for t ∈ [−r, 0], we conclude
that

‖w̃(t, v)− wm(t, v)‖C ≤ ε t̃M ‖v‖C +

∫ t

0

k ‖w̃(l, v)− wm(l, v)‖C dl

for t ∈ [0, t̃ ] and m ≥ m0. The Gronwall lemma yields

‖w̃(t, v)− wm(t, v)‖C ≤ εt̃M ‖v‖W 1,∞ekt̃ = ε M̃ ‖v‖W 1,∞

for t ∈ [0, t̃ ] and m ≥ m0, where M̃ = t̃M ekt̃. Now,

| ˙̃z(t, v)− żm(t, v)| ≤ ‖L(Π(t, ω̃, x̃))− L(Π(t, ωm, x̃m))‖Lin(W 1,∞,Rn)‖wm(t, v)‖W 1,∞

+ ‖L(Π(t, ω̃, x̃))‖Lin(C,Rn)‖w̃(t, v)− wm(t, v)‖C
≤ εM ‖v‖W 1,∞ + ε k M̃ ‖v‖W 1,∞ = εM∗ ‖v‖W 1,∞

for t ∈ [0, t̃ ] and m ≥ m0, where M∗ = M + kM̃ . And | ˙̃z(t, v) − żm(t, v)| = 0 for
t ∈ [−r, 0]. Therefore, if m ≥ m0, we have

‖w̃(t̃, v)− wm(t̃, v)‖W 1,∞ ≤ ε (M̃ +M∗) ‖v‖W 1,∞ .

Since the constants M̃ and M∗ can be defined from the beginning, (ii) is proved.

(ii) Let us take a sequence ((tm, ωm, xm)) in Ũ 0 with limit (t0, ω̃, x̃) ∈ Ũ 0 and

assume without restriction the existence of of t̃ ∈ (t0, βω̃,x̃) with 2r ≤ tm ≤ t̃ <
βωm,xm

for all m ∈ N. We also take a constant ρ satisfying conditions 1 and 2 of

Theorem 4.2(viii) for (t̃, ω̃, x̃), and assume without restriction that (ωm, xm) ∈ B ρ,0ω̃,x̃

for all m ∈ N. For any v ∈ W 1,∞, we represent zm(t, v) := z(t, ωm, xm, v) and

z̃(t, v) := z(t, ω̃, x̃, v) for t ∈ [−r, t̃ ], and wm(t, v) := w(t, ωm, xm, v) and w̃(t, v) :=

w(t, ω̃, x̃, v) for t ∈ [0, t̃ ]. And we fix ε > 0. Note that

‖w̃(t0, v)− wm(tm, v)‖W 1,∞

≤ ‖w̃(t0, v)− wm(t0, v)‖W 1,∞ + ‖wm(t0, v)− wm(tm, v)‖W 1,∞ ,

so that (i) allows us to focus just on the second term. Equation (4.3) yields

|zm(t, v)− zm(t∗, v)| =
∣∣∣∣∫ t

t∗
L(Π(l, ωm, xm))w(l, v) dl

∣∣∣∣
for all t and t∗ in [r, t̃ ] and m ∈ N. Let us define S by (3.4), note that S ⊂ C0, and

use Proposition 4.1(ii) and the compactness of [0, t̃ ]× S to ensure: first, that

k∗ := sup{‖L(Π(t, ωm, xm))‖Lin(W 1,∞,Rn) | t ∈ [r, t̃ ] and m ∈ N}

is finite; and second, that there exists m0 ∈ N such that

‖L(Π(t0+ s, ωm, xm))− L(Π(tm+ s, ωm, xm))‖Lin(W 1,∞,Rn) ≤ ε
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for all m ≥ m0 and s ∈ [−r, 0]. According to Theorem 4.2(viii), there exists M > 0

such that ‖wm(t, v)‖W 1,∞ ≤M‖v‖W 1,∞ for t ∈ [0, t̃ ]. For next purposes, we assume
without restriction that k∗M > 1. Therefore,

|zm(t, v)− zm(t∗, v)| ≤ k∗M |t− t∗| ‖v‖W 1,∞

for all t and t∗ in [0, t̃ ]. On the other hand, if t and t∗ in [−r, 0], then

|zm(t, v)− zm(t∗, v)| = |v(t)− v(t∗)| ≤ |t− t∗| ‖v̇‖L∞ ≤ k∗M |t− t∗| ‖v‖W 1,∞ ,

and, if −r ≤ t ≤ 0 ≤ t∗ ≤ t̃,
|zm(t, v)− zm(t∗, v)| ≤ |zm(t, v)− zm(0, v)|+ |zm(0, v)− zm(t∗, v)|

≤ −t k∗M ‖v‖W 1,∞ + t∗k∗M ‖v‖W 1,∞ = |t∗ − t| k∗M ‖v‖W 1,∞ .

Consequently, if t and t∗ belong to [0, t̃ ] and m ∈ N,

‖wm(t, v)− wm(t∗, v)‖C ≤ k∗M |t− t∗| ‖v‖W 1,∞ .

Let us take m1 ≥ m0 such that |tm − t0| ≤ ε if m ≥ m1, and recall that t0 ≥ r and
tm ≥ r. Then, if m ≥ m1 and s ∈ [−r, 0],

|żm(t0+ s, v)− żm(tm+ s, v)|
≤ ‖L(Π(t0+ s, ωm, xm))− L(Π(tm+ s, ωm, xm))‖Lin(W 1,∞,Rn)‖wm(t0+ s, v)‖W 1,∞

+ ‖L(Π(tm+ s, ωm, xm))‖Lin(C,Rn)‖wm(t0+ s, v)− wm(tm+ s, v)‖C
≤ εM ‖v‖W 1,∞ + ε (k∗)2M ‖v‖W 1,∞ = εM∗ ‖v‖W 1,∞ ,

where M∗ = (1 + (k∗)2)M . Therefore, if m ≥ m1, we have

‖wm(t0, v)− wm(tm, v)‖W 1,∞ ≤ ε (k∗M +M∗) ‖v‖W 1,∞ .

Since k∗, M and M∗ can be defined from the beginning, (ii) is proved. �
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