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Abstract

The paper concerns a class of n-dimensional non-autonomous delay differential equations ob-
tained by adding a non-monotone delayed perturbation to a linear homogeneous cooperative sys-
tem of ordinary differential equations. This family covers a wide set of models used in structured
population dynamics. By exploiting the stability and the monotone character of the linear ODE,
we establish sufficient conditions for both the extinction of all the populations and the perma-
nence of the system. In the case of DDEs with autonomous coefficients (but possible time-varying
delays), sharp results are obtained, even in the case of a reducible community matrix. As a sub-
product, our results improve some criteria for autonomous systems published in recent literature.
As an important illustration, the extinction, persistence and permanence of a non-autonomous
Nicholson system with patch structure and multiple time-dependent delays are analysed.
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1 Introduction

In the last decades, delay differential equations (DDEs) with patch structure have been largely em-
ployed in population dynamics and other fields, since by capturing several features of a heterogeneous
environment, they may provide quite realistic models. Structured systems of differential equations
have been used in population models when the populations are distributed over different classes
(e.g. due to age, size or different food-rich patches), in disease models with several compartments
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for a host population, in leukemia models where the infected cells may become inactive, and in a
variety of other situations where the transition among the several classes should be considered. See
e.g. [6, 20, 25, 26]. Naturally, time delays should be incorporated in such systems to express the
maturation time of biological species, the incubation period of diseases, the maturation time of blood
cells and several other attributes.

The paper is concerned with a family of non-autonomous DDEs written in abstract form as

x′(t) = A(t)x(t) + f(t, xt), t ≥ 0 (1.1)

where A(t) is an n × n matrix of continuous functions, f : [0,∞) × D → R
n is continuous, D ⊂

C([−τ, 0];Rn) is equipped with the uniform convergence metric, τ > 0 is the time-delay, and, as
usual, xt denotes the past history of the system on the interval [t − τ, t], i.e., xt(θ) = x(t + θ) for
θ ∈ [−τ, 0]. The function f is required to satisfy f(t, 0) = 0 for t ≥ 0, and the ordinary differential
equation (ODE) x′(t) = A(t)x(t) to be cooperative, thus aij(t) ≥ 0 must hold for all i 6= j and t ≥ 0,
where aij(t) are the entries of A(t). We restrict our setting to a class of delayed perturbations f(t, xt)
with multiple time-varying discrete delays, having the particular form

f(t, φ) = (f1(t, φ1), . . . , fn(t, φn)) (1.2)

for t ≥ 0 and φ = (φ1, . . . , φn) ∈ D, where fi(t, φi) =
∑m

k=1 nik(t, φi(−τik(t))) and nik(t, x), τik(t)
are continuous, bounded and nonnegative functions, for all i, k. For simplicity, this paper deals with
discrete delays only; however, as pointed out later in Section 3, straightforward generalizations to
some families of perturbations with distributed delays are possible.

Inserting (1.2) in (1.1) leads to systems of the form

x′i(t) =

n∑

j=1

aij(t)xj(t) +

m∑

k=1

nik(t, xi(t− τik(t))), i = 1, . . . , n, t ≥ 0, (1.3)

which can be interpreted as a structured population model for n populations, see Section 3 for an
additional set of hypotheses, as well as for some biological elements of the model.

In the present paper, the main idea is to take full advantage of the properties of the cooperative
non-delayed linear system x′(t) = A(t)x(t), to further analyse the large-time behaviour of solutions of
system (1.3). We shall impose conditions on the coefficients of the linear system x′(t) = A(t)x(t), in
order to have its global exponential stability. This property and the monotonicity of x′(t) = A(t)x(t)
will play an important role in the study of (1.3). Although the nonlinearities (1.2) are in general non-
monotone, the techniques exploited here are largely based on results of comparison of solutions (see
[24]), applied to some convenient auxiliary cooperative DDE systems. This method is used to address
the global asymptotic behaviour of solutions of system (1.3), in what concerns its dissipativity,
uniform persistence and the global asymptotic stability of the null solution. To some extent and in
different frameworks, similar techniques have inspired the papers [8, 9, 16, 17, 28]. Some relevant
applications are given. We also hope that the present results can be used to further address other
aspects of the global dynamics of (1.3).

As a significant example of systems in the form (1.3), we shall consider a non-autonomous Nichol-
son system with patch structure and multiple time-dependent discrete delays, given by

x′i(t) = −di(t)xi(t) +

n∑

j=1,j 6=i

aij(t)xj(t) +

m∑

k=1

βik(t)xi(t− τik(t))e
−cik(t)xi(t−τik(t)), i = 1, . . . , n, (1.4)
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where all the coefficient and delay functions are continuous, nonnegative and bounded. We stress
that results concerning multi-dimensional versions of the famous Nicholson’s blowflies equation [13]
are still quite limited, with most authors treating only autonomous systems.

The papers of Faria and Röst [10], on autonomous Nicholson systems, and of Obaya and Sanz [22],
on uniform and strict persistence for monotone skew-product semiflows, were a strong motivation
for the present work. Here, the authors further pursue their previous research, and extend it to
general non-autonomous Nicholson systems: in fact, we aim to obtain results on extinction, uniform
persistence and permanence of (1.4) as simple illustrations of our main results, proven for a much
larger family of DDEs of the form (1.3).

The contents of the paper are now briefly described. In Section 2, we study a cooperative ODE
x′(t) = A(t)x(t) and give sufficient conditions for its global exponential stability; in this case, a system
of the form (1.1) is dissipative if the delayed perturbation f(t, xt) is bounded. In Section 3, we start
by introducing a set of assumptions for a family of DDEs (1.1), give some biological interpretation of
the models and refer to some recent literature. The main results are then presented, providing very
general criteria for both the global asymptotic stability of the trivial solution (in biological terms,
this implies the extinction of the populations in all patches) and the uniform persistence of such
systems. A comparison with results in [9, 18, 28, 30] is also given, and some questions are raised
to be left as open problems. Finally, in Section 4 we consider systems with autonomous coefficients
(but with possible time-dependent delays): from the results in Section 3 and by a careful analysis
of properties of cooperative matrices, we provide necessary and sufficient conditions for both their
permanence and extinction, even in the case of a reducible community matrix. These sharp criteria
improve and extend results for autonomous systems proven in recent literature. As an important
example of application, throughout the paper our results are widely illustrated with versions of the
Nicholson system (1.4).

2 Preliminaries

In this section, we establish some preliminary results on stability for non-autonomous linear homo-
geneous systems of ODEs of cooperative type. Although such systems have been widely studied
(see e.g. [5, 12, 14]), some optimal conditions for their asymptotic stability and global exponential
stability are given here. For completeness of the reader, the authors opt to include these conditions
here, with the proof of a result whenever its precise statement could not be found elsewhere. We
start with some standard definitions from the literature [5, 12, 14].

Consider an n-dimensional ODE x′ = f(t, x) with f : [α,∞) × D ⊂ R
n+1 → R

n sufficiently
regular so that for any (t0, x0) ∈ [α,∞) × D there exists a unique solution, denoted by x(t, t0, x0),
of the initial value problem x′ = f(t, x), x(t0) = x0, defined on [α,∞). To simplify the writing, let
D = R

n. We further assume that x = 0 is a solution, i.e., f(t, 0) = 0, t ≥ α. The zero solution is
said to be stable on the interval [α,∞) if for any ε > 0 and t0 ≥ α there is δ = δ(ε, t0) > 0 such that
|x(t, t0, x0)| < ε for all t ≥ t0, whenever |x0| < δ; x = 0 is uniformly stable if it is stable and δ above
can be chosen independently of t0 ≥ α. The zero solution is said to be uniformly asymptotically stable
on [α,∞) if it is uniformly stable and there is b > 0 such that, for any ε > 0, there is T = T (ε) > α
such that, for any t0 ≥ α and |x0| < b, we have |x(t, t0, x0)| < ε for all t ≥ t0 + T ; and x = 0 is
globally exponentially stable on [α,∞) if there exist K,β > 0 such that |x(t, t0, x0)| ≤ Ke−β(t−t0)|x0|
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for all t ≥ t0 ≥ α and x0 ∈ R
n. In general, the stability of a particular solution x̃(t) of an ODE

x′ = f(t, x) is defined as the stability of the zero solution of y′ = f(t, x̃+ y)− f(t, x̃).
The usual partial order in R

n relative to the cone [0,∞)n is denoted here by ≤, i.e., for x, y ∈ R
n,

x ≤ y means y − x ∈ [0,∞)n; we write x ≪ y whenever y − x ∈ (0,∞)n. The notations ≥ and ≫
have then a clear meaning. In particular, a vector v in R

n is said to be positive (nonnegative) if all
its components are positive (nonnegative), and we write v ≫ 0 (v ≥ 0); by v > 0 we mean that v ≥ 0
and v 6= 0.

Lemma 2.1. Consider a non-autonomous linear ODE

x′(t) = A(t)x(t), t ≥ α, (2.1)

where α ∈ R and A(t) = [aij(t)] is an n× n matrix of functions such that:
(a1) aij are continuous on [α,∞), aij(t) ≥ 0, i 6= j, aii(t) < 0 for all t ≥ α and i, j ∈ {1, . . . , n};
(a2) there exists a vector v = (v1, . . . , vn) ≫ 0 such that A(t)v ≤ 0 for all t ≥ α.
Then, for any solution x(t) of (2.1), |x(t)|v−1 is non-increasing on t ∈ [α,∞), where | · |v−1 is

the norm in R
n defined by |x|v−1 = max1≤i≤n(v

−1
i |xi|) for x = (x1, . . . , xn).

Proof. Rescaling the variables by x̂i(t) = v−1
i xi(t) (1 ≤ i ≤ n), where v = (v1, . . . , vn) ≫ 0 is a vector

as in (a2), we obtain a new linear ODE x̂′(t) = Â(t)x̂(t), where the matrix Â(t) = [âij(t)] has entries
âij(t) = v−1

i aij(t)vj . In this way, and after dropping the hats for simplicity, we may consider (2.1)
where v = 1 := (1, . . . , 1) is the positive vector in (a2) and |x|v−1 = max1≤i≤n |xi|.

Let x(t) 6= 0 be a solution of (2.1). To prove the claim, we show that |x(t)| is non-increasing on
each fixed interval J = [t0, t1], α ≤ t0 < t1. Define uj = maxJ |xj(t)|, and let ui = max1≤j≤n uj ,
with ui = |xi(t∗)| for some t∗ ∈ J . It is sufficient to show that ui = |xi(t0)|.

We suppose that xi(t∗) > 0; the case xi(t∗) < 0 is treated in a similar way. Denoting di(t) =
−aii(t) and Di(t) =

∫ t

t0
di(s) ds, for t ∈ J we have x′i(t) + di(t)xi(t) ≤ di(t)ui. Hence

xi(t) ≤ xi(t0)e
−Di(t) + ui(1− e−Di(t)), t ∈ J.

In particular for t = t∗ we derive uie
−Di(t∗) ≤ xi(t0)e

−Di(t∗), thus ui = xi(t0).

Lemma 2.2. For the linear ODE system (2.1), assume
(a1’) aij are uniformly continuous and bounded on [α,∞), aij(t) ≥ 0, i 6= j, aii(t) < 0 for all

t ≥ α and i, j ∈ {1, . . . , n};
(a2’) there exists a vector v = (v1, . . . , vn) ≫ 0 such that A(t)v ≤ 0 for all t ≥ α, and

lim inft→∞A(t)v ≪ 0, in the sense that there exists a sequence tk → ∞ such that limk(A(tk)v)i <
0, i = 1, . . . , n.

Then, (2.1) is asymptotically stable; in other words, x = 0 is stable and limt→∞ x(t) = 0, for all
solutions of (2.1).

Proof. As in the above proof and without loss of generality, consider v = 1 in (a2’) and the norm
|x| = max1≤i≤n |xi| in R

n. From Lemma 2.1, (2.1) is uniformly stable. We now prove that the trivial
solution is a global attractor of all solutions.

Let x(t) 6= 0 be a solution of (2.1), and define c = limt→∞ |x(t)|. We want to show that
c = 0. In order to obtain a contradiction, suppose that c > 0. By (a2’), take tk → ∞ such that
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αi := limk(−di(tk) +
∑

j 6=i aij(tk)) < 0 for all i. In particular for such a sequence, |x(tk)| ց c,
and thus there exists i ∈ {1, . . . , n} and a subsequence, still denoted by (tk), such that either
xi(tk) = |x(tk)| → c or xi(tk) = −|x(tk)| → −c. We only consider the situation xi(tk) → c for some
i, the other is treated in a similar way. We now consider separately two cases.

First, suppose that there exists limt→∞ xi(t) = c. Since the entries of A(t) are bounded and
uniformly continuous and x(t) is uniformly bounded on [α,∞), one easily shows that all components
xj(t) and x

′
j(t) are uniformly continuous on [α,∞). From the Barbalat Lemma, we derive that there

is limt→∞ x′i(t) = 0, and in particular obtain limk x
′
i(tk) = 0. On the other hand, from (2.1) we have

x′i(tk) ≤ xi(tk)
[
− di(tk) +

∑

j 6=i

aij(tk)
]
.

Taking limits, the above inequality leads to 0 ≤ cαi, which is a contradiction.
Next, consider the case when xi := lim inft→∞ xi(t) < lim supt→∞ xi(t) = c. From the inequality

above, it is clear that tk are not local extrema points, since x′i(tk) < 0. However, by reducing to a
subsequence if necessary, we may consider that each tk lies between a local maximum point tk and
a local minimum point tk, to its left and to its right respectively, with xi(tk) → c, xi(tk) → xi. We
may take a sequence (sk) such that, for all k ∈ N,

tk < tk < sk < tk+1 < tk+1, xi(sk) = xi(tk), x′i(sk) ≥ 0.

Since the map t → |x(t)| is non-increasing, we have xj(sk) ≤ |x(sk)| ≤ |x(tk)| = xi(tk), 1 ≤ j ≤ n.
We derive

0 ≤ x′i(sk) ≤ xi(tk)
[
− di(sk) +

∑

j 6=i

aij(sk)
]
≤ 0,

and therefore xi(tk) = 0, which is not possible.

When f(t, x) is periodic in t, a solution of x′ = f(t, x) is uniformly asymptotically stable if it
is asymptotically stable. This is not true if periodic is replaced by almost periodic (see [12], p. 191
for a counter-example). Moreover, for a linear system x′ = A(t)x, where A(t) is an n × n matrix of
continuous functions, it is well known that the concepts of global exponential stability and uniform
asymptotic stability on an interval [α,∞) are equivalent (see [5, 14]). Therefore, the following
criterion is straightforward for periodic systems, however it applies to the more general case of
almost periodic linear systems.

Theorem 2.1. Let A(t) = [aij(t)] be an n × n matrix of almost periodic functions on R satisfying
(a1), (a2) on R, with A(t0)v ≪ 0 for some t0 ∈ R. Then, (2.1) is globally exponentially stable.

Proof. Let H(A) be the hull of A, that is, the closure for the topology of uniform convergence of
the set of shifted maps {θtA(·) = A(· + t) | t ∈ R} [5, 12]. H(A) is a compact metric space. Since
A is almost periodic, it follows that A satisfies (a1’), (a2’). The orbit {θtA | t ∈ R} is dense in the
hull, thus actually any B ∈ H(A) satisfies (a1’), (a2’) as well. By Lemma 2.2, all solutions of all
the systems x′ = B(t)x, with B ∈ H(A), tend to 0 as t → ∞. At this point, the spectral theory of
Sacker and Sell [23] applies and permits to conclude that (2.1) is globally exponentially stable.
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Usually, the global exponential stability of (2.1) is obtained by assuming that A(t) is strongly
uniformly row (or column) dominant. The theorem below follows from Proposition 6.3 in [5].

Theorem 2.2. Consider an n× n matrix A(t) = [aij(t)] of bounded continuous functions satisfying
(a1), and suppose that

(a3) there exist a vector v = (v1, . . . , vn) ≫ 0 and T ≥ α, δ > 0 such that (A(t)v)i ≤ −δ for all
t ≥ T, i = 1, . . . , n.

Then, (2.1) is globally exponentially stable.

Remark 2.1. For any fixed t, the matrix −A(t) is a non-singular M-matrix if and only if there exists
a positive vector v = v(t) such that A(t)v ≪ 0; thus, condition (a3) above not only demands that
−A(t) are non-singular M-matrices, for t sufficiently large, but also that there exist positive vectors
v, η, which do not depend on t, such that A(t)v ≤ −η (see [11] and Section 4 for more details on
M-matrices).

For τ ≥ 0, consider the Banach space C := C([−τ, 0];Rn) equipped with the norm ‖φ‖ =
maxθ∈[−τ,0] |φ(θ)|, where | · | is a fixed norm in R

n. The case of no delays (τ = 0) is included, in
which case C is identified with R

n. We now consider DDEs obtained by adding a bounded delayed
perturbation f(t, xt) to systems (2.1), where, as before, xt ∈ C is given by xt(θ) = x(t + θ),−τ ≤
θ ≤ 0. For simplicity, in what follows we take α = 0, but any α ∈ R could be considered.

From Theorem 2.2, one obtains:

Theorem 2.3. Consider an n × n matrix A(t) = [aij(t)] of bounded functions satisfying (a1), (a3)
on [0,∞), and a function f : [0,∞) × C → R

n continuous and bounded. Then, all solutions of the
DDE

x′(t) = A(t)x(t) + f(t, xt), t ≥ 0, (2.2)

are defined on [0,∞) and (2.2) is dissipative, i.e., there exists M > 0 such that lim sup
t→∞

|x(t)| ≤ M

for any solution x(t) of (2.2).

Proof. Let |f(t, ϕ)| ≤ L for t ≥ 0, ϕ ∈ C. From Theorem 2.2, there are K > 0, α > 0 such that
|X(t)X−1(t0)| ≤ Ke−α(t−t0), t ≥ t0 ≥ 0, where X(t) is a fundamental solution matrix for (2.1). By
the variation of constants formula, the solutions x(t) of (2.2) satisfy

x(t) = X(t)X−1(t0)x(t0) +X(t)
( ∫ t

t0

X−1(s)f(s, xs) ds
)

(t, t0 ≥ 0), (2.3)

so that |x(t)| ≤ Ke−α(t−t0)|x(t0)|+
KL
α
(1− e−α(t−t0)) → KL

α
as t→ ∞.

We now set some further notation. Let C+ be the cone of nonnegative functions in C, C+ =
C([−τ, 0]; [0,∞)n), and intC+ its interior. Hereafter, ≤ also denotes the usual partial order generated
by C+: φ ≤ ψ if and only if ψ− φ ∈ C+; by φ≪ ψ, we mean that ψ− φ ∈ intC+. The definition of
the relations ≥ and ≫ are then clear; thus, we write ψ ≥ 0 for ψ ∈ C+ and ψ ≫ 0 for ψ ∈ intC+.
A vector v ∈ R

n is identified in C with the constant function ψ(s) = v for −τ ≤ s ≤ 0.
Let D ⊂ C([−τ, 0];Rn) (τ ≥ 0) be open, and consider a non-autonomous DDE written as

x′(t) = f(t, xt), t ≥ 0, (2.4)
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where f : [0,∞) × D → R
n is continuous and regular enough so that the initial value problem is

well-posed, in the sense that for each (σ, φ) ∈ [0,∞)×D there exists a unique solution of the problem
x′(t) = f(t, xt), xσ = φ, defined on a maximal interval of existence. This solution will be denoted
by x(t, σ, φ) in R

n or xt(σ, φ) in C. When considering more than one DDE x′(t) = f(t, xt), the
notation x(t, σ, φ, f) where the argument f is made explicit will be used to clarify which DDE is
being considered.

To simplify the terminology, we say that (2.4) is cooperative if it satisfies Smith’s quasi-monotone
condition (Q), given by (see [24])

(Q) for φ,ψ ∈ D,φ ≤ ψ and φi(0) = ψi(0), then fi(t, φ) ≤ fi(t, ψ), i = 1, . . . , n, t ≥ 0.

It is well-known that (Q) guarantees monotonocity of solutions relative to initial data and allows
comparison of solutions between two related DDEs, x′(t) = f(t, xt), x

′(t) = g(t, xt) with f ≤ g: if at
least one of them is cooperative, then x(t, σ, φ, f) ≤ x(t, σ, ψ, g) for t ≥ σ if φ ≤ ψ ([24]). These and
other properties of cooperative ODEs and DDEs will turn out to be very useful in the next sections.
The lemma below will be often applied, see p. 82 of [24].

Lemma 2.3. [24] Consider (2.4) in D ⊂ C([−τ, 0];Rn), and let v = (v1, . . . , vn) ∈ R
n.

(i) If fi(t, φ) ≤ 0 for all i = 1, . . . , n, t ≥ 0 whenever φ ∈ D,φ ≤ v and φi(0) = vi, then the set
{φ ∈ D : φ ≤ v} is positively invariant for (2.4).

(ii) If fi(t, φ) ≥ 0 for all i = 1, . . . , n, t ≥ 0 whenever φ ∈ D,φ ≥ v and φi(0) = vi, then the set
{φ ∈ D : φ ≥ v} is positively invariant for (2.4).

Remark 2.2. Clearly, if (a1) is satisfied, then (2.1) is a cooperative system and the nonnegative
cone [0,∞)n is forward invariant. If in addition (a2) is satisfied and v = (v1, . . . , vn) ≫ 0 is as in
(a2), for x ∈ R

n such that x ≤ v and xi = vi, then (A(t)x)i ≤ 0. This implies that the interval
[0, v] := [0, v1]× · · · × [0, vn] is forward invariant as well.

3 Global behaviour for a class of non-monotone and non-autonomous

DDEs

In this section, we consider n-dimensional delayed structured models (1.1), where the linear ODE sys-
tem (2.1) is globally exponentially stable, f is continuous, bounded, and, in general, non-monotone.
Although some generalizations are possible, we restrict our framework to perturbations f(t, xt) =
(f1(t, x1,t), . . . , fn(t, xn,t)), with each component fi(t, φi) of the form fi(t, φi) =

∑m
k=1 nik(t, φi(−τik(t)),

for t ≥ 0, φ = (φ1, . . . , φn) ∈ C. Moreover, we suppose that nik(t, 0) = 0 for t ≥ 0 and have partial
derivative with respect to the second variable at x = 0+ given by ∂nik

∂x
(t, 0) = βik(t) ≥ 0; thus

nik(t, x) is written as nik(t, x) = βik(t)hik(t, x) with hik(t, 0) = 0, ∂hik

∂x
(t, 0) = 1, t ≥ 0. Below, some

additional assumptions on nik(t, x) will be imposed. This leads to a non-autonomous system with
multiple discrete time-dependent delays of the form

x′i(t) = −di(t)xi(t) +

n∑

j=1,j 6=i

aij(t)xj(t) +

m∑

k=1

βik(t)hik(t, xi(t− τik(t))), i = 1, . . . , n, t ≥ 0. (3.1)

Throughout the remainder of this paper, either the whole or a part of the following set of hy-
potheses will be imposed:
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(h1) the functions di, aij (j 6= i) are continuous and bounded, with aij(t) ≥ 0, i 6= j, di(t) > 0 for
t ≥ 0 and i, j ∈ {1, . . . , n}

(h2) there exist a vector v = (v1, . . . , vn) ≫ 0 and δ > 0, T0 ≥ 0 such that di(t)vi ≥
∑n

j=1,j 6=i aij(t)vj+
δ for t ≥ T0, i ∈ {1, . . . , n};

(h3) τik, βik are continuous and bounded, with τik(t) ≥ 0, βik(t) ≥ 0 and

βi(t) :=

m∑

k=1

βik(t) > 0

for t ∈ [0,∞), i ∈ {1, . . . , n}, k ∈ {1, . . . ,m};

(h4) hik : [0,∞) × [0,∞) → [0,∞) are bounded, continuous, hik(t, x) are locally Lipschitzian in x,
with

h−i (x) ≤ hik(t, x) ≤ h+i (x), t, x ≥ 0, k = 1, . . . ,m,

where h±i : [0,∞) → [0,∞) are continuous on [0,∞) and continuously differentiable in a vicinity
of 0+, with h±i (0) = 0, (h±i )

′(0) = 1 and h−i (x) > 0 for x > 0, i ∈ {1, . . . , n}.

For simplicity, here we only treat non-autonomous systems with discrete non-autonomous delays,
but our framework applies with straightforward adjustments to the more general case of systems
with multiple distributed time-varying delays of the form

x′i(t) = −di(t)xi(t) +

n∑

j=1,j 6=i

aij(t)xj(t) + fi(t, xi,t), i = 1, . . . , n, (3.2)

with fi(t, xi,t) given by

fi(t, xi,t) =

m∑

k=1

βik(t)hik
(
t, Lik(t, xi,t)

)
or fi(t, xi,t) =

m∑

k=1

βik(t)Lik

(
t, hik(·, xi,t(·))

)
, (3.3)

where

Lik(t, φ) =

∫ 0

−τ

φ(s) dsηik(t, s) for t ≥ 0, φ ∈ C([−τ, 0],R),

τ > 0, the measurable functions ηik : [0,∞) × [−τ, 0] → R are continuous on t, with ηik(t, ·) non-
decreasing and normalized so that

∫ 0
−τ
dsηik(t, s) = 1, i = 1, . . . , n, k = 1, . . . ,m, t ≥ 0, and for which

(h3), (h4) hold. Besides (3.3), and under some natural conditions, other forms of dependence on
distributed delays can be incorporated in (3.2).

In what follows, we refer to the n× n matrix-valued functions defined on [0,∞) by

D(t) = diag (d1(t), . . . , dn(t)), A(t) = [aij(t)]

B(t) = diag (β1(t), . . . , βn(t)), M(t) = B(t) +A(t)−D(t), t ≥ 0,
(3.4)

where aii(t) ≡ 0. The matrix M(t) is often designated as the community matrix of the population
system (3.1).
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Remark 3.1. We stress that under (h1), (h2) the linear homogeneous ODE x′(t) = −[D(t) −
A(t)]x(t) possesses two important features: it is cooperative and globally exponentially stable. Of
course, if A(t) is periodic or almost periodic, Theorem 2.1 allows us to replace (h2) by the weaker
condition [D(t)−A(t)]v ≥ 0 for t ∈ R and [D(t0)−A(t0)]v ≫ 0 for some t0 ∈ R and v ≫ 0.

System (3.1) can be interpreted as a model for n populations structured into n classes or patches,
with migration among them: xi(t) denotes the density of the ith population; aij(t) is the migration
rate of the population in class j moving to class i; di(t) is the coefficient of instantaneous loss for
class i, which incorporates both the death rate and the emigration rates of the population that leaves
class i to move to other classes; the birth contribution for each population is given by the nonlinear
terms

∑
k βik(t)hik(t, xi(t− τik(t))).

With this interpretation, di(t) = mi(t) +
∑

j 6=i aji(t), where mi(t) is the death rate for the ith

population, so it is natural to impose aij(t) ≥ 0 and di(t) >
∑

j 6=i aji(t) for all i, j, i.e., D(t)−A(t)T

is uniformly diagonally dominant for t ≥ 0. It is also natural to assume that aij(t) = εij(t)aji(t)
for i 6= j and t ≥ 0, with εij(t) ∈ (0, 1], to account for some loss of the populations, when moving
to different patches (see [27]), thus [D(t) − A(t)]1 ≫ 0 for t ≥ 0. If the mortality rates mi(t) are
bounded below by a positive constant m0, then [D(t) − A(t)]1 ≥ m01 for t ≥ 0. To some degree,
these comments justify assumption (h2) from a biological point of view.

Following the general approach in the literature, here multiple (time-varying) discrete delays
have been introduced in the birth function. In biological terms, most situations do not require
the consideration of more than one delay, either a discrete or a distributed delay, but occasionally
multiple delays should be incorporated in each equation. For examples of such situations, we refer
to generalizations of the classic Mackey-Glass model for the production of red blood cells in [1] and
to [25] for other references.

As an important example of application, we have in mind the following non-autonomous Nicholson
system with patch structure and multiple time-dependent discrete delays:

x′i(t) = −di(t)xi(t) +

n∑

j=1,j 6=i

aij(t)xj(t) +

m∑

k=1

βik(t)xi(t− τik(t))e
−cik(t)xi(t−τik(t)), (3.5)

for i = 1, . . . , n, t ≥ 0. For (3.5), we shall always assume that the coefficient and delay functions
satisfy (h1), (h3) and that cik(t) ≥ ci > 0 are continuous and bounded. With nonlinearities given by
hik(t, x) = xe−cik(t)x for all i, k, (h4) is obviously satisfied.

The autonomous version of (3.5) with n = 1 and m = 1 is the famous Nicholson’s blowfly
equation, given by N ′(t) = −dN(t) + βN(t− τ)e−aN(t−τ) (d, β, a, τ > 0). A large-scale literature on
the scalar Nicholson’s blowflies equation, on a number of generalizations and on related models has
been produced since its introduction by Gurney et al. [13], and real world applications implemented.
Nevertheless, a number of problems regarding scalar Nicholson-type equation still remain unsolved,
see [2, 3] and references therein. On the other hand, results concerning multi-dimensional versions
of such models are still quite limited. Not only is the literature on Nicholson systems very sparse,
but also most authors have only treated autonomous Nicholson systems, and only recently have
non-autonomous Nicholson systems been considered. See [4, 7, 10, 15, 16, 17, 28, 29, 31], also for
biological details of the models and additional references.
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Besides Ricker-type nonlinearities as in the non-autonomous Nicholson system (3.5), other useful
population models can be written in the form (3.1). Among them, are models with Mackey-Glass
type nonlinearities of the form (see [19])

hik(t, x) = xe−cik(t)x
α

(α > 0) or hik(t, x) =
x

1 + cik(t)xα
(α ≥ 1),

which satisfy (h4) if cik(t) are continuous and bounded below and above by positive constants.

System (3.1) is considered as a DDE in C = C([−τ, 0];Rn), where τ = maxi,k supt≥0 τik(t).
Unless specifically mentioned, ‖φ‖ = maxθ∈[−τ,0] |φ(θ)| for φ ∈ C, where | · | is the maximum norm
in R

n. Motivated by the applications to mathematical biology, only nonnegative solutions of (3.1)
are meaningful. For this reason, initial conditions are taken in either C+ or C0, where

C0 = {ϕ ∈ C+ : ϕ(0) ≫ 0}.

Together with (3.1), we also consider its linearization at the origin:

y′i(t) = −di(t)yi(t) +

n∑

j=1,j 6=i

aij(t)yj(t) +

m∑

k=1

βik(t)yi(t− τik(t)), i = 1, . . . , n. (3.6)

Write (3.1), (3.6) as x′(t) = f(t, xt), y
′(t) = g(t, yt) respectively, where f = (f1, . . . , fn), g =

(g1, . . . , gn) and

fi(t, φ) = −di(t)φi(0) +

n∑

j=1,j 6=i

aij(t)φj(0) +

m∑

k=1

βik(t)hik(t, φi(−τik(t)))

and

gi(t, φ) = −di(t)φi(0) +

n∑

j=1,j 6=i

aij(t)φj(0) +

m∑

k=1

βik(t)φi(−τik(t)).

Assume (h1), (h3), (h4). For t ≥ 0 and φ ≥ 0, φi(0) = 0, then fi(t, φ) ≥ 0 and gi(t, φ) ≥ 0,
which implies that x(t) := x(t, 0, φ, f) ≥ 0 and y(t) := y(t, 0, φ, g) ≥ 0 for t ≥ 0. Moreover,
x′i(t) ≥ −di(t)xi(t) and y′i(t) ≥ −di(t)yi(t) for t ≥ 0 and 1 ≤ i ≤ n. Hence both C+ and C0 are
positively invariant for (3.1) and (3.6). The next result is a consequence of Theorem 2.3.

Theorem 3.1. Under the assumptions (h1)-(h4), all solutions of (3.1) with initial conditions in C0

are defined and strictly positive on [0,∞); moreover, there exists L > 0 such that, for any φ ∈ C0,
there is T = T (φ) > 0 such that

0 < xi(t, 0, φ) < L for t ≥ T, i = 1, . . . , n. (3.7)

We now introduce a notation often used for DDEs (cf. [24], p. 82): if there is no possibility of
misinterpretation with intervals of R or Rn, for v ∈ R

n we also denote [0, v] and [v,∞) as the subsets
of C given by [0, v] = {v ∈ C+ : ϕ ≤ v} and [v,∞) = {v ∈ C : ϕ ≥ v}.
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Lemma 3.1. Under (h1), (h3), system (3.6) is cooperative, and the following holds:
(i) If there exist a vector v = (v1, . . . , vn) ≫ 0 and T0 ≥ 0 such that M(t)v ≤ 0 for t ≥ T0, then

the sets [0, cv] ∩ C0 (where c > 0) are invariant for (3.6) with t ≥ T0; in particular, the solutions of
(3.6) are uniformly stable.

(ii) If there exist a vector v = (v1, . . . , vn) ≫ 0 and T0 ≥ 0 such that M(t)v ≥ 0 for t ≥ T0, then
the sets [cv,∞) ∩C0 (where c > 0) are invariant for (3.6) with t ≥ T0.

Proof. Since g satisfies (Q), (3.6) is cooperative. Let M(t)v ≤ 0 for t ≥ T0, for some strictly positive
vector v = (v1, . . . , vn) ∈ R

n and some T0 ≥ 0. For φ ∈ C+ with φ ≤ v, if φi(0) = vi for some i,
then gi(t, φ) ≤

(
M(t)v

)
i
≤ 0 for t ≥ T0, proving that [0, v] ∩ C0 is positively invariant (see Lemma

2.3); since the system is linear, for any positive constant c the set [0, cv] ∩ C0 is positively invariant
as well. From the monotonicity, it follows that the solution y = 0 of (3.6) is uniformly stable. The
proof of (ii) is similar.

Definition 3.1. The trivial solution x ≡ 0 of (3.1) is said to be stable if for any ε > 0 there is
δ = δ(ε) > 0 such that ‖xt(0, φ)‖ < ε for all φ ∈ C0 with ‖φ‖ < δ and t ≥ 0; 0 is said to be globally
attractive (in C0) if x(t, 0, φ) → 0 as t → ∞, for all solutions of (3.1) with initial conditions
x0 = φ ∈ C0; 0 is globally asymptotically stable (GAS) if it is stable and globally attractive.

The next result gives sufficient conditions for the stability and global attractivity of the triv-
ial equilibrium. When (3.1) refers to a population model, the global attractivity of 0 means the
extinction of the populations in all patches.

Theorem 3.2. Assume (h1), (h3) and (h4) with 0 < h+i (x) < x, x > 0, 1 ≤ i ≤ n. Further suppose
that:

(i) there exist v = (v1, . . . , vn) ≫ 0 and T0 ≥ 0 such that M(t)v ≤ 0 for t ≥ T0;
(ii) either lim inft→∞ βi(t) > 0 or lim supt→∞(M(t)v)i < 0, for all i = 1, . . . , n.

Then the trivial solution of (3.1) is GAS in C0.

Proof. From (ii), for each i = 1, . . . , n, either βi(t) ≥ β
i
> 0 for t large or (M(t)v)i ≤ −λi < 0 for t

large. In particular, together with (h3), conditions (i) and (ii) imply (h2).
For φ ∈ C0, t0 ≥ 0 and i ∈ {1, . . . , n}, it holds fi(t, φ) ≤ gi(t, φ). In this way, the solutions of

(3.1) and (3.6) satisfy x(t, t0, φ, f) ≤ y(t, t0, φ, g), t ≥ t0. From Lemma 3.1, the zero solution of (3.1)
is stable. Now, we show that it attracts all solutions with initial conditions in C0.

With x̂j(t) = xj(t)/vj , system (3.1) reads as

x̂′i(t) = −di(t)x̂i(t) +

n∑

j=1,j 6=i

âij(t)x̂j(t) +

m∑

k=1

βik(t)ĥik(t, x̂i(t− τik(t))), i = 1, . . . , n, t ≥ 0, (3.8)

where âij(t) = v−1
i aij(t)vj , j 6= i, and ĥik(t, x) = v−1

i hik(t, vix) satisfy (h4). Hence, without loss of
generality we consider the original system (3.1) and take v = 1 in (i), (ii).

The solutions x(t) = x(t, t0, φ, f) are bounded, so define uj = lim supt→∞ xj(t) and let ui =
max1≤j≤n uj. If ui > 0, by the fluctuation lemma take a sequence (tk) with tk → ∞, xi(tk) →

11

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



ui, x
′
i(tk) → 0. For any small ε > 0 with ui−ε > 0, for k large we get tk ≥ T0+τ , uj−ε ≤ xj(t) ≤ uj+ε

and hik(t, xi(t)) ≤ maxx∈[0,ui+ε] h
+
i (x), for t ∈ [tk − τ, tk]. Thus,

x′i(tk) ≤ −di(tk)(ui − ε) +
∑

j 6=i

aij(tk)(uj + ε) +
∑

p

βip(tk)h
+
i (xi(tk − τip(tk)))

≤ −ui

(
di(tk)−

∑

j 6=i

aij(tk)
)
+ βi(tk) max

x∈[0,ui+ε]
h+i (x) +O(ε).

Taking limits k → ∞, ε→ 0+, we derive that

0 ≤ lim sup
t→∞

ui

(
βi(t)− di(t) +

∑

j 6=i

aij(t)
)
+ ( max

x∈[0,ui]
h+i (x)− ui) lim inf

t→∞
βi(t).

Since maxx∈[0,ui] h
+
i (x) < ui and one of the conditions in (ii) is satisfied, this is not possible. Therefore

ui = 0, and the proof is complete.

For the definitions of persistence and permanence given below, see e.g. [26].

Definition 3.2. A set S ⊂ C+ is an admissible set of initial conditions for x′(t) = f(t, xt) if any
solution x(t, 0, φ) with initial condition x0 = φ ∈ S satisfies xt ∈ S for t ≥ 0, whenever it is defined.
A DDE x′(t) = f(t, xt) is said to be persistent in S, for S an admissible set of initial conditions,
if all solutions x(t, 0, φ) with φ ∈ S are defined and bounded below away from zero on [0,∞), i.e.,
lim inft→∞ xi(t, 0, φ) > 0 for all 1 ≤ i ≤ n, φ ∈ S; and x′(t) = f(t, xt) is uniformly persistent in
S if there is m > 0 such that lim inft→∞ xi(t, 0, φ) ≥ m for all 1 ≤ i ≤ n, φ ∈ S. The system is
said to be permanent in S if it is dissipative and uniformly persistent; in other words, all solutions
x(t, 0, φ), φ ∈ S, are defined on [0,∞) and there are positive constants m,M such that, given any
φ ∈ S, there exists t0 = t0(φ) for which

m ≤ xi(t, 0, φ) ≤M, 1 ≤ i ≤ n, t ≥ t0.

Hereafter, unless otherwise stated, the notions of persistence, uniform persistence and permanence
always refer to the choice of S = C0 as the set of admissible initial conditions.

Observe that a linear homogeneous DDE system is uniformly persistent (in C0) if and only if
all components of all solutions with initial conditions in C0 tend to ∞ as t → ∞. The next result
concerns the uniform persistence of (3.6).

Proposition 3.1. Assume (h1), (h3), and that there exist vectors v ≫ 0, η ≫ 0 such that

M(t)v ≥ η for large t > 0. (3.9)

Then all solutions y(t) of (3.6) with initial conditions in C0 satisfy limt→∞ yi(t) = ∞, i = 1, . . . , n.

Proof. For φ ∈ C0, t0 ≥ τ , we have yt = yt(t0, φ) ∈ intC+ for t ≥ t0, thus yτ ≥ cv for some small
c > 0. System (3.6) is linear and cooperative, with [v,∞) forward invariant for t on the interval
[T0,∞) if M(t)v ≥ 0 for t ≥ T0. To simplify the exposition, as before we take v = 1. We only need
to show that all components ui(t) of the solution u(t) := y(t, T0,1) satisfy limt→∞ ui(t) = ∞.
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For j ∈ {1, . . . , n}, let cj = lim inft→∞ xj(t) ∈ [1,∞]. Suppose that cj < ∞ for some j ∈
{1, . . . , n}, and take ci = minj cj , for the natural ordering in (0,∞]. Then, there is a sequence
tk → ∞ such that ui(tk) → ci, u

′
i(tk) → 0. On the other hand, from (3.9) there are ηi, T1 > 0 such

that βi(t) − di(t) +
∑

j 6=i aij(t) ≥ ηi > 0, t ≥ T1. For any small ε > 0 and k sufficiently large, we
obtain

u′i(tk) ≥ −di(tk)ui(tk) + (ci − ε)
(∑

j 6=i

aij(tk) + βi(tk)
)

≥ di(tk)[−ui(tk) + (ci − ε)] + (ci − ε)ηi,

and therefore 0 ≥ ciηi > 0, which is not possible. This ends the proof.

For dissipative systems (3.1) with nonlinearities satisfying (h4), the above criterion for the uniform
persistence of the linearization at zero also provides a criterion for its uniform persistence. This is
stated in the main theorem of this section, given below. For a relevant extension, see Theorem 3.4.

Theorem 3.3. Assume (h1)-(h4), and suppose that there exist v ≫ 0, η ≫ 0 such that (3.9) is
satisfied. Then (3.1) is uniformly persistent, and thus permanent.

Proof. After effecting a scaling of the variables, we take v = (1, . . . , 1) = 1 in condition (3.9), thus
there exist constants ηi > 0 (i = 1, . . . , n) such that, for some T0,

βi(t) ≥ di(t)−
∑

j 6=i

aij(t) + ηi, t ≥ T0.

On the other hand, di(t)−
∑

j 6=i aij(t) ≤ di := supt≥T0
di(t), and with 1 < αi < 1 + ηi/di we obtain

α−1
i βi(t)− di(t) +

∑

j 6=i

aij(t) > 0, for t ≥ T0, i = 1, . . . , n. (3.10)

For h−i as in (h4), we can choose L > m > 0 such that the uniform estimate (3.7) holds,
h−i (m) = minx∈[m,L] h

−
i (x), with (h−i )

′(x) > 0 and α−1
i x < h−i (x) for x ∈ (0,m] and all i.

Consider the auxiliary cooperative system

x′i(t) = −di(t)xi(t) +

n∑

j=1,j 6=i

aij(t)xj(t) +

m∑

k=1

βik(t)Hi(xi(t− τik(t)))

=: Fi(t, xt), i = 1, . . . , n, t ≥ 0,

(3.11)

where Hi(x) = h−i (x) if 0 ≤ x ≤ m, Hi(x) = h−i (m) if x ≥ m.
For x(t) a positive solution of (3.1), for t > 0 sufficiently large and 1 ≤ i ≤ n, we have xi(t) ≤ L

and hik(t, xi(t− τik(t))) ≥ Hi(xi(t− τik(t))). Therefore, if (3.11) is uniformly persistent, then (3.1)
is uniformly persistent as well.

Now, we consider any solution x(t) = x(t, T0, φ, F ) of (3.11) with xT0
= φ ∈ C0 (where T0 is as

in (3.10)), and claim that
lim inf
t→∞

xi(t) ≥ m, 1 ≤ i ≤ n.
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In fact, we shall show that there exists T ≥ 0 such that

xi(t) ≥ m for t ≥ T, 1 ≤ i ≤ n. (3.12)

The proof, inspired by some arguments in [10], is divided into several steps.

Step 1. We prove that if min{xj(t) : 1 ≤ j ≤ n, t ∈ [T, T + τ ]} ≥ m for some T ≥ T0, then
xj(t) ≥ m for all t ≥ T and j = 1, . . . , n.

Assume that xj(t) ≥ m for t ∈ [T, T + τ ] and j = 1, . . . , n. Let t0 ∈ [T + τ, T + 2τ ] and
i ∈ {1, . . . , n} such that xi(t0) = min{xj(t) : 1 ≤ j ≤ n, t ∈ [T + τ, T + 2τ ]}.

If xi(t0) < m, we have

0 ≥ x′i(t0) = −di(t0)xi(t0) +
n∑

j=1,j 6=i

aij(t0)xj(t0) +
m∑

k=1

βik(t)Hi(xi(t0 − τik(t0))).

Note that xi(t0 − τik(t0)) ≥ m if t0 − τik(t0) ∈ [T, T + τ ] and xi(t0 − τik(t0)) ≥ xi(t0) if t0 − τik(t0) ∈
[T + τ, t0], hence Hi(xi(t0 − τik(t0))) ≥ Hi(xi(t0)). From (3.10) and the definition of m we obtain

0 ≥


−di(t0) +

n∑

j=1

aij(t0)


xi(t0) + βi(t0)Hi(xi(t0))

≥


−di(t0) +

n∑

j=1

aij(t0) + α−1
i βi(t0)


xi(t0) > 0,

(3.13)

which is not possible. Thus, xi(t0) ≥ m. By iteration, this proves Step 1.

Step 2. Next, for any T0 as in (3.10) and s0 := min{xj(t) : 1 ≤ j ≤ n, t ∈ [T0, T0 + τ ]}, we shall
show the estimate

min
j

min
t∈[T0+τ,T0+2τ ]

xj(t) ≥ s1,

where
s1 := min

{
m,min

j

(
αjHj(s0)

)}
.

To simplify the exposition, take T0 = 0. In this way, we denote s0 := min{xj(t) : 1 ≤ j ≤ n, t ∈
[0, τ ]} > 0. If s0 ≥ m, from Step 1 the proof is complete. Now, consider the case s0 < m. By the
definition of m, h−j (s0)αj = Hj(s0)αj > s0 for all j, thus s1 > s0. We claim that

min
j

min
t∈[τ,2τ ]

xj(t) ≥ s1. (3.14)

Otherwise, there are t1 ∈ [τ, 2τ ] and i ∈ {1, . . . , n} such that xi(t1) < s1 and xj(t) ≥ xi(t1) for all
t ∈ [τ, t1] and j ∈ {1, . . . , n}.

Since xi(t1 − τik(t1)) ≥ min{s0, xi(t1)}, we have Hi(xi(t1 − τik(t1))) ≥ min{Hi(s0),Hi(xi(t1))}.
We now consider two cases separately.

If s0 ≥ xi(t1), then Hi(s0) ≥ Hi(xi(t1)) and we get (3.13) with t0 replaced by t1, thus a contra-
diction.
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If s0 < xi(t1), then Hi(s0) < Hi(xi(t1)). Since xi(t1) < s1 ≤ αiHi(s0), we derive

0 ≥ x′i(t1) ≥


−di(t1) +

n∑

j=1

aij(t1)


xi(t1) + βi(t1)Hi(s0)

>


−di(t1) +

n∑

j=1

aij(t1) + βi(t1)α
−1
i


xi(t1) > 0,

which is again a contradiction. This proves the estimate (3.14).

Step 3. Now, we define by recurrence the sequence

sk+1 = min
{
m,min

j

(
αjHj(sk)

)}
, k ∈ N0.

If sk = m for some k ∈ N, (3.12) follows by Steps 1 and 2. In this case, αjHj(sk) > m, hence sp = m
for all p > k. If sk < m for all k, (sk) is strictly increasing, because

sk+1 = min
j

(
αjHj(sk)

)
> sk.

For s∗ = lim sk, from the definition of m we derive

0 < s∗ ≤ m and s∗ ≥ min
j
αjHj(s

∗) > s∗,

which is not possible. The proof is complete.

Remark 3.2. We observe that assumptions (h2) and (3.9) are satisfied if lim inft→∞ βi(t) > 0 and

γi ≥
βi(t)vi

di(t)vi −
∑

j 6=i aij(t)vj
≥ αi > 1, for t ≥ T0, i = 1, . . . , n, (3.15)

for some vector v = (v1, . . . , vn) ≫ 0 and constants αi, γi.

Example 3.1. Consider the system

x′i(t) = −di(t)xi(t) +
n∑

j=1,j 6=i

aij(t)xj(t) + βi(t)
xi(t− τi(t)))

1 + ci(t)x
αi

i (t− τi(t))
, i = 1, . . . , n, t ≥ 0, (3.16)

where αi ≥ 1, di(t) > 0, aij(t) ≥ 0, ci(t), βi(t), τi(t) ≥ 0 are continuous and bounded and 0 < c−i ≤
ci(t) ≤ c+i , βi(t) ≥ β−i > 0, t ≥ 0, i = 1, . . . , n. For hi(t, x) = x(1 + ci(t)x

αi)−1, h±i (x) = x(1 +
c∓i x

αi)−1, we have h−i (x) ≤ hi(t, x) ≤ h+i (x), h
±
i (0) = 0, (h±i )

′(0) = 1 and 0 < h−i (x) ≤ h+i (x) < x
for x > 0. For each vector v = (v1, . . . , vn) ≫ 0, define

li(v) = lim inf
t→∞

βi(t)vi
di(t)vi −

∑
j 6=i aij(t)vj

, Li(v) = lim sup
t→∞

βi(t)vi
di(t)vi −

∑
j 6=i aij(t)vj

, i = 1, . . . , n.

From Theorem 3.2 and Remark 3.2, the zero solution of (3.16) is GAS if there exists v ≫ 0 such that
Li(v) < 1 for all i, whereas (3.16) is permanent if there exists v ≫ 0 such that 1 < li(v), Li(v) < ∞
for all i.
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A careful reading of the proof above leads to several generalizations. First, it is clear that, in
the statement of Theorem 3.3, hypothesis (h2) can actually be replaced by the dissipativeness of the
system. Having this in mind, one also sees that the same arguments apply to dissipative systems
more general than (3.1), where, in each equation i, the instantaneous terms aij(t)xj(t) are replaced
by linear delayed terms and the nonlinear terms are as in (3.3). This is expressed in the next theorem.

Theorem 3.4. Consider a non-autonomous system of one of the forms

x′i(t) = −di(t)xi(t) +

n∑

j=1,j 6=i

aij(t)

∫ 0

−τ

xj(t+ s) dsνij(t, s)

+
m∑

k=1

βik(t)

∫ 0

−τ

hik(s, xi(t+ s)) dsηik(t, s), i = 1, . . . , n, t ≥ 0,

(3.17)

x′i(t) = −di(t)xi(t) +

n∑

j=1,j 6=i

aij(t)

∫ 0

−τ

xj(t+ s) dsνij(t, s)

+

m∑

k=1

βik(t)hik

(
t,

∫ 0

−τ

xi(t+ s) dsηik(t, s)

)
, i = 1, . . . , n, t ≥ 0,

(3.18)

where: di(t), aij(t), βik(t), hik(t, x) satisfy (h1), (h3) and (h4); the measurable functions νij, ηik :
[0,∞) × [−τ, 0] → R are continuous from the left in s, νij(t, ·), ηik(t, ·) are non-decreasing and nor-
malized so that

∫ 0

−τ

dsνij(t, s) =

∫ 0

−τ

dsηik(t, s) = 1, i, j = 1, . . . , n, k = 1, . . . ,m, t ≥ 0.

Assume also that (3.17), or (3.18), is dissipative and that (3.9) is satisfied for some v, η ≫ 0. Then,
the system is uniformly persistent.

We now apply the previous theorems to the Nicholson system (3.5).

Theorem 3.5. Consider system (3.5), where di, aij , βik, cik, τik : [0,∞) → [0,∞) are continuous and
bounded, with di(t), βi(t) =

∑m
k=1 βik(t) strictly positive and cik(t) ≥ ci > 0 on [0,∞), for all i, j, k.

With the notation in (3.4), assume that there exist a vector u ≫ 0 and δ > 0, T0 ≥ 0 such that
[D(t)−A(t)]u ≥ δ1 for t ≥ T0. Then:

(i) Eq. (3.5) is dissipative.
(ii) If there exist a vector v ≫ 0 and T0 ≥ 0 such that M(t)v ≤ 0 for t ≥ T0 and either

lim inft→∞ βi(t) ≫ 0 or lim supt→∞(M(t)v)i ≪ 0 (1 ≤ i ≤ n), the zero solution of (3.5) is GAS.
(iii) If there exist vectors v ≫ 0, η ≫ 0 such that M(t)v ≥ η for t ≥ T0, then (3.5) is permanent.

Example 3.2. Consider the planar system

x′1(t) = −(1 + cos2 t)x1(t) + γ1(1 + sin2 t)x2(t) +

m∑

j=1

(β1j + f1j(t))x1(t− τ1j(t))e
−c1j (t)x1(t−τ1j (t)),

x′2(t) = −(1 + sin2 t)x2(t) + γ2(1 + cos2 t)x1(t) +

m∑

j=1

(β2j + f2j(t))x2(t− τ2j(t))e
−c2j (t)x2(t−τ2j (t)),

(3.19)
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where γi > 0, βij ≥ 0 with βi :=
∑m

j=1 βij > 0, all the functions fij(t), cij(t), τij(t) are continuous,
nonnegative and bounded on [0,∞), with cij(t) bounded below by positive constants, for t ≥ 0, i =
1, 2, j = 1, . . . ,m. Write fi(t) :=

∑m
j=1 fij(t), let f

−
i , f

+
i be such that 0 ≤ f−i ≤ fi(t) ≤ f+i for t ≥ 0

and denote β−i = βi + f−i , β
+
i = βi + f+i , i = 1, 2. With the notation in (3.4), we have

D(t)−A(t) =

[
1 + cos2 t −γ1(1 + sin2 t)

−γ2(1 + cos2 t) 1 + sin2 t

]
,

M(t) =

[
β1 + f1(t)− (1 + cos2 t) γ1(1 + sin2 t)

γ2(1 + cos2 t) β2 + f2(t)− (1 + sin2 t)

]
.

Consider a vector u = (1, u2) with u2 > 0, and write [D(t)−A(t)]u =

[
δ1(t)
δ2(t)

]
. Since min δ1(t) =

1− 2u2γ1,min δ2(t) = u2 − 2γ2, if
4γ1γ2 ≤ 1 (3.20)

we can find u2 such that 2γ2 ≤ u2 ≤ (2γ1)
−1, implying that [D(t) − A(t)]u ≥ 0 for t ∈ R. On the

other hand, δ1(
π
4 ) =

3
2(1 − u2γ1) > 0, δ2(

π
4 ) =

3
2(−γ2 + u2) > 0. By Theorem 2.1, we conclude that

the ODE x′ = −[D(t)−A(t)]x is globally exponentially stable.

We now look for a vector v = (1, v2) ≫ 0 such that M(t)v ≥ η ≫ 0. Write M(t)v =

[
m1(t)
m2(t)

]
and

observe that m1(t) ≥ η1 := β−1 − 2 + v2γ1, m2(t) ≥ η2 := v2(β
−
2 − 2) + γ2, t ≥ 0. Now assume that:

either β−1 ≥ 2 or β−2 ≥ 2 or (2− β−1 )(2− β−2 ) < γ1γ2. (3.21)

One easily verifies that: (i) if either β−1 ≥ 2 or β−2 ≥ 2, one can find v2 > 0 such that η1 > 0, η2 > 0;
(ii) if β−i < 2 for i = 1, 2, and (2 − β−1 )(2 − β−2 ) < γ1γ2, for any v2 such that (2 − β1)γ

−1
1 < v2 <

γ2(2 − β2)
−1 we have M(t)v ≥ η = (η1, η2) ≫ 0. From Theorem 3.5.(iii), conditions (3.20)-(3.21)

imply that (3.19) is permanent.
As an illustration, with m = 1 and β1 = 2, γ1 = 1 = 4γ2, f1(t) = f2(t) = 0, we conclude that

x′1(t) = −(1 + cos2 t)x1(t) + (1 + sin2 t)x2(t) + 2x1(t− τ1j(t))e
−c1j(t)x1(t−τ1j (t))

x′2(t) = −(1 + sin2 t)x2(t) +
1

4
(1 + cos2 t)x1(t) + β2x2(t− τ2j(t))e

−c2j(t)x2(t−τ2j (t))
(3.22)

is permanent for any β2 > 0.

On reverse, if β+i < 1, i = 1, 2, for a positive vector v = (1, v2) we obtain M(t)v =

[
m1(t)
m2(t)

]
with

m1(t) ≤ η1 := β+1 − 1 + 2v2γ1, m2(t) ≤ η2 := v2(β
+
2 − 1) + 2γ2, t ≥ 0. At this point, assume

β+i < 1, i = 1, 2 and 4γ1γ2 ≤ (1− β+1 )(1 − β+2 ). (3.23)

Thus, choosing v2 such that 2γ2(1 − β+2 )
−1 ≤ v2 ≤ (2γ1)

−1(1 − β+1 ) we obtain M(t)v ≤ 0 for all
t ≥ 0. From Theorem 3.5.(ii), conditions (3.23) imply that the trivial solution of (3.19) is GAS. In
particular, this is the case of the zero solution of

x′1(t) = −(1 + cos2 t)x1(t) +
1

4
(1 + sin2 t)x2(t) +

1

2
x1(t− τ1j(t))e

−c1j (t)x1(t−τ1j (t))

x′2(t) = −(1 + sin2 t)x2(t) +
1

4
(1 + cos2 t)x1(t) + β2x2(t− τ2j(t))e

−c2j(t)x2(t−τ2j (t))
(3.24)
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for any 0 < β2 ≤
1
2 .

Remark 3.3. In recent years, some attention has been given to Nicholson’s blowflies equations and
systems with harvesting. For the n-dimensional case, such systems are obtained by adding linear
harvesting terms with delays to (3.5), so that it becomes:

x′i(t) =− di(t)xi(t) +

n∑

j=1,j 6=i

aij(t)xj(t)

+
m∑

k=1

βik(t)xi(t− τik(t))e
−cik(t)xi(t−τik(t)) −Hi(t)xi(t− σi(t)), i = 1, . . . , n,

(3.25)

where the new coefficients Hi(t) and delays σi(t) are continuous, nonnegative and bounded. For the
scalar case of (3.25), Liu [18] studied both the global exponential stability of the zero solution and
the permanence. The almost periodic scalar case of (3.25) was studied in [30], and the n-dimensional
case in [28], where the authors established criteria for the existence and global exponential stability
of a positive almost periodic solution by using properties of almost periodic functions and Lyapunov
functionals. See also [31] for a periodic system (3.25) with n = 2. From the proof of Theorem 3.2, we
deduce that Theorem 3.5.(ii), on the global asymptotic stability of the zero solution, applies to (3.5)
replaced by (3.25), without any changes. However, the result on permanence in Theorem 3.5.(iii)
does not carry over to (3.25). An interesting open problem is to generalize our results, and find
sufficient conditions for the permanence of (3.25).

Remark 3.4. In [9], Faria studied the persistence and permanence of a class of cooperative DDEs
with possible infinite delay of the form x′i(t) = Fi(xt)− xi(t)Gi(xt), 1 ≤ i ≤ n. By using properties
of cooperative systems, it was shown that, under some additional conditions, all positive solutions
are bounded below and above by positive equilibria, which in particular proves the permanence. The
persistence and permanence for the non-autonomous system x′i(t) = Fi(t, xt)−xi(t)Gi(t, xt), 1 ≤ i ≤
n, was also addressed in [9] by comparing it above and below with autonomous cooperative systems.
Although the basic idea is similar (comparison of solutions with solutions of cooperative systems),
the results and techniques in [9] do not apply to the study of systems (3.1): not only does (3.1)
not have the above form, but the nonlinearities hik(t, x) are in general non-monotone on the second
variable. On the other hand, this remark raises another interesting open problem: how to extend
the results about permanence in this paper to systems with infinite delay, since it is clear that the
proof of Theorem 3.3 does not work for the infinite delay case.

4 Sharp criteria for systems with autonomous coefficients

The case of an autonomous system (3.1), or of (3.1) with constant coefficients but time-varying
delays, is particularly important in applications. For these situations, the matrices A,B,D,M in
(3.4) are autonomous, and their properties play an important role in the analysis of the asymptotic
behaviour of solutions. For the sake of completeness and convenience of the reader, some elements
from matrix theory will be recalled here. We start with some definitions.
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Definition 4.1. Let N = [nij] be a square matrix. The matrix N is said to be reducible if there is
a simultaneous permutation of rows and columns that brings N to the form

[
N11 0
N21 N22

]
,

with N11 and N22 square matrices; N is an irreducible matrix if it is not reducible. For N with
nonpositive off-diagonal entries (i.e., nij ≤ 0 for i 6= j), N is said to be a non-singular M-matrix
if all its eigenvalues have positive real parts. We say that N is a cooperative matrix if it has
nonnegative off-diagonal entries (i.e., nij ≥ 0 for i 6= j).

The reader should be aware that many authors use the term M-matrix with the above meaning of
the term non-singular M-matrix. For alternative definitions and properties of M-matrices, see [11].
Namely, it is important to remark that, for a square matrix N with nonpositive off-diagonal entries,
N is a non-singular M-matrix if and only if there exists a vector u≫ 0 such that Nu≫ 0.

System (3.1) with constant coefficients becomes

x′i(t) = −dixi(t) +
n∑

j=1,j 6=i

aijxj(t) +
m∑

k=1

βikhik(xi(t− τik(t))), i = 1, . . . , n, t ≥ 0, (4.1)

and hypothesis (h4) translates simply as

(h4*) hik : [0,∞) → [0,∞) are bounded, locally Lipschitzian and continuously differentiable on a
vicinity of 0+, with hik(0) = 0, h′ik(0) = 1 and hik(x) > 0 for x > 0, i ∈ {1, . . . , n}, k ∈
{1, . . . ,m}.

For (4.1), the results in the previous section are summed up in the following theorem:

Theorem 4.1. Consider system (4.1), where di > 0, aij ≥ 0, βik ≥ 0 with βi :=
∑m

k=1 βik > 0,
hik, τik : [0,∞) → [0,∞) are continuous, with τik(t) uniformly bounded from above by some τ > 0,
i, j = 1, . . . , n, k = 1, . . . ,m, and suppose that (h4*) is satisfied. Define the n× n matrices

A = [aij ], B = diag (β1, . . . , βn), D = diag (d1, . . . , dn), M = B −D +A, (4.2)

where aii := 0 (1 ≤ i ≤ n), and assume that D −A is a non-singular M-matrix. Then:
(i) (4.1) is dissipative;
(ii) If in addition h+i (x) := max1≤k≤m hik(x) < x for x > 0, i = 1, . . . , n, and there exists a vector

v ≫ 0 such that Mv ≤ 0, the trivial solution of (4.1) is GAS;
(iii) If there exists a vector v ≫ 0 such that Mv ≫ 0, (4.1) is permanent.

For an n× n matrix N , the spectral bound or stability modulus s(N) is defined by

s(N) = {Reλ : λ ∈ σ(N)},

where σ(N) denotes the spectrum of N . For a cooperative and irreducible matrix N , it is well-known
that the spectral bound s(N) is a (simple) eigenvalue, with a strictly positive associated eigenvector,
see Appendix A.5 of [26]; moreover, s(N) > 0 if and only if there exists a strictly positive vector
v ∈ R

n with Nv ≫ 0 [10]. Thus, a threshold criterion of permanence versus extinction is obtained
from Theorem 4.1 when A is an irreducible matrix.
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Corollary 4.1. Assume all the general hypotheses of Theorem 4.1 (including (h4*) and that D−A
is a non-singular M-matrix) are satisfied. Further assume that A is irreducible and h+i (x) < x for
x > 0, i = 1, . . . , n. Then: (i) if s(M) ≤ 0, the trivial solution of (4.1) is GAS; (ii) if s(M) > 0,
(4.1) is permanent.

This threshold criterion is not valid, in general, when A (and therefore M as well) is reducible.
Our next task is to replace the assumptions in Theorem 4.1 by sharp conditions for extinction versus
permanence when M is reducible. We emphasize that usually the case of a reducible community
matrix M is not treated in the literature.

By an adequate simultaneous permutation of rows and columns, which amounts to a permutation
of the variables in the original system (4.1), we may suppose that the n × n-matrix A has been
transformed into the triangular form

A =




A11 0 . . . 0
A21 A22 . . . 0
...

...
. . .

...
Ak1 Ak2 . . . Akk


 , (4.3)

where the diagonal blocks A11, . . . , Akk are square matrices of size n1, . . . , nk respectively, n1+ · · ·+
nk = n, and are irreducible. Clearly, k = 1 if A is irreducible. Observe that a square n × n-matrix
A = [aij ] is irreducible if and only if for any nonempty proper subset I ⊂ {1, . . . , n} there are i ∈ I
and j ∈ {1, . . . , n} \ I such that aij 6= 0.

The next result extends Corollary 4.1 and gives necessary and sufficient conditions for both the
uniform persistence and the global asymptotic stability of the zero solution of (4.1), in the case of a
reducible matrix A. The result for uniform persistence was inspired by [21].

Theorem 4.2. Consider system (4.1) where di > 0, aij ≥ 0, βik ≥ 0 with βi :=
∑m

k=1 βik > 0,
τik : [0,∞) → [0,∞) are continuous and bounded, the functions hik satisfy (h4*) with h+i (x) :=
max1≤k≤m hik(x) < x for any x > 0, for i, j = 1, . . . , n, k = 1, . . . ,m. Let A,B,D,M be the matrices
defined in (4.2). Assume that D−A is a non-singular M -matrix. Without loss of generality, further
assume that A has the block lower triangular structure as in (4.3), with irreducible diagonal blocks
A11, . . . , Akk, and denote by Mjj the associated blocks in the matrix M , that is, Mjj = Bj − Dj +
Ajj, with Bj = diag(βi)i∈Ij and Dj = diag(di)i∈Ij , where Ij is the set formed by the nj indexes
corresponding to the rows of the block Ajj, for each j = 1, . . . , k; and Mij = Aij for 1 ≤ j < i ≤ k.
Then:

(i) System (4.1) is uniformly persistent if and only if s(Mjj) > 0 for every index j ∈ {1, . . . , k}
such that, except for the diagonal block Mjj, all the other blocks on the row are null.

(ii) The null solution of system (4.1) is GAS if and only if s(M) ≤ 0.

Proof. In the case of A irreducible, the results are given in Corollary 4.1. From now on, A is
assumed to be a reducible matrix with the triangular form (4.3) with k > 1. We make a few remarks
beforehand.

First, observe that the property of D − A being a non-singular M-matrix is preserved under
a simultaneous permutation of rows and columns (so that D − A becomes P (D − A)P T for some
orthogonal matrix P ), therefore system (4.1) is dissipative, and thus the uniform persistence in (i)
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can actually be replaced by the permanence. Secondly, for each j = 1, . . . , k, we consider the lower
dimensional system associated with the irreducible block Mjj, formed by the nj equations

x′i(t) = −di xi(t) +
∑

p∈Ij ,p 6=i

aip xp(t) +

m∑

q=1

βiq hiq(xi(t− τiq(t))) , i ∈ Ij , t ≥ 0 , (4.4)

and observe that it satisfies all the hypotheses in Corollary 4.1, as Dj − Ajj is a non-singular M-
matrix as well. Finally, for any vector v in R

n or any map v taking values in R
n, we introduce the

notation vj = (vi)i∈Ij for each j = 1, . . . , k, so that v = (v1, . . . , vk).

(i) To simplify the writing, we may assume without loss of generality that the diagonal blocks
in (4.3) with all null blocks to their left (if any) are placed in the first rows. In other words, we
assume that {A11, . . . , All} are exactly the diagonal blocks with all other blocks on their row null,
for some 1 ≤ l ≤ k. In this way, for 1 ≤ j ≤ l, system (4.4) is just a lower dimensional decoupled
subsystem of system (4.1).

Now, suppose that system (4.1) is uniformly persistent. Then, for each j = 1, . . . , l, system (4.4)
naturally inherits the property of uniform persistence from the total system, and Corollary 4.1 implies
that s(Mjj) > 0 for any j = 1, . . . , l, so this is a necessary condition.

Conversely, assume that s(Mjj) > 0 for any j = 1, . . . , l. Applying once more Corollary 4.1,
we deduce that systems (4.4) are uniformly persistent for any j = 1, . . . , l. Therefore, there exists
m0 > 0 such that for any φ ∈ C0, lim inft→∞ xi(t, 0, φ) ≥ m0 for all i ∈ I1 ∪ . . . ∪ Il. At this point, if
l = k the proof is complete, whereas if l < k we have to deal with the remaining components of the
solution.

We now consider the case l < k and look at the components xi(t, 0, φ) for i ∈ Il+1. The method
here is twofold: first, since there is at least a non-null block to the left of Ml+1,l+1, we will show
that one component xi1(t, 0, φ) (i1 ∈ Il+1) of the solution eventually stays bounded away from 0.
Secondly, once we have raised one component in Il+1, we recursively raise the rest of them, one by
one, by applying the irreducible character of Ml+1,l+1.

More precisely, as there is at least one non-null block to the left of Ml+1,l+1, there are indexes
i1 ∈ Il+1 and j1 ∈ Ij for some 1 ≤ j ≤ l such that ai1j1 > 0. Now, for an initial condition φ ∈ C0,
there exists a t0 = t0(φ) such that xi(t, 0, φ) ≥ m0 for all t ≥ t0 and for all i ∈ I1∪ . . .∪ Il. Therefore,
for t ≥ t0, x

′
i1
(t, 0, φ) ≥ −di1 xi1(t, 0, φ) + ai1j1 m0. Now, we consider the scalar cooperative ODE

y′(t) = −di1 y(t) + ai1j1 m0 , t ≥ 0 ,

whose solution, for the previous time t0 ≥ 0, is written as

y(t, t0, y(t0)) = y(t0) e
−di1 (t−t0) +

ai1j1 m0

di1
(1− e−di1 (t−t0)) ,

so that there exist m1 > 0 and t1 ≥ t0 such that y(t, t0, y(t0)) ≥ m1 for any t ≥ t1, provided that
y(t0) ≥ 0. The application of a standard argument of comparison of solutions permits to conclude
that xi1(t, 0, φ) ≥ m1 for any t ≥ t1.

If Il+1 = {i1}, we are done with this block. If not, as Al+1,l+1 is irreducible, there exists an index
i2 ∈ Il+1 \ {i1} such that ai2i1 > 0. As before, we consider the scalar ODE

y′(t) = −di2 y(t) + ai2i1 m1 , t ≥ 0 ,
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for which we find a constant m2 > 0 and a time t2 ≥ t1 such that if t ≥ t2, y(t, 0, y(t1)) ≥ m2 for any
t ≥ t2, independently of the value y(t1) ≥ 0. In a similar way, we conclude that the i2th component
of the solution of (4.1) satisfies x′i2(t, 0, φ) ≥ −di2 xi2(t, 0, φ)+ai2i1 m1 for any t ≥ t1, and once more,
by comparing solutions, we have xi2(t, 0, φ) ≥ m2 for any t ≥ t2.

At this point, if Il+1 = {i1, i2} we are finished with this block; if not, as Al+1,l+1 is irreducible,
considering {i1, i2} and its complement Il+1 \ {i1, i2}, we may affirm that there exist indexes i3 ∈
Il+1 \ {i1, i2} and j ∈ {i1, i2} such that ai3j > 0; now, the argument to lift the component xi3(t, 0, φ)
is just the same as the one for xi2(t, 0, φ).

Iterating this procedure inside the irreducible block Al+1,l+1, we conclude that there is a constant
m′

0 = min{m0,m1, . . . ,mnl+1
} > 0 such that for any φ ∈ C0, there exists a t′0 = t′0(φ) such that

xi(t, 0, φ) ≥ m′
0 for all t ≥ t′0 and for all i ∈ I1 ∪ . . . ∪ Il ∪ Il+1.

To finish, note that the procedure for the remaining components of the solution, if any, is identical
to the one just developed for the set of indexes Il+1.

(ii) Note that s(M) = max{s(M11), . . . , s(Mkk)}, so that s(M) ≤ 0 if and only if s(Mjj) ≤ 0 for
j = 1, . . . , k. Because of the triangular structure of A in (4.3), and with the previous notation for
φ = (φ1, . . . , φk), it is apparent that, for j = 2, . . . , k, the “faces”

Fj = {φ = (φ1, . . . , φk) ∈ C+ | φ1 = . . . = φj−1 = 0}

of the nonnegative cone C+ are positively invariant. In this way, for an initial condition φ ∈ Fj (2 ≤
j ≤ k), the solution remains in Fj , thus the component xj(t, 0, φ) is a solution of the system (4.4).

We first assume that the null solution of (4.1) is GAS in the nonnegative cone C+. For any
j = 1, . . . , k fixed, we now show that any solution y(t, 0, φj) of system (4.4) with initial condition
φj ∈ C+([−τ, 0];Rnj ) has limt→∞ y(t, 0, φj) = 0. This is clear for j = 1, as system (4.4) is a
decoupled subsystem of system (4.1). For j > 1, just consider φ̃ ∈ C+([−τ, 0];Rn) with φ̃j = φj

and φ̃i = 0 for any i < j, so that φ̃ ∈ Fj . Then, xj(t, 0, φ̃) is a solution of system (4.4), thus

y(t, 0, φj) = xj(t, 0, φ̃) → 0 as t → ∞, as we wanted. With this behaviour for each j, the persistent
case in Corollary 4.1 is precluded, and then it must be s(Mjj) ≤ 0.

Conversely, assume that s(Mjj) ≤ 0, so that there exist vectors vj ∈ R
nj , vj ≫ 0 such that

Mjj v
j ≤ 0 for j = 1, . . . , k. Without loss of generality, we suppose that k = 2, so that M has the

form

M = B −D +

[
A11 0
A21 A22

]
, (4.5)

where Aii are ni × ni irreducible blocks (i = 1, 2). The general case of k blocks follows by iterating
the procedure below.

With M given by (4.5), (4.1) is equivalent to

x′i(t) = −di xi(t) +
∑

p∈I1,p 6=i

aip xp(t) +

m∑

k=1

βik hik(xi(t− τik(t))), i ∈ I1, t ≥ 0

x′i(t) = −di xi(t) +
∑

p∈I2,p 6=i

aip xp(t) +

m∑

k=1

βik hik(xi(t− τik(t))) +
∑

p∈I1

aipxp(t), i ∈ I2, t ≥ 0 .

(4.6)
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We first claim that the trivial solution of (4.1) is globally attractive. Let φ ∈ C+, and write
x(t, 0, φ) = (x1(t, 0, φ1), x2(t, 0, φ)). (Recall that x1(t, 0, φ) is just the solution of system (4.4) for
j = 1 with initial condition φ1.) Corollary 4.1 implies that limt→∞ x1(t, 0, φ1) = 0. In particular, in
(4.6) we have qi(t) :=

∑
p∈I1

aipxp(t, 0, φ
1) → 0 as t → ∞ for any i ∈ I2. At this point, the proof of

limt→∞ x2(t, 0, φ) = 0 is obtained by simply repeating the argument used in the proof of Theorem
3.2 applied to the second system in (4.6). Details are omitted.

It remains to prove the stability of the null solution of (4.6). For a given φ = (φ1, φ2) ∈ C+, as
before we denote the solution of (4.1) by x(t, 0, φ) = (x1(t, 0, φ1), x2(t, 0, φ)).

From the assumptions on hik, for i ∈ I2, we construct maps h̃i : [0,∞) → [0,∞) satisfying the
following conditions: h̃i are continuous, bounded, nondecreasing, equal to h+i on a right neighbour-

hood of 0, and such that h+i (x) ≤ h̃i(x) < x for all x > 0. Now, we consider an n-dimensional
system, whose first n1 equations are given by (4.4) with j = 1 (as in (4.6)) and the last equations
given by the n2-dimensional system

y′i(t) = −di yi(t) +
∑

p∈I2,p 6=i

aip yp(t) +
m∑

k=1

βik h̃i(yi(t− τik(t))) +
∑

p∈I1

aip xp(t), i ∈ I2, t ≥ 0, (4.7)

written for short as y′i(t) = f̃i(t, yt). Since (4.7) is cooperative, a comparison of solutions leads to

x2(t, 0, φ) ≤ y(t, 0, φ, f̃ ) for t ≥ 0.

Fix any ε > 0. Let ε̃ > 0 be sufficiently small so that βi(εv
2
i − h̃i(εv

2
i )) ≥ ε̃ v2i , i ∈ I2. Of course,

Corollary 4.1 (or Theorem 3.2) yields the stability of the null solution for the first system in (4.6),
thus there is δ1 = δ1(ε) > 0 such that 0 ≤ x1(t, 0, φ1) ≤ εv1 for t ≥ 0 whenever 0 ≤ φ1 ≤ δ1v

1.
Moreover, we find δ̃1 = δ̃1(ε̃) = δ̃1(ε) > 0 such that if 0 ≤ φ1 ≤ δ̃1v

1, then 0 ≤ A21x
1(t, 0, φ1) ≤ ε̃v2

for t ≥ 0.
Take δ = min(δ1, δ̃1), and consider an initial condition φ ∈ C+ with 0 ≤ φ1 ≤ δv1 and 0 ≤

φ2 ≤ εv2. We first solve the decoupled n1-dimensional system, and replace in (4.7) the terms∑
p∈I1

aip xp(t) by
∑

p∈I1
aip xp(t, 0, φ

1). The crucial point is to check that εv2 is an “upper” solution

for this new cooperative system, or in other words, that f̃(t, εv2) ≤ 0 for any t ≥ 0; this allows
concluding that the set [0, εv2] ⊂ C([−τ, 0];Rn2) is positively invariant for (4.7) (see Lemma 2.3).
For each i ∈ I2, we have

f̃i(t, εv
2) = −di εv

2
i +

∑

j∈I2,j 6=i

aij εv
2
j + βi h̃i(εv

2
i ) +

∑

j∈I1

aij x
1
j(t, 0, φ

1)

= −di εv
2
i +

∑

j∈I2,j 6=i

aij εv
2
j + βiεv

2
i + βi(h̃i(εv

2
i )− εv2i ) +

∑

j∈I1

aij x
1
j(t, 0, φ

1) ,

hence,
f̃(t, εv2) ≤ εM22 v

2 − ε̃ v2 + ε̃ v2 ≤ 0.

As a consequence, and summarizing, we deduce that, whenever 0 ≤ φ1 ≤ δv1 and 0 ≤ φ2 ≤ εv2

then 0 ≤ x1(t, 0, φ1) ≤ εv1 and 0 ≤ x2(t, 0, φ1, φ2) ≤ y(t, 0, φ1, φ2) ≤ εv2 for t ≥ 0. This ends the
proof.

Theorem 4.2 also provides conditions for partial extinction and partial persistence. As an illus-
tration, we summarise the results for a Nicholson system.
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Example 4.1. Consider the Nicholson system with autonomous coefficients and time-dependent
delays given by

x′i(t) = −dixi(t) +

n∑

j=1,j 6=i

aijxj(t) +

m∑

k=1

βikxi(t− τik(t))e
−cikxi(t−τik(t)), i = 1, . . . , n, t ≥ 0, (4.8)

where di > 0, cik > 0, aij ≥ 0, βik ≥ 0 with βi :=
∑m

k=1 βik > 0, τik : [0,∞) → [0, τ ] (τ > 0) are
continuous, for all i, j, k, and D − A is a non-singular M-matrix. By applying Theorem 4.2 to this
model, we obtain:

(i) if s(M) ≤ 0, 0 is GAS;

(ii) if M is written in the triangular form (for some k ∈ {1, . . . , n} and some l ∈ {1, . . . , k})

M =




M11 . . . 0 0 . . . 0
...

. . .
...

...
...

0 . . . Mll 0 . . . 0
Ml+1,1 . . . Ml+1,l Ml+1,l+1 . . . 0

...
...

...
. . .

...
Mk1 . . . Mk,l Mk,l+1 . . . Mkk




, (4.9)

with Mjj (1 ≤ j ≤ k) irreducible blocks and Mjp 6= 0 for some p < j and j = l + 1, . . . k, then
(4.8) is permanent if and only if s(Mjj) > 0 for j = 1, . . . , l;

(iii) moreover, for M written in the triangular form (4.9), if l > 1 and there exist p, j ∈ {1, . . . , l}
such that s(Mpp) ≤ 0 and s(Mjj) > 0, then the np populations xi(t) with i ∈ Ip become
extinct, whereas the nj populations xi(t) with i ∈ Ij uniformly persist.

Remark 4.1. In this way, we have recovered and extended all the results regarding extinction
and uniform persistence established in [7, 10] for the particular case of (4.8) with constant delays
τik and cik = 1 for all i, k. For such autonomous systems, the sharp criterion for extinction of
all populations, s(M) ≤ 0, was proven in [10] by using the unimodal shape of the specific Ricker
nonlinearity h(x) = xe−x. However, as shown in the proof of Theorem 4.2, the techniques presented
in Section 3, based on comparison of solutions with solutions for auxiliary cooperative systems, allow
us to carry out the arguments for the more general model (4.1). Also, the permanence of Nicholson
autonomous systems in [10] was proven under the stronger requirement of Mv ≫ 0 for some v ≫ 0
(and D −A a non-singular M-matrix).
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