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Abstract: Microarray gene expression data are extremely noisy. Normalization is widely regarded
as an essential step before data analysis to remove systematic variations while maintaining biological
signals of interest. However, the choice of normalization may substantially impact the detection
of rhythmic genes in oscillatory systems. We introduce a rhythmicity measure and a bootstrap
methodology to detect rhythmic genes robust with respect to the normalization choice.
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1 State of the Art

Microarrays are a powerful technology widely used research tool in gene expression analysis
of biological systems, such as circadian clock or cell cycle. One of the major difficulties deal-
ing with high-throughput microarray gene-expression experiments is the noisy nature of the
data that is intrinsic to each array. Thus, previously to any to microarray analysis data are
pre-processed, not only to reduce those non-biological sources of variations but also to take
data from probe level to single expression values for every gene. A variety of pre-processing
methods are available in literature, such as MBEI (Li et al., 2001 ), MAS 5.0 (Hubbell et
al., 2002 ) or RMA (Irizarry et al., 2003 ). They usually involve three distinct steps, namely,
Background correction, Normalization, and Summarization. Normalization is an important
component of pre-processing microarray gene-expression data, since it removes (or reduces)
non-biological variations among arrays. Many microarray normalization methods are avail-
able in literature, among those, the widely extended Quantile, (Cyclic) Loess, Contrast,
Constant, Invariant Set, Qspline and Variance Stabilization Normalization (VSN), see Hu-
ber et al., 2002 and Gautier et al., 2004 for details. All of these methods are implemented
in the R-package Affy (Gautier et al., 2004 ) together with background correction and sum-
marization steps according to the lines proposed for RMA (Irizarry et al., 2003 ), so that a
matrix of gene expressions is finally obtained as output of the pre-processing. However, there
is no universally accepted normalization strategy, and each normalization strategy is based
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on certain model and assumptions. Consequently, the downstream analyses are expected to
depend upon the normalization method used.
According to the line of our research, the subsequent analyses are focused on the identifi-
cation of rhythmic or periodic components over time derived from biological processes such
as cell-cycle (Oliva et al., 2005 ) or circadian clock (Larriba et al., 2016 ) that are governed
by oscillatory systems. There are several algorithms available in the literature to determine
whether a gene is rhythmic or not. Some recent examples include JTK Cycle (Hughes et al.,
2010 ), RAIN (Thaben et al., 2014 ) and ORIOS (Larriba et al., 2016 ). The performance of
such algorithms potentially depends upon, among other factors, the normalization methods
used. However, there has not been a systematic evaluation of the impact of normalization
methods on identifying rhythmic genes in studies involving oscillatory systems in literature.
Yet, researchers are interested in identifying rhythmic genes.

2 Original Contributions

Original contributions of this work consist of introducing a bootstrap methodology that
allows us to define a robust rhythmicity measure highly correlated across various normal-
ization methods. A by-product of bootstrap procedure is that it can be used for simulating
potentially realistic time-course circadian gene-expression data.
For each gene g = 1, . . . , G, we define the standard measure of gene rhythmicity Mg(n, a) =
1 − p-valueg(n, a), where p-valueg(n, a) denotes the Benjamini-Hochberg adjusted p-value
of gene g, according to normalization n and algorithm a. Note that 0 ≤ Mg(n, a) ≤ 1 for
g = 1, . . . , G so that, closer 0 indicates potentially non-rhythmic gene and closer 1 indicates
potentially rhythmic gene.

2.1 Bootstrap methodology

Let R denote the tri-dimensional array of raw intensities obtained from a reference high-
throughput circadian microarray experiment. Data in R are expressed at probe level, where
Rg

pt states the raw intensity value for gene g on probe p at time point (array) t, where
g = 1, . . . , G, p = 1, . . . , P and t = 1, . . . , T. Let X be the tri-dimensional array derived
from R after background correction and X(b)∗, b = 1, . . . , B, the bth simulated microarray
datasets generated according to parametric bootstrap that is based on a linear model from
corrrected intensities X, see Irizarry et al., 2003. Normalization and summarization steps
are then conducted on X(b)∗, b = 1, . . . , B, to finally obtain a matrix of gene-expression
values ready to measure gene-rhythmicity.

2.2 Robust measure of gene-rhythmicity

Given a normalization method n, a rhythmicity algorithm a, and a random realization
of data, define the rhythmicity statistic M(n, a) = (M1

(n,a), . . . ,M
G
(n,a))

′
. Let θ(n, a) =

E(M(n, a)) be the parameter of interest and θ̂(n, a) = M(n, a) be its estimator. For

b = 1, . . . , B, θ̂
(b)∗

(n, a) denotes the bootstrap estimate of θ(n, a), for the bth bootstrap
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FIGURE 1. Pairwie scatter plots of Mg(Qspline,ORIOS) vs Mg(Loess,ORIOS) (left) and
Mg

Robust(Qspline,ORIOS) vs Mg
Robust(Loess,ORIOS) (right) for a set of 15369 genes from mouse

liver. Red line is the 45
o

diagonal and the blue lines are the Cartesian axes.

sample. Then, MRobust(n, a) = Ê(θ̂(n, a))− R̂MSE(θ̂(n, a)) defines a robust measure of

gene rhythmicity, where Ê(θ̂(n, a)) = 1
B

∑B
b=1(θ̂

(b)∗
(n, a)) and R̂MSE(θ̂(n, a)) =√

1
B−1

∑B
b=1(θ̂

(b)∗
(n, a) − θ̂(n, a))2.

Given the extension of the present work analysis results are not shown, but it is worthwhile
to mention that for every pair of normalization methods, subsequently correlation analyses
show superb increases from standard to robust gene-rhythmicity measure, see Figure 1.
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