

Abstract— This paper shows how control techniques, such as
PID or generalized predictive control, can improve the
performance of TCP/IP networks when dealing with
congestion. Drop tail, or more sophisticated AQM techniques
such as RED, perform worse than process control techniques.
A comparison between the different methods in different
working scenarios is analyzed. Two different GPC controllers
are evaluated. One considers the model resulting from on-line
identification and the other is the linearization of the non-linear
model.

I. INTRODUCTION
S the growth of Internet increases and users demand
new applications and better performance, the rise in
data volume generates such problems as long delays

in delivery, lost and dropped packets, oscillations and
synchronization problems ([1], [2], [3]). These troubles are
due to congestion, which happens when there are too many
sources sending too much data too fast for the network to
handle, and it is a very serious drawback. Thus, it is
necessary to reduce this problem as much as possible. At
present, there are methodologies to deal with this issue ([4],
[5]): congestion control which is used after the network is
overloaded and congestion avoidance which takes action
before the problem appears. This paper deals with
congestion control because it is where feedback control
techniques can be openly and easily applied.
Internet congestion control is carried out in the transport
layer at the sources (end systems) and has two parts: the
end-to-end protocol TCP (Transmission Control Protocol),
and the active queue management (AQM) scheme,
implemented in routers. As explained in [5], [6] and [7], the
most common AQM objectives are: efficient queue
utilization (to minimize the occurrences of queue overflow
and underflow, thus reducing packet loss and maximizing
link utilization), queueing delay (to minimize the time
required for a data packet to be serviced by the routing

This work was supported in part by the Junta de Castilla y León under
Grant VA037A08.

T. Alvarez is with the Department of Engineering Science and Automatic
Control, School of Computer Engineering, University of Valladolid,
Valladolid, Spain (tel: +34983423276, email: tere@autom.uva.es,
corresponding author).

A. Salim is with the Department of Engineering Science and Automatic
Control, Faculty of Science, University of Valladolid, Valladolid, Spain
(email: anuar.salim@alumnos.uva.es).
J.M. Maestre is with the Dept. de Ingeniería de Sistemas yAutomática,
Escuela Superior de Ingenieros, University of Seville, Spain (email:
pepemaestre@cartuja.us.es)

queue) and robustness (to maintain closed-loop performance
in spite of changing conditions).
These AQM schemes enhance the performance of TCP. This
has been a subject of research for several years and different
algorithms have been proposed: RED [9], PI [6], or REM
[10]. These AQM schemes have both advantages and
disadvantages as they do not work perfectly under every
traffic situation. For instance, RED can detect and respond
to long-term traffic patterns, but it cannot detect congestion
caused by short-term traffic load changes. From the moment
that researchers published mathematical models of AQM,
control theory based approaches have been used to analyze
and design AQM ([5] and the references therein,[6]).
Model Based Predictive Control (MBPC) [13] has been
successfully applied to several real systems. It is one of the
few control techniques that can handle constraints, systems
with simultaneous time-delay and time varying parameters.
The only drawback is that it can be computationally
expensive. The most relevant MBPC approaches to the TCP
congestion control problem found in the literature are now
presented. Their solutions are innovative and give good
results. [14] worked with a model-free LQC subspace
predictive control. Results are very good, but no constraints
are considered. [15] applied a GPC [16] to solve the
problem and compared the results with a P and PI controller.
Again, no constraints are taken into account. The same can
be said for [12] and [17]. The predictive controllers are very
smart and non-computationally taxing. [18] considered a
neural predictive controller and presented a comparison with
a PI. In a previous work by the authors [19], a constrained
GPC was compared with a PI and a RED/AQM controller.
Results were promising but further tests in a more realistic
environment were clearly necessary.
In this paper, we apply drop tail and RED (classical
congestion control techniques) and compare them with P, PI,
PID and GPC controllers. From the results, it can be
concluded that the PID and the constrained GPC perform
better than the classic strategies such as DROP TAIL or
RED. Although the PID gives very good results, the
predictive controller outperforms it. When constraints are
taken to the maximum, packet drop probability can be
limited and smoother responses are obtained.

The paper is organized as follows. Section II introduces
the TCP/AQM dynamic model. Section III describes the
AQM control problem, DROP TAIL, RED, PID and
predictive control. Section IV shows simulation results and
the comparison between the different control techniques

A control theoretical approach to congestion control
of TCP/AQM networks

Teresa Alvarez, Anuar Salim and J.M. Maestre

A

applied to the system. Finally, some conclusions and future
work are given.

II. DYNAMIC MODEL OF AN AQM ROUTER
 This section presents the modelling of an AQM router.
First, a non-linear model is given and then the linear version
is derived.

A. Non-linear model
The model was developed using fluid-flow and stochastic
differential equation analysis (presented in [6]). For
simplicity, this paper considers a reduced version that
ignores the TCP timeout mechanism. The model relates the
average value of the network variables and is described by
the following coupled, nonlinear differential equations:

⎪
⎪
⎩

⎪⎪
⎨

⎧

=
⎭
⎬
⎫

⎩
⎨
⎧

+−

>+−
=

−
−

−−
−=

0,)(
)(
)(,0max

0),(
)(
)(

)(

))((
))((

)))(((
2

)(
)(

1)(

qtW
tR
tNC

qtW
tR
tNC

tq

tRtp
tRtR

tRtRtWtW
tR

tW

&

&

 (1)

Where
 W ≈ average TCP window size (packets),
 ≈q& average queue length (packets),

R ≈ round-trip time = pT
C
q

+ (secs),

C ≈ link capacity (packets/sec),
Tp ≈ propagation delay (secs),
N ≈ load factor (number of TCP sessions),
 p ≈ packet drop probability.
As explained by [6], the first differential equation in (1)

describes the TCP window control dynamic and the second
equation models the bottleneck queue length as an
accumulated difference between packet arrival rate and link
capacity. The queue length and window size are positive,
bounded quantities, i.e., []qq ,0∈ and []WW ,0∈ , where
q and W denote buffer capacity and maximum window
size, respectively. In this formulation, the congestion
window size W(t) is increased by one every round-trip time
if no congestion is detected, and is halved when congestion
is detected. Moreover, it has been assumed that the AQM
scheme implemented at the router marks packets using
Explicit Congestion Notification (ECN, [20]) to inform the
TCP sources of impending congestion.

B. Linear Model
Although an AQM router is a non-linear system, in order to
analyze certain types of properties and design controllers,
we need a linear model which is presented in this sub-
section.
To linearize (1), we assume that the number of active TCP
sessions and the link capacity are constant, i.e., N(t)=N and
C(t)=C. The dependence of the time delay argument t−R on
queue length q, is ignored and it is assumed to be fixed to

t−R0. Then, local linearization of (1) about the operating
point results in the following equation:

()

())(
2

)()(1

)()()(

02

2
0

02
0

02
0

Rtp
N
CRRtqtq

CR

RtWtW
CR

NtW

−∂−−∂−∂−

−∂−∂−=∂ &

)(1)()(
00

tq
R

tW
R
Ntq ∂−∂=∂ & (2)

Where 0)(WWtW −=∂ & , 0qqq −=∂ and 0ppp −=∂
represent the perturbed variables. The operating point for a
desired equilibrium queue length q0 is given by:

pT
C
qR += 0

0 ,
N
CRW 0

0 = and
2

0
0

2
W

p = (3)

Equation (2) can be further simplified by separating the low
frequency (‘nominal’) behavior (P(s) in (4)) of the window
dynamic from the high frequency behavior (∆(s) in (4))
which is accounted as parasitic.

()()0
2
0

2

1)()2(
)2()(

RsCRNs
NCsP

++
= , ()sRe

CR
Ns 012)(

3
0

2
−−=Δ (4)

III. THE AQM CONTROL PROBLEM
 This section introduces the control formulation of an

AQM router and how RED and PI control can be applied.

A. AQM as feedback control
Taking (4) as starting point, [6] gives a feedback control

system of AQM (Figure 2). The action of an AQM control
law is to mark packets with probability p, as a function of
the measured queue length q. Following (4), the transfer
function Δ(s) denotes the high-frequency window dynamics
and P(s) (plant dynamics) relates how p dynamically affects
q.

A. AQM using RED
Random Early Detection (known as RED) was presented

by [9]. A RED gateway calculates the average queue size,
using a low-pass filter with an exponential weighted moving
average. The average queue size is compared to two
thresholds (minimum and maximum). When the average
queue size is less than the minimum threshold, no packets
are marked. When the average queue size is greater than the
maximum threshold, every arriving packet is marked. If
marked packets are in fact dropped, or if all source nodes are
cooperative, this ensures that the average queue size does
not significantly exceed the maximum threshold. When the
average queue size is between the minimum and the
maximum threshold, each arriving packet is marked with
probability p, where p is a function of the measured queue
length q. [6] proposed the following transfer function model
for the RED controller:

Fig. 1. Block diagram of AQM as feedback control system

1
)(

+
=

+
⋅

=
red

redred

ks
K

Ks
LKsC (5)

Following the guidelines in [11]:

() redred L
N
CR

K 2

23
0

2
= ,

thth
red

p
L

minmax
max

−
= and

)1ln(redred Ck α−−= (6)
Where redα is RED’s queue-averaging weight. The

corresponding block diagram is shown in Fig. 2,

Fig. 2. RED linearized block diagram

where: ()()
sR

red e
RsCRNs

NCsP 0

0
2
0

2

1)()2(
)2()(−

++
−

= (7).

As explained in [5], RED introduces a range of reference
input values, rather than a reference input. So, RED shows
oscillatory queue length dynamics and gives poor
performance under a wide range of traffic environments.
Nevertheless, the RED transfer function is quite useful for
studying certain properties.

B. AQM using PID Control
The PID [21] is the most common form of feedback. It

can be described by (8):

 () () () ()

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++= ∫

t

d
i

p dt
tdeTde

T
teKtu

0

1 ττ (8).

The PID implemented in the computer follows the
guidelines [21]. The block diagram is the same as in the
RED case.

C. AQM as predictive control
Model Based Predictive Control (MBPC) ([13]) is a

control strategy based on the explicit use of a model to
predict the process output over a long-range time period. A
receding control horizon technique is used: only the first
control signal is applied (so all the changes that take place
between two control signal calculations are considered). A
cost function is minimized at each sampling time.

Generalized Predictive Control (GPC, [16]) is a classic
predictive controller. There are MIMO formulations, but as
we are working with a SISO congestion control formulation,
this is the description that will be given below (9).

() () () () ()tTtuqBtyqA ξ
Δ

+= −− 11 (9)

where: A, B and T are polynomials in the q-1 operator,
Δ=1-q-1 and ξ is white noise. The predicted future values of
the controlled variables are given by (10).

() () ()jtpjktugjty
j

k
k +++−Δ=+ ∑

=1

ˆ (10)
 where gj is the step response between y (router queue)

and u (probability of discarding a packet) and p is the free
response. Then, the sequence of changes of the control
variable in a control horizon Nu: Δu(t+j), j=0,..., Nu-1 are
calculated. The predicted output is as close as possible to the
internal reference r(t+j). This is translated into an
optimization problem, where a quadratic cost function of the
tracking error and the manipulated variable is minimized,
taking into account constraints on Δu, u, y, and any other
constrained variable that depends on Δu. This optimization
problem can be stated as (11) and (12):

() ()() ()∑ ∑
=

−

=
+Δ++−+=

2

1

1

0

2ˆ
N

Nj

Nu

j
jtujtrjtyJ βγ (11)

()
()
() ⎪

⎭

⎪
⎬

⎫

=≤+≤
−=≤+≤

−=≤+Δ≤

21,...,
1,...,0,

1,...,0,

NNjLjtyL
NjUjtuU

NjDjtuD

Mm

uMm

uMm

)
 (12)

Where the coefficients γ and β give the relative weight of
every prediction error or change in the control variable.
When no constraints (12) are considered, there exists an
explicit solution of (11).

In the AQM scheme in Figure 2, there is one input (p),
one output (q) and no measured disturbances. Thus, the
transfer function that will be used as a model to predict the
future outputs is given by the low frequency component of
the model in (4):

 ()()0
2
0

2

1)()2(
)2()(

RsCRNs
NCsPGPC

++

−
= (13)

The system delay will be taken into account in the control
and prediction horizons. Choosing the sampling time Ts as

2
2

2
12.0 ττ + ([12]) where ()NCR 22

01 =τ and 00 R=τ .
Applying the zero-order-hold transformation, the discrete
transfer function of (11) is represented by:

2
2

1
1

2
2

1
11

1
)(−−

−−
−−

++
+

=
zaza

zbzbzzP d
GPC (14)

where the coefficients ai and bi are directly calculated
from the discretization, and d represents the system delay in
time samples. In our case, simplifying, if R0 is the
continuous time-delay, then d=round_upper(R0/Ts).

IV. SIMULATION
In this section, simulation results under different working

conditions are presented. The simulations have been carried
out using ns-2 [22]. Ns-2 is a discrete event simulator
targeted at networking research. The PID and the GPC
controllers have been added to the congestion control

Cred(s) Pred(s) -

qref-q0 δq δp

procedures available in ns. The P and PI controllers are also
implicitly included.

The network topology is depicted in Figure 4. It is a
typical single bottleneck topology and reflects the working
scenario defined in [12]: N=40 TCP sessions, C = 250
packets/sec., Tp=0.3 sec., so R0=0.7 and W0= 4.375 packets.

The controllers have been tuned using the nominal values
given by: N=50 TCP sessions, C = 300 packets/s, Tp=0.2 s.,
R0=0.533 and W0= 3.2 packets.

Fig. 3. Dumbbell topology

For comparison, a drop tail strategy, the RED AQM [9], a
P, PI, PID and a constrained GPC that minimizes (10)
subject to (11), were implemented and simulated under
different situations.

The parameters of the different controllers are:
• P: Kp = - 0.0020
• PI: Kp = -0.0013 and Ti = 0.8816.
• PID: Kp = -0,0022, Ti = 1.8207 and Td = 0.32.
• RED: minth = 70, maxth = 120, pmax = 0.1 and w = 0.002.
The GPC controller has the following settings:
• Sampling time: Ts=0.2013 s.

• Model 1: ()131

2111

15.129.14)(
5416.0476.11)()(

−−−

−−−−

−−=

+−==

zzzB
zzzTzA

• Model 2: ()131

2111

82165)(

15.003.11)()(
−−−

−−−−

−−=

+−==

zzzB

zzzTzA

• Prediction horizon: N1=1, N2=5
• Control horizon: Nu=3.
• γ=100, β=0.
• Default values for constraints are:

 0 ≤ p ≤ 1, -0.05 ≤ Δp ≤ 0.05
 0 ≤ q ≤ 300

Model 1 is the discretization of (13) and model 2 has been

calculated applying identification techniques to the system
of Figure 3 in ns-2. The first GPC gives good results (as will
be seen later on this section), but clearly the GPC with the
second model does better than the other one.

The most obvious advantage of the first method is that it
is possible to obtain a model for a different network
configuration with few calculations, but when using the
second model the process of finding a new model is more
tedious (not more difficult, but it would take longer as it is
not a straightforward calculation).

Sub-section A shows the results when we consider drop
tail as the congestion control algorithm. This technique does
not allow a reference to be set; we can only change the
maximum queue size. So the results we can obtain are
independent of the chosen reference. Sub-section B and
following ones present different simulations and results.

A. Drop tail
Drop tail [24] is a simple queue management algorithm

used by Internet routers to decide when to drop packets. All
packets are treated identically. When the queue is filled to its
maximum capacity, the newly arriving packets are dropped
until the queue has enough room to accept incoming traffic.

We set the maximum queue size to 600 packets. Upper
Fig. 4 shows the queue size during the simulation and lower
Fig. 4 shows the rate of discarded packets.

Fig. 4. Drop tail instant queue and discarding rate

Fig. 5. PID controller

While the queue is not full, the TCP agents go on sending
packets. Only when the maximum size is reached does the
router begin to discard packets and the agents are notified.
The result is the saw teeth visible on the graph. This is not
effective as the RTT increases, which is bad for
transmissions.

B. Constant reference
In order to obtain some statistics, we consider a constant
reference: 120 packets. Figs. 5-8 show the instant queue
values (upper graph) and the packet drop probability (lower
graph).

Fig. 6. GPC controller (first model)

TABLE 1: STATISTICS
 Mean Std. dev.

Drop tail 476.99 99.0385
PID 120.38 15.5302

GPC1 121.63 20.5657
GPC2 120.18 14.3173
RED 109.03 18.6809

C. Variable reference
Table 1 summarizes the mean and standard deviation for

each controller. Clearly, drop tail and RED achieved the
worst results, as expected. In the case of the first one, these
results are due to its intrinsic behavior. RED’s parameters
are fixed at the beginning and do not change during the
simulation.

Fig. 7. GPC controller (second model)

Fig. 8. Red controller

As explained in the previous section, RED does not
follow a reference, but tries to maintain the queue between
two values without surpassing the maximum probability.
Both predictive controllers show a smaller overshoot than

the other techniques. Now, the queue reference value is
changed: t=0, q=120 pkts, t=100, q=50 pkts, t=200, q=250
pkts.

Fig. 9. PID, variable reference

Fig. 10. GPC (first model)

Fig. 11. GPC (second model)

We only show results for the PID (Fig. 9) and the GPC
(Figs. 10-11) controllers. As the RED technique does not
include information on reference changes, the results would
be the same as in the previous sub-section. All three give a
good performance, but both predictive controllers present a
better behavior when the maximum or minimum values
allowed for the variables are reached. This is the case when
the reference is set at 250 packets. Sometimes, the packet
drop probability should be smaller than 0, but as this is not
possible, the PID saturates its value to 0, but the predictive
controller can take this into account in the constraints.

D. Limiting the packet drop probability maximum value
One of the characteristics of RED is that the maximum

packet drop probability is a tuning parameter. Figure 15

shows the GPC evolution in a reference changing
environment with packet drop probability limited to 0.1 (as
in the RED/AQM). From Fig. 12, we can conclude that the
predictive controller gives good performance when changing
the reference and, at the same time, the probability has been
limited. We can thus ensure that this variable is maintained
within range and a reference is followed as closely as the
allowed values permit. This is one of the advantages of
predictive controllers when compared with PID.

Fig. 12. GPC, 0≤p≤0.1

V. CONCLUSIONS
This paper has presented a comparison between different

techniques that can help with the congestion control
problem. The application of PID and GPC controllers as
active queue management methodologies for TCPI/IP
networks gives promising results. Predictive controllers
allow changing references to be followed and the variable
ranges with the constraints to be limited. In this work, we
have limited the packet drop probability range of values with
the constraints, but we do not penalize changes in the cost
function. It is not as if we were working with a valve as
input variable.

The PID controller works fine in most situations, but
when we need queues in the extremes of the desired range,
the GPC gives a better performance. Furthermore, the use of
constraints on signals has been rather important.

Further work will include MIMO and time varying
network models, so changing conditions can be included.
This would help to control congestion at several nodes.
Moreover, as the number of packets in a queue is an integer
value, hybrid predictive control could also be explored. It
would also be interesting to compare results with other RED
variants such as ARED [25], DRED [26] or SRED [27],
where some of the parameters could be adapted
dynamically.

REFERENCES
[1] Azuma, T., T. Fujita, M. Fujita (2006). Congestion control for

TCP/AQM networks using State Predictive Control. Electrical
Engineering in Japan, 156, 1491-1496.

[2] Xiong, N., Y. He, Y. Yang, B. Xiao, X. Jia (2005). On designing a
novel PI controller for AQM routers supporting TCP flows. APWEB
2005, 991-1002.

[3] Deng, X., S. Yi, G. Kesidis. C.R. Das (2003). A control theoretic
approach for designing adaptive AQM schemes. GLOBECOM’03, 5,
2947 – 2951.

[4] Jacobson, V. (1988). Congestion avoidance and control. ACM
SIGCOMM’88.

[5] Ryu, S., C. Rump, C. Qiao (2004). Advances in Active Queue
Management (AQM) based TCP congestion control.
Telecommunication Systems, 25, 317-351.

[6] Hollot, C.V., V. Misra, D. Towsley, W. Gong (2002). Analysis and
Design of Controllers for AQM Routers Supporting TCP flows. IEEE
Transactions on Automatic Control, 47, 945-959.

[7] Hayes. M.J., S.M. Mahdi Alavi, P. Van de Ven (2007). An Improved
Active Queue Management scheme using a two-degree-of-freedom
feedback controller. European Control Conference (ECC 2007), July
2-5, 2007, Kos, Greece.

[8] Sun, J., S. Chan, K.-T. Ko, G. Chen, M. Zukerman (2007). Instability
effects of two-way traffic in a TCP/AQM system. Computer
Communications, 30, 2172-2179.

[9] Floyd, S., V. Jacobson (1993). Random early detection gateways for
congestion avoidance. IEEE/ACM Transactions on Networking, 1,
397-413.

[10] Athuraliya, S., S.H. Low, V.H. Li, Q. Yin (2001). REM: active queue
management. IEEE Networking, 15, 48-53.

[11] Durresi, A., P. Kandikuppa, M. Sridharan, S. Chellappan, L. Barolli,
R. Jain (2006). LED: Load Early Detection: A Congestion Control
Algorithm based on Router Traffic Load. Journal of Information
Processing Society of Japan, 47, 94 – 107.

[12] Marami, B., N. Bigdeli and M. Haeri (2007). Active Queue
Management of TCP/IP Networks Using Rule-Based Predictive
Control. IEEE International Symposium on Industrial Electronics
(ISIE 2007), June 4-7, 2007, Vigo, Spain.

[13] Camacho, E.F., C. Bordons, C. (2007). Model Predictive Control.
Springer Verlag, 1995, 2nd ed. 2004., Corr. 2nd printing, 2007.

[14] Chiera, B.A. and L.B. White (2007). Application of model-free LQC
subspace predictive control to TCP congestion control. International
Journal of Adaptive Control and Signal Processing, published on-line
22/08/2007.

[15] Zhu, R., H. Teng and W. Hu (2004). A predictive controller for AQM
router supporting TCP with ECN. In AWCC 2004, C.-H. Chi and K.-
Y. Lam (Eds), 131-136.

[16] Clarke, D.W., Mohtadi, C., and Tuffs, P.S.: ‘Generalised predictive
control-Part I: The basic algorithm and Part II: Extensions and
Interpretations’, Automatica, 1987, 23, (2), pp. 137-160.

[17] Marami, B.and M. Haeri (2007). Neural network approximation of
model predictive controller for congestion control of TCP/AQM
networks. International Conference on Control, Automation and
Systems, Seoul, Korea, 2591-2596.

[18] Rahnamai, K., K. Gorman and A. Gray (2006). Model predictive
neural control of TCP flow in AQM network. IEEE NAFIPS 2006,
493-498.

[19] T. Alvarez and S. Cristea, AQM Control of TCP/IP Networks using
Generalized Predictive Control, in Proc. UKACC International
Conference on Control 2008, Manchester, UK, Sep 2-4, 2008.

[20] Ramakrishnan, K., S. Floyd (1999). Explicit Congestion Notification.
ACM SIGCOMM Computer Communications Review, 24, 8-23.

[21] K.J. Aström and T. Hägglund, Advanced PID control. ISA. NC, 2006.
[22] Network Simulator, ns-2, http:/www.isi.edu/nsnam/ns/
[23] W.K. Chen, Linear Networks and Systems (Book style). Belmont,

CA: Wadsworth, 1993, pp. 123–135.
[24] Comer, Douglas E. (2006). Internetworking with TCP/IP, 5, Prentice

Hall: Upper Saddle River, NJ..
[25] W. Feng et al., “A self configuring RED gateway”, Proc. INFOCOM

’99, 1999.
[26] J. Aweya, M. Oulette and D.Y. Montuno, “A control theoretic

approach to Active Queue Management”, Computer Networks, vol.
36, no. 2-3, 2001, pp. 203-35.

[27] T.J. Ott, V. Lakshman, and L. Wong, “SRED: Stabilized RED,” Proc.
IEEE INFOCOM ’99, 1999, ftp://ftp.telcordia.com/ pub/tjo/SRED.ps

