
 
 

 

  

Abstract— This paper shows how control techniques, such as 
PID or generalized predictive control, can improve the 
performance of TCP/IP networks when dealing with 
congestion. Drop tail, or more sophisticated AQM techniques 
such as RED, perform worse than process control techniques. 
A comparison between the different methods in different 
working scenarios is analyzed. Two different GPC controllers 
are evaluated. One considers the model resulting from on-line 
identification and the other is the linearization of the non-linear 
model.  

I. INTRODUCTION 
S the growth of Internet increases and users demand 
new applications and better performance, the rise in 
data volume generates such problems as long delays 

in delivery, lost and dropped packets, oscillations and 
synchronization problems ([1], [2], [3]). These troubles are 
due to congestion, which happens when there are too many 
sources sending too much data too fast for the network to 
handle, and it is a very serious drawback. Thus, it is 
necessary to reduce this problem as much as possible. At 
present, there are methodologies to deal with this issue ([4], 
[5]): congestion control which is used after the network is 
overloaded and congestion avoidance which takes action 
before the problem appears. This paper deals with 
congestion control because it is where feedback control 
techniques can be openly and easily applied.  
Internet congestion control is carried out in the transport 
layer at the sources (end systems) and has two parts:  the 
end-to-end protocol TCP (Transmission Control Protocol), 
and the active queue management (AQM) scheme, 
implemented in routers. As explained in [5], [6] and [7], the 
most common AQM objectives are: efficient queue 
utilization (to minimize the occurrences of queue overflow 
and underflow, thus reducing packet loss and maximizing 
link utilization), queueing delay (to minimize the time 
required for a data packet to be serviced by the routing 
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queue) and robustness (to maintain closed-loop performance 
in spite of changing conditions). 
These AQM schemes enhance the performance of TCP. This 
has been a subject of research for several years and different 
algorithms have been proposed: RED [9], PI [6], or REM 
[10]. These AQM schemes have both advantages and 
disadvantages as they do not work perfectly under every 
traffic situation. For instance, RED can detect and respond 
to long-term traffic patterns, but it cannot detect congestion 
caused by short-term traffic load changes. From the moment 
that researchers published mathematical models of AQM, 
control theory based approaches have been used to analyze 
and design AQM ([5] and the references therein,[6]).   
Model Based Predictive Control (MBPC) [13] has been 
successfully applied to several real systems. It is one of the 
few control techniques that can handle constraints, systems 
with simultaneous time-delay and time varying parameters. 
The only drawback is that it can be computationally 
expensive. The most relevant MBPC approaches to the TCP 
congestion control problem found in the literature are now 
presented. Their solutions are innovative and give good 
results. [14] worked with a model-free LQC subspace 
predictive control. Results are very good, but no constraints 
are considered. [15] applied a GPC [16] to solve the 
problem and compared the results with a P and PI controller. 
Again, no constraints are taken into account. The same can 
be said for [12] and [17]. The predictive controllers are very 
smart and non-computationally taxing. [18] considered a 
neural predictive controller and presented a comparison with 
a PI. In a previous work by the authors [19], a constrained 
GPC was compared with a PI and a RED/AQM controller. 
Results were promising but further tests in a more realistic 
environment were clearly necessary.  
In this paper, we apply drop tail and RED (classical 
congestion control techniques) and compare them with P, PI, 
PID and GPC controllers. From the results, it can be 
concluded that the PID and the constrained GPC perform 
better than the classic strategies such as DROP TAIL or 
RED. Although the PID gives very good results, the 
predictive controller outperforms it. When constraints are 
taken to the maximum, packet drop probability can be 
limited and smoother responses are obtained.  

The paper is organized as follows. Section II introduces 
the TCP/AQM dynamic model. Section III describes the 
AQM control problem, DROP TAIL, RED, PID and 
predictive control. Section IV shows simulation results and 
the comparison between the different control techniques 
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applied to the system. Finally, some conclusions and future 
work are given.  

II. DYNAMIC MODEL OF AN AQM ROUTER 
 This section presents the modelling of an AQM router. 
First, a non-linear model is given and then the linear version 
is derived. 

A. Non-linear model 
The model was developed using fluid-flow and stochastic 
differential equation analysis (presented in [6]). For 
simplicity, this paper considers a reduced version that 
ignores the TCP timeout mechanism. The model relates the 
average value of the network variables and is described by 
the following coupled, nonlinear differential equations: 
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Where 
 W ≈   average TCP window size (packets), 
 ≈q&  average queue length (packets), 

R ≈ round-trip time = pT
C
q

+  (secs), 

C  ≈ link capacity (packets/sec), 
Tp ≈   propagation delay (secs), 
N  ≈   load factor (number of TCP sessions), 
 p  ≈    packet drop probability. 
As explained by [6], the first differential equation in (1) 

describes the TCP window control dynamic and the second 
equation models the bottleneck queue length as an 
accumulated difference between packet arrival rate and link 
capacity. The queue length and window size are positive, 
bounded quantities, i.e., [ ]qq ,0∈  and [ ]WW ,0∈ , where 
q and W denote buffer capacity and maximum window 
size, respectively. In this formulation, the congestion 
window size W(t) is increased by one every round-trip time 
if no congestion is detected, and is halved when congestion 
is detected. Moreover, it has been assumed that the AQM 
scheme implemented at the router marks packets using 
Explicit Congestion Notification (ECN, [20]) to inform the 
TCP sources of impending congestion. 

B. Linear Model 
Although an AQM router is a non-linear system, in order to 
analyze certain types of properties and design controllers, 
we need a linear model which is presented in this sub-
section. 
To linearize (1), we assume that the number of active TCP 
sessions and the link capacity are constant, i.e., N(t)=N and 
C(t)=C. The dependence of the time delay argument t−R on 
queue length q, is ignored and it is assumed to be fixed to 

t−R0. Then, local linearization of (1) about the operating 
point results in the following equation: 
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Where 0)( WWtW −=∂ & , 0qqq −=∂  and 0ppp −=∂  
represent the perturbed variables. The operating point for a 
desired equilibrium queue length q0 is given by: 

pT
C
qR += 0

0 ,
N
CRW 0

0 = and 
2

0
0

2
W

p =                               (3) 

Equation (2) can be further simplified by separating the low 
frequency (‘nominal’) behavior (P(s) in (4)) of the window 
dynamic from the high frequency behavior (∆(s) in (4)) 
which is accounted as parasitic.   
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III. THE AQM CONTROL PROBLEM 
 This section introduces the control formulation of an 

AQM router and how RED and PI control can be applied. 

A. AQM as feedback control 
Taking (4) as starting point, [6] gives a feedback control 

system of AQM (Figure 2). The action of an AQM control 
law is to mark packets with probability p, as a function of 
the measured queue length q. Following (4), the transfer 
function Δ(s) denotes the high-frequency window dynamics 
and P(s) (plant dynamics) relates how p dynamically affects 
q. 

A. AQM using RED 
Random Early Detection (known as RED) was presented 

by [9]. A RED gateway calculates the average queue size, 
using a low-pass filter with an exponential weighted moving 
average. The average queue size is compared to two 
thresholds (minimum and maximum). When the average 
queue size is less than the minimum threshold, no packets 
are marked. When the average queue size is greater than the 
maximum threshold, every arriving packet is marked. If 
marked packets are in fact dropped, or if all source nodes are 
cooperative, this ensures that the average queue size does 
not significantly exceed the maximum threshold. When the 
average queue size is between the minimum and the 
maximum threshold, each arriving packet is marked with 
probability p, where p is a function of the measured queue 
length q. [6] proposed the following transfer function model 
for the RED controller: 



 
 

 

Fig. 1. Block diagram of AQM as feedback control system 
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Following the guidelines in [11]: 
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Where redα  is RED’s queue-averaging weight. The 

corresponding block diagram is shown in Fig. 2, 

Fig. 2. RED linearized block diagram 
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As explained in [5], RED introduces a range of reference 
input values, rather than a reference input. So, RED shows 
oscillatory queue length dynamics and gives poor 
performance under a wide range of traffic environments. 
Nevertheless, the RED transfer function is quite useful for 
studying certain properties. 
 

B. AQM using PID  Control 
The PID [21] is the most common form of feedback. It 

can be described by (8):  
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The PID implemented in the computer follows the 
guidelines [21]. The block diagram is the same as in the 
RED case. 

 
C. AQM as predictive control 
Model Based Predictive Control (MBPC) ([13]) is a 

control strategy based on the explicit use of a model to 
predict the process output over a long-range time period. A 
receding control horizon technique is used: only the first 
control signal is applied (so all the changes that take place 
between two control signal calculations are considered). A 
cost function is minimized at each sampling time. 

Generalized Predictive Control (GPC, [16]) is a classic 
predictive controller. There are MIMO formulations, but as 
we are working with a SISO congestion control formulation, 
this is the description that will be given below (9).  

( ) ( ) ( ) ( ) ( )tTtuqBtyqA ξ
Δ

+= −− 11                                    (9) 

where: A, B and T are polynomials in the q-1 operator,  
Δ=1-q-1  and ξ is white noise. The predicted future values of 
the controlled variables are given by (10). 
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 where gj is the step response between y  (router queue) 

and u (probability of discarding a packet) and p is the free 
response. Then, the sequence of changes of the control 
variable in a control horizon Nu: Δu(t+j), j=0,..., Nu-1 are 
calculated. The predicted output is as close as possible to the 
internal reference r(t+j). This is translated into an 
optimization problem, where a quadratic cost function of the 
tracking error and the manipulated variable is minimized, 
taking into account constraints on Δu, u, y, and any other 
constrained variable that depends on Δu. This optimization 
problem can be stated as (11) and (12): 
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Where the coefficients γ and β give the relative weight of 
every prediction error or change in the control variable. 
When no constraints (12) are considered, there exists an 
explicit solution of (11). 

In the AQM scheme in Figure 2, there is one input (p), 
one output (q) and no measured disturbances. Thus, the 
transfer function that will be used as a model to predict the 
future outputs is given by the low frequency component of 
the model in (4): 
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The system delay will be taken into account in the control 
and prediction horizons. Choosing the sampling time Ts as 

2
2

2
12.0 ττ +  ([12]) where ( )NCR 22

01 =τ  and 00 R=τ . 
Applying the zero-order-hold transformation, the discrete 
transfer function of (11) is represented by: 
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where the coefficients ai and bi are directly calculated 
from the discretization, and d represents the system delay in 
time samples. In our case, simplifying, if R0 is the 
continuous time-delay, then d=round_upper(R0/Ts). 

 

IV. SIMULATION 
In this section, simulation results under different working 

conditions are presented. The simulations have been carried 
out using ns-2 [22]. Ns-2 is a discrete event simulator 
targeted at networking research. The PID and the GPC 
controllers have been added to the congestion control 

Cred(s) Pred(s) - 

qref-q0 δq δp 



 
 

 

procedures available in ns. The P and PI controllers are also 
implicitly included. 

The network topology is depicted in Figure 4. It is a 
typical single bottleneck topology and reflects the working 
scenario defined in [12]: N=40 TCP sessions, C = 250 
packets/sec., Tp=0.3 sec., so R0=0.7 and W0= 4.375 packets. 

The controllers have been tuned using the nominal values 
given by: N=50 TCP sessions, C = 300 packets/s, Tp=0.2 s., 
R0=0.533 and W0= 3.2 packets.  

 

 
Fig. 3. Dumbbell topology 

For comparison, a drop tail strategy, the RED AQM [9], a 
P, PI, PID and a constrained GPC that minimizes (10) 
subject to (11), were implemented and simulated under 
different situations. 

The parameters of the different controllers are:  
• P: Kp = - 0.0020 
• PI: Kp = -0.0013 and Ti = 0.8816.  
• PID: Kp = -0,0022, Ti = 1.8207 and Td = 0.32. 
• RED: minth = 70, maxth = 120, pmax = 0.1 and w = 0.002. 
The GPC controller has the following settings: 
• Sampling time: Ts=0.2013 s. 
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• Prediction horizon: N1=1, N2=5 
• Control horizon: Nu=3. 
• γ=100, β=0. 
• Default values for constraints are: 

 0 ≤ p ≤ 1, -0.05 ≤ Δp ≤ 0.05 
 0 ≤ q ≤ 300  

 
Model 1 is the discretization of (13) and model 2 has been 

calculated applying identification techniques to the system 
of Figure 3 in ns-2. The first GPC gives good results (as will 
be seen later on this section), but clearly the GPC with the 
second model does better than the other one.  

The most obvious advantage of the first method is that it 
is possible to obtain a model for a different network 
configuration with few calculations, but when using the 
second model the process of finding a new model is more 
tedious (not more difficult, but it would take longer as it is 
not a straightforward calculation). 

Sub-section A shows the results when we consider drop 
tail as the congestion control algorithm. This technique does 
not allow a reference to be set; we can only change the 
maximum queue size. So the results we can obtain are 
independent of the chosen reference. Sub-section B and 
following ones present different simulations and results.  
 

A. Drop tail 
Drop tail [24] is a simple queue management algorithm 

used by Internet routers to decide when to drop packets. All 
packets are treated identically. When the queue is filled to its 
maximum capacity, the newly arriving packets are dropped 
until the queue has enough room to accept incoming traffic.  

We set the maximum queue size to 600 packets. Upper 
Fig. 4 shows the queue size during the simulation and lower 
Fig. 4 shows the rate of discarded packets.  
 

 

 
Fig. 4. Drop tail instant queue and discarding rate 

 

 
Fig. 5. PID controller 

While the queue is not full, the TCP agents go on sending 
packets. Only when the maximum size is reached does the 
router begin to discard packets and the agents are notified. 
The result is the saw teeth visible on the graph. This is not 
effective as the RTT increases, which is bad for 
transmissions. 

B. Constant reference 
In order to obtain some statistics, we consider a constant 
reference: 120 packets. Figs. 5-8 show the instant queue 
values (upper graph) and the packet drop probability (lower 
graph). 



 
 

 

 

 
Fig. 6. GPC controller (first model) 

TABLE 1: STATISTICS 
 Mean  Std. dev. 

Drop tail 476.99 99.0385 
PID 120.38 15.5302 

GPC1 121.63 20.5657 
GPC2 120.18 14.3173 
RED 109.03 18.6809 

C. Variable reference 
Table 1 summarizes the mean and standard deviation for 

each controller. Clearly, drop tail and RED achieved the 
worst results, as expected. In the case of the first one, these 
results are due to its intrinsic behavior. RED’s parameters 
are fixed at the beginning and do not change during the 
simulation.  

 

 
Fig. 7. GPC controller (second model) 

 

 
Fig. 8. Red controller 

As explained in the previous section, RED does not 
follow a reference, but tries to maintain the queue between 
two values without surpassing the maximum probability. 
Both predictive controllers show a smaller overshoot than 

the other techniques. Now, the queue reference value is 
changed: t=0, q=120 pkts, t=100, q=50 pkts, t=200, q=250 
pkts. 

 

 
Fig. 9. PID, variable reference 

 

 
Fig. 10. GPC (first model)  

 

 
Fig. 11. GPC (second model) 

We only show results for the PID (Fig. 9) and the GPC 
(Figs. 10-11) controllers. As the RED technique does not 
include information on reference changes, the results would 
be the same as in the previous sub-section. All three give a 
good performance, but both predictive controllers present a 
better behavior when the maximum or minimum values 
allowed for the variables are reached. This is the case when 
the reference is set at 250 packets. Sometimes, the packet 
drop probability should be smaller than 0, but as this is not 
possible, the PID saturates its value to 0, but the predictive 
controller can take this into account in the constraints. 

D. Limiting the packet drop probability maximum value 
One of the characteristics of RED is that the maximum 

packet drop probability is a tuning parameter. Figure 15 



 
 

 

shows the GPC evolution in a reference changing 
environment with packet drop probability limited to 0.1 (as 
in the RED/AQM).  From Fig. 12, we can conclude that the 
predictive controller gives good performance when changing 
the reference and, at the same time, the probability has been 
limited. We can thus ensure that this variable is maintained 
within range and a reference is followed as closely as the 
allowed values permit. This is one of the advantages of 
predictive controllers when compared with PID. 

 

 

 
Fig. 12. GPC, 0≤p≤0.1 

V. CONCLUSIONS 
This paper has presented a comparison between different 

techniques that can help with the congestion control 
problem. The application of PID and GPC controllers as 
active queue management methodologies for TCPI/IP 
networks gives promising results. Predictive controllers 
allow changing references to be followed and the variable 
ranges with the constraints to be limited. In this work, we 
have limited the packet drop probability range of values with 
the constraints, but we do not penalize changes in the cost 
function. It is not as if we were working with a valve as 
input variable. 

The PID controller works fine in most situations, but 
when we need queues in the extremes of the desired range, 
the GPC gives a better performance. Furthermore, the use of 
constraints on signals has been rather important.  

Further work will include MIMO and time varying 
network models, so changing conditions can be included. 
This would help to control congestion at several nodes. 
Moreover, as the number of packets in a queue is an integer 
value, hybrid predictive control could also be explored. It 
would also be interesting to compare results with other RED 
variants such as ARED [25], DRED [26] or SRED [27], 
where some of the parameters could be adapted 
dynamically. 
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