
Refactoring generics in JAVA: a case study on Extract Method

Raúl Marticorena, Carlos López
Computer Languages and Systems Area

University of Burgos
Burgos, Spain

Email: {rmartico,clopezno}@ubu.es

Yania Crespo, F. Javier Pérez
Computer Science Department

University of Valladolid
Valladolid, Spain

Email: {yania, jperez}@infor.uva.es

Abstract—The addition of support for genericity to mains-
tream programming languages has a notable influence in
refactoring tools. This also applies to the JAVA programming
language. Those versions of the language specification prior
to JAVA 5 did not include support for generics. Therefore,
refactoring tools had to evolve to modify their refactoring
implementations according to the new language characteristics
in order to assure the correct effects when transforming code
containing generic definitions or using generic instantiations.

This paper presents an evaluation of the behaviour of
refactoring tools on source code that defines or uses generics.
We compare the behaviour of five refactoring tools on a well
known refactoring, Extract Method, and its implementation
for the JAVA language. We distill the lessons learned from
our evaluation into requirements that have to be taken into
account by refactoring tools in order to fully conform to this
new language feature.

Keywords-generics; generic programming; refactoring; ex-
tract method; test cases

I. INTRODUCTION

Software Maintenance is an area of special interest in
Software Engineering. Most of the cost and time invested in
a software project is devoted to the maintenance phase [1].
As software evolves as part of the maintenance activities,
it is in continuous decay. One of the most recommended
techniques, with increasing success, to improve software
structure during evolution is known as software refactoring.

Refactoring is a transformation of the software’s internal
structure, the main motivation of which is to enhance
software comprehensibility and reduce maintenance costs,
keeping observable behavior unchanged [2]–[4]. Ideally,
this transformation may be achieved automatically or semi-
automatically, provided with appropriate tools. The rele-
vance of automating refactoring in recent years can be seen
in workshops focused on refactoring tools development [5]–
[7].

Refactoring tools must deal with source code. Source
code is written in programming languages. Hence, as pro-
gramming languages evolve, refactoring tools must evolve
too, in order to adapt to new language features. In recent
years, some programming languages have updated their
specifications to provide support for new characteristics
such as generics and annotations (metadata support). This

is the case of the JAVA language. First versions of the
JAVA language kept the language syntax almost unchanged.
Version 1.1 introduced inner and anonymous classes, version
1.4 added the assert statement, but version 1.5, also
known as JAVA 5, is an important evolution of the language.
JAVA 5 incorporated generic (parametric) types, automatic
conversion (autoboxing), static imports, typed enumerations,
functions with variable number of arguments, and enhanced
for-loop statements allowing smooth implementations of the
iterator design pattern.

Generics in JAVA supposed an important step towards
programming type-safeness. The use of parametric types
avoids downcasting to some extent. This allows more legible
code to be written and avoids from including additional
code for type checking purposes. Generic methods and
type inference jointly provide a simple reuse technique.
Constrained genericity, multiple bounds, unknown type and
extends or super bounds [8] help to rewrite existing
code in a simpler and safer manner. Then, the opportunity of
refactoring legacy non-generic code to generic code [9], [10]
arises as a challenge for refactoring tools. Moreover, source
code exploiting generic capabilities proliferates. Therefore,
refactoring tools, when targeting code using generics, must
be able to guarantee that refactoring operations previously
available do obtain the correct results, according to the new
language specification.

In order to analyze the current situation, this work pre-
sents a case study of the Extract Method refactoring on a
set of well-known tools: ECLIPSE [11], NETBEANS [12],
REFACTORIT [13], INTELLIJ IDEA [14] and CODEGUIDE
[15]. The study is generics-centered, exploring issues such as
type parameter definition in classes and methods, bounding,
unknown type, and type parameter instantiation. A suite of
test cases is defined and described. They are used to evaluate
how refactoring tools perform the Extract method in the
absence and presence of generics. Results of the study can
be used to state some helpful properties we recommend for
refactoring tools.

The rest of the paper is organized as follows: Sec. II
looks inside the definition of the Extract Method refactoring.
Sec. III presents a suite of test cases to analyze and evaluate
refactoring tools behaviour for the Extract Method in the



absence of generics. This suite comes with a frame for
comparing refactoring tools. The results of the comparison
of five refactoring tools is presented. Sec. IV completes the
study with the definition of another test suite in the presence
of generics. It also shows the results of comparing the same
tools as in the previous Sec. Sec. V analyzes works related
with the development of integrated or standalone refactoring
tools, as well as their architectonic and design solutions.
Finally, the conclusions and future work are presented in
Sec. VI.

II. THE Extract Method REFACTORING

The Extract Method refactoring was originally defined in
Fowler’s Refactoring Catalog [2]1. It can be considered as
one of the most relevant refactorings since an important
number of other refactorings in this Catalog refer to it and
also because it is a solution for several code defects (Bad
Smells) [2]. From the perspective of developing refactoring
tools, Fowler explained that the automation degree for this
refactoring reveals the situation he called “Crossing Refac-
toring’s Rubicon” 2. It therefore seems to be the ideal case
study for conducting this work.

There is no commonly agreed refactoring definition. No
consensus exists on either concepts (refactoring arguments,
preconditions, postconditions) or on transformations (ac-
tions). The definition presented in Table I is inspired by
the original description in Fowler’s book [2], but intends
to clarify the preconditions and effects of the refactoring
(postconditions) as well as the actions to be performed. Each
element is described in a textual manner. It is also possible to
tackle more formal descriptions based on predicate logic [16]
or OCL [17]. Nevertheless, the purpose here is to present
the refactoring in a simple but more precise way, rather than
introducing more complex descriptions.

The execution of the Extract Method refactoring depends,
to a great extent, on the variables used in the method’s
scope. Fields need no special treatment since their scope
is the entire class, hence values do not need to be packaged
in parameters or as return values in order to ”survive”
the invocation of the extracted method. Formal arguments
must be treated as local variables that may not be assigned
(Fowler recommends in his book the use of the Remove
Assignments to Parameters refactoring). Formal arguments
and local variables are jointly the center of attention here.
Different cases can be described separately:

• No variables. No local variable is used in the selected
code fragment. In this case, the extracted method will
not receive any arguments nor return any value.

• Read. The selected code fragment reads local variables.
These local variables must be passed as arguments

1Available at http://www.refactoring.com/catalog/extractMethod.html
2Crossing Refactoring’s Rubicon, http://www.martinfowler.com/articles/

refactoringRubicon.html

Table I
EXTRACT METHOD AT A GLANCE

Description Extract a code fragment into a new method of the same
class, replacing the extracted code fragment by a call to the extracted
method.
Motivation A code fragment can be invoked as a new different
method. This enables existing duplication to be removed and reuse
in other places without creating redundant copies.
Inputs The code fragment (f ) and the name of the new method (N)
Preconditions

- The code fragment must be valid: compilation succeeds even if
the selected code fragment is removed from the method.
- There is no other method in the class with the same signature as
the method to be created.
- If more than one local variable or parameter is assigned in the
code fragment, at most one of them is read in the control flow of the
original method after the execution of the extracted code fragment.
- The code fragment does not contain conditional returns: it always
returns (contains unconditional return) or always flows from the
beginning to end.
- The code fragment does not jump outside itself.

Actions
- Add method skeleton with name N.
- Add formal arguments to the new method N. Formal arguments are
inferred form parameters read in the extracted fragment and local
variables read in the fragment and assigned in the original method’s
control flow before the fragment.
- Move the extracted fragment code.
- if necessary: Add a return type to the new method’s signature and
a return instruction to the method body.
- if necessary: Add throws clauses to the new method’s N
signature.
- Replace the extracted code fragment with the appropriate method
call, passing the proper parameters.

Postconditions
- The class, where the code fragment was contained, has a new
method named N and signature with inferred formal arguments and
return type.
- The original method contains a call to the new method N instead
of the extracted code.

when calling the extracted method. They can be named
as inputs.

• Read/Write. Local variables inside the selected code
fragment are read and also assigned. It can be consi-
dered that there are inputs and outputs. Preconditions
enable just one output value.

• Write. Variables are declared in the fragment and
modified on it. This can be considered as outputs.

Depending on how instructions following the selected
code fragment use variables, the cases of Read/Write as well
as Write variables can be split to:

• The modified variable is not used in instructions sub-
sequent to the code fragment. If the variable is used
in instructions before the extracted code fragment, it
should be passed as value argument, in any other case,
its declaration can be moved into the extracted method.

• The modified variable is used in instructions subsequent
to the code fragment. This forces the tool to make the
extracted method return the value and the calling code
assigned to it.



Generics introduce a new problem concerning the pre-
sence of formal type parameters declarations in methods.
In JAVA 5, it is possible to declare type parameters at
the class level, but also at the method level. With generic
methods, the extracted method must include the necessary
type parameters declarations and their bounds in order to
guarantee the semantic correction of the refactored code.
Nevertheless, when type parameters are declared at the class
level, they have a broader scope. In this case, no special
treatment is necessary. This is similar to the case of class
attributes in terms of variables.

At the base of the provided Extract method refactoring
definition, a study of how it is implemented in five of the
most extended refactoring tools is presented in the next two
Sections. First, the study deals with refactoring source code
in the absence of generics, and later on, with refactoring
source code in the presence of generics.

III. STUDYING THE Extract Method REFACTORING IN
THE ABSENCE OF GENERICS

The case study has been divided into two parts detailed in
this and the following sections. The first suite of test cases,
those defined in the current section, have been designed for
use in a comparative study of refactoring tools when the
Extract Method refactoring is run over source code without
generics. The test cases in the current section has also been
divided in two groups with different aims. The first group
of tests fulfills the refactoring preconditions. On the other
hand, the second group is comprised of tests that do not
fulfill the preconditions. The whole code set is available at
http://pisuerga.inf.ubu.es/rmartico/extractmethod.

The test cases of the first subgroup, those that fulfill the
preconditions, try to cover all the significant cases, in order
to see the effects of applying the Extract Method refactoring:

• Without local variables. This is the simplest case,
since local variables are not used in the extracted code
fragment. Neither is it necessary to propagate values
(or references), nor to collect return values.

• With input variables. We need to propagate the values
of the local variables inside the extracted code fragment
to use them in the method. They are passed as formal
arguments.

• With input variables and one output variable. We
need to propagate the values of the variables inside the
extracted code fragment to use them in the extracted
method. In addition, we need to collect the new value
from one of the variables. This value is obtained in the
next steps. Besides, if the variable is declared inside
the code fragment, it may be necessary to add the
declaration of the returned variable.

• Loop reentrance. The extracted code fragment is
inside a loop, and uses auto-increments or auto-
decrements on one variable (i.e. i++;). The test case is
repeated using nested loops. As a result of the iteration,

however, the incremented variable is not apparently
accessed in the control flow of the original method after
the extracted fragment is left. It is necessary to return
and to collect its value between iterations.

• Add exceptions to method signature. The test checks
that the extracted method throws the correct exception
set. A first test extracts a code fragment with a set of
the checked exceptions to be added in the new met-
hod signature. In the second case, only one exception
must be thrown, since the code fragment contains the
instruction try-catch for the second exception.

The second suite contains the test cases that do not fulfill
the preconditions. The tests are detailed in the following
cases:

• Return of several variables. Several variables are
modified inside the extracted code fragment, and are
accessed later. This problem also appears in loop reen-
trance with several variables, using a simple or nested
loop.

• Code fragment is not complete. The selected code
fragment does not compile once it is extracted to the
new method, although formal argument or variable
declarations are added. Its extraction generates a syn-
tactically incorrect code.

• Conditional return. The code fragment may not return,
depending on the method’s input values. The code
fragment must not contain conditional returns: it always
returns, or it runs from the beginning to the end.

• No jumps out of the fragment. The code fragment
does not contain jumps out of the fragment. This
problem appears when labels are used with continue
or break instructions. This problem also appears if
there are break or continue instructions inside a
loop, and the loop is not included in the code fragment.

• Method extracted with the same signature. The ex-
tracted method has the same signature as other methods
in the current class.

The results collected with this test suite can be seen in
Table II. For each tool, it shows the results for inputs that
fulfill refactoring preconditions. In a general way, they ob-
tain the same refactored code in most of the cases (fulfilling
preconditions).

The loop reentrance is one of the most complicated cases
to detect. It seldom fails in ECLIPSE but more frequently
in CODEGUIDE. Regarding the exception handling, most
of the tools refactor the code correctly. However, there
are variants in how they detect the inheritance relationship
between exception classes, and thus, different numbers of
exceptions are added in the throws clause of the extracted
method.

The behaviour of each one of the tools, taking into account
the non-fulfillment of preconditions that disallow running the
refactoring, is shown in Table III.



Table II
TEST CASES BASED ON FULFILLED PRECONDITIONS

Test Cases ECLIPSE 3.5.0 NETBEANS 6.5.1 REFACTORIT
2.7.beta

INTELLIJ IDEA
8.1.3

CODEGUIDE 8.0

Without variables Ok Ok Ok Ok Ok
With input variables Ok Ok Ok Ok Ok
With input variables and one output
variable

Bug: it always re-
turns a value but
is never accessed
in the next ins-
tructions

Ok Ok Ok Error

With input variables and one output
variable with type declaration

Ok Ok Ok Ok Ok

Several variables are modified but
never accessed in the next instruc-
tions

Ok Ok Ok Ok Ok

Loop reentrance Ok Ok Ok Ok Error
Loop reentrance with nested loop Error Ok Ok Ok Error
Add exception in method signature Ok (2 except.) Ok (2 except.) Ok (only IOEx-

ception)
Ok (only IOEx-
ception)

Ok (only IOEx-
ception)

Add exception with nested try Ok Ok Ok Ok Ok

Table III
TEST CASES BASED ON NON-FULFILLMENT OF PRECONDITIONS

Test Cases ECLIPSE 3.5.0 NETBEANS 6.5.1 REFACTORIT
2.7.beta

INTELLIJ IDEA
8.1.3

CODEGUIDE 8.0

Return of several variables Ok Ok Ok Ok Error
Return of several variables with
loop (loop reentrance)

Ok Error Ok Ok Error

Return of several variables with
nested loop (loop reentrance)

Error Error Ok Ok Error

Code fragment is not complete Ok Ok Ok Ok Ok
Conditional return Ok Ok (additional

generated code)
Ok Ok (additional

generated code)
Ok

No jumps out of the fragment Ok Ok (additional
generated code)

Ok Ok (additional
generated code)

Ok

Method extracted with the same
signature

Ok Error Ok Ok Bug: if method
m() exists

We can also observe that each tool has a particular
behaviour. Either they detect the non-fulfilment of the pre-
conditions and avoid running the refactoring (this is the
usual behaviour when more than one return value exists)
or they warn the user about the non preservation of the
behaviour. The final decision, about continuing or cancelling
the operation, is delegated to the user (e.g., a method with
the same signature).

In cases such as “conditional return” or “no jumps out of
the fragment”, NETBEANS and INTELLIJ IDEA add some
additional code to the extracted method, which returns a
boolean value. The method invocation is included in an
if instruction conditioned by the returned value to run the
return or labelled break instruction . In CODEGUIDE,
the user cannot introduce the new method name.

These problems get worse if we combine the multiple re-
turn problem with the loop reentrance. In this case, ECLIPSE,
NETBEANS and CODEGUIDE show problems in detecting
these situations. Even in some cases, bugs and errors have
been shown in these tools.

Basically, although the Extract Method refactoring was

defined a decade ago, its implementation and behaviour
is very different in each tool. As we shall see in the
next section, the errors increase when new generics-related
features are included in the code.

IV. STUDYING THE Extract Method REFACTORING IN THE
PRESENCE OF GENERICS

When Fowler defined this refactoring, all examples were
coded with the JAVA syntax previous to the 1.5 version [18],
[19]. Generics were included in subsequent versions, and
hence the problems about generics had not been taken into
account.

In this section, generics are considered in refactoring as
well as their implementation in different tools. The code
examples are extracted from the JAVA API source code
(package java.util), and other code examples are taken
from [8]. In each case, we point out the extracted code
fragment and the expected result. After applying these test
cases, the observed results are collected on the selected tool
set.

All previous preconditions and postconditions, explained



in Sec. III, are fulfilled. Formal type parameters or type
variables must be taken into account in the classes and the
methods where they are declared:

• Class formal parameter: its scope is constrained
to the class where it is declared. It can be used
as any other type. For example: public class
Vector<E> where E is the formal parameter in the
class, and can be used in the type declarations in the
class code.

• Method formal parameter: its scope is constrained
to the method where it is declared. For example:
<E> void add(List<E> list, E element)
where E is the method formal parameter. It can only
be used in the add method scope. When Extract
Method refactoring is applied, the formal parameter
declarations and their bounds must be propagated to
the new method if the formal parameter is used within
declarations contained in the extracted code.

Although this work does not seek to give an exhaustive
list, Table. IV shows a summary of the test cases and the
collected results. The suite of test cases with generics are
enumerated next:

• With class formal parameter: If we apply the re-
factoring on a class java.util.ArrayList<E>
with a method remove using lines 4-11 of Listing.
1, the extracted method can access the type E without
additional changes.

Listing 1. Class formal parameter
1public E remove(int index) {
2 RangeCheck(index);
3 modCount++;
4 // beginning
5 E oldValue = (E) elementData[index];
6 int numMoved = size - index - 1;
7 if (numMoved > 0)
8 System.arraycopy(elementData,
9 index+1, elementData, index,

10 numMoved);
11 // end
12 elementData[--size] = null;
13 return oldValue;
14}

This behaviour is fulfilled in ECLIPSE, NETBEANS,
INTELLIJ IDEA and CODEGUIDE. In the particular
case of REFACTORIT, a new import clause is added
(import java.util.ArrayList.E;) that gene-
rates compilation errors.

• Using unknown type: We need to propagate unknown
type declarations (?), and their bounds.

Listing 2. Unknown type declarations
1public boolean addAll(
2 Collection<? extends E> c) {
3 // beginning
4 Object[] a = c.toArray();
5 int numNew = a.length;

6 ensureCapacity(size + numNew);
7 System.arraycopy(a, 0, elementData,
8 size, numNew);
9 // end

10 size += numNew;
11 return numNew != 0;
12}

In Listing. 2, we apply the refactoring on lines 3-9.
The type of formal argument c is propagated correctly,
with the exception of REFACTORIT that declares a new
formal argument with type Collection.

• Method formal parameter inferred from generic
array type: When we apply the refactoring on a met-
hod with formal parameters, as the method toArray
in Listing. 3, extracting lines 6-11, the new method
must contain a formal parameter T inferred from the
generic array type.

Listing 3. Method formal parameter inferred from generic array type
1public <T> T[] toArray(T[] a) {
2 if (a.length < size)
3 return (T[]) Arrays.copyOf(
4 elementData, size,
5 a.getClass());
6 // beginning
7 System.arraycopy(elementData, 0, a,
8 0, size);
9 if (a.length > size)

10 a[size] = null;
11 // end
12 return a;
13}

This test case does not pass in ECLIPSE, NETBEANS,
CODEGUIDE and REFACTORIT. This last refactoring
tool, REFACTORIT, tries to add a new import clause
java.util.ArrayList.T. INTELLIJ IDEA is the
only tool that completes the refactoring in a correct
way.

• Type inference from declarations: If we extract the
code between lines 3-7 in Listing. 4, it must be declared
a formal parameter <T> in the new method.

Listing 4. Type inference from declarations
1public static <T> List<T> toList(T[] arr){
2 List<T> list = new ArrayList<T>();
3 // beginning
4 for (T elt : arr){
5 list.add(elt);
6 }
7 // end
8 return list;
9}

In ECLIPSE and INTELLIJ IDEA, type T is inferred
from the non-generic array declarations (e.g. T elt).
With NETBEANS, CODEGUIDE and REFACTORIT, the
formal parameter is not included, so generated code is
not correct.



• Bounded unknown type with formal parameter In
the cases of bounded unknown type with formal para-
meter, the bounds must be propagated to the extracted
method.

Listing 5. Bounded unknown type with formal parameter
1public static <T> void
2 copy(List<? super T> dst,
3 List<? extends T> src){
4 // beginning
5 for (int i = 0; i < src.size(); i++){
6 dst.set(i, src.get(i));
7 }
8 // end
9}

In Listing. 5, if we extract the code between lines 4-
8, with ECLIPSE, NETBEANS and CODEGUIDE, the
formal parameter and bound T are not added. REFAC-
TORIT does not add the formal parameter but declares
the variables dst and src as type List. INTELLIJ
IDEA completes the refactoring with success.

• Simple bound in method formal parameter Simple
bound of the formal parameter must be propagated
to the extracted method. In Listing. 6, if we extract
the lines 9-16, ECLIPSE, NETBEANS, REFACTORIT
and CODEGUIDE add formal parameters <S, T> but
simple bounds are lost.

Listing 6. Simple bound in method formal parameter
1public static <S extends Readable,
2 T extends Appendable>
3 void copy(S src, T trg, int size,
4 boolean flag)
5 throws IOException{
6 CharBuffer buf = CharBuffer.
7 allocate(size);
8 int i = src.read(buf);
9 // beginning

10 while(i>0){
11 buf.flip();
12 trg.append(buf);
13 buf.clear();
14 i = src.read(buf);
15 }
16 // end
17}

REFACTORIT includes import clauses for type
java.util.List.T and java.util.List.S.
Only INTELLIJ IDEA correctly completes the execu-
tion of this refactoring.

• Multiple bound in method formal parameter (see
Listing. 7). The last test studies the propagation of
multiple bounds. As before, if we extract lines [10 -
17] in Listing. 7, we obtain the same behaviour as in
the previous case with simple bound on the selected
refactoring tool set.

Listing 7. Multiple bound in method formal parameter
1public static <S extends
2 Readable & Closeable,
3 T extends
4 Appendable & Closeable>
5 void copy(S src, T trg, int size)
6 throws IOException{
7 CharBuffer buf = CharBuffer.
8 allocate(size);
9 int i = src.read(buf);

10 // beginning
11 while(i>0){
12 buf.flip();
13 trg.append(buf);
14 buf.clear();
15 i = src.read(buf);
16 }
17 // end
18 src.close();
19 trg.close();
20}

In conclusion, we can observe that generics are not
completely included in current implementations of Extract
Method refactoring. INTELLIJ IDEA is the only exception
that provides a complete support with these test cases.
The remaining tools do not include full support. Generics
do not need additional preconditions or postconditions, but
require a complete and correct type system support. This is
a basic condition to guarantee behaviour preservation. These
problems prove that refactoring tools need to evolve when
new features appear in mainstream programming languages
such as JAVA.

V. RELATED WORK

Tool support for automatic refactoring is widespread nowa-
days. Either standalone refactoring tools or plug-ins or add-
ins for Integrated Development Environments are available.
Implementing refactoring operations from Fowler’s catalog
[2] has been the predominant trend. The refactoring opera-
tions implemented by each tool are listed as options in an
additional menu to attract software developers with these
special automatic software transformations. The refactoring
use is studied [20] [21] in order to understand how program-
mers refactor.

These refactoring operations were originally implemented
as independent algorithms. Implementations did not fulfill
some relevant quality aspects such as scalability, reusabi-
lity and language independence. Excessive coupling to the
execution environment, as well as to the source language,
did not favor internal reuse when the source language was
evolved, or the refactoring support. The great problems of
software maintenance and evolution emerged.

The historical precedent of refactoring tools was the
Refactoring Browser [22]. It was one of the first tools, if
not the very first, integrating refactoring into a development



Table IV
TEST CASES IN THE PRESENCE OF GENERICS

Test cases ECLIPSE 3.5.0 NETBEANS 6.5.1 REFACTORIT
2.7.beta

INTELLIJ IDEA
8.1.3

CODEGUIDE 8.0

Class formal parameter Ok Ok Error Ok Ok
Unknown type declarations Ok Ok Error Ok Ok
Method formal parameter of generic
array type

Error Error Error Ok Error

Type inference from declarations Ok Error Error Ok Error
Unknown type bound with formal pa-
rameter

Error Error Error Ok Error

Simple bound in method formal para-
meter

Error Error Error Ok Error

Multiple bound in method formal pa-
rameter

Error Error Error Ok Error

environment. It works for target sources written in the
SMALLTALK programming language. As with other tools in
the same line, it is an example of the tendency to be closely
tied to the environment and the target source programming
language. REFACTORIT [13] is an example of a refactoring
plug-in of a tool which is not tied to a specific environment
but is tied to the programming language JAVA. On the
contrary, the refactoring plug-in ECLIPSE [23] is tied to
the environment, but the environment evolution has revealed
the importance of decoupling refactoring support from the
source programming language and execution environment.
Some refactoring efforts have also been done on generics in
[24] [9], [10] [25].

In [26] we can find an in depth analysis of refactoring
and how refactoring support must be included in develop-
ment environments. It proposes a solution which provides
with a language independent layer that can be used as an
independent application program interface (API). This API
received the name LTK (Language Toolkit) and was used
for JAVA and C++ as proof of concept.

This new form of organizing the internal structure of
the refactoring tool also takes into account the fact that
refactoring effects can go beyond the target source code
itself. At present, a software project contains a great number
of additional files in very different formats. The evolution
of the ECLIPSE IDE in recent years reveals the need
(and tendency) of toolkits fulfilling the above mentioned
scalability, reusability and language independence criteria.
The ECLIPSE internal design has undergone a remarkable
evolution. Design solutions in recent versions of the product
coincide to some extent with the works presented at [27],
[28]. These works state the need of framework based solu-
tions and describe the design solution for a refactoring tool
that allows the components required to define and execute a
refactoring operation to be reused.

The same tendency can be observed in the .NET language
family. The inherent language independent nature of this
platform impels development and assistance tools to provide
multi-language capabilities. Rational solutions must be reuse
based solutions, for instance when including refactoring

support for the language family.
RESHARPER [29] is a good example of this. The ex-

perience the contributor obtained from the development of
similar tools such as INTELLIJ IDEA [14] (for JAVA) proba-
bly eases the design and implementation of new refactoring
tools. Some other contributors such as REFACTORPRO [30]
and Visual Assist X for Visual Studio [31] are in the same
line, and provide tool support for refactoring for Visual Basic
.NET, ASP.NET, C# y C++.

The benefits of solutions with multi-language support
can be observed in the case of C++. The development of
refactoring tools for C++, such as xrefactory [32], was
very limited. Nevertheless, the inclusion of C++ in the
.NET family supposes that the refactoring plug-ins already
developed for the .NET family, could provide refactoring
support for C++; and this in spite of the great difficulties of
implementing refactoring for C++, as was stated in the very
beginnings of refactoring [3], [33].

Despite all this, the very limited efforts in Visual Studio,
the de facto standard IDE for .NET languages, to include re-
factorings as part of the IDE itself is surprising. Refactoring
support in Visual Studio is limited to third party products.

Another clear example of reusing internal support for
different languages is CODEGUIDE [34]. It offers an IDE
to work in JAVA, C#, JSP, J# and Visual Basic .NET. It
is a distinguishing feature of this tool to bring support for
languages from very different platforms. The IDE offers
refactoring support but the available refactoring operation
set is still small.

Language independence in refactoring has been a research
trend for the last decade. The first works appeared in
2000. One of the most known examples is described in
[35], which defines the FAMIX meta-model. FAMIX allows
information to be shared between different CASE tools for
reengineering purposes. One of the tools was a refactoring
tool named MOOSE [36]–[38]. The FAMIX meta-model
includes support for the main object-oriented features such
as: classes, methods, attributes or inheritance. Invocation
and property access are supported too. However, it does
not support either some complex aspects of inheritance in



programming languages or the generics concepts tackled in
this paper.

In the same line, another meta-model based solution was
presented in [39], [40]. Extending the UML 1.4 meta-model
with eight language independent resources, the new meta-
model named GrammyUML was created. Semantic actions
from UML were not considered in this work.

Also, a similar proposal can be found in MOON (Mi-
nimal Object-Oriented Notation) [41]. MOON represents
minimal abstractions to define and analyze refactorings.
MOON is centered in describing a family of languages:
object-oriented, statically typed, with or without generics
languages. Some strengths are the support of the complex
aspect of inheritance, and full support for generics with
different variants for bounding generic parameters. MOON
was originally defined as a model language which can be
represented as a meta-model. The main goal is to define the
basis for language independence and reuse in refactoring
tools.

The MOON meta-model, as a framework core, and its
extension, as a framework instance, for the JAVA language
were defined in [42]. This work was revised and completed
in several iterations which lead to the development of the
architecture presented in [43]. The refactoring tool develo-
ped on top of this architecture includes full support for the
Extract Method refactoring, the case of this paper, but does
not include the identification of extract method refactoring
opportunities [44]. The tool is successful in executing all the
tests in the suite described in this work.

VI. CONCLUSIONS AND FUTURE WORK

As pointed out in [11], changes in programming languages
can also force changes in development tools. This applies
to refactoring tools in particular, and this happened to
JAVA 5.0 and ECLIPSE. The addition of generics to this
language had an impact on the type system and produced
ubiquitous changes everywhere in the source code. The
amount and complexity of test cases increased, for dealing
with genericity, covariance, contravariance, unknown types,
etc.

The proposal presented in this work shows a new way to
address the study and comparison of refactoring tools. We
suggest approaching these studies through the definition of
test cases, although we are aware of the difficulty in defining
a complete test set for a big number of refactorings and
their variants for different programming languages. Howe-
ver, the definition of these sets allows an objective product
comparison. Moreover, this proposal can be extended to the
whole set of possible combinations between refactorings and
programming languages.

In addition, genericity is a feature that is becoming more
widely used in software development because of its inherent
advantages, which are, among others, a more type-safe code
and an improved legibility. Therefore, we can expect that

more source codes will be making use of generics to benefit
from these advantages. As a consequence, generics have to
be considered when implementing refactoring tools.

Hence, it is obvious that there is a need for building
architectures which could allow for a greater degree of
reuse in the development of refactoring tools. In particular,
these architectures should be ready to accommodate the new
features that could be added to mainstream programming
languages –e.g., JAVA, .NET, etc.– in the future.

With regard to other aspects, generics-related refactorings
are not usually supported in refactoring tools and develop-
ment environments. Some exceptions to this exists, such as
CODEGUIDE [15] and INTELLIJ IDEA [14], which include
the Generify refactoring and ECLIPSE, which supports the
Infer Generic Type Arguments refactoring. We could not
find any other refactoring product supporting generics. The
lack of generics-related refactorings in refactoring catalogs
reveals there is a need to keep working more deeply in this
area. Future development and support of generics-related
refactorings must fulfill some particular requirements [45],
and should be built on top of reusable refactoring engines,
frameworks and libraries. Nevertheless, the limited support
for reuse and generics we have found, in most of the
examples shown in this paper, means there is ample scope
for work in this field.

ACKNOWLEDGEMENTS

Raúl Marticorena, Carlos López, Yania Crespo and Javier
Pérez are partially funded by the Spanish government (Mi-
nisterio de Ciencia e Innovación, project TIN2008-05675).

REFERENCES

[1] L. Erlikh, “Leveraging legacy system dollars for e-business,”
IT Professional, vol. 2, no. 3, pp. 17–23, 2000.

[2] M. Fowler, Refactoring. Improving the Design of Existing
Code. Addison-Wesley, 2000.

[3] W. F. Opdyke, “Refactoring object-oriented frameworks,”
Ph.D. dissertation, University of Illinois at Urbana-
Champaign, IL, USA, 1992. [Online]. Available:
citeseer.nj.nec.com/opdyke92refactoring.html

[4] D. B. Roberts, “Practical analysis for refactoring,” Ph.D.
dissertation, University of Illinois at Urbana-Champaign, IL,
USA, 1999.

[5] D. Dig, in WRT’07 1st Worskhop on Refactoring Tools, ser.
ISSN 1436-9915, In ECOOP’07, 21th European Conference
Object-Oriented Programming, Berlin, Germany. Danny
Dig and Michael Cebulla, 2007. [Online]. Available:
https://netfiles.uiuc.edu/dig/RefactoringWorkshop/

[6] ——, in WRT’08 2nd Worskhop on Refactoring Tools., ser.
ISBN 978-1-60558-220-7, In OOPSLA’08, 23th International
Conference on Object Oriented Programming, Systems,
Languages and Applications, Nashville, Tennessee, USA.
Dig, Danny and Fuhrer, Robert. M and Johnson, Ralph,
2008. [Online]. Available: http://refactoring.info/WRT08



[7] R. Fuhrer and W. F. Opdyke, in WRT’09 3rd Worskhop
on Refactoring Tools, In OOPSLA’09, 24th International
Conference on Object Oriented Programming, Systems,
Languages and Applications, Orlando, Florida, USA. Fuhrer,
Robert and Opdyke, William F., 2009. [Online]. Available:
https://netfiles.uiuc.edu/dig/RefactoringInfo/WRT09/

[8] M. Naftalin and P. Wadler, Java Generics and Collections,
1st ed., O’Reilly, Ed. O’Reilly, 2007.

[9] J. D. Frank Tip, Robert Fuhrer and A. Kiezun, “Refactoring
techniques for migrating applications to generic Java contai-
ner classes,” Tech. Rep., 2004.

[10] R. Fuhrer, F. Tip, A. Kieżun, J. Dolby, and M. Keller, “Effi-
ciently refactoring Java applications to use generic libraries,”
in ECOOP’05, 19th European Conference Object-Oriented
Programming, Glasgow, Scotland, July 27–29, 2005.

[11] R. M. Fuhrer, M. Keller, and A. Kiezun, “Advanced re-
factoring in the eclipse jdt: Past, present, and future,” in
WRT’07, 1st Workshop on Refactoring Tools, Berlin, Ger-
many. ECOOP’07, june 2007, pp. 31 – 32.

[12] NetBeans.org, “refactoring: Generify refactoring specifica-
tion,” http://refactoring.netbeans.org/, 2006, java IDE.

[13] RefactorIt, “Refactorit - aqris software,” 2007. [Online].
Available: http://www.aqris.com/display/ap/RefactorIt/

[14] JetBrains, “IntelliJ IDEA :: The Most Intelligent Java IDE,”
http://www.jetbrains.com/idea/, 2006, java IDE. [Online].
Available: http://www.jetbrains.com/idea/

[15] Omnicore, “CodeGuide,” 2007. [Online]. Available: http:
//www.omnicore.com/en/codeguide.htm

[16] B. Beckert, U. Keller, and P. H. Schmitt, “Translating the
object constraint language into first-order predicate logic,”
in In Proceedings, VERIFY, Workshop at Federated Logic
Conferences (FLoC, 2002, pp. 113–123.

[17] L. Heaton, “Object constraint language, v 2.0,” Tech. Rep.,
May 2006. [Online]. Available: http://www.omg.org/docs/
formal/06-05-01.pdf

[18] J. Gosling, B. Joy, G. Steele, and G. Bracha, The Java Lan-
guage Specification Third Edition. Boston, Mass.: Addison-
Wesley, 2005.

[19] B. McLaughlin and D. Flanagan, Java 1.5 Tiger. A Develo-
per’s Notebook. O’Reilly.

[20] E. Murphy-Hill, C. Parnin, and A. P. Black, “How we refactor,
and how we know it,” pp. 287–297, 2009.

[21] Z. Xing and E. Stroulia, “Refactoring practice: How it is and
how it should be supported - an eclipse case study,” pp. 458–
468, 2006.

[22] D. Roberts, “Refactoring Browser,” 1999. [Online]. Available:
http://st-www.cs.uiuc.edu/users/brant/Refactory/

[23] B. Daum, Eclipse 3 para desarrolladores Java, 1st ed. Anaya
Multimedia, 2005.

[24] A. Donovan, A. Kiezun, M. S. Tschantz, and M. D.
Ernst, “Converting Java Programs to Use Generic
Libraries.” in OOPSLA’04, 19th International Conference
on Object Oriented Programming, Systems, Languages and
Applications, Vancouver, British Columbia, Canada, J. M.
Vlissides and D. C. Schmidt, Eds. ACM, 2004, pp.
15–34. [Online]. Available: http://dblp.uni-trier.de/db/conf/
oopsla/oopsla2004p.html#DonovanKTE04

[25] D. von Dincklage and A. Diwan, “Converting Java
classes to use generics,” in OOPSLA’04, 19th International
Conference on Object Oriented Programming, Systems,
Languages and Applications, Vancouver, British Columbia,
Canada, 2004. [Online]. Available: citeseer.ist.psu.edu/
vondincklage04converting.html

[26] L. Frenzel, “The Language Toolkit: An API for Automated
Refactorings in Eclipse-based IDEs,” Eclipse Magazine,
January 2006. [Online]. Available: http://www.eclipse.org/
articles/Article-LTK/ltk.html

[27] Y. Crespo, C. López, and R. Marticorena, “Un Framework
para la reutilización de la definición de refactorizaciones,” in
Actas JISBD’04, IX Jornadas de Ingenierı́a del Software y Ba-
ses de Datos, Málaga, Spain, ISBN 84-688-89830, November
2004.

[28] C. López, R. Marticorena, Y. Crespo, and J. Pérez,
“Towards a language independent refactoring framework,”
in 1st ICSOFT 06 International Conference on Software
and Data Technologies. Setubal, Portugal. ISBN: 972-8865-
69-4, vol. 1, sep 2006, pp. 165–170. [Online]. Available:
http://giro.infor.uva.es/Publications/2006/LMCP06

[29] JetBrains, “ReSharper:: The Most Intelligent Add-In to
Visual Studio,” JetBrains, 2007. [Online]. Available: http:
//www.jetbrains.com/resharper/

[30] D. E. Inc., “Refactor Pro for Visual Studio .NET,” 2007.
[Online]. Available: http://www.devexpress.com/Products/
NET/IDETools/Refactor/

[31] I. Whole Tomato Software, “Visual Assist X for Visual
Studio,” 2007. [Online]. Available: http://www.wholetomato.
com/

[32] Xref-Tech, “Xrefactory - A C/C++ Development Tool
with Refactoring Browser,” July 2007. [Online]. Available:
http://xref-tech.com/xrefactory/main.html

[33] R. E. Johnson and W. F. Opdyke, “Refactoring and
aggregation,” in Object Technologies for Advanced Software,
First JSSST International Symposium. Springer-Verlag,
1993, vol. 742, pp. 264–278. [Online]. Available: citeseer.
ist.psu.edu/johnson93refactoring.html

[34] Omnicore, “X-develop - multi-language cross-platform
IDE,” 2007. [Online]. Available: http://www.omnicore.com/
en/xdevelop.htm

[35] S. Tichelaar, S. Ducasse, S. Demeyer, and O. Nierstrasz,
“A Meta-Model for Language-Independent Refactoring,” in
Proc. International Workshop on Principles of Software
Evolution (IWPSE). IEEE Computer Society Press, 2000,
pp. 157–169. [Online]. Available: http://citeseer.nj.nec.com/
tichelaar00metamodel.htm



[36] S. Ducasse, M. Lanza, and S. Tichelaar, “Moose: an Exten-
sible Language-Independent Environment for Reengineering
Object-Oriented Systems,” in Proc. Int’l Symp. Constructing
Software Engineering Tools (CoSET), June 2000.

[37] ——, “The Moose Reengineering Environment,” Smalltalk
Chronicles, 2001. [Online]. Available: citeseer.ist.psu.edu/
ducasse01moose.html

[38] O. Nierstrasz, S. Ducasse, and T. Gı̂rba, “The Story of Moose:
An Agile Reengineering Environment.” in ESEC/SIGSOFT
FSE, M. Wermelinger and H. Gall, Eds. ACM, 2005,
pp. 1–10. [Online]. Available: http://dblp.uni-trier.de/db/conf/
sigsoft/fse2005.html#NierstraszDG05

[39] P. Van Gorp, H. Stenten, T. Mens, and S. Demeyer, “Towards
Automating Source-Consistent UML refactorings,” in UML,
2003, pp. 144–158.

[40] P. Van Gorp, N. Van Eetvelde, and D. Janssens,
“Implementing Refactorings as Graph Rewrite Rules on
a Platform Independent Meta model,” in Proceedings
of 1st Fujaba Days, october 2003. [Online]. Available:
citeseer.ist.psu.edu/vangorp03implementing.html

[41] Y. Crespo, “Incremento del Potencial de Reutilización
del Software mediante Refactorizaciones,” Ph.D. disser-
tation, Universidad de Valladolid, 2000, available at
http://giro.infor.uva.es/docpub/crespo-phd.ps.

[42] C. López and Y. Crespo, “Definición de un Soporte Es-
tructural para Abordar el Problema de la Independen-
cia del Lenguaje en la Definición de Refactorizaciones,”
Departamento de Informática. Universidad de Valladolid,
Tech. Rep. DI-2003-03, septiembre 2003, available at
http://giro.infor.uva.es/docpub/lopeznozal-tr2003-03.pdf.

[43] R. Marticorena and Y. Crespo, “Dynamism in Refactoring
Construction and Evolution. A Solution Based on XML and
Reflection,” in 3rd International Conference on Software and
Data Technologies (ICSOFT), July 2008, pp. 214 – 219.

[44] N. Tsantalis and A. Chatzigeorgiou, “Identification of ex-
tract method refactoring opportunities,” in CSMR, A. Winter,
R. Ferenc, and J. Knodel, Eds. IEEE, 2009, pp. 119–128.

[45] T. Mens and T. Tourwé, “A survey of software refactoring,”
IEEE Trans. Softw. Eng., vol. 30, no. 2, pp. 126–139, 2004.


