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ABSTRACT
We address the problem of human detection with mobile plat-

forms such as robots. Instead of using an optical system, we

propose to employ an acoustic 2D array to reliably obtain an

image of a human in a 3D spatial power spectrum which is

independent of lighting conditions and uses cheap acoustic

sensors. We show that humans have a distinct acoustic sig-

nature and propose to model the echoes from reflecting parts

of objects in the scene by a Gaussian-Mixture-Model. When

it is fitted to the acoustic image, we can extract geometric re-

lations between the present echoes and represent the acoustic

signatures in a low-dimensional parameter space. We present

results based on real data measurements that demonstrate that

different objects can be reconstructed from the data and dis-

criminated. The obtained parameter space forms the basis for

subsequent detection and classification of humans.

Index Terms— acoustic arrays, human detection, gaussian-

mixture-model

1. INTRODUCTION

Mobile platforms that operate in human environments not

only need to detect obstacles in their surroundings, but also

become aware of the presence of humans. For example, de-

tecting persons in the surroundings of a robot is crucial for

control of its awareness and navigation. Based on the de-

tection, the orientation and trajectory of the person can be

estimated and the system can respond meaningfully, step out

of the way of the human, addressing him or her etc. Existing

human detection systems are mainly based on optical mono

or stereo cameras, which have certain limitations, e.g. they

depend on good lighting conditions or employ expensive in-

frared cameras. At the same time, optical systems can not

always reliably detect range and often assume motion or a

specific shape of the persons [1, 2]. Radar-based systems

require expensive hardware and can be unreliable due to the

very low reflection intensity from humans (e.g. [3]). Acous-

tic imaging provides a simple and cheap sensor alternative

that allows for very precise range as well as angular infor-

mation. Using an acoustic 2D array, objects can easily be

detected in the environment and a 3D image of reflections in

the surrounding scene can be created [4, 5]. Human detection

based on such a cheap system can greatly enhance the overall

system reliability. In this paper, we demonstrate that humans

have a distinctive signature in acoustic images which can be

exploited for detection. We present a method to model the

acoustic signatures in the 3D spatial spectrum estimate of

the objects by a Gaussian-Mixture-Model (GMM). Based on

the parameters of this model, a detector can be designed to

discriminate between person and non-person objects.

The paper is organized as follows: After a short prob-

lem formulation in Section 2, we present the approach in Sec-

tion 3. In Section 4, we apply the approach to real data mea-

surements recorded with an acoustic array from a set of indoor

scenes and demonstrate that the important characteristics of

the acoustic signatures are well-modeled such that they can

be used in a subsequent detection and classification stage.

2. PROBLEM FORMULATION

We address the problem of human presence detection in

the surroundings of a mobile platform such as a robot us-

ing acoustic imaging. The images are created using a 2D

array which sends out a narrowband excitation signal in

order to illuminate acoustically the scene of interest. The

back-scattered echoes which are reflected from objects in

the scene are recorded by the array. Based on this data, a

three-dimensional power spectrum estimate is obtained via

adaptive beamforming, resulting in P (θ, φ, r) where θ is the

elevation angle, φ the azimuth angle, and r denotes range (for

more details, see [5]). The object classes that can be present

in the scene vary greatly and are difficult to model by a closed

set of prototypes, because the representation in P (θ, φ, r) de-

pends on both the relative position of objects to the array as

well as the angle from which the excitation signal is sent into

the scene. The strength of the reflected echo depends on the

shape and texture of the reflecting surface and its orientation

relative to the array. This leads to the effect that some solid

reflective parts of the scene are weakly presented in the spatial

3538978-1-4244-4296-6/10/$25.00 ©2010 IEEE ICASSP 2010



power spectrum. However, there exist some reliable acoustic

phenomena such as corner and edge reflections as well as

reflections from rough surfaces which allow us to generically

model object reflections. We are interested in features that

discriminate between reflections from humans and those from

other objects in the scene.

3. PROPOSED APPROACH

In Figure 1(a)-(d), we show respectively acoustic images from

three persons and an office chair at a distance of 1.75m away

from the array in broadside direction. The persons are facing

the array (0◦), looking to the side (90◦) or looking directly

away (180◦), and were recorded either walking or standing.

The office chair has a diameter of 0.4m, plastic arm rests and a

textile seat cover and cushion. The images were processed on

a large range bin around the maximal reflection in order to ob-

tain a single image Pr(θ, φ) (in dB) containing all spatial in-

formation about the person. However, the range information

is not lost and can be used to determine the three-dimensional

position of reflectors subsequently. As we can see, due to the

complex texture of the human body, the excitation signal re-

liably reflects diffusely back to the array from both the torso

and the head. As most objects only show specular reflections,

this is quite unique to humans. Only when there are objects

which possess a large complex surface texture, it is possible to

obtain larger reflecting areas. Thus, already the occurrence of

a torso-shaped reflection is rare and together with another re-

flector above, the likelihood of human presence is quite high.

However, there are several problems that occur. Firstly, we

can see in the figure that while all three images show the re-

flections from a human, the head echo is not always as strong

as the torso echo. Additionally, the two echoes might not be

well separated, but merge together, depending on the distance

and location of the human or due to limited resolution of the

beamformer in directions far off-broadside. Another aspect

that can be seen is that the torso reflection often will not be

uni-modal, as there are several parts of the torso that reflect

well. To overcome these problems, we propose a procedure

which is outlined below and illustrated in Figure 2.

3.1. Image Segmentation

Although the above mentioned problems lead to the fact that

standard segmentation techniques will not reliably detect the

head and torso echoes as two distinct segments in many cases,

an initial application of a segmentation algorithm can serve as

a first approximation to a foreground/background discrimina-

tion. However, in cases where echoes of head and torso are

not distinctively separated, this will not allow to discriminate

the two. We therefore employ a model-based parametrization

of the image where the segmentation algorithm serves mainly

as a tool to constrain the model and provide a good initial-

ization of the formulated optimization problem (see Section

3.2). In order to reduce potential multi-modalities of the torso

echoes, we smooth the image Pr(θ, φ) in an initial step. We

then use the EM algorithm to fit a GMM with two Gaus-

sians G(μ1, σ1),G(μ2, σ2) where μ1 > μ2 to the empirical

pixel intensity distribution of the smoothed image. The fore-

ground region R is formed by pixels in the image that have a

higher probability to belong to the Gaussian G(μ1, σ1). This

approach is well-known as a simple segmentation technique

(e.g., see [6]). In Figure 3, we show an example of the result-

ing foreground region where the head and torso echoes are

not separated into distinct segments. Other, more complex

segmentation techniques, e.g. involving active contours or

min-cut/max-flow techniques do not work superior as they are

gradient-based and assume sharp segment boundaries which

are not present in the acoustic images (see e.g. [7, 8]).

Fig. 3: Result of the segmentation of an image where the

echoes of head and torso are in close distance.

3.2. Modeling the Acoustic Signature

Based on the observations about the occurrence of head and

torso echoes, we are interested in two aspects. First, we want

to parametrize the image such that the acoustic signature is

preserved and we can establish geometric properties in the

image. Secondly, we aim to find clusters in the parameter

space that allow us to discriminate between humans and other

objects present in the scene, i.e., we want to obtain parame-

ter sets that are unique to the presence of a large torso echo,

a weaker head echo and possibly other echo sources in the

scene. We therefore propose to model the spatial power spec-

tra obtained from the acoustic array as a mixture of K two-

dimensional Gaussians G(wk, μk,Σk), k = 1, . . . , K in the

(θ, φ)-domain where wk is a weighting factor, μk are the

mean vectors, and, with ρ, σθ,k, σφ,k being the correlation co-

efficient and the standard deviations in θ and φ dimensions,

the covariance matrices

Σk =
(

σ2
θ,k ρσθ,kσφ,k

ρσθ,kσφ,k σ2
θ,k

)
.
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(a) 0◦, walking (b) 90◦, standing (c) 180◦, walking (d) Office chair

Fig. 1: Three spatial spectra of humans in azimuth and elevation from different orientations and one spatial spectrum of an

office chair.

Fig. 2: Flowchart of the proposed human detection scheme.

We then fit the GMM to the image by solving the following

optimization problem:

β̂ = arg min
β

ε = arg min
β

∫
R
||Pr(θ, φ) − f(β)||2δθδφ

(1)

s.t. λ1,k, λ2,k > 0 ∀ k = 1, . . . , K (1.1)

Si � ∩ Sj ∀ i �= j (1.2)

μk ∈ R ∀ k = 1, . . . , K (1.3)

where R is obtained by segmentation (see Section 3.1),

f(β) = f(w1,μ1,ΣT
1 , . . . , wK ,μK ,ΣT

K) (2)

=
K∑

k=1

wkG(μk,Σk)

β denotes the parameter vector to be estimated. λ1,k, λ2,k are

the eigenvalues of Σk. Constraint (1.1) is required in order

to guarantee positive definite covariance matrices for all Σk.

The second constraint (1.2) is introduced in order to ensure

that each echo is modeled only from a single Gaussian. Here,

Si is an ellipsoid region in the (θ, φ)-domain that covers a

certain fraction of the volume of the ith Gaussian such that all

points (θ, φ) in Si fulfill

((θ, φ) − μi)Σ−1
i ((θ, φ) − μi)T ≤ C(1 − ρ)2 . (3)

Here, since we assume two-dimensional Gaussians, C is de-

termined according to the inverse cumulative χ2
2 distribution

such that ∫ C2

0

e−t/2

2
δt = P (4)

is satisfied.1 Here, P denotes the fraction of the volume un-

der the Gaussians to be covered by any Si. The last con-

straint (1.3) is based on the segmentation result. It is not

strictly necessary to formulate the problem, but prevents di-

vergence of the solving algorithm from reasonable solutions.2

The problem formulated in equation (1) can also be initial-

ized using knowledge of R, e.g. the mean vectors μk, k =
1, . . . , K can be defined to be at the locations of the K largest

extrema in R. It can be solved numerically, e.g. using a

Quasi-Newton algorithm, for different K, depending on the

target object class, i.e.. for humans, knees, hands and feet are

not always visible in the image. Therefore, we set K = 2 to

model only the head and torso echoes. The solution provides

1Note that this holds exactly only if ρ = 0 and is an approximation oth-

erwise. However, for ρ > 0, the ellipsoid is only rotated, thus the relation

leads to the desired coverage of the Gaussian.
2Depending on the implementation of the employed optimization algo-

rithm, it can be beneficial to reformulate some constraints into penalty terms

of the cost function, e.g. a positive definite Σk can be favoured by a penalty

term log(detΣk), (1.3) can be taken into account by penalizing the distance

of μk to R.
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not only β̂, but also ε as a measure for the goodness-of-fit

of the model. Based on β̂, we can then formulate other fea-

tures that are meaningful to detect humans in the image, e.g.

the relative position, distance and angle of the centroids. Ad-

ditionally, we can expect the head echo to be much smaller

than the torso echo, meaning that the ratio of variances is an

additional feature. Together with the segmentation contours,

these geometric features, β̂ and ε allow to represent humans

in acoustic images uniquely and can be supplied to a subse-

quent classifier.

4. RESULTS AND DISCUSSION

We demonstrate the approach described above and apply it to

data from two different scenes, each containing a single ob-

ject. The data was recorded using a 30-element 2D array with

omnidirectional acoustic receivers. In the first scene, a human

was standing in front of the array at a distance of 1.75m, fac-

ing the array. In the second scene, the office chair from Fig-

ure 1 was placed at the same position. In Figure 4, we can see

the reconstructed images based on the segmentation region

R and the estimated parameters β̂ for a GMM with K = 2.

The resulting image for the first scene (Fig. 4a) clearly shows

the Gaussian that models the strong torso echo (w1 = 8.296)

while the head echo, modeled by a significantly weaker Gaus-

sian above (w2 = 3.637), is less strongly visible, but reliably

located above the torso as expected. Thus, although the two

echo sources were not well separated, the image was success-

fully parametrized. In the second scene, the two strongest

echoes are reflected from both one of the arm rests and a

corner of the seat cushion. This is also modeled in the re-

constructed image (Fig. 4b), where only two smaller, almost

equally strong reflections are modeled at both corresponding

regions in the image. We see that modeling the spatial power

spectra by a GMM allows to represent the spatial information

about the position of reflecting surfaces in a parameter vector.

The approach can be extended by application of the model

with a varying order K if it is desired to model the image in

more detail. Effectively, this would result in a model-order

selection problem where the order has to be chosen based on

different β̂s to obtain a reasonable trade-off between model-

ing objects and clutter or noise.

5. CONCLUSIONS

We have addressed the problem of human detection using a
2D array of acoustic receivers for mobile platforms such as
robots. We have argued that humans have distinct acoustic
signatures in the spatial power spectrum. We have proposed
to generically model the echoes from reflecting parts of the
object by a Gaussian-Mixture-Model. This allows a reliable
representation of acoustic signatures in a low-dimensional pa-
rameter space, which can be used for a subsequent detection
and classification of humans.

(a) Walking person, orientation 180◦

(b) Office chair, orientation 0◦

Fig. 4: Reconstructed images based on the estimated param-

eters for a person (a) and an office chair (b).
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