
ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE

TELECOMUNICACIÓN

TRABAJO DE FIN DE MASTER

MASTER UNIVERSITARIO EN INVESTIGACIÓN EN

TECNOLOGÍAS DE LA INFORMACIÓN Y LAS

COMUNICACIONES

Compresión de datasets RDF en
HDT usando Spark

Autor: Carlos Barrales Ruiz
Tutor: Pablo de la Fuente Redondo

Miguel Ángel Martı́nez Prieto

Abstract

Apache Spark is a general purpose big data processing framework using the mapre-
duce paradigm, quickly becoming very popular. Although the information provided
by Spark authors indicates a substantial improvement in performance against Hadoop,
there is very little evidence in the literature of specific tests that reliably proves such
claims. In this Master Work study the benefits of Spark and the most important factors
on which they depend, considering as a reference the transformation of RDF datasets
into HDT format. The main objective of this work is to perform one exploratory study
to leverage Spark solving the HDT serialization problem, finding ways to remove lim-
itations of the current implementations, like the memory need which use to increase
with the dataset size. To do that, first we’ve setup a open environment to ensure re-
producibility and contributed with 3 different approaches implementing the most heavy
task in the HDT serialization. The test performed with different dataset sizes showed
the benefits obtained with the proposed solution compared to legacy Hadoop MapRe-
duce implementation, as well as some highlights to improve even more the serialization
algorithm.

Keywords

semantic web, RDF, compression, HDT, parallelization, map-reduce, big data.

Resumen

Apache Spark es un marco de desarrollo de procesamiento de datos de propósito
general que utiliza el paradigma map-reduce muy popular en la actualidad. Aunque
la información proporcionada por los autores de Spark indica una mejora sustancial
en el rendimiento frente a Hadoop, hay muy poca evidencia en la literatura de prue-
bas especı́ficas que demuestre totalmente tales afirmaciones. En este trabajo maestro
se estudian los beneficios de Spark y los factores más importantes de los que depen-
den, considerando como referencia la transformación de conjuntos de datos RDF en
formato HDT. El objetivo principal de este trabajo es realizar un estudio exploratorio
para aprovechar Spark resolver el problema de serialización HDT, encontrando man-
eras de eliminar las limitaciones de las implementaciones actuales, como la necesidad
de memoria que se utilizan para aumentar con el tamaño del conjunto de datos. Para
ello, primero hemos configurado un entorno abierto para asegurar la reproducibilidad
y hemos contribuido con la implementación de 3 algoritmos diferentes para resolver la
tarea más pesada en la serialización HDT. La prueba realizada con diferentes tamaños de
conjunto de datos muestra los beneficios obtenidos con la solución propuesta en com-
paración con la implementación de Hadoop MapReduce, ası́ como algunos aspectos
destacados para mejorar aún más el algoritmo de serialización.

i

Palabras clave

web semántica, RDF, compresión, HDT, parallelización, map-reduce, big data.

ii

Acknowledgements

Quisiera agradecer brevemente a todos los que me han apoyado y animado a continuar
con mi carrera, especialmente familia y amigos. A mi mujer Rebeca y a mi hija Claudia,
lamentando el tiempo que no he podido disfrutar de ellas. También agradecer la labor de
los profesores del máster, por su implicación, su consejo y su buen hacer. A mis tutores
de TFM Pablo y Miguel Ángel por su ayuda, comprensión y guı́a. Gracias de corazón.

iii

Contents

Contents iv

List of Figures vi

List of Tables vii

I. Introduction and previous knowledge 1

1. Introduction 3
1.1. Motivation and objectives . 7
1.2. Document structure . 7

II. Previous knowledge 10

2. RDF 11
2.1. RDF Datasets . 11
2.2. RDF Representation . 12

3. HDT 15

4. Problem description 17
4.1. State of the art . 17
4.2. Expected contributions . 23
4.3. Materials and methodology . 24

III. Developed work 27

5. Experimental design 28
5.1. Validation procedure . 28
5.2. Validation results . 30

iv

6. Solution design and implementation 31
6.1. Dictionary generation . 31
6.2. Triple encoding . 32

6.2.1. Materialization method . 32
6.2.2. Join method . 34
6.2.3. Cogroup method . 36

6.3. First results and further optimizations 37
6.4. Lessons learned . 39

7. Experiment results 41
7.1. Results . 41
7.2. Discussion . 42

IV. Finalization 47

8. Related work 48

9. Conclusion 49

10. Limitations and future work 50

Bibliography 51

v

List of Figures

1.1. Linking Open Data cloud diagram giving an overview of published data
sets and their interlinkage relationships [Bizer et al., 2009]. 6

1.2. TFM work schema . 8

3.1. HDT Structure [Fernández et al., 2013] 15

4.1. Spark execution model [Zaharia et al., 2012] 20
4.2. Duration of the first and last itertions in Hadoop, HadoopBinMem and

Spark in logistic regression taks and k-means clusterization using 100
GB data in a 100 nodes cluster [Zaharia et al., 2012] 22

5.1. Validation algorithm . 29

6.1. Dictionary generation algorithm . 32
6.2. Triples encoding: materialization algorithm 34
6.3. Triples encoding: join algorithm . 36
6.4. Triples encoding: cogroup algorithm 37
6.5. HDT-SPARK execution model . 39

7.1. HDT-MR and HDT-SPARK performance comparison on real data input
datasets . 45

7.2. HDT-MR and HDT-SPARK performance comparison on synthetic/mashup
datasets . 46

vi

List of Tables

1.1. Principal datasets topics at 2014. 5

4.1. Hardware configuration of the master and 10 slaves. 25
4.2. Datasets used with triples and components sizes 25

7.1. Elapsed time to process RDF nt+lzo datasets with HDT-MR 42
7.2. Elapsed time to process RDF nt+lzo datasets with HDT-SPARK 42
7.3. Performance of HDT-SPARK over HDT-MR (times faster) 43
7.4. HDT Sizes . 44

vii

Escuela Técnica Superior de Ingenieros de Telecomunicación

Part I.

Introduction and previous knowledge

1

Barrales C., Compresión de datasets RDF en HDT usando Spark

2

Escuela Técnica Superior de Ingenieros de Telecomunicación

1
Introduction

The Semantic Web isn’t just about putting data on the web. It is about making links, so
that a person or machine can explore the web of data. In this context, the term Linked
Data refers to a set of best practices for publishing and connecting structured data on
the Web so they are more related and hence more useful. The idea is simple: If we start
publishing machine readable data in the web and we can link them, we will be building
a big knowledge network which can be processed by machines. The Linked Data con-
cept was proposed originally by Tim Berners-Lee and his 2006 Linked Data Principles
[Berners-Lee, 2006], which is considered to be the official and formal introduction of
the concept itself. At its current stage, Linked Data is a W3C-backed movement that
focus on connecting data sets across the Web, and it can be viewed as a subset of the
Semantic Web concept, which is all about adding meanings to the Web.[Yu, 2014a].

From a technical perspective, Linked Data is related to web published data for which
the meaning is defined explicitly and linked to external data sets, which can be liked
to other data sets as well (also external). Conceptually, refers to a good practices set
for the publication and interconnection of structured data in the Web [Yu, 2014a]. The
initiative is founded on the semantic web concept and recommendation of open data
interchange standards (URI, HTTP,. . .) and information model (RDF, XML, . . .), being
RDF [W3C, 2014b] one of the most popular data model, resource description and rela-
tions between them.

The Resouce Description Framework (RDF) was created b the W3C1 in 1999 as one
standard for metadata coding [Yu, 2014b]. Before going into details, it’s convenient
to detail the big picture of the abstract model in a high scale. RDF uses the abstract
model to decompose the information or knowledge in small pieces, with some simple
rules over the semantic (meaning) of each piece. The objective is to provide a general
method that is simple and flexible enough to express any fact, but in a structured way so
that the computer applications can operate with that knowledge [Yu, 2014b].

The RDF data model defines two key data structures [W3C, 2014b]:

• RDF graphs They are sets of triplets {subject, predicate, objetc} where the el-

1http://www.w3c.org

3

Barrales C., Compresión de datasets RDF en HDT usando Spark

ements can be IRIs2, empty nodes or literal data types. They articulates the re-
source’s descriptions.

• RDF datasets They are collection of RDF graphs and y que comprise a default
graph and zero or more labeled graphs.

RDF also provides a specification of the SPARQL query language 3, which allows to
perform search over RDF graph as well as manipulation operations. SPARQL was stan-
dardized by the W3C’s SPARQL Working Group in January 2008 [Yu, 2014c] containing
three specifications:

• SPARQL Query Language for RDF. The language specification itself.

• SPARQL Query Results XML Format. To describe query results and leverage
other tools.

• SPARQL Data access protocol for remotely querying RDF databases.

Berners-Lee [Berners-Lee, 2006] outlined a set of “rules” for publishing data on the
web in a way that all published data becomes part of a single global data space: Use
URIs as names for things Use HTTP URIs so that people can look up those names
When someone looks up a URI, provide useful information, using the standards (RDF,
SPARQL). Include links to other URIs, so that they can discover more things.

The goal of the W3C Semantic Web Education and Outreach group’s Linking Open
Data community project is to extend the Web with data commons by publishing various
RDF datasets on the Web and by setting RDF links between data items from different
data sources [Wikimedia, nd]. In October 2007, datasets consisted of over two billion
RDF triples, which were interlinked by over two million RDF links. By September 2011
this had grown to 31 billion RDF triples, interlinked by around 504 million RDF links.
A detailed statistical breakdown was published in 2014 [Schmachtenberg et al., 2014].

Linked Data technologies are being using to share data covering a wide range of
different topical domains. The table 1.1 below gives an overview of the topical domains
of the 1014 datasets that were discovered by the crawl of [Schmachtenberg et al., 2014].

2Acronym of Internationalized Resource Identifier
3Acronym of SPARQL Protocol and RDF Query Language

4

Escuela Técnica Superior de Ingenieros de Telecomunicación

Topic Datasets %
Government 183 18.05%
Publications 96 9.47%
Life sciences 83 8.19%
User-generated content 48 4.73%
Cross-domain 41 4.04%
Media 22 2.17%
Geographic 21 2.07%
Social web 520 51.28%
Total 1014

Table 1.1.: Principal datasets topics at 2014.

The most visible example of adoption and application of the Linked Data principles
has been the Linking Open Data project4, a grassroots community effort founded in Jan-
uary 2007 and supported by the W3C Semantic Web Education and Outreach Group5.
The original and ongoing aim of the project is to bootstrap the Web of Data by identi-
fying existing data sets that are available under open licenses, converting these to RDF
according to the Linked Data principles, and publishing them on the Web. Figure 1.1
shows the scale of Web of Data originating from the Linking Open Data project. Each
node in this cloud diagram represents a distinct data set published as Linked Data, as of
March 2009 [Bizer et al., 2009].

RDF format was designed with the goal of being document-oriented and readable.
However, the need to exchange very large datasets has revealed the drawbacks of tra-
ditional RDF representations, including redundancy and high computational capacity
required for processing. This scenario has motivated the appearance of meta-formats
thought to represent large data sets efficiently under the points of view of the publica-
tion, exchange and retrieval of information. This the case of HDT. However, efficient
coding of these types of formats, especially against large volumes of data, is a problem
that remains open.

In summary, in the information age, the exploitation of large volumes of data in RDF
format encoded in HDT format presents a great number of possibilities. A clear example
of this is the growth of new data sources such as [W3C, 2016] strongly supported by
standards such as [Pérez et al., 2006, Quilitz and Leser, 2008] and other semi-structured
data technical specifications.

4http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

[Last check: Sep 2017]
5http://www.w3.org/2001/sw/sweo/

5

http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/LinkingOpenData

Barrales C., Compresión de datasets RDF en HDT usando SparkCommunityProjects/LinkingOpenData], a grassroots community effort founded in January
2007 and supported by the W3C Semantic Web Education and Outreach Group [Endnote:
http://www.w3.org/2001/sw/sweo/]. The original and ongoing aim of the project is to
bootstrap the Web of Data by identifying existing data sets that are available under open
licenses, converting these to RDF according to the Linked Data principles, and publishing
them on the Web.

Participants in the early stages of the project were primarily researchers and developers in
university research labs and small companies. Since that time the project has grown
considerably, to include significant involvement from large organisations such as the BBC,
Thomson Reuters and the Library of Congress. This growth is enabled by the open nature of
the project, where anyone can participate simply by publishing a data set according to the
Linked Data principles and interlinking it with existing data sets. An indication of the range
and scale of the Web of Data originating from the Linking Open Data project is provided in
Figure 2. Each node in this cloud diagram represents a distinct data set published as Linked
Data, as of March 2009.

Figure 2. Linking Open Data cloud diagram giving an overview of published data sets and
their interlinkage relationships.

The arcs in Figure 2 indicate that links exist between items in the two connected data sets.
Heavier arcs roughly correspond to a greater number of links between two data sets, while
bidirectional arcs indicate the outward links to the other exist in each data set.

Figure 1.1.: Linking Open Data cloud diagram giving an overview of published data sets
and their interlinkage relationships [Bizer et al., 2009].

6

Escuela Técnica Superior de Ingenieros de Telecomunicación

1.1. Motivation and objectives
The main goal of this work is to discover and explore new ways to enhance the genera-
tion of HDT serializations of large RDF datasets, leveraging new generations of mapre-
duce frameworks and related technologies, avoiding memory limitations and disk usage
slowdown distributing tasks.

Secondary objectives are:

• Study how to leverage the benefits coming with next generation of Hadoop Ecosys-
tem Resouce Manager (YARN) and Apache Spark.

• Propose and setup a Open Framework using virtualization and/or Platform As
a Service environment with all needed technologies to share and reproduce the
experiment and set the foundation of future activities.

• Study the properties and restrictions of the HDT structures to address one ap-
proach able to build the serialization incrementally.

• Design and implement one distributed algorithm for Spark framework with the
following considerations:

– Data partitioning and aggregation strategy to reduce the memory consump-
tion of current HDT-MR approach.

– Re-design map and reduce tasks to lower the number of disk writes.

– Discover or induce HDT specifications with better properties.

1.2. Document structure
The current document chapter provides a brief introduction to the problem and related
concepts, standards and technologies. The whole document is organized as follows:

First (introductory) part :

Chapter 1 Quick overview and goals.

Chapter 2 Details the background about the main concepts.

Chapter 3 Reviews history evolution of related technologies and methodology
to carry out the objectives

Second (technical detail) part :

Chapter 4 Explains the plan to validate and evaluate the outcomes.

7

Barrales C., Compresión de datasets RDF en HDT usando Spark

Context

New MapReduce approach

Objectives

Contributions

Evaluation

Spark/YARN
benefict mapping

Current HDT-MR Implementation

More effective algorithm

Codification timeMemory
requirements

Comparison

Thesis dissertation proposal

RDF compression in HDT format

Main objective: Better HDT MapReduce approach

Apache SparkHadoop YARN Hadoop HDFS

Design

PaS

Docker GitHub

Open Framework
Implementation

Incremental
algorithm

Open shared research
environment

Reproducibility

Figure 1.2.: TFM work schema

8

Escuela Técnica Superior de Ingenieros de Telecomunicación

Chapter 5 Details the technical solution performed.

Chapter 6 Demonstration and discuss about the work outcomes.

Third (conclusion) part :

Chapter 7 Explores related work and similar approaches to solve the same prob-
lem.

Chapter 8 Raises this work conclusions.

Chapter 9 Summary about the limitations of this works and short discussion
about possible research line continuation.

9

Barrales C., Compresión de datasets RDF en HDT usando Spark

Part II.

Previous knowledge

10

Escuela Técnica Superior de Ingenieros de Telecomunicación

2
RDF

The RDF model encodes data in the form of subject, predicate, object triples. The sub-
ject and object of a triple are both URIs that each identify a resource, or a URI and a
string literal respectively. The predicate specifies how the subject and object are related,
and is also represented by a URI [Bizer et al., 2009].

For instance, an RDF triple can state that two people, A and B, each identified by a
URI, are related by the fact that A knows B. Similarly an RDF triple may relate a person
C to a scientific article D in a bibliographic database by stating that C is the author of D.
Two resources linked in this fashion can be drawn from different data sets on the Web,
allowing data in one data source to be linked to that in another, thereby creating a Web
of Data. Consequently it is possible to think of RDF triples that link items in different
data sets as analogous to the hypertext links that tie together the Web of documents
[Bizer et al., 2009].

The basic structure of the RDF data model is therefore a set of triples, each one
composed by a subject, predicate and object [Yu, 2014b]:

Subject It’s an IRI or a blank node and it’s used to denote resources in the world. Must
be identifdied by the URI. It’s also named start node of an RDF graph.

Object It’s es an IRI and it’s used to denote resources in the world. It’s also named end
node of an RDF graph.

Predicate It’s an IRI, a literal or a blank node. It’s used to denote relaton between the
subject and the object. It must be identified by the URI, also called edge in a RDF
graph.

The set of such triples is called RDF graph. An RDF graph can be viewed as a node
and the directed arc diagram, in which each triplet is represented as a {node, arc, node}
link. It is possible for an IRI predicate to also occur as a node in the same graph.

2.1. RDF Datasets
An RDF dataset is a collection of RDF graphs comprising:

11

Barrales C., Compresión de datasets RDF en HDT usando Spark

• Exactly one predetermined graph.

• The default graph has no name and may be empty.

• Zero or more named graphs. Each named graph is a pair consisting of an IRI or a
blank node (the name of the graph), and an RDF graph. Named graphs are unique
within the data set.

2.2. RDF Representation
One of the most important aspects of RDF is that it is an abstract data model, and the
RDF standard does not specify its representation. The recommended and perhaps most
popular representation of an RDF model is the XML serialization format (known as
RDF / XML). However, RDF / XML is not designed to be interpreted comfortably by a
human, making it difficult to read and has a heavy syntax. For this reason, there are other
RDF serialization formats such as Notation-3 (N3), TURTLE 1, N-Triples and N-Quads
[W3C, 2014a, W3C, 2014c, W3C, 2014d, W3C, 2014e]. Since Notation-3 has some
features that are not necessary for the serialization of RDF models (such as its support
for rules based on RDF), TURTLE was created as a simplified subset of Notation-3
for this context. N-Triples is an even simpler simplification, so it became very popular
nowadays. [Yu, 2014b].

Code 2.1: RDF/XML example
1 <rdf:RDF

xmlns="http: // xmlns.com/foaf /0.1/"

3 xmlns:dc="http: //purl.org/dc/terms/"

xmlns:rdf="http://www.w3.org /1999/02/22 -rdf -syntax -ns#"

>

5 <Document

rdf:about="http://www.w3.org /2001/ sw/RDFCore/ntriples/">

7 <dc:title xml:lang="en-US">

N-Triples

9 </dc:title >

<maker>

11 <Person rdf:nodeID="art">

<name>Art Barstow </name>

13 </Person >

</maker>

15 <maker>

1Terse RDF Triple Language

12

Escuela Técnica Superior de Ingenieros de Telecomunicación

<Person rdf:nodeID="dave">

17 <name>Dave Beckett </name>

</Person >

19 </maker>

</Document >

21 </rdf:RDF >

Code 2.2: Notation-3 example file
1 @prefix foaf: <http:// xmlns.com/foaf /0.1/> .

@prefix dc: <http://purl.org/dc/terms/> .

3

<http://www.w3.org /2001/ sw/RDFCore/ntriples/>

5 a foaf:Document ;

dc:title "N-Triples"@en -US ;

7 foaf:maker [

a foaf:Person ;

9 foaf:name "Art Barstow"

], [

11 a foaf:Person ;

foaf:name "Dave Beckett"

13] .

Code 2.3: Turtle sample
1 @base <http:// example.org/> .

@prefix rdf: <http://www.w3.org /1999/02/22 -rdf -syntax -ns

#> .

3 @prefix rdfs: <http://www.w3.org /2000/01/rdf -schema#> .

@prefix foaf: <http:// xmlns.com/foaf /0.1/> .

5 @prefix rel: <http://www.perceive.net/schemas/

relationship/> .

7 <#green -goblin >

rel:enemyOf <#spiderman > ;

9 a foaf:Person ; # in the context of the Marvel

universe

foaf:name "Green Goblin" .

Code 2.4: N-Triples sample

13

Barrales C., Compresión de datasets RDF en HDT usando Spark

_:subject1 <http://an.example/predicate1 > "object1" .

2 _:subject2 <http://an.example/predicate2 > "object2" .

14

Escuela Técnica Superior de Ingenieros de Telecomunicación

3
HDT

HDT is a compact binary RDF representation proposed by [Fernández et al., 2013] to
avoid the limitations in terms of resource utilization to store and process large RDF
datasets, so the compact nature of HDT represents an improvement in storage space
while leverages succint internal structures to speedup queries and lookups
[Martı́nez-Prieto et al., 2012, Fernández et al., 2011]. HDT is composed of three main
elements for which its name is an acronym:

• Header A header, including the metadata describing the RDF dataset that serves
as the entry point to the information it contains.

• Dictionary A dictionary, the organization of all identifiers in the RDF graph. A
catalog of the RDF terms (URI, blank nodes, literals) mentioned in the graphic
with high levels of compression is provided.

• Triples A triple component, which comprises the pure structure of the underlying
RDF, ie: compact the set of triples avoiding the ”noise” produced by long tags
and repetitions common in the RDF format.

HDT provides two main advantages over RDF:

• It has a much smaller size.

• Its structure allows to be exploited efficiently by information retrieval technolo-
gies, such as SPARQL.

RDF Header

Dictionary

Triples

Figure 3: Description of HDT Components: Header-Dictionary-Triples.

different domains (e.g subject nodes in Uniprot appear
in average in 4.27 triples whereas in Dbpedia-en it does
in 12.62).
The empirical data also show the large presence of

star-shaped nodes but a low frequency of multivalued
pairs (s, p); the number of predicates related to a given
object is very close to 1, whereas a mean of 4-5 different
predicates are related with the same subject.
The ratios reveal a level of cohesion in the data;

subject-object is the most frequent path constructor
(subject nodes are also objects up to 61%), whereas
subject-predicate and predicate-object ratios are almost
negligible. Finally, power law distributions exist in both
in- and out- degrees, but the skewed distributions of
predicate degrees do not fit well to a power law.
All these results give insights into the RDF real-world

structure and point to possible compact design models.

3. Splitting RDF in Logical Components

The skewed structure of real-world RDF data, partic-
ularly the presence of power-law distributions (see Ap-
pendix Appendix A for details), gives a starting point
for designing a compact RDF structure.
In this section, we present such a compact RDF struc-

ture, called HDT, to succinctly represent the informa-
tion of an RDF dataset by organizing and representing
the RDF graph in terms of three components: Header,
Dictionary and Triples (see Figure 3). We will show that
this organization allows to represent and manage RDF
data in an efficient manner. In the following, we will
discuss each of these components on an abstract level as
well as general uses and operations to be performed on
the separate components. Practical details (e.g. encod-
ings, vocabularies, etc.) are discussed in Section 4.

3.1. Header
The Header component is responsible for providing

metadata about an RDF dataset. Although there are

dedicated RDF vocabularies to describe metadata about
datasets (e.g. VoiD [4]; the various annotation prop-
erties listed in the OWL vocabulary [42, Section 10]),
metadata provided in the same RDF graph as the ac-
tual data causes problems, particularly making difficult
to automatically distinguish between data and metadata.
Whereas current other serialization formats do not pro-
vide any means or even best practices on how to publish
metadata along with datasets, in HDT, we make meta-
data a first-class citizen with a dedicated place as part of
the header information.
We consider the Header as a flexible component in

which the data provider may include a desired set of fea-
tures. We distinguish four basic types of metadata:

• Publication information. Collects the metadata
about the publication act such as the site of publica-
tion, dates of creation and modification, version of
the dataset (which could be useful for updating no-
tifications), language, encoding, namespaces, etc.
It also includes all kind of authority information
about the source (or sources) of data.

• Dataset statistics. When managing huge collec-
tions, one could consider including some precom-
puted statistics about what follows in the datasets.
For instance, it could be useful to include an esti-
mation of the parameters presented in Section 2.1,
or a subset of them used in the concrete design.

• Format information. Collects the information
about the concrete format of the RDF dataset, i.e.,
it specifies the concrete Dictionary and Triples im-
plementations as well as their physical locations.

• Other information. A provider can take into ac-
count other metadata for the understanding and
management of the data.

6

Figure 3.1.: HDT Structure [Fernández et al., 2013]

15

Barrales C., Compresión de datasets RDF en HDT usando Spark

The work of [Hernández Illera et al., 2015] details precisely how the HDT format is
constructed and presents an improved implementation called HDT++, still under devel-
opment.

16

Escuela Técnica Superior de Ingenieros de Telecomunicación

4
Problem description

4.1. State of the art
The research line in which this work is based is was started by J. D. Fernandez et al. and
M. A. Martı́nez et al. between 2010 and 2011 [Fernández et al., 2010, Fernández et al., 2011].
They proposed HDT as one efficient serialization format to process RDF data. Subse-
quently, M. Arias et al. contributes in 2011 with his TFM entitled ”Analysis of RDF
datasets to improve compression using HDT” and a tool that demonstrates the practi-
cal applications of such format [Arias Gallego et al., 2011]. In 2012, Martı́nez et al.
Presents HDT-FoQ, which improves the existing HDT specification by complementing
it with indexes that allow more efficient queries. [Martı́nez-Prieto et al., 2012]. Fer-
nandez presents his thesis titled ”Binary RDF for Scalable Publishing, Exchanging and
Consumption in the Web of Data” in which it contributes with an in-depth study of
RDF data sets and proposes a compact data structure configuration to explore and query
sets of Data encoded in HDT [Fernández et al., 2013]. Although within the theoretical
framework HDT is a very advantageous representation, its construction requires large
amounts of memory that increase the larger the volumes of data. This is why Giménez
et. al contributed with HDT-MR presenting a method to serialize RDF data in a scalable
HDT format using the MapReduce paradigm [Giménez, 2014].

The implementation of [Giménez, 2014] is based on one of the first specifications of
Apache Hadoop 1.2. Unfortunately, Hadoop’s 1.x versions have a strong reliance on file
systems to distribute map and reduce tasks [Shi et al., 2015]. Moreover, although HDT-
MR allows to increase productivity in HDT coding by distributing the load on a variable
set of nodes, it still requires a large amount of memory since the data dictionary needs to
be loaded completely in memory on all nodes. The limitations of the Hadoop 1.x branch
have driven the need to improve the implementation of the paradigm to achieve lighter
and more homogeneous solutions such as Apache YARN 2.0 (newer implementation of
the Hadoop MR framework). This is the point at which this work starts. So given the
basis and the initial clues ([Shi et al., 2015]), the question we raise is the following: Can
we leverage current technology to improve the HDT serialization algorithm so we can
be able to process arbitrary large sized RDF datasets?

17

Barrales C., Compresión de datasets RDF en HDT usando Spark

It’s well know that MapReduce is based on a master / slave architecture. The master
initiates the process, distributes the workload between the cluster and manages all the
information. The slaves (or workers) perform the mapping and reduction tasks. Workers
commonly store data using a distributed file system based on the GFS (Google File Sys-
tem) model, where data is divided into small pieces and stored in different nodes. This
allows workers to take advantage of local data as much as possible. MapReduce per-
forms exhaustive input / output operations. Traditionally, the input of each task and each
output is read and written to disk, although new implementations like Apache Spark al-
low the decision to persist in disk or in memory with flexibility. It is also intensive in the
use of bandwidth. The output map must be transferred to reduce nodes and, although
most map tasks read their data locally, some of them must be obtained from other nodes
[Zaharia et al., 2012].

When a node has an empty task slot, Hadoop chooses a task for it from one of three
categories. First, any failed tasks are given highest priority. This is done to detect
when a task fails repeatedly due to a bug and stop the job. Second, non-running tasks
are considered. For maps, tasks with data local to the node are chosen first. Finally,
Hadoop looks for a task to execute speculatively. To select speculative tasks, Hadoop
monitors task progress using a score between 0 and 1. For a map, the progress score
is the fraction of input data read. For a reduce task, the execution is divided into three
phases, each of which accounts for 1/3 of the score:

• The copy phase, when the task fetches map outputs.

• The sort phase, when map outputs a resorted by key.

• The reduce phase, when a user-defined function is applied to the list of map out-
puts with each key.

In each phase, the score is the fraction of data processed [Zaharia et al., 2008]

Hadoop’s scheduler makes several implicit assumptions:

1. Nodes can perform work at roughly the same rate.

2. Tasks progress at a constant rate throughout time.

3. There is no cost to launching a speculative task on a node that would otherwise
have an idle slot.

4. A task’s progress score is representative of fraction of its total work that it has
done. Specifically, in a reduce task, the copy, sort and reduce phases each take
about 1/3 of the total time.

18

Escuela Técnica Superior de Ingenieros de Telecomunicación

5. Tasks tend to finish in waves, so a task with a low progress score is likely a
straggler.

6. Tasks in the same category (map or reduce) require roughly the same amount of
work.

Given that, [Zaharia et al., 2008] proposes a new speculative task scheduler design
by starting from first principles and adding features needed to behave well in a real
environment. The primary insight behind our algorithm is as follows: We always spec-
ulatively execute the task that we think will finish farthest into the future, because this
task provides the greatest opportunity for a speculative copy to overtake the original
and reduce the job’s response time. We explain how we estimate a task’s finish time
based on progress score below. That strategy is called LATE, for Longest Approximate
Time to End. Intuitively, this greedy policy would be optimal if nodes ran at consistent
speeds and if there was no cost to launching a speculative task on an otherwise idle node.

Along this line, in 2010 [Zaharia et al., 2010] presented a new cluster computing
framework written in the Scala language called Spark, which supports applications
with working sets while providing similar scalability and fault tolerance properties to
MapReduce. Spark improves over Hadoop MapReduce, which helped ignite the big
data revolution, in several key dimensions: it is much faster, much easier to use due
to its rich APIs [Armbrust et al., 2015a, Zaharia et al., 2010]. The main abstraction in
Spark is that of a resilient distributed dataset (RDD), which represents a read-only col-
lection of objects partitioned across a set of machines that can be rebuilt if a partition is
lost.

Users can explicitly cache an RDD in memory across machines and reuse it in multi-
ple MapReduce-like parallel operations. RDDs achieve fault tolerance through a notion
of lineage: if a partition of an RDD is lost, the RDD has enough information about how
it was derived from other RDDs to be able to rebuild just that partition. Although RDDs
are not a general shared memory abstraction, they represent a sweet-spot between ex-
pressivity on the one hand and scalability and reliability on the other hand, and we have
found them well-suited for a variety of applications. Spark is the first system to allow
an efficient, general-purpose programming language to be used interactively to process
large datasets on a cluster.

19

Barrales C., Compresión de datasets RDF en HDT usando Spark

Worker
tasks

results
RAM

Input Data

Worker
RAM

Input Data

Worker
RAM

Input Data

Driver

Figure 2: Spark runtime. The user’s driver program launches
multiple workers, which read data blocks from a distributed file
system and can persist computed RDD partitions in memory.

ule tasks based on data locality to improve performance.
Second, RDDs degrade gracefully when there is not
enough memory to store them, as long as they are only
being used in scan-based operations. Partitions that do
not fit in RAM can be stored on disk and will provide
similar performance to current data-parallel systems.

2.4 Applications Not Suitable for RDDs

As discussed in the Introduction, RDDs are best suited
for batch applications that apply the same operation to
all elements of a dataset. In these cases, RDDs can ef-
ficiently remember each transformation as one step in a
lineage graph and can recover lost partitions without hav-
ing to log large amounts of data. RDDs would be less
suitable for applications that make asynchronous fine-
grained updates to shared state, such as a storage sys-
tem for a web application or an incremental web crawler.
For these applications, it is more efficient to use systems
that perform traditional update logging and data check-
pointing, such as databases, RAMCloud [25], Percolator
[26] and Piccolo [27]. Our goal is to provide an efficient
programming model for batch analytics and leave these
asynchronous applications to specialized systems.

3 Spark Programming Interface
Spark provides the RDD abstraction through a language-
integrated API similar to DryadLINQ [31] in Scala [2],
a statically typed functional programming language for
the Java VM. We chose Scala due to its combination of
conciseness (which is convenient for interactive use) and
efficiency (due to static typing). However, nothing about
the RDD abstraction requires a functional language.

To use Spark, developers write a driver program that
connects to a cluster of workers, as shown in Figure 2.
The driver defines one or more RDDs and invokes ac-
tions on them. Spark code on the driver also tracks the
RDDs’ lineage. The workers are long-lived processes
that can store RDD partitions in RAM across operations.

As we showed in the log mining example in Sec-
tion 2.2.1, users provide arguments to RDD opera-

tions like map by passing closures (function literals).
Scala represents each closure as a Java object, and
these objects can be serialized and loaded on another
node to pass the closure across the network. Scala also
saves any variables bound in the closure as fields in
the Java object. For example, one can write code like
var x = 5; rdd.map(_ + x) to add 5 to each element
of an RDD.5

RDDs themselves are statically typed objects
parametrized by an element type. For example,
RDD[Int] is an RDD of integers. However, most of our
examples omit types since Scala supports type inference.

Although our method of exposing RDDs in Scala is
conceptually simple, we had to work around issues with
Scala’s closure objects using reflection [33]. We also
needed more work to make Spark usable from the Scala
interpreter, as we shall discuss in Section 5.2. Nonethe-
less, we did not have to modify the Scala compiler.

3.1 RDD Operations in Spark

Table 2 lists the main RDD transformations and actions
available in Spark. We give the signature of each oper-
ation, showing type parameters in square brackets. Re-
call that transformations are lazy operations that define a
new RDD, while actions launch a computation to return
a value to the program or write data to external storage.

Note that some operations, such as join, are only avail-
able on RDDs of key-value pairs. Also, our function
names are chosen to match other APIs in Scala and other
functional languages; for example, map is a one-to-one
mapping, while flatMap maps each input value to one or
more outputs (similar to the map in MapReduce).

In addition to these operators, users can ask for an
RDD to persist. Furthermore, users can get an RDD’s
partition order, which is represented by a Partitioner
class, and partition another dataset according to it. Op-
erations such as groupByKey, reduceByKey and sort au-
tomatically result in a hash or range partitioned RDD.

3.2 Example Applications

We complement the data mining example in Section
2.2.1 with two iterative applications: logistic regression
and PageRank. The latter also showcases how control of
RDDs’ partitioning can improve performance.

3.2.1 Logistic Regression

Many machine learning algorithms are iterative in nature
because they run iterative optimization procedures, such
as gradient descent, to maximize a function. They can
thus run much faster by keeping their data in memory.

As an example, the following program implements lo-
gistic regression [14], a common classification algorithm

5We save each closure at the time it is created, so that the map in
this example will always add 5 even if x changes.

Figure 4.1.: Spark execution model [Zaharia et al., 2012]

There are three architectural components covering the majority of architectural dif-
ferences between MapReduce and Spark [Shi et al., 2015]:

Shuffle The shuffle component is responsible for exchanging intermediate data be-
tween two computational stages. For example, in the case of MapReduce, data
is shuffled between the map stage and the reduce stage for bulk synchronization.
The shuffle component often affects the scalability of a framework. Very fre-
quently, a sort operation is executed during the shuffle stage. An external sorting
algorithm, such as merge sort, is often required to handle very large data that
does not fit in main memory. Furthermore, aggregation and combine are often

20

Escuela Técnica Superior de Ingenieros de Telecomunicación

performed during a shuffle.

Execution model The execution model component determines how user defined func-
tions are translated into a physical execution plan. The execution model often
affects the resource utilization for parallel task execution. In particular:

1. Parallelism among tasks.

2. Overlap of computational stages.

3. data pipelining among computational stages.

Caching The caching component allows reuse of intermediate data across multiple
stages to avoid recomputing them several times. Effective caching speeds up iter-
ative algorithms at the cost of additional space in memory or on disk.

[Zaharia et al., 2012] evaluated Spark and RDDs through a series of experiments on
Amazon EC2, as well as benchmarks of user applications. Overall, our results showed
the following:

• Spark outperforms Hadoop by up to 20x in iterative machine learning and graph
applications. The speedup comes from avoiding I/O and deserialization costs by
storing data in memory as Java objects.

• Applications written by our users perform and scale well. In particular, we used
Spark to speed up an analytics report that was running on Hadoop by 40x.

• When nodes fail, Spark can recover quickly by re- building only the lost RDD
partitions.

• Spark can be used to query a 1 TB dataset interactively with latencies of 5–7
seconds

Lately, in the newer versions of Apache Spark, new components have been built and
they are now part of the framework. Apache Spark SQL engine is a component that
introduced a new API called DataFrames (previously called SchemaRDD). DataFrames
provides support for structured and semi-structured data and the ability to use a SQL
like language to be transformed. As in the RDD case, this API evaluates operations
lazily so that it can perform relational optimizations. To support the wide range of data
sources and algorithms in big data, Spark SQL introduces a novel extensible optimizer
called Catalyst. Catalyst makes it easy to add data sources, optimization rules, and
data types for multiple domains[Wikimedia, 2017]. The DataFrame API offers rich re-
lational/procedural integration within Spark programs. DataFrames are collections of
structured records that can be manipulated using Spark’s API, or using new relational
APIs that allow richer optimizations. Like an RDD, a DataFrame is an immutable dis-
tributed collection of data. Unlike an RDD, data is organized into named columns, like

21

Barrales C., Compresión de datasets RDF en HDT usando Spark

a table in a relational database. Designed to make large data sets processing even easier,
DataFrame allows developers to impose a structure onto a distributed collection of data,
allowing higher-level abstraction. [Armbrust et al., 2015b]

Starting from Spark 2.0 version, DataFrame APIs have been merged with Datasets
APIs, unifying data processing capabilities across libraries. Both DataFrame and Dataset
APIs are built on top of the Spark SQL engine, so theyy uses Catalyst to generate an
optimized logical and physical query plan. Also, since Spark as a compiler understands
Dataset type JVM object, it maps the type-specific JVM object to Tungsten’s internal
memory representation using Encoders. As a result, Tungsten Encoders can efficiently
serialize/deserialize JVM objects as well as generate compact bytecode that can execute
at superior speeds [Armbrust et al., 2015b].

them simpler to checkpoint than general shared mem-
ory. Because consistency is not a concern, RDDs can be
written out in the background without requiring program
pauses or distributed snapshot schemes.

6 Evaluation
We evaluated Spark and RDDs through a series of exper-
iments on Amazon EC2, as well as benchmarks of user
applications. Overall, our results show the following:
• Spark outperforms Hadoop by up to 20⇥ in itera-

tive machine learning and graph applications. The
speedup comes from avoiding I/O and deserialization
costs by storing data in memory as Java objects.

• Applications written by our users perform and scale
well. In particular, we used Spark to speed up an an-
alytics report that was running on Hadoop by 40⇥.

• When nodes fail, Spark can recover quickly by re-
building only the lost RDD partitions.

• Spark can be used to query a 1 TB dataset interac-
tively with latencies of 5–7 seconds.

We start by presenting benchmarks for iterative ma-
chine learning applications (§6.1) and PageRank (§6.2)
against Hadoop. We then evaluate fault recovery in Spark
(§6.3) and behavior when a dataset does not fit in mem-
ory (§6.4). Finally, we discuss results for user applica-
tions (§6.5) and interactive data mining (§6.6).

Unless otherwise noted, our tests used m1.xlarge EC2
nodes with 4 cores and 15 GB of RAM. We used HDFS
for storage, with 256 MB blocks. Before each test, we
cleared OS buffer caches to measure IO costs accurately.

6.1 Iterative Machine Learning Applications

We implemented two iterative machine learning appli-
cations, logistic regression and k-means, to compare the
performance of the following systems:
• Hadoop: The Hadoop 0.20.2 stable release.

• HadoopBinMem: A Hadoop deployment that con-
verts the input data into a low-overhead binary format
in the first iteration to eliminate text parsing in later
ones, and stores it in an in-memory HDFS instance.

• Spark: Our implementation of RDDs.
We ran both algorithms for 10 iterations on 100 GB

datasets using 25–100 machines. The key difference be-
tween the two applications is the amount of computation
they perform per byte of data. The iteration time of k-
means is dominated by computation, while logistic re-
gression is less compute-intensive and thus more sensi-
tive to time spent in deserialization and I/O.

Since typical learning algorithms need tens of itera-
tions to converge, we report times for the first iteration
and subsequent iterations separately. We find that shar-
ing data via RDDs greatly speeds up future iterations.

80
!

13
9!

46
!

11
5!

18
2!

82
!

76
!

62
!

3!

10
6!

87
!

33
!

0!
40!
80!

120!
160!
200!
240!

Hadoop! HadoopBM! Spark! Hadoop! HadoopBM! Spark!

Logistic Regression! K-Means!

Ite
ra

tio
n

tim
e

(s
)!

First Iteration!
Later Iterations!

Figure 7: Duration of the first and later iterations in Hadoop,
HadoopBinMem and Spark for logistic regression and k-means
using 100 GB of data on a 100-node cluster.

18
4!

11
1!

76
!

11
6!

80
!

62
!

15
!

6! 3!

0!
50!
100!
150!
200!
250!
300!

25! 50! 100!

Ite
ra

tio
n

tim
e

(s
)!

Number of machines!

Hadoop!
HadoopBinMem!
Spark!

(a) Logistic Regression

27
4!

15
7!

10
6!

19
7!

12
1!

87
!

14
3!

61
!

33
!

0!

50!

100!

150!

200!

250!

300!

25! 50! 100!

Ite
ra

tio
n

tim
e

(s
)!

Number of machines!

Hadoop !
HadoopBinMem!
Spark!

(b) K-Means

Figure 8: Running times for iterations after the first in Hadoop,
HadoopBinMem, and Spark. The jobs all processed 100 GB.

First Iterations All three systems read text input from
HDFS in their first iterations. As shown in the light bars
in Figure 7, Spark was moderately faster than Hadoop
across experiments. This difference was due to signal-
ing overheads in Hadoop’s heartbeat protocol between
its master and workers. HadoopBinMem was the slowest
because it ran an extra MapReduce job to convert the data
to binary, it and had to write this data across the network
to a replicated in-memory HDFS instance.

Subsequent Iterations Figure 7 also shows the aver-
age running times for subsequent iterations, while Fig-
ure 8 shows how these scaled with cluster size. For lo-
gistic regression, Spark 25.3⇥ and 20.7⇥ faster than
Hadoop and HadoopBinMem respectively on 100 ma-
chines. For the more compute-intensive k-means appli-
cation, Spark still achieved speedup of 1.9⇥ to 3.2⇥.

Understanding the Speedup We were surprised to
find that Spark outperformed even Hadoop with in-
memory storage of binary data (HadoopBinMem) by a
20⇥ margin. In HadoopBinMem, we had used Hadoop’s
standard binary format (SequenceFile) and a large block
size of 256 MB, and we had forced HDFS’s data di-
rectory to be on an in-memory file system. However,
Hadoop still ran slower due to several factors:
1. Minimum overhead of the Hadoop software stack,

2. Overhead of HDFS while serving data, and

Figure 4.2.: Duration of the first and last itertions in Hadoop, HadoopBinMem and
Spark in logistic regression taks and k-means clusterization using 100 GB
data in a 100 nodes cluster [Zaharia et al., 2012]

The work of [Shi et al., 2015] highlights the feasibility of the usage of Spark to im-
prove many particular distributed algorithms with different profiles. They performed a
quantitative analysis selecting workloads collectively cover the characteristics of typical
batch and iterative analytic applications run on MapReduce and Spark. For each type of
job, they covered different shuffle selectivity (i.e., the ratio of the map output size to the
job input size, which represents the amount of disk and network I/O for a shuffle), job
selectivity (i.e., the ratio of the reduce output size to the job input size, which represents
the amount of HDFS writes), and iteration selectivity (i.e., the ratio of the output size
to the input size for each iteration, which represents the amount of intermediate data
exchanged across iterations). For each workload, given the I/O behavior represented
by these selectivities, we evaluate its system behavior (e.g., CPU-bound, disk-bound,
network-bound) to further identify the architectural differences between MapReduce
and Spark.

22

Escuela Técnica Superior de Ingenieros de Telecomunicación

Overall, they showed that Spark is approximately 2.5x, 5x, and 5x faster than MapRe-
duce, for Word Count, k-means, and PageRank, respectively. Although Spark’s per-
formance advantage over MapReduce is known, par- ticularly, they attribute Spark’s
performance advantage to a number of architectural differences from MapReduce:

• For Word Count and similar workloads, where the map output selectivity can be
significantly reduced using a map side combiner, hash-based aggregation in Spark
is more efficient than sort-based aggregation in MapReduce. The execution time
break-down result indicates that the hash-based framework contributes to about
39% of the overall improvement for Spark.

• For iterative algorithms such as k-means and PageRank, caching the input as
RDDs can reduce both CPU (i.e., parsing text to objects) and disk I/O overheads
for subsequent iterations. It is noteworthy that the CPU overhead is often the
bottleneck in scenarios where subsequent iterations do not use RDD caching. As
a result, RDD caching is much more efficient than other low-level caching ap-
proaches such as OS buffer caches, and HDFS caching, which can only reduce
disk I/O. Through micro- benchmark experiments, we show that reducing parsing
(CPU) overhead contributes to more than 90% of the overall speedup for subse-
quent iterations in k-means.

• Since Spark enables data pipelining within a stage, it avoids materialization over-
head for output data on HDFS (i.e., serialization, disk I/O, and network I/O)
among iterations for graph analytics algorithms such as PageRank.

An exception to Spark’s performance advantage over MapReduce is the Sort work-
load, for which MapReduce is 2x faster than Spark. This is due to differences in task
execution plans. MapReduce can overlap the shuffle stage with the map stage, which
effectively hides network overhead which is often a bottleneck for the reduce stage
[Shi et al., 2015].

The motivation of this work stems from the possibility of exploiting the advantages
of Apache Spark to achieve an implementation of a memory-efficient HDT encoder
according to the terms of [Radoi et al., 2014].

4.2. Expected contributions
The proposed line of research is to design an algorithm distributed under the MapReduce
paradigm with the following considerations:

• Design a speculative triple partitioning strategy that satisfies the new memory
usage constraints.

23

Barrales C., Compresión de datasets RDF en HDT usando Spark

• Add, disaggregate, or balance tasks as much as necessary to minimize the number
of writes to disk.

• Study the properties and constraints of the compact structures of the HDT com-
ponents to design a divide-and-conquer algorithm that allows incremental HDT
encoding to be constructed or mergable partitions.

• Perform experiments to measure the performance and memory needs obtained.

On the other hand, with the aim of facilitating reproducibility and guaranteeing the
validity of the experiments carried out in the context of this work, a provisioning activity
will be carried out to facilitate the task of setting up a cluster environment and run test
or validations.

4.3. Materials and methodology
For the evaluation of the results of this work, a purely quantitative experimental proce-
dure have been followed in line as those previously performed within the research line.
We measured the elapse time in the encoding of data sets of different sizes with detail
on the relevant stages to study which ones performs better or worst and why. To study
the fine grain behavior of the different technologies, the jobs logs and the detailed in-
formation coming from history services (Spark History Server and MapReduce History
Server) have been analyzed. All experiments (HDT-MR, and the new HDT-SPARK pro-
posal) have been performed on the same machine with the same configuration of nodes
and resources.

The infrastructure used to test the validity and performance of the proposed algorithm
and its implementation is based on a virtual environment with dedicated resources. 11
servers have been setup in a master-slave architecture configuration: 1 master, 10 slaves.
The master node runs the program driver and spreads, submits and coordinates the tasks
for the workers. The table 4.1 shows the virtual servers with resources and the hadoop/s-
park ecosystem roles they play.

24

Escuela Técnica Superior de Ingenieros de Telecomunicación

Server CPU RAM Roles

Master 4 cores 64bit KVM @2.1GHz 40GB

HDFS namenode.
Spark master.
Spark history server.
YARN ResourceManager.
MapReduce HistoryServer.

Slaves 1..10 4 cores 64 bit KVM @2.1GHz 8GB
HDFS datanode.
Spark worker.
YARN NodeManager.

Table 4.1.: Hardware configuration of the master and 10 slaves.

The RDF datasets used (see 4.2) are public available in [W3C, 2016], [RDFHDT, 2016]
and [LUBM, 2016]. The first 5 dataset are real world data, while latest two are synthetic
mashups for test and scalability purposes:

LUBM 4K The Lehigh University Benchmark is developed to facilitate the evaluation
of Semantic Web repositories in a standard and systematic way. The benchmark
is intended to evaluate the performance of those repositories with respect to ex-
tensional queries over a large data set that commits to a single realistic ontology.
It consists of a university domain ontology, customizable and repeatable synthetic
data, a set of test queries, and several performance metrics. The 4K dataset has
been generated with the UBA tool ([LUBM, 2016]) for 4000 universities.

dbpedia+linkedgeodata The combination of two real world datasets to build a bigger
one even though there are no real links among its terms.

Dataset #Triples #Subjects #Predicates #Objects #Shared
linkedmdb 3,579,532 277,041 148 1,009,618 118,514
geonames 96,275,507 6,417,955 28 33,236,906 125,402
linkedgeodata 271,180,352 10,445,197 18,272 80,278,063 41,471,798
DBPedia 431,441,103 2,779,008 58,327 86,914,854 22,012,722
Freebase 2,067,068,155 2,797,905 770,416 339,628,695 99,203,549
LUBM 4K 534,203,577 86,900,413 18 64,589,197 19,924,941
dbpedia+linkedgeodata 702,621,455 13,224,205 76,599 167,192,917 63,484,520

Table 4.2.: Datasets used with triples and components sizes

25

Barrales C., Compresión de datasets RDF en HDT usando Spark

Note: All input datasets are in N-Triples format and compressed with LZO algo-
rithm.

26

Escuela Técnica Superior de Ingenieros de Telecomunicación

Part III.

Developed work

27

Barrales C., Compresión de datasets RDF en HDT usando Spark

5
Experimental design

The first thing we need to do is to validate the HDT-SPARK implementation to en-
sure both reference implementations (HDT-MR and HDT-SPARK) generates equivalent
HDT files.

As HDT is a lossless compression implementation, the encoding process can be re-
verted to get the same input data, so we use this principle to ensure the HDT serialization
processes are correct. The process to decode HDT back to RDF format has been per-
formed with HDT-Java, the tool developed by the contributors of RDF/HDT project 1.
This will be our gold rule to check the validity of HDT files produced, assuming HDT
is correct if we can interpret it with this de facto standard tool.

Based in same input, and same hardware configuration, to measure the performance
and resources usage, the following principal KPIs are measured from both implementa-
tions:

• Total elapse time.

• The metrics were extracted from the hadoop and spark history services respec-
tively.

5.1. Validation procedure
The validation procedure to ensure the output is correct is a three-way comparison per-
formed with hdt-java tool (link) converting the HDT file back to RDF in N-Triples
format.

1http://www.rdfhdt.org

28

Escuela Técnica Superior de Ingenieros de Telecomunicación

Input
RDF

Encode
HDT-MRS

Encode
HDT-SPARK

HDT HDT

Equal?

Decode
HDT-Java

Decode
HDT-Java

Success Failure

Compare

Compare

Equal?

yes

no

yes

no

1

2 3

4 56

7

Figure 5.1.: Validation algorithm

• Take input.rdf (in N-Triples format) sorted lexicographically.

• Convert input.rdf to output-hdtmr.hdt with HDT-MR implementation. HDT-MR
performance KPIs are extracted at this stage for further analysis.

• Convert input.rdf to output-hdtspark.hdt with HDT-SPARK implementation. HDT-
SPARK performance KPIs are extracted at this stage for further analysis.

• Convert output-hdtmr.hdt to output-hdtmr.rdf with HDT-Java tool and sort output
RDF lexicographically.

• Convert output-hdtspark.hdt to output-hdtspark.rdf with HDT-Java tool and sort
output RDF lexicographically.

• Compare output-hdtmr.rdf against output-hdtspark.rdf

• Final comparison: Compare output-hdtmr.rdf with input.rdf

29

Barrales C., Compresión de datasets RDF en HDT usando Spark

If final comparison is success. We can ensure the output produced by both implemen-
tations are correct and hence, we can be fair comparing the time and resources taken to
perform both jobs.

5.2. Validation results
Two datasets have been used to validate the HDT-MR and HDT-SPARK results:

linkedmdb Linked Data about Movies (3.5M triples. see table 4.2) .

The validation 5.1 was succeeded with few negligible UTF encoding differences
comparing with the input. We must assume N-Triples input shall be in a uniform and
platform supported encoding like UTF-8 or ASCII, but that’s not the case as input has
merges of different encodings.

Code 5.1: Sample linkedmdb difference
-<http://data.linkedmdb.org/actor /10008 > <http://data.

linkedmdb.org/movie/actor_name > "V**ra Clouzot" .

2 +<http://data.linkedmdb.org/actor /10008 > <http://data.

linkedmdb.org/movie/actor_name > "V\u00C3\u00A9ra

Clouzot" .

On the other hand, HDT-MR and HDT-SPARK outputs matched perfectly between
them.

30

Escuela Técnica Superior de Ingenieros de Telecomunicación

6
Solution design and implementation

The main objectives in this chapter were to understand how spark works and how we
can build a solution for the HDT serialization problem on top of it, analyze the perfor-
mance of proposed algorithm using the tools and metrics provided by the ecosystem and
optimize then to get final approach. To describe the algorithms, we’ll use the following
visual convention:

Continue line arrows DAG dependency which back-propagates inputs.

Discontinue line arrows Use inputs but does not back feed the DAG graph.

Green (olive) Feeds more than one output, so it should be cached to avoid multiple
time (re)computation.

Wide red frame Expensive operations requiring shuffle.

Next sections details how HDT-SPARK has been designed and implemented. The prob-
lem has been decomposed in three stages:

• Dictionary generation.

• Triples encoding.

• HDT serialization.

6.1. Dictionary generation
The first stage parses the input dataset clasifiying the RDF terms by its type:

subject (S) If it is the first item in the triple.

predicate (P) If it is the second item in the triple.

object (O) If it is the third item in the triple.

31

Barrales C., Compresión de datasets RDF en HDT usando Spark

As one subject term can appear as object term as well, we need to identify one adi-
tional group (SO) having the terms meeting this double role. With the four groups (S,
SO, O, P), we are in place to uniquely assign one id to each one. To do that, we’ll
filter out unique terms within each group, sort them lexicographically to ensure a high
reduction ratio in the further compression. Figure 6.1 shows the jobs DAGs with brief
sample content.

RDF

LZO RDD:
String

S1 P1 S1
S2 P2 O1

S -> S1
P -> P1
O -> S1
S -> S2
P -> P2
O -> O1

RDD:
Comp ->
String

MapRead

Intersect

Substra
ct

Filter
(Sub)

S1
S2

S2

Sort

S2

Objects

Predicate
s

Filter
(Obj)

S1
O1

Filter
(Pred)

P1
P2

S1

Subjects

Subjects
Objects

Substra
ct

O1

Sort

O1

Sort

P1
P2

Figure 6.1.: Dictionary generation algorithm

6.2. Triple encoding
Triple encoding is the heart of the HDT encoding. It consist on the replace of component
literals by unique identifiers. Objective is to save space repeating components and store
RDF graph in a succint structure.

Three different implementations have been tested

6.2.1. Materialization method
Instead of using any transformation, dictionary dataframes are retrieved to the driver,
meaning all the dictionaries are loaded in memory in the Spark main node. This way,
the expensive shuffle operations are avoided, but we are in a similar situation than the
HDT-MR solution. As we discovered in the first results, this method is suitable for small

32

Escuela Técnica Superior de Ingenieros de Telecomunicación

datasets, but takes more and more memory as long as the dictionary size grows. For that
reason, we discarded this approach in the final proposal in order to find a better way to
leverage Spark primitives to provide a distribute merge algorithm.

As shown in figure 6.2, Spark DAG is simple tu understand. We start from the or-
dered dictionaries (subject-object, subject, predicates, objects) which are sorted unique
sets wich value starting at 0. To met the HDT specification, we need to med following
rules:

• To encode subjects, we need to take the keys from shared dictionary (sujects-
objects) and subjects. By definition, both sets keys does not contains common
terms, and theirs values starts at 0. In consequence, we add a bias of 1 to the
shared dictionary and another bias to the subjects for them to start with the latest
shared key plus one. This is performed with two map operations. then a union
primitive is used to merge both dictionaries with the keys in the right range.

• To encode the objects, we do the same workflow as in the subjects step to remap
the values in the right range.

• The encoding of predicates only needs to add a bias to start by 1.

At this point, we are ready to replace any subject, predicate or objects coming from the
input by it’s respective key, which is taken from it’s transformation (subject, predicate
or object). These three datasets are materialized, meaning they are retrieved from the
program driver, loaded in memory and then transfered to all workers so they can have a
copy in memory. After that, a transformation from the input set (Lookup) replaces the
values in a single and fast map operation in parallel from all workers.

33

Barrales C., Compresión de datasets RDF en HDT usando Spark

Objects

Predicat
es

Subjects
Objects

Subjects Read

Read

{S2, 0}

Add

{S2, 2}

Count

1

Add

{S1, 1}

Read

{P1, 0}
{P2, 1}

Add

{P1, 1}
{P2, 2}

Read Add

{O1, 2}

{S1, 0}

{O1, 0}
Map

Union

{S2, 2}
{S1, 1}

Union

{S1, 1}
{O1, 2}

{
 subject:S1
 predicate:
P1
 object: S1
 index: 1
},{
 subject: S2
 predicate:
P2
 object: O2
 index: 2
}

Triples

1 1 1
2 2 2

Lookup

Figure 6.2.: Triples encoding: materialization algorithm

The Spark actions in this workflow are:

• Every single dictionary materialization before lookup.

• The final triples save operation.

All other transformations are lazy. In this case, it’s not meaningful to cache or persist
any of them because the computation cost to perform them is lower than the effort or
memory pressure needed to do the cache, meaning it’s best to perform the read and add
operation twice on subject-objects than maintain the transformation in memory or disk.

6.2.2. Join method
This method (see 6.3) is founded on the usage of the join transformation available in
Spark. Basically, the strategy is similar that the previous one, but we’ve replaced the
materialization and distribution of the dictionaries by the join Spark primitive transfor-
mation. The Spark Join transformation is similar to the inner join relational database op-
eration, providing a new dataset in the output containing the combination of the records

34

Escuela Técnica Superior de Ingenieros de Telecomunicación

matching both inputs. In this case, the key to match is the subject, predicate or object
component dataframe containing strings:
{subject string, predicate string, object string})

to match consecutively the dictionary dataframes
{subject string, value identifier}
{predicate string, value identifier}
{object string, value identifier}

so we can replace the strings by the value identifiers. Thus, the difference comes from
the three chained join operations from the three transformed dictionaries. After last join
stage, input triples are completely replaces by it’s keys in all components.

The unique Spark action in this workflow is the final write of the result. All other
transformations are lazily evaluated. The only concern with this method is the cost
of the join operation, which leads into expensive shuffle operations to distribute the
partitions. Shuffle operations are one of the most relevant bottlenecks we can find in
the Spark framework. It means we need to find a balance between data redistribution,
causing a high cost in network I/O and other technicals consuming more memory or
CPU resources.

35

Barrales C., Compresión de datasets RDF en HDT usando Spark

Objects

Predicat
es

Subjects
Objects

Subjects Read

Read

{S2, 0}

Add

{S2, 2}

Count

1

Add

{S1, 1}

Read

{P1, 0}
{P2, 1}

Add

{P1, 1}
{P2, 2}

Read Add

{O1, 2}

{S1, 0}

{O1, 0}

Map

Union

{S2, 2}
{S1, 1}

Union

{S1, 1}
{O1, 2}

Join

Join

Join

{
 subject:S1
 predicate:
P1
 object: S1
 index: 1
},{
 subject: S2
 predicate:
P2
 object: O2
 index: 2
}

{
 subject:S1
 predicate: 1
 object: S1
 index: 1
},{
 subject: S2
 predicate: 2
 object: O2
 index: 2
}

{
 subject:S1
 predicate: 1
 object: 1
 index: 1
},{
 subject: S2
 predicate: 2
 object: 2
 index: 2
}

{
 subject:1
 predicate: 1
 object: 1
 index: 1
},{
 subject: 2
 predicate: 2
 object: 2
 index: 2
}

Triples

1 1 1
2 2 2

Figure 6.3.: Triples encoding: join algorithm

6.2.3. Cogroup method
As Join method introduces expensive shuffle operations, we tried different approaches
to resolve the triples encoding problem. Cogroup is a Spark transformation primitive
more efficient than the join in terms of task distribution. As it can be shown in figure
6.4, it’s nearly equivalent with few adds which have been simplified in the workflow.
Cogroup transformation groups two KeyValue RDDs (PairRDD). For instance Consider,
we have two RDDs of {Subject,V1} and {Subject,V2} types, after transformation is
executed, result will be a RDD with the common key and the list of values in a tuple:
{Subject,(Iterable<V1>,Iterable<V2>} type.

Concretely, the algorithm consist on two stages prior the cogroup show in figure 6.4:

1. cogroup every dictionary value to the row number in which it appears.

2. unfold the cogrouped {Subject, Iterable<Value>, Iterable<RowNum>}with
flatMap primitive to get a PairRDD of {RowNum, Key}

36

Escuela Técnica Superior de Ingenieros de Telecomunicación

We call this lazy preprocessing stage ”row encoding”. Then we consecutively cogroup
this three transformations with the input as {RowNum, Triple}. As there can be only
one coincidence because RowNums are unique by row, we can just take the first element
in the iterable as the resolved identifier.

Objects

Predicat
es

Subjects
Objects

Subjects Read

Read

{S2, 0}

Add

{S2, 2}

Count

1

Add

{S1, 1}

Read

{P1, 0}
{P2, 1}

Add

{P1, 1}
{P2, 2}

Read Add

{O1, 2}

{S1, 0}

{O1, 0}

Map

Union

{S2, 2}
{S1, 1}

Union

{S1, 1}
{O1, 2}

Cogroup

Cogroup

Cogroup

{
 subject:S1
 predicate:
P1
 object: S1
 index: 1
},{
 subject: S2
 predicate:
P2
 object: O2
 index: 2
}

{
 subject:S1
 predicate: 1
 object: S1
 index: 1
},{
 subject: S2
 predicate: 2
 object: O2
 index: 2
}

{
 subject:S1
 predicate: 1
 object: 1
 index: 1
},{
 subject: S2
 predicate: 2
 object: 2
 index: 2
}

{
 subject:1
 predicate: 1
 object: 1
 index: 1
},{
 subject: 2
 predicate: 2
 object: 2
 index: 2
}

Triples

1 1 1
2 2 2

Figure 6.4.: Triples encoding: cogroup algorithm

6.3. First results and further optimizations
The first goal we needed to achieve was to settle on which triples encoding approach to
follow. Even though the materialization method is simple and effective, it comes with a
very big memory constraint, so we discarded it.

Cogroup method probed to be more efficient in small datasets but it had some disad-
vantages:

• Arbitrary big memory consumption depending on the number of repetitions of
one component in many rows than can stress the memory available to process a

37

Barrales C., Compresión de datasets RDF en HDT usando Spark

single RDD partition.

• Relies on RDD processing, which is more CPU and memory intensive compared
to dataframes. That becomes more and more visible the bigger a dataset is.

For these reasons, we’ve also discarded this approach in favor of join transformation
using dataframes.

Next thing we had to do to really improve the new algorithm was to analyze the graph
to identify duplicate work and orchestrate every single and independent operation to run
in parallel, so we can wait only for the stages from we need to consume. This resulted
in a 4 step algorithm in which we:

1. Index the input data (lzo text format).

2. Build all the interim dictionaries in parallel and get some statistics we need to
build the header, as the number of components and maximum string lengths.

3. Given previous stage and statistics, we encode the triples following the HDT spec-
ification. Mean while, the header and dictionary is also transfered to the driver at
the master node and serialized in HDT.

4. Once triples are encoded, we transfer them to the driver at the master node where
HDT serialization is completed.

Figure 6.5 shows the final execution model of the HDT-SPARK proposal.

38

Escuela Técnica Superior de Ingenieros de Telecomunicación

 SO dictionary generation

Triples encoding

H D TLZO Index

Time

Spark jobs
running at node

workers
(N1, N2, …, N10)

Tasks running at
master (M)

HDT Serialization

 P dictionary generation
 O dictionary generation

 S dictionary generation

 SO dictionary generation

Triples encoding
 P dictionary generation
 O dictionary generation

 S dictionary generation

N1

M

...

N10

 SO dictionary generation

Triples encoding
 P dictionary generation
 O dictionary generation

 S dictionary generation

Figure 6.5.: HDT-SPARK execution model

6.4. Lessons learned
Based on the inputs found in the literature and the first stress tests we performed,

• Spark dataframes are in general the desirable API on which to base the devel-
opments. They are easy to use, faster and consumes less memory than RDD.
However, that does not means RDD are not necessary. They are, so many prim-
itives are only available in the RDD API. Also, RDDs are very helpful writing
transformations and filters in Java code.

• Not all operations preserve dataset order. Even if they does not shuffle data, like
coallesce or repartition with shuffle flag unset.

• There is not fixed rules to optimize a problem. For instance, sometimes altering
the order and distinct operations can produce different performance results.
One specific order can be faster for small dataset but slower with big ones.

• Best way to understand how the Apache Spark works is to study the history server
timings and execution plans.

39

Barrales C., Compresión de datasets RDF en HDT usando Spark

• Infrastructure services provisioning and roles distributions across nodes are not
straightforward matters and might cause good ideas to not succeed if wrong deci-
sions are made.

40

Escuela Técnica Superior de Ingenieros de Telecomunicación

7
Experiment results

In this chapter we discuss the outcomes that have been achieved with the HDT-SPARK
implementation and how technology can be used to improve it.

7.1. Results
The test performed with different dataset sizes showed the benefits obtained with the
proposed solution compared to the implementation of Hadoop MapReduce, as well as
some highlights to further improve the algorithm.

Two types of datases have been used (see table 4.2):

Real world datasets 5 RDF datasets with different triples sizes. In growing order:
linkedmdb (3.5M), geonames (96M), linkedgeodata (271M), DBPedia (431M),
Freebase(2067M).

Synthetic/mashups Synthetically produced datasets (LUBM-4K, from the Lehigh Uni-
versity Benchmark), or manual merge of different datasets to become larger (db-
pedia+linkedgeodata).

Both types are useful because even though nowadays we can find very large RDF
datasets to analyze performance or limitations on the processing algorithms, synthetic
or merges lets us analyze how they perform with big amounts of different components
or some uncommon situations or border limits.

Tables 7.1 and 7.2 shows the total and per-stage elapsed time in seconds to process
target datasets in N-Triples format compressed with LZO with both implementations in
the same hadoop cluster. Stages correspond to the different algorithm steps described
on section 6.3:

Total Total elapsed time in seconds to build the HDT dataset.

Index Time in seconds to build the input lzo index.

Dictionary Time in seconds to build the dictionary.

41

Barrales C., Compresión de datasets RDF en HDT usando Spark

Triples Time in seconds to encode the triples.

Finalization Time in seconds to finalize the HDT serialization (read inputs, write sec-
tions, compute CRC...).

HDT-MR elapsed time (s)
Dataset Total Index Dictionary Triples Finalization

linkedmdb 214.75 0.91 84.00 114.00 15.84
geonames 1163.26 24.69 346.00 589.00 203.573
linkedgeodata 3414.19 39.93 689.00 1928.00 757.26
DBPedia 7723.51 85.69 2716.00 4238.00 683.82
Freebase Unable to process by out of memory
LUBM 4K 3866.31 132.40 829.00 2354.00 550.91
dbpedia+linkedgeodata 15750.70 136.47 4451.00 9779.00 1384.23

Table 7.1.: Elapsed time to process RDF nt+lzo datasets with HDT-MR

HDT-SPARK elapsed time (s)
Dataset Total Index Dictionary Triples Finalization

linkedmdb 129.47 0.64 57.90 56.03 14.88
geonames 693.60 14.10 295.38 281.63 102.49
linkedgeodata 1588.70 41.53 714.77 553.98 278.40
DBPedia 2052.79 77.72 901.12 653.67 420.27
Freebase 9758.58 330.03 3693.81 3673.23 2061.50
LUBM 4K 2081.23 43.77 961.77 752.14 323.53
dbpedia+linkedgeodata 3514.74 115.99 1526.81 1172.31 699.63

Table 7.2.: Elapsed time to process RDF nt+lzo datasets with HDT-SPARK

Note: Measured times remained stable with low variance along 3 consecutive repe-
titions (less than 10% deviation).

7.2. Discussion
First singular situation we observe is that HDT-MR was not able to compute Freebase.
Reason is this dataset has a big number of very different components among them. That

42

Escuela Técnica Superior de Ingenieros de Telecomunicación

situation caused Plain Front Coding algorithm to not be able to achieve big enough com-
pression ratio and hence HDT-MR tried to allocate more than the 6GB of RAM memory
available in workers (2 GB remaining are reserved for services, file caching and Oper-
ating System). For that reason, even though HDT-MR is able to scale to compute very
big datasets as it has been proved before, there exists this memory limitation which is
not such often when computing synthetic RDF datasets, as most of the components are
common and Plain Front Coding gets a big compression ratio there.

The performance overall, as expected is higher in HDT-SPARK. As summarized in
table 7.3, HDT-SPARK is between 1.7 and 2.1 times faster in normal cases. There
are some exceptions like DBPedia and DBPedia+linkedgeodata in which performace is
even greater.

Dataset Improvement
linkedmdb 1.7 x
geonames 1.7 x
linkedgeodata 2.1 x
DBPedia 3.8 x
Freebase -
LUBM 4K 1.9 x
dbpedia+linkedgeodata 4.5 x

Table 7.3.: Performance of HDT-SPARK over HDT-MR (times faster)

This two cases are singular because the resulting dictionaries are very big in compar-
ison with others. According to the table 7.4 showing HDT output sizes, we can see the
size is anomaly big compared with others having more triples and components. That
means the dictionaries are big because it contains many components without common
prefix and seems to cause a degradation in the HDT-MR algorithm.

43

Barrales C., Compresión de datasets RDF en HDT usando Spark

Dataset HDT size
linkedmdb 32 MB
geonames 860 MB
linkedgeodata 6.5 GB
DBPedia 6.5 GB
Freebase 26 GB
LUBM 4K 3.1 GB
dbpedia+linkedgeodata 13 GB

Table 7.4.: HDT Sizes

Figures 7.1 and 7.2 shows graphically the per-stage elapsed time comparison between
the two implementations:

Index There is no relevant difference in this stage, as it is exactly the same.

Dictionary Except in DBPedia and DBPedia+linkedgeodata, Dictionary stage is nearly
equal or slightly faster in HDT-MR. This is a well know sort performance situation
highlighted by [Shi et al., 2015] summarized in section 4.1.

Triples Very big performance gain in HDT-SPARK. More than 2x in worst cases. Un-
fortunately, top performance is limited by the need have sort stages, which is, in
general one of the bottlenecks in this paradigm.

Finalization In general, HDT-MR performs better in this stage as it uses custom binary
formats. However, as HDT-SPARK is able to serialize in a parallel pipeline, the
bad effect is isolated with a big gain at the end (2x).

44

Escuela Técnica Superior de Ingenieros de Telecomunicación

linkedmdb geonames linkedgeodata

DBPedia Freebase
0

2500

5000

7500

10000

0

2500

5000

7500

10000

MR SPARK MR SPARK
Method

Ti
m
e

Stage
Index

Dictionary

Triples

Serialization

Figure 7.1.: HDT-MR and HDT-SPARK performance comparison on real data input
datasets

45

Barrales C., Compresión de datasets RDF en HDT usando Spark

LUBM-4K DBPedia+linkedgeodata

0

5000

10000

15000

MR SPARK MR SPARK
Method

Ti
m
e

Stage
Index

Dictionary

Triples

Serialization

Figure 7.2.: HDT-MR and HDT-SPARK performance comparison on synthetic/mashup
datasets

46

Escuela Técnica Superior de Ingenieros de Telecomunicación

Part IV.

Finalization

47

Barrales C., Compresión de datasets RDF en HDT usando Spark

8
Related work

A focused search in some of the most popular scientific publications with the key-
words “Apache Spark”, “HDT” and “RDF” shows several similar initiatives to leverage
Apache Spark to outperform SPARQL queries over RDF datasets:

• “Presto-RDF: SPARQL Querying over Big RDF Data” [Mammo and Bansal, 2015].

• “SPARQL query processing with Apache Spark” [Naacke et al., 2016].

• “SPARQLGX in Action: Efficient Distributed Evaluation of SPARQL with Apache
Spark” [Graux et al., 2016].

They are different approaches willing to provide on-line solutions, meaning the queries
are performed on real time while the goal in this research line is to provide off-line
processing on commodity hardware.
We found also other lines trying to use different technologies to solve the RDF problem:

• “TriAD: a distributed shared-nothing RDF engine based on asynchronous mes-
sage passing” [Gurajada et al., 2014].

Furthermore, increasing number of data is currently published adopting Apache Spark
to solve other problems:

• “Matrix Computations and Optimization in Apache Spark” [Bosagh Zadeh et al., 2016].

• “Balanced Graph Partitioning with Apache Spark” [Carlini et al., 2014].

• “Un enfoque MapReduce del algoritmo k-vecinos más cercanos para Big Data”
[Maillo et al., 2003].

• “SparkSeq: fast, scalable and cloud-ready tool for the interactive genomic data
analysis with nucleotide precision” [Wiewiórka et al., 2014].

48

Escuela Técnica Superior de Ingenieros de Telecomunicación

9
Conclusion

Given the results, Apache Spark is a good technology to set the bases to build better
HDT serialization implementations. Even though there is not a big gain in all cases in
the dictionary generation stage, there are some benefits which makes it a good choice:

• Most important achievement is we remove the memory requirement in the work-
ers to compute a dataset. With HDT-SPARK, the dictionaries are not fully loaded
in memory or transfered to the workers in the triples encoding stage. As we have
demonstrated, we can build an arbitrary large dataset without theoretical memory
constrains in workers, as we was able to process a very big 2Billion triples RDF
dataset for which HDT-MR failed in the same environment with same resources
as HDT-MR was not able to hold very big dictionaries.

• HDT-SPARK outperformed between 1.5x and 1.9x in medium sized RDF datasets
and over 3.0x faster for some big real world datasets.

• The dictionary stage, even if it’s not much faster than MapReduce approach, is
important because it sets the inputs of further stages in a standard format ready to
use not only by spark, but any other technology from the hadoop ecosystem.

• In the HDT-SPARK approach, the less something depends on one stage output,
the more it can be parallelized. This lets us to fine-grain control the task we run
in parallel.

To met the reproducibility secondary objective and facilitate the continuation of fu-
ture work, a software provisioning has been organized for anyone to be able to deploy
the cluster distribution in a virtual machine (or cluster of virtual machines) or docker
containers.

49

Barrales C., Compresión de datasets RDF en HDT usando Spark

10
Limitations and future work

Main bottleneck still persisting after this work is the need of fetching all the dictionary
partitions and encoded triples back to the driver and serialize the HDT in the master
node. New questions come to the fore, like how to build a complete end to end parallel
HDT serialization. Unfortunately, to do this, we need to rethink how to split and merge
back the succint structures without compromise.

These outcomes open up interesting new lines of research like:

• Discovery of new dictionary and triples compact data structures with better prop-
erties suitable able to be partitioned.

• Improve current solution with the design of a new algorithm to serialize Spark
partitions of dictionary or triples bitmap (RDD or dataset) to eliminate the need
of a final single serialization.

• Improve HDT for the triples section to be decomposed in ordered chunks. This
will let us solve the serialization bottleneck, but will break the compatibility, so
SPARQL queries must be repeated on all triples chunks. However, many opti-
mizations are possible.

• Study the computation effort and cost/gain of adding extra representations or in-
dexes in HDT to allow efficient SPARQL queries by predicate, by object and/or
combined.

The reduction of the computation effort to serialize RDF is a very important mile-
stone to achieve, because Hopefully, new alternative ways to leverage the technology to
speedup the HDT serialization process like applying a GPGPU-based implementation
like [Choksuchat and Chantrapornchai, 2013] within Spark makes sense, and according
to the literature, hybrid GPGPU and MPP approaches are not yet explored in deep.

50

Escuela Técnica Superior de Ingenieros de Telecomunicación

Bibliography

[Arias Gallego et al., 2011] Arias Gallego, M., Fernández, J. D., Martınez-Prieto,
M. A., and Gutierrez, C. (2011). HDT-it: Storing, Sharing and Visualizing Huge
RDF Datasets. In 10th International Semantic Web Conference, Bonn, Germany,
October, pages 23–27.

[Armbrust et al., 2015a] Armbrust, M., Das, T., Davidson, A., Ghodsi, A., Or, A.,
Rosen, J., Stoica, I., Wendell, P., Xin, R., and Zaharia, M. (2015a). Scaling Spark in
the Real World: Performance and Usability. Proc. VLDB Endow., 8(12):1840–1843.

[Armbrust et al., 2015b] Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D., Bradley,
J. K., Meng, X., Kaftan, T., Franklin, M. J., Ghodsi, A., and Zaharia, M. (2015b).
Spark SQL: Relational Data Processing in Spark. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’15, pages
1383–1394, New York, NY, USA. ACM.

[Berners-Lee, 2006] Berners-Lee, T. (2006). Linked Data - Design issues https://

www.w3.org/DesignIssues/LinkedData.html [last visit: Aug 2017].

[Bizer et al., 2009] Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked data-the
story so far. Semantic Services, Interoperability and Web Applications: Emerging
Concepts, pages 205–227.

[Bosagh Zadeh et al., 2016] Bosagh Zadeh, R., Meng, X., Ulanov, A., Yavuz, B., Pu,
L., Venkataraman, S., Sparks, E., Staple, A., and Zaharia, M. (2016). Matrix compu-
tations and optimization in apache spark. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 31–38.
ACM.

[Carlini et al., 2014] Carlini, E., Dazzi, P., Esposito, A., Lulli, A., and Ricci, L. (2014).
Balanced graph partitioning with Apache Spark. In European Conference on Parallel
Processing, pages 129–140. Springer.

[Choksuchat and Chantrapornchai, 2013] Choksuchat, C. and Chantrapornchai, C.
(2013). On the HDT with the Tree Representation for Large RDFs on GPU. In
Proceedings of the 2013 International Conference on Parallel and Distributed Sys-
tems, ICPADS ’13, pages 651–656, Washington, DC, USA. IEEE Computer Society.

51

https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html

Barrales C., Compresión de datasets RDF en HDT usando Spark

[Fernández et al., 2011] Fernández, J. D., Martı́nez-Prieto, M. A., Arias, M., Gutierrez,
C., Álvarez-Garcı́a, S., and Brisaboa, N. R. (2011). Lightweighting the Web of Data
Through Compact RDF/HDT. In Proceedings of the 14th International Conference
on Advances in Artificial Intelligence: Spanish Association for Artificial Intelligence,
CAEPIA’11, pages 483–493, Berlin, Heidelberg. Springer-Verlag.

[Fernández et al., 2010] Fernández, J. D., Martı́nez-Prieto, M. A., and Gutierrez, C.
(2010). Compact representation of large RDF data sets for publishing and exchange.
In The Semantic Web-ISWC 2010, pages 193–208. Springer.

[Fernández et al., 2013] Fernández, J. D., Martı́nez-Prieto, M. A., Gutiérrez, C.,
Polleres, A., and Arias, M. (2013). Binary RDF Representation for Publication and
Exchange (HDT). Web Semantics: Science, Services and Agents on the World Wide
Web, 19:22–41.

[Giménez, 2014] Giménez, J. M. (2014). HDT-MR : A Scalable Solution for RDF
Compression with HDT and MapReduce. In The Semantic Web. Latest Advances
and New Domains, pages 253–268. Springer.

[Graux et al., 2016] Graux, D., Jachiet, L., Genevès, P., and Layaı̈da, N. (2016). SPAR-
QLGX in Action: Efficient Distributed Evaluation of SPARQL with Apache Spark.
In 15th International Semantic Web Conference.

[Gurajada et al., 2014] Gurajada, S., Seufert, S., Miliaraki, I., and Theobald, M. (2014).
TriAD: a distributed shared-nothing RDF engine based on asynchronous message
passing. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data, pages 289–300. ACM.

[Hernández Illera et al., 2015] Hernández Illera, A., Martı́nez Prieto, M. A., and
Fernández, J. D. (2015). Serializing RDF in Compressed Space. Data Compres-
sion Conference (DCC), Snowbird, UT, pages 363–372.

[LUBM, 2016] LUBM (2016). The Lehigh University Benchmark (LUBM).

[Maillo et al., 2003] Maillo, J., Triguero, I., and Herrera, F. (2003). Un enfoque
MapReduce del algoritmo k-vecinos más cercanos para Big Data. ACM, 7:971–980.

[Mammo and Bansal, 2015] Mammo, M. and Bansal, S. K. (2015). Presto-RDF:
SPARQL querying over big rdf data. In Australasian Database Conference, pages
281–293. Springer.

[Martı́nez-Prieto et al., 2012] Martı́nez-Prieto, M. A., Arias Gallego, M., and
Fernández, J. D. (2012). Exchange and Consumption of Huge RDF Data. In Pro-
ceedings of the 9th International Conference on The Semantic Web: Research and
Applications, ESWC’12, pages 437–452, Berlin, Heidelberg. Springer-Verlag.

52

Escuela Técnica Superior de Ingenieros de Telecomunicación

[Naacke et al., 2016] Naacke, H., Curé, O., and Amann, B. (2016). SPARQL query
processing with Apache Spark. arXiv preprint arXiv:1604.08903.

[Pérez et al., 2006] Pérez, J., Arenas, M., and Gutierrez, C. (2006). Semantics and
Complexity of SPARQL. In International Semantic Web Conference, volume 4273,
pages 30–43. Springer.

[Quilitz and Leser, 2008] Quilitz, B. and Leser, U. (2008). Querying distributed RDF
data sources with SPARQL, chapter The Semantic Web: Research and Applications:
5th European Semantic Web Conference, ESWC 2008, Tenerife, Canary Islands,
Spain, June 1-5, 2008 Proceedings, pages 524–538. Springer.

[Radoi et al., 2014] Radoi, C., Fink, S. J., Rabbah, R., and Sridharan, M. (2014). Trans-
lating Imperative Code to MapReduce. SIGPLAN Not., 49(10):909–927.

[RDFHDT, 2016] RDFHDT (2016). Most useful/popular datasets from the LOD cloud
in HDT format.

[Schmachtenberg et al., 2014] Schmachtenberg, M., Bizer, C., and Paulheim, H.
(2014). State of the LOD Cloud 2014 http://linkeddatacatalog.dws.

informatik.uni-mannheim.de/state/ [last visit: Aug 2017].

[Shi et al., 2015] Shi, J., Qiu, Y., Minhas, U. F., Jiao, L., and Wang, C. (2015). Clash of
the Titans: MapReduce vs . Spark for Large Scale Data Analytics. VLDB, 8(3):2110–
2121.

[W3C, 2014a] W3C (2014a). Notation3 (N3): A readable RDF syntax.

[W3C, 2014b] W3C (2014b). RDF 1.1 Concepts and Abstract Syntax.

[W3C, 2014c] W3C (2014c). RDF 1.1 N-Quads. A line-based syntax for RDF datasets.

[W3C, 2014d] W3C (2014d). RDF 1.1 N-Triples. A line-based syntax for an RDF
graph.

[W3C, 2014e] W3C (2014e). RDF 1.1 Turtle. Terse RDF Triple Language.

[W3C, 2016] W3C (2016). Linked datasets available as RDF dumps.

[Wiewiórka et al., 2014] Wiewiórka, M. S., Messina, A., Pacholewska, A., Maffioletti,
S., Gawrysiak, P., and Okoniewski, M. J. (2014). SparkSeq: fast, scalable and cloud-
ready tool for the interactive genomic data analysis with nucleotide precision. Bioin-
formatics, 30(18):2652–2653.

[Wikimedia, 2017] Wikimedia (2017). Apache spark https://en.wikipedia.org/

wiki/Apache_Spark [last visit: Aug 2017].

53

http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
http://linkeddatacatalog.dws.informatik.uni-mannheim.de/state/
https://en.wikipedia.org/wiki/Apache_Spark
https://en.wikipedia.org/wiki/Apache_Spark

Barrales C., Compresión de datasets RDF en HDT usando Spark

[Wikimedia, nd] Wikimedia (n.d.). Linked data https://en.wikipedia.org/wiki/
Linked_data [last visit: Aug 2017].

[Yu, 2014a] Yu, L. (2014a). A Developer’s Guide to the Semantic Web, chapter Linked
Open Data, pages 415–473. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Yu, 2014b] Yu, L. (2014b). A Developer’s Guide to the Semantic Web, chapter The
Building Block for the Semantic Web: RDF, pages 23–95. Springer Berlin Heidel-
berg, Berlin, Heidelberg.

[Yu, 2014c] Yu, L. (2014c). A Developer’s Guide to the Semantic Web, chapter
SPARQL: Querying the Semantic Web, pages 265–353. Springer Berlin Heidelberg,
Berlin, Heidelberg.

[Zaharia et al., 2012] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., Mc-
Cauley, M., Franklin, M. J., Shenker, S., and Stoica, I. (2012). Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In Pro-
ceedings of the 9th USENIX conference on Networked Systems Design and Imple-
mentation, pages 2–2. USENIX Association.

[Zaharia et al., 2010] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., and
Stoica, I. (2010). Spark: Cluster Computing with Working Sets. In Proceedings of
the 2nd USENIX conference on Hot topics in cloud computing, volume 10, page 10.

[Zaharia et al., 2008] Zaharia, M., Konwinski, A., Joseph, A. D., Katz, R. H., and Sto-
ica, I. (2008). Improving mapreduce performance in heterogeneous environments.
In OSDI, volume 8, page 7.

54

https://en.wikipedia.org/wiki/Linked_data
https://en.wikipedia.org/wiki/Linked_data

	Contents
	List of Figures
	List of Tables
	Introduction and previous knowledge
	Introduction
	Motivation and objectives
	Document structure

	Previous knowledge
	RDF
	RDF Datasets
	RDF Representation

	HDT
	Problem description
	State of the art
	Expected contributions
	Materials and methodology

	Developed work
	Experimental design
	Validation procedure
	Validation results

	Solution design and implementation
	Dictionary generation
	Triple encoding
	Materialization method
	Join method
	Cogroup method

	First results and further optimizations
	Lessons learned

	Experiment results
	Results
	Discussion

	Finalization
	Related work
	Conclusion
	Limitations and future work
	Bibliography

